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Abstract

In this paper, we study inhomogeneous Diophantine approximation over the com-
pletion K, of a global function field K (over a finite field) for a discrete valuation
v, with affine algebra R,. We obtain an effective upper bound for the Hausdorff
dimension of the set

Bad(e) = {0 eK)": lim inf lal™|Aq — 6 — p||™ = e} ,

(p,@)eR[* xR}, |q|—0

of e-badly approximable targets 8 € K" for a fixed matrix A € #,, ,(K,), using
an effective version of entropy rigidity in homogeneous dynamics for an appropriate
diagonal action on the space of R,-grids. We further characterize matrices A for which
Bad 4(¢) has full Hausdorft dimension for some € > 0 by a Diophantine condition of
singularity on average. Our methods also work for the approximation using weighted
ultrametric distances. [

1 Introduction

In the theory of inhomogeneous Diophantine approximation of real numbers by rational
ones (in several variables), one studies the distribution of the vectors Ax € R™ modulo
Z™, as x varies over Z", near a vector b € R™ for a m x n real matrix A € .4, ,(R). For
instance, if m,n > 1 and (&) = xie%fm | € —x || denotes the distance from & € R™ to a nearest

integral vector with respect to the Euclidean norm | - || on R™, using the inhomogeneous
Khintchine-Groshev theorem of [Schll Theoreml|, we have

liminf |[x|"(Ax—b)" =0
XeZ™, | x ||—00
for almost every (A,b) € My n(R) x R™.
Let us consider the exceptional set of solutions (A, b) of the above equation. We call A
badly approximable for b if
liminf | x|"(Ax—0)">0.
XEZL™, || x |0
If the left hand side is at least €, we say that A is e-bad for b. It is known that given
any b € R™, the set of badly approximable matrices A € 4, ,(R) has zero Lebesgue
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measure but full Hausdorff dimension, see [Sch2l [ET|. In [KKL], the first two authors,
with Wooyeon Kim, show that given a matrix A € .#), ,(R), under a necessary assumption
of non-singularity on average, the set of vectors b € R™ with respect to which A is e-bad
does not have full Hausdorff dimension, and obtain an explicit upper bound: there exist
¢(A) > 0, depending only on m, n and A, such that for every ¢ > 0, the Hausdorff
dimension of the set of vectors b € R that are e-bad for A is bounded from above by

m — c(A) 7111(;/5)'
In this paper, we prove analogous results for function fields, in the weighted setting.

Let us state our main results, refering to Section for more precise definitions.

Let K be any global function field over a finite field IF, of ¢ elements for a prime power
q, that is, the function field of a geometrically connected smooth projective curve C over
F,. The most studied example in Diophantine approximation in positive characteristic is
the case of the field K = F,(Z) of rational fractions in one variable Z over Fy, where
C = P! is the projective line, but we emphasize the fact that our work applies in the
general situation above.

We fix a (normalized) discrete valuation v on K. Let K, and €, be the completion of
K with respect to v and its valuation ring, respectively. We fix a uniformizer m,, € K, which
satisfies v(m,) = 1. Let k, = 0, /7,0, be the residual field and let ¢, be its cardinality.
The (normalized) absolute value |- | associated with v is defined by |z | = gy V() For every
0 €Zsy,let || KZ — [0,+0[ be the norm (&1,...,&) — maxi<i<s | & |. We denote by
dimp,ys the Hausdorft dimension of the subsets of K7 for this standard norm.

The discrete object analogous to the set of integers Z in R is the affine algebra R, of
the curve C minus the point v. If K = Fy(Z) and v = [1 : 0] is the standard point at
infinity of C = P!, then R, = F,[Z] is the ring of polynomials in Z over F,.

Let m,n € Z>1. Let us fix, throughout the paper, two weights consisting of a m-tuple

r = (ry, -+ ,ry) and a n-tuple s = (s1,---,8,) of positive integers such that we have

r| = Z T = Z sj. The r-quasinorm of £ € K" and s-quasinorm of 6 € K are
1<i<m 1<j<n

given by

1 1
[ €] = max [& [ and [6]s= max |6;]% .
1<is<m <n

We denote by (&), = iI}l%f | €& — x| the (weighted) distance from £ to the set R)" of
xXER

integral vectors in K.
Let € > 0. A matrix A € 4, »(Ky) is said to be e-bad for a vector 8 € K" if

liminf |[x[s{(Ax—6), > €. (1)
xeR], || x||s—o0

Denote by Bad4(€) the set of vectors @ € K” such that A is e-bad for 8. Given two

subsets U and V of a given set, we denote U =V = {x € U : z ¢ V}. We say that a matrix

A€ My n(Ky) is (r,s)-singular on average if for every € > 0, we have

1
lim NCard{fe{l,...,N}:EIyeRZL—{O}, (Ay W <eq |yls<d}=1. (2

N—oo

For the basic example of function field, when K = F,[Z] and v = [1 : 0], Bugeaud and
Zhang |BZ] found a sufficient condition (and an equivalent one when n = m = 1) on A for
the Hausdorff dimension of Bad 4(¢€) to be full. We first strenghten and extend their result
to general function fields.



Theorem 1.1 Let A€ My n(Ky) be a matriz. The following assertions are equivalent:
(1) there exists € > 0 such that the set Bad a(€) has full Hausdorff dimension,
(2) the matriz A is (r,s)-singular on average.

We also provide an effective upper bound on the Hausdorfl dimension in terms of e,
which is a new result even in the basic case K = [F[Z] and v = [1: 0].

Theorem 1.2 For every A € Myn(Ky) which is not (r,s)-singular on average, there
exists a constant c¢(A) > 0 depending only on A, r, s, such that for every e > 0, we have
dimgaus Bada(e) < m — c(A)hf(I%.

The proofs of the above main theorems of this paper are largely divided into two parts.
Firstly, assuming the singular on average property in order to prove the full Hausdorff
dimension property, we give a lower bound on the Hausdorff dimension of appropriately
chosen subsets of K", using new function fields versions of classical tools in Diophantine
approximation such as geometry of numbers, transference principle and best approximation
vectors (see for instance [Casl, [Sch3, [Kril, [KIW), [Cheu, [Chevl GE, [CC| [KIST, |GGl [BZ, |Ger,
LSST, [ICGGMS, BuKLR]). Secondly, in order to prove the upper bound in Theorem
we use technics of homogeneous dynamics of diagonal actions and in particular the entropy
method (see for instance [Klel [ELL [LSS, [ELW]). Let us explain briefly the latter part.

Let d = m 4+ n. The dynamical space relevant to inhomogeneous Diophantine approx-
imation is the space & of unimodular grids A + b in K2, that is of (Haar-covolume 1)
R,-lattices A of K¢ translated by vectors b € K, endowed with the affine action of the
diagonal subgroup of SLy(K,). This is in higher dimension more convenient than the study
of the commuting actions of SLy(R,) and of the diagonal group on the Bruhat-Tits build-
ing associated with SL4(K,) (see [BPP) Part III] when d = 2). Given the above weights
r and s, we consider the affine action on % of the 1-parameter diagonal subgroup (a*)ez
where

a= diag(ﬂ’v_rlv"' 77rv_7"m777-15117' e 77T5n) .

The space ¢ of unimodular grids a-equivariantly projects onto the space of unimodular R,,-
lattices 2 = SL4(Ky)/SLg(R,) by the map sending A+ b to A. We say that a unimodular

R,-lattice A diverges on average under the action of a if for every compact subset @ of 2,
we have

| ¢
l%n_goréfNCard{Ee{l,---,N}:aAgéQ}:l.

Following Dani’s path, we prove in Section

that the lattice Ay = (Igl IA> RZ diverges

on average under a if and only if A is (r,s)-singular on average.

As developped in the last Section [6] the main idea of the entropy method in our situa-
tion, as in [KKLJ] for the real case, is that if the point A 4 does not diverge on average, then
the Hausdorff dimension of Bad s(¢) provides a lower bound on the conditional entropy
of a with respect to a measure pu constructed by well-separated sets on the fibers of the
projection ¥ — 2. An effective control of the maximal conditional entropy by a control
of the support of p on the thin/thick parts of % hence gives an effective upper bound.

Before Section[6] our paper is organized as follows. In Section 2] we recall basic facts on
the geometry of numbers, define the best approximation sequence and prove transference
principle for the weighted case, which generalize previous results of Bugeaud-Zhang [BZ].
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In Section 3] we give a characterization of the singular on average property with weights in
terms of the best approximation sequence. In Section [d] we establish the lower bound on
the Hausdorff dimension by constructing a subsequence with controlled growth of the best
approximation sequence for a matrix whose transpose is singular on average. In Section [}
we recall some background on homogeneous dynamics and conditional entropy, and prove
an effective and positive characteristic version of the variational principle for conditional
entropy of [ELL §7.55] (see [KKL] in the real case).

We remark that in [KKL], the first two authors, with Wooyeon Kim, also show that
given any vector b € R™, the set of matrices A € 4, ,(R) that are e-bad for b does not
have full Hausdorff dimension, and estimate an explicit upper bound. Thus it seems very
interesting to obtain a similar result in the global function field case.

Acknowledgements. Taehyeong Kim and Seonhee Lim are supported by the National Research
Foundation of Korea, Project Number NRF-2020R1A2C1A01011543. Taehyeong Kim is supported
by the National Research Foundation of Korea, Project Number NRF-2021R1A6A3A13039948.
Seonhee Lim is an associate member of KIAS.

2 Background material for the lower bound

2.1 On global function fields

We refer for instance to [Gos, [Ros|, as well as [BPP, §14.2|, for the content of this section.
Let 4 be a finite field with g elements, where ¢ is a positive power of a positive prime. Let
K be the function field of a geometrically connected smooth projective curve C over F, or
equivalently an extension of F, with transcendence degree 1, in which [, is algebraically
closed. We denote by g the genus of C. There is a bijection between the set of closed
points of C and the set of normalized discrete valuations v of K, the valuation of a given
element f € K being the order of the zero or the opposite of the order of the pole of f
at the given closed point. We fix such an element v throughout this paper, and use the
notation K,, O, 7y, kv, qu, | - | defined in the introduction. We furthermore denote by
deg v the degree of v, so that
G = qdegv )

We denote by vol, the normalized Haar measure on the locally compact additive group
K, such that vol,(€,) = 1. For any positive integer d, let Volff be the normalized Haar
measure on K2 such that vol?(6%) = 1. Note that for every g € GLy(K,) we have

dvolf(gz) = | det(g) | dvoli(z)

where det is the determinant of a matrix. For every discrete additive subgroup A of K¢,
we again denote by vol¢ (and simply vol, when d = 1) the measured induced on K2/A by
vol?.

Note that the completion K, of K for v is the field k,((7,)) of Laurent series z =
Dz xi(m})i in the variable m, over k,, where x; € k,, is zero for i € Z small enough. We
have

—sup{jez : Vi<j, x;=0
x| =g p{J Js T4 }»7

and O, = ky[[my]] is the local ring of power series z = > zi(m,)" in the variable T,

i€Z>O
over k.



Recall that the affine algebra R, of the affine curve C — {v} consists of the elements

of K whose only poles are at the closed point v of C. Its field of fractions is equal to K,

hence we can write elements of K as x/y with x,y € R, and y # 0. By for instance [BPP|
Eq. (14.2)], we have

Ryn0O,=T,. (3)

For every ¢ € K,,, we denote by
— inf | —
K& = inf ¢ -]

the distance in K, from & to the set R, of integral points of K.

For instance, if C is the projective line P!, if oo = [1 : 0] is its usual point at infinity
and if Z is a variable name, then g = 0, K = Fy(2), 7o = Z71, Koy = F,((Z71)),
Op =F,[[Z7], ko = Fy, g = q and Ry, = F,[Z]. In this setting, there are numerous
results on Diophantine approximation in the fields of formal power series, see for instance
[Las|, [Bug, Chap. 9]. On the other hand, little is known about Diophantine approximation
over general global function fields, see for instance [KIST] (for a single valuation in positive
characteristic) for the ground work on the geometry of number for function fields.

2.2  On the geometry of numbers and Dirichlet’s theorem

Let d be a positive integer. An R, -lattice A in K. is a discrete R,-submodule in K¢ that
generates K2 as a K,-vector space. The covolume of A, denoted by Covol(A), is defined
as the measure of the (compact) quotient space K2/A :

Covol(A) = vold(K2/A) .
For example, R? is an R,-lattice in K2, and by for instance [BPP} Lem. 14.4)], we have
Covol(R%) = qla=1d (4)

Let B(0,7) be the closed ball of radius r centered at zero in K¢ with respect to the norm
|- : (&1y- .y €q) — maxi<i<q | & |- For every integer k € {1,...,d}, the k-th minimum of
an R,-lattice A is defined by

Ai(A) = min{r > 0 : dimg, (spang, (B(0,7) n A)) = k},

where spany denotes the K,-linear span of a subset of a K,-vector space and dimg, is
the dimension of a K,-vector space. Note that Aj(A),...,A\g(A) € ¢2. The next result
follows from [KIST, Theo. 4.4] and Equation .

Theorem 2.1 (Minkovski’s theorem) For every R,-lattice A in K2, we have
¢~ 9D Covol(A) < A1(A) ... Ag(A) < ¢ Covol(A). O

Since A1(A) < --- < Ag(A), the following result follows immediately from Minkowski’s
theorem 2,11

Corollary 2.2 For every R,-lattice A in de, we have

AM(A) < g Covol(A)é . O
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The following result generalizes [GGl Theo. 2.1|, which is proved only when K = F,(2)
and v = 00, to all function fields K and valuations v. See also [KIW| Theo. 1.3| in the case
of the field Q.

Theorem 2.3 (Dirichlet’s theorem) For every matriz A € ///mn( K,) whose rows are
denoted by Ay, ..., Am, for all (ry,...,7,) € ZLy and (s,...,s)) € Ly with

Y ’I’L
g—]_ m n

and rh = s,
degv Z_Z]l ’ E J

there exists an element'y = (y1,...,yn) € R} — {0} such that, for alli = 1,...,m and
j=1,...,n, we have

ri>1+

|<AzY>’ Qv qg ! QU_T; and ‘yj ’ < Q qg—l QUSj .

Proof. With A, r},...,r], and s|,..., s, as in the statement, we apply Corollarywith

r'm

d = m + n to the R,-lattice

!
—T
Ty ! 0

where [j is the k x k identity matrix. Since the above two matrices have determinant 1
by the assumption ., 7} = 377, s}, and by Equation (), we have Covol(A) = gl9=1)d.,
Corollary . 2.2 hence says that there exists (x = (21,...,2m), Y = (Y1,.--,Yn)) € R;f — {0}

such that

max{ max |7Tv_ri (x; + Ajy) |, nglaX |7Tv yj | } Qv COVOI(A)% =qq¢ .

_17 -
Assume for a contradiction that y = 0 Then for all i = 1,...,m, since |7, | = ¢, !, we
have the 1nequahty |2 | < quq?lqy . Sincer! > 1+% degv this would imply that | z; | < 1.

By Equation (), we have {z € R ]z] < 1} = {0}. Since z; € R,, we would have that
x = 0, contradicting the fact that (x, y) # 0. Therefore y # 0 and the result follows. []

The following corollary is due to [Kri, Theo. 1.1]| (see also [BZ, Theo. 3.2] where the
assumption that ¢m is divisible by n is implicit) in the special case when K = F,(Z) and
v = o0 and without weights.

Let minr = min; <<, r; and similarly for mins, maxr and maxs.

Corollary 2.4 For all A € My n(Ky) and o € Zzo with o > milnr + (mini)_((liegv), there
exists y € R — {0} such that
degv+g—1 degv+g—1

—

<Ay>r < g minr q, and H y ”S < q mins qg




Proof. We apply Theorem with r, = ar; > 1+ é’%glv fori=1,...,mand s} = as;
for j =1,...,n, noting that » ;" , rl = Z;’:l s} since D" 1 = Z?zl S5 ]
Remark. When r = (n,n,...,n) and s = (m,m,...,m), the above result says that for
every integer a > 1 + n%;glv, there exists y € R" — {0} such that

min [Ay — x| <q ¢’ ' ¢,*" and |y <q¢’ g™,

XeER™
where || - | is the sup norm.

2.3 Best approximation sequences with weights

In this subsection, we construct a version with weights, valid for all function fields, of the
best approximation sequences associated with a completely irrational matrix by Bugeaud-
Zhang [BZ|.

A matrix A € My, n(Ky) is said to be completely irrational if (Ay ), # 0 for every
y € R} —{0}. Note that this does not depend on the weight r, and that the fact that A
is completely irrational might not necessarily imply that ‘A is completely irrational.

Remark 2.5 Let A€ My, (K,) be such that 'A is not completely irrational.
(1) The matriz 'A is (s,r)-singular on average.
(2) For every e > 0 small enough, the set Bad a(€) has full Hausdorff dimension.

Proof. By assumption, there exist x € R} and y = (y1,...,ym) € R)" — {0} such that
Ay—-x=0
y—x=0.

(1) For every € > 0, if £y = [log,, |y ||r] then for all integers N > {o and £ € {{o, ..., N},
we have ( /Ay )s =0 < eq, * and |y|r < ¢f, hence ‘A is (s,r)-singular on average (see
Equation (2)).

(2) For every @ = (01,...,0,,) € K", let

m
y-0=2 yZQZ EKU.
7j=1

For every € € |0, m], let Uy = {0 K" :|{y-0)] = (e|y]r)™"r}. If € is small enough,

then the set Uy . contains a closed ball of positive radius: For instance, let jo € {1,...,m}

be such that y;, # 0 ; define 0y ; = 0 if 7 # jo, 6o, = ;r—“ and 8y = (6o,1,...,60m) ;
Jo T

then it is easy to check using the ultrametric inequality that the closed ball B(8y, m)

is contained in Uy . if € < qv_ﬁ ly |-t

Let us prove that Bad4(€) contains Uy ., which implies that dimpays (Bad A(e)) =m
if € is small enough. Let 6 € Uy . and (y',x') € R x (R}’ — {0}).

If |y |e||AX" +y" — 0 | = 1, then since X’ € R — {0} so that | x"|s = 1, we have

1
=€

1
H X/ HS |‘Axl+yl_0|‘r = HyHI‘ HAX/—FYI_BHY = ”yH = L.
r

[y [




If]y e |[AX'+y' =0 [+ < 1, thensince y-(Ax'+y’) = (Ay) x'+y-y’ = xx'+y-y' € Ry,
and since 0 € Uy ., we have

1

Iy lle
1

27
Iy lle
1

“ Tyl

[y e [AX"+y" = 0

(m

|y (AX' +y' —0)

[ ls [Ax" +y" = 6x >

1
||YHI=JHAX —|—y —OH )minr

1<]<

ﬁ ‘<y 0>’mmr 26,

Therefore 8 € Bad 4(¢), as wanted. ]

For every matrix A € M, n(Ky), a best approzimation sequence for A with weights
(r,s) is a sequence (y;);>1 in R such that, with Y; = || y; [|s and M; = (Ay; Hr,

e the sequence (Y;);>1 is positive and strictly increasing,

e the sequence (M;);>1 is positive and strictly decreasing, and

o for every y € R} — {0} with |y |s < Yit1, we have (Ay )r = M;.
We denote by lemr the least common multiple of r1,...,7,, and similarly for lems.

Lemma 2.6 Assume that A € My, n(Ky) is completely irrational.
(1) There exists a best approzimation sequence (y;)i=1 for A with weights (r,s).

(2) If (yi)i=1 is a best approxzmatzon sequence for A with weights (r,s), then
L7 L7
i) we have M; € qlcmlr and M; € qlc"‘” =* if i is large enough,

Z/O i—1
ii) we have Y € q},cms and Y; = ¢i™° for every i =1,

ii1) the sequence (Ml }/i+1)i>1 18 umformly bounded.

Note that a best approximation sequence might be not unique (and the terminology
“best”, though traditional, is not very appropriate). When m =n =r =35 =1, K =
F,(Z) and v = 0, then A € K, is completely irrational if and only if A € K, — K, and with
(%)kzo the sequence of convergents of A (see for instance [Las|), we may take y; = Q;—1
foralli > 1

If A e Myn(K,) is not completely irrational, a best approzimation sequence for A
Wlth weights (r,s) is a finite sequence (y;)i<i<i, in R, such that, with ¥; = | y; s and

= (AYi)r,

e I=Y1 < <Y,

° M1>-~~>Mi0—0,

o forallie{l,...,ip—1} and y € R} — {0} with |y ||s < Yit1, we have (Ay )» = M;,
and

e which stops at the first ¢y such that there exists z € R with 0 < ||z |s < Y;, and
(Az), =0.

The proof of Lemma is similar to the one given after [BZ, Def. 3.3] in the particular
case when K = F,(Z), v = 0 and without weights.

v

Proof. (1) Let us prove by induction on i > 1 that there exist y1,...,y; in R such that,
with Y; = |yj[s and M; = (Ay; ), for every 1 < j <4, we have 1 = Y] < --- <Y},
M; > -+ > M; >0, and (using My = +o0 by convention)

(a;) we have ( Ay )y = M,_; for every y € R} — {0} with ||y |s < Vi,
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(bi) we have ( Ay )r = M, for every y € R} — {0} with |y |s < Yi.

Note that {z € R, : |z| < 1} = R, n 0, = F, by Equation (3)). Hence the elements
with smallest s-quasinorm in R’ — {0} are the elements in the finite set F;' — {0}, which is
the set of elements in R’ with s-quasinorm 1. Furthermore, the set {|y||s : y € R —{0}}

n lz
j=175;%>0

1
. . . ) ..
is contained in g, J c qi™="7". Similarly, for every x € K™ — {0}, we have

_1 7
<X>I' e q’ll]cmr .
Therefore there exists an element y; € R, with ||y ||s = 1 such that

(Ayr =min{ (Ay)r:ye R}, |yls=1},

We thus have Y1 = |y1 s = 1 and M; = (Ay1)r > 0 since A is completely irrational.
There is no y € R — {0} with |y|s < Y1, and if |y |s = Y1, then ( Ay ), > M, hence
the claims (a1) and (b) are satisfied.

Assume by induction that yi,...,y; as above are constructed. Let

S={yeR): |yls>Yi, (Ay)r <M;}.

Note that the set {z € R, 0 < ||z|s < Y;} is finite by the discreteness of R, and
¢ =min{(Az),:ze R}, 0<|z|s <Y;} is positive, since A is completely irrational.
Corollary [2.4] of Dirichlet’s theorem implies in particular, by taking in its statement « large
enough, that for every € > 0, there exists y € R, — {0} such that ( Ay ), < e. Applying
this with € = min{M;, ¢;} > 0 proves that the set S is nonempty. Hence the set Spin of
elements of S with minimal s-quasinorm, which is finite again by the discreteness of R},
is nonempty. Therefore there exists y;11 € Smin such that

(Ayit1 )y =min{(Az)y :2€ Spin } .

Then Y11 = || yi+1|s = min | S|s > Y; by the definition of the set S. We also have that
Miy1 = (AYiv1 )r < M; since y;i1 € Smin © S, and again by the definition of S.

Let us now prove that y;; satisfies the properties (a;4+1) and (b;j+1).

e Let y € R — {0} be such that |y s < Yit1. If |y s < Y, then by the induction
hypothesis (b;), we have ( Ay )y = M;, as wanted for Property (a;j+1). If |y |s > Y, then
by the definition of S, we have ( Ay ), = M; as wanted for Property (a;+1), otherwise y
would be an element of S with s-quasinorm strictly less than the minimum s-quasinorm of
the elements of S, a contradiction.

e Let y e R — {0} be such that |y |s < Yi;1. Either ||y |s < Yi4+1, in which case, as
just seen, ( Ay ) = M; = M;,1, as wanted for Property (b;+1). Or |y |s = Yiq1 > Vi, in
which case either ( Ay )y = M; > M;;1, as wanted for Property (b;+1), or (Ay »» < M;,
so that y belongs to Smin, hence ( Ay », = min{(Az), : z € Spin } = M;41.

By induction, this proves Assertion (1) of Lemma

1
(2) i) This follows from the facts that M; € q}fﬁz and that M, ; < M;.

_1

ii) Since Y7 = 1, this follows by induction from the facts that Y; € q}fmsz and that
Yit1 > Y.

_degvtg—1 . . -1 e .
iii) Let a = | log,, (¢~ mms  Yjy1)| — 1, which satisfies o > e (mini)(degu) if 4 is

large enough, by Assertion (2) ii). By Corollary there exists y € R} — {0} such that
d g1 a g1 ] ( _degv+tg—1 v )

cevVTI— cgvrg— og v q min s f]
H y ”S < q min s qg‘ < q mins qv q +1

9
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and

degv+g—1

<A y >I‘ S q minr qv_a

_degv+g—1
degvtg—1 —(Iquu(q mins Yi+1)—2) _ q(dengrgfl)( Lo L1 )+2degv (Y 1)71
= 1+

g q minr q,U minr = mins

Since M; < min{ (Ay)» : y € R}, 0 < |y|s < Yit1} by the definition of a best
approximation sequence, the result follows. O

2.4 Transference theorems with weights

In this section, we will show that a matrix A € .4, ,(K,) is singular on average if and
only if its transpose A is singular on average. To do this, following [Cas, Chap. V|, we
prove a transference principle between two problems of homogeneous approximations with
weights. See also [GE, [Ger] in the disjoint case of the field Q.

Let d € Zx4 be a positive integer at least 2. For all £ = (&1,...,&;) and 8 = (01,...,0,)
in K2, we denote

d
£-0=72 &0.
k=1

Let a1,...,aq € Z be integers and let o = Zgzl ap. We consider the parallelepiped
P={¢=(,....)e K VEk=1,..,d |&]|<q*}.

Following Schmidt’s terminology [Sch3l page 109] in the case of the field Q (building on
Mahler’s compound one), we call the parallelepiped

1
Pr={t=(&,.. ., &) e K VEk=1,...4 61 < o

7

d
o L a—ag
qv - q'u }

=1

the pseudocompound of &2. Note that &2 and &* are preserved by the multiplication of
the components of their elements by elements of &,.

Theorem 2.7 With & and P* as above, for every F € SLq(K,),
if P* AtF Y RY) # {0}, then 7,12 A F(RY) # {0},
where
By = [dll(d+1+(gd;g1v)d)] .

Remark. The R,-lattice 'F~1(R?) is called the dual lattice of the R,-lattice F(RZ) since
we have z-w € R, for all z € tF~1(RY) and w € F(RZ). They have the same covolume as
RZ, since det(F) = 1.

Proof. Let z = (21,...,24) € 2% n'F~Y(RJ) — {0} and kg = max{k € Z>¢ : z € 7F P*}.
Up to permuting the coordinates, we may assume that, for all k = 2,...,d, we have

lz1]=gqp™ ™7™ and [z | < g™ ()

10



With Fj, the k-th row of F, let us consider the R,-lattice A = M (R?) where

(%

—1 d
Ty Dp—1 2kFk
Thiter g,

M =

rhitedpy

By substracting to the first row a linear combination of the other rows, and since det F' = 1,
the determinant of the above matrix M is equal to Wq()d_l)ﬁ ate—on—l By Equations
and , we thus have

Covol(A) = det(M) Covol(RUd) = qi_’io—(d—l)ﬂd q(g—l)d '

Since d = 2 and Gy = d—il (d +1+ (fi; glq)}d), Corollary applied to the R,-lattice A gives
that )
A1(A) < gy Covol(A)d < 1.

Hence, by the definition of the first minimum A;(A), there exists w € R? — {0} such that
for every k = 2,...,d, we have

|z F(w)| <¢,' <1 and |Fp(w)|<gt*™ . (6)
Since z € 'F~1(R?) and w € R?, we have z - F(w) € R, by the above Remark. The first

inequality of Equation (6]) hence implies that z - F(w) = 0, which means that

d
21F1<W) = — Z Zka(W) .
k=2

By the ultrametric property of | - |, by Equations and @, we have

g2 T Fy(w) | = |20 Fi(w)| < max [ 2 Fi(w)|

a+B4—Fko

a—a—kKo ‘o
< max g, °F qfd k= q,

2<k<d

Therefore | F1(w) | < g7 and with the second inequality of Equation (6), we conclude
that F(w) € 104 2. O

Corollary 2.8 There exist k1, Ko, k3, k4 = 0 with ke > 0, depending only on m, n, g,
degv, r and s, such that for all A € My n(Ky) and € € q%gfl, for every large enough
Y € ¢i®', if there exists y € R — {0} such that

(Ay)e<eY™' and |yl|s<Y, (7)
then there exists x € R — {0} such that
(Ux)s < g e X1 and ||x|, <X, (8)

where X = g3 e ™Y

11



Proof. Let |s| = Z;l 1 85 Denoting o = —log, € € Z>1 and ay = log, Y € Zz1, we
define 6 = g, “ and Z = ¢35 Y where

8= hs|( Zi_% )__1J and oz = [(IJ;lS _'1>a5]‘ (9)

minr min s

Note that a4 is well defined since % =
1 1
+

(|S‘ (minr mins

hence ( sl —1)a5+1<a6—

1, and that a5 and az are nonnegative. We have

J-Das<ac—1,

. as
mins minr
therefore (L — 1) as <oy < o — |S| «o (10)
mins minr

Let d = m + n > 2. Let us consider the following parallelepipeds

Vi=1,...,m, [§|<e"Y™ n}
9 = = sy Ede: : ’
{5 (&5 -5 8a) Vi=1,... |§m+g| Y

Vi=1,...,m, |&|< 2"
_ _ d . ) 5 1T,
2={e=@wents T ST

Since Y0 ri = Z?Zl s;, the pseudocompound Z* of & is equal to

Vi=1,...,m, |&|<dslz™
= = .. K. prr st
7 {5 S 8 SRSy oy [y | < e 2
By the right inequality of Equation (10)), for every i = 1,...,m, we have

_ Is|
5‘ ‘Z L q*|S|a5 itz Y T > v TZ(QZ+m1nra5) Y*Ti > ETi Y*T'L .

By the left inequality of Equation 7 for every j = 1,...,n, we have

, . (o — (sl
5‘5‘78]'253‘ _ q;(|s|*31)a6+sjaz YSi > qu(C“Z (s —Des) YSi > Y5 |

Therefore 2 is contained in &*.
Now, by the assumption of Corollary let y € R)' — {0} be such that the inequalities
are satisfied. Then there exists (x',y) € R x (R} — {0}) such that

Ay —X[r <eY ™" and [yls<V
Therefore
I, A d
Qm(o In>R” # {0} .
Since 2 c £7*, this implies that

* I, A d
P m(o In>Ry¢{O}.

12



By Theorem [2.7], we have

_ I
mﬁd@m( A I>Rd7&{0}

Then there exists (x,y’) € (R)” x R]') — {0} such that
|7ii x|y < Z and |r)i(—"Ax—y')|s<6Z7". (11)

The above inequality on the left-hand side and the two equalities of Equation @D give

Bq s| —1
Ba_ Ba_ 4, mnr T s D oo
H X ”I‘ < mlnr Z _ qmmr Y < qv minr ' mins Y
s Is|_
d 1 — min s
< q1§“‘“r+ ¢ slGmmrtmms) 1 Y.
Ba sl _4 . . . o
If kg = + 1> 0 and ky = —=2s—+—— > 0, this proves the right inequality in

minr

+ 1

| ‘(minr mins)

Equation (8) with X = ¢3¢ "™ Y.
The right inequality in Equation (|1 , since By = 0 and by using the left inequality in
Equation and the definition @ of ag, gives
Ba _ Ba__ _ls|
<tAX>S < mlns S 7~ 1 _ qénms as—az Y_1 q{}mns mins X5 TH3 e X_

Is|

Ba Is| ( ae—1 s L
d Sl ae=l = 1)4gg4—mins —
s mms \s|( L, 1 )—1 : ‘S‘<rr1i1111‘+milns>71 ‘
< minr " mins X—l
S0

B Is| ( 1 )

mins ' mins | |( 1 1 ) 1+1 +r3 1

sl 41 )_ il T _

— qq) minr ' mins €|s\(m+mins)71 X 1 .

This proves the left inequality in Equation for appropriate positive constants k; and
R9.

If x = 0, then we have y’ # 0 and |y’ ||s < ¢ 7% ¢"2T%4 Y =1 which contradicts the
fact that y’ € R if Y is large enough. This concludes the proof of Corollary . Il

Corollary 2.9 Let m,n be positive integers and A € Mo n(Ky). Then A is (r,s)-singular
on average if and only if 'A is (s,r)-singular on average.

Proof. This follows from Corollary ]

It follows from this corollary and from Remark that if A € 4, ,(K,) is such that
tA is not completely irrational, then A is (r,s)-singular on average.

3 Characterisation of singular on average property

In this section, we give a characterisation of the singular on average property with weights
in terms of an asymptotic property in average of the best approximation sequence with
weights. In the real case, the relation between the singular property and the best ap-
proximation sequence has been studied in [Cheul [Chevl [CC| [LSST]. Also in the real case,
and with weights, the relation (similar to the one below) between the singular on average
property and the best approximation sequence has been studied in [KKL, Prop. 6.7].

For the sake of later applications, we work with transposes of matrices.
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Theorem 3.1 Let A € My, n(K,) and let (y;)i=1 be a best approximation sequence in K"
for A with weights (s,r). The following statements are equivalent.
(1) For alla>1 and € > 0, we have

1
lim — Card{/e{l,...,N}:3yeR™ {0}, (Ay)s<ea ", |y|r<a'}=1.
N—owo N

(2) The matriz A is (s,r)-singular on average.
(3) There exists a > 1 such that for every € > 0, we have

1
lim ﬁCard{Ee{l,...,N}:EIyeRJ”—{O}, (MAyds<ea ™, |yllr<a’}=1.

N—0

(4) For every € > 0, we have

lim
k—o00 logqv k

Card{i <k:M;Yiy1 > e'} =0.

Proof. Since Assertion is Assertion for a = ¢, > 1, it is immediate that implies
implies .

Let us first prove that Assertion implies Assertion . Let a > 1 be as in Assertion
and let ¢ €]0,1[. Let e = € > 0.

We may assume that the set I = {i € Z>1 : M;Y;11 > €'} is infinite, otherwise Assertion
is clear since limj_, Yy = +00. We consider the increasing sequence (i;)jez., of
positive integers such that I = {i; : j > 1}. For every j > 1, by taking the logarithm in
base a, we thus have log, ¢ — log, M;; <log, Yi+1, hence

log, € —log, M;; <log, Y41 —1. (12)
Note that for every i > 1 and X € [V;, Y;;1[, the system of inequalities
(Ayds<eX™ ! and 0<|yl.<X (13)

has a solution y € R if and only if M; < eX~!. Indeed, if the later inequality is
satisfied, then y; is a solution of the system since M; = ({Ay;)sand X = Y; = || yi |+
Conversely, if this system has a solution, then since

M; <min{{'Ay)s:ye R™ 0<|y|: < Yis1}

by the definition of a best approximation sequence, the inequality M; < e X! holds since
X < Y;;1. Hence, for every integer ¢ € [log, Y;,log, Yi+1[, the system of inequalities ((13])
has no integral solutions for X = a if and only if

log, € —log, M; < ¢ <log, Yit1 . (14)

There exists an integer jo > 1 such that for every integer j > jo, we have log, Y;. 41 > 2
by Lemma (2) ii). If £ is the integer in the interval [log, Y;, +1 —1,log, Yi;+1[ (which is
half-open and has length 1, hence does contain one and only one integer), then ¢ > 1 and
by Equations and , the system has no integral solutions for X = af.

Let u = [(lemr)(log,, a)], which belongs to Z>;. By Lemma (2) ii), for every
k € Z>1, since the sequence (i;)jez., is increasing, we have

u

1
Y;k+u+1 = QUcmr }/ik+1 =Za Y;;k+1 .

14



The intervals [log, Y, +1—1,1og, i, +1[ and [log, Yi, o1 +1— 1, log, }/iu(j+1)+1[ are hence
disjoint for every j € Z>1. Thus, if j is large enough, with N; = [log, Y;,.+1], the number

n(N;) of integers £ € {1,..., N;} such that the system of inequalities has no integral

. YA s j*jo n(N]) .
solutions for X = a' is at least j — jo. Therefore [Tog,, Vi, 1] < N tends to 0 as j — +00,

by Assertion (3). This implies that /5~ tends to 0 as j — +o0.

For every integer k£ > 1, let ](k:) 1 be the unique positive integer such that we have
ijk) < k < ijay41, so that j(k) = Card{i < k : M;Y;41 > €'}. Hence, since (Y;)i>1 is
increasing, we have

i(k
Card{z k- MYzH>e} ' limﬁzo,
k

lim
Ina k—w log, Y,

k—oo log,

which proves Assertion .

Let us now prove that Assertion (4) implies Assertion (I)). Let @ > 1 and € € ]0,1[.
By Lemma [2 - iii), let ¢ = 1 be such that for every ¢ > 1, we have M;Y;1; < a°. By
Equation (|14 , since the number of integer points in an open interval is at most equal to its
length, for every i = 1, the number of integers ¢ € [log, Y;,log, Yi+1[ such that the system
of inequalities (I3]) has no integral solutions for X = a’ is at most

loga YVZ’-&-I - (loga €— loga MZ) = (loga MiY;'-i-l - 1Oga 6) :

For every N > 1 large enough, let kx > 1 be such that N € [log, Y, ,log, Yy, +1[ and let
n/(N) be the number of integers ¢ € {1,..., N} such that the system of inequalities
has no integral solutions for X = a’. Then

/ kn
n E\][V) ! Z max {0 log, M;Y;+1 — log, e}
z 1
< (c— log,, e) m Card{z kn : M;Y;i 1 > e}

This last term tends to 0 as N — 400 by Assertion applied with ¢ = ¢. Therefore
limpy o0 — ](VN) = 0, thus proving Assertion . O

4 Full Hausdorff dimension for singular on average matrices

4.1 Modified Bugeaud-Zhang sequences

In this subsection, we construct a subsequence with controlled growth of the best ap-
proximation sequence with weights of a matrix, assuming that its transpose is singular
on average for those weights. We use as inspiration [BZ, page 470| in the special case of
K =TF,(Z) and v = ve, and the first claim of the proof of [BuKLRIl Theo. 2.2] in the case
of the field Q (with characteristic zero).

Proposition 4.1 Let A € My, (K,) be such that 'A is completely irrational and (s,r)-
singular on average. Let (y;)icz., be a best approximation sequence in K" for tA with
weights (s,r), and let ¢ > 0 be such that M;Y;11 < ¢S for every i € Zsy. For alla > b > 0,
there exists an increasing map ¢ : L1 — Z=1 such that

15



(1) for everyie€ Zs1, we have

Yoir1) = a5 You and My Youen) < ab'°, (15)
(2) we have
. k 1
limsup ——— < —. (16)
k—o0 logQU YW(k) a

Proof. Let A, (yi)icz., and a,b be as in the statement. We start by proving a particular
case, that will be useful in two of the four cases below.

1
Lemma 4.2 If furthermore we have limy_,o, Y,* = +00, then there exists an increasing

map ¢ : L1 — Z=1 such that Equations and are satisfied.

1
Proof. The fact that limj_., Y,* = +00 implies that the set

Fo={j€Ls1:Yj1 > Y;}

is infinite. We construct the increasing sequence (¢(4))iez., of positive integers by stacks
{o(ix +1),...,0(igr1)} wWith ix41 > i, by induction on k € Zx. For k = 0, let ig = 0, let
i1 = 1 and let ¢(1) be the smallest element of _#.

For k € Zx¢, assume that i, and ¢(i;) are constructed such that (i) € _#y and
Equation holds for every i < iy — 1. Let us construct ix4+; and @(ix +1),..., (k1)
such that ¢(ig11) € o and Equation holds for every i < i1 — 1. Let jo be the
smallest element of ¢, greater than ¢(ix). Let ' = 0 if the set {j > o(ix) : Y;, = ¢, Y;}
is empty. Otherwise, let ' € Z>1 be the maximal integer such that by induction there
exist j1,2, ..., € Z>1 such that for £ = 1,...,7', the set {j > ¢(ix) : Yj,_, = ¢ Y;} is
nonempty and for £ = 1,...,7" + 1 the integer j, is its largest element. Since the sequence
(Yi)iez~, is increasing, this in particular implies that j,_1 > jp for £ = 1,...,7" + 1, which
itself ensures the finiteness of . Now we define i1 = i + 1’ + 1 and

@ik + 1) = jrr, oli +2) = o1, ...y plix +7") = j1, ©(ik+1) = jo -

By construction, for £ = 1,...,7’, we have
b b
Yotrrerr) = Yiu o 2 @ Y o = G Yo(ip+o) -

As p(ip +1) = G > p(ix), we have Y, 11y = Yo3,)41 = ¢ Y, (i) since p(ix) € Zo. Note
that ¢(ix+1) = jo € #o. This proves the claim on the left hand side of Equation for
i <iper — L.

By the maximality property of j,»_, in the above construction, for every £ =1,... 1/,
we have Y, 1041y = Y, , < ¢ Yi, 1= ¢ Yo (ip+0)+1- By the maximality of 7" in the
above construction, we have Y, ;, ;1) < ¢ Y (ip)+1- Hence, by the definition of ¢, for every
£=0,...,7, we have

b_ b
Moyie+0)Yotipre41) < My(inso) Yo(inro41 @ < @y ¢ -

This proves the claim on the right hand side of Equation for ¢ < iy — 1.
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Since limg_, o m = 0, Equation (|16)) is satisfied for ¢, and this concludes the proof
of Lemma [£2] OJ

Now in what follows, we will discuss in four cases on the configuration in Z-; of the
set
j {] c Z>1 M Yj+1 b+c—3a} .

By Theorem applied with € = ¢?7°73% we have

lim
k—oo log,

Card{l tie 7} =0. (17)

Case 1. Assume first that ¢ is finite.
By Equation , we then have limg_, o ﬁ = 0, hence Proposition follows
qv
from Lemma
Case 2. Let us now assume that there exists j. € Z>1 such that j € _# for every j = j..

Let us consider the auxiliary increasing sequence (1)(7))ez., of positive integers defined
by induction by setting ¥(1) = min{js € Z>1: Vj = ji, j€ #} and, for every i > 1,

Y(i+1) = min{j € Z>1 : gy Yy < Y}

Since the sequence (Y;);ez., is increasing and converges to 400, this is well defined, and 1)
is increasing, hence takes value in _# by the assumption of Case 2. Let us now define the
sequence (¢(i))ez., by, for every i € Z>q,

(i) = Y (i) if My Yy < @b,
Y(i+1)—1 otherwise.

Note that the sequence (¢(i));ez., is increasing with ¢ > 4.
Let i € Z>1. Let us prove that

Yoiir1) = 4o Yo(i)

and M@(i)yv(i+1) < qg+c , (18)
by discussing on the values of (i ) and ¢(i+1). This implies that Equation 1.) is satisfied
since a > b, and that Equation (16)) is satisfied since by induction Y,z > Ly »(1) for
every k € Z>1.

e Assume that ¢(i) = ¥(i) and p(i + 1) = ¥ (i + 1). By the definition of (i + 1), we
have
Yotr1) = Yoir1) = @ Yoi) = @ Yoo -
If (i) # ¥ (i + 1) — 1, then by the definition of (i), we have
My Yo(iv1) = Myg) Yogiv1) < @
If (i) = (i + 1) — 1, then (i + 1) = ¢(i) + 1 and by the definition of ¢, we have

b+c
Moy Yo(irt) = My Yo < @5 < dy'

This proves Equation (|18)).
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o Assume that ¢(i) = (i) and (i + 1) = ¥(i + 2) — 1. Since the sequence (Y})icz.,
is increasing and by the definition of ¥ (i + 1), we have
Yo(iv1) = Yoi2)—1 = Yo(r1) = @ You) = @ Yo -
We have g Yyy(i41) > Yyp(i+2)—1 by the minimality property of ¢(i+2). If¢(i+1) > (i) +1,
then My Yi(ir1) < @¥*¢% by the dichotomy in the definition of (). Hence

M(iy Yo(ir1) = Mygy Y21 < My Yoarn) 60 < a0 %5 = a,™° .

If (i + 1) = (i) + 1, then My Y41 < q%te=3% since (i) € _#. Hence

My Yoiirr) = My Ygiro)—1 < My Y1 @ < goreTtegl < gbte

This proves Equation (|18)).

o Assume that p(i) =¢(i+ 1) —1and (i +1) =i +1). Since (i +1)—1€ 7,
we have

Mo Yo(is1) = MyGen-1Yousn) < @720 < g™

If (i + 1) — 1 = 1(i), then by the definition of ¢ (i + 1), we have

Y, Y, Y,
p(i+1) Y(i+1) _ P(i+1) > qg .

Yor — Yeeen-1 Yy@
If (i +1) — 1 > (i), then we have My Y1) > @57 by the dichotomy in the
definition of ¢(7), we have Yy;41)—1 < ¢ Yy() < @5 Yip(s)4+1 by the minimality property of
P(i + 1), and we have My Yy(iy41 < q5T¢73 since (i) € _#. Therefore

v

Yourn _ Yoarn My Yoy _ gt @t _ g
Yoy Yean-1 Mye Yoeen-1 — My Yeor1 48~ @7 g2

This proves Equation (|18]).
e Assume that p(i) = ¥(i + 1) — 1 and ¢(i + 1) = ¢(i + 2) — 1. By the previous case
computations, we have
Yourn _ Youro-1 _ Yopury .
Yoy — Yowry-1 Yy

We have g Yyit1) > Yy@42)—1 by the minimality property of (i + 2). Hence since
P(i+1)—1€e 7, we have

Yw(i+2)—1)

Mo Yo(ir) = Myt 1Yyt -1 = Mw(Hl)*lYW“’( Yi(is1)

b+c—3a _a b+c
< qy Gy <Gy -

This proves Equation ((18)) and concludes the proof of Case 2.

Case 3. Let us now assume that ¢ and ¢¢ are both infinite, and that the number of
sequences of consecutive elements of ¢ with length at least 3a is finite.
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Let jo = min ¢ . Let us write the set Z>j, = Uiez21 C; v D; as the disjoint union of
nonempty finite sequences C; of consecutive integers in _# and finite nonempty sequences
D; of consecutive integers in ¢# with max(C; < minD; < maxD; < minCj;q for all
i € Z=1. Under the assumption of Case 3, let ig € Z>1 be such that Card C; < 3a for every
1= io. Let ]{30 = minC’iO.

Then there exists an element of © # in any finite sequence of 3[a]+1 consecutive integers
at least kg, so that for every k € Z>1 we have

k_ko+(@[a]+1) Card{i<k:ie 7}
log,, Vi log,, Y& ;

which converges to 0 as k — 400 by Equation and since limg_,o, Yz = +00. Therefore
1
limy . Y, = +00, and Lemma [4.2 implies Proposition 4.1

Case 4. Let us finally assume that ¢ and ¢# are both infinite, and that there are
infinitely many sequences of consecutive elements of _# with length at least 3a.

With the notation (C;)iez., and (D;)iez., of the beginning of Case 3, let (ix)rez., be
the increasing sequence of positive integers such that {i € Z>, : Card C; = 3a} = {iy : k €
Z>1}.

For every k € Z>1, let us define an increasing finite sequence (¢ (2))1<i<m,+1 of positive
integers by setting (1) = min C;, and by induction

wk(l + 1) = mln{j € Clk : qg ka(z) < ij} R

as long as this set is nonempty. Since Cj, is a finite sequence of consecutive positive integers
1

with length at least 3a and Y; 1 = ¢™" Y; for every i € Z=1, there exists my, € Z=5 such
that ¢y (7) is defined for i = 1,...,my+1. Note that ¢, (i) belongs to # fori =1,..., mp4q
since C;, < Z.

Asin Case 2, let us define an increasing finite sequence (g (7))1<i<m, of positive integers
by

i) = (1) if My, ) Y1) < 6777,
Yp(i +1) —1 otherwise.

As in the proof of Case 2, since for i = 1,...,my, the integers ¥y (i), ¥y (i + 1) as well as
(i + 1) — 1 belong to _#, we have, for every i = 1,...,m; — 1,

Yourn) =45 Yo and My, Yo i) < a0 (19)

Since pr(my) € C;, and @ry1(1) € Cy,,,, we have i (my) < @r41(1). Let us define
an increasing finite sequence (¢ (7))1<i<r,+1 of positive integers that will allow us to in-
terpolate between oy (my) and @g11(1). Let jo = @ri1(1). I {j € Zxy, (my) * Yio = & Y}
is empty, let 7, = 0 and ¢} (1) = jo = wr4+1(1). Otherwise, by decreasing induction, let
r; € Zx>1 be the maximal positive integer such that there exist ji,... ,jT;C € Zx1 such
that for £ = 1,...,77, the set {j € Zsy,(my) @ Yo, = ¢% Y;} is nonempty and for
¢ =1,...,7, + 1, the integer j, is its largest element. As in the part of the proof of
Case 1 that does not need some belonging to _#y, the sequence (¢} (i) = jr;+1—i)1<i<r;+1
is well defined, it is contained in [¢g(my), pr+1(1)], and for s = 1,..., 7}, we have

Yo 1) = 60 Yy ) and My o) Yo gy < 407 (20)
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Putting alternatively together the sequences (¢ (i))1<i<m,—1 and (¢())1<i<r, as k
ranges over Z=1, we now define (with the standard convention that an empty sum is zero)
N, = z:ll(mg —1+7r}) and

@(i):{ (pk(i—Nk) if 14 N <

/) r— 1+ Ng
@ (i +1—my — Ni) if mp + Ny <

«m

Z'ﬁ’l";ﬁ—l—ka-l-Nk.

By Equation for ¢ = 1,...,mp — 2, by Equation for i = 1,...,r}, and since
i (r, + 1) = ¢r41(1), in order to prove that the map ¢ satisfies Equation , hence
Assertion (1) of Proposition we only have to prove the following lemma.

Lemma 4.3 For every k € Z>1, we have
b b+
Yo 2 @0 Yooy and - Mo n—1) Yo 1) < ¢07° - (21)

Proof. Since ¢} (1) = ¢pi(my), hence Yy (1) = Yoy (my,) the left hand side of Equation
follows from the left hand side of Equation with ¢ = my, — 1. If ¢} (1) = i (my), then
the right hand side of Equation follows from the right hand side of Equation with
1 =my — 1.

Let us hence assume that ¢} (1) > ¢r(my), so that

b
Y%(l) S Qo Y‘Pk(mk) <4q Y@k(mk) (22)

by the maximality of r},. Let us prove that ¢y (ms) = 9r(my). For a contradiction, assume
otherwise that @i (my) = Yr(mr +1) — 1 > g(myg). As in the third subcase of Case 2,
we have My, () Yo (mpt+1) > ¢4+~ by the dichotomy in the definition of ¢y (my), we
have Yy, (me+1)=1 < @5 Yo (me) < @0 Yo (my)+1 Dy the minimality property of ¢ (my + 1),
and we have My, () Yy, (my)+1 < qre3% since ¥y, (my,) € . Therefore, as in the third
subcase of Case 2, we have

Y¢k(mk+1) _ M’Z)k(mk) ka(karl) >
Yimern-1 Myy(my) Yo imp+1)-1

Hence by the construction of ¢} (1), we have ¢ (1) = ¢x(my), a contradiction to our

assumption that ¢ (1) > @i (my). We now discuss on the two possible values of ¢y, (my—1).

First assume that @p(mi — 1) = ¥r(mg — 1). If Yp(mg — 1) # g(mg) — 1 then
My, (mp—1) Yo (mp) < q?*=¢ by the dichotomy in the definition of @y (my — 1). If on the
contrary ¥ (my — 1) = ¥ (mg) — 1 then My, (1, 1) Yo (my) < gbre=3e < gb+e=% since the

integer v (my) — 1 belong to ¢ as my, > 2. Since g(my) = 9r(my) by Equation ,
we have

Y,
#5(1) b+c—a a b+c

Mo, tmic—1) Yop, 1) = Mg (i) ka<mk><y¢’z )> <S¢ d =4
E(ME

This proves the right hand side of Equation .

Now assume that @ (my — 1) = ¥ (my) — 1. Again since pp(my) = 1x(my), since the
integer ¥, (my) — 1 belongs to _# as my, > 2, and by Equation , we have

M Y =M Y. Y‘P;g(l) < gbte=3a ja ~ btc
er(me—1) L (1) = P (me)—1 ¢k(mk)<y ( )) Sy 4 <4, -
Pr(my
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This proves the right hand side of Equation , and concludes the proof of Lemma
]

Finally, let us prove Assertion (2) of Proposition Since there exists an element of
¢Z in any finite sequence of 3[a] + 1 consecutive integers in the complement of | J..,_, C;
there exists ¢y = 0 such that, for every k € Z>1, we have

Card{j < ¢(k) : j ¢ Ukez., Cir} _ 0+ (3[a] +1) Card{j < (k) :je °7}
log,, Yo(r) h log,, Yo(r) ’

k>

which converges to 0 as k — 400 as seen at the end of the proof of Case 3. Let us define
n(k) = Card{i < k : Y, = ¢ Yy441)}. For every £ € Zzy, since Y41 = ™" Y for
every j € Zs1, and by the maximality of my in the construction of (W(i))lgigmg’ we have
Card{j € Cj, : j = @e(my)} < 2[a]minr. If p(i) belongs to C;, but (i + 1) does not, then
(1) = pe(my). Since when (i) and ¢(i + 1) belong to Cj, for some £ € Z=1, then ¢ and
¢ coincide on ¢ and ¢ + 1, and since Equation holds, we hence have

k—n(k) = Card{i < k:Y,u < gy Yousn} < 2[a] minr Card{j < (k) :j ¢ U Ci.} -

keZ=1
Hence
k)+k—n(k k
lim sup ————— = limsup n(k) + n(k) = limsup L
k—too 108g, Yoy kv 108g, Yo(r) k—too 108g, Yo(i)
<l n(k) 1
< lim sup — =—.
kv logg, " Yy
This proves Equation and concludes the proof of Proposition O

4.2 Lower bound on the Hausdorff dimension of Bad 4(¢)

In this subsection, we use the scheme of proof in the real case of [CGGMS| Theo. 6.1],
which is a weighted version of [BuKLR| Theo. 5.1], in order to estimate the lower bound
on the Hausdorff dimension of the e-bad sets of (r,s)-singular in average matrices.

For a given sequence (y;)i>1 in R)"” — {0} and for every ¢ > 0, let

Bad|,,,  ={0¢c(m&,)": Viz1, [(0-yi)| =6},

i

Proposition 4.4 Let A € My n(Ky) be such that 'A is completely irrational and let
(yi)i=1 be a best approzimation sequence in K™ for ‘A with weights (s,r). Suppose that
there exist b,c > 0 and an increasing function ¢ : Z>1 — Z=1 such that

VieZs1, MypYousn) < qﬁ“ :

Then for every § € 10,1], if € = § e T s q;07¢, then the set Bad‘(sy @izt is contained
w(i))i=
in the set Bad4(e).

Proof. Fix § € ]0,1] and 6 € Bad‘gy )is1” Let ¢ = Jmns q;°~¢. For every (y',x') in
@(i)/)i=

R x R} such that |x|s = €1Y,(1), let k be the unique element of Zx; for which

Yo < e 1 s < Yoty »
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©
verging to +o0. Let x4y € R} be such that M) = | tAyw(k — Xy(k)lls: Then by the

which exists since |x'[ls = €Y, 1) and since the sequence (Y,(;))i>1 is increasing, con-

ultrametric inequality, the assumptlon of the proposition, the fact that ¢; ¢5*¢ = 6 s < 1
and the definition of Bad(yw( Disrr Ve have

=1’

AV o) — X)) - X' < max M x5 < jmax (1 My Yo(ra1))™

1<isn

< (e qﬁ*c)mms =0 < ér/mn | Yoy 0= . (23)

Observe that

Yotk 0 = Yo - (AX) + you) ¥ = Yo - (Ax" +y' = 0)
= ("Aypm) - X =Xy X +L—youm) - (AX +y' —0),
where £ = x 1) x/ +Yo(k) -y’ € R,. Thus we have, using the equality case of the ultrametric

inequality for the second equality below with the strict inequality in Equation , and

again the definition of Bad‘gyw )izt for the last inequality below,

Vo) - (A" + 5" = 0)] = [("AV k) = Xp(h) - X = Yopa) - 0 + ¢
= max {|("Ay ) — X)) - X'| [Yp(r) - 0 — L1}
=|Yo) 0| = Kyom) - 60)] =6

Hence, we have

0 < |ypm) - (A" +y = 0)] < max Y/ |AX +y' — 0]’

1<js<m

which implies, since § < 1, that

1
k)HAX, + y/ - 0“1‘ = 131;1<Ilm(5 J = 6m1nr.

Finally, for every (y',x') in R)" x R} such that || x'[s > e1Y,(1), we have

|5 s [AX' +y' = O] > €1 Yoqa) [AX +y' = O] > s s ¢

1

By Equation (1)), this implies that 8 € Bad a(e) for € = § e T ns a0 O

Proposition 4.5 For every 6 € |0, ﬁ%[, there exist b = b(0) > 0 and C = C(0) >

such that for every sequence (y;)iez-, in R)* — {0} satisfying | yit1|r = & |yilr for all
1 € Z>1, we have

> m — C'limsup i

dimyays Bad® oo v . °
aus (yi)i=1 koo IquU H Y& HI‘

Proof. Fix ¢ € ]0, q%[ Let

’ —log, 6
b=b(6) = ——on’ (24)

minr
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which is positive since § < 1. By the mass distribution principle (see for instance [Fal,
page 60]), it is enough to prove that there exist a (Borel, positive) measure p, supported
on Bad‘gyi)izl, and constants C, Cy,rg > 0, with C' depending only on 9§, such that, for
every closed ball B of radius r < rg, we have

- B
m=C M SuPL o0 fog, Tyi e

nw(B)<Cor

We adapt by modifying it quite a lot the measure construction in the proof of [CGGMS|
Theo. 6.1].

By convention, let Yy = 1 and ng; = 0 for j = 1,...,m. For every k € Z>1, define
Yi = | ¥k |lr, which is at least 1 since y; € R]" — {0}, and for every j = 1,...,m, let
ng,j € Zxo be such that

@™ <Y < g T (25)

Note that the sequence (ny j)rez., is nondecreasing, for all j = 1,...,m.
For every k € Z~g, let us consider the polydisc

— 1 — 1 — g — — _ _
H(Yk) _ B(O, ?Yk_T1> X oo X B(O, ;Yk_rm) _ B(O,qv Nk, 1 1) X e x B(O,qv Ng,m 1) 7
v v

where B(0,7') is the closed ball of radius 7/ > 0 and center 0 in K,. Note that I1(Yp) =
(my0,)™ is the open unit ball of K" and that II(Y%) is an additive subgroup of K”. Since
the residual field k, = 0, /7,0, lifts as a subfield of order ¢, of K, for every ¢ € Z=(, we
have a disjoint union

B(0,q,) = | | (am!+B(0,g,")) .

a€ky

Hence by induction, the polydisc I1(Y%) is the disjoint union of

Nk+1,5—Nk,j
Appr= [] o™

1<js<m

translates of the polydisc II(Yy41). Note that

Ak-H = H Ykr_ilyk_rqul = QU_m (Yk-i-lykil)‘r' . (26)
1<jsm
For every k € Zxo, let us fix some elements 6y x11,...,0a,,, k+1 in (7,0,)™ (which are

not unique in the ultrametric space K,") such that

Akt

H(Yy) = |_| (Oigr + T (Yig1) ) -
i—1

By convention, let us define Zys = ¢ and Iy = {II(Yp)}. For every k € Z>1, let us
define
Zrs =10 € (m0y)™ : [{yr - 0)] <}

and
Ik:{9i171+'--+6ik7k+H(Yk):VjE{l,...,k}, ISZJSAJ}
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Lemma 4.6 For every k € Z=1, we have
(1) for every I' € Iiy, if I' " Zy s # & then I' < Zy 5,
(2) for every I € Ij,, we have vol)'(I N Zjs) < 0 Yk_M.

Proof. (1) If I' € Iy and I' n Zys # &, let @ € I' n Z 5. Then for every 6’ € I', if
x,2’ € R, are such that [(yi-0)| = |(yx-0)—z| and [{yr-(0'—0))| = |(yx-(0'—0)) —2'|,
then by the ultrametric inequality, since 8 € Z;, 5 and 6’ — 0 € I1(Y}41), by the assumption
of Proposition and by the definition of b, we have

Ky 0 <lyi-(0+ (0" = 0)) — (z +2')| <max{[(yx-0) —al, |(yr (6’ —0)) — 2’|}
= max {[{yi - 0], [{yk - (6'—0))l}

1 _
< max{é, max Y]:]— Y,

T —1—bminr) __
7 b=,
<jsm Qv

< max{é, q,

This inequality |y -0’ )| < § is actually strict, since [y -6 )| < 6 and by Equation (24),
we have g, 17tminT — =15 < §. Since I’ is contained in II(Yy) = (7,0,)™, we thus have
that 8" € Z;, 5 and this proves Assertion (1).

(2) Let jo € {1,...,m} be such that Y, = |yk,j0|1/T.70 where yr = (Yk1,---,Ykm). In
particular, yy j, is nonzero. For every z € R,, let

Lp(z) ={0e K" :y;-0 =2z},
which is an affine hyperplane of K" transverse to the jp-axis, and let
N (k,z) = {0 € (1,0,)™ : I’ € Ly(2), |0, — | <Y, ™ and Vj # jo, 0 =},

which is the intersection with the open unit ball in K" of the (§ Ykirjo)—thickening along
the jo-axis of the affine hyperplane Lg(z2).

Fix I € I. Since vol,(B)(0,7")) = qql,logq’“ "N forall ¢ > 0, and by Fubini’s theorem,
we have _
voll'(I n N (k,2)) <Y, ™ [Ty, =6y, M. (27)
J#Jo
Claim 1. Let us prove that the set Z, 5 is contained in the union of the sets .4 (k, z) for
z€ R,.

Proof. Let 8 = (61,...,0,,) € Zi 5 and let z € R, be such that [(y;-0)| = |y, -0 — z|.
Let us define u; = 0; if j # jo,
&= Dijjo Yrit
yk7j0

Ujoy =

and u = (uy,...,uy), which is the projection of @ on the affine hyperplane Ly (z) along
the jo-axis. Then, since 0 € Z}, 5, we have

-0 — -0 s
07— ugy| = Yo 02 KO0 5y,
|yk5aj0| |yk:,j()|
Since Zy, 5 is contained in (m,&,)™, this proves Claim 1. [
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Claim 2. Let us prove that there exists a unique z € R, such that I n Zj, 5 is contained
in I nA(k,z).

Proof. By Claim 1, the set I n Zj s is contained in | J,cp I N A(k,2). Assume for
a contradiction that there exist two distinct elements z,2’ in R, such that there exist
Ocln AN(kz) and 0 €I n A (k,2"). Let ue Li(z) and u’ € Li(2") be the projections
of 8 and 0’ along the jp-axis on Lg(z) and Ly (2') respectively.
Let j € {1,...,m}. Note that @ — 0’ € I1(Y},) since I € Ij. If j # jo, then
luj —

il =
v

| E——
0, -0}l < =Y, £

q
Furthermore, by the ultrametric inequality, since 0 (respectively €’) is contained in the
(0 Yk_rjo)—thickening along the jg-axis of L(z) (respectively L(z')), and since § < q%, we
have

|ujo - u;'0| = ‘(ujo - ejo) + (9]‘0 - 9;‘ ) (9, ]0)|
< max{|uj, — 0jo|, [0, — jo” 6] Jo jo|}
s 1 s 1 i
<max{dY, °, —V, °}=—Y, .
o Qo

This implies since u € Li(z) and u' € Li(z) that

1 1
1<|z—4| = ‘u—y-u| < max |u; — ') < max V7 —Y, U = —
<| | = lyk Yk |\1Sj<m‘yk,]|3 J|\1§j<m Ko .
which is a contradiction since ¢, > 1. This proves Claim 2. O

By Equation , Claim 2 concludes the proof of Assertion (2) of Lemma OJ
Since every element I’ of Iy, is a translate of II(Y;41), and by Equation , we have

m

volUm(I') = vol" (I1(Yx+1)) H —Ng1, j‘l *Zm Yk+|]1r| .

For every I € Iy, there are Ap,q elements I’ € I,q contained in I, they are pairwise
disjoint and they have the same volume vol;'(II(Yy+1)). Among them, those who meet
Zy s are actually contained in I n Zj s by Lemma (1), thus their number is at most

%. Therefore, by Equation and Lemma (2), we have

(I~ Z
Card (I € Isr : I' < I, I' 0 Zs = B} > Apyy — o 0 D)

voly' (TH(Yy+1))
3 B 5 Y—M
= q, " (Yer1Y), il — Tlr\
Y
=1 (Ve V), (28)

where ¢; = ¢;™ — ¢2™J belongs to ]0, 1[ by the assumption on 6.
Now, let us define by induction Jy = Iy and for every k € Zxq,

Tern= \JI el :IcJ, InZs= O}
JEJk
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By Equation and by induction, we have
k
Card Jpp1 = [ [ a1 (V¥ DI = of (VY7 DM (29)
j=1
By Lemma (1) and by induction, we have

k
Jepi ={J €L Vje{l,.. .k}, JnZs=0}={Jelyi:J () Zs},
j=1

where ¢ denotes the complement in (7, ,)™. Hence (U Jk) x> 18 a decreasing sequence of

]

compact subsets of (m,0,)™, whose intersection is contained in (5, “Zys = Bad(, ..

For every k € Z=, let us define a measure

e = (VoI (T1(Y3,)) Card Ji) ™ Y vol |5,
JEJk

which is a probability measure with support | JJi. By the compactness of (m,0,)™, any
weakstar accumulation point p of the sequence (ug)r>1 is a probability measure with
support in Bad((syi),.>1-

For every closed ball B in (m,0,)™ with radius ' € 0,79 = Y; ™"%], let k € Z>1 be
such that

Yk—+rfinr < T'/ < Yk_ minr ) (30)
Note that [t] < t +1 < gyt if ¢ > 1, and that »/ qﬁk“‘jﬂ > ijrTinr kril g = 1 for

every j = 1,...,m, by Equation (25). Then B can be covered by a subset of I with
cardinality at most

m
[T ar <oy am vk
j=1

Let C = “logg, e 0, which depends (besides on m, ¢, and r) only on §. Defining

minr

Co = g™ Yl‘rl, by Equations and , we thus have
peet(B) < g2 ()" Y (Card Ji) T < g2 () et v
k
< Cy (?”/)m_cl‘)gqv Yi |
Therefore, since the ball B is closed and open and since ' < rg < 1, we have

) k
m—C'limsup,,_, 4, Toggy Vi
)

m-C—k__
w(B) < limsup Cy (') Clota, Ve — Co (1)

k—o0

which concludes the proof of Proposition [£.5] O
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4.3 Proof that Assertion implies Assertion in Theorem

Suppose that A is (r,s)-singular on average. Then by Corollary the matrix ‘A is also
(s,r)-singular on average. By Remark (2), in order to prove that there exists € > 0
such that Bad a(€) has full Hausdorff dimension, we may assume that the matrix ‘A is
completely irrational.

By Lemma let (yx)rez., be a best approximation sequence in K" for the matrix
tA with weights (s,r), and let ¢ > 0 be such that M;Y;y1 < ¢S for every i € Z>;. Fix
some § € |0, q%[ and let b = b(0) > 0 and C' = C(J§) > 0 as in Proposition By
Proposition “for every a > b, we have a subsequence (Ygo(k)> k>1 such that the properties
and (16| are satisfied. Proposition , whose assumption is satisfied by the second

inequality in Equation and where ¢ = §minr T mins q;707¢, gives that Bad 4(e) contains
Bad‘(syw(i))pl. Therefore, using Proposition applied to the sequence (y,(;))i=1, whose
assumption is satisfied by the first inequality in Equation , and using Equation

for the last inequality, we have

. k
>m—Climsup——=>m — — .
koo 108g, Yo(r) a

=1

dimyays Bad 4(€) = dimpays Bad?yw))

Letting a tends to +00, this concludes the proof that Assertion implies Assertion
in Theorem [l

5 Background material for the upper bound

5.1 Homogeneous dynamics

Let K, Oy, my, Ry, g, be as in Subsection Let m,n € N— {0} and d = m +n. We
fix some weights r = (ry,...,r,) and s = (s1,...,S,) as in the introduction. In this
subsection, we introduce the space of unimodular grids % in K? and the diagonal flow
(a)sez acting on this space. Let

Go = SLg(K,) and G = ASLy(K,) = SLy(K,) x K2,

and let
Iy = SLyg(R,) and T = ASLy4(R,) = SLy4(R,) x R

The product in G is given by

(g,u) - (g',u") = (99", u+ gu') (31)

for all g, ¢’ € Gy and u, v’ € K. We also view G as a subgroup of SLg,(K,) by

G = {(g Qf) : g € SLy(K,), ueKUd} .

We shall identify Gy with the corresponding subgroup of G. We consider the one-
parameter diagonal subgroup (a)sez of Gy, where a = diag(a_, a;) and

a_ = diag(m, ", ..., 7, ™) € GL,,(K,) and ay =diag(n)t,...,m") € GL,(Ky) .
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Note that for all 8 € K", € € K.' and ¢ € Z, we have
|l 6] =g, 6] and [af&ls=q,"[&]s- (32)
We denote by G the unstable horospherical subgroup for a in G and by U the unipotent
radical of G, that is,

Iy u
G —{geG’.gEr_nooaga =Ig41} and U—{<O 1>.ueKy}.

I, O
0 I,
0

LetU+:G+mU={
0

— o 8

Tw E Kvm}, which is a closed subgroup in G+

normalized by a.
Let us define
X = GO/FO and % = G/F .

Even though we have Covol(RY) = ¢9=14 by Equation , we say that an R,-lattice
A in K2 is unimodular if Covol(A) = Covol(R%). A translate in the affine space K2 of
an unimodular lattice is called an unimodular grid. We identify the homogeneous space
X = SLq(K,)/SL4(R,) with the space of unimodular lattices in K¢ by the equivariant
homeomorphism

z=gly— A, =gRY,

and the homogeneous space % = ASL;(K,)/ ASL4(R,) with the space of unimodular grids
by the equivariant homeomorphism

u ~
y=<g 1)Fr—>Ay=gR;j+u. (33)

We denote by 7 : % — 2 the natural projection map (forgetting the translation factor),
which is a proper map. Note that the fibers of 7 are exactly the orbits of U in ¢/, and in
particular each orbit under UT in & is contained in some fiber of 7 (see Lemma for a
precise understanding of the U™ -orbits).

For every N € N— {0}, we denote by dgr, (k) the right-invariant distance on SLy (K)
defined by
¥ g,h e SLy(Ky), dsiy(x,)(9:h) = max{In(1+ || gh™ —id || ), In(1+ [ Ag~" —id[] )},

where || ||| is the operator norm on .#y(K,) defined by the sup norm || | on K/N. We
endow every closed subgroup H of G with the right-invariant distance di on H, which is
the restriction to H of the distance dg,,, , (). For instance, identifying the additive group

I, 0 w
K™ with U by the map w—w= | 0 I, 0 |, we have
0 0 1
Vww e K™, dyps(@,0)=|w—w|. (34)

We endow % = G/I" with the quotient distance ds of the distance dg on G, defined by
Vyy' €, dy(y,y) = min de(§7, J')
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for any representative 3 and ¢’ of the classes y and ¢y’ in G/T respectively. This is a well
defined distance since the canonical projection G — % is a covering map and the distance
dg on G is right-invariant. Given any closed subgroup H of G, we denote by By (z, )
(respectively Bg (z,7)) the open ball of center z and radius r > 0 for the distance dp
(respectively dz ), and by B the open ball By (id,r). Note that for all y € % and r > 0,
we have (for the left action of subsets of G on %)

Lemma 5.1 For all ¢ > 0 and k € Z=o, we have a*kBelﬁak c BEU;_kminr and stmilarly

+ +
a* BV q=k = BY

k .
eqk maxr

Proof. The proof of the second claim being similar, we only prove the first one. For every
k

w = (wr,...,wy) € K™, we have a *® a* = a""w and
| o= w] = max [mjfw;| < g™ [w] .
The result hence follows from Equation (34)). Il

Given a point z in % (and similarly for z in 27), we define the injectivity radius of %
at x to be

inj(z) = sup {r >0:Vyel —{id}, Bg(Z,r) n Bg(@~v,r) = @} ,

which does not depend on the choice of € GG such that x = 2T, and is positive and finite
since the canonical projection G — # is a nontrivial covering map. For every r > 0, we
denote the r-thick part of % by

Y (r)={xe? :inj(x) =r}.

It follows from the finiteness of a (quotient) Haar measure of % that #/(r) is a compact
subset of # for every r > 0, and that the Haar measure of the r-thin part % — % (r)

tends to 0 as r goes to 0. For every compact subset K of %, there exists r > 0 such that
K c%(r).

5.2 Dani correspondence

In this subsection, we give an interpretation of the property for a matrix A € ., ,(K,)
to be (r,s)-singular on average in terms of dynamical properties of the action of the one-
parameter diagonal subgroup (a‘)gz on the space of unimodular lattices, as originally
developped by Dani (see for instance [Kle, §4|). For every A € #pn(Ky), let ug =

I, A
( 0 In) € Go.
Proposition 5.2 A matriz A € M, n(K,) is (r,s)-singular on average if and only if the

forward orbit {a'uaR% : £ € Z=o} in 2 of the lattice uaRZ under a diverges on average
m Z, that is, if and only if for any compact subset QQ of 2", we have

1
lim NCard{ﬁe{l,--- ,N}ZOKUAFOEQ}:O-

N—o
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Proof. Let @ be a compact subset of 2. By Mahler’s compactness criterion (see for
instance [KIST, Theo. 1.1]), there exists € € |0, 1[ such that @ is contained in

Zoe={gRIe X :V (0,§) egR!—{0} = K" x K, max{| 0|, [&|s}>e},

which is the subset of 2" consisting of the unimodular lattices with systole (for an appro-
priate quasinorm) larger than e. Observe that by Equation , for all sufficiently large
{ € Z>1, there exists an element y € R” — {0} such that ( Ay ) < eq,* and |y |s < eq’, if
¢
and only if we have aéuAR,Lfl = <a Og> (Im A> Rl‘f e X — 2-..
0 af 0 I,
With /. = |—log,, ¢, it follows that

0<Card{fe{l,--- ,N}:ad’us Rl e Q}
Card{¢e{1,--- ,N}:a‘us R%e 2-.}

=Card{fe{l, - ,N}:Fye R} —{0}, (Ayh <eq,’, |yls<ed’}

<
<

v

2
19 _(p_ _
< Card{fe {1,--- ,N}:Bye R {0}, <AY>r<;qU(f ) yls < gt}

2
e” _
<le+ Card{e {1,--- N =L} :fye R} — {0}, {(Ay). < ;qve, Iy lls < g}
v
After dividing by N (or equivalently by N —/,) this last expression, its limit as N tends to 0
exists and is equal to 0 if A is (r,s)-singular on average (see Equation ) Hence we have
limy_,o 1 Card{f € {1,--- , N} : a®uaTg € @} = 0 by the above string of (in)equalities.
The converse implication follows similarly by taking for the compact set ) the subset

Ze. O
We denote by | ||sr the quasi-norm on K4 = K™ x K* defined by

1(6,8) |rs = max {0, |€]s"} -

Let € > 0. We define N
L={ye¥ Nuely, |uls=>c}. (35)

By Mabhler’s compactness criterion (see for instance [KIST) Theo. 1.1]) and since the natural
projection 7 : % — % is proper, the subset .Z. is compact.
For every 8 € K, we denote by y4.¢ the unimodular grid usR% — (g).

Lemma 5.3 For every A€ My n(Ky), the map K" — % defined by @ — y4 ¢ induces an
isometry ¢4 from T™ = K"/R)" endowed with the quotient distance dym of the distance
on K" defined by the standard norm | |, and the U*t-orbit Utyao endowed with the
restriction of the distance doy of %'

Proof. The map K" — % defined by 0 +— y4 g is clearly invariant under translations by
R;", and induces a bijection

$4:60 mod R — yae (36)

from T™ = K™/R/™ to the orbit Uty 0. This orbit is contained in the fiber 771(z4) of
xa = ua R)" for the natural projection 7 : # — 2, as already seen.
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I, A 6
For all A € My n(K,) and 0 € K", let ugag = | 0 I, 0] € G, so that we have
0 0 1
yae = ua, —pl'. For all 8,0 € T™, denoting lifts of them to K" by 6,6 respectively,
identifying K¢ with K" x K", and using Equations and , we have

dy (94(6),64(8) = inf da(uy 57wy 5 7)

= g;pefi"o dG((uA7(_§v 0))(97 (x,y)),(uA, (_5/70))(9/7(1,/’3//)))
x,z’eR;’,“, y,y'€ERD

= ipefF de ((uag, (z + Ay — 6,9)), (uag’, (' + Ay’ — 6',3)))
x?wleézs%7 yf;//ERJL

— inf dy- ((d, (z — 8,0)), (id, (' — 6',0)))

z,x’'eR™
= inf [(z—8)—(2/—0)|=dm(0,0). O
z,x'eR™
Proposition 5.4 Let ¢ > 0. For every (A, 0) € My n(K,) x K such that @ € Bad 4(¢),
one of the following statements holds.
(1) There exists y € R} such that ( Ay — 6 ), = 0. Note that given A, there are only
countably many 0 satisfying this statement.
(2) The forward a-orbit of the point ya¢ is eventually in £, that is, there exists T = 0
such that for every £ =T, we have a* Yae € Z:.

Proof. Assume for a contradiction that both statements do not hold. Then there exist
infinitely many ¢ € Z> such that aﬁyAﬂ ¢ £, hence such that there exists y, € R’ with
(Ay; — 0 < ;%@ and | y;|ls < ¢lcd. Since the statement (1) does not hold, the
inequality

|y ls(Ay —0)r <

has infinitely many solutions y € R, which contradicts the assumption 8 € Bad s(¢). [

5.3 Entropy, partition construction, and effective variational principle

In this subsection, after recalling the basic definitions and properties about entropy (using
[ELW] as a general reference, and in particular its Chapter 2), we give the preliminary
constructions of o-algebras and results on entropy that will be needed in Section [6 In
particular, we give an effective and positive characteristic version of the variational principle
for conditional entropy of [ELL §7.55|, adapting to the function field case the result of [KKL].

Let (X, %, u) be a standard Borel probability space. For every set E of subsets of X,
we denote by o(FE) the o-algebra of subsets of X generated by E. Let & be a (finite
or) countable Z-measurable partition of X. Let o/, ¥ and ¢’ be sub-c-algebras of A.
Suppose that € and €’ are countably generated.

For every z € X, we denote by [z]% the atom of x for &, which is the element of the
partition & containing x. We denote by [x]¢ the atom of x for €', which is the intersection
of all elements of ¢ containing x. Note that [r],(») = [7]». We denote by (117 ) gex an
</ -mesurable family of (Borel probability) conditional measures of p with respect to 27 on
X, given for instance by [EL, Theo. 5.9].
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Using the standard convention 0log, 0 = 0 and using log, instead of log for computa-
tional purposes in the field K, the entropy of the partition &2 with respect to u is defined
by

Hy(2) == Y p(P)log,, u(P) €[0,] .
PeZ?

Recall the (logarithmic) cardinality majoration
H,(2) <log, (Card?) . (37)

The information function of € given o/ with respect to p is the measurable map 1,,(¢|<7) :
X — [0, 00] defined by

VeeX, L(¢|)(x) = —log,, 17 ([z]e) -

The conditional entropy of € given & with respect to p is defined by
,(610) = | 1,(6\0) dy. (38)

Recall the additivity property H, (¢ v €' |«/) = H, (€ |€¢' v &) + H, (€' | /) (see for
instance [ELW| Prop. 2.13]) so that if & < ¢’ < €, we have

H,(€ | ) = H(6|€") + H(€'| 7). (39)

Let T : (X, %, u) — (X, %, 1) be a measure-preserving transformation. We denote by
& ={Be % : (T -'BAB) = 0} the sub-o-algebra of T-invariant elements of %, and
by (1S)eex the associated family of conditional measures. Assume that the o-algebra .o/
satisfies the property T~ 1o/ < 7. If the partition & has finite entropy with respect to ,
let

n=ln

. 1 n—1 » ' 1 n—1 »
h(T, 2|/) = lim. nH#<i\=/OT 9]%) — inf Hﬂ(i\:/OT ,@\d) .
The conditional (dynamical) entropy of T given < is
hy(T'|) = sup h, (T, 2|) ,
P

where the upper bound is taken on all countable %-measurable partitions & of X with
finite entropy with respect to u.

With the above notations, the following result is proven in [KKIl Prop. 2.2 and Ap-
pendix Al.

Proposition 5.5 (Entropy and ergodic decomposition) If T '« < <7, then for ev-

ery countable $B-measurable partition & with finite entropy with respect to u, we have

ho(T, Pt = Lhuf(T,@W) du(z) and hy(T|ef) = Lhuf(TW) du(z) . O

We now work in the standard Borel space ¢ of unimodular grids, endowed with the
distance dg (see Section. Let 0 > 0. For every subset B of %, we define the d-boundary
0sB of B by

é’ B = @ : Inf dg ! inf dg " 5
sB={ye Jnf do(y.y) + | inf da(y,y") < ¥
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if B and ¢ — B are nonempty, and dsB = ¢ otherwise. Note that for all subsets B and
B’ of %', we have

ds(Bu B') € 0sB U dsB' and 05(B— B'n B) < dsB U dsB'. (40)

We also have ;B < 0y B if 6 < §'. Given any set 2 of subsets of %, we define the
d-boundary 05 of & by
%52 =) oB.
Be>

Lemma 5.6 For every r > 0, there exist 6, € |0,7] and a finite measurable partition
P ={Py,...,Py, Py} by closed and open subsets of % such that

(1) the subset Py, is contained in the r-thin part % — % (r),

(2) for everyie {1,...,N}, there exists y; € % (r) such that BSy; = P; c BSy;,

(3) the set 05, is empty. i

Proof. Choose a finite maximal r-separated subset {y1,...,yn} of % (r) for the distance
dgy , which exists by the compactness of (7). By induction on ¢ = 1,..., N, we define a
Borel subset P; of % by

P = BCy, — <UP U U BGy]).
Jj=i+1

Define Py, = % — U§V=1 P;, which is also a Borel subset of %'

By construction, we have P, c BTGyi. Since the set {y1,...,yn} is e-separated, the
intersection of open balls BYy; n BYy; = By (yi, 5) N By (yj, 5) is empty if j > i. By

2 2
construction, the intersection nyi N Pj is empty if j < 4. Therefore P; contains Bgyl-,
2 2

and Assertion (ii) follows.
By construction, we have U;VZI pP; c U§V=1 B?yj = Ujvzl By (yj,r), and the later union
contains %/ (r), since the e-separated set {yi,...,yn} is maximal. Assertion (i) follows.

For every s > 0, let ng = [lngisqzl)] €Z and 0, = In (ligifil) > 0. For all 6 > 0 and

y € %, assume that there exists a point z € 05Bx (y, s). Let 2’ € By (y,s) and 2” ¢ By (y, s)
be such that dw (2, 2") + do(z,2") < §. Since the operator norm on .#;1(K,) has values
in {0} U ¢Z, the set {du (y,v') : v,y € #} of values of the distance function dy on %
is contained in {0} U {In(1 + ¢?) : n € Z}. Since s € |In(1 + q”s D, In(1 + ¢7)], we
hence have d (y, 2') < In(1 + ¢ 1) since 2’ € By (y, s) and dy (y, 2") = In(1 + ¢7*) since
2" ¢ By (y,s). Therefore by the triangle inequality and the inverse triangle inequality, we
have

§>duy(z,2) +doy(2,2") = day(Z,2") = do(y,2") — da (y,2)
>In(l+¢%) —In(1 +¢= 1) =4,

Hence 05 B (y, s) is empty for every § € 0,0].
By Equation , for every § > 0, we have

N N

%52 < | J és(Bfy;) v U (BEy;) -

j=1 j=1
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Hence Assertion (iii) follows with §, = min{d’., r}.

Note that since the distance dg has values in {0} U {In(1 + ¢}}) : n € Z}, the open
balls in G are open and compact, and since the canonical projection G — % is open and
continuous, the subsets P; of % are by construction open and compact, and P, is closed
and open. O

Let € be a countably generated o-algebra of subsets of %. Note that for every j € Z,
the o-algebra a/% is also countably generated and

[Ylaie = o [a7y]e .

We say that & is a~!-descending if a¢ is contained in €. In particular, for all y € % and
7 € Z=g, we have

[yle < [Y]aiw -
Given a Borel probability measure p on % and a closed subgroup H of G, we say that ¢

is H -subordinated modulo p if for p-almost every y € %, there exists r = r, € ]0,1] such
that we have

By < [yle < Bl,y .
If ¢ is UT-subordinated modulo g and if furthermore p is a-invariant, since a normalises
U* and by Lemma , for every j € Z, the o-algebra a/% is also Ut -subordinated modulo

1.
For every o-algebra 7 of subsets of %, for all a,b in Z U {£o0} with a < b, we define
a o-algebra 424’ of subsets of %" by

b

a=\/ ai;zf’:a< g a’&/).

i=a a<i<b
Note that if . is countably generated, then so is 7.

Proposition 5.7 For every r € ]0,1[, there exists a countably generated sub-c-algebra
V" of the Borel o-algebra of % such that

(1) the countably generated o-algebra VT s a~!-descending,

(2) for every y e #(r), we have [y] v+ © BUTy,

(3) for every y € ¥, we have Bgy < [yl v+, where 6, € ]0,7] is as in Lemma .
Let 1 be a Borel a-invariant ergodic probability measure on % with u(#(r)) > 0. Then
V" is Ut -subordinated modulo pu.

Proof. Fix r€]0,1[. Let & = {Py,..., Py, Px} be a partition given by Lemma [5.6| for

this 7. We prove a preliminary result on the countably generated sub-o-algebra o(Z).

Lemma 5.8 For every y € %, we have Bg+y c [y]o.(y)(c)ﬁ.

Proof. Let h € Bng. Assume for a contradiction that hy ¢ [y]g((@)gc. Then there exists
k € Zsq such that a *hy and a=*y belong to different atoms of the partition &2. Let
a =minr > 0. By Lemma 5.1 we have

do (a Fhy, a %y) < dg(a=*ha*,id) = dy+ (a7 Fha® id) < ¢, 56, <0, <r. (41)
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It follows that both a=*hy and a~*y belong to the §,-boundary 05, & of &2. But the set
05,2 is empty by Lemma , which gives a contradiction. O

By Lemma for every i € {1,..., N}, there exist y; € % (r) and a Borel subset V;
of % contained in B,(,; such that P; = V;y;. Let 22U be the sub-o-algebra of the Borel
o-algebra of % generated by the subsets P, n 7~ (W), where W is a Borel subset of 2,
and the subsets (U*B) n'V;)y;, where i € {1,..., N} and B is a Borel subset of G. Then
2V s countably generated, since the Borel o-algebra of 2" is countably generated and
U™ is a closed subgroup of G. For every y € %, the atom of y for 22U is equal to

] s — Uy if ye Py
P Pin(BYV"y) if 3ie{l,...,N}, yeP;.

T

(42)

Let us now define &/V" = (,@UJr)BO, which is a countably generated sub-g-algebra of
the Borel o-algebra of Z/, since so is 22U . Note that a&V" = (WUJr)C{O < V", which
proves Assertion .

For every y € #(r), since Py, € % — % (r) by Lemma and by Equation ,
we have [y] v+ < [y] pu+ < BY "y, which proves Assertion @.

In order to prove the last Assertion , let us take y € % and h € Bg: and let us
prove that hy € [y] ,u+. Since we have hy € [y];(»)x by Lemma for every k = 0,
there exists i € {1,..., N, o0} such that the points a %y and a=*hy = a=*ha*(a=*y) both
belong to P, € &. If i = oo, then by Equation , the points a= ¥y and a=*hy lie in
the same atom [a™*y] o+ = Ua ¥y since a™"ha* € UT. Assume that 1 < i < N. Since
h e Bg:, it follows from Equation that a"*ha* € BY . Hence by Equation , the
points a~*y and a~*hy lie in the same atom [a*ky]gm — Py~ (BY a Fy) of 2V, This
proves Assertion .

Now let p be an a-invariant ergodic probability measure on % with u(%(r)) > 0. By
ergodicity, for pu-almost every y € %, there exists k € Z=; such that a %y e % (r). Since
akF V" < o#U" | by Assertion (1) and by Lemma we have

— + +
(W] v+ € Wl o = 0" [0 y] or € "B a7y € By -
With Assertion (3), this proves that .o/ U™ is U*-subordinated modulo . O

Let us introduce some material before stating and proving our next Lemma [5.9] The
map di g K" x K" — [0, +00[ defined by

v 57 El € Kvm7 dem,r(éa 5/) = H £ - £/ Hl‘ (43)

is an ultrametric distance on K, since the r-pseudonorm | |, satisfies the ultrametric

inequality : for all £, & € K", we have

1€+ & e < max{| & ]x, | £} (44)

with equality if |||, # [&'[lr- Note that the map similar to dgm r in the real case of

IKKL]| is not a distance if m > 2 for general r. For every ¢ > 0, we denote by BCKUm’r
the open ball of center 0 and radius € in K" for dxm . Note that the distance dgm r is
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bihdlder equivalent to the standard one: For all £€,&" € K™ such that || € — &' < 1, we
have

| & — & |mine < dpemp(€,€) <|&—¢ |maes . (45)

We also endow the quotient space T™ = K"/R" with the quotient distance dym , of
the distance dgm r on K" defined by Equation (43). For every A € .4y, (K, ), we denote
by diy+y, o the distance on the orbit U%yao = ¢a(T™) such that the homeomorphism
¢4 defined in Lemma is also an isometry for the distances dy= » and dU+yA70,r-

Using the identification w — @ between K™ and U* (see Subsection [5.1)), for every

€ > 0, we denote by BY T the open ball of radius € in U" centered at the identity element
for the distance dy+ . on U isometric to dg m . The map u — uya,0 from U™ onto Ut ya
is 1-Lipschitz and locally isometric for the distances dy;+ . and dgr+,, , - Improving Lemma

for all e > 0 and k € Z, we have

a *BY"rat = BY or (46)
Again using the (locally compact) topological group identification w — @ between
(K", +) and UT, we endow U™ with the Haar measure my+ which corresponds to the
normalized Haar measure vol)' of K" (see Section . For every j € Z, the Jacobian
Jac; with respect to the measure my+ of the homeomorphism ¢; : v +— o wal from U*
to U' (which is constant since ; is a group automorphism and mg+ is bi-invariant) is
easy to compute: we have
Jacj = ¢ Il (47)

Lemma 5.9 For everyr € |0, 1], let V" be as in Proposition . Let p be an a-invariant
ergodic probability measure on % . Then

_ +
hala ) < Il
Furthermore, if (% (r)) > 0, then
hu(a ' V") < Hy (Y |aaV") .
Proof. The proof of the latter assertion is formally the same one as for the real case in
IKKL, Lemma 2.8] by replacing a, L, /‘50 therein by a, U™, u herein.
Let us prove the first assertion. By [EL, Prop. 7.44|, there exists a countable Borel-

measurable partition ¢ with finite entropy which is a generator for a modulo p, such that
o(4)¥ is a~t-descending and G*-subordinated modulo p. We first claim that

hu(a | V") < Hy(o(@)§ v 7V [a(0(@)F v 7). (48)

Indeed, for every countable Borel-measurable partition £ with H,(£) < o0, using Assertions
(3), (4), and (6) in [KKIJ, Prop. A.2|, the fact that V" is a~'-descending and the
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continuity of entropy [ELW, Prop. 2.14], we have

hu(a™ €| V")
k
ha(a™, \/ @9 | ") + Hu(0(€) |0(@) v 7U7)
i=—k

= hu(@ L9 |a" V") + Hy(0(6) | 0(@): ) v V)

YA

= Hu(0(@)|o(9)T v (U )E) + Hu(o(€) |o(9)F ) v 7U7)

I
=
2
8
EY

<

)P v (YNE) + Hu(o() |a(@)r ), v 2V
—— Hy(0(9) | o(@)F v (V)F) + Hu(o(€) | 0(9) %, v U7

= H(o(@)|o@)F v (ZV)F) < Hu(o(@) | o(@)F v V)

& generator

= Hy(o(@)§ v 7 0@ v V") < Hu(o(@) v Y |a(a(@)F v V).

This proves the claim (48)).

As in the proof of [LSS| Prop. 3.1|, the o-algebra o(¥)§ v /U is countably generated,
a~!-descending, and U*-subordinated since [y] ,,+ < Uy for all y € % and since o(4)§
is G -subordinated. Thus by [ELL Prop. 7.34] (recalling that we are using logarithms with

base ¢,), we have

1 Ut IcBUJr —k
(o) v V" |a(o(@)f v o)) = lim PBuutle B )
—>00

where uU” is the leaf-wise measure of y at x € % with respect to U™ as defined in [EL
Theo. 6.3]. By [EL, Theo. 6.30] (which applies since U™ is abelian, hence unimodular) and
by Equation (47)) (see also [ELL §7.42]), we have

+ +
po (@B o)

lim su =0
ot g2 g ’
hence we have . .
. log, pl" (a"BY " a™F)
lim : <|r|.
k—o0 k
This proves the first assertion of the lemma. ]

Let us introduce some more material before stating and proving our final Proposition
of Subsection Let &/ be a countably generated sub-o-algebra of the Borel o-
algebra of %. For all j € Z>¢ and y € &, let

VI = {ue U iuye [ylow) (49)

which is a Borel subset of U™, called the U™ -shape of the atom [y],s. Note that for every
7 € Z=g, we have

; . »
Vil =d VI e

Let us define a Borel-measurable family (T“j“‘{ of Borel measures on %, that we call

Y )ye??
the Ut -subordinated Haar measure of o’ ./, as follows:
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o if my+ (Vy“j”‘/) is equal to 0 or oo, we set T;jg{ =0,

e otherwise, TZS‘J” is the push-forward of the normalized measure

by the map u — uy.
Now let p be a Borel a-invariant probability measure on %, such that &/ is U*-
subordinated modulo p. In particular, for p-almost every y € %, the atom Vy“]“{ has

" : j
positive and finite my+-measure, hence the measure 7y <4

1

M| ei
my (VgTe) U v

is a probability measure with
support in [y]qs,. Furthermore, if z € [y]4,, then there exists u € UT such that z = uy,

Ve = Vy“‘j‘?/ u™!, and 7% = T;]'Q{ , by the right-invariance of my+.

The following proposition is a function field analog of the effective real case version
IKKL, Prop. 2.10, §2.4] of |[EL, §7.55].

Proposition 5.10 Let p be a Borel a-invariant ergodic probability measure on % and
let o/ be a countably generated sub-o-algebra of the Borel o-algebra of % which is a™'-
descending and U™ -subordinated modulo . Fiz j € Z>1 and a U™ -saturated Borel subset
K' of . Suppose that there exists € > 0 such that [z], < BV, for every z € K'. Then

we have
H (|0 o) < jIr| + f log 78 (% — K') & B Supp ) duy).
74

Proof. We fix pu, <7, j, K' and € as in the statement. By for instance [EL, Theo. 5.9], let
('“Z]% )yeg/ be a measurable family of conditional measures of p with respect to a’.e7, so

that for p-almost every y € %', the measure ,ugjﬂ is a probability measure on % giving full

measure to the atom [y]y., with p&< = ,ugjd if z € [y]q4ir, and such that the following
disintegration formula holds true:

= Le@ 1 du(y) . (50)

Let p, 1y — u;]% ([y]ler) and pr : y — T;J”Q{ ([y]er), which are nonnegative and measur-
able functions on %. Since &7 is a~'-descending and U T-subordinated modulo y, the atom
[y]s contains an open neighborhood of y in the atom [y],;, for u-almost every y € #. In
particular, the function p; is p-almost everywhere positive.

Since &7 is countably generated and a~'-descending, for every y € %, the atom of y
for a’.e7 is countably partitioned into atoms for &7 up to measure 0, that is, there exist a
finite or countable subset I, of [y]u ., and a ,ugj”‘*{ -measure zero subset N, of [y].s,, such
that

Waor = Ny o | ] [l - (51)

xely

Let I; = {z € I, : [*]os 0 Supp p # J}.

Lemma 5.11 Let x € I,
(1) If ¢ I, then pu$ ([x].) = 0. .
(2) If x € I, then [x]. is contained in (% — K') U BY " Supp .

38



Proof. (1) This follows since Supp ugj”‘z‘/ is contained in Supp p.

(2) If z € I, there exists z € [z] N Supppu. For every 2’ € [7]y, we have either
2 e & — K or 22 € K'. In the second case, since &/ is U*t-subordinated and K’ is
Ut-saturated, we have z € [z]y = [2']s € Utz < K’. Hence by the assumption of
Proposition we have 2/ € [z]y = [¢] = BY "2 = BY " Supp y1, which proves the
result. 0

By the definition of the U*-subordinated Haar measure of a/.e, for p-almost every
y € % we have

my+ (V%) mU*(VyE{) my+ (Vyﬂ)

p‘r(y) = my+ (Vajd) = myr+ (aj Vf{jy a_j) - Jacj mu+ (Va%%fy) .

Hence, by the a-invariance of g and by Equation , we have

f logqv pr(2) du(z) = — logqv Jacj = —jr|.
2€W

Respectively
e by the definition of the conditional entropy in Equation ,
e by the disintegration formula ,

e since /ngd gives full measure to [y],i, which is partitionned as in Equation ,

and by Lemma (1),
e since when z varies in [z]y < [y]4i., the values p,(z) = n® ([2]) = u;]”([ o)

and pr(z) = Taﬂg{([z];y) = T;jﬂ([x]d) are constant,

e by the concavity property of the logarithm,

e by Lemma (2),

we hence have
H,(o |olt) ] It
| (log pule) = gy, () dn(2)
2€W
al of
|| (o, pre) = oy pule)) diy =) dity)
YyeW Jze¥

g

xe[’

a]% T ;
- [ ¥ om, L o)) s (], diuty)
ye

ey ([#])

< Le@ log,, ( Z T;jﬂ([ﬂc]ﬂ)) dp(y)

!
xEIy

f (o pr(e) o, ) i 2) sty

<f log,, (78 (% — K') 0 BY"* Supp ) du(y) -
54

This proves the result. L]
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6 Upper bound on the Hausdorff dimension of Bad 4(¢)

6.1 Constructing measures with large entropy

In this subsection, we construct, as in [KKL, Prop. 4.1| in the real case, an a-invariant
probability measure on % giving an appropriate lower bound on the conditional entropy
of a relative to the o-algebra o U™ constructed in Proposition

For any point x in a measurable space, we denote by A, the unit Dirac measure at
x. We denote by -~ the weak-star convergence of Borel measures on any locally compact
space.

Let us denote by 2 = 2 U{wy} and Z = # U{owy } the one-point compactifications
of 2" and %, respectively. We denote by @ : # — 2 the unique continuous extension
of the natural projection 7 : % — 2, mapping s to 004 . The left actions of a on 2~
and % continuously extend to actions on .2 and % fixing the points at infinity 004 and
g . For every countably generated o-algebra o7 of subsets of 2~ or %, we denote by .o/
the countably generated o-algebra of subsets of .2 or % generated by &/ and its point at
infinity. For a finite partition 2 = {Q1, ..., QnN, Qx} of # with only one unbounded atom
Qo, we denote by 2 the finite partition {Q1,...,Qn, Qy = Qo U {00x}} of #. Note that

\/?:a a2 = \/?:a a~* 2 for all a,b in Z with a < b.
For every n € [0,1], we say that an element z € 2 has n-escape of mass on average
under the action of a if for every compact subset Q of 2,

liminf%Card{ﬁe{l,w- ,N}:aexg_fQ}}n.

N—0
When n = 1, as defined in the Introduction and in Proposition [5.2] we say that = diverges
on average in 2" under the action of a. For every A € 4, ,(K,), we denote by x4 =
uaR™ € Z its associated unimodular lattice (see Section [5.2)), and by na € [0,1] the
upper bound of the elements 1 € [0, 1] such that x4 has n-escape of mass on average. Note
that this upper bound is actually a maximum.

Proposition 6.1 For every A € Mmn(Ky), there exists a Borel probability measure 14
on 2 with ua(2) =1 —na such that for every e > 0, there exists an a-invariant Borel
probability measure i on % satisfying the following properties.
(1) The support of [ is contained in £, L {0y}, where £, is defined in Equation (35)).
(2) We have TTxi = pa. In particular, there exists an a-invariant Borel probability mea-
sure p on % such that
A=1—=na)p+nalo,.

(3) For every r € 10,1[, let ZU" be the o-algebra of subsets of ¥ constructed in the
proof of Proposition[5.7. Then

hz(a™' V") = |r|(1 — na) — maxr (m — dimpaus Bad (e)) .

Proof. Since x4 has na-escape of mass on average but does not have (n4 + §)-escape
of mass on average for any § > 0, there exists an increasing sequence of positive integers
(ki)iezs, such that, for the weak-star convergence of Borel probability measures on the
compact space Z , as i — 400, we have

1 k;—1
*
ko Z AakxA — HA, (52)
' k=0

40



and j14 is a Borel probability measure on 2~ with pa(2°) = 1 —na. This is equivalent to
pa({ooa}) = na.
Let € > 0. For every T € Zxg, with the notation of Subsection (see in particular

Equations and ), let
Rr={0eT™:Vk=T,a"¢4(0) € £} nBadal(e) .

By Proposition [5.4] since a countable subset of K" has Hausdorff dimension 0, we have
dimpaus (UOTO:1 RT) = dimpa,s Bada(€). Thus, for every j € Z>1, there exists T} € Zx

satisfying
. . 1
dimpays Rr; = dimpaus Bada(e) — G

For all 7, j € Z>1 such that k; > T}, let S; ; be a maximal ¢, ki—separated subset of Ry,
for the distance dpm , defined after Equation . Then Rr, can be covered by Card S;
open balls of radius ¢; % for drm ». Each open ball of radius ¢, ki for drm » can be covered
by 1_[] 1 G ki i3 [k maxr qfi(mmaxr_lr‘) open balls of radius g, ™*T with respect to
the standard distance dym (defining the Hausdorff dimension of subsets of T™). Since the
lower Minskowski dimension is at least equal to the Hausdorff dimension, we have

log,, (qfi(m maxr=Irh o d Sij)

ki maxr)

lim inf

1
I = diInHaus RTj = dimHauS BadA(E) - =
100 logqv (qv J

which implies that
) j 1 .
> [r| — maxr (m + - — dimpaus Bada(e)) . (53)
J

Let us define the Borel probability measures

. A
Vig = Card Sij OZS: $4(6)
i,

which is the normalized counting measure on the finite subset ¢4(S; ;) of the U*t-orbit
¢a(T™) = Utyao < 7 L(z4), and
~ 1
Dig=o ), Wi,
v ogk<k;—1

which is the average of the previous one on the first k; points of the a-orbit. Since % is
compact, extracting diagonally a subsequence if necessary, we may assume that v; ; weak-
star converges as i — 400 towards an a-invariant Borel probability measure fi;, and that
fi; weak-star converges as j — +00 towards an a-invariant Borel probability measure .
Let us prove that i satisfies the three assertions of Proposition

For all k > T; and 6 € S;; < Rr,, we have akp(0) € £ by the definition of Rr,.
Slnce aiym- is a probability measure, we hence have

-1
Vi (¥~ Z) Zauw@ Z) Zaum@/ L) <
Zko ZkO
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Since %, U {004} is closed in % and by taking limits first as i — +oo then as j — +o0,
we therefore have (% — £,) = 0. This proves Assertion (1.

Since ¢4(S; ;) is contained in the fiber above x4 of T and since v;; is a probability
measure, we have Tyv; j = A, ,. By the linearity and equivariance of 7., we hence have

1 1

— ~ k —

TwVij = k‘i E Ay Ty Vij = 7 E AakxA .
L ogk<h;—1 b ogk<k;—1

By the weak-star continuity of 7, and Equation , we thus have

Tt = lim lim 7.0;,; = lim puas = pa .
j—>+00 i—+00 j—+o

Note that the point at infinity cog is an isolated point in the support of 7 by Assertion

(1), since .Z, is compact. We hence have

i({ooz}) = p(7 ({0e}) = na{oor}) = na - (54)

Suppose that 2 is any finite Borel-measurable partition of % satisfying
(i) the partition 2 contains an atom Qg of the form 7=1(Q%), where 2" — Q¥ has
compact closure,
(i) there exists ¢y € Zx1 such that for every atom @ € 2 different from @, we have
diam Q < g, o™axT for the distance dgy.
(iii) for all Q € £ and j € Zx1, we have [1;(0Q) = 0 and fi(0Q) = 0.
We first prove the following entropy bound: For every M € Z>1,

1
M

Hy(0(2) YU ) = r|(1 = #(Qy)) — maxr (m — dimyaus Bada(e)) . (55)

Since Equation is clear if 1( Q) = 1, we may assume that 71( Q) < 1, hence that
Fi(Qy) < 1 for all large enough j > 1. Now, we fix such a j > 1.
Take p > 0 small enough so that [i;( Q) + p < 1 and let

B=1(Qup) +p- (56)

Then for all large enough i € Z>1, since ¢4(S;;) < 7 (za) and Qy = 7 1(Q%) by
Property (i) of 2, we have

1 kit

1
T T Oad O A
kiCard S; ; kzo 9;;], ok (0)(Qe0)

ki—1
1

3 D, (@)

i k=0

Thus, for every 8 € T™, since a¥¢4(0) € Q4 implies that a¥z4 € Q% by Property (i) of
2, we have
Card{k e {0,... ki —1} : a*¢4(0) € Qu} < Bk . (57)

Let us prove the following counting lemma inspired by [ELMW| Lem. 4.5] and [LSS|
Lem. 2.4|, where {; is given by Property (ii) of 2.
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Lemma 6.2 There exists a constant C > 0 depending only on r and £y such that for all
A€ Mpun(Ky), 0€T™ and T € Zxo, definingy = ¢pa(0), I = {k € Zxo : aky e Qu}, and

E,r={2eU%y:Vke{0,....,T} — I, dy(aFy,a"z) < g fomaxry

the set Ey 1 can be covered by C’qi‘,ﬂcard(lm{o"“’T}) closed balls of radius q;(e°+T) for the
distance dir+y p-

Proof. As in the proof of [LSS| Lemma 2.4], we proceed by induction on 7.

By the compactness of T™, there exists a constant C € Z>1 depending only on r and
{o such that the metric space (T™, dpm ) can be covered by C closed balls of radius g, .
Since ¢4 : T™ — Uty is an isometry for the distances dpm » and dir+y, r, the orbit U *y can
be covered by C' closed balls for di+, , of radius g, . Thus the lemma holds for 7' = 0.

Let Np = Cqu|Card(Iﬁ{0,...,T}).
Assume by induction that E, 71 can be covered by Nr_y balls for dy+, . of radius
(Lo+T—1)
q

v . Note that for every k € Z, since 780, /(7¥+10,) has order g,, every closed ball
k-1

in K, of radius ¢, k is the disjoint union of ¢, closed ball of radius g, " ". Hence every

closed ball for di/+,, , of radius ¢, (bo+T—1)

dir+y, » of Tadius q;(ZOJrT). Therefore, if T € I, then Ey,r = E,r_1 can be covered by

Np = qulNT_l closed balls for d+,, , of radius qv_(éOJrT).

Suppose conversely that T' ¢ I, so that in particular N = Np_1. Denote the above

in Uy can be covered by qw closed balls for

covering of Ey,r_1 by {B; : i = 1,...,Nr_1}. Since we have E, 7 < E,7_1, the set
{EyrnB;:i=1,...,Nr_1} is a covering of E, .
Claim. Foralli=1,...,Nr_qand 21, 22 € Ey 7 N B;, we have dyy+, (21, 22) < qv_(zOJrT).

Proof. Since T ¢ I, we have dy (a’y, asz) < gy fomaxT for each j = 1,2. Thus we have
doy (aT 21, aT 29) < ¢ 0 ™*T by the ultrametric inequality property of | - |. Note that since
21,20 € Uty = Utya g, there exist 1 = (011,...,01,,) and 02 = (021,...,02,,) in T™
such that (denoting in the same way lifts of 8 and 6 to K,*) we have z; = y9, and
22 = Ya 0, With [( )| the map defined after Equation (3), it follows that we have

max ¢;" [(01; — 02, )| = drm (a6, a7605) = do (a"yae,, 0" yae,)
1<is<m
_ d@(aTzl,aTZQ) < qU—ZOmaxr )
Hence, we have
~  _(6o+T)
dyty (21, 22) = dpm £ (01,02) = max [(01; —02;)|" <q, "/,
1<is<m

which concludes the claim. ]

By the above claim, the intersection E, 7 n B; is contained in a single ball for dy;+,, . of

(bo+T)

radius ¢, for each ¢ = 1,..., Ny_1. Thus E, 7 can be covered by Ny = Np_; balls

for dy+, , of radius g Ot O

Recall that as constructed in the proof of Proposition [5.7], there exist a Borel-measura-
ble partition & = {Py,..., Py, Py} of # with N + 1 elements, and a countably generated
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Borel-measurable g-algebra 22U of subsets of %, with [y] Yl pu+ = [ylo 0 BY "y for every
+

y € #(r) by Equation (42), such that we have VT = (VP
For all € Z>; and y € % (r), we have [y](@[ﬁ)g < Wy )0 BU"y. Since the support
“ 0

of v; j is a finite set of points on a single U -orbit ¢4(T™) = Ut ya,0, the measure a; kuw is
also supported on a single U T-orbit akU+yA,o = U+a_kyA,0 for every k € Zx¢. Recall (see
for instance [ELL Def. 5.7]) that two sub-o-algebras </ and &/’ of a measured space (X, %)
are equivalent modulo a probability measure v if for every A € &/ there exists A’ € &7’ such
that ¥(AAA’") = 0 (where A is the symmetric difference) and vice versa.

Claim. For every k € Zsq, the sub-o-algebras 2Y" and o(2) are equivalent modulo
k

a, V-
Proof. By the construction of 2V" above Equation ([#2), we have [y] v+ < [y]o for
every y € % and for every y ¢ Py, we have

Uty o yle = [yl pu+- (58)

We first consider any point y € % such that [y] pu+ intersects Supp a, kym-. If y ¢ Py,
by Equation (58), the symmetric difference [y] ,u+A[yle = [yl — [y] pu+ does not
intersect U*y. But Supp a;kyl-’j < U™y by the single orbit support property, hence we
have a;*v; ;([y] pu+ Alyle) = 0. If y € Py, since [y] ,u+ = Uy by Equation and
Supp a;kyi,j c Uy, we have a;kyi,j([ lov+Alyle) = a;kyi’j(Poo —Uy) = 0.

For every point y € % such that [y ]]U+ does not intersect Supp a*_kui’j, we can take
g€ o(P) so that a;kl/i,j([y]@wA@) = a;kum([y]QW) = 0.

Conversely, consider any point y € % such that [y]4 intersects Supp a;kui,j. Let us fix
y' € [y]» N Supp a; Fv; ;, so that in particular Supp a;*v; ; « Uty < Uy'. If y € Py, then
Y € Py = [ylp and [y] ,u+ = Uy’ by Equation (#2), hence a,*v; ;([y]» A[y] pu+) =
a, v, j(Py — Uy') = 0. If y ¢ Py, then y ¢ Py and by Equation (58), the difference
Uty —[y] pu+ does not intersect [y']» = [y]», hence a;*v;;([y] »A [y] yu+) = 0.

For every point y € % such that [y] » does not intersect Supp a;kuivj, we take @ € 2U"
so that a;*v; ;([y] A @) = a;*v; ;([y]») = 0. This proves the claim. ]

Using the above claim, we have that (QZU+ )§ is equivalent to o(2)§ modulo v; ;. Hence,
it follows from Equation that

H,, (2§ < H,,, \/akg» (¢ +1)log, (N +1). (59)

If @ is any atom of the finite partition 2; , = \/ii_o1 akF2v \/f; 0 ak P of %, then fixing
any y € @, by Property (11) of 2, the intersection ¢ 4(.S; ;) N Q is contained in E, ;, 1 with

the notation of Lemma . It follows from Lemmam 2| and Equation (57) that ¢p4(S; ;)N Q

can be covered by qurﬂ * closed balls for dU*on . of radius ¢, (€°+k b q*EOJrlq;’l‘C ,

where C' depends only on r and £y. Since S; ; is ¢, ki_separated (hence g EOHq i-separated
since £y > 1) with respect to dym r, and since ¢4 : (T", dpm ) — (U+yA70,dU+yA o,r) 1S an
isometry, we have

Card(¢A(Si7j) N Q) < qu\)rmki '
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Since we have (2V")f = o(2)5 modulo Vi j, since v; j is the normalised counting measure
on ¢a(S;;), and since the map ¥ = —log, is nonincreasing, it hence follows that

Hy, (0(2)5 v (20 = Hy [ (2i0) = . vig(Q)T(1,(Q))

QE2;
Card(¢a(Si;) N Q) qurmk"
= ) v QU - V() D Q)
03, ( Card 9; ; > (Card Sm> 03,
= log,, (Card S; ;) — |r| B k; — log,, C . (60)

Combining Equations and , we have

(o(2)5 1(2V7)5) = Ha i (0(2)57 1 v (2V7)5) — Hoy , (2V7)6)
> log,, (Card S; ;) — [r[Bk; —log,, C — (£ + 1)log, (N +1).

(61)

H

Vi,j

By the subadditivity and concavity properties of the entropy as in the proof of |[LSS|
Eq. (2.9)], for every M € Zx1, we have

1
M

Hy, (0(2M 12U )) > ~H,, (o(2)5(2V)E)

ki Vi,j

2 M log,, (Card 2)
_ a _

Therefore, since v; j(00g ) = 0, it follows from Equations and that

(62)

1 — 1, T 1

Ao, (@ NI ) = b,
1

> ™ (logqv(Card Sij) — |r|Bk; —log, C — (£ +1)log, (N +1) —2 M log, (Card 32)) .

(21 (2V)f)

Now we can take ¢ — o0 since the atoms @) of the partition 2 and hence of the partition
\/kj‘/lz?)1 ak 2, satisfy [;(0Q) = 0 by the property (iii) of 2. Also, the constants C, N, ¢,
and Card 2 are independent of k;. Thus it follows from Equation that

1 —— M1 o 1 )
173, ((0(2))" (277 )o) = [rl(1 = B) — maxr (m + 5~ dimsraus Bad (6))
By taking p — 0 in Equation , we have

1
H

27 ((0(2)5 7 (2V)6) = rl(1 = i (@) — maxr (m + j — dimprays Bada(e)) .

Hence, it follows by taking j — oo and by using the property (iii) of 2 that

(2D (7)) = el (@) — maxr (m — dimigaus Bada(e)

Since (2V*)§ / /U" as £ — oo, by the continuity of entropy, we finally have

S HR((TT2) U) = el (@) — maxr (m — dimigaus Bada(e)

which proves Equation (55).
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Hence, by taking M — oo, we have
hz(a™t /U ) = |r|(1 — fi(Qy)) — maxr (m — dimpaus Bada(e)) ,

provided that we have a partition 2 satisfying the above requirements (i), (ii) and (iii).
After taking a sufficiently small neighborhood of infinity Q% in 27, so that if Qn =
77 H(Q%), then 1(Q,,) is sufficiently close to fi(00s) = 14, we can indeed construct a finite
Borel-measurable partition 2 of ¢ satisfying Properties (i), (ii) and (iii), by following the
procedure in [LSS| Proof of Theorem 4.2, Claim 2|. This proves Assertion . O

6.2 Effective upper bound on dimy,,s Bad (¢)

For every ¢ € Z<1, with A1 the shortest length function of a nonzero vector of an R,-lattice
(see Subsection [2.2]), we define

20 = {ze2 :\(z) =4’} and B> = 71_—1(%2%13) .

Note that by Corollary we have \j(x) < g, for all z € 27, thus 2" = Ué:_oo 2>,
By Mahler’s compactness criterion (see for instance |[KIST, Theo. 1.1]), the subsets 2 >4
and #>% are compact.

Lemma 6.3 Let i/ be an a-invariant Borel probability measure on % and let o/ be a
countably generated sub-o-algebra of the Borel o-algebra of % which is a~'-descending and
U™ -subordinated modulo p'. For allr’ = § >0, e € 10,1] and £ € Z<y, let j1, j2 be integers
satisfying

d—(d—1)¢

minr

d—(d—1)¢
— log,, 8 and jy > # —ﬁlogqve.

Ji1 > .
mins d

If y € #>% satisfies Bg+’ra*j1y c [ayly < Bng’ra*jly, then we have

; . L m\ ||
) <1 = (GO )

Proof. Let z = m(y), which belongs to 224, Since x is a unimodular R,-lattice, by
Minkowski’s theorem we hence have

g{V N a(2) < (@) Na(z) < M(2)Xo(2) - Aa(z) < g
d—(d—1)¢

therefore \j(z) < ¢ . There are linearly independent vectors vi,...,vq in the R,-
lattice z such that |v;| < qﬁ*(d’l)‘f. Let A be the parallelepiped in K2 generated by

v1,...,vq, that is,
A:{t1v1+-'~+tdvdede: Vi=1,...,d, |t;| <1}.

We identify K¢ with K x K. Then for every b = (b~,b*) € A with b~ € K" and
d—(d-1)¢ d—(d=1)¢ d—(d=1)
bt € K", we have |[b| < ¢ , hence | b~ ||y < ¢ ™™* and | b ||s < g ™" since

¢ < 0. Note that the fiber 7—!(z) can be parametrized as follows: Fixing g € Gy with
x = gly, since A is a fondamental domain for the action of R? on K2, we have

7 Hz) = {w(b)gl : be A}, where w(b) = (Ig ll)) .
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In particular, there exists by = (by,bg) € A such that y = w(bg)gT.

With a slightly simplified notation, let V,, be the UT-shape of the atom [y],,, (see
Equation (49))), so that we have Vyy = [y]y1 . Let 2= {0 € K" : w(0,0) € V,} be the
Borel set corresponding to V,, by the canonical bijection 8 — w(8,0) (see above Equation
) between K” and U". Note that 0 € = as Iz41 € Vj. Since a’! expands the r-

quasinorm on K" with ratio exactly qf;l (see Equation ), and by the assumption on y

. Utr Utr
in the statement of Lemma we have qul(;,y C [Ylghy © qulr/ y, hence
KM = KM
B "cEc BT, (63)
%;15/ qvlT‘/

The atom [y],s, ,, can be parametrized by
Y]y = {w(b)gF :db eby; +E, b= (b_,bar)} ,

and 791
y

(with positive measure) b, + = of K"
Let us consider the sets

is the pushforward measure of the normalized Haar measure on the Borel set

O ={b eK/™:|b |, <q?27} and ©F = {bT e K :|b* | < ¢/2€id} .

Ifb=(b”,b*)e O x O, then [a”?b~ |, < €4 and |a/?b*|s < ¢4 by Equation (32). By
the definition of .%, in Equation (3F)), and since the grid a/2gR!™ + (a’?b™, a’?b™) contains
the vector (a”?b™,a’?b™), we have

a’2w(b)gl = w(a’?b™, a”?bM)a’2gl ¢ 7, .
Hence we have w(b)gl' ¢ a=/2.%,, so that
W —a 2Z 2> w(((by +E) x {bg}) n (O~ x ©F))gI. (64)

Claim. We have the inclusion ©~ x {b{'} = ((by + Z) x {bf}) n (6~ x ©T).
Proof. We only have to prove that by € ©F and that ©~ < by + Z. Since (by,bj) € A,

d—(d—1)¢
we have | b{ s < g» ™®= , hence the former assertion follows from the assumption that
Lo d=@-Dl . .
J2 mins d ‘08¢, €

In order to prove the latter assertion, let us fix b~ € ©7. Recall that the r-quasinorm

| - ||lr satisfies the ultrametric inequality property, see Equation . Hence, it follows from
d—(d-1)¢ d—(d—1)¢

the assumptions jo > — —— minr

% log,, € and j; > —log,, ¢, since € < 1, that
d—(d—1)¢

|b~™ — by |l < max{|b~ |, | by s} < max{g, 727, q, "™ }

_d—(d—1)¢ d—(d—1)¢ d—(d—1)¢ )
< max {qU min s €, Qy min r } = qy min r < qgl(sl )

Hence by the left inclusion in Equation , we have b™ € by + BK].{Y;’/I" < by + &, which
@

concludes the latter assertion. ]
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Now by Equation , by the above claim and by the right inclusion in Equation ,
we have

K" r
mgm (@7) < MK (qu—vjz&%)

— p———
mm(by + Z) M m (B;i“fr;/r)
v

1= 78" (@72 L) = 187 [yl oy — 02L) >

m
d

o (Q’Uj €
qi'r’

Ir| - m
)" = (ar Gy
This proves the lemma. L]

Proof of Theorem We fix a matrix A € 4y, »(K,) which is not (r,s)-singular on
average, or equivalently by Proposition [5.2] and the definition of 74 just before Lemma [6.1]
that 74 < 1. We also fix € € 0, 1].

By Proposition there exist an a-invariant Borel probability measure 7 on % (de-
pending on €) and an a-invariant Borel probability measure p on ¢ (unique since 4 < 1)
such that

Supppi = Ze v {0a}, Tufi = pa, and = (1 —na)p+ 1400, .

Take a compact subset K¢ of 2" such that pa(Ko) > 0.99pua(Z) = 0.99 (1 —na). Write
K = n71(Ky) and choose 7 € ]0,1[ such that K = % (r). Then u(# (r)) = u(K) > 0.99
since 14 < 1. Note that the choices of K and r are independent of € since the measure 4
depends only on A (see Proposition and Equation )

For such an r > 0, let &/U" be the o-algebra of subsets of % constructed in Proposition

Proposition gives the inequality
haz(a™t 2/U" ) = |r|(1 — na) — maxr (m — dimyaus Bad4(e)) .

1

By the linearity of entropy (and since the entropy of a~" vanishes on the fixed set {00z }),

we have
1 -
ha(a | /U7 ) = e — T

ho(a | oV") =
pla™| ) — —

(m — dimpa,s Bad 4(€)) . (65)
In order to use Lemma [5.9] and Proposition [5.10, we need an ergodicity assumption

on the measures that appear in these statements. We will choose an appropriate ergodic
component of u. Let us denote the ergodic decomposition of u by

u=f s du(y)
yeXW

as in the second equality of Proposition withT =a ! and o = #U". Let E = {y €
Y - ,u‘j(K) > 0.9}. It follows from p(K) > 0.99 that

0.99 < L/ 18 (K) dpu(y) < p(E) + 0.9 (& — E) = 0.9 + 0.1 u(E) |

hence u(E) > 0.9. By Proposition and Equation (65]), we have

maxr

1 —na

L hys (@' V") dpy) = hu(a™ | #V7) = |r| - (m — dimpaus Bad (€)) .
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Since huf(a71| V") < |r| for every y € % by Lemma we have

| g™ duty) < el w(@ — ).
% —F

Hence
_ maxr .
hye (a7 V7 dp(y) = [x| p(E) - (m — dimiraus Bad a(€))
E Y 1—mna
maxr .
> H(E)(‘r| — m (m — dlmHaus BadA(G))> .

Therefore, there exists z € % such that u¢ (K) > 0.9 and

maxr

hos(a | V1) = fr| — —xf

(m — dimpa,s Bad 4(€)) .

We denote A = uf for such a z € . Then A is an a-invariant ergodic Borel probability
measure on % and Supp A € Supp ¢ € Z.. By Lemma [5.9] we have

maxr

H (Y adV ) > || - ———

(m — dimpa,s Bad 4(€)) . (66)

We will apply Lemma with ¢/ = X and & = a*&/U" for some k > 1. Take an
integer £ < 0 such that K ¢ & 2‘15, which depends only on A. Set

i [d—(d—l)é

minr

d—(d-1)¢ n

— ! PR
log,, 5] +1 and jo [ o y

log,, 6—| +1,

where ¢’ will be determined later on.

m

Let k = [logqv (rmalxr E_F)] +jo+1and & = a*V". By the properties of &/U"
given in Proposition and since K < % (r), for every y € K, we have

+ +
B§ y <yl u+ cBYVy.
It follows from Equation that for any y € K,

+ +
BY [ yclyl v cBY " y.

6minr rmaxr
T

Hence, by Equation , we have

U+ _ _ — Ut —
B” " | a Fy < [a ky]a_kdw =[a*y]l, B S a ky .
q;k(;;mnr gy rTmaxr
Thus for every y € a* K, we have
U 5 U )
By "y<lyle =B, 'y, (67)

/
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Equation implies that for every y € a/'** K, we have
BY "a iy < [a 1yl < BY Ta ity (68)

Now, we will use Proposition with j = j1, K’ = a* K (which is U*-saturated since
sois K and as a normalizes U™T), and € = ' (which satisfies the assumption of Proposition

by Equation (67)). We claim that
BU'r, 42 (69)

qv 1Em
Indeed, for all y € %, and @ € K™ such that | 6|, < ¢; '€, for every vector u = (u™,u™)
in the grid w(0,0)y, we can write u = v + (0,0) for some v = (v—,v") in the grid
A, associated with y (see Equation (33))). Since y € .7, We have (see Equation (35))
A d
|vrs = max{[v™ [, vT |s"} = €. Since ut = +, if ot Hs €, then w(6,0)y € Z..
d
Otherwise | v~ |/ = e. We then have |6 |, < ¢;'ed < ed < |v™ . It follows from the
equality case of the ultrametrlc inequality property of | |r that
%

lu™ e =[6+v" e =max{[ @], [v7 [} =[v7 x>

Hence w(0,0)y € £, which proves Equation .
By Proposition the o-algebra o7 UT g a~!-descending and U T-subordinated modulo

A, and so does & = a *&7V" since a normalizes U*t. Note that Supp A © a™/2.%, since A
is a-invariant. By Equations and , we have
BY Ta g —a 2BV " g — q 2B, 4 caiy,
o

32/ gd

Note that we have

Y —d"K) =0

for A-almost every y € a¥K, since then (see just above Proposition the support
Supp Ty 1 g contained in [y] a1 o7, which is contained in Uy, hence in a*K since a
normahzes Ut and K = n71(Kj) is U*t-saturated. Therefore, it follows from Proposition
for the first line, from the fact that the integrated function is nonpositive (hence its
integral on a smaller domain is larger) for the third line, that

Hy (o |07 a?) < ji|r| + f logg, 7' (% — a"K) U BY, " Supp A) dA(y)

Ay

< i)+ J log, " (¥ — d"K) L a2.2,) dA(y)
ay

< jilr| + j og,, 7 (@ — aUK) U a.2,) dA(y)
ab K Aai1HE K Ay =ab

= julr| + j log, 7 (072 dA(y)
ab K Aad1 kK Ay =ab

We now apply Lemma with as said above y/ = X and & = a *.or U+, and with
ye ' tFK nw >4 which satisfies the assumption of Lemma by Equation . Thus

(@ L) < 1= (g Oy leg)‘rl = 1— g, =Dl
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Hence
—(1—=1)|r|
Qu

~log,, T;jl“z‘{(a—h.iﬂe) > —log,, (1 _ qv—(jl—l)lﬂ) > e
v

Note that A(a"K o/t TFK A &> > 3 since A is a-invariant, K < =% and A\(K) > 0.9,
so that the three sets a* K, a/'**K and > have A-measure > 0.9, hence their pairwise
intersections have A-measure > 2x0.9—1 = 0.8, and their triple intersection has A-measure
>2x08—1=0.6. It follows from Equation and the invariance under a of A, hence
of the conditional entropy, that

1 ) 1 )
t| — Hy (oY [ a/V") = Jr| - EHMU*! V) = |r| - S HA(| @)

1 o
= 1 W1 (=j2 LY I\
jl ukKﬁﬂjl+kKﬁ?}?q$ qu’u Ty ( 6) (y)
qu| q{”'r‘
2lng, 71

Therefore, by Equation , we have

[r|  —jilr]
maxr . + v Qu
— " (m — dimpa.s Bad > |r| — H\(ZY | aV*) >
Observe that
1
d—(d—1)¢ d—(d—-1)¢ gmine . m
jlz[i(, ) —logqv5'1+1:[7(, ) —logqv(7¥qv_”6? )]—1—1
minr minr q% 7 maxr
1
d—(d—-1)¢ d—(@d—-1)¢ n m e
_ -M ] 1-"log, e—1 7] 1
[ minr + [ mins q 08 € + g CBw T % q? T *
1
1 1 o
<(d—(d—1 ( ) Clog, 44 .
(d=(d=1)¢f) minr maxs 8qu qgrmlxr * &g, €

The constants 74, ¢, d,, and r depend only on the fixed matrix A € 4, »(K,). Hence
there exists a constant ¢(A) > 0 depending only on d, r, s and A such that

cIrl

m — dimpa,s Bada(€) = ¢(A) ——— .
() = c(A) o, (1))
This proves Theorem [L.2] O
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