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Abstract

In this paper, we study inhomogeneous Diophantine approximation over the com-
pletion Kv of a global function field K (over a finite field) for a discrete valuation
v, with affine algebra Rv. We obtain an effective upper bound for the Hausdorff
dimension of the set

BadApεq “

"

θ P Km
v : lim inf

pp,qqPRm
v ˆRn

v ,}q}Ñ8
}q}n}Aq´ θ ´ p}m ě ε

*

,

of ε-badly approximable targets θ P Km
v for a fixed matrix A P Mm,npKvq, using

an effective version of entropy rigidity in homogeneous dynamics for an appropriate
diagonal action on the space of Rv-grids. We further characterize matrices A for which
BadApεq has full Hausdorff dimension for some ε ą 0 by a Diophantine condition of
singularity on average. Our methods also work for the approximation using weighted
ultrametric distances. 1

1 Introduction

In the theory of inhomogeneous Diophantine approximation of real numbers by rational
ones (in several variables), one studies the distribution of the vectors Ax P Rm modulo
Zm, as x varies over Zn, near a vector b P Rm for a mˆ n real matrix A P Mm,npRq. For
instance, ifm,n ě 1 and x ξ y “ inf

xPZm
} ξ´x } denotes the distance from ξ P Rm to a nearest

integral vector with respect to the Euclidean norm } ¨ } on Rm, using the inhomogeneous
Khintchine-Groshev theorem of [Sch1, Theorem1], we have

lim inf
xPZn, }x }Ñ8

}x }nxAx´ b ym “ 0

for almost every pA, bq PMm,npRq ˆ Rm.
Let us consider the exceptional set of solutions pA, bq of the above equation. We call A

badly approximable for b if

lim inf
xPZn, }x }Ñ8

}x }nxAx´ b ym ą 0 .

If the left hand side is at least ε, we say that A is ε-bad for b. It is known that given
any b P Rm, the set of badly approximable matrices A P Mm,npRq has zero Lebesgue

1Keywords: Diophantine approximation, function fields, Hausdorff dimension, badly approximable
vectors, grids, diagonal actions. AMS codes: 11J61, 11K55, 28D20, 37A17, 22F30
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measure but full Hausdorff dimension, see [Sch2, ET]. In [KKL], the first two authors,
with Wooyeon Kim, show that given a matrix A P Mm,npRq, under a necessary assumption
of non-singularity on average, the set of vectors b P Rm with respect to which A is ε-bad
does not have full Hausdorff dimension, and obtain an explicit upper bound: there exist
cpAq ą 0, depending only on m, n and A, such that for every ε ą 0, the Hausdorff
dimension of the set of vectors b P Rm that are ε-bad for A is bounded from above by
m´ cpAq ε

lnp1{εq .
In this paper, we prove analogous results for function fields, in the weighted setting.

Let us state our main results, refering to Section 2.1 for more precise definitions.

Let K be any global function field over a finite field Fq of q elements for a prime power
q, that is, the function field of a geometrically connected smooth projective curve C over
Fq. The most studied example in Diophantine approximation in positive characteristic is
the case of the field K “ FqpZq of rational fractions in one variable Z over Fq, where
C “ P1 is the projective line, but we emphasize the fact that our work applies in the
general situation above.

We fix a (normalized) discrete valuation v on K. Let Kv and Ov be the completion of
K with respect to v and its valuation ring, respectively. We fix a uniformizer πv P K, which
satisfies vpπvq “ 1. Let kv “ Ov{πvOv be the residual field and let qv be its cardinality.
The (normalized) absolute value | ¨ | associated with v is defined by |x | “ q

´vpxq
v . For every

σ P Zě1, let } } : K σ
v Ñ r0,`8r be the norm pξ1, . . . , ξσq ÞÑ max1ďiďσ | ξi |. We denote by

dimHaus the Hausdorff dimension of the subsets of K σ
v for this standard norm.

The discrete object analogous to the set of integers Z in R is the affine algebra Rv of
the curve C minus the point v. If K “ FqpZq and v “ r1 : 0s is the standard point at
infinity of C “ P1, then Rv “ FqrZs is the ring of polynomials in Z over Fq.

Let m,n P Zě1. Let us fix, throughout the paper, two weights consisting of a m-tuple
r “ pr1, ¨ ¨ ¨ , rmq and a n-tuple s “ ps1, ¨ ¨ ¨ , snq of positive integers such that we have
|r| “

ÿ

1ďiďm

ri “
ÿ

1ďjďn

sj . The r-quasinorm of ξ P Km
v and s-quasinorm of θ P K n

v are

given by

} ξ }r “ max
1ďiďm

| ξi |
1
ri and }θ }s “ max

1ďjďn
|θj |

1
sj .

We denote by x ξ yr “ inf
xPRm

v

} ξ ´ x }r the (weighted) distance from ξ to the set Rm
v of

integral vectors in Km
v .

Let ε ą 0. A matrix A P Mm,npKvq is said to be ε-bad for a vector θ P Km
v if

lim inf
xPRn

v , }x }sÑ8
}x }s xAx´ θ yr ě ε . (1)

Denote by BadApεq the set of vectors θ P Km
v such that A is ε-bad for θ. Given two

subsets U and V of a given set, we denote U ´V “ tx P U : x R V u. We say that a matrix
A P Mm,npKvq is pr, sq-singular on average if for every ε ą 0, we have

lim
NÑ8

1

N
Cardt ` P t1, . . . , Nu : D y P Rn

v ´ t0u, xAy yr ď ε q´ `v , }y }s ď q`v u “ 1 . (2)

For the basic example of function field, when K “ FqrZs and v “ r1 : 0s, Bugeaud and
Zhang [BZ] found a sufficient condition (and an equivalent one when n “ m “ 1) on A for
the Hausdorff dimension of BadApεq to be full. We first strenghten and extend their result
to general function fields.
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Theorem 1.1 Let A P Mm,npKvq be a matrix. The following assertions are equivalent:
(1) there exists ε ą 0 such that the set BadApεq has full Hausdorff dimension,
(2) the matrix A is pr, sq-singular on average.

We also provide an effective upper bound on the Hausdorff dimension in terms of ε,
which is a new result even in the basic case K “ FqrZs and v “ r1 : 0s.

Theorem 1.2 For every A P Mm,npKvq which is not pr, sq-singular on average, there
exists a constant cpAq ą 0 depending only on A, r, s, such that for every ε ą 0, we have
dimHaus BadApεq ď m´ cpAq ε |r|

lnp1{εq .

The proofs of the above main theorems of this paper are largely divided into two parts.
Firstly, assuming the singular on average property in order to prove the full Hausdorff
dimension property, we give a lower bound on the Hausdorff dimension of appropriately
chosen subsets of Km

v , using new function fields versions of classical tools in Diophantine
approximation such as geometry of numbers, transference principle and best approximation
vectors (see for instance [Cas, Sch3, Kri, KlW, Cheu, Chev, GE, CC, KlST, GG, BZ, Ger,
LSST, CGGMS, BuKLR]). Secondly, in order to prove the upper bound in Theorem 1.2,
we use technics of homogeneous dynamics of diagonal actions and in particular the entropy
method (see for instance [Kle, EL, LSS, ELW]). Let us explain briefly the latter part.

Let d “ m` n. The dynamical space relevant to inhomogeneous Diophantine approx-
imation is the space Y of unimodular grids Λ ` b in K d

v , that is of (Haar-covolume 1)
Rv-lattices Λ of K d

v translated by vectors b P K d
v , endowed with the affine action of the

diagonal subgroup of SLdpKvq. This is in higher dimension more convenient than the study
of the commuting actions of SLdpRvq and of the diagonal group on the Bruhat-Tits build-
ing associated with SLdpKvq (see [BPP, Part III] when d “ 2). Given the above weights
r and s, we consider the affine action on Y of the 1-parameter diagonal subgroup pakqkPZ
where

a “ diagpπ´r1v , ¨ ¨ ¨ , π´rmv , πs1v , ¨ ¨ ¨ , π
sn
v q .

The space Y of unimodular grids a-equivariantly projects onto the space of unimodular Rv-
lattices X “ SLdpKvq{SLdpRvq by the map sending Λ`b to Λ. We say that a unimodular
Rv-lattice Λ diverges on average under the action of a if for every compact subset Q of X ,
we have

lim inf
NÑ8

1

N
Card

 

` P t1, ¨ ¨ ¨ , Nu : a`Λ R Q
(

“ 1 .

Following Dani’s path, we prove in Section 5.2 that the lattice ΛA “

ˆ

Im A
0 In

˙

R d
v diverges

on average under a if and only if A is pr, sq-singular on average.
As developped in the last Section 6, the main idea of the entropy method in our situa-

tion, as in [KKL] for the real case, is that if the point ΛA does not diverge on average, then
the Hausdorff dimension of BadApεq provides a lower bound on the conditional entropy
of a with respect to a measure µ constructed by well-separated sets on the fibers of the
projection Y Ñ X . An effective control of the maximal conditional entropy by a control
of the support of µ on the thin/thick parts of Y hence gives an effective upper bound.

Before Section 6, our paper is organized as follows. In Section 2, we recall basic facts on
the geometry of numbers, define the best approximation sequence and prove transference
principle for the weighted case, which generalize previous results of Bugeaud-Zhang [BZ].

3



In Section 3, we give a characterization of the singular on average property with weights in
terms of the best approximation sequence. In Section 4, we establish the lower bound on
the Hausdorff dimension by constructing a subsequence with controlled growth of the best
approximation sequence for a matrix whose transpose is singular on average. In Section 5,
we recall some background on homogeneous dynamics and conditional entropy, and prove
an effective and positive characteristic version of the variational principle for conditional
entropy of [EL, §7.55] (see [KKL] in the real case).

We remark that in [KKL], the first two authors, with Wooyeon Kim, also show that
given any vector b P Rm, the set of matrices A P Mm,npRq that are ε-bad for b does not
have full Hausdorff dimension, and estimate an explicit upper bound. Thus it seems very
interesting to obtain a similar result in the global function field case.

Acknowledgements. Taehyeong Kim and Seonhee Lim are supported by the National Research
Foundation of Korea, Project Number NRF-2020R1A2C1A01011543. Taehyeong Kim is supported
by the National Research Foundation of Korea, Project Number NRF-2021R1A6A3A13039948.
Seonhee Lim is an associate member of KIAS.

2 Background material for the lower bound

2.1 On global function fields

We refer for instance to [Gos, Ros], as well as [BPP, §14.2], for the content of this section.
Let Fq be a finite field with q elements, where q is a positive power of a positive prime. Let
K be the function field of a geometrically connected smooth projective curve C over Fq, or
equivalently an extension of Fq with transcendence degree 1, in which Fq is algebraically
closed. We denote by g the genus of C. There is a bijection between the set of closed
points of C and the set of normalized discrete valuations v of K, the valuation of a given
element f P K being the order of the zero or the opposite of the order of the pole of f
at the given closed point. We fix such an element v throughout this paper, and use the
notation Kv, Ov, πv, kv, qv, | ¨ | defined in the introduction. We furthermore denote by
deg v the degree of v, so that

qv “ qdeg v .

We denote by volv the normalized Haar measure on the locally compact additive group
Kv such that volvpOvq “ 1. For any positive integer d, let voldv be the normalized Haar
measure on K d

v such that voldvpO
d
v q “ 1. Note that for every g P GLdpKvq we have

d voldvpgxq “ | detpgq | d voldvpxq ,

where det is the determinant of a matrix. For every discrete additive subgroup Λ of K d
v ,

we again denote by voldv (and simply volv when d “ 1) the measured induced on K d
v {Λ by

voldv.
Note that the completion Kv of K for v is the field kvppπvqq of Laurent series x “

ř

iPZ xipπvq
i in the variable πv over kv, where xi P kv is zero for i P Z small enough. We

have
|x | “ q´ suptjPZ : @iăj, xi“0u

v ,

and Ov “ kvrrπvss is the local ring of power series x “
ř

iPZě0
xipπvq

i in the variable πv
over kv.
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Recall that the affine algebra Rv of the affine curve C ´ tvu consists of the elements
of K whose only poles are at the closed point v of C. Its field of fractions is equal to K,
hence we can write elements of K as x{y with x, y P Rv and y ‰ 0. By for instance [BPP,
Eq. (14.2)], we have

Rv X Ov “ Fq . (3)

For every ξ P Kv, we denote by

|x ξ y| “ inf
xPRv

} ξ ´ x }

the distance in Kv from ξ to the set Rv of integral points of Kv.
For instance, if C is the projective line P1, if 8 “ r1 : 0s is its usual point at infinity

and if Z is a variable name, then g “ 0, K “ FqpZq, π8 “ Z´1, K8 “ FqppZ´1qq,
O8 “ FqrrZ´1ss, k8 “ Fq, q8 “ q and R8 “ FqrZs. In this setting, there are numerous
results on Diophantine approximation in the fields of formal power series, see for instance
[Las], [Bug, Chap. 9]. On the other hand, little is known about Diophantine approximation
over general global function fields, see for instance [KlST] (for a single valuation in positive
characteristic) for the ground work on the geometry of number for function fields.

2.2 On the geometry of numbers and Dirichlet’s theorem

Let d be a positive integer. An Rv-lattice Λ in K d
v is a discrete Rv-submodule in K d

v that
generates K d

v as a Kv-vector space. The covolume of Λ, denoted by CovolpΛq, is defined
as the measure of the (compact) quotient space K d

v {Λ :

CovolpΛq “ voldvpK
d
v {Λq .

For example, R d
v is an Rv-lattice in K d

v , and by for instance [BPP, Lem. 14.4)], we have

CovolpR d
v q “ qpg´1qd . (4)

Let Bp0, rq be the closed ball of radius r centered at zero inK d
v with respect to the norm

} ¨ } : pξ1, . . . , ξdq ÞÑ max1ďiďd | ξi | . For every integer k P t1, . . . , du, the k-th minimum of
an Rv-lattice Λ is defined by

λkpΛq “ mintr ą 0 : dimKvpspanKvpBp0, rq X Λqq ě ku,

where spanKv denotes the Kv-linear span of a subset of a Kv-vector space and dimKv is
the dimension of a Kv-vector space. Note that λ1pΛq, . . . , λdpΛq P q

Z
v . The next result

follows from [KlST, Theo. 4.4] and Equation (4).

Theorem 2.1 (Minkovski’s theorem) For every Rv-lattice Λ in K d
v , we have

q´pg´1qd CovolpΛq ď λ1pΛq . . . λdpΛq ď qdv CovolpΛq . l

Since λ1pΛq ď ¨ ¨ ¨ ď λdpΛq, the following result follows immediately from Minkowski’s
theorem 2.1.

Corollary 2.2 For every Rv-lattice Λ in K d
v , we have

λ1pΛq ď qv CovolpΛq
1
d . l
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The following result generalizes [GG, Theo. 2.1], which is proved only when K “ FqpZq
and v “ 8, to all function fields K and valuations v. See also [KlW, Theo. 1.3] in the case
of the field Q.

Theorem 2.3 (Dirichlet’s theorem) For every matrix A P Mm,npKvq whose rows are
denoted by A1, . . . , Am, for all pr11, . . . , r

1
mq P Z m

ě0 and ps11, . . . , s
1
nq P Z n

ě0 with

r1i ą 1`
g ´ 1

deg v
and

m
ÿ

i“1

r1i “
n
ÿ

j“1

s1j ,

there exists an element y “ py1, . . . , ynq P R
n
v ´ t0u such that, for all i “ 1, . . . ,m and

j “ 1, . . . , n, we have

|xAi y y| ď qv q
g´1 qv

´r1i and | yj | ď qv q
g´1 qv

s1j .

Proof. With A, r11, . . . , r1m and s11, . . . , s1n as in the statement, we apply Corollary 2.2 with
d “ m` n to the Rv-lattice

Λ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

π
´r11
v 0

. . .
π
´r1m
v

π
s11
v

. . .
0 π

s1n
v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ˆ

Im A
0 In

˙

R d
v ,

where Ik is the k ˆ k identity matrix. Since the above two matrices have determinant 1
by the assumption

řm
i“1 r

1
i “

řn
j“1 s

1
j , and by Equation (4), we have CovolpΛq “ qpg´1qd.

Corollary 2.2 hence says that there exists px “ px1, . . . , xmq,y “ py1, . . . , ynqq P R
d
v ´ t0u

such that

max
 

max
i“1,...,m

|π
´r1i
v pxi `Aiyq |, max

j“1,...,n
|π

s1j
v yj |

(

ď qv CovolpΛq
1
d “ qv q

g´1 .

Assume for a contradiction that y “ 0. Then for all i “ 1, . . . ,m, since |πv | “ q´1
v , we

have the inequality |xi | ď qv q
g´1 q

´r1i
v . Since r1i ą 1` g´1

deg v , this would imply that |xi | ă 1.
By Equation (3), we have tz P Rv : | z | ă 1u “ t0u. Since xi P Rv, we would have that
x “ 0, contradicting the fact that px,yq ‰ 0. Therefore y ‰ 0 and the result follows. l

The following corollary is due to [Kri, Theo. 1.1] (see also [BZ, Theo. 3.2] where the
assumption that cm is divisible by n is implicit) in the special case when K “ FqpZq and
v “ 8 and without weights.

Let min r “ min1ďiďm ri and similarly for min s, max r and max s.

Corollary 2.4 For all A P Mm,npKvq and α P Zě0 with α ą 1
min r `

g´1
pmin rqpdeg vq , there

exists y P Rn
v ´ t0u such that

xAy yr ď q
deg v`g´1

min r q´αv and }y }s ď q
deg v`g´1

min s qαv .
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Proof. We apply Theorem 2.3 with r1i “ α ri ą 1 ` g´1
deg v for i “ 1, . . . ,m and s1j “ α sj

for j “ 1, . . . , n, noting that
řm
i“1 r

1
i “

řn
j“1 s

1
j since

řm
i“1 ri “

řn
j“1 sj . l

Remark. When r “ pn, n, . . . , nq and s “ pm,m, . . . ,mq, the above result says that for
every integer α ą 1

n `
g´1
ndeg v , there exists y P Rn

v ´ t0u such that

min
xPRm

v

}Ay ´ x} ď qv q
g´1 q´αnv and }y } ď qv q

g´1 qαmv ,

where } ¨ } is the sup norm.

2.3 Best approximation sequences with weights

In this subsection, we construct a version with weights, valid for all function fields, of the
best approximation sequences associated with a completely irrational matrix by Bugeaud-
Zhang [BZ].

A matrix A P Mm,npKvq is said to be completely irrational if xAy yr ‰ 0 for every
y P Rn

v ´ t0u. Note that this does not depend on the weight r, and that the fact that A
is completely irrational might not necessarily imply that tA is completely irrational.

Remark 2.5 Let A P Mm,npKvq be such that tA is not completely irrational.
(1) The matrix tA is ps, rq-singular on average.
(2) For every ε ą 0 small enough, the set BadApεq has full Hausdorff dimension.

Proof. By assumption, there exist x P Rn
v and y “ py1, . . . , ymq P R

m
v ´ t0u such that

tA y ´ x “ 0.

(1) For every ε ą 0, if `0 “ rlogqv }y }rs then for all integers N ě `0 and ` P t`0, . . . , Nu,
we have x tAy ys “ 0 ď ε q´ `v and }y }r ď q`v, hence tA is ps, rq-singular on average (see
Equation (2)).

(2) For every θ “ pθ1, . . . , θmq P K
m
v , let

y ¨ θ “
m
ÿ

j“1

yi θi P Kv .

For every ε P s0, 1
}y }r

s, let Uy,ε “
 

θ P Km
v : |xy¨θ y| ě p ε }y }rq

min r
(

. If ε is small enough,
then the set Uy,ε contains a closed ball of positive radius: For instance, let j0 P t1, . . . ,mu
be such that yj0 ‰ 0 ; define θ0,j “ 0 if j ‰ j0, θ0,j0 “

πv
yj0

and θ0 “ pθ0,1, . . . , θ0,mq ;

then it is easy to check using the ultrametric inequality that the closed ball Bpθ0,
1

q2v }y }
q

is contained in Uy,ε if ε ă q
´ 1

min r
v }y }´1

r .
Let us prove that BadApεq contains Uy,ε, which implies that dimHaus

`

BadApεq
˘

“ m
if ε is small enough. Let θ P Uy,ε and py1,x1q P Rm

v ˆ pR
n
v ´ t0uq.

If }y }r}Ax1 ` y1 ´ θ }r ě 1, then since x1 P Rn
v ´ t0u so that }x1 }s ě 1, we have

}x1 }s }Ax
1 ` y1 ´ θ }r ě

1

}y }r
}y }r }Ax

1 ` y1 ´ θ}r ě
1

}y }r
ě ε .
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If }y }r }Ax1`y1´θ }r ď 1, then since y¨pAx1`y1q “ p tAyq¨x1`y¨y1 “ x¨x1`y¨y1 P Rv,
and since θ P Uy,ε, we have

}x1 }s }Ax
1 ` y1 ´ θ }r ě

1

}y }r
}y }r }Ax

1 ` y1 ´ θ }r

ě
1

}y }r

`

max
1ďjďm

}y }
rj
r }Ax

1 ` y1 ´ θ }
rj
r

˘
1

min r

ě
1

}y }r

ˇ

ˇy ¨ pAx1 ` y1 ´ θq
ˇ

ˇ

1
min r ě

1

}y }r
|x y ¨ θ y|

1
min r ě ε .

Therefore θ P BadApεq, as wanted. l

For every matrix A P Mm,npKvq, a best approximation sequence for A with weights
pr, sq is a sequence pyiqiě1 in Rn

v such that, with Yi “ }yi }s and Mi “ xAyi yr,
‚ the sequence pYiqiě1 is positive and strictly increasing,
‚ the sequence pMiqiě1 is positive and strictly decreasing, and
‚ for every y P Rn

v ´ t0u with }y }s ă Yi`1, we have xAy yr ěMi.
We denote by lcm r the least common multiple of r1, . . . , rm, and similarly for lcm s.

Lemma 2.6 Assume that A P Mm,npKvq is completely irrational.

(1) There exists a best approximation sequence pyiqiě1 for A with weights pr, sq.

(2) If pyiqiě1 is a best approximation sequence for A with weights pr, sq, then

i) we have Mi P q
1

lcm r
Z

v and Mi P q
1

lcm r
Zď0

v if i is large enough,

ii) we have Yi P q
1

lcm s
Zě0

v and Yi ě q
i´1
lcm s
v for every i ě 1,

iii) the sequence
`

Mi Yi`1

˘

iě1
is uniformly bounded.

Note that a best approximation sequence might be not unique (and the terminology
“best”, though traditional, is not very appropriate). When m “ n “ r1 “ s1 “ 1, K “

FqpZq and v “ 8, then A P Kv is completely irrational if and only if A P Kv´K, and with
`

Pk
Qk

˘

kě0
the sequence of convergents of A (see for instance [Las]), we may take yi “ Qi´1

for all i ě 1.
If A P Mm,npKvq is not completely irrational, a best approximation sequence for A

with weights pr, sq is a finite sequence pyiq1ďiďi0 in Rn
v , such that, with Yi “ }yi }s and

Mi “ xAyi yr,
‚ 1 “ Y1 ă ¨ ¨ ¨ ă Yi0 ,
‚ M1 ą ¨ ¨ ¨ ąMi0 “ 0,
‚ for all i P t1, . . . , i0´ 1u and y P Rn

v ´t0u with }y }s ă Yi`1, we have xAy yr ěMi,
and
‚ which stops at the first i0 such that there exists z P Rn

v with 0 ă } z }s ď Yi0 and
xA z yr “ 0.

The proof of Lemma 2.6 is similar to the one given after [BZ, Def. 3.3] in the particular
case when K “ FqpZq, v “ 8 and without weights.

Proof. (1) Let us prove by induction on i ě 1 that there exist y1, . . . ,yi in Rn
v such that,

with Yj “ }yj }s and Mj “ xAyj yr for every 1 ď j ď i, we have 1 “ Y1 ă ¨ ¨ ¨ ă Yi,
M1 ą ¨ ¨ ¨ ąMi ą 0, and (using M0 “ `8 by convention)
paiq we have xAy yr ěMi´1 for every y P Rn

v ´ t0u with }y }s ă Yi,
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pbiq we have xAy yr ěMi for every y P Rn
v ´ t0u with }y }s ď Yi.

Note that tx P Rv : |x | ď 1u “ Rv X Ov “ Fq by Equation (3). Hence the elements
with smallest s-quasinorm in Rn

v ´t0u are the elements in the finite set Fnq ´t0u, which is
the set of elements in Rn

v with s-quasinorm 1. Furthermore, the set t}y }s : y P Rn
v ´t0uu

is contained in q

Ťn
j“1

1
sj

Zě0

v Ă q
1

lcm s
Zě0

v . Similarly, for every x P Km
v ´ t0u, we have

xx yr P q
1

lcm r
Z

v .
Therefore there exists an element y1 P R

n
v with }y1 }s “ 1 such that

xAy1 yr “ mint xAy yr : y P Rn
v , }y }s “ 1 u .

We thus have Y1 “ }y1 }s “ 1 and M1 “ xAy1 yr ą 0 since A is completely irrational.
There is no y P Rn

v ´ t0u with }y }s ă Y1, and if }y }s “ Y1, then xAy yr ě M1, hence
the claims pa1q and pb1q are satisfied.

Assume by induction that y1, . . . ,yi as above are constructed. Let

S “ ty P Rn
v : }y }s ą Yi, xAy yr ăMi u .

Note that the set tz P Rn
v , 0 ă } z }s ď Yiu is finite by the discreteness of Rn

v , and
εi “ mint xA z yr : z P Rn

v , 0 ă } z }s ď Yi u is positive, since A is completely irrational.
Corollary 2.4 of Dirichlet’s theorem implies in particular, by taking in its statement α large
enough, that for every ε ą 0, there exists y P Rn

v ´ t0u such that xAy yr ă ε. Applying
this with ε “ mintMi, εiu ą 0 proves that the set S is nonempty. Hence the set Smin of
elements of S with minimal s-quasinorm, which is finite again by the discreteness of Rn

v ,
is nonempty. Therefore there exists yi`1 P Smin such that

xAyi`1 yr “ mint xA z yr : z P Smin u .

Then Yi`1 “ }yi`1 }s “ min }S }s ą Yi by the definition of the set S. We also have that
Mi`1 “ xAyi`1 yr ăMi since yi`1 P Smin Ă S, and again by the definition of S.

Let us now prove that yi`1 satisfies the properties pai`1q and pbi`1q.
‚ Let y P Rn

v ´ t0u be such that }y }s ă Yi`1. If }y }s ď Yi, then by the induction
hypothesis pbiq, we have xAy yr ě Mi, as wanted for Property pai`1q. If }y }s ą Yi, then
by the definition of S, we have xAy yr ě Mi as wanted for Property pai`1q, otherwise y
would be an element of S with s-quasinorm strictly less than the minimum s-quasinorm of
the elements of S, a contradiction.
‚ Let y P Rn

v ´ t0u be such that }y }s ď Yi`1. Either }y }s ă Yi`1, in which case, as
just seen, xAy yr ě Mi ě Mi`1, as wanted for Property pbi`1q. Or }y }s “ Yi`1 ą Yi, in
which case either xAy yr ě Mi ě Mi`1, as wanted for Property pbi`1q, or xAy yr ă Mi,
so that y belongs to Smin, hence xAy yr ě mint xA z yr : z P Smin u “Mi`1.

By induction, this proves Assertion (1) of Lemma 2.6.

(2) i) This follows from the facts that Mi P q
1

lcm r
Z

v and that Mi`1 ăMi.

ii) Since Y1 “ 1, this follows by induction from the facts that Yi P q
1

lcm s
Z

v and that
Yi`1 ą Yi.

iii) Let α “
X

logqvpq
´

deg v`g´1
min s Yi`1q

\

´ 1, which satisfies α ą 1
min r `

g´1
pmin rqpdeg vq if i is

large enough, by Assertion (2) ii). By Corollary 2.4, there exists y P Rn
v ´ t0u such that

}y }s ď q
deg v`g´1

min s qαv ă q
deg v`g´1

min s q
logqv pq

´
deg v`g´1

min s Yi`1q
v “ Yi`1

9



and

xAy yr ď q
deg v`g´1

min r q´αv

ď q
deg v`g´1

min r q
´

`

logqv pq
´

deg v`g´1
min s Yi`1q´2

˘

v “ qpdeg v`g´1q
`

1
min r

` 1
min s

˘

`2 deg v
pYi`1q

´1 .

Since Mi ď mint xAy yr : y P Rn
v , 0 ă }y }s ă Yi`1 u by the definition of a best

approximation sequence, the result follows. l

2.4 Transference theorems with weights

In this section, we will show that a matrix A P Mm,npKvq is singular on average if and
only if its transpose tA is singular on average. To do this, following [Cas, Chap. V], we
prove a transference principle between two problems of homogeneous approximations with
weights. See also [GE, Ger] in the disjoint case of the field Q.

Let d P Zě2 be a positive integer at least 2. For all ξ “ pξ1, . . . , ξdq and θ “ pθ1, . . . , θdq
in K d

v , we denote

ξ ¨ θ “
d
ÿ

k“1

ξk θk .

Let α1, . . . , αd P Z be integers and let α “
řd
k“1 αk. We consider the parallelepiped

P “
 

ξ “ pξ1, . . . , ξdq P K
d
v : @ k “ 1, . . . , d, | ξk | ď qαkv

(

.

Following Schmidt’s terminology [Sch3, page 109] in the case of the field Q (building on
Mahler’s compound one), we call the parallelepiped

P˚ “
 

ξ “ pξ1, . . . , ξdq P K
d
v : @ k “ 1, . . . , d, | ξk | ď

1

qαkv

d
ź

i“1

qαiv “ qα´αkv

(

the pseudocompound of P. Note that P and P˚ are preserved by the multiplication of
the components of their elements by elements of Ov.

Theorem 2.7 With P and P˚ as above, for every F P SLdpKvq,

if P˚ X tF´1pR d
v q ‰ t0u, then π´βdv P X F pR d

v q ‰ t0u,

where
βd “

Q 1

d´ 1

´

d` 1`
pg ´ 1qd

deg v

¯U

.

Remark. The Rv-lattice tF´1pR d
v q is called the dual lattice of the Rv-lattice F pR d

v q since
we have z ¨w P Rv for all z P tF´1pR d

v q and w P F pR d
v q. They have the same covolume as

R d
v , since detpF q “ 1.

Proof. Let z “ pz1, . . . , zdq P P˚ X tF´1pR d
v q ´ t0u and κ0 “ maxtk P Zě0 : z P πkvP

˚u.
Up to permuting the coordinates, we may assume that, for all k “ 2, . . . , d, we have

| z1 | “ qα´α1´κ0
v and | zk | ď qα´αk´κ0v . (5)

10



With Fk the k-th row of F , let us consider the Rv-lattice Λ “MpR d
v q where

M “

¨

˚

˚

˚

˝

π´1
v

řd
k“1 zkFk

πβd`α2
v F2

...
πβd`αdv Fd

˛

‹

‹

‹

‚

.

By substracting to the first row a linear combination of the other rows, and since detF “ 1,
the determinant of the above matrix M is equal to πpd´1qβd`α´α1´1

v z1. By Equations (5)
and (4), we thus have

CovolpΛq “ detpMqCovolpR d
v q “ q1´κ0´pd´1qβd

v qpg´1qd .

Since d ě 2 and βd ě 1
d´1

`

d` 1` pg´1qd
deg v

˘

, Corollary 2.2 applied to the Rv-lattice Λ gives
that

λ1pΛq ď qv CovolpΛq
1
d ď 1.

Hence, by the definition of the first minimum λ1pΛq, there exists w P R d
v ´ t0u such that

for every k “ 2, . . . , d, we have

| z ¨ F pwq | ď q´1
v ă 1 and |Fkpwq | ď qβd`αkv . (6)

Since z P tF´1pR d
v q and w P R d

v , we have z ¨ F pwq P Rv by the above Remark. The first
inequality of Equation (6) hence implies that z ¨ F pwq “ 0, which means that

z1F1pwq “ ´
d
ÿ

k“2

zkFkpwq .

By the ultrametric property of | ¨ |, by Equations (5) and (6), we have

qα´α1´κ0
v |F1pwq | “ | z1F1pwq | ď max

2ďkďd
| zkFkpwq |

ď max
2ďkďd

qα´αk´κ0v qβd`αkv “ qα`βd´κ0v .

Therefore |F1pwq | ď qβd`α1
v and with the second inequality of Equation (6), we conclude

that F pwq P πβdv P. l

Corollary 2.8 There exist κ1, κ2, κ3, κ4 ě 0 with κ2 ą 0, depending only on m, n, g,
deg v, r and s, such that for all A P Mm,npKvq and ε P q

Zď´1
v , for every large enough

Y P q
Zě1
v , if there exists y P Rn

v ´ t0u such that

xAy yr ď ε Y ´1 and }y }s ď Y , (7)

then there exists x P Rm
v ´ t0u such that

x tAx ys ď qκ1v εκ2 X´1 and }x }r ď X , (8)

where X “ qκ3v ε´κ4 Y .

11



Proof. Let |s| “
řn
j“1 sj . Denoting αε “ ´ logqv ε P Zě1 and αY “ logqv Y P Zě1, we

define δ “ q´αδv and Z “ qαZv Y where

αδ “
Y αε ´ 1

|s|
`

1
min r `

1
min s

˘

´ 1

]

and αZ “
Q´

|s|

min s
´ 1

¯

αδ

U

. (9)

Note that αδ is well defined since |s|
min s ě 1, and that αδ and αZ are nonnegative. We have

`

|s|
` 1

min r
`

1

min s

˘

´ 1
˘

αδ ď αε ´ 1 ,

hence
` |s|

min s
´ 1

˘

αδ ` 1 ď αε ´
|s|

min r
αδ ,

therefore
` |s|

min s
´ 1

˘

αδ ď αZ ď αε ´
|s|

min r
αδ . (10)

Let d “ m` n ě 2. Let us consider the following parallelepipeds

Q “

"

ξ “ pξ1, . . . , ξdq P K
d
v :

@ i “ 1, . . . ,m, | ξi | ď εri Y ´ri

@ j “ 1, . . . , n, | ξm`j | ď Y sj

*

,

P “

"

ξ “ pξ1, . . . , ξdq P K
d
v :

@ i “ 1, . . . ,m, | ξi | ď Zri

@ j “ 1, . . . , n, | ξm`j | ď δsj Z´sj

*

.

Since
řm
i“1 ri “

řn
j“1 sj , the pseudocompound P˚ of P is equal to

P˚ “

"

ξ “ pξ1, . . . , ξdq P K
d
v :

@ i “ 1, . . . ,m, | ξi | ď δ|s| Z´ri

@ j “ 1, . . . , n, | ξm`j | ď δ|s|´sjZsj

*

.

By the right inequality of Equation (10), for every i “ 1, . . . ,m, we have

δ|s|Z´ri “ q´|s|αδ´riαZv Y ´ri ě q
´ripαZ`

|s|
min r

αδq
v Y ´ri ě εri Y ´ri .

By the left inequality of Equation (10), for every j “ 1, . . . , n, we have

δ|s|´sjZsj “ q
´p|s|´sjqαδ`sjαZ
v Y sj ě q

sjpαZ´p
|s|

min s
´1qαδq

v Y sj ě Y sj .

Therefore Q is contained in P˚.
Now, by the assumption of Corollary 2.8, let y P Rn

v ´t0u be such that the inequalities
(7) are satisfied. Then there exists px1,yq P Rm

v ˆ pR
n
v ´ t0uq such that

}Ay ´ x1}r ď ε Y ´1 and }y }s ď Y .

Therefore

Q X

ˆ

Im A
0 In

˙

R d
v ‰ t0u .

Since Q Ă P˚, this implies that

P˚ X

ˆ

Im A
0 In

˙

R d
v ‰ t0u .
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By Theorem 2.7, we have

π´βdv P X

ˆ

Im 0
´ tA In

˙

R d
v ‰ t0u .

Then there exists px,y1q P pRm
v ˆR

n
v q ´ t0u such that

}πβdv x}r ď Z and }πβdv p´
tAx´ y1q}s ď δ Z´1 . (11)

The above inequality on the left-hand side and the two equalities of Equation (9) give

}x }r ď q
βd

min r
v Z “ q

βd
min r

`αZ
v Y ď q

βd
min r

`1`p |s|
min s

´1q αε´1

|s|p 1
min r`

1
min s q´1

v Y

ď q
βd

min r
`1

v ε
´

|s|
min s´1

|s|p 1
min r`

1
min s q´1 Y .

If κ3 “
βd

min r ` 1 ą 0 and κ4 “
|s|

min s
´1

|s|p 1
min r

` 1
min s

q´1
ě 0, this proves the right inequality in

Equation (8) with X “ qκ3v ε´κ4 Y .
The right inequality in Equation (11), since βd ě 0 and by using the left inequality in

Equation (10) and the definition (9) of αδ, gives

x tAx ys ď q
βd

min s
v δ Z´1 “ q

βd
min s

´αδ´αZ
v Y ´1 ď q

βd
min s

´
|s|

min s
αδ`κ3

v ε´κ4 X´1

ď q

βd
min s

´
|s|

min s

`

αε´1

|s|

`

1
min r`

1
min s

˘

´1

´1
˘

`κ3`
|s|

min s´1

|s|p 1
min r`

1
min s q´1

αε

v X´1

“ q

βd
min s

`
|s|

min s

`

1

|s|

`

1
min r`

1
min s

˘

´1

`1
˘

`κ3

v ε
1

|s|p 1
min r`

1
min s q´1 X´1 .

This proves the left inequality in Equation (8) for appropriate positive constants κ1 and
κ2.

If x “ 0, then we have y1 ‰ 0 and }y1 }s ď qκ1´κ3v εκ2`κ4 Y ´1, which contradicts the
fact that y1 P Rn

v if Y is large enough. This concludes the proof of Corollary 2.8. l

Corollary 2.9 Let m,n be positive integers and A P Mm,npKvq. Then A is pr, sq-singular
on average if and only if tA is ps, rq-singular on average.

Proof. This follows from Corollary 2.8. l

It follows from this corollary and from Remark 2.5 that if A P Mm,npKvq is such that
tA is not completely irrational, then A is pr, sq-singular on average.

3 Characterisation of singular on average property

In this section, we give a characterisation of the singular on average property with weights
in terms of an asymptotic property in average of the best approximation sequence with
weights. In the real case, the relation between the singular property and the best ap-
proximation sequence has been studied in [Cheu, Chev, CC, LSST]. Also in the real case,
and with weights, the relation (similar to the one below) between the singular on average
property and the best approximation sequence has been studied in [KKL, Prop. 6.7].

For the sake of later applications, we work with transposes of matrices.
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Theorem 3.1 Let A P Mm,npKvq and let pyiqiě1 be a best approximation sequence in Km
v

for tA with weights ps, rq. The following statements are equivalent.
(1) For all a ą 1 and ε ą 0, we have

lim
NÑ8

1

N
Cardt ` P t1, . . . , Nu : D y P Rm

v ´ t0u, x
tAy ys ď ε a´ `, }y }r ď a` u “ 1 .

(2) The matrix tA is ps, rq-singular on average.
(3) There exists a ą 1 such that for every ε ą 0, we have

lim
NÑ8

1

N
Cardt ` P t1, . . . , Nu : D y P Rm

v ´ t0u, x
tAy ys ď ε a´ `, }y }r ď a` u “ 1 .

(4) For every ε1 ą 0, we have

lim
kÑ8

1

logqv Yk
Card

 

i ď k : Mi Yi`1 ą ε1
(

“ 0 .

Proof. Since Assertion (2) is Assertion (1) for a “ qv ą 1, it is immediate that (1) implies
(2) implies (3).

Let us first prove that Assertion (3) implies Assertion (4). Let a ą 1 be as in Assertion
(3) and let ε1 P s0, 1r . Let ε “ ε1

a ą 0.
We may assume that the set I “ ti P Zě1 : MiYi`1 ą ε1u is infinite, otherwise Assertion

(4) is clear since limkÑ8 Yk “ `8. We consider the increasing sequence pijqjPZě1 of
positive integers such that I “ tij : j ě 1u. For every j ě 1, by taking the logarithm in
base a, we thus have loga ε

1 ´ logaMij ă loga Yij`1, hence

loga ε´ logaMij ă loga Yij`1 ´ 1 . (12)

Note that for every i ě 1 and X P rYi, Yi`1r , the system of inequalities

x tAy ys ď εX´1 and 0 ă }y }r ď X (13)

has a solution y P Rm
v if and only if Mi ď εX´1. Indeed, if the later inequality is

satisfied, then yi is a solution of the system (13) sinceMi “ x
tAyi ys and X ě Yi “ }yi }r.

Conversely, if this system has a solution, then since

Mi ď mint x tAy ys : y P Rm
v , 0 ă }y }r ă Yi`1 u

by the definition of a best approximation sequence, the inequality Mi ď εX´1 holds since
X ă Yi`1. Hence, for every integer ` P rloga Yi, loga Yi`1r , the system of inequalities (13)
has no integral solutions for X “ a` if and only if

loga ε´ logaMi ă ` ă loga Yi`1 . (14)

There exists an integer j0 ě 1 such that for every integer j ě j0, we have loga Yij`1 ě 2
by Lemma 2.6 (2) ii). If ` is the integer in the interval rloga Yij`1´ 1, loga Yij`1r (which is
half-open and has length 1, hence does contain one and only one integer), then ` ě 1 and
by Equations (12) and (14), the system (13) has no integral solutions for X “ a`.

Let u “ rplcm rqplogqv aqs, which belongs to Zě1. By Lemma 2.6 (2) ii), for every
k P Zě1, since the sequence pijqjPZě1 is increasing, we have

Yik`u`1 ě q
u

lcm r
v Yik`1 ě a Yik`1 .
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The intervals rloga Yiuj`1´1, loga Yiuj`1r and rloga Yiupj`1q`1´1, loga Yiupj`1q`1r are hence
disjoint for every j P Zě1. Thus, if j is large enough, with Nj “ rloga Yiuj`1s, the number
npNjq of integers ` P t1, . . . , Nju such that the system of inequalities (13) has no integral
solutions for X “ a` is at least j´j0. Therefore j´j0

rloga Yiuj`1s
ď

npNjq
Nj

tends to 0 as j Ñ `8,

by Assertion (3). This implies that j
loga Yij

tends to 0 as j Ñ `8.

For every integer k ě 1, let jpkq ě 1 be the unique positive integer such that we have
ijpkq ď k ă ijpkq`1, so that jpkq “ Cardti ď k : MiYi`1 ą ε1u. Hence, since pYiqiě1 is
increasing, we have

lim
kÑ8

1

logqv Yk
Card

 

i ď k : MiYi`1 ą ε1
(

ď
ln qv
ln a

lim
kÑ8

jpkq

loga Yijpkq
“ 0 ,

which proves Assertion (4).

Let us now prove that Assertion (4) implies Assertion (1). Let a ą 1 and ε P s0, 1r .
By Lemma 2.6 (2) iii), let c ě 1 be such that for every i ě 1, we have MiYi`1 ď ac. By
Equation (14), since the number of integer points in an open interval is at most equal to its
length, for every i ě 1, the number of integers ` P rloga Yi, loga Yi`1r such that the system
of inequalities (13) has no integral solutions for X “ a` is at most

loga Yi`1 ´ ploga ε´ logaMiq “
`

logaMiYi`1 ´ loga ε
˘

.

For every N ě 1 large enough, let kN ě 1 be such that N P rloga YkN , loga YkN`1r and let
n1pNq be the number of integers ` P t1, . . . , Nu such that the system of inequalities (13)
has no integral solutions for X “ a`. Then

n1pNq

N
ď

1

N

kN
ÿ

i“1

max
 

0, logaMiYi`1 ´ loga ε
(

ď
`

c´ loga ε
˘ 1

loga YkN
Card

 

i ď kN : MiYi`1 ą ε
(

.

This last term tends to 0 as N Ñ `8 by Assertion (4) applied with ε1 “ ε. Therefore
limNÑ`8

n1pNq
N “ 0, thus proving Assertion (1). l

4 Full Hausdorff dimension for singular on average matrices

4.1 Modified Bugeaud-Zhang sequences

In this subsection, we construct a subsequence with controlled growth of the best ap-
proximation sequence with weights of a matrix, assuming that its transpose is singular
on average for those weights. We use as inspiration [BZ, page 470] in the special case of
K “ FqpZq and v “ v8, and the first claim of the proof of [BuKLR, Theo. 2.2] in the case
of the field Q (with characteristic zero).

Proposition 4.1 Let A P Mm,npKvq be such that tA is completely irrational and ps, rq-
singular on average. Let pyiqiPZě1 be a best approximation sequence in Km

v for tA with
weights ps, rq, and let c ą 0 be such that MiYi`1 ď qcv for every i P Zě1. For all a ą b ą 0,
there exists an increasing map ϕ : Zě1 Ñ Zě1 such that
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(1) for every i P Zě1, we have

Yϕpi`1q ě qbv Yϕpiq and Mϕpiq Yϕpi`1q ď qb`cv , (15)

(2) we have

lim sup
kÑ8

k

logqv Yϕpkq
ď

1

a
. (16)

Proof. Let A, pyiqiPZě1 and a, b be as in the statement. We start by proving a particular
case, that will be useful in two of the four cases below.

Lemma 4.2 If furthermore we have limkÑ8 Y
1
k
k “ `8, then there exists an increasing

map ϕ : Zě1 Ñ Zě1 such that Equations (15) and (16) are satisfied.

Proof. The fact that limkÑ8 Y
1
k
k “ `8 implies that the set

J0 “ tj P Zě1 : Yj`1 ě qbv Yju

is infinite. We construct the increasing sequence pϕpiqqiPZě1 of positive integers by stacks
tϕpik ` 1q, . . . , ϕpik`1qu with ik`1 ą ik, by induction on k P Zě0. For k “ 0, let i0 “ 0, let
i1 “ 1 and let ϕp1q be the smallest element of J0.

For k P Zě0, assume that ik and ϕpikq are constructed such that ϕpikq P J0 and
Equation (15) holds for every i ď ik ´ 1. Let us construct ik`1 and ϕpik ` 1q, . . . , ϕpik`1q

such that ϕpik`1q P J0 and Equation (15) holds for every i ď ik`1 ´ 1. Let j0 be the
smallest element of J0 greater than ϕpikq. Let r1 “ 0 if the set tj ą ϕpikq : Yj0 ě qbv Yju
is empty. Otherwise, let r1 P Zě1 be the maximal integer such that by induction there
exist j1, j2, . . . , jr1 P Zě1 such that for ` “ 1, . . . , r1, the set tj ą ϕpikq : Yj`´1

ě qbv Yju is
nonempty and for ` “ 1, . . . , r1 ` 1 the integer j` is its largest element. Since the sequence
pYiqiPZě1 is increasing, this in particular implies that j`´1 ą j` for ` “ 1, . . . , r1 ` 1, which
itself ensures the finiteness of r1. Now we define ik`1 “ ik ` r

1 ` 1 and

ϕpik ` 1q “ jr1 , ϕpik ` 2q “ jr1´1, . . . , ϕpik ` r
1q “ j1, ϕpik`1q “ j0 .

By construction, for ` “ 1, . . . , r1, we have

Yϕpik```1q “ Yjr1´` ě qbv Yjr1´``1
“ qbv Yϕpik``q .

As ϕpik ` 1q “ jr1 ą ϕpikq, we have Yϕpik`1q ě Yϕpikq`1 ě qbv Yϕpikq since ϕpikq PJ0. Note
that ϕpik`1q “ j0 P J0. This proves the claim on the left hand side of Equation (15) for
i ď ik`1 ´ 1.

By the maximality property of jr1´` in the above construction, for every ` “ 1, . . . , r1,
we have Yϕpik```1q “ Yjr1´` ă qbv Yjr1´``1`1 “ qbv Yϕpik``q`1. By the maximality of r1 in the
above construction, we have Yϕpik`1q ă qbv Yϕpikq`1. Hence, by the definition of c, for every
` “ 0, . . . , r1, we have

Mϕpik``qYϕpik```1q ďMϕpik``q Yϕpik``q`1 q
b
v ď qb`cv .

This proves the claim on the right hand side of Equation (15) for i ď ik`1 ´ 1.
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Since limkÑ8
k

logqv Yk
“ 0, Equation (16) is satisfied for ϕ, and this concludes the proof

of Lemma 4.2. l

Now in what follows, we will discuss in four cases on the configuration in Zě1 of the
set

J “ tj P Zě1 : Mj Yj`1 ď qb`c´3a
v u .

By Theorem 3.1 (4) applied with ε1 “ qb`c´3a
v , we have

lim
kÑ8

1

logqv Yk
Card

 

i ď k : i P cJ
(

“ 0 . (17)

Case 1. Assume first that J is finite.
By Equation (17), we then have limkÑ8

k
logqv Yk

“ 0, hence Proposition 4.1 follows
from Lemma 4.2.

Case 2. Let us now assume that there exists j˚ P Zě1 such that j P J for every j ě j˚.
Let us consider the auxiliary increasing sequence pψpiqqiPZě1 of positive integers defined

by induction by setting ψp1q “ mintj˚ P Zě1 : @ j ě j˚, j P J u and, for every i ě 1,

ψpi` 1q “ mintj P Zě1 : qav Yψpiq ď Yju .

Since the sequence pYiqiPZě1 is increasing and converges to `8, this is well defined, and ψ
is increasing, hence takes value in J by the assumption of Case 2. Let us now define the
sequence pϕpiqqiPZě1 by, for every i P Zě1,

ϕpiq “

"

ψpiq if Mψpiq Yψpi`1q ď qb`c´av ,

ψpi` 1q ´ 1 otherwise.

Note that the sequence pϕpiqqiPZě1 is increasing with ϕ ě ψ.
Let i P Zě1. Let us prove that

Yϕpi`1q ě qav Yϕpiq and MϕpiqYϕpi`1q ď qb`cv , (18)

by discussing on the values of ϕpiq and ϕpi`1q. This implies that Equation (15) is satisfied
since a ě b, and that Equation (16) is satisfied since by induction Yϕpkq ě q

a pk´1q
v Yϕp1q for

every k P Zě1.

‚ Assume that ϕpiq “ ψpiq and ϕpi` 1q “ ψpi` 1q. By the definition of ψpi` 1q, we
have

Yϕpi`1q “ Yψpi`1q ě qav Yψpiq “ qav Yϕpiq .

If ψpiq ‰ ψpi` 1q ´ 1, then by the definition of ϕpiq, we have

Mϕpiq Yϕpi`1q “Mψpiq Yψpi`1q ď qb`c´av ď qb`cv .

If ψpiq “ ψpi` 1q ´ 1, then ϕpi` 1q “ ϕpiq ` 1 and by the definition of c, we have

Mϕpiq Yϕpi`1q “Mϕpiq Yϕpiq`1 ď qcv ď qb`cv .

This proves Equation (18).
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‚ Assume that ϕpiq “ ψpiq and ϕpi` 1q “ ψpi` 2q ´ 1. Since the sequence pYiqiPZě1

is increasing and by the definition of ψpi` 1q, we have

Yϕpi`1q “ Yψpi`2q´1 ě Yψpi`1q ě qav Yψpiq “ qav Yϕpiq .

We have qav Yψpi`1q ą Yψpi`2q´1 by the minimality property of ψpi`2q. If ψpi`1q ą ψpiq`1,
then Mψpiq Yψpi`1q ď qb`c´av by the dichotomy in the definition of ϕpiq. Hence

Mϕpiq Yϕpi`1q “Mψpiq Yψpi`2q´1 ďMψpiq Yψpi`1q q
a
v ď qb`c´av qav “ qb`cv .

If ψpi` 1q “ ψpiq ` 1, then Mψpiq Yψpiq`1 ď qb`c´3a
v since ψpiq PJ . Hence

Mϕpiq Yϕpi`1q “Mψpiq Yψpi`2q´1 ďMψpiq Yψpiq`1 q
a
v ď qb`c´3a

v qav ď qb`cv .

This proves Equation (18).

‚ Assume that ϕpiq “ ψpi` 1q ´ 1 and ϕpi` 1q “ ψpi` 1q. Since ψpi` 1q ´ 1 P J ,
we have

MϕpiqYϕpi`1q “Mψpi`1q´1Yψpi`1q ď qb`c´3a
v ď qb`cv .

If ψpi` 1q ´ 1 “ ψpiq, then by the definition of ψpi` 1q, we have

Yϕpi`1q

Yϕpiq
“

Yψpi`1q

Yψpi`1q´1
“
Yψpi`1q

Yψpiq
ě qav .

If ψpi ` 1q ´ 1 ą ψpiq, then we have Mψpiq Yψpi`1q ą qb`c´av by the dichotomy in the
definition of ϕpiq, we have Yψpi`1q´1 ă qav Yψpiq ď qav Yψpiq`1 by the minimality property of
ψpi` 1q, and we have Mψpiq Yψpiq`1 ď qb`c´3a

v since ψpiq PJ . Therefore

Yϕpi`1q

Yϕpiq
“

Yψpi`1q

Yψpi`1q´1
“

Mψpiq Yψpi`1q

Mψpiq Yψpi`1q´1
ě

qb`c´av

Mψpiq Yψpiq`1 qav
ě

qb`c´av

qb`c´3a
v qav

“ qav .

This proves Equation (18).

‚ Assume that ϕpiq “ ψpi` 1q ´ 1 and ϕpi` 1q “ ψpi` 2q ´ 1. By the previous case
computations, we have

Yϕpi`1q

Yϕpiq
“
Yψpi`2q´1

Yψpi`1q´1
ě

Yψpi`1q

Yψpi`1q´1
ě qav .

We have qav Yψpi`1q ą Yψpi`2q´1 by the minimality property of ψpi ` 2q. Hence since
ψpi` 1q ´ 1 P J , we have

MϕpiqYϕpi`1q “Mψpi`1q´1Yψpi`2q´1 “Mψpi`1q´1Yψpi`1q

´Yψpi`2q´1

Yψpi`1q

¯

ď qb`c´3a
v qav ď qb`cv .

This proves Equation (18) and concludes the proof of Case 2.

Case 3. Let us now assume that J and cJ are both infinite, and that the number of
sequences of consecutive elements of J with length at least 3a is finite.
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Let j0 “ min J . Let us write the set Zěj0 “
Ť

iPZě1
Ci YDi as the disjoint union of

nonempty finite sequences Ci of consecutive integers in J and finite nonempty sequences
Di of consecutive integers in cJ with maxCi ă minDi ď maxDi ă minCi`1 for all
i P Zě1. Under the assumption of Case 3, let i0 P Zě1 be such that Card Ci ă 3a for every
i ě i0. Let k0 “ minCi0 .

Then there exists an element of cJ in any finite sequence of 3ras`1 consecutive integers
at least k0, so that for every k P Zě1 we have

k

logqv Yk
ď
k0 ` p3ras` 1q Card

 

i ď k : i P cJ
(

logqv Yk
,

which converges to 0 as k Ñ `8 by Equation (17) and since limkÑ8 Yk “ `8. Therefore

limkÑ8 Y
1
k
k “ `8, and Lemma 4.2 implies Proposition 4.1.

Case 4. Let us finally assume that J and cJ are both infinite, and that there are
infinitely many sequences of consecutive elements of J with length at least 3a.

With the notation pCiqiPZě1 and pDiqiPZě1 of the beginning of Case 3, let pikqkPZě1 be
the increasing sequence of positive integers such that ti P Zě1 : Card Ci ě 3au “ tik : k P
Zě1u.

For every k P Zě1, let us define an increasing finite sequence pψkpiqq1ďiďmk`1 of positive
integers by setting ψkp1q “ minCik and by induction

ψkpi` 1q “ mint j P Cik : qav Yψkpiq ď Yj u ,

as long as this set is nonempty. Since Cik is a finite sequence of consecutive positive integers

with length at least 3a and Yi`1 ě q
1

min r
v Yi for every i P Zě1, there exists mk P Zě2 such

that ψkpiq is defined for i “ 1, . . . ,mk`1. Note that ψkpiq belongs to J for i “ 1, . . . ,mk`1

since Cik Ă J .
As in Case 2, let us define an increasing finite sequence pϕkpiqq1ďiďmk of positive integers

by

ϕkpiq “

"

ψkpiq if Mψkpiq Yψkpi`1q ď qb`c´av ,

ψkpi` 1q ´ 1 otherwise.

As in the proof of Case 2, since for i “ 1, . . . ,mk, the integers ψkpiq, ψkpi ` 1q as well as
ψkpi` 1q ´ 1 belong to J , we have, for every i “ 1, . . . ,mk ´ 1,

Yϕkpi`1q ě qav Yϕkpiq and Mϕkpiq Yϕkpi`1q ď qb`cv . (19)

Since ϕkpmkq P Cik and ϕk`1p1q P Cik`1
, we have ϕkpmkq ă ϕk`1p1q. Let us define

an increasing finite sequence pϕ1kpiqq1ďiďrk`1 of positive integers that will allow us to in-
terpolate between ϕkpmkq and ϕk`1p1q. Let j0 “ ϕk`1p1q. If tj P Zěϕkpmkq : Yj0 ě qbv Yju
is empty, let r1k “ 0 and ϕ1kp1q “ j0 “ ϕk`1p1q. Otherwise, by decreasing induction, let
r1k P Zě1 be the maximal positive integer such that there exist j1, . . . , jr1k P Zě1 such
that for ` “ 1, . . . , r1k, the set tj P Zěϕkpmkq : Yj`´1

ě qbv Yju is nonempty and for
` “ 1, . . . , r1k ` 1, the integer j` is its largest element. As in the part of the proof of
Case 1 that does not need some belonging to J0, the sequence pϕ1kpiq “ jr1k`1´iq1ďiďr1k`1

is well defined, it is contained in rϕkpmkq, ϕk`1p1qs, and for i “ 1, . . . , r1k, we have

Yϕ1kpi`1q ě qbv Yϕ1kpiq and Mϕ1kpiq
Yϕ1kpi`1q ď qb`cv . (20)
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Putting alternatively together the sequences pϕkpiqq1ďiďmk´1 and pϕ1kpiqq1ďiďr1k as k
ranges over Zě1, we now define (with the standard convention that an empty sum is zero)
Nk “

řk´1
`“1 pm` ´ 1` r1`q and

ϕpiq “

"

ϕk
`

i´Nk

˘

if 1`Nk ď i ď mk ´ 1`Nk

ϕ1k
`

i` 1´mk ´Nk

˘

if mk `Nk ď i ď r1k ´ 1`mk `Nk .

By Equation (19) for i “ 1, . . . ,mk ´ 2, by Equation (20) for i “ 1, . . . , r1k, and since
ϕ1kpr

1
k ` 1q “ ϕk`1p1q, in order to prove that the map ϕ satisfies Equation (15), hence

Assertion (1) of Proposition 4.1, we only have to prove the following lemma.

Lemma 4.3 For every k P Zě1, we have

Yϕ1kp1q ě qbv Yϕkpmk´1q and Mϕkpmk´1q Yϕ1kp1q ď qb`cv . (21)

Proof. Since ϕ1kp1q ě ϕkpmkq, hence Yϕ1kp1q ě Yϕkpmkq, the left hand side of Equation (21)
follows from the left hand side of Equation (19) with i “ mk ´ 1. If ϕ1kp1q “ ϕkpmkq, then
the right hand side of Equation (21) follows from the right hand side of Equation (19) with
i “ mk ´ 1.

Let us hence assume that ϕ1kp1q ą ϕkpmkq, so that

Yϕ1kp1q ď qbv Yϕkpmkq ď qav Yϕkpmkq (22)

by the maximality of r1k. Let us prove that ϕkpmkq “ ψkpmkq. For a contradiction, assume
otherwise that ϕkpmkq “ ψkpmk ` 1q ´ 1 ą ψkpmkq. As in the third subcase of Case 2,
we have Mψkpmkq Yψkpmk`1q ą qb`c´av by the dichotomy in the definition of ϕkpmkq, we
have Yψkpmk`1q´1 ă qav Yψkpmkq ď qav Yψkpmkq`1 by the minimality property of ψkpmk ` 1q,
and we have Mψkpmkq Yψkpmkq`1 ď qb`c´3a

v since ψkpmkq P J . Therefore, as in the third
subcase of Case 2, we have

Yψkpmk`1q

Yψkpmk`1q´1
“

Mψkpmkq Yψkpmk`1q

Mψkpmkq Yψkpmk`1q´1
ě qav .

Hence by the construction of ϕ1kp1q, we have ϕ1kp1q “ ϕkpmkq, a contradiction to our
assumption that ϕ1kp1q ą ϕkpmkq. We now discuss on the two possible values of ϕkpmk´1q.

First assume that ϕkpmk ´ 1q “ ψkpmk ´ 1q. If ψkpmk ´ 1q ‰ ψkpmkq ´ 1 then
Mψkpmk´1q Yψkpmkq ď qb`c´av by the dichotomy in the definition of ϕkpmk ´ 1q. If on the
contrary ψkpmk ´ 1q “ ψkpmkq ´ 1 then Mψkpmk´1q Yψkpmkq ď qb`c´3a

v ď qb`c´av since the
integer ψkpmkq ´ 1 belong to J as mk ě 2. Since ϕkpmkq “ ψkpmkq by Equation (22),
we have

Mϕkpmk´1q Yϕ1kp1q “Mψkpmk´1q Yψkpmkq

´ Yϕ1kp1q

Yϕkpmkq

¯

ď qb`c´av qav “ qb`cv .

This proves the right hand side of Equation (21).

Now assume that ϕkpmk ´ 1q “ ψkpmkq ´ 1. Again since ϕkpmkq “ ψkpmkq, since the
integer ψkpmkq ´ 1 belongs to J as mk ě 2, and by Equation (22), we have

Mϕkpmk´1q Yϕ1kp1q “Mψkpmkq´1 Yψkpmkq

´ Yϕ1kp1q

Yϕkpmkq

¯

ď qb`c´3a
v qav ď qb`cv .
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This proves the right hand side of Equation (21), and concludes the proof of Lemma 4.3.
l

Finally, let us prove Assertion (2) of Proposition 4.1. Since there exists an element of
cJ in any finite sequence of 3ras`1 consecutive integers in the complement of

Ť

kPZě1
Cik ,

there exists c0 ě 0 such that, for every k P Zě1, we have

Cardtj ď ϕpkq : j R
Ť

kPZě1
Ciku

logqv Yϕpkq
ď
c0 ` p3ras` 1q Card

 

j ď ϕpkq : j P cJ
(

logqv Yϕpkq
,

which converges to 0 as k Ñ `8 as seen at the end of the proof of Case 3. Let us define
npkq “ Cardti ď k : Yϕpiq ě qav Yϕpi`1qu. For every ` P Zě1, since Yj`1 ě q

1
min r
v Yj for

every j P Zě1, and by the maximality of m` in the construction of
`

ϕ`piq
˘

1ďiďm`
, we have

Cardtj P Ci` : j ě ϕ`pm`qu ď 2 ras min r. If ϕpiq belongs to Ci` but ϕpi`1q does not, then
ϕpiq ě ϕ`pm`q. Since when ϕpiq and ϕpi` 1q belong to Ci` for some ` P Zě1, then ϕ and
ϕ` coincide on i and i` 1, and since Equation (19) holds, we hence have

k ´ npkq “ Cardti ď k : Yϕpiq ă qav Yϕpi`1qu ď 2 ras min r Cardtj ď ϕpkq : j R
ď

kPZě1

Ciku .

Hence

lim sup
kÑ`8

k

logqv Yϕpkq
“ lim sup

kÑ`8

npkq ` k ´ npkq

logqv Yϕpkq
“ lim sup

kÑ`8

npkq

logqv Yϕpkq

ď lim sup
kÑ`8

npkq

logqv q
apnpkq´1q
v Yϕp1q

“
1

a
.

This proves Equation (16) and concludes the proof of Proposition 4.1. l

4.2 Lower bound on the Hausdorff dimension of BadApεq

In this subsection, we use the scheme of proof in the real case of [CGGMS, Theo. 6.1],
which is a weighted version of [BuKLR, Theo. 5.1], in order to estimate the lower bound
on the Hausdorff dimension of the ε-bad sets of pr, sq-singular in average matrices.

For a given sequence pyiqiě1 in Rm
v ´ t0u and for every δ ą 0, let

Badδpyiqiě1
“ tθ P pπvOvq

m : @ i ě 1, |xθ ¨ yi y| ě δ u .

Proposition 4.4 Let A P Mm,npKvq be such that tA is completely irrational and let
pyiqiě1 be a best approximation sequence in Km

v for tA with weights ps, rq. Suppose that
there exist b, c ą 0 and an increasing function ϕ : Zě1 Ñ Zě1 such that

@ i P Zě1, MϕpiqYϕpi`1q ď qb`cv .

Then for every δ P s0, 1s, if ε “ δ
1

min r
` 1

min s q´b´cv , then the set Badδpyϕpiqqiě1
is contained

in the set BadApεq.

Proof. Fix δ P s0, 1s and θ P Badδpyϕpiqqiě1
. Let ε1 “ δ

1
min s q´b´cv . For every py1,x1q in

Rm
v ˆR

n
v such that }x1 }s ě ε1Yϕp1q, let k be the unique element of Zě1 for which

Yϕpkq ď ε´1
1 }x1 }s ă Yϕpk`1q ,
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which exists since }x1 }s ě ε1Yϕp1q and since the sequence pYϕpiqqiě1 is increasing, con-
verging to `8. Let xϕpkq P R

n
v be such that Mϕpkq “ }

tAyϕpkq ´ xϕpkq}s. Then by the
ultrametric inequality, the assumption of the proposition, the fact that ε1 qb`cv “ δ

1
min s ď 1

and the definition of Badδpyϕpiqqiě1
, we have

|p tAyϕpkq ´ xϕpkqq ¨ x
1| ď max

1ďiďn
M si
ϕpkq}x

1 } sis ă max
1ďiďn

pε1MϕpkqYϕpk`1qq
si

ď pε1 q
b`c
v qmin s “ δ ď min

`1PRv
|yϕpkq ¨ θ ´ `

1 | . (23)

Observe that

yϕpkq ¨ θ “ yϕpkq ¨ pAx1q ` yϕpkq ¨ y
1 ´ yϕpkq ¨ pAx1 ` y1 ´ θq

“ p tAyϕpkqq ¨ x
1 ´ xϕpkq ¨ x

1 ` `´ yϕpkq ¨ pAx
1 ` y1 ´ θq,

where ` “ xϕpkq ¨x
1`yϕpkq ¨y

1 P Rv. Thus we have, using the equality case of the ultrametric
inequality for the second equality below with the strict inequality in Equation (23), and
again the definition of Badδpyϕpiqqiě1

for the last inequality below,

|yϕpkq ¨ pAx
1 ` y1 ´ θq| “ |p tAyϕpkq ´ xϕpkqq ¨ x

1 ´ yϕpkq ¨ θ ` ` |

“ max
 

|p tAyϕpkq ´ xϕpkqq ¨ x
1|, |yϕpkq ¨ θ ´ ` |

(

“ |yϕpkq ¨ θ ´ ` | ě |xyϕpkq ¨ θ y| ě δ.

Hence, we have

δ ď |yϕpkq ¨ pAx
1 ` y1 ´ θq| ď max

1ďjďm
Y
rj
ϕpkq }Ax

1 ` y1 ´ θ}
rj
r ,

which implies, since δ ď 1, that

Yϕpkq}Ax
1 ` y1 ´ θ}r ě min

1ďjďm
δ

1
rj “ δ

1
min r .

Finally, for every py1,x1q in Rm
v ˆR

n
v such that }x1 }s ě ε1Yϕp1q, we have

}x1 }s }Ax
1 ` y1 ´ θ}r ě ε1 Yϕpkq }Ax

1 ` y1 ´ θ}r ě δ
1

min r
` 1

min s q´b´cv .

By Equation (1), this implies that θ P BadApεq for ε “ δ
1

min r
` 1

min s q´b´cv . l

Proposition 4.5 For every δ P s0, 1
q 3m
v
r , there exist b “ bpδq ą 0 and C “ Cpδq ą 0

such that for every sequence pyiqiPZě1 in Rm
v ´ t0u satisfying }yi`1 }r ě qbv }yi }r for all

i P Zě1, we have

dimHaus Badδpyiqiě1
ě m´ C lim sup

kÑ8

k

logqv }yk }r
.

Proof. Fix δ P s0, 1
q 3m
v
r . Let

b “ bpδq “
´ logqv δ

min r
, (24)

22



which is positive since δ ă 1. By the mass distribution principle (see for instance [Fal,
page 60]), it is enough to prove that there exist a (Borel, positive) measure µ, supported
on Badδpyiqiě1

, and constants C,C0, r0 ą 0, with C depending only on δ, such that, for
every closed ball B of radius r ă r0, we have

µpBq ď C0 r
m´C lim supkÑ8

k
logqv }yk }r .

We adapt by modifying it quite a lot the measure construction in the proof of [CGGMS,
Theo. 6.1].

By convention, let Y0 “ 1 and n0,j “ 0 for j “ 1, . . . ,m. For every k P Zě1, define
Yk “ }yk }r, which is at least 1 since yk P R

m
v ´ t0u, and for every j “ 1, . . . ,m, let

nk,j P Zě0 be such that
q
´nk,j
v ď Y

´rj
k ă q

´nk,j`1
v . (25)

Note that the sequence pnk,jqkPZě0 is nondecreasing, for all j “ 1, . . . ,m.
For every k P Zě0, let us consider the polydisc

ΠpYkq “ Bp0,
1

qv
Y ´r1k q ˆ ¨ ¨ ¨ ˆBp0,

1

qv
Y ´rmk q “ Bp0, q

´nk,1´1
v q ˆ ¨ ¨ ¨ ˆBp0, q

´nk,m´1
v q ,

where Bp0, r1q is the closed ball of radius r1 ą 0 and center 0 in Kv. Note that ΠpY0q “

pπvOvq
m is the open unit ball of Km

v and that ΠpYkq is an additive subgroup of Km
v . Since

the residual field kv “ Ov{πvOv lifts as a subfield of order qv of Kv, for every ` P Zě0, we
have a disjoint union

Bp0, q´`v q “
ğ

aPkv

`

a π `v `Bp0, q
´`´1
v q

˘

.

Hence by induction, the polydisc ΠpYkq is the disjoint union of

∆k`1 “
ź

1ďjďm

q
nk`1,j´nk,j
v

translates of the polydisc ΠpYk`1q. Note that

∆k`1 ě
ź

1ďjďm

Y
rj
k`1Y

´rj
k q´1

v “ q´mv

`

Yk`1Y
´1
k

˘|r|
. (26)

For every k P Zě0, let us fix some elements θ1,k`1, . . . , θ∆k`1,k`1 in pπvOvq
m (which are

not unique in the ultrametric space Km
v ) such that

ΠpYkq “

∆k`1
ğ

i“1

`

θi,k`1 `ΠpYk`1q
˘

.

By convention, let us define Z0,δ “ H and I0 “ tΠpY0qu. For every k P Zě1, let us
define

Zk,δ “ tθ P pπvOvq
m : |xyk ¨ θ y| ă δu

and
Ik “

 

θi1,1 ` ¨ ¨ ¨ ` θik,k `ΠpYkq : @ j P t1, . . . , ku, 1 ď ij ď ∆j

(

.
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Lemma 4.6 For every k P Zě1, we have
(1) for every I 1 P Ik`1, if I 1 X Zk,δ ‰ H then I 1 Ă Zk,δ,
(2) for every I P Ik, we have volmv pI X Zk,δq ď δ Y

´|r|
k .

Proof. (1) If I 1 P Ik`1 and I 1 X Zk,δ ‰ H, let θ P I 1 X Zk,δ. Then for every θ1 P I 1, if
x, x1 P Rv are such that |xyk ¨θ y| “ |pyk ¨θq´x| and |xyk ¨ pθ1´θq y| “ |pyk ¨ pθ1´θqq´x1|,
then by the ultrametric inequality, since θ P Zk,δ and θ1´θ P ΠpYk`1q, by the assumption
of Proposition 4.5, and by the definition of b, we have

|xyk ¨ θ
1 y| ď |yk ¨ pθ ` pθ

1 ´ θqq ´ px` x1q| ď max
 

|pyk ¨ θq ´ x|, |pyk ¨ pθ
1 ´ θqq ´ x1|

(

“ max
 

|xyk ¨ θ y|, |xyk ¨ pθ
1 ´ θq y|

(

ď max
 

δ, max
1ďjďm

Y
rj
k

1

qv
Y
´rj
k`1

(

ď max
 

δ, q´1´bmin r
v

(

“ δ .

This inequality |xyk ¨ θ1 y| ď δ is actually strict, since |xyk ¨ θ y| ă δ and by Equation (24),
we have q´1´bmin r

v “ q´1
v δ ă δ. Since I 1 is contained in ΠpY0q “ pπvOvq

m, we thus have
that θ1 P Zk,δ and this proves Assertion (1).

(2) Let j0 P t1, . . . ,mu be such that Yk “ |yk,j0 |
1{rj0 where yk “ pyk,1, . . . , yk,mq. In

particular, yk,j0 is nonzero. For every z P Rv, let

Lkpzq “ tθ P K
m
v : yk ¨ θ “ zu ,

which is an affine hyperplane of Km
v transverse to the j0-axis, and let

N pk, zq “ tθ1 P pπvOvq
m : D u1 P Lkpzq, |θ

1
j0 ´ u

1
j0 | ď δ Y

´rj0
k and @ j ‰ j0, θ

1
j “ u1ju ,

which is the intersection with the open unit ball in Km
v of the pδ Y ´rj0k q-thickening along

the j0-axis of the affine hyperplane Lkpzq.
Fix I P Ik. Since volvpBqp0, r

1qq “ q
tlogqv r

1u
v ď r1 for all r1 ą 0, and by Fubini’s theorem,

we have
volmv pI XN pk, zqq ď δ Y

´rj0
k

ź

j‰j0

Y
´rj
k “ δ Y

´|r|
k . (27)

Claim 1. Let us prove that the set Zk,δ is contained in the union of the sets N pk, zq for
z P Rv.

Proof. Let θ “ pθ1, . . . , θmq P Zk,δ and let z P Rv be such that |xyk ¨ θ y| “ |yk ¨ θ ´ z |.
Let us define uj “ θj if j ‰ j0,

uj0 “
z ´

ř

j‰j0
yk,jθj

yk,j0

and u “ pu1, . . . , umq, which is the projection of θ on the affine hyperplane Lkpzq along
the j0-axis. Then, since θ P Zk,δ, we have

|θj0 ´ uj0 | “
|yk ¨ θ ´ z |

|yk,j0 |
“
|xyk ¨ θ y|

|yk,j0 |
ď δ Y

´rj0
k .

Since Zk,δ is contained in pπvOvq
m, this proves Claim 1. l
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Claim 2. Let us prove that there exists a unique z P Rv such that I X Zk,δ is contained
in I XN pk, zq.

Proof. By Claim 1, the set I X Zk,δ is contained in
Ť

zPRv
I X N pk, zq. Assume for

a contradiction that there exist two distinct elements z, z1 in Rv such that there exist
θ P I XN pk, zq and θ1 P I XN pk, z1q. Let u P Lkpzq and u1 P Lkpz

1q be the projections
of θ and θ1 along the j0-axis on Lkpzq and Lkpz1q respectively.

Let j P t1, . . . ,mu. Note that θ ´ θ1 P ΠpYkq since I P Ik. If j ‰ j0, then

|uj ´ u
1
j | “ |θj ´ θ

1
j | ď

1

qv
Y
´rj
k .

Furthermore, by the ultrametric inequality, since θ (respectively θ1) is contained in the
pδ Y

´rj0
k q-thickening along the j0-axis of Lkpzq (respectively Lkpz1q), and since δ ď 1

qv
, we

have

|uj0 ´ u
1
j0 | “ |puj0 ´ θj0q ` pθj0 ´ θ

1
j0q ` pθ

1
j0 ´ u

1
j0q|

ď maxt|uj0 ´ θj0 |, |θj0 ´ θ
1
j0 |, |θ

1
j0 ´ u

1
j0 |u

ď maxtδ Y
´rj0
k ,

1

qv
Y
´rj0
k u “

1

qv
Y
´rj0
k .

This implies since u P Lkpzq and u1 P Lkpzq that

1 ď |z ´ z1| “ |yk ¨ u´ yk ¨ u
1| ď max

1ďjďm
|yk,j | |uj ´ u

1
j | ď max

1ďjďm
Y
rj
k

1

qv
Y
´rj
k “

1

qv
,

which is a contradiction since qv ą 1. This proves Claim 2. l

By Equation (27), Claim 2 concludes the proof of Assertion (2) of Lemma 4.6. l

Since every element I 1 of Ik`1 is a translate of ΠpYk`1q, and by Equation (25), we have

volmv pI
1q “ volmv pΠpYk`1qq “

m
ź

j“1

q
´nk`1, j´1
v ě q´2m

v Y
´|r|
k`1 .

For every I P Ik, there are ∆k`1 elements I 1 P Ik`1 contained in I, they are pairwise
disjoint and they have the same volume volmv pΠpYk`1qq. Among them, those who meet
Zk,δ are actually contained in I X Zk,δ by Lemma 4.6 (1), thus their number is at most
volmv pIXZk,δq
volmv pΠpYk`1qq

. Therefore, by Equation (26) and Lemma 4.6 (2), we have

Card tI 1 P Ik`1 : I 1 Ă I, I 1 X Zk,δ “ Hu ě ∆k`1 ´
volmv pI X Zk,δq

volmv pΠpYk`1qq

ě q´mv pYk`1Y
´1
k q|r| ´

δ Y
´|r|
k

q´2m
v Y

´|r|
k`1

“ c1 pYk`1Y
´1
k q|r| , (28)

where c1 “ q´mv ´ q 2m
v δ belongs to s0, 1r by the assumption on δ.

Now, let us define by induction J0 “ I0 and for every k P Zě0,

Jk`1 “
ď

JPJk

tI P Ik`1 : I Ă J, I X Zk,δ “ Hu.
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By Equation (28) and by induction, we have

Card Jk`1 ě

k
ź

j“1

c1 pYj`1Y
´1
j q|r| “ c k1 pYk`1Y

´1
1 q|r| . (29)

By Lemma 4.6 (1) and by induction, we have

Jk`1 “ tJ P Ik`1 : @ j P t1, . . . , ku, J X Zj,δ “ Hu “ tJ P Ik`1 : J Ă
k
č

j“1

cZj,δ u ,

where c denotes the complement in pπvOvq
m. Hence

`
Ť

Jk
˘

kě1
is a decreasing sequence of

compact subsets of pπvOvq
m, whose intersection is contained in

Ş

kě1
cZk,δ “ Badδpyiqiě1

.

For every k P Zě0, let us define a measure

µk “
`

volmv pΠpYkqq Card Jk
˘´1

ÿ

JPJk

volmv |J ,

which is a probability measure with support
Ť

Jk. By the compactness of pπvOvq
m, any

weakstar accumulation point µ of the sequence pµkqkě1 is a probability measure with
support in Badδpyiqiě1

.
For every closed ball B in pπvOvq

m with radius r1 P s0, r0 “ Y ´min r
1 s, let k P Zě1 be

such that
Y ´min r
k`1 ă r1 ď Y ´min r

k . (30)

Note that rts ď t ` 1 ď qv t if t ě 1, and that r1 qnk`1,j`1
v ě Y ´min r

k`1 Y
rj
k`1 qv ě 1 for

every j “ 1, . . . ,m, by Equation (25). Then B can be covered by a subset of Ik`1 with
cardinality at most

m
ź

j“1

P

r1 q
nk`1,j`1
v

T

ď pr1qm q 3m
v Y

|r|
k`1 .

Let C “
´ logqv c1

min r ą 0, which depends (besides on m, qv and r) only on δ. Defining
C0 “ q 3m

v Y
|r|

1 , by Equations (29) and (30), we thus have

µk`1pBq ď q 3m
v pr1qm Y

|r|
k`1 pCard Jk`1q

´1 ď q 3m
v pr1qm c´k1 Y

|r|
1

ď C0 pr
1q
m´C k

logqv Yk .

Therefore, since the ball B is closed and open and since r1 ď r0 ď 1, we have

µpBq ď lim sup
kÑ8

C0 pr
1q
m´C k

logqv Yk “ C0 pr
1q
m´C lim supkÑ8

k
logqv Yk ,

which concludes the proof of Proposition 4.5. l
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4.3 Proof that Assertion (2) implies Assertion (1) in Theorem 1.1

Suppose that A is pr, sq-singular on average. Then by Corollary 2.9, the matrix tA is also
ps, rq-singular on average. By Remark 2.5 (2), in order to prove that there exists ε ą 0
such that BadApεq has full Hausdorff dimension, we may assume that the matrix tA is
completely irrational.

By Lemma 2.6, let pykqkPZě1 be a best approximation sequence in Km
v for the matrix

tA with weights ps, rq, and let c ą 0 be such that MiYi`1 ď qcv for every i P Zě1. Fix
some δ P

‰

0, 1
q 3m
v

“

and let b “ bpδq ą 0 and C “ Cpδq ą 0 as in Proposition 4.5. By
Proposition 4.1, for every a ą b, we have a subsequence pyϕpkqqkě1 such that the properties
(15) and (16) are satisfied. Proposition 4.4, whose assumption is satisfied by the second
inequality in Equation (15) and where ε “ δ

1
min r

` 1
min s q´b´cv , gives that BadApεq contains

Badδpyϕpiqqiě1
. Therefore, using Proposition 4.5 applied to the sequence pyϕpiqqiě1, whose

assumption is satisfied by the first inequality in Equation (15), and using Equation (16)
for the last inequality, we have

dimHaus BadApεq ě dimHaus Badδpyϕpiqqiě1
ě m´ C lim sup

kÑ8

k

logqv Yϕpkq
ě m´

C

a
.

Letting a tends to `8, this concludes the proof that Assertion (2) implies Assertion (1)
in Theorem 1.1. l

5 Background material for the upper bound

5.1 Homogeneous dynamics

Let Kv,Ov, πv, Rv, qv be as in Subsection 2.1. Let m,n P N ´ t0u and d “ m ` n. We
fix some weights r “ pr1, . . . , rmq and s “ ps1, . . . , snq as in the introduction. In this
subsection, we introduce the space of unimodular grids Y in K d

v and the diagonal flow
pa`q`PZ acting on this space. Let

G0 “ SLdpKvq and G “ ASLdpKvq “ SLdpKvq ˙K
d
v ,

and let
Γ0 “ SLdpRvq and Γ “ ASLdpRvq “ SLdpRvq ˙R

d
v .

The product in G is given by

pg, uq ¨ pg1, u1q “ pgg1, u` gu1q (31)

for all g, g1 P G0 and u, u1 P K d
v . We also view G as a subgroup of SLd`1pKvq by

G “

"ˆ

g u
0 1

˙

: g P SLdpKvq, u P K
d
v

*

.

We shall identify G0 with the corresponding subgroup of G. We consider the one-
parameter diagonal subgroup pa`q`PZ of G0, where a “ diagpa´, a`q and

a´ “ diagpπ´r1v , . . . , π´rmv q P GLmpKvq and a` “ diagpπs1v , . . . , π
sn
v q P GLnpKvq .
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Note that for all θ P Km
v , ξ P K n

v and ` P Z, we have

} a `´ θ }r “ q`v }θ }r and } a `` ξ }s “ q´`v } ξ }s . (32)

We denote byG` the unstable horospherical subgroup for a inG and by U the unipotent
radical of G, that is,

G` “ tg P G : lim
`Ñ´8

a`g a´` “ Id`1u and U “
!

ˆ

Id u
0 1

˙

: u P K d
v

)

.

Let U` “ G` X U “

!

¨

˝

Im 0 w
0 In 0
0 0 1

˛

‚ : w P Km
v

)

, which is a closed subgroup in G`

normalized by a.
Let us define

X “ G0{Γ0 and Y “ G{Γ .

Even though we have CovolpR d
v q “ qpg´1qd by Equation (4), we say that an Rv-lattice

Λ in K d
v is unimodular if CovolpΛq “ CovolpR d

v q. A translate in the affine space K d
v of

an unimodular lattice is called an unimodular grid. We identify the homogeneous space
X “ SLdpKvq{SLdpRvq with the space of unimodular lattices in K d

v by the equivariant
homeomorphism

x “ g Γ0 ÞÑ Λx “ g R d
v ,

and the homogeneous space Y “ ASLdpKvq{ASLdpRvq with the space of unimodular grids
by the equivariant homeomorphism

y “

ˆ

g u
0 1

˙

Γ ÞÑ rΛy “ g R d
v ` u . (33)

We denote by π : Y Ñ X the natural projection map (forgetting the translation factor),
which is a proper map. Note that the fibers of π are exactly the orbits of U in Y , and in
particular each orbit under U` in Y is contained in some fiber of π (see Lemma 5.3 for a
precise understanding of the U`-orbits).

For every N P N´t0u, we denote by dSLN pKvq the right-invariant distance on SLN pKvq

defined by

@ g, h P SLN pKvq, dSLN pKvqpg, hq “ maxt lnp1`9 gh´1´ id 9 q, lnp1`9hg´1´ id 9 q u ,

where 9 9 is the operator norm on MN pKvq defined by the sup norm } } on K N
v . We

endow every closed subgroup H of G with the right-invariant distance dH on H, which is
the restriction to H of the distance dSLd`1pKvq. For instance, identifying the additive group

Km
v with U` by the map w ÞÑ pw “

¨

˝

Im 0 w
0 In 0
0 0 1

˛

‚, we have

@ w,w1 P Km
v , dU`p pw,xw

1q “ }w ´ w1 } . (34)

We endow Y “ G{Γ with the quotient distance dY of the distance dG on G, defined by

@ y, y1 P Y , dY py, y
1q “ min

γPΓ
dGp ry γ, ry

1γq
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for any representative ry and ry 1 of the classes y and y1 in G{Γ respectively. This is a well
defined distance since the canonical projection GÑ Y is a covering map and the distance
dG on G is right-invariant. Given any closed subgroup H of G, we denote by BHpx, rq
(respectively BY px, rq) the open ball of center x and radius r ą 0 for the distance dH
(respectively dY ), and by BH

r the open ball BHpid, rq. Note that for all y P Y and r ą 0,
we have (for the left action of subsets of G on Y )

BY py, rq “ BG
r y .

Lemma 5.1 For all ε ą 0 and k P Zě0, we have a´kBU`
ε ak Ă BU`

ε q´kmin r
v

and similarly

akBU`
ε a´k Ă BU`

ε qkmax r
v

.

Proof. The proof of the second claim being similar, we only prove the first one. For every
w “ pw1, . . . , wmq P K

m
v , we have a´k pw ak “ za´k´ w and

} a´k´ w } “ max
1ďiďm

|πrikv wi | ď q´kmin r
v }w } .

The result hence follows from Equation (34). l

Given a point x in Y (and similarly for x in X ), we define the injectivity radius of Y
at x to be

injpxq “ sup
 

r ą 0 : @ γ P Γ´ tidu, BGprx, rq XBGprx γ, rq “ H
(

,

which does not depend on the choice of rx P G such that x “ rxΓ, and is positive and finite
since the canonical projection G Ñ Y is a nontrivial covering map. For every r ą 0, we
denote the r-thick part of Y by

Y prq “ tx P Y : injpxq ě ru .

It follows from the finiteness of a (quotient) Haar measure of Y that Y prq is a compact
subset of Y for every r ą 0, and that the Haar measure of the r-thin part Y ´ Y prq
tends to 0 as r goes to 0. For every compact subset K of Y , there exists r ą 0 such that
K Ă Y prq.

5.2 Dani correspondence

In this subsection, we give an interpretation of the property for a matrix A P Mm,npKvq

to be pr, sq-singular on average in terms of dynamical properties of the action of the one-
parameter diagonal subgroup pa`q`PZ on the space of unimodular lattices, as originally
developped by Dani (see for instance [Kle, §4]). For every A P Mm,npKvq, let uA “
ˆ

Im A
0 In

˙

P G0.

Proposition 5.2 A matrix A P Mm,npKvq is pr, sq-singular on average if and only if the
forward orbit ta`uAR d

v : ` P Zě0u in X of the lattice uAR d
v under a diverges on average

in X , that is, if and only if for any compact subset Q of X , we have

lim
NÑ8

1

N
Cardt` P t1, ¨ ¨ ¨ , Nu : a` uA Γ0 P Qu “ 0 .
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Proof. Let Q be a compact subset of X . By Mahler’s compactness criterion (see for
instance [KlST, Theo. 1.1]), there exists ε P s0, 1r such that Q is contained in

Xąε “ tg R
d
v P X : @ pθ, ξq P g R d

v ´ t0u Ă Km
v ˆK n

v , maxt}θ }r, } ξ }su ą εu ,

which is the subset of X consisting of the unimodular lattices with systole (for an appro-
priate quasinorm) larger than ε. Observe that by Equation (32), for all sufficiently large
` P Zě1, there exists an element y P Rn

v ´ t0u such that xAy yr ď εq´`v and }y }s ď εq`v if

and only if we have a`uAR
d
v “

ˆ

a `´ 0
0 a ``

˙ˆ

Im A
0 In

˙

R d
v P X ´Xąε.

With `ε “ t´ logqv εu, it follows that

0 ď Cardt ` P t1, ¨ ¨ ¨ , Nu : a` uAR
d
v P Q u

ď Cardt ` P t1, ¨ ¨ ¨ , Nu : a` uAR
d
v P Xąε u

“ Cardt` P t1, ¨ ¨ ¨ , Nu : E y P Rn
v ´ t0u, xAy yr ď εq´`v , }y }s ď εq`vu

ď Cardt` P t1, ¨ ¨ ¨ , Nu : E y P Rn
v ´ t0u, xAy yr ď

ε2

qv
q´p`´`εqv , }y }s ď q`´`εv u

ď `ε ` Cardt` P t1, ¨ ¨ ¨ , N ´ `εu : E y P Rn
v ´ t0u, xAy yr ď

ε2

qv
q´`v , }y }s ď q`vu .

After dividing by N (or equivalently by N´`ε) this last expression, its limit as N tends to 0
exists and is equal to 0 if A is pr, sq-singular on average (see Equation (2)). Hence we have
limNÑ8

1
N Cardt` P t1, ¨ ¨ ¨ , Nu : a` uA Γ0 P Qu “ 0 by the above string of (in)equalities.

The converse implication follows similarly by taking for the compact set Q the subset
Xąε. l

We denote by } }s,r the quasi-norm on K d
v “ Km

v ˆK n
v defined by

} pθ, ξq }r,s “ max
 

}θ }
d
m
r , } ξ }

d
n
s

(

.

Let ε ą 0. We define
Lε “ ty P Y : @ u P rΛy, }u }r,s ě εu . (35)

By Mahler’s compactness criterion (see for instance [KlST, Theo. 1.1]) and since the natural
projection π : Y Ñ X is proper, the subset Lε is compact.

For every θ P Km
v , we denote by yA,θ the unimodular grid uAR d

v ´
`

θ
0

˘

.

Lemma 5.3 For every A P Mm,npKvq, the map Km
v Ñ Y defined by θ ÞÑ yA,θ induces an

isometry φA from Tm “ Km
v {R

m
v endowed with the quotient distance dTm of the distance

on Km
v defined by the standard norm } }, and the U`-orbit U`yA,0 endowed with the

restriction of the distance dY of Y .

Proof. The map Km
v Ñ Y defined by θ ÞÑ yA,θ is clearly invariant under translations by

Rm
v , and induces a bijection

φA : θ mod Rm
v ÞÑ yA,θ (36)

from Tm “ Km
v {R

m
v to the orbit U`yA,0. This orbit is contained in the fiber π´1pxAq of

xA “ uAR
m
v for the natural projection π : Y Ñ X , as already seen.
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For all A P Mm,npKvq and θ P Km
v , let uA,θ “

¨

˝

Im A θ
0 In 0
0 0 1

˛

‚ P G, so that we have

yA,θ “ uA,´θΓ. For all θ,θ1 P Tm, denoting lifts of them to Km
v by rθ, rθ1 respectively,

identifying K d
v with Km

v ˆK n
v , and using Equations (31) and (34), we have

dY pφApθq, φApθ
1qq “ inf

γ,γ1PΓ
dG

`

u
A,´rθ

γ, u
A,´rθ1

γ1
˘

“ inf
g,g1PΓ0

x,x1PRm
v , y,y1PRn

v

dG
`

puA, p´rθ, 0qqpg, px, yqq, puA, p´rθ1, 0qqpg1, px1, y1qq
˘

“ inf
g,g1PΓ0

x,x1PRm
v , y,y1PRn

v

dG
`

puAg, px`Ay ´ rθ, yqq, puAg
1, px1 `Ay1 ´ rθ1, y1qq

˘

“ inf
x,x1PRm

v

dU`
`

pid, px´ rθ, 0qq, pid, px1 ´ rθ1, 0qq
˘

“ inf
x,x1PRm

v

} px´ rθq ´ px1 ´ rθ1q } “ dTmpθ,θ
1q . l

Proposition 5.4 Let ε ą 0. For every pA,θq PMm,npKvq ˆK
m
v such that θ P BadApεq,

one of the following statements holds.
(1) There exists y P Rn

v such that xAy ´ θ yr “ 0. Note that given A, there are only
countably many θ satisfying this statement.

(2) The forward a-orbit of the point yA,θ is eventually in Lε, that is, there exists T ě 0
such that for every ` ě T , we have a` yA,θ P Lε.

Proof. Assume for a contradiction that both statements do not hold. Then there exist
infinitely many ` P Zě1 such that a`yA,θ R Lε, hence such that there exists y` P Rn

v with
xAy` ´ θ yr ă q´`v ε

m
d and }y` }s ă q`vε

n
d . Since the statement (1) does not hold, the

inequality
}y }sxAy ´ θ yr ă ε

has infinitely many solutions y P Rn
v , which contradicts the assumption θ P BadApεq. l

5.3 Entropy, partition construction, and effective variational principle

In this subsection, after recalling the basic definitions and properties about entropy (using
[ELW] as a general reference, and in particular its Chapter 2), we give the preliminary
constructions of σ-algebras and results on entropy that will be needed in Section 6. In
particular, we give an effective and positive characteristic version of the variational principle
for conditional entropy of [EL, §7.55], adapting to the function field case the result of [KKL].

Let pX,B, µq be a standard Borel probability space. For every set E of subsets of X,
we denote by σpEq the σ-algebra of subsets of X generated by E. Let P be a (finite
or) countable B-measurable partition of X. Let A , C and C 1 be sub-σ-algebras of B.
Suppose that C and C 1 are countably generated.

For every x P X, we denote by rxsP the atom of x for P, which is the element of the
partition P containing x. We denote by rxsC the atom of x for C , which is the intersection
of all elements of C containing x. Note that rxsσpPq “ rxsP . We denote by pµA

x qxPX an
A -mesurable family of (Borel probability) conditional measures of µ with respect to A on
X, given for instance by [EL, Theo. 5.9].
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Using the standard convention 0 logqv 0 “ 0 and using logqv instead of log for computa-
tional purposes in the field Kv, the entropy of the partition P with respect to µ is defined
by

HµpPq “ ´
ÿ

PPP

µpP q logqv µpP q P r0,8s .

Recall the (logarithmic) cardinality majoration

HµpPq ď logqvpCardPq . (37)

The information function of C given A with respect to µ is the measurable map IµpC |A q :
X Ñ r0,8s defined by

@ x P X, IµpC |A qpxq “ ´ logqv µ
A
x prxsC q .

The conditional entropy of C given A with respect to µ is defined by

HµpC |A q “

ż

X
IµpC |A q dµ . (38)

Recall the additivity property HµpC _ C 1 |A q “ HµpC |C 1 _ A q ` HµpC 1 |A q (see for
instance [ELW, Prop. 2.13]) so that if A Ă C 1 Ă C , we have

HµpC |A q “ HµpC |C
1q `HµpC

1 |A q . (39)

Let T : pX,B, µq Ñ pX,B, µq be a measure-preserving transformation. We denote by
E “ tB P B : µpT´1B∆Bq “ 0u the sub-σ-algebra of T -invariant elements of B, and
by pµE

x qxPX the associated family of conditional measures. Assume that the σ-algebra A
satisfies the property T´1A Ă A . If the partition P has finite entropy with respect to µ,
let

hµpT,P|A q “ lim
nÑ8

1

n
Hµ

´

n´1
ł

i“0

T´iP|A
¯

“ inf
ně1

1

n
Hµ

´

n´1
ł

i“0

T´iP|A
¯

.

The conditional (dynamical) entropy of T given A is

hµpT |A q “ sup
P

hµpT,P|A q ,

where the upper bound is taken on all countable B-measurable partitions P of X with
finite entropy with respect to µ.

With the above notations, the following result is proven in [KKL, Prop. 2.2 and Ap-
pendix A].

Proposition 5.5 (Entropy and ergodic decomposition) If T´1A Ă A , then for ev-
ery countable B-measurable partition P with finite entropy with respect to µ, we have

hµpT,P|A q “

ż

X
hµE

x
pT,P|A q dµpxq and hµpT |A q “

ż

X
hµE

x
pT |A q dµpxq . l

We now work in the standard Borel space Y of unimodular grids, endowed with the
distance dY (see Section 5.1). Let δ ą 0. For every subset B of Y , we define the δ-boundary
BδB of B by

BδB “
 

y P Y : inf
y1 PB

dY py, y
1q ` inf

y2 PY ´B
dY py, y

2q ă δ
(
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if B and Y ´ B are nonempty, and BδB “ H otherwise. Note that for all subsets B and
B1 of Y , we have

BδpB YB
1q Ă BδB Y BδB

1 and BδpB ´B
1 XBq Ă BδB Y BδB

1 . (40)

We also have BδB Ă Bδ1B if δ ď δ1. Given any set P of subsets of Y , we define the
δ-boundary BδP of P by

BδP “
ď

BPP

BδB .

Lemma 5.6 For every r ą 0, there exist δr P s0, rs and a finite measurable partition
P “ tP1, . . . , PN , P8u by closed and open subsets of Y such that
(1) the subset P8 is contained in the r-thin part Y ´ Y prq,
(2) for every i P t1, . . . , Nu, there exists yi P Y prq such that BG

r
2
yi Ă Pi Ă BG

r yi,
(3) the set BδrP is empty.

Proof. Choose a finite maximal r-separated subset ty1, . . . , yNu of Y prq for the distance
dY , which exists by the compactness of Y prq. By induction on i “ 1, . . . , N , we define a
Borel subset Pi of Y by

Pi “ BG
r yi ´

´

i´1
ď

j“1

Pj Y
N
ď

j“i`1

BG
r
2
yj

¯

.

Define P8 “ Y ´
ŤN
j“1 Pj , which is also a Borel subset of Y .

By construction, we have Pi Ă BG
r yi. Since the set ty1, . . . , yNu is ε-separated, the

intersection of open balls BG
r
2
yi X BG

r
2
yj “ BY pyi,

r
2q X BY pyj ,

r
2q is empty if j ą i. By

construction, the intersection BG
r
2
yi X Pj is empty if j ă i. Therefore Pi contains BG

r
2
yi,

and Assertion (ii) follows.
By construction, we have

ŤN
j“1 Pj Ă

ŤN
j“1B

G
r yj “

ŤN
j“1BY pyj , rq, and the later union

contains Y prq, since the ε-separated set ty1, . . . , yNu is maximal. Assertion (i) follows.

For every s ą 0, let ns “
Q

lnpes´1q
ln qv

U

P Z and δ1s “ ln
`

1`qnsv
1`qns´1

v

˘

ą 0. For all δ ą 0 and
y P Y , assume that there exists a point z P BδBY py, sq. Let z1 P BY py, sq and z2 R BY py, sq
be such that dY pz, z

1q ` dY pz, z
2q ă δ. Since the operator norm on Md`1pKvq has values

in t0u Y qZv , the set tdY py, y
1q : y, y1 P Y u of values of the distance function dY on Y

is contained in t0u Y tlnp1 ` qnv q : n P Zu. Since s P s lnp1 ` qns´1
v q, lnp1 ` qnsv qs, we

hence have dY py, z
1q ď lnp1` qns´1

v q since z1 P BY py, sq and dY py, z
2q ě lnp1` qnsv q since

z2 R BY py, sq. Therefore by the triangle inequality and the inverse triangle inequality, we
have

δ ą dY pz, z
1q ` dY pz, z

2q ě dY pz
1, z2q ě dY py, z

2q ´ dY py, z
1q

ě lnp1` qnsv q ´ lnp1` qns´1
v q “ δ1s .

Hence BδBY py, sq is empty for every δ P s0, δ1ss.
By Equation (40), for every δ ą 0, we have

BδP Ă

N
ď

j“1

BδpB
G
r yjq Y

N
ď

j“1

BδpB
G
r
2
yjq .
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Hence Assertion (iii) follows with δr “ mintδ1r
2
, ru.

Note that since the distance dG has values in t0u Y tlnp1 ` qnv q : n P Zu, the open
balls in G are open and compact, and since the canonical projection G Ñ Y is open and
continuous, the subsets Pi of Y are by construction open and compact, and P8 is closed
and open. l

Let C be a countably generated σ-algebra of subsets of Y . Note that for every j P Z,
the σ-algebra ajC is also countably generated and

rysajC “ aj ra´jysC .

We say that C is a´1-descending if aC is contained in C . In particular, for all y P Y and
j P Zě0, we have

rysC Ă rysajC .

Given a Borel probability measure µ on Y and a closed subgroup H of G, we say that C
is H-subordinated modulo µ if for µ-almost every y P Y , there exists r “ ry P s0, 1s such
that we have

BH
r y Ă rysC Ă BH

1{ry .

If C is U`-subordinated modulo µ and if furthermore µ is a-invariant, since a normalises
U` and by Lemma 5.1, for every j P Z, the σ-algebra ajC is also U`-subordinated modulo
µ.

For every σ-algebra A of subsets of Y , for all a, b in ZY t˘8u with a ă b, we define
a σ-algebra A b

a of subsets of Y by

A b
a “

b
ł

i“a

aiA “ σ
´

ď

aďiďb

aiA
¯

.

Note that if A is countably generated, then so is A b
a .

Proposition 5.7 For every r P s0, 1r , there exists a countably generated sub-σ-algebra
A U` of the Borel σ-algebra of Y such that
(1) the countably generated σ-algebra A U` is a´1-descending,
(2) for every y P Y prq, we have rysA U` Ă BU`

r y,
(3) for every y P Y , we have BU`

δr
y Ă rysA U` , where δr P s0, rs is as in Lemma 5.6.

Let µ be a Borel a-invariant ergodic probability measure on Y with µpY prqq ą 0. Then
A U` is U`-subordinated modulo µ.

Proof. Fix r P s0, 1r . Let P “ tP1, . . . , PN , P8u be a partition given by Lemma 5.6 for
this r. We prove a preliminary result on the countably generated sub-σ-algebra σpPq80 .

Lemma 5.8 For every y P Y , we have BU`

δr
y Ă rysσpPq80 .

Proof. Let h P BU`

δr
. Assume for a contradiction that hy R rysσpPq80 . Then there exists

k P Zě0 such that a´khy and a´ky belong to different atoms of the partition P. Let
α “ min r ą 0. By Lemma 5.1, we have

dY pa
´khy, a´kyq ď dGpa

´khak, idq “ dU`pa
´khak, idq ă q´kαv δr ď δr ď r . (41)
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It follows that both a´khy and a´ky belong to the δr-boundary BδrP of P. But the set
BδrP is empty by Lemma 5.6 (3), which gives a contradiction. l

By Lemma 5.6, for every i P t1, . . . , Nu, there exist yi P Y prq and a Borel subset Vi
of Y contained in BG

r such that Pi “ Viyi. Let PU` be the sub-σ-algebra of the Borel
σ-algebra of Y generated by the subsets P8 X π´1pW q, where W is a Borel subset of X ,
and the subsets ppU`Bq X Viqyi, where i P t1, . . . , Nu and B is a Borel subset of G. Then
PU` is countably generated, since the Borel σ-algebra of X is countably generated and
U` is a closed subgroup of G. For every y P Y , the atom of y for PU` is equal to

rysPU` “

"

Uy if y P P8
Pi X pB

U`
r yq if D i P t1, . . . , Nu, y P Pi .

(42)

Let us now define A U` “ pPU`q80 , which is a countably generated sub-σ-algebra of
the Borel σ-algebra of Y , since so is PU` . Note that aA U` “ pPU`q81 Ă A U` , which
proves Assertion (1).

For every y P Y prq, since P8 Ă Y ´ Y prq by Lemma 5.6 (1) and by Equation (42),
we have rysA U` Ă rysPU` Ă BU`

r y, which proves Assertion (2).
In order to prove the last Assertion (3), let us take y P Y and h P BU`

δr
and let us

prove that hy P rysA U` . Since we have hy P rysσpPq80 by Lemma 5.8, for every k ě 0,
there exists i P t1, . . . , N,8u such that the points a´ky and a´khy “ a´khakpa´kyq both
belong to Pi P P. If i “ 8, then by Equation (42), the points a´ky and a´khy lie in
the same atom ra´kysPU` “ Ua´ky since a´khak P U`. Assume that 1 ď i ď N . Since
h P BU`

δr
, it follows from Equation (41) that a´khak P BU`

r . Hence by Equation (42), the
points a´ky and a´khy lie in the same atom ra´kysPU` “ Pi X pB

U`
r a´kyq of PU` . This

proves Assertion (3).
Now let µ be an a-invariant ergodic probability measure on Y with µpY prqq ą 0. By

ergodicity, for µ-almost every y P Y , there exists k P Zě1 such that a´ky P Y prq. Since
akA U` Ă A U` , by Assertion (1) and by Lemma 5.1, we have

rysA U` Ă rysakA U` “ akra´kysA U` Ă akBU`

r a´ky Ă BU`

qkmax r
v

y .

With Assertion (3), this proves that A U` is U`-subordinated modulo µ. l

Let us introduce some material before stating and proving our next Lemma 5.9. The
map dKm

v ,r : Km
v ˆKm

v Ñ r0,`8r defined by

@ ξ, ξ1 P Km
v , dKm

v ,rpξ, ξ
1q “ } ξ ´ ξ1 }r (43)

is an ultrametric distance on Km
v , since the r-pseudonorm } }r satisfies the ultrametric

inequality : for all ξ, ξ1 P Km
v , we have

} ξ ` ξ1 }r ď maxt} ξ }r, } ξ
1 }ru , (44)

with equality if } ξ }r ‰ } ξ1 }r. Note that the map similar to dKm
v ,r in the real case of

[KKL] is not a distance if m ě 2 for general r. For every ε ą 0, we denote by B
Km
v ,r

ε

the open ball of center 0 and radius ε in Km
v for dKm

v ,r. Note that the distance dKm
v ,r is
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bihölder equivalent to the standard one: For all ξ, ξ1 P Km
v such that } ξ ´ ξ1 } ď 1, we

have
} ξ ´ ξ1 }

1
min r ď dKm

v ,rpξ, ξ
1q ď } ξ ´ ξ1 }

1
max r . (45)

We also endow the quotient space Tm “ Km
v {R

m
v with the quotient distance dTm,r of

the distance dKm
v ,r on Km

v defined by Equation (43). For every A P Mm,npKvq, we denote
by dU`yA,0,r the distance on the orbit U`yA,0 “ φApTmq such that the homeomorphism
φA defined in Lemma 5.3 is also an isometry for the distances dTm,r and dU`yA,0,r.

Using the identification w ÞÑ pw between Km
v and U` (see Subsection 5.1), for every

ε ą 0, we denote by BU`,r
ε the open ball of radius ε in U` centered at the identity element

for the distance dU`,r on U` isometric to dKm
v ,r. The map u ÞÑ u yA,0 from U` onto U`yA,0

is 1-Lipschitz and locally isometric for the distances dU`,r and dU`yA,0,r. Improving Lemma
5.1, for all ε ą 0 and k P Z, we have

a´kBU`,r
ε ak “ BU`,r

ε q´kv
. (46)

Again using the (locally compact) topological group identification w ÞÑ pw between
pKm

v ,`q and U`, we endow U` with the Haar measure mU` which corresponds to the
normalized Haar measure volmv of Km

v (see Section 2.1). For every j P Z, the Jacobian
Jacj with respect to the measure mU` of the homeomorphism ϕj : u ÞÑ aj u a´j from U`

to U` (which is constant since ϕj is a group automorphism and mU` is bi-invariant) is
easy to compute: we have

Jacj “ q j |r|v . (47)

Lemma 5.9 For every r P s0, 1r , let A U` be as in Proposition 5.7. Let µ be an a-invariant
ergodic probability measure on Y . Then

hµpa
´1|A U`q ď |r| .

Furthermore, if µpY prqq ą 0, then

hµpa
´1|A U`q ď HµpA

U` | aA U`q .

Proof. The proof of the latter assertion is formally the same one as for the real case in
[KKL, Lemma 2.8] by replacing a, L, µE

y0 therein by a, U`, µ herein.
Let us prove the first assertion. By [EL, Prop. 7.44], there exists a countable Borel-

measurable partition G with finite entropy which is a generator for a modulo µ, such that
σpG q80 is a´1-descending and G`-subordinated modulo µ. We first claim that

hµpa
´1|A U`q ď HµpσpG q

8
0 _A U` | a pσpG q80 _A U`qq. (48)

Indeed, for every countable Borel-measurable partition ξ with Hµpξq ă 8, using Assertions
(3), (4), and (6) in [KKL, Prop. A.2], the fact that A U` is a´1-descending and the
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continuity of entropy [ELW, Prop. 2.14], we have

hµpa
´1, ξ |A U`q

ď
p3q
hµpa

´1,
k
ł

i“´k

aiG |A U`q `Hµpσpξq |σpG q
k
´k _A U`q

“
p4q
hµpa

´1,G | akA U`q `Hµpσpξq |σpG q
k
´k _A U`q

“
p6q
HµpσpG q |σpG q

8
1 _ pa

kA U`q80 q `Hµpσpξq |σpG q
k
´k _A U`q

“ HµpσpG q |σpG q
8
1 _ pA

U`q80 q `Hµpσpξq |σpG q
k
´k _A U`q

ÝÝÝÑ
kÑ8

HµpσpG q |σpG q
8
1 _ pA

U`q80 q `Hµpσpξq |σpG q
8
´8 _A U`q

“
G generator

HµpσpG q |σpG q
8
1 _ pA

U`q80 q ď HµpσpG q |σpG q
8
1 _A U`q

“ HµpσpG q
8
0 _A U` |σpG q81 _A U`q ď HµpσpG q

8
0 _A U` | apσpG q80 _A U`qq.

This proves the claim (48).
As in the proof of [LSS, Prop. 3.1], the σ-algebra σpG q80 _A U` is countably generated,

a´1-descending, and U`-subordinated since rysA U` Ă Uy for all y P Y and since σpG q80
is G`-subordinated. Thus by [EL, Prop. 7.34] (recalling that we are using logarithms with
base qv), we have

HµpσpG q
8
0 _A U` | a pσpG q80 _A U`qq “ lim

kÑ8

logqv µ
U`
x pakBU`

1 a´kq

k
,

where µU`x is the leaf-wise measure of µ at x P Y with respect to U` as defined in [EL,
Theo. 6.3]. By [EL, Theo. 6.30] (which applies since U` is abelian, hence unimodular) and
by Equation (47) (see also [EL, §7.42]), we have

lim sup
kÑ8

µU
`

x pakBU`
1 a´kq

k2 q
k|r|
v

“ 0 ,

hence we have

lim
kÑ8

logqv µ
U`
x pakBU`

1 a´kq

k
ď |r| .

This proves the first assertion of the lemma. l

Let us introduce some more material before stating and proving our final Proposition
5.10 of Subsection 5.3. Let A be a countably generated sub-σ-algebra of the Borel σ-
algebra of Y . For all j P Zě0 and y P Y , let

V ajA
y “ tu P U` : u y P rysajA u , (49)

which is a Borel subset of U`, called the U`-shape of the atom rysajA . Note that for every
j P Zě0, we have

V ajA
y “ aj V A

a´jy a
´j .

Let us define a Borel-measurable family
`

τ a
jA
y

˘

yPY
of Borel measures on Y , that we call

the U`-subordinated Haar measure of ajA , as follows:
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‚ if mU`pV
ajA
y q is equal to 0 or 8, we set τ ajAy “ 0,

‚ otherwise, τ ajAy is the push-forward of the normalized measure 1

mU` pV
ajA
y q

mU`|V ajA
y

by the map u ÞÑ u y.
Now let µ be a Borel a-invariant probability measure on Y , such that A is U`-

subordinated modulo µ. In particular, for µ-almost every y P Y , the atom V ajA
y has

positive and finite mU`-measure, hence the measure τ ajAy is a probability measure with
support in rysajA . Furthermore, if z P rysajA then there exists u P U` such that z “ u y,
V ajA
z “ V ajA

y u´1, and τ ajAz “ τ a
jA
y , by the right-invariance of mU` .

The following proposition is a function field analog of the effective real case version
[KKL, Prop. 2.10, §2.4] of [EL, §7.55].

Proposition 5.10 Let µ be a Borel a-invariant ergodic probability measure on Y and
let A be a countably generated sub-σ-algebra of the Borel σ-algebra of Y which is a´1-
descending and U`-subordinated modulo µ. Fix j P Zě1 and a U`-saturated Borel subset
K 1 of Y . Suppose that there exists ε ą 0 such that rzsA Ă BU`,r

ε z for every z P K 1. Then
we have

HµpA |a
jA q ď j |r| `

ż

Y
log τ a

jA
y ppY ´K 1q YBU`,r

ε Suppµq dµpyq.

Proof. We fix µ, A , j, K 1 and ε as in the statement. By for instance [EL, Theo. 5.9], let
`

µa
jA
y

˘

yPY
be a measurable family of conditional measures of µ with respect to ajA , so

that for µ-almost every y P Y , the measure µajAy is a probability measure on Y giving full
measure to the atom rysajA , with µajAz “ µa

jA
y if z P rysajA , and such that the following

disintegration formula holds true:

µ “

ż

yPY
µa

jA
y dµpyq . (50)

Let pµ : y ÞÑ µa
jA
y prysA q and pτ : y ÞÑ τ a

jA
y prysA q, which are nonnegative and measur-

able functions on Y . Since A is a´1-descending and U`-subordinated modulo µ, the atom
rysA contains an open neighborhood of y in the atom rysajA for µ-almost every y P Y . In
particular, the function pτ is µ-almost everywhere positive.

Since A is countably generated and a´1-descending, for every y P Y , the atom of y
for ajA is countably partitioned into atoms for A up to measure 0, that is, there exist a
finite or countable subset Iy of rysajA and a µajAy -measure zero subset Ny of rysajA such
that

rysajA “ Ny \
ğ

xPIy

rxsA . (51)

Let I 1y “ tx P Ix : rxsA X Suppµ ‰ Hu.

Lemma 5.11 Let x P Iy
(1) If x R I 1y, then µa

jA
y prxsA q “ 0.

(2) If x P I 1y, then rxsA is contained in pY ´K 1q YBU`,r
ε Suppµ.

38



Proof. (1) This follows since Suppµa
jA
y is contained in Suppµ.

(2) If x P I 1y, there exists z P rxsA X Suppµ. For every z1 P rxsA , we have either
z1 P Y ´ K 1 or z1 P K 1. In the second case, since A is U`-subordinated and K 1 is
U`-saturated, we have z P rxsA “ rz1sA Ă U`z1 Ă K 1. Hence by the assumption of
Proposition 5.10, we have z1 P rxsA “ rzsA Ă BU`,r

ε z Ă BU`,r
ε Suppµ, which proves the

result. l

By the definition of the U`-subordinated Haar measure of ajA , for µ-almost every
y P Y , we have

pτ pyq “
mU`pV

A
y q

mU`pV
ajA
y q

“
mU`pV

A
y q

mU`pa
j V A

a´jy
a´jq

“
mU`pV

A
y q

Jacj mU`pV
A
a´jy

q
.

Hence, by the a-invariance of µ and by Equation (47), we have
ż

zPY
logqv pτ pzq dµpzq “ ´ logqv Jacj “ ´ j |r| .

Respectively
‚ by the definition of the conditional entropy in Equation (38),
‚ by the disintegration formula (50),
‚ since µajAy gives full measure to rysajA which is partitionned as in Equation (51),

and by Lemma 5.11 (1),
‚ since when z varies in rxsA Ă rysajA , the values pµpzq “ µa

jA
z przsA q “ µa

jA
y prxsA q

and pτ pzq “ τ a
jA
z przsA q “ τ a

jA
y prxsA q are constant,

‚ by the concavity property of the logarithm,
‚ by Lemma 5.11 (2),

we hence have

HµpA | ajA q ´ j |r|

“ ´

ż

zPY

`

logqv pµpzq ´ logqv pτ pzq
˘

dµpzq

“

ż

yPY

ż

zPY

`

logqv pτ pzq ´ logqv pµpzq
˘

dµa
jA
y pzq dµpyq

“

ż

yPY

ÿ

xPI 1y

ż

zPrxsA

`

logqv pτ pzq ´ logqv pµpzq
˘

dµa
jA
y pzq dµpyq

“

ż

yPY

ÿ

xPI 1y

logqv
τ a

jA
y prxsA q

µajAy prxsA q
µa

jA
y prxsA q dµpyq

ď

ż

yPY
logqv

´

ÿ

xPI 1y

τ a
jA
y prxsA q

¯

dµpyq

ď

ż

yPY
logqv

`

τ a
jA
y ppY ´K 1q YBU`,r

ε Suppµq
˘

dµpyq .

This proves the result. l
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6 Upper bound on the Hausdorff dimension of BadApεq

6.1 Constructing measures with large entropy

In this subsection, we construct, as in [KKL, Prop. 4.1] in the real case, an a-invariant
probability measure on Y giving an appropriate lower bound on the conditional entropy
of a relative to the σ-algebra A U` constructed in Proposition 5.7.

For any point x in a measurable space, we denote by ∆x the unit Dirac measure at
x. We denote by ˚

á the weak-star convergence of Borel measures on any locally compact
space.

Let us denote by X “ X Yt8X u and Y “ Y Yt8Y u the one-point compactifications
of X and Y , respectively. We denote by π : Y Ñ X the unique continuous extension
of the natural projection π : Y Ñ X , mapping 8Y to 8X . The left actions of a on X
and Y continuously extend to actions on X and Y fixing the points at infinity 8X and
8Y . For every countably generated σ-algebra A of subsets of X or Y , we denote by A
the countably generated σ-algebra of subsets of X or Y generated by A and its point at
infinity. For a finite partition Q “ tQ1, . . . , QN , Q8u of Y with only one unbounded atom
Q8, we denote by Q the finite partition tQ1, . . . , QN , Q8 “ Q8Yt8Y uu of Y . Note that
Žb
i“a a

´iQ “
Žb
i“a a

´i Q for all a, b in Z with a ă b.
For every η P r0, 1s, we say that an element x P X has η-escape of mass on average

under the action of a if for every compact subset Q of X ,

lim inf
NÑ8

1

N
Card

 

` P t1, ¨ ¨ ¨ , Nu : a`x R Q
(

ě η .

When η “ 1, as defined in the Introduction and in Proposition 5.2, we say that x diverges
on average in X under the action of a. For every A P Mm,npKvq, we denote by xA “
uAR

m
v P X its associated unimodular lattice (see Section 5.2), and by ηA P r0, 1s the

upper bound of the elements η P r0, 1s such that xA has η-escape of mass on average. Note
that this upper bound is actually a maximum.

Proposition 6.1 For every A P Mm,npKvq, there exists a Borel probability measure µA
on X with µApX q “ 1 ´ ηA such that for every ε ą 0, there exists an a-invariant Borel
probability measure µ on Y satisfying the following properties.
(1) The support of µ is contained in Lε Y t8Y u, where Lε is defined in Equation (35).
(2) We have π˚µ “ µA. In particular, there exists an a-invariant Borel probability mea-

sure µ on Y such that
µ “ p1´ ηAqµ` ηA∆8Y .

(3) For every r P s0, 1r , let A U` be the σ-algebra of subsets of Y constructed in the
proof of Proposition 5.7. Then

hµ
`

a´1|A U`
˘

ě |r|p1´ ηAq ´max r pm´ dimHaus BadApεqq .

Proof. Since xA has ηA-escape of mass on average but does not have pηA ` δq-escape
of mass on average for any δ ą 0, there exists an increasing sequence of positive integers
pkiqiPZě1 such that, for the weak-star convergence of Borel probability measures on the
compact space X , as iÑ `8, we have

1

ki

ki´1
ÿ

k“0

∆ akxA

˚
á µA , (52)
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and µA is a Borel probability measure on X with µApX q “ 1´ ηA. This is equivalent to
µApt8X uq “ ηA.

Let ε ą 0. For every T P Zě0, with the notation of Subsection 5.2 (see in particular
Equations (35) and (36)), let

RT “ tθ P Tm : @k ě T, akφApθq P Lεu XBadApεq .

By Proposition 5.4, since a countable subset of Km
ν has Hausdorff dimension 0, we have

dimHaus

`
Ť8
T“1RT

˘

“ dimHaus BadApεq. Thus, for every j P Zě1, there exists Tj P Zě0

satisfying

dimHausRTj ě dimHaus BadApεq ´
1

j
.

For all i, j P Zě1 such that ki ě Tj , let Si,j be a maximal q´kiv -separated subset of RTj
for the distance dTm,r defined after Equation (45). Then RTj can be covered by Card Si,j
open balls of radius q´kiv for dTm,r. Each open ball of radius q´kiv for dTm,r can be covered
by

śm
j“1 q

´kirj
v {q´ki max r

v “ q
kipmmax r´|r|q
v open balls of radius q´ki max r

v with respect to
the standard distance dTm (defining the Hausdorff dimension of subsets of Tm). Since the
lower Minskowski dimension is at least equal to the Hausdorff dimension, we have

lim inf
iÑ8

logqv
`

q
kipmmax r´|r|q
v Card Si,j

˘

´ logqv
`

q´ki max r
v

˘
ě dimHausRTj ě dimHaus BadApεq ´

1

j
,

which implies that

lim inf
iÑ8

logqv Card Si,j

ki
ě |r| ´max r

`

m`
1

j
´ dimHaus BadApεq

˘

. (53)

Let us define the Borel probability measures

νi,j “
1

Card Si,j

ÿ

θPSi,j

∆φApθq ,

which is the normalized counting measure on the finite subset φApSi,jq of the U`-orbit
φApTmq “ U`yA,0 Ă π´1pxAq, and

rνi,j “
1

ki

ÿ

0ďkďki´1

ak˚νi,j ,

which is the average of the previous one on the first ki points of the a-orbit. Since Y is
compact, extracting diagonally a subsequence if necessary, we may assume that rνi,j weak-
star converges as i Ñ `8 towards an a-invariant Borel probability measure rµj , and that
rµj weak-star converges as j Ñ `8 towards an a-invariant Borel probability measure µ.
Let us prove that µ satisfies the three assertions of Proposition 6.1.

(1) For all k ě Tj and θ P Si,j Ă RTj , we have akφApθq P Lε by the definition of RTj .
Since ak˚νi,j is a probability measure, we hence have

rνi,jpY ´Lεq “
1

ki

ki´1
ÿ

k“0

ak˚νi,jpY ´Lεq “
1

ki

Tj
ÿ

k“0

ak˚νi,jpY ´Lεq ď
Tj
ki
.
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Since Lε Y t8Y u is closed in Y and by taking limits first as i Ñ `8 then as j Ñ `8,
we therefore have µpY ´Lεq “ 0. This proves Assertion (1).

(2) Since φApSi,jq is contained in the fiber above xA of π and since νi,j is a probability
measure, we have π˚νi,j “ ∆xA . By the linearity and equivariance of π˚, we hence have

π˚rνi,j “
1

ki

ÿ

0ďkďki´1

ak˚ π˚ νi,j “
1

ki

ÿ

0ďkďki´1

∆akxA
.

By the weak-star continuity of π˚ and Equation (52), we thus have

π˚µ “ lim
jÑ`8

lim
iÑ`8

π˚rνi,j “ lim
jÑ`8

µA “ µA .

Note that the point at infinity 8Y is an isolated point in the support of µ by Assertion
(1), since Lε is compact. We hence have

µpt8Y uq “ µpπ´1pt8X uqq “ µApt8X uq “ ηA . (54)

(3) Suppose that Q is any finite Borel-measurable partition of Y satisfying
(i) the partition Q contains an atom Q8 of the form π´1pQ˚8q, where X ´ Q˚8 has

compact closure,
(ii) there exists `0 P Zě1 such that for every atom Q P Q different from Q8, we have

diam Q ă q´`0 max r
v for the distance dY .

(iii) for all Q P Q and j P Zě1, we have rµjpBQq “ 0 and µpBQq “ 0.
We first prove the following entropy bound: For every M P Zě1,

1

M
Hµ

`

σpQq M´1
0 |A U`

˘

ě |r|p1´ µpQ8qq ´max r pm´ dimHaus BadApεqq . (55)

Since Equation (55) is clear if µpQ8q “ 1, we may assume that µpQ8q ă 1, hence that
rµjpQ8q ă 1 for all large enough j ě 1. Now, we fix such a j ě 1.

Take ρ ą 0 small enough so that rµjpQ8q ` ρ ă 1 and let

β “ rµjpQ8q ` ρ . (56)

Then for all large enough i P Zě1, since φApSi,jq Ă π´1pxAq and Q8 “ π´1pQ˚8q by
Property (i) of Q, we have

β “ rµjpQ8q ` ρ ą rνi,jpQ8q “
1

kiCard Si,j

ki´1
ÿ

k“0

ÿ

θPSi,j

∆akφApθq
pQ8q

“
1

ki

ki´1
ÿ

k“0

∆akxA
pQ˚8q .

Thus, for every θ P Tm, since akφApθq P Q8 implies that akxA P Q
˚
8 by Property (i) of

Q, we have
Cardtk P t0, . . . , ki ´ 1u : akφApθq P Q8u ă β ki . (57)

Let us prove the following counting lemma inspired by [ELMW, Lem. 4.5] and [LSS,
Lem. 2.4], where `0 is given by Property (ii) of Q.
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Lemma 6.2 There exists a constant C ą 0 depending only on r and `0 such that for all
A P Mm,npKvq, θ P Tm and T P Zě0, defining y “ φApθq, I “ tk P Zě0 : aky P Q8u, and

Ey,T “ tz P U
`y : @ k P t0, . . . , T u ´ I, dY pa

ky, akzq ă q´`0 max r
v u ,

the set Ey,T can be covered by C q |r|CardpIXt0,...,T uq
v closed balls of radius q´p`0`T qv for the

distance dU`y, r.

Proof. As in the proof of [LSS, Lemma 2.4], we proceed by induction on T .
By the compactness of Tm, there exists a constant C P Zě1 depending only on r and

`0 such that the metric space pTm, dTm,rq can be covered by C closed balls of radius q´`0v .
Since φA : Tm Ñ U`y is an isometry for the distances dTm,r and dU`y, r, the orbit U`y can
be covered by C closed balls for dU`y, r of radius q´`0v . Thus the lemma holds for T “ 0.
Let NT “ C q

|r|CardpIXt0,...,T uq
v .

Assume by induction that Ey,T´1 can be covered by NT´1 balls for dU`y, r of radius
q
´p`0`T´1q
v . Note that for every k P Z, since πkvOv{pπ

k`1
v Ovq has order qv, every closed ball

in Kv of radius q´kv is the disjoint union of qv closed ball of radius q´k´1
v . Hence every

closed ball for dU`y, r of radius q´p`0`T´1q
v in U`y can be covered by q |r|v closed balls for

dU`y, r of radius q´p`0`T qv . Therefore, if T P I, then Ey,T “ Ey,T´1 can be covered by
NT “ q

|r|
v NT´1 closed balls for dU`y, r of radius q´p`0`T qv .

Suppose conversely that T R I, so that in particular NT “ NT´1. Denote the above
covering of Ey,T´1 by tBi : i “ 1, . . . , NT´1u. Since we have Ey,T Ă Ey,T´1, the set
tEy,T XBi : i “ 1, . . . , NT´1u is a covering of Ey,T .

Claim. For all i “ 1, . . . , NT´1 and z1, z2 P Ey,T XBi, we have dU`y, rpz1, z2q ď q
´p`0`T q
v .

Proof. Since T R I, we have dY pa
T y, aT zjq ă q´`0 max r

v for each j “ 1, 2. Thus we have
dY pa

T z1, a
T z2q ă q´`0 max r

v by the ultrametric inequality property of } ¨ }. Note that since
z1, z2 P U

`y “ U`yA,θ, there exist θ1 “ pθ1,1, . . . , θ1,mq and θ2 “ pθ2,1, . . . , θ2,mq in Tm
such that (denoting in the same way lifts of θ1 and θ2 to Km

v ) we have z1 “ yA,θ1 and
z2 “ yA,θ2 . With |x y| the map defined after Equation (3), it follows that we have

max
1ďiďm

qriTv |x θ1,i ´ θ2,i y| “ dTmpa
T
´θ1, a

T
´θ2q “ dY pa

T yA,θ1 , a
T yA,θ2q

“ dY pa
T z1, a

T z2q ă q´`0 max r
v .

Hence, we have

dU`y, rpz1, z2q “ dTm,rpθ1,θ2q “ max
1ďiďm

|x θ1,i ´ θ2,i y|
1
ri ă q´p`0`T qv ,

which concludes the claim. l

By the above claim, the intersection Ey,T XBi is contained in a single ball for dU`y, r of
radius q´p`0`T qv for each i “ 1, . . . , NT´1. Thus Ey,T can be covered by NT “ NT´1 balls
for dU`y, r of radius q´p`0`T qv . l

Recall that as constructed in the proof of Proposition 5.7, there exist a Borel-measura-
ble partition P “ tP1, . . . , PN , P8u of Y with N ` 1 elements, and a countably generated
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Borel-measurable σ-algebra PU` of subsets of Y , with rysPU` “ rysP XBU`
r y for every

y P Y prq by Equation (42), such that we have A U` “ pPU`q80 .
For all ` P Zě1 and y P Y prq, we have rys

pPU` q`0
Ă rysσpPq`0

XBU`
r y. Since the support

of νi,j is a finite set of points on a single U`-orbit φApTmq “ U`yA,0, the measure a´k˚ νi,j is
also supported on a single U`-orbit akU`yA,0 “ U`a´kyA,0 for every k P Zě0. Recall (see
for instance [EL, Def. 5.7]) that two sub-σ-algebras A and A 1 of a measured space pX,Bq
are equivalent modulo a probability measure ν if for every A P A there exists A1 P A 1 such
that νpA∆A1q “ 0 (where ∆ is the symmetric difference) and vice versa.

Claim. For every k P Zě0, the sub-σ-algebras PU` and σpPq are equivalent modulo
a´k˚ νi,j .

Proof. By the construction of PU` above Equation (42), we have rysPU` Ă rysP for
every y P Y and for every y R P8, we have

U`y X rysP “ rysPU` . (58)

We first consider any point y P Y such that rysPU` intersects Supp a´k˚ νi,j . If y R P8,
by Equation (58), the symmetric difference rysPU`∆ rysP “ rysP ´ rysPU` does not
intersect U`y. But Supp a´k˚ νi,j Ă U`y by the single orbit support property, hence we
have a´k˚ νi,jprysPU`∆ rysPq “ 0. If y P P8, since rysPU` “ Uy by Equation (42) and
Supp a´k˚ νi,j Ă Uy, we have a´k˚ νi,jprysPU`∆ rysPq “ a´k˚ νi,jpP8 ´ Uyq “ 0.

For every point y P Y such that rysPU` does not intersect Supp a´k˚ νi,j , we can take
∅ P σpPq so that a´k˚ νi,jprysPU`∆∅q “ a´k˚ νi,jprysPU` q “ 0.

Conversely, consider any point y P Y such that rysP intersects Supp a´k˚ νi,j . Let us fix
y1 P rysP X Supp a´k˚ νi,j , so that in particular Supp a´k˚ νi,j Ă U`y1 Ă Uy1. If y P P8, then
y1 P P8 “ rysP and ry1sPU` “ Uy1 by Equation (42), hence a´k˚ νi,jprysP ∆ ry1sPU` q “

a´k˚ νi,jpP8 ´ Uy1q “ 0. If y R P8, then y1 R P8 and by Equation (58), the difference
U`y1 ´ ry1sPU` does not intersect ry1sP “ rysP , hence a´k˚ νi,jprysP∆ ry1sPU` q “ 0.

For every point y P Y such that rysP does not intersect Supp a´k˚ νi,j , we take ∅ P PU`

so that a´k˚ νi,jprysP∆∅q “ a´k˚ νi,jprysPq “ 0. This proves the claim. l

Using the above claim, we have that pPU`q`0 is equivalent to σpPq`0 modulo νi,j . Hence,
it follows from Equation (37) that

Hνi,j

`

pPU`q`0

˘

ď Hνi,j

`

ł̀

k“0

akP
˘

ď p`` 1q logqvpN ` 1q . (59)

If Q is any atom of the finite partition Qi,` “
Žki´1
k“0 akQ_

Ž`
k“0 a

kP of Y , then fixing
any y P Q, by Property (ii) of Q, the intersection φApSi,jqXQ is contained in Ey,ki´1 with
the notation of Lemma 6.2. It follows from Lemma 6.2 and Equation (57) that φApSi,jqXQ
can be covered by C q |r|βkiv closed balls for dU`yA,0, r of radius q´p`0`ki´1q

v “ q´`0`1
v q´kiv ,

where C depends only on r and `0. Since Si,j is q´kiv -separated (hence q´`0`1
v q´kiv -separated

since `0 ě 1) with respect to dTm,r, and since φA : pTn, dTm,rq Ñ pU`yA,0, dU`yA,0, rq is an
isometry, we have

CardpφApSi,jq XQq ď C q |r|βkiv .
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Since we have pPU`q`0 “ σpPq`0 modulo νi,j , since νi,j is the normalised counting measure
on φApSi,jq, and since the map Ψ “ ´ logqv is nonincreasing, it hence follows that

Hνi,j pσpQq
ki´1
0 _ pPU`q`0q “ Hνi,j pQi,`q “

ÿ

QPQi,`

νi,jpQqΨ
`

νi,jpQq
˘

“
ÿ

QPQi,`

νi,jpQqΨ
´CardpφApSi,jq XQq

Card Si,j

¯

ě Ψ
´ C q

|r|βki
v

Card Si,j

¯

ÿ

QPQi,`

νi,jpQq

“ logqvpCard Si,jq ´ |r|β ki ´ logqv C . (60)

Combining Equations (59) and (60), we have

Hνi,j pσpQq
ki´1
0 |pPU`q`0q “ Hνi,j pσpQq

ki´1
0 _ pPU`q`0q ´Hνi,j ppP

U`q`0q

ě logqvpCard Si,jq ´ |r|βki ´ logqv C ´ p`` 1q logqvpN ` 1q.

(61)

By the subadditivity and concavity properties of the entropy as in the proof of [LSS,
Eq. (2.9)], for every M P Zě1, we have

1

M
H

rνi,j pσpQq
M´1
0 |pPU`q`0q ě

1

ki
Hνi,j pσpQq

ki´1
0 |pPU`q`0q ´

2M logqvpCard Qq

ki
. (62)

Therefore, since νi,jp8Y q “ 0, it follows from Equations (62) and (61) that

1

M
H

rνi,j

`

σpQq M´1
0 |pPU` q`0

˘

“
1

M
H

rνi,j

`

σpQqM´1
0 |pPU`q`0

˘

ě
1

ki

`

logqvpCard Si,jq ´ |r|βki ´ logqv C ´ p`` 1q logqvpN ` 1q ´ 2M logqvpCard Qq
˘

.

Now we can take i Ñ 8 since the atoms Q of the partition Q and hence of the partition
ŽM´1
k“0 ak Q, satisfy rµjpBQq “ 0 by the property (iii) of Q. Also, the constants C, N , `,

and Card Q are independent of ki. Thus it follows from Equation (53) that

1

M
H

rµj

`

pσpQq qM´1
0 | pPU` q`0

˘

ě |r|p1´ βq ´max r pm`
1

j
´ dimHaus BadApεqq .

By taking ρÑ 0 in Equation (56), we have

1

M
H

rµj

`

pσpQq qM´1
0 | pPU` q`0

˘

ě |r|p1´ rµjpQ8qq ´max r pm`
1

j
´ dimHaus BadApεqq .

Hence, it follows by taking j Ñ8 and by using the property (iii) of Q that

1

M
Hµ

`

pσpQq qM´1
0 | pPU` q`0

˘

ě |r|p1´ µpQ8qq ´max r pm´ dimHaus BadApεqq .

Since pPU` q`0 Õ A U` as `Ñ8, by the continuity of entropy, we finally have

1

M
Hµ

`

pσpQq qM´1
0 | A U`

˘

ě |r|p1´ µpQ8qq ´max r pm´ dimHaus BadApεqq ,

which proves Equation (55).
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Hence, by taking M Ñ8, we have

hµpa
´1| A U` q ě |r|p1´ µpQ8qq ´max r pm´ dimHaus BadApεqq ,

provided that we have a partition Q satisfying the above requirements (i), (ii) and (iii).
After taking a sufficiently small neighborhood of infinity Q˚8 in X , so that if Q8 “

π´1pQ˚8q, then µpQ8q is sufficiently close to µp8Y q “ ηA, we can indeed construct a finite
Borel-measurable partition Q of Y satisfying Properties (i), (ii) and (iii), by following the
procedure in [LSS, Proof of Theorem 4.2, Claim 2]. This proves Assertion (3). l

6.2 Effective upper bound on dimHaus BadApεq

For every ` P Zď1, with λ1 the shortest length function of a nonzero vector of an Rv-lattice
(see Subsection 2.2), we define

X ěq`v “ tx P X : λ1pxq ě q`vu and Y ěq`v “ π´1pX ěq`vq .

Note that by Corollary 2.2, we have λ1pxq ď qv for all x P X , thus X “
Ť1
`“´8X ěq`v .

By Mahler’s compactness criterion (see for instance [KlST, Theo. 1.1]), the subsets X ěq`v

and Y ěq`v are compact.

Lemma 6.3 Let µ1 be an a-invariant Borel probability measure on Y and let A be a
countably generated sub-σ-algebra of the Borel σ-algebra of Y which is a´1-descending and
U`-subordinated modulo µ1. For all r1 ě δ1 ą 0, ε P s0, 1s and ` P Zď0, let j1, j2 be integers
satisfying

j1 ą
d´ pd´ 1q`

min r
´ logqv δ

1 and j2 ą
d´ pd´ 1q`

min s
´
n

d
logqv ε .

If y P Y ěq`v satisfies BU`,r
δ1 a´j1y Ă ra´j1ysA Ă BU`,r

r1 a´j1y, then we have

τ a
j1A
y pa´j2Lεq ď 1´

´

q´pj1`j2qv pr1q´1ε
m
d

¯|r|
.

Proof. Let x “ πpyq, which belongs to X ěq`v . Since x is a unimodular Rv-lattice, by
Minkowski’s theorem 2.1, we hence have

qpd´1q`
v λdpxq ď pλ1pxqq

d´1λdpxq ď λ1pxqλ2pxq ¨ ¨ ¨λdpxq ď qdv ,

therefore λdpxq ď q
d´pd´1q`
v . There are linearly independent vectors v1, . . . , vd in the Rv-

lattice x such that }vi} ď q
d´pd´1q`
v . Let ∆ be the parallelepiped in K d

v generated by
v1, . . . , vd, that is,

∆ “ tt1v1 ` ¨ ¨ ¨ ` tdvd P K
d
v : @ i “ 1, . . . , d, | ti | ď 1u .

We identify K d
v with Km

v ˆK n
v . Then for every b “ pb´,b`q P ∆ with b´ P Km

v and

b` P K n
v , we have }b } ď q

d´pd´1q`
v , hence }b´ }r ď q

d´pd´1q`
min r

v and }b` }s ď q
d´pd´1q`

min s
v since

` ď 0. Note that the fiber π´1pxq can be parametrized as follows: Fixing g P G0 with
x “ gΓ0, since ∆ is a fondamental domain for the action of R d

v on K d
v , we have

π´1pxq “ twpbqgΓ : b P ∆u, where wpbq “
ˆ

Id b
0 1

˙

.
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In particular, there exists b0 “ pb
´
0 ,b

`
0 q P ∆ such that y “ wpb0qgΓ.

With a slightly simplified notation, let Vy be the U`-shape of the atom rysaj1A (see
Equation (49)), so that we have Vyy “ rysaj1A . Let Ξ “ tθ P Km

v : wpθ, 0q P Vyu be the
Borel set corresponding to Vy by the canonical bijection θ ÞÑ wpθ, 0q (see above Equation
(34)) between Km

v and U`. Note that 0 P Ξ as Id`1 P Vy. Since aj1´ expands the r-
quasinorm on Km

v with ratio exactly qj1v (see Equation (32)), and by the assumption on y
in the statement of Lemma 6.3, we have BU`,r

q
j1
v δ1

y Ă rysaj1A Ă BU`,r

q
j1
v r1

y, hence

B
Km
v ,r

q
j1
v δ1

Ă Ξ Ă B
Km
v ,r

q
j1
v r1

. (63)

The atom rysaj1A can be parametrized by

rysaj1A “
 

wpbqgΓ : D b´ P b´0 ` Ξ, b “ pb´,b`0 q
(

,

and τ a
j1A
y is the pushforward measure of the normalized Haar measure on the Borel set

(with positive measure) b´0 ` Ξ of Km
v .

Let us consider the sets

Θ´ “ tb´ P Km
v : }b´ }r ă q´j2v ε

m
d u and Θ` “ tb` P K n

v : }b` }s ă qj2v ε
n
d u .

If b “ pb´,b`q P Θ´ˆΘ`, then }aj2´b´}r ă ε
m
d and }aj2`b`}s ă ε

n
d by Equation (32). By

the definition of Lε in Equation (35), and since the grid aj2gRm
v `pa

j2
´b

´, aj2`b
`q contains

the vector paj2´b´, a
j2
`b

`q, we have

aj2wpbqgΓ “ wpaj2´b
´, aj2`b

`qaj2gΓ R Lε .

Hence we have wpbqgΓ R a´j2Lε, so that

rysaj1A ´ a´j2Lε Ą w
` `

pb´0 ` Ξq ˆ tb`0 u
˘

X pΘ´ ˆΘ`q
˘

gΓ . (64)

Claim. We have the inclusion Θ´ ˆ tb`0 u Ă
`

pb´0 ` Ξq ˆ tb`0 u
˘

X pΘ´ ˆΘ`q.

Proof. We only have to prove that b`0 P Θ` and that Θ´ Ă b´0 `Ξ. Since pb´0 ,b
`
0 q P ∆,

we have }b`0 }s ď q
d´pd´1q`

min s
v , hence the former assertion follows from the assumption that

j2 ą
d´pd´1q`

min s ´ n
d logqv ε.

In order to prove the latter assertion, let us fix b´ P Θ´. Recall that the r-quasinorm
} ¨ }r satisfies the ultrametric inequality property, see Equation (44). Hence, it follows from
the assumptions j2 ą

d´pd´1q`
min s ´ n

d logqv ε and j1 ą
d´pd´1q`

min r ´ logqv δ
1, since ε ď 1, that

}b´ ´ b´0 }r ď maxt}b´ }r, }b
´
0 }ru ď max

 

q´j2v ε
m
d , q

d´pd´1q`
min r

v

(

ď max
 

q
´
d´pd´1q`

min s
v ε , q

d´pd´1q`
min r

v

(

“ q
d´pd´1q`

min r
v ă q j1v δ

1 .

Hence by the left inclusion in Equation (63), we have b´ P b´0 `B
Km
v ,r

q
j1
v δ1

Ă b´0 ` Ξ, which
concludes the latter assertion. l
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Now by Equation (64), by the above claim and by the right inclusion in Equation (63),
we have

1´ τ a
j1A

y pa´j2Lεq “ τ a
j1A

y prysaj1A ´ a´j2Lεq ě
mKm

v
pΘ´q

mKm
v
pb´0 ` Ξq

ě

mKm
v

`

B
Km
v ,r

q
´j2
v ε

m
d

˘

mKm
v

`

B
Km
v ,r

q
j1
v r1

˘

“

´q´j2v ε
m
d

q j1v r1

¯|r|
“

`

q´pj1`j2qv pr1q´1ε
m
d

˘|r|
.

This proves the lemma. l

Proof of Theorem 1.2. We fix a matrix A P Mm,npKvq which is not pr, sq-singular on
average, or equivalently by Proposition 5.2 and the definition of ηA just before Lemma 6.1,
that ηA ă 1. We also fix ε P s0, 1s.

By Proposition 6.1, there exist an a-invariant Borel probability measure µ on Y (de-
pending on ε) and an a-invariant Borel probability measure µ on Y (unique since ηA ă 1)
such that

Suppµ Ă Lε Y t8Y u, π˚µ “ µA, and µ “ p1´ ηAqµ` ηA∆8Y .

Take a compact subset K0 of X such that µApK0q ą 0.99µApX q “ 0.99 p1´ ηAq. Write
K “ π´1pK0q and choose r P s0, 1r such that K Ă Y prq. Then µpY prqq ě µpKq ą 0.99
since ηA ă 1. Note that the choices of K and r are independent of ε since the measure µA
depends only on A (see Proposition 6.1 and Equation (52)).

For such an r ą 0, let A U` be the σ-algebra of subsets of Y constructed in Proposition
5.7. Proposition 6.1 (3) gives the inequality

hµpa
´1| A U` q ě |r|p1´ ηAq ´max r pm´ dimHaus BadApεqq .

By the linearity of entropy (and since the entropy of a´1 vanishes on the fixed set t8Y u),
we have

hµpa
´1| A U`q “

1

1´ ηA
hµpa

´1| A U` q ě |r| ´
max r

1´ ηA
pm´ dimHaus BadApεqq . (65)

In order to use Lemma 5.9 and Proposition 5.10, we need an ergodicity assumption
on the measures that appear in these statements. We will choose an appropriate ergodic
component of µ. Let us denote the ergodic decomposition of µ by

µ “

ż

yPY
µE
y dµpyq

as in the second equality of Proposition 5.5 with T “ a´1 and A “ A U` . Let E “ ty P
Y : µE

y pKq ą 0.9u. It follows from µpKq ą 0.99 that

0.99 ă

ż

Y
µE
y pKq dµpyq ď µpEq ` 0.9µpY ´ Eq “ 0.9` 0.1µpEq ,

hence µpEq ą 0.9. By Proposition 5.5 and Equation (65), we have
ż

Y
hµE

y
pa´1| A U`q dµpyq “ hµpa

´1| A U`q ě |r| ´
max r

1´ ηA
pm´ dimHaus BadApεqq .
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Since hµE
y
pa´1| A U`q ď |r| for every y P Y by Lemma 5.9, we have

ż

Y ´E
hµE

y
pa´1| A U`q dµpyq ď |r| µpY ´ Eq .

Hence
ż

E
hµE

y
pa´1| A U`q dµpyq ě |r|µpEq ´

max r

1´ ηA
pm´ dimHaus BadApεqq

ě µpEq
´

|r| ´
max r

0.9 p1´ ηAq
pm´ dimHaus BadApεqq

¯

.

Therefore, there exists z P Y such that µE
z pKq ą 0.9 and

hµE
z
pa´1| A U`q ě |r| ´

max r

0.9 p1´ ηAq
pm´ dimHaus BadApεqq .

We denote λ “ µE
z for such a z P Y . Then λ is an a-invariant ergodic Borel probability

measure on Y and Suppλ Ă Suppµ Ă Lε. By Lemma 5.9, we have

HλpA
U` | aA U`q ě |r| ´

max r

0.9 p1´ ηAq
pm´ dimHaus BadApεqq . (66)

We will apply Lemma 6.3 with µ1 “ λ and A “ a´kA U` for some k ě 1. Take an
integer ` ď 0 such that K Ă Y ěq`v , which depends only on A. Set

j1 “
Qd´ pd´ 1q`

min r
´ logqv δ

1
U

` 1 and j2 “
Qd´ pd´ 1q`

min s
´
n

d
logqv ε

U

` 1 ,

where δ1 will be determined later on.
Let k “

P

logqv
`

r
1

max r ε´
m
d

˘T

` j2 ` 1 and A “ a´kA U` . By the properties of A U`

given in Proposition 5.7 and since K Ă Y prq, for every y P K, we have

BU`

δr y Ă rysA U` Ă BU`

r y .

It follows from Equation (45) that for any y P K,

BU`,r

δ
1

min r
r

y Ă rysA U` Ă BU`,r

r
1

max r
y .

Hence, by Equation (46), we have

BU`,r

q´kv δ
1

min r
r

a´ky Ă ra´kys
a´kA U` “ ra

´kysA Ă BU`,r

q´kv r
1

max r
a´ky .

Thus for every y P akK, we have

BU`,r
δ1 y Ă rysA Ă BU`,r

r1 y , (67)

where, by the definition of k, we take

r1 “ q´j2´1
v ε

m
d and δ1 “ q´1

v r´
1

max r δ
1

min r
r r1 .
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Equation (67) implies that for every y P aj1`kK, we have

BU`,r
δ1 a´j1y Ă ra´j1ysA Ă BU`,r

r1 a´j1y . (68)

Now, we will use Proposition 5.10 with j “ j1, K 1 “ akK (which is U`-saturated since
so is K and as a normalizes U`), and ε “ r1 (which satisfies the assumption of Proposition
5.10 by Equation (67)). We claim that

BU`,r

q´1
v ε

m
d

Lε Ă Lε . (69)

Indeed, for all y P Lε and θ P Km
v such that }θ }r ď q´1

v ε
m
d , for every vector u “ pu´, u`q

in the grid wpθ,0qy, we can write u “ v ` pθ,0q for some v “ pv´, v`q in the grid
rΛy associated with y (see Equation (33)). Since y P Lε, we have (see Equation (35))

} v }r,s “ maxt} v´ }
d
m
r , } v` }

d
n
s u ě ε. Since u` “ v`, if } v` }

d
n
s ě ε, then wpθ,0qy P Lε.

Otherwise } v´ }
d
m
r ě ε. We then have }θ }r ď q´1

v ε
m
d ă ε

m
d ď } v´ }r. It follows from the

equality case of the ultrametric inequality property of } }r that

}u´ }r “ }θ ` v
´ }r “ max

 

}θ }r, } v
´ }r

(

“ } v´ }r ě ε
m
d .

Hence wpθ,0qy P Lε, which proves Equation (69).

By Proposition 5.7, the σ-algebra A U` is a´1-descending and U`-subordinated modulo
λ, and so does A “ a´kA U` since a normalizes U`. Note that Suppλ Ă a´j2Lε since λ
is a-invariant. By Equations (46) and (69), we have

BU`,r
r1 a´j2Lε “ a´j2BU`,r

q
j2
v r1

Lε “ a´j2BU`,r

q´1
v ε

m
d

Lε Ă a´j2Lε .

Note that we have
τ a

j1A
y pY ´ akKq “ 0

for λ-almost every y P akK, since then (see just above Proposition 5.10) the support
Supp τ a

j1A
y is contained in rysaj1A , which is contained in U`y, hence in akK since a

normalizes U` and K “ π´1pK0q is U`-saturated. Therefore, it follows from Proposition
5.10 for the first line, from the fact that the integrated function is nonpositive (hence its
integral on a smaller domain is larger) for the third line, that

HλpA |a
j1A q ď j1|r| `

ż

Y
logqv τ

aj1A
y ppY ´ akKq YBU`,r

r1 Suppλq dλpyq

ď j1|r| `

ż

Y
logqv τ

aj1A
y ppY ´ akKq Y a´j2Lεq dλpyq

ď j1|r| `

ż

akKXaj1`kKXY ěq`v

logqv τ
aj1A
y ppY ´ akKq Y a´j2Lεq dλpyq

“ j1|r| `

ż

akKXaj1`kKXY ěq`v

logqv τ
aj1A
y pa´j2Lεq dλpyq .

We now apply Lemma 6.3 with as said above µ1 “ λ and A “ a´kA U` , and with
y P aj1`kK X Y ěq`v which satisfies the assumption of Lemma 6.3 by Equation (68). Thus

τ a
j1A
y pa´j2Lεq ď 1´

´

q´pj1`j2qv r1
´1
ε
m
d

¯|r|
“ 1´ q´pj1´1q|r|

v .
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Hence

´ logqv τ
aj1A
y pa´j2Lεq ě ´ logqv

`

1´ q´pj1´1q|r|
v

˘

ě
q
´pj1´1q|r|
v

ln qv
.

Note that λpakKXaj1`kKXY ěq`vq ě 1
2 since λ is a-invariant, K Ă Y ěq`v and λpKq ą 0.9,

so that the three sets akK, aj1`kK and Y ěq`v have λ-measure ą 0.9, hence their pairwise
intersections have λ-measure ą 2ˆ0.9´1 “ 0.8 , and their triple intersection has λ-measure
ą 2ˆ 0.8´ 1 “ 0.6 . It follows from Equation (39) and the invariance under a of λ, hence
of the conditional entropy, that

|r| ´HλpA
U` | aA U`q “ |r| ´

1

j1
HλpA

U` | aj1A U`q “ |r| ´
1

j1
HλpA | a

j1A q

ě ´
1

j1

ż

akKXaj1`kKXY ěq`v

logqv τ
aj1A
y pa´j2Lεq dλpyq

ě
q
|r|
v

2 ln qv

q
´j1|r|
v

j1
.

Therefore, by Equation (66), we have

max r

0.9 p1´ ηAq
pm´ dimHaus BadApεqq ě |r| ´HλpA

U` | aA U`q ě
q
|r|
v

2 ln qv

q
´j1|r|
v

j1
.

Observe that

j1 “
Q d´ pd´ 1q`

min r
´ logqv δ

1
U

` 1 “
Q d´ pd´ 1q`

min r
´ logqv

´ δ
1

min r
r

q2
v r

1
max r

q´j2v ε
m
d

¯U

` 1

“

Q d´ pd´ 1q`

min r
`

Q d´ pd´ 1q`

min s
´
n

d
logqv ε

U

` 1´
m

d
logqv ε´ logqv

δ
1

min r
r

q2
v r

1
max r

U

` 1

ď p d´ pd´ 1q` q
´ 1

min r
`

1

max s

¯

´ logqv
δ

1
min r
r

q2
vr

1
max r

` 4´ logqv ε .

The constants ηA, `, δr, and r depend only on the fixed matrix A P Mm,npKvq. Hence
there exists a constant cpAq ą 0 depending only on d, r, s and A such that

m´ dimHaus BadApεq ě cpAq
ε |r|

logqvp1{εq
.

This proves Theorem 1.2. l
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