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Abstract

Given an integral indefinite binary Hermitian form f over an imaginary quadratic
number field, we give a precise asymptotic equivalent to the number of nonequivalent
representations, satisfying some congruence properties, of the rational integers with
absolute value at most s by f , as s tends to +∞. 1

1 Introduction

Though less thoroughly developed than the real case of binary quadratic forms initiated by
Gauss, the problem of the representation of integers by integral binary Hermitian forms,
along with their reduction theory, initiated by Hermite, Bianchi and especially Humbert,
has been much studied (see for instance [EGM1, Sect. 9] and references therein). The
average, over the representatives of the binary Hermitian forms with a given discriminant,
of the number of their nonequivalent representations of a given integer has been computed
by Elstrodt, Grunewald and Mennicke [EGM2]. In this paper, we concentrate on a given
form, and our result gives a precise asymptotic on the number of nonequivalent proper rep-
resentations of rational integers with absolute value at most s by a given integral indefinite
binary Hermitian form.

A binary Hermitian form naturally gives rise to a quaternary quadratic form. The rep-
resentations of integers by positive definite quaternary quadratic forms have been studied
for a long time (including Lagrange’s four square theorem, see also the work of Ramanu-
jan as in [Klo]). In the case of indefinite forms, the counting problem is complicated by
the presence of an infinite group of automorphs of the form. General formulas are known
(by Siegel’s mass formula, see for instance [ERS]), but it does not seem to be easy (or
even doable) to deduce our asymptotic formulae from them. Our proof is geometric, while
the result of [EGM2] quoted above is based on a number-theoretical computation of the
number of certain cosets associated with the representations of a fixed integer. There
are numerous results on counting integer points with bounded norm on quadrics, see for
instance [dL, DRS, EM, BR], the excellent survey [Bab], and [EO] which counts integer
points with bounded norm on various homogeneous varieties. In this paper, we consider a
problem of a somewhat different nature, and we count appropriate orbits of integer points
on which a fixed integral binary Hermitian form is constant.

1Keywords: Binary Hermitian form, representation of integers, group of automorphs, Bianchi

group. AMS codes: 11E39, 11N45, 20H10, 30F40
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Let K be an imaginary quadratic number field, with discriminant DK , ring of integers
OK , and Dedekind zeta function ζK . Let m be a nonzero fractional ideal of OK , with norm
Nm. For every u, v ∈ K, let 〈u, v〉 be the OK-module they generate. Fix an indefinite
binary Hermitian form f : C2 → R with

f(u, v) = a|u|2 + 2Re(buv) + c|v|2 (1)

which is integral over K (its coefficients satisfy a, b ∈ Z and b ∈ OK). The discriminant
∆(f) = |b|2−ac of the form f is positive. The group SUf (OK) of automorphs of f consists
of those elements g ∈ SL2(OK) for which f ◦ g = f .

For every s > 0, we consider the integer

ψf,m(s) = Card SUf (OK)\
{

(u, v) ∈ m × m : (Nm)−1|f(u, v)| ≤ s, 〈u, v〉 = m
}

,

which is the number of nonequivalent m-primitive representations by f of rational inte-
gers with absolute value at most s. The finiteness of ψf,m(s) follows from general results
on orbits of algebraic groups defined over number fields [BHC, Lem. 5.3], see also [Shi,
Theo. 11.1 (i)]. We prove the following theorem, as a special case of Theorem 4 below.
This more general result applies also to representations that satisfy additional congruence
properties, see Corollary 8.

Theorem 1 As s tends to +∞, we have the equivalence

ψf,m(s) ∼ π Covol(SUf (OK))

2 |DK | ζK(2) ∆(f)
s2 .

Note that the image of SUf (OK) in PSL2(C) is an arithmetic Fuchsian subgroup and,
by definition, Covol(SUf (OK)) is the area of the quotient of the real hyperbolic plane
C with constant curvature −1 preserved by SUf (OK). The following corollary follows
immediately by taking m = OK .

Corollary 2 Let PK be the set of relatively prime pairs of integers of K. Then

Card SUf (OK)\
{

(u, v) ∈ PK : |f(u, v)| ≤ s
}

∼ π Covol(SUf (OK))

2 |DK | ζK(2) ∆(f)
s2 ,

as s tends to +∞.

The main input to prove Theorem 1 is the work [PP] (building on [EM]), where we
proved an equidistribution result for the boundaries of big tubular neighbourhoods of a
finite volume totally geodesic submanifold (here the image of C ) in the quotient of a real
hyperbolic space by a lattice (here the Bianchi group PSL2(OK)).

The covolume of the group of automorphs could be computed using Prasad’s very
general formula in [Pra]. Using the work of Maclachlan and Reid [Mac, MR1, MR2],
building on results of Humbert and Vigneras, we give an expression for Covol(SUf (OK))
at the end of Section 2 (Remark 1).

As the final result of the note, we indicate how the results of [MR1] can be used to
obtain an even more precise expression of the asymptotic formula in Theorem 1 when
K = Q(i). A constant ι(f) ∈ {1, 2, 3, 6} is defined as follows. If ∆(f) ≡ 0 mod 4, let
ι(f) = 2. If the coefficients a and c of the form f as in Equation (1) are both even, let
ι(f) = 3 if ∆(f) ≡ 1 mod 4, and let ι(f) be the remainder modulo 8 of ∆(f) if ∆(f) ≡ 2
mod 4. In all other cases, let ι(f) = 1.
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Corollary 3 Let f be an indefinite binary Hermitian form with Gaussian integral coeffi-

cients. Then as s tends to +∞,

ψf (s) ∼ π2

8 ι(f) ζQ(i)(2)

∏

p|∆(f)

(

1 +

(−1

p

)

p−1
)

s2 .

Here p ranges over the odd positive rational primes and
(−1

p

)

is the Legendre symbol of −1
modulo p.
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by the authors, concerning additional references, detailed comments, as well as the impetus to
extend Corollary 2 to Theorem 1, which required a major revision. The revised version was
completed at the University of Fribourg, Switzerland. We would like to thank the Department of
Mathematics and Ruth Kellerhals for their hospitality.

2 Representing integers by indefinite binary Hermitian forms

Let K,DK ,OK , ζK and m be as in the introduction.
Let us first recall some facts about binary Hermitian forms. The Lie group SL2(C) acts

linearly on the left on C2, and it acts on the right on the set of binary Hermitian forms f
by precomposition, that is, by f 7→ f ◦ g for every g ∈ SL2(C). Note that

∆(f ◦ g) = ∆(f) (2)

for every g ∈ SL2(C). The (nonuniform) lattice ΓK = SL2(OK) of SL2(C) preserves the
set of integral indefinite binary Hermitian forms over K. The stabilizer in ΓK of such a
form f is the group of automorphs SUf (OK) defined in the introduction.

For every indefinite binary Hermitian form f as in Equation (1) with discriminant
∆ = ∆(f), let

C∞(f) = {[u : v] ∈ P1(C) : f(u, v) = 0}
and

C (f) = {(z, t) ∈ C× ]0,+∞[ : f(z, 1) + |a| t2 = 0} .
Identifying, as usual, P1(C) with C∪{∞} where ∞ = [1 : 0], the set C∞(f) is the circle of

center − b
a and radius

√
∆

|a| if a 6= 0, and it is the union of a real line with {∞} otherwise. The

map f 7→ C∞(f) induces a bijection between the set of indefinite binary Hermitian forms
up to multiplication by a nonzero real factor and the set of circles and real lines in C∪{∞}.
The linear action of SL2(C) on C2 induces a left action of SL2(C) by homographies on the
set of circles and real lines in P1(C), and the map f 7→ C∞(f) is anti-equivariant for the
two actions of SL2(C), in the sense that, for every g ∈ SL2(C),

C∞(f ◦ g) = g−1
C∞(f) . (3)

Given a finite index subgroup G of ΓK , an integral binary Hermitian form f is called
G-reciprocal if there exists an element g in G such that f ◦ g = −f . We define RG(f) = 2
if f is G-reciprocal, and RG(f) = 1 otherwise. The values of f(z, 1) are positive on one
of the two components of P1(C) − C∞(f) and negative on the other. As the signs are
switched by precomposition by an element g as above, the reciprocity of the form f is
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equivalent to saying that there exists an element of G preserving C∞(f) and exchanging
the two complementary components of C∞(f).

Let us now introduce the general counting function we will study. For every integral
binary Hermitian form f over K, for every finite index subgroup G of ΓK , for every x, y
in OK not both zero, and for every s > 0, let

ψf,G,x,y(s) = Card SUf (OK) ∩G\
{

(u, v) ∈ G(x, y) : (N〈x, y〉)−1|f(u, v)| ≤ s
}

.

Remarks. (1) Let us study the dependence of this counting function ψf,G,x,y on x and y.
Recall that the set of parabolic fixed points of ΓK = SL2(OK) is exactly P1(K). Since G
has finite index in ΓK , the set of parabolic fixed points of G in P1(C) is still P1(K), and
there are only finitely many orbits of G on P1(K). It is easy to see that the map ψf,G,x,y

depends only on K, f,G and the orbit of [x : y] under G in P1(K). In particular, there are
only finitely many maps ψf,G,x,y, for fixed f and G, as x and y vary in OK .

(2) Let MK be the group of nonzero fractional ideals of OK , and let IK = MK/K
∗

be the ideal class group of K. The map from ΓK\P1(K) to IK , which associates the
ideal class of 〈x, y〉 to the ΓK-orbit of [x : y], is a bijection, see for example Theorem
2.4 in Chapter 7 of [EGM1]. One easily checks that the counting function s 7→ ψf,m(s)
defined in the introduction depends only on K, f and on the ideal class of m. Therefore
we may assume that m is contained in OK . Let then xm, ym be elements of OK such that
m = 〈xm, ym〉. For instance by Lemma 2.1 in Chapter 7 of [EGM1], for all x, y, x′, y′ ∈ OK ,
we have 〈x, y〉 = 〈x′, y′〉 if and only if there exists γ ∈ ΓK such that (x, y) = γ(x′, y′) in
C2. Hence

ψf,m(s) = ψf,ΓK ,xm ,ym
,

so that Theorem 1 follows from Theorem 4 below.

Let ΓK,x,y and Gx,y be the stabilizers of (x, y) ∈ C2 in ΓK and G respectively; let ιG = 1
if − id ∈ G, and ιG = 2 otherwise. Note that the image of SUf (OK) ∩ G in PSL2(C) is
again an arithmetic Fuchsian subgroup.

Theorem 4 Let f be an integral indefinite binary Hermitian form over an imaginary

quadratic number field K, let x and y be elements in OK not both zero, and let G be a

finite index subgroup of SL2(OK). Then, as s tends to +∞, we have the equivalence

ψf,G,x,y(s) ∼
π ιG [ΓK,x,y : Gx,y] Covol(SUf (OK) ∩G)

2 |DK | ζK(2) ∆(f) [ΓK : G]
s2 .

Proof. Let us first recall a geometric result from [PP] that will be used to prove this
theorem. A subset A of a set endowed with an action of a group G is said to be precisely
invariant under this group if for every g ∈ G, if gA ∩A is nonempty, then gA = A.

Let n ≥ 2 and let H n
R be the upper halfspace model of the real hyperbolic space of

dimension n, with (constant) sectional curvature −1. Let F be a finite covolume discrete
group of isometries of H n

R. Let 1 ≤ k ≤ n− 1 and let C be a real hyperbolic subspace of
dimension k of H n

R, whose stabilizer FC in F has finite covolume. Let H be a horoball in
H n

R, which is precisely invariant under F , with stabilizer FH .
For every α, β ∈ F , denote by δα,β the common perpendicular geodesic arc between

αC and the horosphere β∂H , and let ℓ(δα,β) be its length, counted positively if δα,β exits

4



βH at its endpoint on β∂H , and negatively otherwise. By convention, ℓ(δα,β) = −∞
if the boundary at infinity of αC contains the point at infinity of βH . Also define the
multiplicity of δα,β as m(α, β) = 1/Card(αFCα

−1 ∩ β FH β−1). Its denominator is finite,
if the boundary at infinity of αC does not contain the point at infinity of βH , since then
the subgroup αFCα

−1 ∩ β FH β−1 that preserves both βH and αC , consists in elliptic
elements. In particular, there are only finitely many elements [g] ∈ FC \F/FH such that
m(g−1, id) is different from 1, or equivalently such that g−1FC g ∩ FH 6= {1}. For every
t ≥ 0, define N (t) = NF,C ,H (t) as the number, counted with multiplicity, of the orbits
under F in the set of the common perpendicular arcs δα,β for α, β ∈ F with length at most
t:

N (t) = NF,C ,H (t) =
∑

(α,β)∈F\(F/FC×F/FH ) : ℓ(δα,β)≤t

m(α, β) .

For everym ∈ N, denoting by Sm the unit sphere of the Euclidean space Rm+1, endowed
with its induced Riemannian metric, we have the following result:

Theorem 5 ([PP, Coro. 4.9]) As t→ +∞, we have

N (t) ∼ Vol(Sn−k−1)Vol(FH \H )Vol(FC \C )

Vol(Sn−1)Vol(F\H n
R)

e(n−1)t . �

Now, let f,K,G, x and y be as in the statement of Theorem 4. By the first remark
above it, since any orbit of G on P1(K) is dense in P1(C), we may assume that x and y
are both nonzero. If DK = −4,−3, then the class number of K is one, hence there is only
one orbit of parabolic fixed points, and we choose x = y = 1.

We write f as in Equation (1), and denote its discriminant by ∆. In order to apply
Theorem 5, we first define the various objects n, k, F , H , and C that appear in its
statement.

Let n = 3 and k = 2, so that Vol(Sn−1) = 4π, Vol(Sn−k−1) = 2, the boundary at
infinity of H n

R is ∂H 3
R = C ∪ {∞}, and PSL2(C) acts faithfully and isometrically on H n

R

by the Poincaré extension of homographies.
For any subgroup H of SL2(C), we denote by H its image in PSL2(C), except that the

image of SUf (OK) is denoted by PSUf (OK). We will apply Theorem 5 to F = G.
The Bianchi group ΓK = PSL2(OK) acts discretely on H 3

R, with finite covolume. By a
formula essentially due to Humbert (see for instance the sections 8.8 and 9.6 of [EGM1]), we
have Vol( ΓK \H 3

R) = 1
4π2 |DK |3/2ζK(2). Note that Vol(G \H 3

R) = [ ΓK : G ] Vol( ΓK \H 3
R)

and [ ΓK : G ] = 1
ιG

[ΓK : G] by the definition of ιG. Thus,

Vol(G \H 3
R) =

1

4π2ιG
|DK |3/2ζK(2)[ΓK : G] . (4)

Let ρ = x
y 6= 0,∞, which as said above is a parabolic fixed point of ΓK hence of G.

Let τ ∈ ]0, 1] be small enough so that the horoball H in H 3
R centered at ρ ∈ ∂H 3

R, with
Euclidean height τ , is precisely invariant under ΓK hence under G. Such a τ exists by the
standard properties of parabolic fixed points. The stabilizer in the Bianchi group of the
point at infinity ρ is equal to ( ΓK )H .

Let O
×
K be the group of units of OK , and let ωK be the number of roots of unity in

OK , which in our case is the cardinality of O
×
K . Recall that ωK = 4 if DK = −4, ωK = 6

if DK = −3 and ωK = 2 if DK 6= −3,−4.
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Lemma 6 Let b be the integral ideal OK ∩ ρ−1OK ∩ ρ−2OK . Then

Vol(GH \H ) =
τ2

√

|DK |
2ωK

Nb [(ΓK)H : GH ] . (5)

Proof. We only have to prove that Vol(( ΓK )H \H ) =
τ2Nb

√
|DK |

2 ωK
. Let

γρ =
( ρ −1

1 0

)

∈ SL2(K) .

Note that γ−1
ρ maps ρ to ∞ and H to the horoball H∞ consisting of the points in H3

R

with Euclidean height at least 1
τ . Let Γ∞ be the stabilizer of ∞ in γ−1

ρ ΓK γρ. We claim
that

Γ∞ =
{( a′ −c

0 d′
)

: c ∈ b, a′, d′ ∈ O
×
K , a

′d′ = 1
}

. (6)

This implies the result, since (using the fact that an isometry preserves the volume for the
first equality, and an easy hyperbolic volume computation for the second one)

Vol
(

( ΓK )H \H
)

= Vol( Γ∞ \H∞) =
1

2
Vol( Γ∞ \∂H∞) =

τ2

2
Vol( Γ∞ \C)

=
τ2

ωK
Vol(b\C) =

τ2Nb

ωK
Vol(OK\C) =

τ2Nb
√

|DK |
2ωK

.

The last two equations hold since N(b) = [OK : b] and since OK is generated as a Z-module

by 1 and
DK+i

√
|DK |

2 .

To prove the claim (6), note that if DK = −4,−3, then, by the choice x = y = 1,
we have ρ = 1 (hence b = OK), and the claim is satisfied. Therefore, we assume that
DK 6= −4,−3, hence that O

×
K = {±1}.

For every γ =
( a b
c d

)

in ΓK , the element

γ−1
ρ γγρ =

( ρc+ d −c
ρ2c+ ρ(d− a) − b a− ρc

)

fixes ∞ if and only if
ρ2c+ ρ(d− a) − b = 0 . (7)

If this equation holds, we have (ρc + d)(a − ρc) = 1. In particular, ρc is an algebraic
integer which belongs toK, hence is an element of OK . Therefore a′ = ρc+d and d′ = a−ρc
belong to O

×
K = {±1}, since a′d′ = 1. Hence a′ = d′ = ±1. Multiplying by ρ the equation

ρc + d = a − ρc, and substracting it from Equation (7), we get ρ2c = −b ∈ OK . Hence
c, ρc, ρ2c ∈ OK , and this proves the inclusion from the left to the right in Equation (6).

Conversely, let a′ = d′ ∈ {±1} and c ∈ b. Define a = d′ + ρc, d = a′ − ρc, b = −ρ2c,
which belong to OK by the definition of b. One easily checks that ad − bc = 1 and that

Equation (7) holds, therefore γ =
( a b
c d

)

belongs to ΓK , and γ−1
ρ γγρ fixes ∞. This

proves the inclusion from the right to the left in Equation (6). �
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Let us resume the proof of Theorem 4. Let C = C (f), which is indeed a real hyperbolic
plane in H 3

R, whose set of points at infinity is C∞(f) (hence ∞ is a point at infinity of C (f)
if and only if a = 0). Note that C is invariant under the group SUf (OK) by Equation (3)
(which implies that C (f ◦ g) = g−1C (f) for every g ∈ SL2(OK)). The arithmetic group
SUf (OK) acts with finite covolume on C (f), its finite subgroup {± id} acting trivially. By
definition,

Covol(SUf (OK) ∩G) = Vol
(

PSUf (OK) ∩G\C (f)
)

.

Note that Covol(SUf (OK) ∩ G) depends only on the G-orbit of f , by Equation (3) and
since SUf◦g(OK) = g−1 SUf (OK)g for every g ∈ SL2(OK). By its definition, RG(f) is the
index of the subgroup PSUf (OK) ∩G in GC , hence

Vol(GC \C ) =
1

RG(f)
Covol(SUf (OK) ∩G) . (8)

Now that we have defined all the objects needed to apply Theorem 5, let us pause in
the proof and recall the following easy exercise in group theory.

Lemma 7 Let C be a group and let A,B,A′, B′ be subgroups of C, such that A ⊂ A′

and B ⊂ B′, both with finite indices. Let D be the set of elements g ∈ C such that

g−1A′g ∩ B′ = {1}. Then the fibers of the canonical map from A\D/B to A′\D/B′ all

have cardinality [A′ : A][B′ : B].

Proof. Note that the subset D of C, being invariant under left translation by A′ and
under right translation by B′, is a disjoint union of double cosets D =

∐

i∈I A
′giB

′. Write
A′ =

∐m
j=1Aaj and B′ =

∐n
k=1 bkB. Let us prove that D =

∐

i∈I,1≤j≤m,1≤k≤nAajgibkB,
which yields the result. It is clear that D is the union of the double cosets AajgibkB.
Let us prove that for every a ∈ A and b ∈ B, if the equality aajgibkb = aj′gi′bk′ holds,
then i = i′, j = j′, k = k′, which implies the disjointness of these double cosets. That
equality implies first that i = i′ by the definition of the double coset representatives gi’s,
and thus that g−1

i a−1
j′ aajgi = bk′b−1b−1

k . Since a−1
j′ aaj and bk′b−1b−1

k belong to A′ and B′

respectively, the assumptions defining D imply that they are both equal to the identity
element. Hence aaj = aj′ and bkb = bk′ . By the definition of the right coset representatives
aj ’s and the left coset representatives bk’s, we hence have j = j′ and k = k′. �

The last step of the proof of Theorem 4 consists in relating the two counting functions
ψf,G,x,y and NG,C ,H , in order to apply Theorem 5.

For every g ∈ SL2(C), let us compute the hyperbolic length of the common perpen-
dicular geodesic arc δg−1,id between the real hyperbolic plane g−1C and the horoball H ,
assuming that they do not meet. We use the notation γρ,H∞ introduced in the proof of
Lemma 6. Since γ−1

ρ sends the horoball H to the horoball H∞, it sends the common
perpendicular geodesic arc between g−1C and H to the (vertical) common perpendicu-
lar geodesic arc between γ−1

ρ g−1C and H∞. Let r be the Euclidean radius of the circle
C∞(f ◦ g ◦γρ), which is the image by γ−1

ρ of the boundary at infinity of g−1C by Equation
(3). Denoting by a(f ◦g ◦γρ) the coefficient of |u|2 in f ◦g ◦γρ(u, v), we have, by Equation
(2),

r =

√

∆(f ◦ g ◦ γρ)

|a(f ◦ g ◦ γρ)|
=

√
∆

|f ◦ g ◦ γρ(1, 0)|
=

√
∆

|f ◦ g(ρ, 1)| =
|y|2

√
∆

|f ◦ g(x, y)| .
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An immediate computation gives

ℓ(δg−1,id) = ℓ(γ−1
ρ δg−1,id) = ln

1

τ
− ln r = ln

|f ◦ g(x, y)|
τ |y|2

√
∆

. (9)

With the conventions that we have taken, this formula is also valid if g−1C and H meet.
For every s > 0, using Equation (9), we have

ψf,G,x,y(s) = Card
{

[g] ∈ (SUf (OK) ∩G)\G/Gx,y : (N〈x, y〉)−1|f ◦ g(x, y)| ≤ s
}

= Card
{

[g] ∈ (PSUf (OK) ∩G)\G/Gx,y : ℓ(δg−1,id) ≤ ln
s N〈x, y〉
τ |y|2

√
∆

}

.

We apply Lemma 7 to C = G, A = PSUf (OK) ∩ G, A′ = GC , B = Gx,y and B′ = GH .
Since there are only finitely many elements [g] ∈ GC \G/GH such that g−1GC g ∩ GH is
different from {1}, we have

ψf,G,x,y(s) ∼ RG(f) [GH : Gx,y ] Card
{

[g] ∈ GC \G/GH : ℓ(δg−1,id) ≤ ln
s N〈x, y〉
τ |y|2

√
∆

}

.

By the definition of the counting function NG,C ,H , since there are only finitely many

elements [g] ∈ GC \G/GH such that the multiplicity m(g−1, id) is different from 1, we
have

ψf,G,x,y(s) ∼ RG(f) [GH : Gx,y ] NG,C ,H

(

ln
s N〈x, y〉
τ |y|2

√
∆

)

.

By Theorem 5 and the equations (8), (5) and (4), the number ψf,G,x,y(s) is equivalent to

RG(f) [GH : Gx,y ]
2

4π

τ2
√

|DK |
2 ωK

Nb [(ΓK)H : GH ]
Covol

(

SUf (OK) ∩G
)

RG(f)
1

4π2ιG
|DK |3/2 ζK(2) [ΓK : G]

(s N〈x, y〉
τ |y|2

√
∆

)2

,

(10)
as s tends to +∞.

In order to simplify the expression (10), let us make two remarks. Firstly,

[(ΓK)H : GH ][GH : Gx,y ] = [(ΓK)H : ΓK,x,y ][ ΓK,x,y : Gx,y ] =
ωK

2
[ΓK,x,y : Gx,y] .

Secondly, let (x) =
∏

p pνp(x) and (y) =
∏

p pνp(y) be the prime decompositions of the
principal ideals (x) and (y). By the formulas of the prime decompositions of intersections,
sums and products of ideals (see for instance [Coh, page 124]), we have (x2)∩ (xy)∩ (y2) =
(x2)∩ (y2) =

∏

p p2 max{νp(x),νp(y)} and 〈x, y〉 =
∏

p pmin{νp(x),νp(y)}. By the definition of the
ideal b and the multiplicativity of the norm, we hence have

Nb (N〈x, y〉)2
|y|4 = N

(

(

(x2) ∩ (xy) ∩ (y2)
)

〈x, y〉2(x)−2(y)−2
)

= 1 .

Theorem 4 follows by simplifying the expression (10) using the above two observations. �

We now state the precise asymptotic result of the number of nonequivalent representa-
tions of rational integers, satisfying some congruence relations and having absolute value
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at most s, by a given integral indefinite binary Hermitian form. Given a nonzero ideal a

in OK , let ιa = 1 if 2 ∈ a, and ιa = 2 otherwise; consider the (full and Hecke respectively)
congruence subgroups

ΓK (a) =
{

(

α β
γ δ

)

∈ ΓK : α− 1, δ − 1, γ, β ∈ a
}

, ΓK ,0(a) =
{

(

α β
γ δ

)

∈ ΓK : γ ∈ a
}

.

Both ΓK ,0(a) and ΓK (a) coincide with ΓK when a = OK .

Corollary 8 Let f be an integral indefinite binary Hermitian form over an imaginary

quadratic number field K, and let a be a nonzero ideal in OK . As s tends to +∞, we have

Card SUf (OK) ∩ ΓK (a)\
{

(u, v) ∈ PK : u− 1, v ∈ a, |f(u, v)| ≤ s
}

∼ π ιa Covol
(

SUf (OK) ∩ ΓK (a)
)

2 N(a)2
∏

p|a
(

1 − 1
N(p)2

)

|DK | ζK(2) ∆(f)
s2 ,

and

Card SUf (OK) ∩ ΓK ,0(a)
\
{

(u, v) ∈ PK : v ∈ a, |f(u, v)| ≤ s
}

∼ π Covol
(

SUf (OK) ∩ ΓK ,0(a)
)

2N(a)
∏

p|a
(

1 + 1
N(p)

)

|DK | ζK(2) ∆(f)
s2 .

Proof. The orbits of (1, 0) ∈ C2 under the linear action of the groups ΓK (a) and ΓK ,0(a)
are precisely the sets {(u, v) ∈ PK : u− 1, v ∈ a} and {(u, v) ∈ PK : v ∈ a}, respectively.

The indices of ΓK (a) and ΓK ,0(a) in ΓK , as computed for example in Theorems VII.16
and VII.17 of [New], are

[ΓK : ΓK (a)] = N(a)3
∏

p|a

(

1 − 1

N(p)2
)

and [ΓK : ΓK ,0(a)] = N(a)
∏

p|a

(

1 +
1

N(p)

)

,

where the products are taken over the prime ideals p of OK dividing a. The index in the
stabilizer of (1, 0) ∈ C2 in ΓK of the stabilizer of (1, 0) in ΓK (a) is N(a) :

[ΓK,1,0 : (ΓK (a))1,0] = N(a) .

The index in the stabilizer of (1, 0) ∈ C2 in ΓK of the stabilizer of (1, 0) in ΓK ,0(a) is 1:

[ΓK,1,0 : (ΓK ,0(a))1,0] = 1 .

Note that − id belongs to ΓK ,0(a), and it belongs to ΓK (a) if and only if 2 ∈ a, so
that ιΓK ,0(a) = 1 and ιΓK (a) = ιa. The corollary now follows from Theorem 4, applied with
x = 1, y = 0, G = ΓK (a) and G = ΓK ,0(a). �

Corollary 2 also follows from Corollary 8, by taking in both results a = OK . Note that
from the techniques of [EGM1, Sect. 9], only the considerably weaker result ψf,OK

(s) =
O(s2 log s) seems to be obtainable (see [EGM2, Coro. 2.12]).

In the following concluding remarks, for any positive integer ∆, let

f∆(u, v) = |u|2 − ∆|v|2,
9



which is an integral indefinite binary Hermitian form with discriminant ∆.

Remark 1. Here is a computation of Covol(SUf (OK)) for f an integral indefinite binary
Hermitian form over K, with discriminant ∆, following [Mac, MR2] instead of [Pra].

Maclachlan has proved in [Mac] that SUf (OK) and SUf∆
(OK) are commensurable up to

conjugation, in the following way. Since the limit set of PSL2(OK) is ∂H 3
R = C∪{∞} and

since SUf (OK) = SU−f (OK), we may assume, up to replacing f by an element in its ΓK-
orbit or its opposite, that a = a(f) > 0. Let Ga be the congruence subgroup of SUf (OK)
which is the preimage of the upper triangular subgroup by the morphism SUf (OK) →

SL2(OK/aOK) of reduction modulo a of the coefficients. Let g =
( 1√

a
− b√

a

0
√
a

)

∈ SL2(C).

By an easy computation, we have that f◦g = f∆, and that g−1Gag is contained in SL2(OK).
Hence g−1Gag is a finite index subgroup of SUf∆

(OK). Therefore, we have

Covol(SUf (OK)) =
[SUf∆

(OK) : g−1Gag]

[SUf (OK) : Ga]
Covol(SUf∆

(OK)) .

Maclachlan has also proved in [Mac] that SUf∆
(OK) is commensurable with a lattice

derived from a quaternion algebra, in the following way. Let dK = DK

4 if DK ≡ 0 mod 4,

and dK = DK otherwise. Let A be the quaternion algebra with Hilbert symbol
( dK ,∆

Q

)

over Q, which splits over K. Let ∆(A) be the reduced discriminant of A. Let O be the order
Z[i, j, ij] in A for the standard basis 1, i, j, ij of A, let Omax be the maximal order containing
O, and let O1,O1

max be their groups of elements of norm 1. Let ϕ : A→ A⊗QK = M2(K)
be the natural embedding, given by

α+ βi+ γj + δij 7→
(

α+ β
√
dK ∆(γ + δ

√
dK )

γ − δ
√
dK α− β

√
dK

)

.

An easy computation shows that ϕ(O1) is a subgroup of SUf∆
(OK). Then by [MR2,

Theo. 11.1.1], we have

Covol(SUf∆
(OK)) =

π [O1
max : O1]

3 [PSUf∆
(OK) : ϕ(O1) ]

∏

p |∆(A)

(p− 1) ,

where p ranges over the positive rational primes. This gives a formula for Covol(SUf (OK)).

Remark 2. Assume that K = Q(i) in this remark. Let us give in this case, following
[MR1], a more precise formula for Covol(SUf (OK)) where f is an integral indefinite binary
Hermitian form over K, with discriminant ∆. Combined with Corollary 2, Corollary 3 will
follow.

Since SUf (OK) = SUkf (OK) for every k ∈ N − {0}, we may assume, as required in
[MR1], that f is primitive, that is, with f as in Equation (1), the coefficients a, c, and the
real and imaginary parts of b have no common divisor in the rational integers. Note that
the subgroup PSUf (OK) of ΓK is denoted by Stab(C (f),ΓK) in [MR1, p. 161], and it is
a maximal Fuchsian subgroup of ΓK (loc. cit.).

The hyperbolic plane C (f∆) associated to the form f∆ is the halfsphere of Euclidean
radius

√
∆ centered at 0. A formula due to Humbert (see for instance [MR1, p. 169]) gives

Covol(SUf∆
(OK)) = η π∆

∏

p|∆
p odd

(

1 +

(−1

p

)

p−1
)

, (11)
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where p ranges over the positive rational primes,
(−1

p

)

is the Legendre symbol of −1 modulo
p, and η = 1/2 if ∆ ≡ 0 mod 4 and η = 1 otherwise.

The maximal Fuchsian subgroups of ΓK are classified in [MR1], yielding the following
cases.

• If ∆ ≡ 0, 3 mod 4, then PSUf (OK) is a conjugate in ΓK of PSUf∆
(OK), and its

covolume is given by Equation (11) (see [MR1, p.170]).
• If ∆ ≡ 1 mod 4, there are two cases: If the coefficients a and c are even, then

Covol(SUf (OK)) =
1

3
Covol(SUf∆

(OK)) ;

otherwise, PSUf (OK) is a conjugate in ΓK of PSUf∆
(OK) (see [MR1, p. 171-172]).

• If ∆ ≡ 2 mod 4, there are two cases: If the coefficients a and c are even, then

Covol(SUf (OK)) =
1

η′
Covol SUf∆

(OK) ,

where η′ ∈ {2, 6} satisfies η′ = ∆ mod 8; otherwise, PSUf (OK) is a conjugate in ΓK of
PSUf∆

(OK) (see [MR1, p. 173]).
This proves Corollary 3 of the introduction.

References

[Bab] M. Babillot. Points entiers et groupes discrets : de l’analyse aux systèmes dynamiques.
in Rigidité, groupe fondamental et dynamique, Panor. Synthèses 13, 1–119, Soc. Math.
France 2002.

[BHC] A. Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math.
75 (1962) 485–535.

[BR] M. Borovoi and Z. Rudnick. Hardy-Littlewood varieties and semisimple groups. Invent.
Math. 119 (1995) 37–66.

[Coh] H. Cohn. A second course in number theory. Wiley, 1962, reprinted as Advanced number

theory, Dover, 1980.

[dL] D. de Lury. On the representation of numbers by the indefinite form ax2 +by2 +cz2 +dt2.
Univ. Toronto Stud. Math. Ser. 5 (1938) 3–17.

[DRS] W. Duke, Z. Rudnick, and P. Sarnak. Density of integer points on affine homogeneous

varieties. Duke Math. J. 71 (1993) 143–179.

[EGM1] J. Elstrodt, F. Grunewald, and J. Mennicke. Groups acting on hyperbolic space. Springer
Verlag, 1998.

[EGM2] J. Elstrodt, F. Grunewald, and J. Mennicke. Zeta-functions of binary Hermitian forms

and special values of Eisenstein series on three-dimensional hyperbolic space. Math. Ann.
277 (1987) 655–708.

[EM] A. Eskin and C. McMullen. Mixing, counting, and equidistribution in Lie groups. Duke
Math. J. 71 (1993) 181–209.

[EO] A. Eskin and H. Oh. Representations of integers by an invariant polynomial and unipotent

flows. Duke Math. J. 135 (2006) 481–506.

[ERS] A. Eskin, Z. Rudnick, and P. Sarnak. A proof of Siegel’s weight formula. Internat. Math.
Res. Notices 5 (1991) 65–69.

11



[Klo] H. D. Kloosterman. On the representation of numbers in the form ax2 + by2 + cz2 + dt2.
Acta Math. 49 (1927) 407–464.

[Mac] C. Maclachlan. Fuchsian subgroups of the groups PSL2(Od). In Low-dimensional topology
and Kleinian groups (Coventry/Durham 1984), London Math. Soc. Lect. Note Ser. 112

305–311, Cambridge Univ. Press, 1986.

[MR1] C. Maclachlan and A. Reid. Parametrizing Fuchsian subgroups of the Bianchi groups.
Canad. J. Math. 43 (1991) 158-181.

[MR2] C. Maclachlan and A. Reid. The arithmetic of hyperbolic 3-manifolds. Grad. Texts in
Math. 219, Springer Verlag, 2003.

[New] M. Newman. Integral matrices. Academic Press, 1972.

[PP] J. Parkkonen and F. Paulin. Equidistribution, comptage et approximation par irrationnels

quadratiques. Preprint [arXiv:1004.0454].

[Pra] G. Prasad. Volumes of S-arithmetic quotients of semi-simple groups. Publ. Math. Inst.
Hautes Études Sci. 69 (1989) 91–117.

[Shi] G. Shimura. Arithmetic and analytic theories of quadratic forms and Clifford groups.
Math. Surv. Monogr. 109, Amer. Math. Soc. 2004.

Department of Mathematics and Statistics, P.O. Box 35
40014 University of Jyväskylä, FINLAND.
e-mail: jouni.t.parkkonen@jyu.fi

Département de mathématique, UMR 8628 CNRS, Bât. 425
Université Paris-Sud 11
91405 ORSAY Cedex, FRANCE
e-mail: frederic.paulin@math.u-psud.fr

12


