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Abstract

Generalizing Cusick’s theorem on the closedness of the classical Lagrange spectrum
for the approximation of real numbers by rational ones, we prove that various approx-
imation spectra are closed, using penetration properties of the geodesic flow in cusp
neighbourhoods in negatively curved manifolds and a result of Maucourant [Mau]. 1

The approximation constant of an irrational real number x by rational numbers is

c(x) = lim inf
p,q∈Z, q→+∞

|q|2
∣∣∣x − p

q

∣∣∣

(though some references consider c(x)−1 or even (2c(x))−1). The Lagrange spectrum SpQ

is the subset of R consisting of the c(x) for x ∈ R−Q. Many properties of SpQ are known
(see for instance [CF]), and have been known for a very long time, through the works of
Korkine-Zolotareff, Hurwitz, Markoff, Hall, .... The fact that SpQ is a closed subset of R

was proved by Cusick only relatively recently, in 1975.
For many examples of a locally compact ring K̂ containing a dense countable subfield

K, a linear algebraic group G defined over K and a left invariant distance d on the locally
compact group G(K̂), one can define a similar approximation spectrum of elements of
G(K̂) by elements of G(K). In this note, we prove that many such approximation spectra
also are closed subsets of R, in particular for

• the approximation of complex numbers by elements in imaginary quadratic number
fields,

• the approximation of real Hamilton quaternions by rational ones, and

• the approximation of elements of a real Heisenberg group by rational points.

In each of the above cases, the approximating elements are restricted to certain subclasses
of the irrational quadratic or rational elements, as explained below.

These arithmetic results will follow from a theorem in Riemannian geometry, that we
will state and prove, after recalling some definitions.

Let M be a complete Riemannian manifold with dimension at least 2 and sectional
curvature at most −1, which is geometrically finite (see for instance [Bow] for a general

1Keywords: geodesic flow, negative curvature, Lagrange spectrum, Diophantine approximation,

quaternions, Heisenberg group. AMS codes: 53 C 22, 11 J 06
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reference). Let e be a cusp of M , i.e. an asymptotic class of minimizing geodesic rays along
which the injectivity radius goes to 0. In particular, when M has finite volume (which
is going to be the case in all our arithmetic applications), it is geometrically finite, and
moreover, the set of cusps of M is in natural bijection with the (finite) set of ends of M
(see loc. cit.). Let ρe : [0,+∞[ → M be a minimizing geodesic ray in M in the class e and
let βe : M → R be Busemann’s height function relative to e (see for instance [BH, p. 268])
defined by

βe(x) = lim
t→+∞

t − d(x, ρe(t)) .

Note that if another representative ρ′
e of e is considered, then the new height function β ′

e

only differs from βe by an additive constant.
Recall that a (locally) geodesic line ` : R → M starts from (resp. ends at) e if the

map from ]a,+∞[ to M , for some a big enough, defined by t 7→ `(−t) (resp. t 7→ `(t)), is
a minimizing geodesic ray in the class e. A geodesic line ` is positively recurrent if there
exists a compact subset K of M and a sequence (tn)n∈N in [0,+∞[ converging to +∞ such
that `(tn) ∈ K for every n. For every positively recurrent geodesic line ` starting from e,
define the asymptotic height of ` (with respect to e) to be lim supt→+∞ βe(`(t)). Define (see
for instance [HP1, HP2]) the asymptotic height spectrum of (M, e) as the set of asymptotic
heights of positively recurrent geodesic lines starting from e. If C is a compact subset of
M , define the height of C (with respect to e) as

hte(C) = max{βe(x) : x ∈ C} .

Note that the asymptotic height of a geodesic line, the height spectrum of (M, e) and
the height of a closed geodesic depend on the choice of ρe only up to a uniform additive
constant. There is a canonical normalization, by asking that ρe(0) belongs to the boundary
of the maximal Margulis neighbourhood of e, see [BK, HP1] for instance. In some cases,
however, this is not an optimal choice in terms of computation lengths.

Theorem 2 answers a question raised during the work of the second author with S. Her-
sonsky, see for instance page 233 in [PP1]. In its proof, we will use the following result of
F. Maucourant [Mau, Theo. 2 (2)], whose main tool is Anosov’s closing lemma (and builds
on a partial result of [HP1]). We denote the unit tangent bundle of a Riemannian manifold
M by π : T 1M → M . A unit tangent vector is periodic if it is tangent to a closed geodesic.

Theorem 1 Let V be a complete Riemannian manifold with sectional curvature at most

−1, let (φt)t∈R be its geodesic flow, and let J0 be the subset of T 1V of periodic unit tangent

vectors. If f : T 1V → R is a proper continuous map, then

R ∩ { lim sup
t→+∞

f(φtv) : v ∈ T 1V } = { max
t∈R

f(φtv) : v ∈ J0} . �

Here is the main geometric result of this note:

Theorem 2 The asymptotic height spectrum of (M, e) is closed. It is equal to the closure

of the heights of the closed geodesics in M .

Notice that by [HP1, Theo. 3.2], the asymptotic height spectrum has a positive lower
bound. But by [HP1, Prop. 4.1], its minimum is not always attained by the height of a
closed geodesic. Hence, its minimum is not always isolated.
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Proof. Busemann’s height function βe is continuous (in fact 1-Lipschitz). Let us prove

that it is proper. Let M̃ → M be a universal Riemannian cover of M , with covering group
Γ. Let ∂∞M̃ be the sphere at infinity of M̃ , and endow M̃ ∪ ∂∞M̃ with the cone topology
(see for instance [BH, p. 263]. Let ΛΓ be the limit set of Γ and let ΩΓ = ∂∞M̃ − ΛΓ be
its domain of discontinuity (see for instance [Bow] and notice that ΩΓ is empty if M has

finite volume): The group Γ acts properly discontinuously on M̃ ∪ ΩΓ. The set of ends of

the quotient manifold with boundary M ∗ = Γ\(M̃ ∪ ΩΓ) is in one-to-one bijection with
the set of cusps of M , by the map which to a minimizing geodesic ray defining a cusp
associates the end it converges to (see loc. cit.). By construction, βe(x) converges to +∞
when x converges to the end of M ∗ corresponding to e, and tends to −∞ when x tends to
any other end or any boundary point of M ∗. This implies that βe is proper.

Hence, the map f = βe ◦ π : T 1M → R is also continuous and proper. Note that if a
geodesic line ` in M is not positively recurrent, then `(t) converges, as t goes to +∞, either
to an end of M ∗ or to a boundary point of M ∗ (see loc. cit.). Hence, lim supt→+∞ βe(`(t)) =
±∞. Therefore, Theorem 2 follows from Maucourant’s Theorem 1. �

For our arithmetic applications, we transform Theorem 2 into a form which is more ap-
plicable, using the framework of Diophantine approximation in negatively curved manifolds
introduced in [HP1, HP2]. We recall the relevant definitions from these references:

Let ξe be the point at infinity of a lift ρ̃e to M̃ of the previously chosen minimiz-
ing geodesic ray ρe. Let β̃e be Busemann’s height function associated to ρ̃e. A horoball

(resp. horosphere) centered at ξe is the preimage by β̃e of [s,+∞[ (resp. {s}) for some
s ∈ R. A horoball H centered at ξe is precisely invariant under the action of the stabilizer
Γ∞ of ξe in Γ if the interiors of H and γH do not meet for any γ ∈ Γ − Γ∞. Let He be a
precisely invariant horoball centered at ξe, which exists by [Bow]. Assume without loss of
generality that ρe starts in ∂He.

Let Re be the set of geodesic lines in M starting from and ending at the cusp e. For
every r in Re, define D(r) as the length of the subsegment of r between its first and its last
point whose height is 0. Let Lke be the set of positively recurrent geodesic lines starting
from e.

For every distinct x, y in Lke ∪Re, define the cuspidal distance d′
e(x, y) between x and

y as follows: Let x̃ be a lift of x starting from ξe; for every t > 0, let Ht be the horosphere
centered at x̃(+∞), at signed distance − log 2t from ∂He along x̃; then d′e(x, y) is the
minimum, over all lifts ỹ of y starting from ξe, of the greatest lower bound of t > 0
such that Ht meets ỹ (see [HP1, Sect. 2.1]). The map d′

e is an actual distance in all
our arithmetic applications, and it depends on the choice of ρe only up to a positive
multiplicative constant.

For every x in Lke, define the approximation constant cM,e(x) of x by elements of Re

as
cM,e(x) = lim inf

r∈Re

d′e(x, r) eD(r) ,

and the Lagrange spectrum of (M, e) as the subset of R consisting of the constants cM,e(x)
for x in Lke.

Corollary 3 The Lagrange spectrum of (M, e) is closed.

By the remark following Theorem 2, the Lagrange spectrum is bounded but its maxi-
mum is not always isolated.
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Proof. By [HP1, Theo. 3.4] (see also [PP1, p. 232]), the map t 7→ − log(2t) is a homeo-
morphism from the Lagrange spectrum onto the asymptotic height spectrum. �

Let us now give some arithmetic applications of this corollary, using the notations
introduced in [PP2, PP3].

Let m be a squarefree positive integer, and let I be a nonzero ideal of an order O in
the ring of integers O−m of the imaginary quadratic number field K−m = Q(i

√
m). For

p1, . . . , pk ∈ O, let 〈p1, . . . , pk〉 be the ideal of O generated by p1, . . . , pk. Let

EI = {(p, q) ∈ O × I : 〈p, q〉 = O} .

For every x ∈ C − K−m, define the approximation constant of x by elements of OI −1 as

cI (x) = lim inf
(p,q)∈EI , |q|→∞

|q|2
∣∣∣x − p

q

∣∣∣

(when O is principal, for instance if O = O−m for m = 1, 2, 3, 7, 11, 19, 43, 67, 163, the
condition 〈p, q〉 = O is not needed). Define the Bianchi-Lagrange spectrum for the ap-
proximation of complex numbers by elements of OI −1 ⊂ K−m as the subset SpI of R

consisting of the cI (x) for x ∈ C − K−m.

Theorem 4 The Bianchi-Lagrange spectrum SpI is closed.

When I = O = O−m, this result is due to Maucourant [Mau].

Proof. Let X = H3
R be the upper halfspace model of the real hyperbolic space of dimension

3 (and sectional curvature −1). The group SL2(C) acts isometrically on X, so that its
continuously extended action on ∂∞X = C∪{∞} is the action by homographies. Let Γ be
the (discrete) image in Isom(X) of the preimage of the upper-triangular subgroup by the
canonical morphism SL2(O) → SL2(O/I ). Let PΓ be the set of parabolic fixed points of
elements of Γ. Let M = Γ\X, and let e be its cusp corresponding to the parabolic fixed
point ∞ of Γ. Note that M is not necessarily a manifold, as Γ may have torsion. However,
Theorem 2 extends to this situation without any changes.

By standard results in arithmetic subgroups (see for instance [BHC, Bor], and the
example (1) in [PP3, §6.3]), M has finite volume and we have

PΓ = K−m ∪ {∞}

so that ∂∞X − PΓ = C − K−m. Let Γ∞ be the stabilizer in Γ of the point ∞, which
preserves the Euclidean distance in ∂∞X − {∞} = C.

By [HP1, Lem. 2.7], the map, which to r ∈ Re associates the double class modulo Γ∞

of an element γr ∈ Γ − Γ∞ such that γr∞ is the other point at infinity of a lift of r to X
starting from ∞, is a bijection

Re → Γ∞\(Γ − Γ∞)/Γ∞ .

The map, which to x ∈ ∂∞X − {∞} associates the image `x in M of the geodesic line
starting from ∞ and ending at x, induces a bijection

Γ∞\(∂∞X − PΓ) → Lke ,
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since `x is positively recurrent if and only if x /∈ PΓ (see for instance [Bow]). Furthermore
(see for instance [EGM, page 314]), the map, which to (p, q) ∈ EI associates the image
rp/q in M of the geodesic line starting from ∞ and ending at p/q, induces a bijection

Γ∞\
{ p

q
: (p, q) ∈ EI

}
→ Re .

The horoball H∞ of points with Euclidean height at least 1 in X is precisely invariant, by
Shimizu’s Lemma (see also [HP1, §5]). Let ρe be the image by the canonical projection
X → M of a geodesic ray from a point of ∂H∞ to ∞. We use this minimizing geodesic ray
to define Busemann’s height function βe and the cuspidal distance d′e. Hence, by definition,
for every r in Re, we have

D(r) = dX(H∞, γrH∞) .

If q is the lower-left entry of an element γ in Γ − Γ∞, then we have

dX(H∞, γH∞) = 2 log |q|

by [HP1, Lem. 2.10]. Hence, for every (p, q) ∈ EI , we have D(rp/q) = 2 log |q|.
It has been proved in [HP1, §2.1] (for the real hyperbolic space X of any dimension)

that, for every x, y in Lke, the cuspidal distance d′e(x, y) is equal to the minimum of the
Euclidean distances between the other points at infinity of two lifts to X of x, y starting
from ∞.

From the above, it follows that, for every x ∈ ∂∞X − PΓ = C − K−m,

c(M,e)(`x) = lim inf
(p,q)∈EI , |q|→+∞

eD(rp/q) d′e(`x, rp/q) = cI (x) .

Hence, Theorem 4 follows from Corollary 3. �

Let I ′ be a nonzero two-sided ideal in an order O ′ of a quaternion algebra A(Q)
over Q ramifying over R, for instance the Hurwitz ring O ′ = Z[12(1 + i + j + k), i, j, k] in
Hamilton’s quaternion algebra over Q with basis (1, i, j, k), and let N be the reduced norm
on A(R) = A(Q) ⊗Q R (see for instance [Vig]). Consider the set

EI ′ = {(p, q) ∈ O
′ × I

′ : ∃ r, s ∈ O
′, N(qr − qpq−1s) = 1}.

For every x ∈ A(R)−A(Q), define the approximation constant of x by elements of O ′I ′−1 ⊂
A(Q) as

cI ′(x) = lim inf
(p,q)∈ E

I ′ , N(q)→∞
N(q)N(x − pq−1)

1

2 ,

and the Hamilton-Lagrange spectrum for the approximation of elements of A(R) by elements
of O ′I ′−1 ⊂ A(Q) as the subset SpI ′ of R consisting of the cI ′(x) for x ∈ A(R) − A(Q).

Theorem 5 The Hamilton-Lagrange spectrum SpI ′ is closed.

Proof. The proof is the same as the previous one, with the following changes.
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• Let X = H5
R be the upper halfspace model of the real hyperbolic space of dimension

5 (and sectional curvature −1). With H the field of quaternions of Hamilton iden-
tified with R4 by its standard basis 1, i, j, k, we have ∂∞X = H ∪ {∞}. The group
SL2(H), of 2 × 2 matrices with coefficients in H and Dieudonné determinant 1, acts
isometrically on X, so that its continuously extended action on ∂∞X = C ∪ {∞}
is, with the obvious particular cases,

((
a b
c d

)
, z

)
7→ (az + b)(cz + d)−1, see for

instance [Kel].

• Let Γ be the image in Isom(X) of the preimage of the upper-triangular subgroup by
the canonical morphism SL2(O

′) → SL2(O
′/I ′).

• Fix an identification of the quaternion algebras A(R) and H. We have PΓ = A(Q)∪
{∞} by the example (3) in [PP3, §6.3], so that ∂∞X − PΓ = H − A(Q).

• By definition of EI ′ and of the Dieudonné déterminant, the map, which to (p, q) ∈
EI ′ associates the image rpq−1 in M = Γ\X of the geodesic line starting from ∞ and
ending at pq−1, induces a bijection Γ∞\{pq−1 : (p, q) ∈ EI ′} → Re.

• The fact that the horoball H∞ of points with Euclidean height at least 1 in X is
precisely invariant is proved in [Kel, page 1091].

• If q is the lower-left entry of an element γ in Γ−Γ∞, then we have dX(H∞, γH∞) =
log N(q) by [PP3, Lem. 6.7], so that D(rpq−1) = log N(q).

• Recall that the reduced norm N on H is the square of the Euclidean distance on H

making the basis (1, i, j, k) orthonormal. �

Our last result concerns Diophantine approximation in Heisenberg groups. For every
integer n ≥ 2, consider the Lie group

Heis2n−1(R) = {(z, w) ∈ C × Cn−1 : 2 Re z − |w|2 = 0} ,

where w′ · w =
∑n−1

i=1 w′
iwi is the standard Hermitian scalar product on Cn−1 and |w|2 =

w · w, with law
(z, w)(z′, w′) = (z + z′ + w′ · w,w + w′) .

Consider the modified Cygan distance d′
Cyg on Heis2n−1(R), which is (uniquely) defined as

the distance which is invariant under left translations and satisfies

d′Cyg((z, w), (0, 0)) =
√
|w|2 + 2 |z| ,

see [PP3, §6.1]. Notice that its induced length distance is equivalent to the Cygan distance
and to the Carnot-Carathéodory distance (see [Gol]).

Let I ′′ be a nonzero ideal of an order O ′′ in the ring of integers O−m of the imaginary
quadratic number field K−m = Q(i

√
m), and let ω be the element of O−m with Imω > 0

such that O ′′ = Z + ωZ. Notice that Heis2n−1(R) is the set of real points of a Q-form
Heis2n−1 (depending on m) of the (2n − 1)-dimensional Heisenberg group, whose set of
Q-points is Heis2n−1(R) ∩ (K−m × K−m

n−1).
If n = 2 and O ′′ = O−m, then let EI ′′ be the set of (a, α, c) ∈ O−m × I ′′ × I ′′ such

that 2 Re ac = |α|2 and 〈p, α, q〉 = O−m. Otherwise, see the fifth point below for the
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definition of EI ′′ . For every x ∈ Heis2n−1(R) − Heis2n−1(Q), define the approximation

constant cI ′′(x) of x by

cI ′′(x) = lim inf
(a,α,c)∈ E

I ′′ , |c|→∞
|c| d′Cyg(x, (a/c, α/c)) ,

and the Heisenberg-Lagrange spectrum for the approximation of elements of Heis2n−1(R)
by elements of Heis2n−1(Q) as the subset SpI ′′ of R consisting of the cI ′′(x) for x ∈
Heis2n−1(R) − Heis2n−1(Q).

Theorem 6 The Heisenberg-Lagrange spectrum SpI ′′ is closed.

Proof. The proof is the same as the one of Theorem 4, with the following changes.

• Let X = Hn
C be the Siegel domain model of the complex hyperbolic n-space, which

is the manifold {(w0, w) ∈ C× Cn−1 : 2Re w0 − |w|2 > 0} with Riemannian metric

ds2 =
1

(2Re w0 − |w|2)2
(
(dw0 − dw · w)(dw0 − w · dw) + (2Re w0 − |w|2) dw · dw

)

(we normalized the metric so that the maximal sectional curvature is −1). Its bound-
ary at infinity is ∂∞X = Heis2n−1(R) ∪ {∞}.

• Using matrices by blocks in the decomposition Cn+1 = C×Cn−1×C with coordinates
(z0, z, zn), let Q be the matrix of the Hermitian form −z0zn−znz0 + |z|2 of signature
(1, n), and let SUQ be the group of complex matrices of determinant 1 preserving this
Hermitian form. We identify X ∪ ∂∞X with its image in the complex projective n-
space Pn(C) by the map (using homogeneous coordinates) (w0, w) 7→ [w0, w, 1]. The
group SUQ, acting projectively on Pn(C), then preserves X and acts isometrically on
it.

• Let Γ be the image in Isom(X) of the preimage, by the canonical morphism from
SUQ ∩SLn+1(O

′′) to SLn+1(O
′′/I ′′), of the subgroup of matrices all of whose coef-

ficients in the first column vanish except the first one.

• We have PΓ = Heis2n−1(Q)∪{∞} by the example (2) in [PP3, §6.3], so that ∂∞X −
PΓ = Heis2n−1(R) − Heis2n−1(Q).

• Let EI ′′ be the set of (a, α, c) ∈ O ′′ × I ′′n−1 × I ′′ such that there exists a matrix

of the form




a γ b
α A β
c δ d


 that belongs to Γ. If n = 2 and O ′′ = O−m, we recover

the previous notation, by [PP3, §6.1]. By definition, the map, which to (a, α, c) ∈
EI ′′ associates the image in M of the geodesic line starting from ∞ and ending at
(ac−1, αc−1), induces a bijection Γ∞\

{
(ac−1, αc−1) : (a, α, c) ∈ EI ′′

}
→ Re.

• Let H∞ be the horoball {(w0, w) ∈ C × Cn−1 : 2Re w0 − |w|2 ≥ 4 Im ω}. The fact
that H∞ is precisely invariant is proved in [PP3, Lem. 6.4].

• If c is the lower-left entry of an element γ in Γ−Γ∞, then we have dX(H∞, γH∞) =
log |c| + log(2 Im ω) by [PP3, Lem. 6.3].
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• By [PP3, Prop. 6.2], the cuspidal distance is equal to a multiple of the modified Cygan
distance. Hence, there exists a constant κ > 0 such that cI ′′(x) = κ c(M,e)(`x) for
every x ∈ ∂∞X − PΓ. �

Other applications could be obtained by varying the nonuniform arithmetic lattices in
Isom(Hn

K) with K = R, C, H, O (where n = 2 in this last octonion case).
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