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Abstract

Given a discrete group I' of isometries of a negatively curved manifold M , & non-
trivial conjugacy class £ in I' and zg € M, we give asymptotic counting results, as
t — 400, on the number of orbit points yxy at distance at most ¢ from zy, when
v is restricted to be in R, as well as related equidistribution results. These results
generalise and extend work of Huber on cocompact hyperbolic lattices in dimension
2. We also study the growth of given conjugacy classes in finitely generated groups
endowed with a word metric. !

1 Introduction

Given an infinite discrete group of isometries I'" of a proper metric space X, the orbital
counting problem studies, for fixed xzq,yo € X, the asymptotic as t — 400 of

Card{y eT : d(zg,vyo) <t} .

Initiated by Gauss in the Fuclidean plane and by Huber in the real hyperbolic plane, there
is a huge corpus of works on this problem, including the seminal results of Margulis’s thesis,
see for instance [Bab2, Ohl, Oh2| and their references for historical remarks, as well as
[ABEM, PPS, Qui, Sam]| for variations.

Given an infinite subset of the orbit I'zg, defined in either an algebraic, a geometric
or a probabilistic way, it is interesting to study the asymptotic growth of this subset, see
for example [PR, BKS] and Chapter 4 of [PPS] for recent examples. In this paper, we
consider the orbit points under the elements of a fixed nontrivial conjugacy class & in T'.
More precisely, we will study the asymptotic growth as t — 400 of the counting function

Ng, 5, (t) = Card{y € R : d(zg,v20) <t}

introduced by Huber [Hubl] in a special case. Although we will work in the framework
of negative curvature in this paper, the counting problem in (infinite) conjugacy classes
is interesting even for discrete isometry groups in (nonabelian) nilpotent or solvable Lie
groups endowed with left-invariant distances. We refer to Section 2 for examples of com-
putations of the growth of Ng ,,(¢) when I is a finitely generated group and X is the set
I" endowed with a word metric. This paper opens a new field of research, studying which
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growth types (or relative growth types) fixed conjugacy classes may have in finitely gener-
ated groups. For word-hyperbolic groups and negatively curved manifolds, the conjugacy
classes usually have constant exponential growth rate, as illustrated by the following result
(see also Proposition 5 and Corollary 10 for generalisations).

Theorem 1 If M is a compact negatively curved Riemannian manifold, if h is the topo-
logical entropy of its geodesic flow, if I is the covering group of a universal Riemannian
cover X — M, if R is a nontrivial conjugacy class in I, then

.1 h
t£+moozlnNﬁ’x°(t) =5
In this introduction from now on, we concentrate on the case when X is the real
hyperbolic plane H]%{, and we assume that zg is not fixed by any nontrivial element of T,
see the main body of the text for more general statements. Given a nontrivial element v of
a discrete group of isometries I' of H]%{, we will denote by C,, 7, 1y the following objects:
o if y is loxodromic, then C, is the translation axis of 7; with /, the translation length of
7, we define 7, = (%)U 2 if  preserves the orientation and 7., = (%)1/ 2
otherwise; ¢, is 2 if there exists an element in I' exchanging the two fixed points of
v, and 1 otherwise;
e if v is parabolic, then C, is a horoball centred at the parabolic fixed point of 7; we
set 7, = 2sinh M for any x € 0C,; we define ¢, as 2 if there exists a nontrivial
elliptic element of I" fixing the fixed point of v, and 1 otherwise;
e if v is elliptic, then C, is the fixed point set of v in HZ; if v is orientation-reversing,
we assume in this introduction that the stabiliser of C, is infinite; we set 7., = sing
if v preserves the orientation with rotation angle 6, and 7, = 1 otherwise; we define
ty = 1, unless v preserves the orientation with rotation angle different from 7 and

the stabiliser in I' of C is dihedral, in which case ¢, = 2.

We refer for instance to |[Rob2| for the definition of the critical exponent or of I', the
Patterson-Sullivan measures (,ux)erD% of I', the Bowen-Margulis measure mgy; of I', and
to [OhS1, PP2] for the definition of the skinning measure o¢ of I' associated to a nonempty
proper closed convex subset C' of H (see also Section 3). We denote by ||u|| the total mass
of a measure p and by A, the unit Dirac mass at a point x.

The following result says in particular that the exponential growth rate of the orbit
under a conjugacy class is %F and that the unit tangent vectors at x( to these orbit points
equidistribute to the pulled-back Patterson-Sullivan measure.

Theorem 2 Let I' be a nonelementary finitely generated discrete group of isometries of
H%&, and let R be the conjugacy class of a fixed nontrivial element vy € T'.

(1) As t — 400, we have

by lHao |l lloe, I ar

N, t) ~
R,mo( ) 51“ HmBMH Tfyoép

5
If T is arithmetic or if M is compact, then the error term is O(e(gf")t) for some Kk > 0.

(2) Let vy be the unit tangent vector at xo to the geodesic segment [xo,vyxo| for every
nontrwial v € T', and let my : T;OH% — 300H%g be the homeomorphism sending v to the
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point at infinity of the geodesic ray with initial vector v. For the weak-star convergence of
measures on T%OH%&, we have

1
PR o () V[T o 3 A,

—1
= (7 JT7
M Tl Toco T v = (T )by

YER, d(zo,v20)<t

When T is a cocompact lattice in dimension 2 and ~q is loxodromic, the first claim is
due to Huber [Hubl, Theorem B] with an improved error bound in [Hub2|. The following
corollary, proved in Sections 5 and 6, is a generalisation of Huber’s result for noncompact
quotients and for parabolic conjugacy classes. A version for elliptic conjugacy classes
follows from Corollary 20, we leave the formulation for the reader.

Corollary 3 Let T be a torsion-free and orientation-preserving discrete group of isometries

of H% such that the surface T\HZ has finite area, with genus g and p punctures. If & is a

conjugacy class of primitive lozodromic elements with translation length ¢, then ast — 400,
L

27(2g +p — 2) sinh £

[SIES

Nﬁy zo (t) ~ €

If R is a conjugacy class of primitive parabolic elements, then ast — 400,

1
.
21(2g +p—2)

[SIES

Nﬁ? xo (t) ~

When I' is a uniform lattice, K is a conjugacy class of loxodromic elements, and Hﬁ is
replaced by a regular tree, the analog of Corollary 3 is due to [Dou|. See [BrPP| for the
case of any locally finite tree and more general discrete groups of isometries.

The main tool of this paper (see Section 3) is a counting and equidistribution result for
the common perpendiculars between locally convex subsets of simply connected negatively
curved manifolds, proved in [PP4|. In Section 4, we will use this tool in order to prove
our abstract main result, Theorem 8, on the counting of the orbit points by the elements
in a given conjugacy class. In Sections 5, 6 and 7, we give the elementary computations
concerning the geometry of loxodromic, parabolic and elliptic isometries of a simply con-
nected negatively curved manifold required to apply our abstract main result, proving as
a special case the above Theorem 2. Finally, in Section 8, we give some results on the
counting problem of subgroups of I' in a given conjugacy class of subgroups.

2 Counting in conjugacy classes in finitely generated groups

In this section, we study the growth of a given conjugacy class in a finitely generated
group endowed with a word metric, by giving three examples. We thank E. Breuillard,
Y. Cornulier, S. Grigorchuk, D. Osin and R. Tessera for discussions on this topic.

Let I' be a finitely generated group, endowed with a finite generating set .S. For every
v € T', we denote by ||y|| the smallest length of a word in SUS~! representing v. We endow
I' with the left-invariant word metric dg associated to S, that is, ds(v,v") = ||y ~'v|| for
all 7,7 € I'. Given a conjugacy class £ in I', we want to study the growth as n — 400 of

Ng(n) = Ng g(n) = Card RN By, (e,n) ,
3



the cardinality of the intersection of the conjugacy class & with the ball of radius n centered
at the identity element e for the word metric dg.

Given two maps f,g : N — ]0, +oo[, we write f < g if there exists ¢ € N — {0} such
that g(n) < f(en) and f(n) < g(cn) for every n € N. Note that if S’ is another finite
generating set of I', then Ng ¢ < Ng s.

The growth of a given conjugacy class in I' is at most the growth of I', and we refer for
instance to [Gri, Man| and their references for information on the growth of groups. The
growth of the trivial conjugacy class is trivial (Ng.y(n) = 1 for every n € N). It would
be interesting to know what are the possible growths of given conjugacy classes, between
these two extremal bounds, and for which group all nontrivial conjugacy classes have the
same growth. We only study two examples below.

The counting problem introduced in this paper is dual to the study of the asymptotic
as n — +oo either of the number of translation axes of (primitive) loxodromic elements
meeting the ball of center xy and radius n, in the negatively curved manifold case, or of
the number of (primitive) conjugacy classes meeting the ball of radius n, in the finitely
generated group case. These asymptotics have been studied a lot, for instance by Bowen
and Margulis in the manifold case, and by Hull-Osin [HuO] (see also the references of
[HuO]) in the finitely generated group case. In particular, Ol’'shanskii [Ols, Theo. 41.2]
has constructed groups with exponential growth rate and only finitely many conjugacy
classes: at least one of them has the same growth rate as the whole group, contrarily to
the examples below.

First, let I' = F'(S) be the free group on a finite set .S of cardinality |S| > 2. Let R be
the conjugacy class in I' of a nonempty reduced and cyclically reduced word in S U S™1,
denoted by 7, of length £z = inf,cg [|7|. Let mg be the number of cyclic conjugates of g
(for instance mg = 1 if o = s* for some s € SN.S~!). We denote by |z the integral part
of a real number z.

Proposition 4 For every n € N with n > lg + 2, we have

Ny s(n) = ma (218] - 2) (28] - )L
In particular, lim,_, oo % In Ng s(n) = % does not depend on the nontrivial con-
jugacy class R, and is half the exponential growth rate of I' with respect to the generating
set S (see Proposition 5 for a generalisation).

Proof. Let k = |S| and £ = (4. Every element 7 in & can be written uniquely as ayja ™1,

where « is a reduced word in S U S~! and 7 is a cyclic conjugate of 7y, and where the
writing is reduced, that is, the last letter of « is different from the inverse of the first letter
s1 of 4 and from the last letter s; of (. In particular,

7l =2lall +£.

Note that sfl £ sy, since g is cyclically reduced. For every m € N with m > 1, there are
(2k — 2)(2k — 1)™~! reduced words of length at most m whose last letter is different from
sfl and sp. The result follows. ]

Remark. The group I' = F(S) acts faithfully on its Cayley graph associated to S by left
multiplication, and Ng g(n) = Card(&-enB(e,n)). Proposition 4 gives an exact expression

4



for this orbit count, improving [Dou, Thm. 1] in this special case for (¢ + 1)-regular trees
with ¢ odd.

The following result says in particular that in a torsion-free word-hyperbolic group,
the nontrivial conjugacy classes have constant exponential growth rate, equal to half the
one of the ambient group. Recall (see for instance [Cha, §5.1]) that the wvirtual center
Z¥'Y(T') of a nonelementary word-hyperbolic group I is the finite subgroup of I' consisting
of the elements v € I' acting by the identity on the boundary at infinity O,,I" of I', or,
equivalently, having finitely many conjugates in I', or, equivalently, whose centraliser in I'
has finite index in I'. Note that Ng(n) is bounded if (and only if) & is the conjugacy class
of an element in the virtual center.

Proposition 5 Let I' be a nonelementary word-hyperbolic group, S a finite generating set
of T, and K the conjugacy class of an element in T' — ZV*(T). Then

1 1 1
limsup —In Ng g(n) = 5 lim sup — In Card By, (e, n) .

n—+4oo N n—+oo 1

Proof. Let 49 € I' — Z"'(T") and § = limsup,,_, . + InCard By,(e,n). Let C, be a
quasi-translation axis of v if 79 has infinite order, and let C,, be the set of quasi-fixed
points of vy otherwise. Note that C., is quasi-convex, that Zr (o) preserves C.,, and that
C., is at bounded distance from Zr(yp) in I'. In particular, I'g = Zp (7o) is a quasi-convex-
cocompact subgroup with infinite index in the nonelementary word hyperbolic group I'.

It is well-known that the exponential growth rate of I'/T'y is then equal to the exponen-
tial growth rate § of I'. Indeed, the limit set AT'g of Ty is then a proper subset of d,,I" and
Iy acts properly discontinuously on I' U (0soT' — AT). Let £ € 05" — ATl'g. If U is a small
enough neighbourhood of £ in T' U 05", then there exists N € N such that U meets at
most N of its images by the elements of Iy, and for every z € UNT, if p: I' — I'/T is the
canonical projection, then |d(z,e) — d(p(x),p(e))| is uniformly bounded. It is well-known
(see for instance the proof of [Robl, Coro. 1]|) that the (sectorial) exponential growth rate
limsup,, , %ln Card (U N By (e,n)) of I'in U is equal to . This proves the above
claim.

Up to a bounded additive constant, the distance between e and Yy~ 'ygy is equal to
twice the distance from 7 to C,,, by hyperbolicity. Hence the exponential growth rate of
£ is half the exponential growth rate of I'/Z1(7p), that is §/2. O

Now, let A be a free abelian group of rank 2k, let (-,-) be an integral symplectic form
on A, and let I be the associated Heisenberg group, that is, the group with underlying set
A X Z and group law

(@, 2)(d, ) = (a+d 2+ 2 + (0,0) .
Note that I' is finitely generated, and we have an exact sequence of groups
0—Z -7 540,

where i : z — (0, z) has image the center of I" and 7 : (a, z) — a. Let 8 be a nontrivial
conjugacy class (that is, the conjugacy class of a noncentral element) in T



Proposition 6 We have
Ng(n) < n?.

In particular, the growth of any nontrivial conjugacy class in the Heisenberg group I
is quadratic. Note that Card Br(e,n) =< n?**2 and that the number of (primitive or not)
conjugacy classes meeting the ball of radius n is < n?Inn if k = 1, see [GS, Ex. 2.4].

Proof. Let 79 = (ao, 20) be a noncentral element in T', so that ag # 0, and let ||yo|| be its
distance to the identity element e for a given word metric on I'.
Since 7 : I' = A is the abelianisation map, whose kernel is the center Z of I', we have
7(R) = {m(70)} and
Rt ({m(w)}) =20

Since (-, -) is nondegenerate and ag # 0, there exists by € A such that ng = 2(ag, by) # 0
For every (a,z) € T, since (a, 2)~! = (—a, —2), it is easy to compute that

(a, 2)(ao, 20)(a, 2) ' = (ao, 20 + 2(a, ap)) .
Hence, with Z" = {(0,non) : n € Z}, which is a finite index subgroup of Z, we have
Z™M 9 C R.
We have
Card RN B(e,n) < Card (Z N B(e,n) ') < Card Z N Ble,n + ||yl])

and similarly, Card & N B(e,n) > Card Z™ N B(e,n — ||70||). We hence only have to
prove that for every finite index subgroup Z’ of Z, we have Card Z N B(e,n) < n?. This
is well known (see for instance [Har, VIL.21| when A has rank 2): for instance, we have
[(ag,0)P, (b, 0)?] = (0, pq (ao, bo)) for all p,q € Z, and the distance to e of the commutator
on the left hand side of this equality is at most ¢(p + ¢), for some constant ¢ > 0. O

3 Counting common perpendicular arcs

In this section, we briefly review a simplified version of the geometric counting and equidis-
tribution result proved in [PP4], which is the main tool in this paper (see also [PP3]| for
related references, |PP5| for arithmetic applications in real hyperbolic spaces and [PP6|
for the case of locally symmetric spaces). We refer to [BrH] for the background definitions
and properties concerning the isometries of CAT(—1) spaces.

Let M be a complete simply connected Riemannian manifold with (dlmensmn at least
2 and) pinched negative sectional curvature —b? < K < —1, let 29 € M and let T1M be
the unit tangent bundle of M. Let T be > a nonelementary discrete group of isometries of
M and let M =T'\M and T'M = T\T!'M be the quotient orbifolds.

We denote by 8OOM the boundary at infinity of ZT{; by AT the limit set of I' and by
(&,z,y) = Be(x,y) the Busemann cocycle on 0,cM x M x M defined by

(gaxay) = 5§($,y) = tgglood(pt’x) - d(pt’y) )

where p : t — p; is any geodesic ray with point at infinity ¢ and d is the Riemannian
distance.



For every v € Tllf\\f/, let w(v) € M be its origin, and let v_,v; be the points at
infinity of the geodesic line in M whose tangent vector at time ¢ = 0 is v. We denote by

Ty TJCIOM — aooj\\/_f/ the homeomorphism v — wvy.

Let D~ and D™ be nonempty proper closed convex subsets in M , with stabilisers I' -
and I'p+ in T, such that the families (WD_)q/ep/F]T and (WD‘F)%F/FD+ are locally finite
in M. We denote by 01 D¥ the outer/inner unit normal bundle of ODT | that is, the set

of v € T*M such that m(v) € DT, vy € O M — 0o DT and the closest point projection
on DF of vy is 7(v). For every 7,7 in ' such that yD~ and 7/D* have a common

perpendicular (that is, if the closures YD~ and v/ D7 in MU M are disjoint), we denote
by a., . this common perpendicular (starting from yD~ at time ¢ = 0), by £(a, ) its
length, and by v, € ’yaleD* its initial tangent vector. The multiplicity of o, ./ is

1
Card(yTp-y~' N Tpsey' ™)’

My, !

which equals 1 when T acts freely on TM (for instance when I is torsion-free). Let

Np-,p+(s) = Z My, 5" = Z Me, v
(7, Y)e\((T/T p-)x(T'/T p+)) MeTp-\I'/T'p+
YD~ Ny Dt =0, (v, 1)<s D= NyDF =0, £(cte, 4)<s

where I' acts diagonally on (I'/T'p-) x (I'/T'p+). When I' is torsion-free, A7 p+(s) is
the number of the common perpendiculars of length at most s between the images of D~
and DT in M, with multiplicities coming from the fact that I'p+\D¥ is not assumed to
be embedded in M. We refer to [PP4, §4| for the use of Holder-continuous potentials on
TIM to modify this counting function by adding weights.

Recall the following notions (see for instance [Rob2|). The critical exponent of T' is

1
or = limsup — In Card{y € I : d(xp,vz0) < N},
N—+o0 N

which is positive, finite, independent of zy (and equal to the topological entropy h if T’
is cocompact and torsion-free). Let (Mm):BEM be a Patterson-Sullivan density for I', that
is, a family ('“l‘)x i of nonzero finite measures on 8OOM whose support is AI', such that
Veba = [y and
dpig -6

=e rBe(z,y)
djty

forally el z,y € M and £ e &X,M. The Bowen-Margulis measure mpy for I' on M
is defined, using Hopf’s parametrisation v — (v_, v, By, (zo, m(v))) of T'M, by

dimpp(v) = e~ 00 Boo (M) 20) 480, ((0).20)) gy () ) dppg, (v ) dit .

The measure mpy; is nonzero and independent of xg. It is invariant under the geodesic
flow, the antipodal map ¢ : v — —wv and the action of I', and thus defines a nonzero
measure mpy on T'M = T\T'M, called the Bowen-Margulis measure on M, which is
invariant under the geodesic flow of M and the antipodal map. If M is symmetric and if
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I is geometrically finite (for instance if M = H2 and T is finitely generated), then mpy
is finite. See for instance [DOP] for many more examples. If mpys is finite, then mpy
is mixing under the geodesic flow if M is symmetric or if AI' is not totally disconnected
(hence if M is compact), see for instance [Babl, Dall.

Using the endpoint homeomorphisms v + vy from 9LDT to OOOM — Oso DT, the
skinning measure Gp= of I' on 1 DT is defined by

daD:F (U) = ef5ﬁ“i (m(v), o) dlu’ro(v:t) ,

see [OhS1, §1.2] when DT is a horoball or a totally geodesic subspace in M and [PP2],

[PP4]| for the general case of convex subsets in variable curvature and with a potential.
The measure op+ is independent of xzg € M , it is nonzero if A" is not contained in

O DT, and satisfies o, p+ = v.0p+ for every v € I'. Since the family (')/Dﬂvep/ijF is

locally finite in M , the measure Zvel“ T s Y0 pF is a well defined I'-invariant locally

finite (nonnegative Borel) measure on T'M, hence it induces a locally finite measure o pr
on T'M, called the skinning measure of DT in T*M. If T p+\0DT is compact, then o+
is finite. We refer to [OhS2, §5] and [PP2, Theo. 9| for finiteness criteria of the skinning
measure opz.

The following result on the asymptotic behaviour of the counting function Ap- p+ is
a special case of more general results [PP4, Coro. 20, 21, Theo. 28]. We refer to [PP3]| for
a survey of the particular cases known before [PP4|, due to Huber, Margulis, Herrmann,
Cosentino, Roblin, Eskin-McMullen, Oh-Shah, Martin-McKee-Wambach, Pollicott, and
the authors for instance.

Theorem 7 Let I',D~, D%V be as above. Assume that the measures mpm,op—,0p+ are
nonzero and finite, and that mpy is mizing for the geodesic flow of TYM. Then

lon- |l lon-1l s
Ny ~ 19D 119D+ ors
D=+ ()~ T e

)

as s = +oo. If I' is arithmetic or if M is compact, then the error term is O(e(‘sl"*””)s) for
some k > 0. Furthermore, the initial vectors of the common perpendiculars equidistribute
in the outer unit normal bundle of D™ :

1) ore
LN = (e X mefn Ty O
s—+oo |loH— o e,y Or—
priiEpT €T b \I/T s P
D= N~DF =0, £(ae,,)<s
for the weak-star convergence of measures on the locally compact space T'M. O

4 Counting in conjugacy classes

Let M ,xo,I" be as in the beginning of Section 3. For any nontrivial element « in I, let C
be

e the translation axis of v if v is loxodromic,

e the fixed point set of «y if 7 is elliptic,

8



e a horoball centered at the fixed point of « if v is parabolic,
which is a nonempty proper closed convex subset of M. We assume (this condition is
automatically satisfied unless 7' is parabolic) that yvCy = C...,—1 for all v € T and
v eIl —{e}.

By the equivariance properties of the skinning measures, the total mass of o¢., depends
only on the conjugacy class £ of v, and will be denoted by ||og||. This quantity, called the
skinning measure of K, is positive and finite for instance when + is loxodromic, since AT’
contains at least 3 points and the image of Cy in M is compact. In Sections 6 and 7, we
will give other classes of examples of conjugacy classes & with positive and finite skinning
measure |og||, and prove in particular that this is always true if M = H% except possibly
when - is elliptic and orientation-reversing.

We define )

- Card(I'y, NT¢,)’

which is a natural complexity of «, independent on the choice of C, when + is parabolic,
and equals 1 if the stabiliser of z¢ in T' is trivial (for instance if T" is torsion-free). Note
that for every a € T', the real number m,.,-1 depends only on the double coset of o in
Lz \I'/Tc, .

The centraliser Zr(7y) of v in I' is contained in the stabiliser of C, in I'. The index
[Cc, : Zr(y)] depends only on the conjugacy class R of v; it will be denoted by ig and
called the inder of K. We assume in what follows that ig is finite, which is in particular
the case if v is loxodromic (the stabiliser of its translation axis C is virtually cyclic). In
Sections 6 and 7, we will give other classes of examples of conjugacy classes & with finite
index ig, and prove in particular that this is always true if M = Hﬁ.

My

We define the counting function

Nﬁ,mo(t) = Z Me -

a€R, d(zo, azo)<t
When the stabiliser of x( in I' is trivial, we recover the definition of the Introduction.

Let v : [0,4+00] — [0, 400 be an eventually nondecreasing map such that lim;, o 1(¢) =

+00. We will say that a nontrivial element vy € I is ¥-equitranslating if for every © € M
at distance big enough from C,,, we have

d(x’ C“/o) = ¢(d($,’yox)) :

Note that this condition depends only on the conjugacy class of 9. When ~q is parabolic,
up to replacing ¥ by 1 + ¢ for some constant ¢ € R, this condition does not depend on the
choice of the horoball C.,;. In Sections 5, 6 and 7, we will give several classes of examples
of equitranslating isometries, and prove in particular that every nontrivial isometry of H[%&
is equitranslating.

The following theorem is the main abstract result of this paper.

Theorem 8 Assume that the Bowen-Margulis measure of ' is finite and mixzing for the
geodesic flow on T'M. Let & be a conjugacy class of -equitranslating elements of T with
finite index ig and positive and finite skinning measure ||og||. Then, as t — 400,

i |0l loall sewe
N t) ~ ——————— €7 .
ﬁ7350( ) 6F HmBMH €
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If T is arithmetic or if M is compact, then the error term is O(e(éff”’”)w(t)) for some k > 0.
Furthermore, if v, is the unit tangent vector at xg to the geodesic segment [xg, axg] for
every a € T' — Ty, for the weak-star convergence of measures on T*M, we have

6[‘ mBM _ —
M o 0T ¥(t) Z Mo Ay, = (7T+1)*:U’IO'

t=too g l|logll a€R, 0<d(xo, axo)<t

Proof. Let 4o be a 1-equitranslating element of I' — {e} and let & = {yyoy ! : 7 €T}
be its conjugacy class. Since o, = (3 ) atizo (see [PP2, §3]), we have

[tz
o = .
In particular, both [lo(.| and [low, || = [logll, are positive and finite. Hence, since

¢ is eventually nondecreasing, by the definition of the counting function Ap- p+ for
D~ ={x¢} and Dt = C,,, and by Theorem 7, we have, as t — +o0,

E : Mo ~ E : Ma = § : Meyygy—t

a€R, 0<d(z0, awo)<t a€R, 0<d(z, Ca)<t(t) VET/Zr (Y0), 0<d(0, 7Chq )<t (1)
= Lyl ig Z Meyyoy—1
’YEFJCO \F/FC’YO s 0<d($07 ’yc”m )S'Iﬂ(t)
= [Daolis NMaoy,c, (P(F))

Nogaoyl loes, | s

~ | |17
ool i =5 ]

The first claim of Theorem 8 follows.

For every a € R, let p, be the closest point to o v aro
xzg on Cy. Then ap, is the closest point to axg ¢
on Cq. Pa APq Co

Since limy—, 4o ¥(t) = 400, when d(zg, axg) is large enough, the distance d(xg, Cy) be-
comes large. Hence the initial tangent vector v, to the geodesic segment [z, axg] becomes
arbitrarily close to the initial tangent vector to the geodesic segment [z, po|, uniformly on
a € 8 such that d(zg,Cy) is large enough, and independently on d(p,, ap,) which could

be 0. Hence, using again and similarly Theorem 7 with D~ = {z} and Dt = C,,, we
have, as t — 400,
or lmenll s o T o Ay,
LR HUﬁH a€R, 0<d(zo, axo)<t
or [lmemll 5w
~ Tialloal € > Moyyoy=t Do oo
YEL/Zr(70), 0<d(z0, 7Crg ) <th(t)
or [[memll 5.4
~ — 20 o v(t) Me,~ A —
lop+]] 2 2T ey

YEL/T b+, 0<d(zo, yDF)<tp(t)
= 5{10} = (77—7—1)*:[1’10 :
This proves the second claim of Theorem 8. O
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5 The geometry of loxodromic isometries

In this section, we fix a loxodromic isometry 7 of a complete CAT(—1) geodesic metric
space X. Let £ =, = inf cx d(x,vx) > 0 be its translation length and let

Cy={zeX : dlz,yz) =1}

be its translation axis.
If X = H2, if v is orientation-preserving, and if € H is at a distance s from the
translation axis of -, then

1
d(x,yx) = 2argsinh(cosh s sinh 5) . (2)

Indeed, after a conjugation by a suitable isometry, we may assume that the translation
axis of v is the geodesic line with endpoints 0 and oo in the upper halfplane model of H]%,
that vz = e’z for all z € C with Im z > 0, and that z is on the geodesic ray starting
from i and ending at 1. Using the angle of parallelism formula [Bea, Thm. 7.9.1|, we have
z = (tanhs, —1—), which gives y2 = e’(tanhs, ——). From this, Equation (2) follows
using the hyperbolic distance formula [Bea, Thm. 7.2.1 (iii)].

In the other extreme, if X is a tree and if x € X is at a distance s from the translation
axis of v, then d(x,vz) = £ + 2s. The general situation lies between these two cases.

Lemma 9 If x € X is at distance s from the translation azis of 7y, then
. i
2 argsinh(cosh s sinh 5) <d(xz,yx) <25+ L.

Note that as s — 400, the lower bound is equal to 2s + 2In(sinh g) + O(e=2%), hence
the difference of the upper and lower bounds is bounded by a constant that only depends
on /.

Proof. The upper bound follows from the triangle inequality. Let us prove the lower
bound. Let p and ¢ = yp be the closest points on C,, to respectively = and yz. Let Q) be
the quadrilateral in X with vertices x, p, ¢ and ~vyx.

T Yy

Let Q be the quadrilateral in H%% with vertices T, p, ¢ and 7, obtained by gluing together,
along the geodesic segment [Z,q|, the comparison triangles of the two triangles in X with
sets of vertices {x,p,q} and {z,q,vx}. By comparison, the angles of Q at the vertices
p and @ are at least 5. If we adjust these angles to 5, keeping the lengths of the three
sides [z, P], [p,q] and [g,7Z] fixed, we obtain a quadrilateral @/ where the side that is not
adjacent to the right angles has length less than d(z,~x). This gives the lower bound since

the length of the side in question is given by Equation (2). O

The proof of the following result is then similar to that of Theorem 8.

11



Corollary 10 Let M be a complete simply connected Riemannian manifold with pinched
negatwe sectional curvature, let xo € M and let I be a nonelementary discrete group of
isometries of M. Assume that the Bowen-Margulis measure of I' is finite and mixing for
the geodesic flow on T'M. Let & be a conjugacy class of loxodromic elements of ' with
translation length €. Then, for every € > 0, if t is big enough,

in ltaoll ol 25,

€y
i ez'(1+e¢). O
or [[mpwm|| e2

ig || o || [|o 5]
1—-¢) <N t) <
( ) = ﬁwo( ) = 61‘ HmBMH (sinh %)51"

In particular, under the assumptions of this result, we have

.1 or
tkgloozlnNﬁ’xO(t) = ? .
Theorem 1 in the introduction follows from this, since if M = I‘\M is a compact manifold,
then any nontrivial element in I' is loxodromic, and, as recalled in Section 4, the critical
exponent or is equal to the topological entropy h of the geodesic flow on M, and mpy is
finite and mixing,.

Remark. With the notation and definitions of [PPS, §3.1], if F:T'M - Risa potential
(that is, a I'-invariant Holder-continuous map), since the geodesic segment from x to axg
passes at distance uniformly bounded (by a constant ¢, depending only on /) from the
translation axis C\, of «, with p, the closest point to g on C,, the absolute value of the

difference fmogxo F— /. foa F— /. foa F o is uniformly bounded (by a constant depending only

on ¢y and on the maximum of F on the neighbourhood of C,, of radius ¢;). Hence using
the version with potential of Theorem 7 in [PP4, Coro. 20| for Fand Fo t, we have upper
and lower bounds for the asymptotic of the counting function with weigths defined by the
potential: Assume that the critical exponent dr 7 of I' for the potential F is finite and
that the Gibbs measure of I' for the potential F is finite and mixing for the geodesic flow
on T'M, then there exists ¢ > 0 such that for all ¢ > 0,

1 o, F

aacoﬁ 51",F
—e 2 tS E maefxo <ce 2 t
c

a€R, d(zo,ax)<t

Let us now consider the higher dimensional real hyperbolic spaces. If X = H‘E’{, if v is
orientation-preserving, and if z € H% is at a distance s from the translation axis of 7, then

. d(x,vx sinh? s e} — 12 . 14
sinh? ( 5 ) = 4’€€ | + smh2(§) , (3)

where A = ), is the complex translation length of «y, defined as follows. The loxodromic
isometry v is conjugated in the upper halfspace model Cx]0, +-o0o[ of Hf to a transformation
(z,7) = e“(e?z,r), where § = 6, € R is uniquely defined modulo 27, and we define
A=/{0+16 €]0,400[ +iR/2nZ. Equation (3) follows from the distance formula in [Fen,
pp. 37].

Let n € N—{0,1}. A loxodromic isometry ~ of Hg is uniformly rotating if - rotates
all normal vectors to the translation axis of 7 by the same angle, called the rotation angle
of 7 (which is 0 if and only if v induces the parallel transport along its translation axis).

This property is invariant under conjugation.

12



Clearly, all loxodromic isometries of H]%Q, all orientation-preserving loxodromic isome-
tries H%, and the loxodromic isometries of any Hy with a trivial rotational part, are uni-
formly rotating. The orientation-reversing loxodromic isometries of H‘% are not uniformly
rotating. More generally, by the normal form up to conjugation of the elements of O(n—1),
uniformly rotating orientation-preserving loxodromic isometries with a nontrivial rotation
angle exist in Hy if and only if n is odd, and uniformly rotating orientation-reversing lox-
odromic isometries exist in Hy if and only if n is even. For a fixed translation length and
rotation angle 6 € (R — 27Z)/(2nZ), with # = 7 in the orientation-reversing case, these
elements form a unique conjugacy class.

Let v be a uniformly rotating loxodromic isometry of Hg. Any configuration that
consists of the translation axis of v, a geodesic line L orthogonal to the axis and its image
vL is contained in an isometrically embedded y-invariant copy of H in HZ (unique if the
rotation angle of 7 is nonzero modulo 7Z). We then define the complex translation length
of v as the complex translation length of the restriction of + to this subspace.

Lemma 11 A uniformly rotating loxodromic isometry v of Hy with complex translation
length A = £ 416 is Y-equitranslating with

cosh ¢ — cos 6

5+ 0

U(t) = 5t~ In(
as t — +oo.

Proof. Let x be a point in Hy at a distance s from the translation axis of v. We only
have to prove that, as s — +oo,

cosh ¢ — cos 6?)

d(z,vz) =2s+1In ( 5

+0(e™ ).
As noted above, it suffices to consider the case n = 3. By Equation (3), we have

d(z,vx) 2s 22_2 l 0+1
e e e € COS
( Y4 ) (1)7
4 16e

as s — +o0o, which proves the claim after simplification and taking the logarithm. O

Corollary 12 Let I' be a nonelementary discrete group of isometries of Hfs, whose Bowen-
Margulis measure is finite, and let xo € Hy. Let & be a conjugacy class of uniformly rotating
loxodromic elements of I' with complex translation length A = £+ 0. Then, as t — 400,

dr .
28 g gl ol sz

Nﬁy zo (t) ~ €2

or [[mpml| (cosh £ — cos (9)67F

&
If T is arithmetic or if M is compact, then the error term is 0(6(71“7“)’5) for some k > 0.
Furthermore, if v, is the unit tangent vector at xo to the geodesic segment [xg, ] for
every a € I' — Ty, , for the weak-star convergence of measures on T*M, we have

oS¢
. or |[mpwm|| (cosh ¢ — cosf)=z  _sr, 1
tilinoo € 2 E Ma By, = (T )shag -

i .
27 g HUﬁH a€R, 0<d(zg, axo)<t
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Proof. As mentioned in Section 3, since Hy has constant sectional curvature, the Bowen-
Margulis measure of T', since finite, is mixing for the geodesic flow on T'M. We have
already seen that ig is finite and that ||ogl|| is positive and finite. The result follows from
Theorem 8 and Lemma 11. O

Remark. Let I' be a group of isometries of X and assume that - is a loxodromic element
of I'. The element ~ is I'-reciprocal if there exists an element in I' that switches the two
fixed points of 7. If ~ is reciprocal, then let ¢p(vy) = 2, otherwise, we set tp(y) = 1. The
stabiliser in I' of the translation axis C of v is generated by the maximal cyclic subgroup
of I" containing 7, by an elliptic element that switches the two points at infinity of C,
if v is I-reciprocal, and a (possibly trivial) group of finite order, which is the pointwise
stabiliser Fixp(Cy) of C,. Thus, if 8 is the conjugacy class of v in T,

tg = tr(7)[Fixr(C,) : Fixp(Cy) N Zr(v)] -

In particular, if n = 2, or if n = 3 and ~ preserves the orientation, then tg = ¢p(y). Hence
Theorem 2 in the Introduction when 7 is loxodromic follows from Corollary 12.

When I' has finite covolume, the constant in Corollary 12 can be made more explicit.

Corollary 13 Let I' be a discrete group of isometries of Hy with finite covolume and let
xo € Hg. Let R be the conjugacy class of a uniformly rotating lovodromic element vy of I’
with complex translation length A\ = £ +160, let m., be the order of o in the maximal cyclic
group containing Yo, and let n, be the order of the intersection of the pointwise stabiliser
of the translation axis of o with the centraliser of vg. Then, as t — 400,

Vol(S"2) ¢ et

Nﬁ,l‘o(t)N n—1 i w1 € ?
272 (n—1)my, n,, Vol(I'\HE) (cosh ¢ — cos ) =

If T is arithmetic or if M is compact, then the error term is O(e(nT_l_“)t) for some k > 0.
Furthermore, if Iy, is trivial, if vy is the unit tangent vector at xq to the geodesic segment
[xg, azg] for every a € T — {e}, with VOlTioHﬁzf the spherical measure on T%OHﬁ, we have,
for the weak-star convergence of measures on TQ}OHﬁ,

(n — 1) My My VOI(S™1) Vol(I'\HE) (cosh £ — cos (9)"7_1 Z

nflt

23" Vol(Sn—2) ¢ e 2

Ay,

a€R, 0<d(zo, axo)<t

*
N
VOIT%O Hﬁ .

Proof. Since I has finite covolume, we have dr = n—1 and we can normalise the Patterson-
Sullivan measure i, at zo to have total mass Vol(S"~1), so that (71';1)*/1%0 = VOIT%OH&?'

By [PP3, Prop. 10, 11], we have

lmeum|| = 2" Vol(S" 1) Vol (I'\H%)

and p
oc. || = Vol(S"2)— ,
| o | ( ) | Fixr, (Cyo)| er (70) myg
since Vol(T'c,, \Cyy) = W The claims hence follow from the previous remark and
0
from Corollary 12. O
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The proof of the loxodromic case of Corollary 3 of the Introduction follows from Corol-
lary 13 by taking n = 2, I" torsion-free (so that n., = 1), and 7o primitive (so that m,, = 1)
and orientation-preserving (so that cos@ = 1). The area of a complete, connected, finite
area hyperbolic surface with genus g and p punctures is 27(2g + p — 2).

6 The geometry of parabolic isometries

In this section, we fix a parabolic isometry ~ of a complete CAT(—1) geodesic metric
space X. We fix a horoball C, centred at the fixed point of v, and we call horospherical
translation length of v the quantity

(=1t = inf dly,7y).

We will say that v is uniformly translating if d(y,~yy) is independent of y € C,,. Note
that being uniformly translating does not depend on the choice of C.,, but the value of ¢
does (and can be fixed arbitrarily in |0, +o0o][ when X is a Riemannian manifold).

Every parabolic isometry of X = H]%{, H% is uniformly translating, but using Euclidean
screw motions, there exist parabolic isometries in X = H?R which are not uniformly trans-
lating (and the map y — d(y,vyy) is not even bounded). If X = Hg and if v induces a
Euclidean translation on 0Cy, then + is uniformly translating. Recall that by Bieberbach’s
theorem, any discrete group of isometries of Hf, preserving a given horosphere and acting
cocompactly on it, contains a finite index subgroup consisting of uniformly translating
parabolic isometries and the identity.

If X = H]%Q, if x € X is at a distance s from the horoball C,, then

L
d(x,~vx) = 2argsinh(e’® sinh 5) . (4)
This is immediate by considering the upper halfplane model and assuming that v has
fixed point oo, by applying twice [Bea, Thm. 7.2.1 (iii)]. A similar triangle inequality and

comparison argument as in the proof of Lemma 9 shows the following result.

Lemma 14 If x € X is at distance s > 0 from the horoball C, if p, is the closest point
to x on C,, then

14
2 argsinh (e’ sinh 5) <d(z,vx) < 2s +d(py,ypy). O

Corollary 15 A uniformly translating parabolic isometry v of Hg with horospherical trans-
lation length £ is y-equitranslating with

P(t) = % — In(sinh g) —In2+0(e™)

as t — +oo.

Proof. Let x be a point in Hy at a distance s from the horoball Cy. We only have to
prove that, as s — +o0,

d(z,vz) = 2s + 2In (sinh g) +2In2 4+ O(e™%) .
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It suffices to consider the case n = 2 (the points z, vz and the fixed point of 7 are contained
in a copy of H2), in which case the result follows from Equation (4). O

Remark. If X = M and T are as in Section 4, if v is a parabolic isometry of I" and if R
is the conjugacy class of v in I', the quantities ||oz|| and ig defined in that Section are not
always finite. Note that ||og|| is positive, since I' is nonelementary.

e The mass ||ogl| is finite for instance if the fixed point &, of 7 is a bounded parabolic
fixed point (that is, if its stabiliser I'¢ in I' acts cocompactly on A" — {£,}), which is in
particular the case if ' is a lattice or is geometrically finite.

e The index ig is equal to 1 if «y is central in the stabiliser I'c. of the horoball C,.
This is in particular the case, up to passing to a finite index subgroup of I', if I is a lattice
or is geometrically finite, as well as if X is a symmetric space and -y is in the center of
the nilpotent Lie group of isometries of X acting simply transitively on the horosphere
C, (see Proposition 18 below: in the complex hyperbolic space H, this center consists of
the vertical Heisenberg translations). If X = Hﬁ, we have ig = 1 if no nontrivial elliptic
element of I' fixes &, (in particular if I' is torsion-free), and ig = 2 otherwise. In the
complex hyperbolic space Hf, the stabilisers of horoballs are not abelian and ig is finite
only if R consists of vertical Heisenberg translations.

A proof similar to that of Corollary 12 gives the following result, which implies in
particular Theorem 2 in the Introduction when g is parabolic.

Corollary 16 Let I be a nonelementary discrete group of isometries of H , whose Bowen-
Margulis measure is finite, and let xog € Hy. Let & be a conjugacy class of uniformly
translating parabolic elements of T' with horospherical translation length ¢, with ||og|| and
ig finite. Then, ast — +00,

i a0l losl oy
5{‘ HmBMH (2 sinh g)ép

Nﬁy xo (t) ~

5
If T is arithmetic, then the error term is O(e(TF*””)t) for some k > 0. Furthermore, if v,
is the unit tangent vector at xg to the geodesic segment [xg, axg| for every o € T' =Ty, for
the weak-star convergence of measures on T*M , we have

. (51—w MBM 2 Sil’lhg or _ir -
. [mewm]| ( 5) Ly 3 Mo Dy, = (17 )ty - O

t——+00 18 HUﬁH a€R, 0<d(zo, azo)<t

Corollary 17 Let I' be a discrete group of isometries of Hy with finite covolume and let
xo € Hy. Let K be the conjugacy class of a uniformly translating parabolic element o of I'
with ig finite. Then, as t — 400,

ig Vol(T'c, \Cy) sy
Vol(T'\HZ) (2sinh £)n~1 '

Nﬁ o (t)

If T is arithmetic, then the error term is O(e(nTil*””)t) for some k > 0. Furthermore, if I'y,
is trivial, if ve is the unit tangent vector at xq to the geodesic segment [xg, axg] for every

a € T — {e}, with VOlTéoHﬁé the spherical measure on TQ}OH]I%, we have, for the weak-star

convergence of measures on TQ}OHH%,

n—1
2

Vol(S™~1) Vol(I'\HR) (2sinh £)
ig Vol(Tc, \Cy,)

n—1
_n=1, *
e 2 E Ava — VOlngOH]ﬁ .

a€R, 0<d(zo, axo)<t
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Proof. The claims are proved in the same way as Corollary 13, using the equality
losll = 2"7" (n — 1) Vol(Tc, \Cy) 4
see [PP4, Prop. 29 (2)]. O

The parabolic case of Corollary 3 of the Introduction follows from Corollary 17. Con-
sider the upper halfplane model of H]% and normalise the group such that g is the trans-
lation z + z 4+ 1. We choose C, to be the horoball that consists of points with imaginary
part at least 1. Since ~q is primitive and I' is torsion-free, we have Lo, = Yo% and ig = 1.

Hence Vol(I'c, \C,,) = 1 by a standard computation of hyperbolic area. Now, Sinhg = %,
and the claim follows as in the proof of the loxodromic case after Corollary 13.

We end this section by giving a necessary and sufficient criterion for a parabolic isometry
of the complex hyperbolic space Hf: to be uniformly translating. We refer to [Gol|, besides
the reminder below, for the basic properties of H.

On C"*! = C x C"~! x C, consider the Hermitian product with signature (1,n) defined
by

(z,w) = —2Wy, + 2z - W — 2, W ,

where (z,w) — z - W is the standard Hermitian scalar product on C"~1. Let q(2) = (2, 2)
be the corresponding Hermitian form. The projective model of the complex hyperbolic
space HE corresponding to this choice of g is the set

{[wo : w : 1] € P, (C) : g(wp,w,1) <0},

endowed with the Riemannian metric, normalised to have sectional curvature between —4
and —1, whose Riemannian distance is given by

(z, y)(y, x)
q(z) q(y)

for any representatives z,y of X,Y in C"*!, see [Gol, p. 77], where the sectional curvature
is normalised to be between —1 and —%. The boundary at infinity of H is

d(X,Y) = argcosh

0o HE = {Jwp : w : 1] € P, (C) : gq(wp,w,1) =0} U {0},
where oo = [1: 0: 0]. For every s > 0, the set
A ={wy :w:1] € P,(C) : qlwp:w:1)=—s}

is a horosphere centred at oo.
The parabolic isometries v of H fixing oo are the mappings induced by the projective
action of the matrices

1 a* 2z
0 0 1

where A € U(n — 1), a* = '@ and Aa = b, see [CG, §4.1] and [PP1, p. 371]|. For every
Z =29 : 2 : 1] € 0cHE — {00}, the isometry induced by the matrix

1 z5 =z
T, =10 1 =z
0O 0 1



is called a Heisenberg translation, which is wvertical if z = 0. The group of Heisenberg
translations (which identifies with the Heisenberg group of dimension 2n — 1, see |Gol|)
acts simply transitively on O Hg — {o0} and on each horosphere J%; for s > 0.

Proposition 18 A parabolic isometry v of the complex hyperbolic space HE is uniformly
translating if and only if it is a vertical Heisenberg translation. Furthermore, if v is not a
vertical Heisenberg translation, then the map y — d(y,~yy) is unbounded on any horosphere
of H centred at the fived point of .

Proof. For all W = [wg : w: 1] € 5% and any parabolic isometry « as given by Equation

(5), we have

|w*(A* — Iw + O(|w|)|
= h .
d(W,~W) = argcos 5

If A is not the identity, then w*(A* — Iw is equivalent to |w|? (up to a positive constant)
on some line in C"~!, which makes the map W + d(W,yW) unbounded on %. Thus we
are reduced to considering Heisenberg translations. For all Z = [z : 2 : 1] € 0o HE — {00},
we have

|z W —Zw — zp — 2|

2
It is easy to see that this distance is independent of W if and only if z = 0, and is
unbounded otherwise. O

d(W, Tz W) = argcosh

7 The geometry of elliptic isometries

In this section, we fix n > 2 and a nontrivial elliptic isometry ~ of Hg. We denote by C,
the fixed point set of «, which is a nonempty proper totally geodesic subspace of Hp of
dimension k = k.

We will say that v is uniformly rotating if there exists 6 = 6., € |0, 7] (called the rotation
angle of 7) such that for every v € Q{Cy, the (nonoriented) angle between v and v is 6.
This property is invariant under conjugation, and once k and 6 are fixed, there exists only
one conjugacy class of uniformly rotating nontrivial elliptic isometries. Note that when
n = 2 or n = 3, every elliptic isometry v is uniformly rotating, and § = = if v does not
preserve the orientation. But there exist elliptic isometries in Hﬁ% which are not uniformly
rotating.

Assume that v belongs to a nonelementary discrete group of isometries I' of Hp, and
let R be the conjugacy class of v in I'.

e The skinning measure ||og|| is positive if and only if AI' is not contained in 05 C,.
This is in particular the case if n = 2. Furthermore, ||og|| is finite for instance if I'c. \C, is
compact or if ,,Cy N AT is empty. This is in particular the case if n = 2 and if v preserves
the orientation. But when n = 2 and  does not preserve the orientation, the measure
|log|| is not necessary finite.

For instance, let I' = T'(00, 00, 00) be the discrete group of isometries of H]% generated
by the reflexions si, s2, s3 on the sides of an ideal hyperbolic triangle. Then Cy, is one of
these sides. Let us prove that m.o¢,, is a constant multiple of the Lebesgue measure along
Cs,. Indeed, the Patterson-Sullivan measure at infinity of the disc model of H%{ based at its
origin is a multiple of the Lebesgue measure df on the circle, since I' has finite covolume.
Since df is conformally invariant under every isometry of H%%, the measure m.0¢,, on Cs,

18



is invariant under every loxodromic isometry preserving C,, hence the result. Since Cy,
injects in I’\H[%& and since its stabiliser in I has order 2, the measure m.o¢,, is the multiple
by half the above constant of the Lebesgue measure on the image of Cy, in F\Hﬁ, which
is infinite.

e If n = 2and ky, = 1 (so that v reverses the orientation), then every isometry
preserving C,, commutes with v, hence ig = 1. If n = 2 and k, = 0 (so that v preserves
the orientation), then the finite group I'c. is either cyclic, in which case I'c., = Zr () and
ig = 1, or it is dihedral. Assume the second case holds. If the rotation angle of ~ is m,
then again I'c, = Zr(vy) and ig = 1. Otherwise, ig = 2.

Lemma 19 A uniformly rotating elliptic isometry v of Hy with rotation angle 6 is -

equitranslating with

t Sin9+o(67%)

ast — +oo.

Proof. By the formulas in right-angled hyperbolic triangles (see [Bea, Theo. 7.11.2 (ii)]),
if x € Hy is at distance s from the fixed point set C of ~, we have

sinh w = gsinh s sin 0 .

The result follows as in Lemma 11. O

The next result follows from this lemma in the same way as Corollary 12 follows from
Lemma 11. It implies Theorem 2 in the Introduction when ~q is elliptic.

Corollary 20 LetI' be a nonelementary discrete group of isometries of Hs, whose Bowen-
Margulis measure is finite, and let xg € Hy. Let & be a conjugacy class of uniformly rotating
nontrivial elliptic elements of I' with rotation angle 0, such that ||og|| and ig are positive
and finite. Then, as t — 400,

i ||Hao |l loall ¢

ot [mem|| (sin §)or

Nﬁv o (t) ~

&
If T is arithmetic or if M is compact, then the error term is 0(6(71“7“)’5) for some k > 0.
Furthermore, if v, is the unit tangent vector at xo to the geodesic segment [xg, ] for
every a € I' — Ty, , for the weak-star convergence of measures on T*M, we have

dr [|mew|| (sin §)°

t——+o00 Zﬁ”O‘ﬁH

_r _
e 2! Z Mo Dy, = (T3 ) aflz - O

a€R, 0<d(zo, axo)<t

8 Counting conjugacy classes of subgroups

Let M, x0, " be as in the beginning of Section 3. Let I'g be a subgroup of I', and let

R={Toy " : yeTl}
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be its conjugacy class in I'. In this Section, we will study the asymptotic growth, as
t — +o00, of the cardinality of

Ae R inf d(xo, <t},
{ aEAIAHf{e} (.%'0 (11'0) - }

the set (assumed to be finite) of the conjugates of I'y in I" whose minimal displacement of
o is at most .

We will assume the following conditions on I'g: s

(*) There exists a nonempty proper closed convex subset Cpy in M such that the
normaliser Np(I'g) of I'g in I' is a subgroup of the stabiliser I'c, of Cp in I', with finite
index, denoted by ig, and such that the family (VCO)VGF/FCO is locally finite in ]\7;

(#x) There are c_,cy € |0,+o00[ such that c— < inf,cp (e} d(y, vy) < cy for every
y € 0Cy.

For instance, I'g could be an infinite index malnormal torsion-free cocompact stabiliser
of a proper totally geodesic subspace Cy of dimension at least 1 in M, or a torsion-free
cocompact stabiliser of a horosphere centered at a parabolic fixed point of I (with Cj the
horoball bounded by this horosphere), in which cases igp = 1 and ||o¢,|| is positive and
finite.

For every A = Tyy~! € &, let

ma = (Card(I'y, N cho))_l ,

which is well-defined since the normaliser of 'y in I' stabilises Cy. We define the counting
function

Nﬁ7$0(t): Z ma = Z ma .

A€R, infoe g ey d(wo, o)<t YEL/Nr(To), infaery—{e} d(zo, yay~tazo)<t

Proposition 21 Let M bea complete simply connected Riemannian manifold with pinched
negative sectional curvature, let xg € M, and let I be a nonelementary discrete group of
isometries of M. Assume that the Bowen-Margulis measure of ' is finite and_mizing for
the geodesic flow on T M. Let Ty be a subgroup of I' and let Cy be a subset of M satisfying
the conditions (x) and (xx), such that the skinning measure ||oc,|| is positive and finite.
Let R be the conjugacy class of I'g in I'. Then, for every e > 0, if t is big enough,

o |k [ lloco |l or
51—*C+
or [[mpmlle™2

i0 || o |l locol
1—¢€) <N, t) <
( 6) - ﬁ7$0( ) — or HmBMH (sinh %)

&
e eTFt(l—{—e).

Proof. Let v € I'. By the local finiteness assumption, except for finitely many cosets of ~y
in I'/T¢,, the point 2y does not belong to vCp. As in Lemma 9, if g € X is at distance s
from vCy, we have

2 argsinh(cosh s sinh c__) < inf  d(zo,yay lzg) < 25 + ¢y

a€lo—{e}
The proof is then similar to the proof of Corollary 10. g

We have the following more precise result under stronger assumptions on I'g, with a
proof similar to those of Corollaries 12 and 16.
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Theorem 22 Let I' be a nonelementary discrete group of isometries of Hy with finite
Bowen-Margulis measure, and let xqg € Hg. Let I'g be the stabiliser in I' of a bounded
parabolic fized point of I', acting purely by translations on the boundary of any horoball
Co centred at this fized point. Let K be the conjugacy class of I'g in I' and let £ =
min,ep, e} d(y,vy) for any y € 0Cy. Then, ast — +oo,

4o |l llo o | Sy
Ng, o (t) ~ 5 .0 7 2
0 (5{‘ HmBMH (2 sinh 5)61“
&
If T is arithmetic, then the error term is O(e{Z =) for some k> 0. O
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