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Abstract In this survey based on the book by the authors [BPP], we recall the

Patterson-Sullivan construction of equilibrium states for the geodesic flow on nega-

tively curved orbifolds or tree quotients, and discuss their mixing properties, emp-

hazising the rate of mixing for (not necessarily compact) tree quotients via coding by

countable (not necessarily finite) topological shifts. We give a new construction of

numerous nonuniform tree lattices such that the (discrete time) geodesic flow on the

tree quotient is exponentially mixing with respect to the maximal entropy measure:

we construct examples whose tree quotients have an arbitrary space of ends or an

arbitrary (at most exponential) growth type.1

1 A Patterson-Sullivan construction of equilibrium states

We refer to [PPS, Chap. 3, 6, 7] and [BPP, Chap. 2, 3, 4] for details and complements

on this section.

Let X be (see [BPP] for a more general framework)

• either a complete, simply connected Riemannian manifold M̃ with dimension

m at least 2 and pinched sectional curvature at most −1,
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• or (the geometric realisation of) a simplicial tree X whose vertex degrees are

uniformly bounded and at least 3. In this case, we respectively denote by EX and

VX the sets of vertices and edges of X. For every edge e, we denote by o(e), t(e), e

its original vertex, terminal vertex and opposite edge.

Let us fix an indifferent basepoint x∗ in M̃ or in VX.

Recall (see for instance [BH]) that a geodesic ray or line in X is an isometric

map from [0,+∞[ or R respectively into X , that two geodesic rays are asymptotic if

they stay at bounded distance one from the other, and that the boundary at infinity

of X is the space ∂∞X of asymptotic classes of geodesic rays in X endowed with the

quotient topology of the compact-open topology. When X = M̃ , up to a translation

factor, two asymptotic geodesic rays converge exponentially fast one to the other,

and ∂∞M̃ is homeomorphic to the sphere Sm−1 of dimension m − 1. When X is a

tree, up to a translation factor, two asymptotic geodesic rays coincide after a certain

time, and ∂∞M̃ is homeomorphic to a Cantor set.

For every x in X , the Gromov-Bourdon visual distance dx on ∂∞X seen from x

(inducing the topology of ∂∞X ) is defined by

dx(ξ, η) = lim
t→+∞

e
1
2
(d(ξt , ηt )−d(x, ξt )−d(x, ηt )) ,

where ξ, η ∈ ∂∞X and t 7→ ξt, ηt are any geodesic rays converging to ξ, η respectively.

The visual distances seen from two points of X are Lipschitz equivalent.

Let Γ be a discrete group of isometries of X which is nonelementary, that is,

does not preserve a subset of cardinality at most 2 in X ∪ ∂∞X . When X = M̃ , this

is equivalent to Γ not being virtually nilpotent. When X is a tree, we furthermore

assume that X has no nonempty proper invariant subtree (this is not an important

restriction, as one may always replace X by its unique minimal nonempty invariant

subtree), and that Γ does not map an edge to its opposite one.

The limit set ΛΓ of Γ is the smallest nonempty closed invariant subset of ∂∞X ,

which is the complement of the orbit Γx∗ in its closure Γx∗, in the compactification

X ∪ ∂∞X of X by its boundary at infinity.

Examples. (1) Let M̃ be a symmetric space with negative curvature, e.g. the real

hyperbolic planeH2
R
, and let Γ be an arithmetic lattice in Isom(M̃), e.g. Γ = PSL2(Z)

acting by homographies on the upper halfplane model ofH2
R

with constant curvature

−1 (see for instance [Kat], and [Mar] for a huge amount of examples).

2

e−t
PSL2(Z)\H

2
R

t

3

1
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n

PGL2(Fq[Y ])\Xq
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(2) For every prime power q, let X be the regular tree of degree q + 1, and let

Γ = PGL2(Fq[Y ]), acting onX seen as the Bruhat-Tits treeXq of PGL2 over the local

field Fq((Y
−1)) (see for example [Ser], and [BaL] for a huge amount of examples).

Note that the pictures of the quotients Γ\X are very similar in the above two

special examples, in particular

• the lengths of the closed horocycle quotients in PSL2(Z)\H
2
R

go exponentially

to 0 (they are equal to e−t where t is the distance of the horocycle quotient to the

orbifold point of order 2),

• the orders of the vertex stabilisers along a geodesic ray inXq lifting the quotient

ray PGL2(Fq[Y ])\Xq increase exponentially (they are equal to c qn where c is a

constant and n is the distance of the vertex to the origin of the ray), see for instance

[BPP, §15.2].

Remark. Note that we allow torsion in Γ, as this is in particular important in the

tree case; we allow Γ\X to be noncompact; and we allow Γ not to be a lattice.

These allowances give in the tree case the possibility to have almost any (metrisable,

compact, totally disconnect) space of ends and almost any type of asymptotic growth

of the quotient Γ\X (linear, polynomial, exponential, etc), see loc. cit.

Recall that Γ is a lattice in X if either the Riemannian volume Vol(Γ\M̃) of the

quotient orbifold Γ\M̃ is finite, or if the graph of groups volume

Vol(Γ\\X) =
∑

[x]∈Γ\VX

1

Card(Γx)

(where Γx is the stabiliser of x in Γ) of the quotient graph of groups Γ\\X is finite.

Note the analogy, in the two special examples above, between the computation of

(most of) the volume of PSL2(Z)\H
2
R

as a converging integral of the lengths of

the closed horocycle quotients and of the volume of PGL2(Fq[Y ])\\Xq (which does

converge by a geometric mean argument).

The phase space. Let G X be the space of geodesic lines ℓ : R → X in X , such

that, when X is a tree, ℓ(0) is a vertex, endowed with the Isom(X)-invariant distance

(inducing its topology) defined by

d(ℓ, ℓ′) =

∫
+∞

−∞

d(ℓ(t), ℓ′(t)) e−2 |t | dt ,

and with the Isom(X)-equivariant geodesic flow, which is the one-parameter group

of homeomorphisms

gt : ℓ 7→ {s 7→ ℓ(s + t)}

for all ℓ ∈ G X , with continuous time parameter t ∈ R if X = M̃ and discrete time

parameter t ∈ Z if X is a tree. We again call geodesic flow and denote by (gt )t the

quotient flow on the phase space Γ\G X .

Note that the map from the unit tangent bundle T1M̃ endowed with Sasaki’s metric

to G M̃ , which associates to a unit tangent vector v the unique geodesic line whose
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tangent vector at time t = 0 is v, is an Isom(M̃)-equivariant bi-Hölder-continuous2

homeomorphism, by which we identify the two spaces from now on.

Potentials on the phase space. We now introduce the supplementary data (with

physical origin) that we will consider on our phase space. Assume first that X = M̃ .

Let F̃ : T1M̃ → R be a potential, that is, a Γ-invariant, bounded3 Hölder-continuous

real map on T1M̃ . Two potentials F̃, F̃∗ : T1M̃ → R are cohomologous (see for

instance [Livš]) if there exists a Hölder-continuous, bounded, differentiable along

flow lines, Γ-invariant function G̃ : T1M̃ → R, such that, for every v ∈ T1M̃ ,

F̃∗(v) − F̃(v) =
d

dt |t=0
G̃(gtv) .

For every x, y ∈ M̃ , let us define (with the obvious convention of being 0 if x = y)

the integral of F̃ between x and y, called the amplitude of F̃ between x and y, to be

∫ y

x

F̃ =

∫ d(x,y)

0

F̃(gtv) dt
x y

v

and v is the tangent vector to the geodesic segment from x to y.

Now assume that X is a tree. Let c̃ : EX → R be a (logarithmic) system of

conductances (see for instance [Zem]), that is, a Γ-invariant, bounded real map on

EX. Two systems of conductances c̃, c̃∗ : EX→ R are cohomologous if there exists

a Γ-invariant function f̃ : VX→ R, such that for every e ∈ EX

c̃∗(e) − c̃(e) = f (t(e)) − f (o(e)) .

For every ℓ ∈ G X , we denote by e+
0
(ℓ) = ℓ([0,1]) ∈ EX the first edge followed by ℓ,

and we define F̃ : G X → R as the map ℓ 7→ c̃(e+
0
(ℓ)). For every x, y ∈ VX, we now

define the amplitude of F̃ between x and y, to be

∫ y

x

F̃ =

k∑

i=1

c̃(ei) dt
ek

x y

e1 e2

if (e1, e2, . . . , ek) is the geodesic edge path in X between x and y.

In both cases, we will denote by F : Γ\G X → R the function on the phase space

induced by F̃ by taking the quotient modulo Γ, that we call the potential on Γ\G X .

Note that we make no assumption of reversibility on F.

Cohomological invariants. Let us now introduce three cohomological invariants

of the potentials on the phase space.

2 In order to deal with noncompactness issues, a map f between two metric spaces is Hölder-

continuous if there exist c, c′ > 0 and α ∈ ]0, 1] such that for every x, y in the source space, if

d(x, y) ≤ c, then d( f (x), f (y)) ≤ c′d(x, y)α .

3 see [BPP, §3.2] for a weakening of this assumption
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The pressure of F is the physical complexity associated with the potential F

defined by

PF = sup
µ (gt )t -invariant proba on Γ\GX

(
hµ +

∫

Γ\GX

F dµ
)

where hµ is the metric entropy4 of µ for the time 1 map g1 of the geodesic flow.

The critical exponent of F is the weighted (by the exponential amplitudes) orbital

growth rate of the group Γ, defined by

δF = lim
n→+∞

1

n
ln

( ∑

γ∈Γ, n−1<d(x∗ ,γx∗)≤n

exp
( ∫ γx∗

x∗

F̃
) )
.

Note that the critical exponent δ0 of the zero potential is the usual critical exponent

of the group Γ (see for instance [Pau]). We have δF ∈ ] − ∞,+∞[ since

δ0 + inf F̃ ≤ δF ≤ δ0 + sup F̃ .

Note that δF◦ι = δF where ι : G X → G X is the involutive time reversal map defined

by ℓ 7→ {t 7→ ℓ(−t)}.

The period for the potential F of a periodic orbit O of the geodesic flow (gt )t on

Γ\G X is
∫
O

F =
∫ ℓ(tO)

ℓ(0)
F̃ where ℓ ∈ G X maps to O and

tO = inf{t > 0 : Γgtℓ = Γℓ}

is the length of the periodic orbit O . The Gurevich pressure of F is the growth rate

of the exponentials of periods for F of the periodic orbits, defined by

P
Gur
F = lim

n→+∞

1

n
ln

∑

O : tO ≤n, O∩W,∅

exp
( ∫

O

F
)
,

where the sum is taken over the periodic orbits O of (gt )t on Γ\G X with length at most

n and meeting W , where W is any relatively compact open subset of Γ\G X meeting

the nonwandering set of the geodesic flow (recall that we made no assumption of

compactness on the phase space).

Note that the above three limits exist, and are independent of the choices of x∗
and W , and depend only on the cohomology class of the potential F.

The following result proved in [PPS, Theo. 4.1 and 6.1] extends the case of the

zero potential due to Otal and Peigné [OP].

4 The metric entropy hµ is the upper bound, for all measurable countable partitions ξ of Γ\GX, of

lim
k→+∞

1

k
Hµ (ξ ∨ · · · ∨ g−k ξ)

where Hµ (ξ) = −
∑

E∈ξ µ(E) lnµ(E) is Shannon’s entropy of the countable partition ξ , see for

instance [KH], and the join ξ ∨ ξ′ of two partitions ξ and ξ′ is the partition by the nonempty

intersections of an element of ξ and an element of ξ′.
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Theorem 1 (Paulin-Pollicott-Schapira) If X = M̃ has pinched sectional curvatures

with uniformly bounded derivatives,5 then

PF = δF =P
Gur
F .

Note that the dynamics of the geodesic flow (gt )t on the phase space Γ\G X is

very chaotic. In particular, there are lots of (gt )t -invariant measures on Γ\G X . We

give two basic examples, and we will then contruct, using potentials, a huge family

of such measures.

Examples. (1) If X = M̃ , then the Liouville measure mLiou on T1M = Γ\(T1M̃)

is the measure on T1M which disintegrates, with respect to the canonical footpoint

projection T1M → M , over the Riemannian measure volM of the Riemannian

orbifold M = Γ\M̃ , with conditional measures on the fibers the spherical measures

volT 1
xM

on the (orbifold) unit tangent spheres at the points x in M:

dmLiou(v) =

∫

x∈M

d volT 1
xM

(v) d volM (x).

(2) For every periodic orbit O of the geodesic flow (gt )t on Γ\G X , we denote by

LO the Lebesgue measure6 (when X = M̃) or counting measure (when X is a tree)

of O . This is a (gt )t -invariant measure on Γ\G X with support O .

The main class of invariant measures we will study is the following one, and the

terminology has been mostly introduced by Sinai, Ruelle, Bowen, see for instance

[Rue]. A (gt )t -invariant probability measure µ on the phase space Γ\G X is an

equilibrium state for the potential F if it realizes the upper bound defining the

pressure of F, that is, if

hµ +

∫

Γ\GX

F dµ = PF .

The remainder of this section is devoted to the problems of existence, uniqueness

and explicit construction of equilibrium states.

Gibbs cocycles. As for instance defined by Hamenstädt, the (normalised) Gibbs

cocycle of the potential F is the function C : ∂∞X × M̃ × M̃ → R when X = M̃ or

the function C : ∂∞X × VX × VX → R when X is a tree, defined by the following

limit of difference of amplitudes for the renormalised potential

5 This assumption on the derivatives was forgotten in the statements of [OP, PPS], but is used in

the proofs.

6 If the length of O is T and if v ∈ T 1M̃ maps into O by the canonical projection T 1M̃ → T 1M ,

the Lebesgue measure LO of O is the pushforward by t 7→ Γgtv of the Lebesgue measure on

[0,T ].
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Cξ (x, y) = lim
t→+∞

∫ ξt

y

(F̃ − δF ) −

∫ ξt

x

(F̃ − δF ),

y

x +

ξ

−
ξt

∂∞X

where t 7→ ξt is any geodesic ray converging to ξ. The limit does exist. The Gibbs

cocycle is Γ-invariant (for the diagonal action) and locally Hölder-continuous. It does

satisfy the cocycle property Cξ (x, z) = Cξ (x, y)+Cξ (y, z) for all x, y, z. Furthermore,

there exist constants c1, c2 > 0 (depending only on the bounds of F̃ and on the

pinching of the sectional curvature, when X = M̃) such that if d(x, y) ≤ 1, then

Cξ (x, y) ≤ c1d(x, y)c2 . See [BPP, §3.4].

Patterson densities. A (normalised) Patterson density of the potential F is a Γ-equiv-

ariant family (µx)x∈X of pairwise absolutely continuous (positive, Borel) measures

on ∂∞X , whose support is ΛΓ, such that

γ∗µx = µγx and
dµx

dµy
(ξ) = e−Cξ (x, y) (1)

for every γ ∈ Γ, for all x, y ∈ X , and for (almost) every ξ ∈ ∂∞X .

Patterson densities do exist and they satisfy the following Mohsen’s shadow

lemma (see for instance [BPP, §4.1]:

r

γx
OxB(γx,r)

x

∂∞X

Define the shadow OxE seen from x of a

subset E of X as the set of points at infin-

ity of the geodesic rays from x through

E . Then for every x ∈ X , if r > 0 is large

enough, there exists κ > 0 such that for

every γ ∈ Γ, we have

1

κ
exp

( ∫ γx

x

(F̃ − δF )
)
≤ µx

(
OxB(γx,r)

)
≤ κ exp

( ∫ γx

x

(F̃ − δF )
)
. (2)

Gibbs measures. The Hopf parametrisation of X at x∗ is the map from G X to

(∂∞X × ∂∞X − Diag) × R, where R = R if X = M̃ and R = Z if X is a tree, defined

by

ℓ 7→ (ℓ−, ℓ+, t)

x∗
ℓ(0)

ℓ−

ℓ+

t

∂∞X

ℓ
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where ℓ−, ℓ+ are the original and terminal points at infinity of the geodesic line ℓ,

and t is the algebraic distance along ℓ between the footpoint ℓ(0) and the closest

point to x∗ on the geodesic line. It is a Hölder-continuous homeomorphism (for

the previously defined distances). Up to translations on the third factor, it does not

depend on the basepoint x∗ and is Γ-invariant, see for instance [BPP, §2.3 and §3.1].

The geodesic flow acts by translations on the third factor.

Let (µx)x∈X and (µιx)x∈X be Patterson densities for the potentials F and F ◦ ι

respectively, where ι : Γℓ 7→ Γ{t 7→ ℓ(−t)} is the time reversal on the phase space

Γ\G X . We denote by Cι the Gibbs cocycle of the potential F ◦ ι. We denote by dt

the Lebesgue or counting measure on R. The measure on G X defined using the Hopf

parametrisation at x∗ by

dm̃F (ℓ) =
dµιx∗ (ℓ−) dµx∗ (ℓ+) dt

exp
(
Cι
ℓ−
(x∗, ℓ(0)) + Cℓ+ (x∗, ℓ(0))

)

is a σ-finite nonzero measure on G X . By Equation (1) and by the invariance of

the measure dt under translations, it is independent of the choice of basepoint x∗,

hence is Γ-invariant and (gt )t -invariant. Therefore it induces a σ-finite nonzero

(gt )t -invariant measure on Γ\G X , called the Gibbs measure on the phase space and

denoted by mF .

Examples. (1) When F = 0, then the Gibbs measure is called the Bowen-Margulis

measure (see for instance [Rob]).

(2) When X = M̃ and F̃ is the unstable Jacobian, that is, for every v ∈ T1M̃ ,

F̃su(v) = −
d

dt |t=0
ln

(
Jacobian of restriction of gt to

strong unstable leaf W su(v)

)
,

v−

v

W su(v)

we have the following result (see [PPS, §7], in particular for weaker assumptions).

When M has variable sectional curvature, the Liouville measure and the Bowen-

Margulis measure might be quite different. The following result in particular says that

the huge family of Gibbs measures interpolates between the Liouville measure and

the Bowen-Margulis measure. This sometimes provides common proofs of properties

satisfied by both the Liouville measure and the Bowen-Margulis measure.

Theorem 2 (Paulin-Pollicott-Schapira) If X = M̃ has pinched sectional curvatures

with uniformly bounded derivatives, then F̃su is Hölder-continuous and bounded. If

M̃ has a cocompact lattice and if (gt )t is completely conservative7 for the Liouville

measure, then

mFsu
= mLiou.

7 That is, every wandering set has measure zero.
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The following result, due to Bowen and Ruelle when M is compact and to Otal-

Peigné [OP] when F = 0, completely solves the problems of existence, uniqueness

and explicit construction of equilibrium states, see [PPS, §6].

Theorem 3 (Paulin-Pollicott-Schapira) Assume that X = M̃ has pinched sectional

curvatures with uniformly bounded derivatives.8 If the Gibbs measure mF is finite,

then mF =
mF

‖mF ‖
is the unique equilibrium state. Otherwise, there is no equilibrium

state.

We refer to Section 3.2 for an analogous statement when X is a tree, whose proof

uses completely different techniques.

2 Basic ergodic properties of Gibbs measures

We refer to [PPS, Chap. 3, 5, 8] and [BPP, Chap. 4] for details and complements on

this section.

2.1 The Gibbs property

In this section, we justify the terminology of Gibbs measures used above.

For every ℓ ∈ Γ\G X , say ℓ = Γℓ̃, for every r > 0 and for all t, t ′ ≥ 0, the

(Bowen or) dynamical ball B(ℓ; t, t ′,r) in the phase space Γ\G X centered at ℓ with

parameters t, t ′,r is the image in Γ\G X of the set of geodesic lines in G X following

the lift ℓ̃ at distance less than r in the time interval [−t ′, t], that is, the image in Γ\G X

of

B(ℓ̃; t, t ′,r) =
{
ℓ ′ ∈ G X : sup

s ∈ [−t′, t]

dX ( ℓ̃(s), ℓ
′(s) ) < r

}
.

The following definition of the Gibbs property is well adapted to the possible non-

compactness of the phase space Γ\G X . A (gt )t -invariant measure m′ on Γ\G X

satisfies the Gibbs property for the potential F with Gibbs constant c(F) ∈ R if for

every compact subset K of Γ\G X , there exists r > 0 and cK ,r ≥ 1 such that for all

t, t ′ ≥ 0 large enough, for every ℓ in Γ\G X with g−t
′
ℓ,gtℓ ∈ K , we have

1

CK ,r

≤
m′

(
B(ℓ; t, t ′,r)

)

e
∫ t

−t′
(F(gt ℓ)−c(F) ) dt

≤ CK ,r .

The following result is due to [PPS, §3.8] when X = M̃ and [BPP, §4.2] in general.

Proposition 4 The Gibbs measure mF satisfies the Gibbs property for F with Gibbs

constant c(F) equal to the critical exponent δF .

8 This assumption on the derivatives was forgotten in the statements of [OP, PPS].
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Let us give a sketch of its proof, which explains the decorrelation of the influence

of the two points at infinity of the geodesic lines, using the fact that the Gibbs

measure is absolutely continuous with respect to a product measure in the Hopf

parametrisation. The key geometric lemma is the following one.

Lemma 5 For every r > 0, there exists tr > 0 such that for all t, t ′ ≥ tr and ℓ ∈ G X ,

we have, using the Hopf parametrisation at the footpoint ℓ(0),

Oℓ(0)B(ℓ(−t ′),r) × Oℓ(0)B(ℓ(t),r)× ] − 1,1[ ⊂ B(ℓ; t, t ′,2r + 2)

B(ℓ; t, t ′,r) ⊂ Oℓ(0)B(ℓ(−t ′),2r) × Oℓ(0)B(ℓ(t),2r)× ] − r,r[ .

Let us give a proof-by-picture of the first claim, the second one being similar.

See the following picture. If a geodesic line ℓ′ has its points at infinity ℓ′− and ℓ′
+

in the shadows seen from ℓ(0) of B(ℓ(−t ′),r) and B(ℓ(−t ′),r) respectively, then by

the properties of triangles in negatively curved spaces, if t and t ′ are large, then the

image of ℓ′ is close to the union of the images of the geodesic rays from ℓ(0) to ℓ−
and ℓ+. The control on the time parameter in Hopf parametrisation then says that ℓ′

is staying at bounded distance from ℓ in the time interval [−t ′, t].

ℓ(0)

ℓ′

r
ℓ(−t ′)

ℓ

r ℓ(t)

O
ℓ
(0
)

B
(ℓ(t),r

)
O
ℓ
(0
)

B
(ℓ
(−

t′
),

r
)

We now conclude the proof of Proposition 4 by using the boundedness of the

Gibbs cocycles C and Cι on a given compact subset K in order to control the

denominator in the formula giving m̃F , and by using Mohsen’s shadow lemma (see

Equation (2)) which estimates the Patterson measures of shadows of balls.

2.2 Ergodicity

In this section, we study the ergodicity property of the Gibbs measures under the

geodesic flow in the phase space.

The Poincaré series of the potential F is

QF (s) =
∑

γ∈Γ

exp
( ∫ γx∗

x∗

(F̃ − s)
)
.

It depends on the basepoint x∗, but its convergence or divergence does not. It con-

verges if s > δF and diverges for s < δF , by the definition of the critical exponent

δF .

The following result has a long history, and we refer for instance to [PPS, §5] and

[BPP, §4.2] for proofs, and proofs of its following two corollaries.
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Theorem 6 (Hopf-Tsuji-Sullivan-Roblin) The following assertions are equivalent.

(1) The Poincaré series of F diverges at the critical exponent of F : QF (δF ) = +∞.

(2) The group action (∂∞X × ∂∞X − Diag, µιx∗ ⊗ µx∗,Γ) is ergodic and completely

conservative.

(3) The geodesic flow on the phase space endowed with the Gibbs measure

(Γ\G X,mF , (g
t )t )) is ergodic and completely conservative.

Corollary 7 If QF (δF ) = +∞, then there exists a Patterson density for F, unique up

to a positive scalar. It is atomless, and the diagonal in ∂∞X × ∂∞X has measure 0

for the product measure µιx∗ ⊗ µx∗ .

Let us give a sketch of the very classical proof of the first claim of this corollary.

Existence. Using the properties of negatively curved spaces, one can prove, denoting

by Dx the Dirac mass at a point x, that one can take

µx = lim
si→ δ+

F

1

QF (si)

∑

γ∈Γ

exp
( ∫ γx∗

x

(F̃ − si)
)

Dγx∗ ,

where the atomic measure before taking the limit is, when x = x∗, a probability

measure, hence has, for some sequence (si)i∈N in ]δF ,+∞[ converging to δF , a

weakstar converging subsequence in the compact space of probability measures on

the compact space X ∪ ∂∞X .

Uniqueness. Let (µ′x)x be another Patterson density. Up to positive scalars, we

may assume that µx∗ and µ′x∗ are probability measures. Then (ωx =
1
2
(µx + µ

′
x))x

is a Patterson density, µx∗ is absolutely continuous with respect to ωx∗ , and by

ergodicity, the Radon-Nikodym derivative
dµx∗
dωx∗

is almost everywhere constant,

hence the probability measures µx∗ and ωx∗ are equal, hence µx∗ = µ
′
x∗

.

Corollary 8 If mF is finite, then QF (δF ) = +∞ (hence (gt )t ) is ergodic) and the

normalised Gibbs measure mF =
mF

‖mF ‖
is a cohomological invariant of the potential

F.

2.3 Mixing

In this section, we study the mixing property of the Gibbs measures under the

geodesic flow in the phase space. Recall that the length spectrum for the action of

Γ on X is the subgroup of R (hence of Z when X is a tree) generated by the set of

lengths of the closed geodesic in Γ\X (or, in dynamical terms, of the set of lengths

of periodic orbits of the geodesic flow on the phase space). See for instance [PPS,

§8.1] when X = M̃ and [BPP, §4.4] when X is a tree for a proof of the following

result, which crucially uses the fact that the Gibbs measure is absolutely continuous

with respect to a product measure in the Hopf parametrisation.
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Theorem 9 (Babillot) If the Gibbs measure mF is finite, then the following assertions

are equivalent.

(1) The Gibbs measure mF is mixing under the geodesic flow (gt )t .

(2) The geodesic flow (gt )t is topologically mixing on its nonwandering set in the

phase space.

(3) The length spectrum of Γ is dense in R if X = M̃ or equal to Z if X is a tree.

We summarise in the following result the known properties of the rate of mixing

of the geodesic flow in the manifold case when X = M̃ (see [BPP, §9.1]), refering

to Section 3 for the tree case, whose proof turns out to be quite different.

Let α ∈ ]0,1] and let C α
b
(Z) be the Banach space9 of bounded α-Hölder-

continuous functions on a metric space Z . When X = M̃ , we will say that the

(continuous time) geodesic flow on the phase space T1M = Γ\T1M̃ is exponentially

mixing for the α-Hölder regularity or that it has exponential decay of α-Hölder

correlations for the potential F if there exist two constants c′, κ > 0 such that for all

φ,ψ ∈ C α
b
(T1M) and t ∈ R, we have

���
∫

T 1M

φ ◦ g−t ψ dmF −

∫

T 1M

φ dmF

∫

T 1M

ψ dmF

��� ≤ c′ e−κ |t | ‖φ‖α ‖ψ‖α .

Theorem 10 Assume that X = M̃ and that M = Γ\M̃ is compact. Then the geodesic

flow on the phase space T1M has exponential decay of Hölder correlations if

• M is two-dimensional, by [Dol],

• M is 1/9-pinched and F = 0, by [GLP, Coro. 2.7],

• the potential F is the unstable Jacobian Fsu, so that, up to a positive scalar, mF

is the Liouville measure mLiou, by [Live], see also [Tsu], [NZ, Coro. 5] who give

more precise estimates,

• M is locally symmetric by [Sto], see also [MO, LiP] for some noncompact cases.

Note that this gives only a very partial picture of the rate of mixing of the

geodesic flow in negative curvature, and it would be interesting to have a complete

result. Stronger results exist for the Sobolev regularity when M̃ is a symmetric

space, F = 0 and Γ is an arithmetic lattice (the Gibbs measure then coincides,

up to a multiplicative constant, with the Liouville measure): see for instance [KM,

Theorem 2.4.5], using spectral gap properties given by [Clo, Theorem 3.1]. But this

still does not give a complete answer.

9 Recall that its norm (taking into account the possible noncompactness of Z) is given by

‖ f ‖α = ‖ f ‖∞ + sup
x , y ∈ Z

0<d(x , y)≤1

| f (x) − f (y) |

d(x, y)α
.
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3 Coding and rate of mixing for geodesic flows on trees

We refer to [BPP, Chap. 5 and 9.2] for details and complements on this section.

From now on, we assume that X is (the geometric realisation of) a simplicial

tree X, and we write GX instead of G X . We consider the discrete group Γ, the

system of conductances c̃ and the associated potential F on the phase space Γ\GX

as introduced in Section 1.

The study of the rate of mixing of the (discrete time) geodesic flow on the

phase space uses coding theory. But since, as explained, we make no assumption

of compactness on the phase space, and no hypothesis of being without torsion on

the group Γ in the huge class of examples described in Section 1, the coding theory

requires more sophisticated tools than subshifts of finite type.

3.1 Coding

Let A be a countable discrete set, called an alphabet, and let A = (Ai, j)i, j∈A

be an element in {0,1}A ×A , called a transition matrix. The (two-sided, countable

state) topological shift10 with alphabet A and transition matrix A is the topological

dynamical system (Σ,σ), where Σ, called the shift space, is the closed subset of the

topological product space A Z of A-admissible two-sided infinite sequences, defined

by

Σ =
{

x = (xn)n∈Z ∈ A
Z : ∀ n ∈ Z, Axn ,xn+1

= 1} ,

and σ : Σ→ Σ is the (two-sided) shift defined by

∀ x ∈ Σ, ∀ n ∈ Z, (σ(x))n = xn+1 .

We endow Σ with the distance

d(x, x ′) = exp
(
− sup

{
n ∈ N : ∀ i ∈ {−n, . . . ,n}, xi = x ′

i

} )
.

Let us denote by Y the (countable) quotient graph11 Γ\X. For every vertex or

edge x ∈ VY ∪ EY, we fix a lift x̃ in VX ∪ EX, and we define Gx = Γx̃ to be the

stabiliser of x̃ in Γ.

10 We prefer not to use the frequent terminology of topological Markov shift as it could be

misleading, many probability measures invariant under general topological shifts do not satisfy the

Markov chain property that the probability to pass from one state to another depends only on the

previous state, not of all past states.

11 The fact that the canonical projection is a morphism of graphs is the reason why we assumed Γ

to be acting without mapping an edge to its inverse.
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For every e ∈ EY, we assume that ẽ = ẽ. But

there is no reason in general for the equality

t̃(e) = t(ẽ ) to hold. We fix ge ∈ Γ map-

ping t̃(e) to t(ẽ ) (which does exist), and we

denote by ρe : Ge = Γẽ → Γ
t̃(e)
= Gt(e)

the conjugation g 7→ g
−1
e g ge by ge on Ge

(noticing that the stabiliser Γẽ is contained in

the stabiliser Γt(ẽ)).

p : X→ Y = Γ\X

e
t(e)

ge ∈ Γ

ẽ
t(ẽ)

t̃(e)

Let us try to code a geodesic line in the phase space Γ\GX. The natural starting

point is to write it as Γℓ for some ℓ ∈ G X , that is, to choose one of its lifts. We

then have to construct a coding which is independent of the choice of this lift. For

every i ∈ Z, let us denote by fi = ℓ([i, i + 1]) the i-th edge followed by ℓ, and by ei
(also denoted by e−

i+1
(ℓ) for later use) its image by the canonical p : X→ Y = Γ\X,

which seems fit to be a natural part of the coding of ℓ. Since we will need to translate

through our coding the fact that ℓ is geodesic, hence has no backtracking, the edge

ei+1 (also denoted by e+
i+1

(ℓ) for later use) following ei seems to have a role to play.

gei

t̃(ei)

ẽi

fi+1 ℓ

ẽi+1

fi

ℓ([i, i + 1])

fix γi

in Y = Γ\X
g ei+1

fix γi+1 p : X→ Y

in X

ei+1

hi+1(ℓ) ∈ Gt(ei )

ei

Since the terminal point of fi is the original point of fi+1, the terminal point of ei is

naturally also the original point of ei+1. But there is no reason for the terminal point

of the choosen lift ẽi to also be the original point of the choosen lift ẽi+1. Since fi
and ẽi both map by p to ei , we may fix γi ∈ Γ such that γi fi = ẽi , for every i ∈ Z.

Now, note that the vertex stabilizers in Γ of vertices of X are in general nontrivial

(and we explained in Section 1 that it is important to allow them to become very

large in order to have numerous dynamically interesting noncompact quotients of

simplicial trees). The construction (see the above diagram) provides a natural element

g
−1
ei

γi γ
−1
i+1

g ei+1
which stabilises the lifted vertex t̃(ei), hence belongs to Gt(ei ).

Since we made choices for the elements γi , the element g −1
ei

γi γ
−1
i+1

g ei+1
gives a

well-defined double class hi+1(ℓ) in ρei (Gei )\Gt(ei )/ρ ei+1
(Gei+1

), which also seems

fit to be another natural piece of the coding of ℓ.

It turns out that this construction is indeed working. We take as alphabet the

(countable) set
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A =

{
(e−, h, e+) :

e± ∈ EY with t(e−) = o(e+)

h ∈ ρe− (Ge− )\Go(e+)/ρ e+
(Ge+ ) with h , [1] if e+ = e−

}
.

This last assumption of conditional nontriviality of the double class codes the fact

that ℓ being a geodesic line, the edge fi+1 is not the opposite edge of fi , though ei+1

might be the opposite edge of ei . And since in the tree X, being locally geodesic

implies being geodesic, it is very reasonable that we have captured through our

coding all the geodesic properties of the geodesic lines and translated them into

symbolic terms. We take as transition matrix A over the alphabet A the matrix with

entries

A(e− , h, e+), (e′− , h′, e′+) =

{
1 if e+ = e′−

0 otherwise,

which just says that we are glueing together the coding of pairs of consecutive edges

of the geodesic line. Note that since the tree is locally finite, the transition matrix

A has finitely many nonzero entries on each row and column, hence the associated

shift space Σ is locally compact.

We then refer to [BPP, §5.2] for a proof of the following result, though almost

everything is in the above picture! We denote by Fsymb : Σ → R the locally con-

stant map which associates to
(
(e−

i
, hi, e

+

i
)
)
i∈Z

the image c̃(ẽ+
0
) by the system of

conductances of the lift of its first edge.

Theorem 11 The map

Θ :

{
Γ\GX −→ Σ

Γℓ 7→
(
(e−

i
(ℓ), hi(ℓ), e

+

i
(ℓ))

)
i∈Z

is a bilipschitz homeomorphism, conjugating the time 1 map of the (discrete time)

geodesic flow (gt )t∈Z to the shift σ. Furthermore,

(1) (Σ,σ) is topologically transitive,12

(2) if the Gibbs measure mF is finite and if the length spectrum of Γ is equal to Z,

then the probability measure P = Θ∗mF is mixing for the shift σ on Σ,

(3) the measure P satisfies the Gibbs property on (Σ,σ) with Gibbs constant δF for

the potential Fsymb.13

(4) if (Zn : x 7→ xn)n∈Z is the canonical random process in symbolic dynamics,

then the pair ((Zn)n∈Z,P) is not always a Markov chain.

12 This comes from the assumption that there is no nontrivial proper Γ-invariant subtree in X, since

then ∂∞X = ΛΓ, implying that the nonwandering set of the geodesic flow (gt )t∈Z is the full phase

space Γ\GX.

13 That is, with a formulation adapted to the possibility that the alphabet A may be infinite, for

every finite subset E of the alphabet A , there exists CE ≥ 1 such that for all p ≤ q in Z and for

every x = (xn)n∈Z ∈ Σ such that xp , xq ∈ E , we have

1

CE

≤
P([xp , xp+1, . . . , xq−1, xq ])

e−δF (q−p+1)+
∑q

n=p Fsymb(σn x)
≤ CE .

where [xp , xp+1, . . . , xq−1, xq ] is the cylinder {(yn)n∈Z ∈ Σ : if p ≤ n ≤ q then yn = xn }.
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This last claim has lead to an erratum in the paper [Kwo]. The pair ((Zn)n∈Z,P) is

not a Markov chain for instance in Example (2) at the beginning of Section 1, when

X = Xq and Γ = PGL2(Fq[Y ]).14

3.2 Variational principle for simplicial trees

The first corollary of the coding results in the previous section is the following

existence and uniqueness result of equilibrium states for the geodesic flow on the

phase space Γ\GX for the potential F.

Corollary 12 If mF is finite, then mF =
mF

‖mF ‖
is the unique equilibrium state for F

under the geodesic flow (gt )t∈Z on Γ\GX, and furthermore

PF = δF .

We only give a sketch of a proof, refering to [BPP, §5.4] for a complete one. We

use the coding given in Theorem 11 with its properties (in particular the fact that it

satisfies the Gibbs property for a symbolic potential related to the potential F).

Let (Σ,σ) be a topological shift, with countable alphabet A . A σ-invariant

probability measure m on Σ is a weak15 Gibbs measure for a map φ : Σ → R with

Gibbs constant c(m) ∈ R if for every a ∈ A , there exists a constant ca ≥ 1 such that

for all n ∈ N − {0} and x in the cylinder [a] = {y = (yn)n∈Z ∈ Σ : y0 = a} such

that σn(x) = x, we have

1

ca
≤

m([x0, x1, . . . , xn−1])

e
∑n−1

i=0 (φ(σi x)−c(m) )
≤ ca .

The following result of Buzzi is proved in [BPP, Appendix], with a much weaker

regularity assumption on φ, and it concludes the proof of Corollary 12.

Theorem 13 (Buzzi) Let (Σ,σ) be a topological shift and φ : Σ → R a bounded

Hölder-continuous function. If m is a weak Gibbs measure for φ with Gibbs constant

c(m), then Pφ = c(m) and m is the unique equilibrium state for the potential φ.

14 As noticed by J.-P. Serre [Ser], the image of almost every geodesic line of X in the quotient ray

Γ\X is a broken line which makes infinitely many back-and-forths from the origin of the quotient

ray.

There is absolutely no way to predict the probability of behaviour of the geodesic line image at a

given time in terms of its recent past probabilities (except that when it starts to go down, it has to

go down all the way to the origin).

15 The terminology comes from the fact that the assumptions bear only on the periodic points of σ.
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3.3 Rate of mixing for simplicial trees

Let us first recall the definition of an exponential mixing rate for discrete time

dynamical systems.

Let (Z,m,T) be a dynamical system with (Z,m) a metric probability space and let

T : Z → Z be a (not necessarily invertible) measure preserving map. For all n ∈ N

and φ,ψ ∈ L2(m), the (well-defined) n-th correlation coefficient of φ,ψ is

covm, n(φ,ψ) =

∫

Z

(φ ◦ Tn) ψ dm −

∫

Z

φ dm

∫

Z

ψ dm .

Let α ∈ ]0,1]. As for the case of flows in Section 2.3, we will say that the dynamical

system (Z,m,T) is exponentially mixing for the α-Hölder regularity or that it has

exponential decay of α-Hölder correlations if there exist c′, κ > 0 such that for all

φ,ψ ∈ C α
b
(Z) and n ∈ N, we have

| covm, n(φ,ψ)| ≤ c′ e−κ n ‖φ‖α ‖ψ‖α .

Note that this property is invariant under measure preserving conjugations of dynam-

ical systems by bilipschitz homeomorphisms. In our case, T will be either the time

1 map of the geodesic flow (gt )t∈Z on the phase space Z = Γ\GX or the two-sided

shift σ on a two-sided topological shift space Σ or (see below) the one-sided shift

σ+ on a one-sided topological shift space Σ+.

The following result is one of the new results contained in the book [BPP]. For

every finite subset E in Γ\VX, let τE : Γ\GX → N ∪ {+∞} be the first positive

passage time of geodesic lines in E , that is, the map

ℓ 7→ inf{n ∈ N − {0} : gnℓ(0) ∈ E} .

The following result says that if the tree quotient contains a finite subset in which

the geodesic lines with large return times have an exponentially decreasing mass,

then the (discrete time) geodesic flow on the phase space has exponential decay of

correlations. This condition turns out to be quite easy to check on practical examples,

see for instance [BPP, §9.2].

Theorem 14 If mF is finite and mixing for (gt )t∈Z, if there exist a finite subset E in

Γ\VX and c′′, κ′ > 0 such that

∀ n ∈ N, mF ({ℓ ∈ Γ\GX : ℓ(0) ∈ E, τE (ℓ) ≥ n}) ≤ c′′e−κ
′n ,

then for every α ∈ ]0,1], the (discrete time) dynamical system (Γ\GX,mF , (g
t )t∈Z)

is exponentially mixing for the α-Hölder regularity.

The hypothesis of Theorem 14 is for instance satisfied for Example (2) at the

beginning of Section 1 with X = Xq and Γ = PGL2(Fq[Y ]), taking E consisting of

the origin of the modular ray Γ\Xq , and using the exponential decay of the stabilisers

orders along a lift of the modular ray in Xp . In this case, the quotient graph Γ\X has
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linear growth. We gave in [BPP, page 193] examples where the quotient graph Γ\X

has exponential growth.

Here is an example where the quotient graph has quadratic growth, for every

even q ≥ 2. The tree X is the regular tree of degrees q + 2. The vertex group of

the top-left vertex x∗ of the quotient graph is Z/(
q

2
+ 1)Z. A set E as in Theorem

14 consists of the three vertices at distance at most 1 from x∗. The vertex group of

a vertex at distance at distance at least 1 from x∗, on the (m + 1)-th horizontal and

(n+ 1)-th vertical is (Z/qn
Z) × (Z/(q + 1)mZ). The number at the beginning of each

edge represents the index of the edge group inside the vertex group of its origin.

1

1

1

1

q + 1

q + 1

q + 1

1

1

1

1

q + 1

q + 1

q + 1

1

1

1

1

q + 1

q + 1

q + 1

1

1

1

1

q + 1

q + 1

q + 1

1 1q q1 1

1

1

1

q + 1

q + 1

q + 1

q

2
+1x∗ q

Z/(
q
2
+ 1)Z Z/qZ

q

Z/q4
Z

q

2
+1

Z/(q + 1)Z

Z/(q + 1)3Z

(Z/q4
Z) × (Z(q + 1)3Z)

Recall that two growth functions f and f ′, that is, two increasing maps from N

to N − {0}, are equivalent if there exist two integers c ≥ 1 and c′ ≥ 0 such that for

every n ∈ N large enough, we have f (⌊ 1
c

n − c′⌋) ≤ f ′(n) ≤ f (c n + c′). The type

of growth of an infinite, connected, locally finite graph Y is the equivalence class of

the map n 7→ Card BVY (v0,n), which does not depend on the choice of a base point

v0 ∈ VY , nor on the quasi-isometry type of Y .

It is well known (see for instance [Cho, Hug] or [GNS, §6.2]) that every totally

disconnected compact metric space is homeomorphic to the boundary at infinity of

a simplicial tree with uniformly bounded degrees, and that any increasing positive

integer sequence (an)n∈N with at most exponential speed (that is, there exists k ∈ N

such that an+1 ≤ kan for every n ∈ N) is, up to the above equivalence, the sequence

of orders of the balls of an infinite rooted simplicial tree with uniformly bounded

degrees. Hence the following result (not contained in [BPP]) says that we can realize

any space of ends, or any at most exponential type of growth, in the quotient graph

of an action of a group on a tree satisfying the hypothesis of Theorem 14.

Proposition 15 For every rooted tree (T ,∗) with uniformly bounded degrees such

that T , {∗}, there exists a simplicial tree X and a discrete group Γ of automor-

phisms of X as in the beginning of Section 1 such that Γ is a lattice, Γ\X is the union

of T with a loop at ∗, and the geodesic flow (gt )t∈Z) is exponentially mixing for the

α-Hölder regularity on Γ\GX for the zero potential.
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Proof. We refer for instance to [Ser, §I.5] for background on graphs of groups.

Let us fix q ∈ N large enough compared with the maximum degree d of T . We

define a graph of groups (T ∪ {e∗, e∗},G•) with underlying graph the union of T

with a loop glued at the root ∗ as follows. Let Ge∗ = {1}. For every vertex v of

T at distance n of the root ∗, we define Gv = Z/qn
Z. For every edge e , e∗, e∗

whose closest vertex to the root ∗ is at distance n from ∗, we define Ge = Z/qn
Z.

For every edge e , e∗, e∗ pointing away from the root, we define the monomorphism

Ge → Go(e) to be the identity, and the monomorphism Ge → Gt(e) to be the

multiplication by q map, so that the index of Ge in Go(e) is 1 and the index of Ge in

Gt(e) is q.

Let Γ andX be respectively the fundamental group (using the root as the basepoint)

and the Bass-Serre tree of the graph of groups (T ,G•). Then the degrees of the

vertices of X are at least 3 and at most q + d − 1, and for every n, we have

∑

x∈VT : d(x,∗)=n

1

|Gx |
≤ dn/qn . (3)

Since q is large compared to d, this implies that the volume of (T ,G•) is finite,

hence Γ is a lattice.

Since the potential is the zero potential, the Gibbs measure m0 is the Bowen-

Margulis measure. Note that m0 is finite since Γ is a lattice, by [BPP, Prop. 4.16].

Since we glued a loop at the root, there exists an element in Γ whose translation

length is equal to 1, hence the length spectrum of Γ is equal to Z. By Theorem 9,

this implies that m0 is mixing for the geodesic flow (gt )t . If E = {∗} is the singleton

in VT consisting of the root, since q is large compared to d, Equation (3) then

shows that the hypothesis of Theorem 14 is satisfied, and this concludes the proof of

Proposition 15. �

We conclude this survey with a sketch of proof of Theorem 14, sending to [BPP,

§9.2] for a complete proof. We thank Omri Sarig for a key idea in the proof of this

theorem.

Step 1. The first step consists in passing from the geometric dynamical system to a

two-sided symbolic dynamical system, using Section 3.1.

Let A , A,Σ,σ,Θ,P be as given in Theorem 11 for the coding of the (discrete time)

geodesic flow on the phase space Γ\GX. Let π+ : Σ→ A N be the natural projection

defined by (xn)n∈Z 7→ (xn)n∈N. Let

E = {(e−, h, e+) ∈ A : t(e−) = o(e+) ∈ E}

which is a finite subset of the alphabet, and let τE : Σ → N be the first positive

passage time in E of the two-sided shift orbits, that is, the map

x = (xn)n∈Z 7→ inf{n ∈ N − {0} : xn ∈ E } .

The rate of mixing statement for two-sided symbolic dynamical system, that we

will prove in Step 2, is the following one.
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Theorem 16 Let (A , A,Σ,σ) be a locally compact transitive two-sided topological

shift, and let P be a mixing σ-invariant probability measure with full support on Σ.

Assume that

(1) for every n ∈ N and for every A-admissible finite sequence w = (w0, . . . ,wn) in

A , the (measure theoretic) Jacobian of the map

fw : {(xk)k∈N ∈ π+(Σ) : x0 = wn}

→ {(yk)k∈N ∈ π+(Σ) : y0 = w0, . . . , yn = wn}

defined by (x0, x1, x2, . . . ) 7→ (w0, . . . ,wn, x1, x2, . . . ), with respect to the restric-

tions of the pushforward measure (π+)∗P, is constant;

(2) there exist a finite subset E of A and c′′, κ′ > 0 such that for every n ∈ N, we

have

P
(
{x ∈ Σ : x0 ∈ E and τE (x) ≥ n}

)
≤ c′′ e−κ

′n .

Then (Σ,σ,P) has exponential decay of α-Hölder correlations.

Theorem 14 follows from Theorem 16 by using the coding given in Theorem 11.

The verification of Assertion (2) is immediate as it corresponds to the assumption of

Theorem 14. The one of Assertion (1) is a bit technical, using a strengthened version

of Mohsen’s shadow lemma for trees.

Step 2. The second step consists in passing from the two-sided symbolic dynamical

system to a one-sided symbolic dynamical system.

Let (Σ+,σ+) be the one-sided topological shift with the same alphabet A and

same transition matrix A as the two-sided one in the statement of Theorem 16,

with Σ+ = π+(Σ) where π+ is the natural projection, and let P+ = (π+)∗P. Let

τE ,+ : Σ+ → N be the first positive passage time in E of the one-sided shift orbits,

that is, the map (xn)n∈N 7→ inf{n ∈ N − {0} : xn ∈ E }. Recall that the cylinders in

Σ+ are the subsets defined for k ∈ N and w0, . . .wk ∈ A by

[w0, . . . ,wk] = {x = (xn)n∈N ∈ Σ+ : x0 = w0, . . . , xk = wk } .

The rate of mixing statement for one-sided symbolic dynamical system, that we

will prove in Step 3, is the following one.

Theorem 17 Let (A , A,Σ+,σ+) be a locally compact transitive one-sided topological

shift, and let P+ be a mixing σ-invariant probability measure with full support on

Σ+. Assume that

(1) for every n ∈ N and for every A-admissible finite sequence w = (w0, . . . ,wn) in

A , the Jacobian of the map between cylinders

fw : [wn] → [w0, . . . ,wn]

defined by (x0, x1, x2, . . . ) 7→ (w0, . . . ,wn, x1, x2, . . . ), with respect to the restric-

tions of P+, is constant;

(2) there exist a finite subset E of A and c′′, κ′ > 0 such that for every n ∈ N, we

have
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P+

(
{x ∈ Σ+ : x0 ∈ E and τE ,+(x) ≥ n}

)
≤ c′′ e−κ

′n .

Then (Σ+,σ+,P+) has exponential decay of α-Hölder correlations.

Theorem 16 follows from Theorem 17 by a classical argument due to Sinai and

Bowen (and explained to the authors by Buzzi), saying that if the one-sided symbolic

dynamical system (Σ+,σ+, (π+)∗P) is exponentially mixing, then so is the two-sided

symbolic dynamical system (Σ,σ,P).

Step 3. The third and final step that we sketch is a proof of Theorem 17, using as

main tool a Young’s tower argument.

We implicitely throw away from Σ+ the measure zero subset of points x ∈ Σ+
whose orbit under the shift σ+ does not pass infinitely many times in the open

nonempty finite union of fundamental cylinders

∆0 =

⋃

a∈E

[a] .

We denote by Φ : Σ+ → ∆0 the first positive time passage map, which is defined by

x 7→ σ
τE ,+(x)
+

(x). We denote by W the set of excursions outside E , that is, the set of

A-admissible finite sequences (w0, . . . ,wn) in A such that w0,wn ∈ E and wi < E

for 1 ≤ i ≤ n − 1.

We have the following properties.

(1) The set {[a] : a ∈ E } is a finite measurable partition of ∆0. For every a ∈ E ,

the set {[w] : w ∈ W,w0 = a} is a countable measurable partition of [a].

(2) For every w ∈ W , the first positive passage time τE ,+ is positive on every

excursion cylinder [w], and if wn is the last letter of the finite sequence w,

then the restrictionΦ |[w]: [w] → [wn] is a bijection with constant Jacobian with

respect to P+ (actually much less is needed in order to apply Young’s arguments).

(3) The first positive time passage map Φ satisfies strong dilations properties on the

excursion cylinders. More precisely, for every excursion w = (w0, . . . ,wn) ∈ W ,

for every k ≤ n − 1, for all x, y ∈ [w], we have d(Φ(x),Φ(y)) ≥ e d(x, y) and

d(σk
+

x,σk
+
y)) < d(Φ(x),Φ(y)).

Let us fix α ∈ ]0,1]. Then an adaptation of [You, Theo. 3] implies that there exists

κ > 0 such that for all φ,ψ ∈ C α
b
(Σ+), there exists cφ,ψ > 0 such that for every

n ∈ N, we have

| covP+ , n(φ,ψ)| ≤ cφ,ψ e−κ n .

An argument using the Principle of Uniform Boundedness due to Chazotte then

allows us to take cφ,ψ = c′ ‖φ‖α ‖ψ‖α for some constant c′ > 0.
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