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Abstract

Given a local field K with positive characteristic, we study the dynamics of the
diagonal subgroup of the linear group GL,(K) on homogeneous spaces of discrete
lattices in K™. We first give a function field version of results by Margulis and
Tomanov-Weiss, characterizing the divergent diagonal orbits. When n = 2, we relate
the divergent diagonal orbits with the divergent orbits of the geodesic flow in the
modular quotient of the Bruhat-Tits tree of PGLy(K). Using the (high) entropy
method by Einsiedler-Lindentraus et al, we then give a function field version of a
result of David-Shapira on the equidistribution of a natural family of these divergent
diagonal orbits, with height given by a new notion of discriminant of the orbits. E]

1 Introduction

Equidistribution problems of periodic orbits have been widely studied in many different
settings. In hyperbolic dynamical systems, in particular for closed orbits of geodesic flows
in negative curvature, see for instance [Mar, [Bow| and many others, including [PauPS|
§9.3] (see references therein). In homogeneous dynamics for diagonalisable group actions
(sometimes in an arithmetic framework), see for instance [ELMVI| and many others, in-
cluding [Dal]| (see references therein). See also [Shal [SY], [KePS| (this last one also over
function fields) for possible chaotic behaviors of weak-star limits of homogeneous measures
on periodic orbits, including surprising loss of mass phenomena.

Much less studied has been the problem of equidistribution of divergent orbits, as
they require noncompact phase spaces and a specific study of equidistribution of (locally
finite) infinite measures. See [PaPS| for geodesic flows in variable curvature, as well as
IDSIL IDS2] in homogeneous dynamics. Considering homogeneous dynamics over various
local field is important and fruitful. The first purpose of this paper is to extend to local
fields in positive characteristic works of Margulis, Tomanov-Weiss [TW| and Tomanov
[Tom1I| on the characterisation of divergent orbits. The second purpose is to extend David-
Shapira [DS1), [DS2] results on their equidistribution (with the challenges required for such
an extension). The study of divergent orbits in homogeneous dynamics, through the Dani
correspondence, has strong ties with Diophantine approximation problem, see for instance
[IKW! [CGl [KaKLM|, [DFSUL [AK| BKL], these last two references also over function fields.

'Keywords: Equidistribution, divergent orbits, diagonal actions, positive characteristic, function
fields. AMS codes: 22F30, 11N45, 20G30, 14G17, 28C10, 11J70, 11P21.



Throughout this paper, referring to [Gosl [Ros2] and Subsection for definitions and
complements, we fix a function field K of genus g over a finite field IF, of order ¢, a valuation
v of K and a uniformiser m, of v. We denote by K, the completion of K for v, by &, its
valuation ring, by ¢, the order of its residual field, by |-| = ¢, () g (normalized) absolute
value, by R, the affine function ring associated with v, by ¢, the Dedekind zeta function
of R,, and by ¢, the Euler function of R,.

We fix n € N\{0, 1}. The unimodular group GL} (K,) = {g € GL,(K,) : |det g| = 1} is
endowed with the Haar measure giving mass 1 to the maximal compact subgroup GL, (&,).
We denote by 27 the GL. (K, )-homogeneous space of R,-lattices in K,* with normalized
covolume 1 (identified with GL.(K,)/GL,(R,) when pointed at the standard R,-lattice
RM). We endow 27 with the induced GL. (K, )-invariant measure, that we denote by m
and which is finite.

We denote by A; the diagonal subgroup of GL}I(KU), and we normalize its Haar measure
to give mass 1 to its maximal compact subgroup A; n GL,,(&,). The diagonal orbit A;z
of an element z € 27 is said to be divergent if the orbital map a — az from A; to 21
is proper. The homogeneous measure on Ajx, that we denote by 7, is then the (locally
finite) pushforward measure by this orbital map of the Haar measure of A;.

The first main result of this paper (see Corollary for a more general result and
Theoremfor the analog result for the projective linear group PGL,, (K,) ) is an algebraic
characterisation of the divergent orbits, saying that they are the “rational” ones, that is,
they come from a rational point (in GL! (K)) of GLL(K,), up to the action of an element
of Al.

Theorem 1.1 Let x € Z7. The diagonal orbit A1x is divergent if and only if there exists
g€ Ay GLL(K) such that x = g R

This result has a long history. In the real field case with n = 2, an orbit of the diagonal
subgroup of PSLa(R) on PSLs(R)/PSL2(Z) is well known to be divergent if and only if
it corresponds to a modular group orbit of a geodesic line in the upper halfspace model
H%g of the real hyperbolic plane both of whose endpoints are rational points (that is, are
in P1(Q)) of the circle at infinity P1(R) of HZ. In the function field case with n = 2, the
corresponding result is also well known: The quotient of the Bruhat-Tits tree of PGLy(K,)
by PGL2(R,) replaces the quotient of the real hyperbolic plane by PSLy(Z), and the set
of rational points at infinity is Py (K) in P1(K,) (see for instance [Ser2] and Section [4.3).
The real field case for any integer n is due to Margulis (see [TW|, Appendix]). It has been
extended to all reductive algebraic groups over Q in [TW], Theo. 1.1, and to the S-adic
case over number fields in [Tom2|. The case of divergent orbits of proper subgroups of the
full maximal Q-torus subgroup has been studied by [Tam]|, with surprising differences.

For every k € N\ {0}, we identify each element of K} with the column matrix of its
coordinates in the canonical basis of K. For every element t € K,"~!, we define

1y = <i 1n0_1> € SL,(K,). (1)

Note that if t € K™ !, then uy R is an R,-lattice with normalized covolume 1 whose
diagonal orbit is divergent by Theorem

The second main result of this paper (see Corollary for a more general result) is
the following equidistribution result in 27 for natural families of divergent diagonal orbits
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in Z7. We emphazise the fact that the measures that equidistribute are infinite measures.
But for the weak-star convergence, sequences of locally finite infinite measures may indeed
converge to a finite measure. Such is not the case for the narrow convergence.

(=D TT77 ¢u(=1)

v (¢=1) [175 (ai—1)
A(s) = {(2,...,m2) :rg,...,rn € Ry, Vj € {2,...,n}, 7jR, + sR, = R,} mod R '
Assume that R, is principal. For the weak-star convergence of Radon measures on the

locally compact space 271, we have

Theorem 1.2 Let cx, = For every nonzero s € R, let us define

lim CKin 2 I, = my
- Ry = M2y -
Jsl—+o0, Isleq?  (i0u(s) logy, [s|)n=t 40 He '

Let us discuss the scope of this result. We believe that the principal assumption on R,
may not be necessary, since we are only using it to prove the non-escape of mass property
in Section |7}, and an approach along the lines of [DKMS]| could allow its removal. Over the
real field, this result is due to [DS1] in dimension n = 2 and to [DS2] in general. Starting
from Section B we will follow their scheme of proof. Our result has two new aspects,
besides the fact that the algebraic properties of the ring R, are much more involved than
the ones of Z. Firstly, we obtain an explicitely renormalized weak-star convergence, and
not only a projective convergence of the measures. Secondly, we cover a larger set of types
of divergent orbits, as we now explain. It follows from Theorem [I.I] that an Aj-orbit ©
is divergent if and only if it contains an element containing a sub-R,-lattice A of R
We define the type of a sub-R,-lattice A of R,' as the isomorphism class of the torsion
R,-module R,'/A, and the type of © as the finite set of types of the sub-R,-lattices of R,
with minimal covolume contained in the elements of ©. For instance, for every t € A(s),
the type of the Aj-orbit AjugR," is reduced to {(R,/sR,)" "'} (see Proposition @).
We choose this type in this Introduction for simplicity, but we refer to Corollary for a
generalisation.

The techniques of the second part of this paper, that we now present, rely in particular
on the (high) entropy method in homogeneous dynamics (see for instance [EL]). Let

o= (”vgl 0 ) € SLo(K,). )

-1
Tr’u I’I’L—l

Let U~ = {ug : t € K"}, which is the unipotent radical of the parabolic subgroup of
SL,(K,) fixing the hyperplane {0} x K,"~! of K. Note that for all k € Z and t € K," !,
we have abuga= = u_—nk, 50 that U~ is contained in (and actually equal to) the unstable

horospherical group of the one-parameter diagonal group (a*)sez.

Using Mabhler’s criterion that a sequence (z,)neny in 27 goes out of every compact
subset if and only if the systole of x,, goes to 0, the first step (see Section [4]) is to describe
a canonical “compact core” C, of a divergent diagonal Aj-orbit x by trimming out the
parts were the systole of the elements of x are small. When n = 2, this correspond to
removing the first and last intersections with a cuspidal ray of the corresponding geodesic
line in the quotient graph of groups by PGL2(R,) of the Bruhat-Tits tree of PGLy(K,)
(see [Ser2, BPP| for background and Subsection . Let us denote by 7, the restriction
of the homogeneous measure fi, to C, normalized to be a probability measure, and by

Fs = 2ten, Pury and Vs = m iten, Yury- 1t will follow from Subsection (with
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the help of computations done in Subsection that the measures P00 lgg’”ls‘)n,l s
v qu

have as |s| — +00 the same weak-star asymptotic properties as the probability measures 7.
Furthermore, we prove that the measures U5 on 27 are averages over a compact subgroup
C} of GL! (K,) of natural measures vs on SL,(K,)/SLy(R,).

The second step (see Section (7)) is to prove that the measures vs on SLy, (K,)/SLy(Ry)
as |s| — +00 do not suffer any loss of mass, that is, any weak-star accumulation point v of
vs as |s| — +o0 is also a probability measure. We did not try to write our equidistribution
result replacing the set A by a logarithmic full proportion of it, as it is done in [DSI], [DS2].
This extension requires a non escape of mass assumption, that has been lifted in [DKMS|
when n = 2 in the real case.

The third step (see Section [8)) is to prove that the entropy h,(a), which is well defined
by the second step, of any weak-star accumulation point v for the diagonal transformation
a on SL,(K,)/SL,(R,) is equal to the maximal entropy of this transformation. This
requires, as in [ELMV?2|, a construction of high entropy partitions for a, that are build
using dynamical neighborhoods for the action of a on its unstable horospherical group U~.

The last step (see Section |5 is to apply Einsiedler-Lindenstraus [EL| uniqueness of
the probability measure of maximal entropy on SL,(K,)/SLy(R,) for a, which is the
measure mg, renormalized to be a probability measure, and to average back on the above-
mentionned compact subgroup C! in order to prove Theorem

Obtaining an error term in Theorem[I.2] would require an effective version of the unique-
ness of measures of maximal entropy for diagonal actions in positive characteristic, and
would constitute another project. We believe that our results could be extended to the
S-adic case (working with a nonempty finite set of places S instead of just one v) or to the
adelic setting (for the nonuniform lattice PGL,, (K) of PGL,(Ak), where A is the adéle
ring of K).

Acknowledgements: This research was supported by the French-Finnish CNRS IEA PaCap. We
thank Taehyeong Kim for mentionning the paper [DKMS] and for his comments about the loss of
mass problem.

2 Background material

For all r,7’ € Z with r < 1/, we denote [r,r'] = [r,7'] n Z.

2.1 Function fields over finite fields

For the following notions and complements, we refer to [Gos, [Ros2|, as well as to [BPP]
§14.2] whose notation we follow. Let F, be a finite field of order a positive power ¢ of a
prime p. Let K be a (global) function field over Fy of genus g, that is, the function field of
a geometrically connected smooth projective curve € of genus g defined over F,. We denote
by hx the number of divisor classes of degree 0 on €. Let v be a (normalised discrete)
valuation of K, let K, be the associated completion of K, let 0, = {x € K,, : v(x) = 0} be
its valuation ring, let 7, € K with v(m,) = 1 be a uniformiser of v, let g, be the order of
the residual field Fy, = 6,/m,0, (that we identify with its lift in @,), and let |- | = g, °*")
be the (normalized) absolute value associated with v. We denote by degv € N~ {0} the
degree of the closed point of @ corresponding to v, so that g, = 38", Let R, be the
affine function ring associated with v, that is, the affine algebra of the curve € minus
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its closed point corresponding to v. Recall that R, is a Dedekind ring whose field of
fractions is K. The class number h, of the Dedekind ring R, is h, = (degv) hg by [Gos,
Coro. 4.1.3]. In particular R, is principal if and only if hx = 1 and degv = 1, which
occurs in positive genus for exactly 4 isomorphisms classes of function fields K (one for
each (g,9) = (1,2),(1,3),(1,4),(2,2)) by [MS| Theo. 1.1] and [MaQ, Theo. 2|. Note that
O0f ={xe K, : |z| =1} and (see for instance [BPP|, Eq. (14.2) and (14.3)]

Ryn0,=F; and R} =F;cO,. (3)

The simplest example, used in Section is given by the field K = F,(Y") of rational
fractions over IF, with one indeterminate Y, with genus g = 0, endowed with the valuation
at infinity v with degv = 1 defined for all P,Q € F,[Y] with @ # 0 by v(g) deg Q —deg P.
Then K, = Fy((Y 1)) is the field of formal Laurent series in Y =1 over Fy, &, = F,[[Y 1]
is the local ring of formal power series in Y ~! over Fy, mp = Y~! ¢ =¢q and R, = F,Y]
is the ring of polynomials in Y over F,.

Let ., be the semigroup of nonzero ideals of the ring R,. As usual, p ranges through-
out the text over prime ideals in % and N(I) = [R, : I] € ¢" is the absolute norm of
I'e 7). Let N(s) = N(sR,) for every s € R,~{0}, and note that N(s) = |s|. Forallr,s € R,,
we write as usual (r,s) = 1 if r and s are coprime, that is, satisfy r R, + s R, = R,.

We denote by p, : 5 — Z the Mobius function of R,, so that u,(I) = 0 if I has a
squared prime factor, and otherwise p,(I) = (—1)* where k is the number of prime factors

of I.
We denote by ¢, : Z;5 — N the Euler function of R,, defined by

v

¢u(I) = Card (R,/I)* = N(I)H (1- 1)) — N(I) Z l;u(fl) (4)

N
pl1 (b I'eg) I'|1

and ¢, (s) = ¢@y(sRy) for every s € R,,.
The Dedekind zeta function of the Dedeking ring R, is (see, for instance, [Gosl, §7.8|)
the map ¢, : {z € C:Re z > 1} — C defined by

By for instance |Gos, page 219, line 2| or |[Ros2, page 244, Eq. (1)], it is related to the
zeta function (i of the field K (which is an Eulerian product over all closed points of €,
including the one corresponding to v) by the formula

Gl2) = 7=z G2 )

By for instance [Ros2l, Theo. 5.9], (x has an analytic continuation on C~{0, 1} with simple
poles at z = 0 and z = 1 (it is actually a rational function of ¢~%). Hence the value (,(—k)
for every k € N\{0} is well defined. We recall the following counting result.

Lemma 2.1 Ast — 400, we have
hi ¢*% (g0 — 1)

(g—1)2qy
5

Card{l e .7, :N(I) <t} = gt 1 0(1).



Proof. We give a proof for completeness. Let z € C with Re z > 1. For every n € N,
let ¢, = Card{I € ;5 : N(I) = ¢"}. Since N(I) € ¢" for every I € .Z;", we have (,(z) =
> en g A By for instance [Ros2, end of page 52|, we have (i (2) = >, bp ¢~ ™% with

by = hx I Tl it > 2 g — 2. Hence by Equation (5)), we have
Go(2) = (1 47%) Crl2) = (1 — g~=es?) 2 g™
degv —1
Z bn qfnz + Z - n degv) qfnz .
n=degv

Hence by identification, if n > 2 g + deg v, we have

qn—g+1 _ qn—g-‘rl—degv B hK ql—g (1 _ qv—l) "

qg—1 B q—1

Cn = bp — bnfdegv = hg

Therefore, by a geometric series argument, for every n € N, we have

Card{I € .7, : N(I 2 > a+0()
=0 i=2g+degv
hic @0 (1—gq, ") ¢! hic 70 (1—gq,")
- v +0(1) = —q¢" +0(1).
(¢—1) 110 (q—1)° .
Since N(I) € ¢" for every I € .Z;", this proves the result. ]

The following lemma is an effective version of [Poo, Lem. 3|. Its proof follows the one
of [HaWl, Th. 328] given in Chap. XXII, §22.9 where Z is replaced by R,. Again, we add
a proof for completeness. We denote by ~ the Euler constant.

r_ q° "' (¢g=1) Ing po() Inln(N(I)) _
Lemma 2.2 Ifc¢ (1_(1,1)67 o then Nl(lII)n—}ilgo WD) c.

—v(s)

In particular, since N(s) = |s| = ¢y for every s € R,~ {0}, we have

El

Jep, €10,1], Vse Ry~{0}, ©u(8) = ¢y, (L In(—o(s))] (6)

Proof. Since we will only use the minoration @, we only prove that the lower limit in
the statement of Lemma [2.2]is at least ¢/. Let F' : ]0, 400 — R be the map

e P = mo(1-)" ] (1-55)-

N(p)<t

By [Rosl, Th. 3] (which gives an asymptotic expansion of the partial product over all
closed points of €, including the one corresponding to v, which explains the factor 1 — g, !

in the constant ), as t — 400, we have [ [y« (1- ﬁ) ~ . Hence as t — +o0

we have F(t) ~ /(1 — %)ﬁ ~ d(1 - ﬁ), which tends to ¢. For every I € .7, let
Ar={p:p |1, N(p) <WN(I)} and By = {p: p| I, N(p) > InN(I)}. Since N is completely
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InN(I)
InlnN(I) "

multiplicative, we have (InN(I))®rd Br < [ Lyes, N(p) < N(I), hence Card By <
Thus as InN(I) — +00, we have

wu(I) InlnN(I)
N(I)

= [T (1~ N<1p>> > Inlan()(1 - ln;(I)>CardBl [T(- N(lm)

pll peAT

InN(I)

_ 1 InInN(T) _ L _ ~
> InInN(J) (1 mN(I)) N(p)gw) (1 N(p)) — F(InN(I)) ~ ¢ . O

Denote by @, : #;" — N the omega function counting the prime factors of ideals:

wy [ — Card{p:p|I}.

We define @, (s) = w,(sR,) for every s € R,~{0}. For every I € .7, with the notation of

lfllrlflg?l)) by the prime number theorem in K (see
for instance [Ros2, Theo. 5.12|) and Card B < lirllrlfél()[) Hence as N(I) — +o0, we have
wy(I) = Card (Ar v Br) = O (lérllr%?[)) In particular, since N(s) = |s| = qv_v(s) for every
s € R,~{0}, and since w,(s) = 0 when s € R, we have

the above proof, we have Card Ay = O (

—(s)

Jew, >0, Vse R,~\{0}, wy(s) < ¢, max( L In(—0(s))] (7)

We fix n € N\ {0} throughout this paper. We denote by (eq,...,e,) the canonical
basis of the product K,-vector space K'. Let || | : K* — [0, +o0[ be the standard norm
(x1,...,2n) — maxigi<n | ;|- We denote by vol, the normalized Haar measure on the
locally compact additive group K, such that vol,(&,) = 1. Let vol' be the normalized
Haar measure on K, such that vol,'(€,") = 1. Note that for every g € GL,(K,), we have

dvol,'(gz) = | det(g) | dvol,}(z) . (8)

In particular, we have vol, (7, &,) = ¢,~! and

vol,(O)) = voly, (O ~\7,0,) =1 — g, *. 9)

If G is a discrete subgroup of the additive group K" (for instance any nonzero, not neces-
sarily principal, ideal of R, when n = 1), we also denote by vol," the unique Haar measure
on the quotient abelian topological group K'/G such that the covering map K, — K'/G
locally preserves the measure.

2.2 Lattices

An R,-lattice L in K is a free rank-n R,-submodule in K ' that generates K" as a K-
vector space. It is a discrete cocompact additive subgroup of K. For instance, a nonzero
ideal I of R, is an R,-lattice in K, if and only if it is principal.
The covolume of L, denoted by covol(L), is defined as the measure of the (compact)
quotient space K'/L :
covol(L) = vol,) (K ,'/L) .
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For every g € GL,(K,), by Equation (g)), we have
covol(gL) = | det(g) | covol(L). (10)

In particular, if A € K, then covol(A L) = |A|" covol(L). Since the set of values of | - | is
{0} U ¢Z, every R,-lattice is hence homothetic under KX to an R,-lattice with covolume
in [1,q.]. For example, R is an R,-lattice in K", and by for instance [BPPl Lem. 14.4],
we have

covol(R™) = ¢le=bm (11)

The normalized covolume of an R,-lattice L is %7 which belongs to ¢ since GL, (K,)

acts transitively on the set of K,-basis of K*, hence on the set of R,-lattices of K *, and
by using Equation .

An R,-lattice L in K" is said to be

e unimodular if covol(L) = covol(R)) (by Equation for instance, as well as for
other integrality purposes, it is not appropriate to define them by requiring covol(L) = 1),

e special unimodular if L admits an R,-basis (by,...,by,) such that by A ... A by, is
equal to the canonical generator e; A ... A ey of the n-th exterior power A"(K") (where,
as already said, (ej,...,ey) is the canonical K,-basis of K").

e integral if L is contained in R,

e rational if L is contained in K",

e azial if for every ¢ € [1,n], we have (Ky,e;) n L # {0}.

Any element of GL,,(K,) mapping the canonical K,-basis (e, ..., e,) of K’ to a K,-basis
(b1,...,by) such that by A ... Ab, =e1 A ... A e, has determinant 1. Hence by Equation
, special unimodular R,-lattices are unimodular.

For instance, if Iy, ..., I, are nonzero principal ideals of Ry, then [, I; is an integral
R,-lattice in K'. Note that an integral R,-lattice, being a finite index subgroup of R}, is
axial. If z is an axial R,-lattice, since x has an R,-basis (b1, ...,b,) which is a K,-basis of
K., by Kramer’s formula to solve a system of n—1 linearly independent linear equations in
n variables in terms of one of these variables, for every i € [1,n], the intersection R,e; nx is
a rank-1 R,-submodule of K,e;. Hence there exists \; € K such that R,e; nz = R,\e;.

For every integral R,-lattice L, by the structure theorem of finitely generated torsion
modules over a Dedekind ring (see for instance [Narl Theo. 1.41] without the uniqueness
statement), there exist unique nonzero ideals I,...,I, € % such that Iy |I5|...| I,
and R]'/L is isomorphic to [[;_; Ry/I; as an R,-module. The n-tuple (I1,...,I,), or
the isomorphism class of the R,-module R)"/L, is called the type of the integral lattice
L. It = s1Ry,..., I, = spR, are principal ideals, we will also say that the type of
L is (s1,...,8,) (which is well defined modulo (R)"™). For instance, the type of R} is
(1,...,1). The group GL,(R,) acts on the set of integral R,-lattices of K" and two
integral R,-lattices are in the same GL,, (R, )-orbit if and only if they have the same type.

2.3 Homogeneous spaces of lattices

We denote by I, the n x n identity matrix. Let PG = PGL,(K,) = GL,(K,)/(K; 1),
which is a totally disconnected metrisable locally compact topological group, and PI' =
PGL,(R,) = GL,(Ry)/(R, I,), which is a nonuniform lattice in PG. Throughout the
paper, for every element g = (gij)1<ij<n € GLn(Ky), we denote by [g] = [gij]1<i j<n its
image in PG, when necessary. Otherwise, abusing notation, we omit the brackets.
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Let PZ" be the homogeneous space PG/PT', that identifies PG-equivariantly with the
space of the homothety classes [L] = KL under K© of the R,-lattices L in K, by the
orbital map [¢g]PT" — [gR,']. Contrarily to the case of the real field R and the ring of
integers Z of the number field QQ, in positive characteristic, there is a difference between
SL,(Ky)/SLn(Ry) and PGL,,(K,)/PGL,(R,) and it is sometines preferable to work with
the latter one, or with the following avatar.

Let
G1 = CGLL(K,) = {g € GL,(K,) : |detg| = 1},

which is a unimodular totally disconnected metrisable locally compact topological group
with center ZGy = 0)I,. We identify the image of G; in PG with G1/ZG;. Let us
denote I'y = GL,(R,). By Equation , we have I'y € Gy and PT' < G1/ZG;. Besides,
I'y is a nonuniform lattice in G;.

Finally, let G = SL,,(K,), which is a unimodular closed normal subgroup of G; with a
split exact sequence of topological groups

1—G—G — 0 —1 (12)
with section £ : 0 — G defined by
A= (910,)-
Let I' = SL,,(R,), which is a nonuniform lattice in G, with an induced split exact sequence
1—-T—>T1—RS—1 (13)

with section §| RX-

We endow PG (respectively G and G) with its right-invariant Haar measure mpg
(respectively mg, and mg) such that its maximal compact-open subgroup PG(0,) =
PGL,(0),) (respectively G1(0,) = GL,(0,) and G(0,) = SL,(0,) ) has Haar measure 1.
Equation (12)) induces a split exact sequence 1 — G(0,) — G1(0,) — O —> 1 of
compact groups. Since vol,(€) = 1—¢q, ! by Equation @, forall \e 0, and g € G, we

hence have
Qv

g —1

dmng, (§(N)g) = dvol,(A) dmg(g) - (14)

Let 27 be the space of unimodular R,-lattices in K", endowed with the Chabauty
topology. As justified by Equation (10]), we identify homeomorphically and Gp-equivar-
iantly the homogeneous space G1/I'1 with 27 by the orbital map gI'y — g R,

Since I'; is a discrete subgroup of the unimodular group Gi, we endow the homo-
geneous space G1/T'; with the unique Gi-invariant measure such that the orbital map
G1 — G1/T'1 defined by g — ¢T'; locally preserves the measure, and we endow 27 with
the corresponding measure mg;. By for instance [HoPl Eq. (41)] (building on [Serll §3|),

we have
1 n—1

1_[ C”(_? . (15)

qv —

[ma || =

Let 2 be the closed subspace of 27 consisting in the special unimodular R,-lattices
in K, which is equal to the orbit in 27 of the standard R,-lattice R, under the action of
the subgroup G of G;. The stabiliser of R," in G is exactly I'. The homogeneous space G/I"
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identifies homeomorphically and G-equivariantly with the space 2~ by the map gI' — g R".
Since I' = T'; n G, the inclusion map G — G induces an injection G/T' — G1/I'; which is
a homeomorphism onto its image, and the following diagram is commutative:

G/P - Gl/l“l
X —> %1.

The compact group 0,°/R, acts continuously and freely on the topological space 27 by
(AR, A) — &(A)A. By Equations and , the inclusion map 2~ — %7 induces a
homeomorphism 2" — (0% /R)})\ 2.

Since I' is a discrete subgroup of the unimodular group G, we endow the homogeneous
space G/T" with the unique G-invariant measure such that the orbital map G — G/T" defined
by g — ¢ T locally preserves the measure, and we endow 2~ with the corresponding measure

my. We denote by vol, the measure on €, /R, such that the map &, — 1ﬁvx /R, locally
voly () 1—qy

preserves the measure. Its total mass is vol, (0, /R)) = . By Equation

Card R} g1
(L4), for all AR € 6, /R)* and x € 2, we have
dma; (EN)w) = - T dvol,(AR) dmy(z) and |ma|=(g-1)|mz].  (16)

2.4 Systoles of lattices

The (normalized) systole of an R,-lattice L in K", which depends only on the homothety
class [L] of L modulo K*, is defined by

covol(R,") ) >

i . 1
covol(D)) it ] (17)

sys([L]) = sys(L) = ( wel {0}

If L is unimodular, we simply have sys(L) = min, ey, 40} |w|. Mahler’s compactness crite-
rion (see for instance [KIST| Theo. 1.1]) says that for every € > 0, the e-thick part of PZ,
defined by

PZZ={xePZ :sys(z) > ¢},

is compact in PZ . For every compact subset K of P%", there exists ¢ > 0 such that
K < P%Z >¢. Similarly, the e-thick parts
27 ={Le 2 :sys(L)=€e} and 27°={LeZ :sys(L)>¢}

of 271 and % respectively are compact. For every compact subset K of 27 or 2, there
exists € > 0 such that K is contained in 277 or 2°>¢. We denote by P2 <¢ = P2\ P2 >¢,
X7 = 2N 27 and 275 = 2\ 272€ the e-thin parts of P2, 21 and 2 respectively.

Since GL,,(K,) acts transitively on the set of R,-lattices in K, and by Equation ,

. . . . . =7
the set of values of the (continuous) systole function sys : PZ — R is contained in ¢ .
More precisely, let us prove that we have

_1N 17 _1
@ " csys(PZ) < gl 0 [0,qug* ]
The left inclusion follows by considering, for every k € N, the lattice L = gpR,)" with

- _k
gk = <”76k I(il) (giving sys(L) = ¢, " since |7, *| = ¢¥ > 1). In order to prove the right
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inclusion, let [L] € P2 . Up to rescaling, we may assume that min,er, o) |w| = 1. Then
the closed ball B(0,q,; ') in K,” injects in K,”/L by the ultrametric triangle inequality.
Thus by Equation and the line before Equation @D, we have as wanted

covol(R)\ » gle=bn o ¢! -1
L)=(—-7) < = ————=qq" .
sys(L) ( covol(L) ) <volﬁ(B(O,qv_1))) voly(my Oy) dod

When g = 0 and degv = 1, we have sys(L) < 1, which is optimal since sys(R,") = 1.
1

1z
Since the image sys(P2") is contained in ¢, there is a partition P2 = |Jj_, P2k
into nonempty closed and open subsets of P2, defined by

Vkel[l,n], PZy={rePZ :nlog, (sys(z))=k—1 modn}.
The norm | - | having values on K,*~ {0} in ¢, for every R,-lattice L and every

g € GL,,(K,), by Equation , we have

covol(RU”)) _ <cov01(Rv")
~ %\ covol(L)
= nlog,, (sysL) —log, |detg| mod n.

nlog,, (sys(gL)) = log,, ( ) —log,, | det g|

covol(gL)

Hence the image G1/ZG1 of G in PG acts transitively on each one of the strata PZ}, for
k € [1,n]. Since PT' ¢ G1/ZG1, the stratum P27 thus identifies (G1/ZG1)-equivariantly
with the homogeneous space (G1/ZG1)/PT'. Furthermore, for every k' € N, the element

g = (ﬂgl ; 0 1) maps P2} to PZy» where k" € [1,n] satisfies £ = k + k' mod n.

2.5 Diagonal subgroups

We denote by A the diagonal subgroup of GL,,(K,), and by PA its image in PG, that we
also call the diagonal subgroup of PG. Let
ke 0

D= ki, kn€Z Y c A.
0 7 kn

We denote by PD the image of D in PG. Note that the diagonal subgroup PA is a closed
noncompact subgroup of PG which is the direct product PA = PA(0,) PD of its maximal
compact subgroup PA(0,) = PA n PGL,(0,) and its discrete subgroup PD. As seen at
the end of the previous subsection the group PD permutes transitively the strata P2}
for k € [1,n].

Also note that if L is an axial R,-lattice in K, then a L is an axial R,-lattice for every
ae€ ﬁ, and in particular, every R,-lattice homothetic to L is axial. Hence we may define
an azial PA-orbit in PZ" to be a PA-orbit which contains the homothety class of an axial
R,-lattice, or equivalently a PA-orbit all of whose elements are homothety classes of axial
R,-lattices.

m ki 0

Let exp : Z" — GL,(K,) be the map k = (k1,...,k,) — , which is

—k
0 Ty,

an injective group morphism with image D. We have a = exp(l—mn,1,...,1) by Equation

11



. We will also denote by exp its restriction to
7y ={k = (ki,...,kn) €Z" : k1 + ...+ ky, = 0}.

Note that there exists no global exponential map of matrices in positive characteristic.
The above map exp is a (very weak) ersatz for it.

We define A; :ﬁmGl, A=AnGand D =D n Gy :ﬁmG:exp(Zg). Thus A4,
and A are the direct products A1 = A1(0,)D and A = A(0,)D of their maximal compact
subgroups A;(0,) = A1 nGL,(0,) = An GL,(0,) and A(0,) = AnSL,(0,) respectively
with their discrete subgroup D. The split exact sequence in Equation gives a split
exact sequence

l— A— A — 0F — 1 (18)

with section £ (which has values in Aj).

2.6 Homogeneous measures on diagonal orbits

Recalling that A;(0,) and A(0),) are the maximal compact-open subgroups of the diagonal
groups A1 and A, we endow the abelian locally compact groups A; and A with their unique
Haar measure my, and my normalized so that

ma, (A1(0y)) = ma(A(0y)) = 1. (19)
By Equation , for all A e 0 and a € A, we have
dma, (€M) = - v - dvol,(\) dma(a). (20)
Y, —

We denote by mzz the counting measure on Zg, and, in order to simplify notation,
da = dmA1|A1(ﬁU)(a), da = dmA‘A(ﬁv)(a) and dk = dng(k) s

which are measures on A1(0,), A(0,) and Z{ respectively.
The maps (a,k) — aexp(k) from A;(0,) x Z{ to A; and from A(0,) x Z§ to A are
isomorphisms of topological groups, and we have

dmy, (aexp(k)) =da dk and dmy(aexp(k))=dadk.

For every z € 27 (resp. x € Z7), with 0, : a — ax the orbital map from A; to Az
(resp. A to Ax), we define the orbital measure Ji, = Ji,, (resp. piz = piaz) on the orbit
Az (resp. Az) by

Az =THae = (0z)sma, (resp. pip = pag = (03)sma) ,
so that for a € A1(0,) (resp. a € A(0,)) and k € Zf}, we have
di,(aexp(k)x) =dadk (resp. duy(aexpk)z)=dadk).

If 0, is a proper map (see Corollary for characterisations), then i, is an Aj-invariant
infinite locally finite measure on 27 with support equal to the orbit Ajz (resp. py is an
A-invariant locally finite infinite measure on 2~ with support equal to the orbit Ax).

By Equation and by the definition of vol) at the end of Section for every
x € 2, the measure 1, on 27 is an average of orbital measures on 2" :

_ (g +1)
Qv — 1
12
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3 A classification of the divergent diagonal orbits

The following characterisation of the divergent diagonal orbits is due to Margulis in the
case of the real field R and the ring of integers Z, see [TW) Theo. 1.2|. See for instance
[Weill, Wei2 [ST]| for complementary studies in the real case. Our proof follows the same
scheme of proof as in the real case.

Theorem 3.1 For every x = [L] € PZ", the following assertions are equivalent.
(1) The map a — ax from PA to PZ is a proper map.

2) The map d— dx from PD to PZ is a proper map.

3) There exists g € (PA)(PGL,(K)) such that [L] = g[R,].

4) The orbit PAx contains the homothety class of an integral R,-lattice.

5) The orbit PAx contains the homothety class of an axial R,-lattice.

6) Every element of the orbit PAx is the homothety class of an azial R, -lattice.

N N SN S

If one of the above assertions is satisfied, we say that the orbit PA x of z by the diagonal
subgroup PA is divergent. Hence the divergent PA-orbits are the axial ones (as defined in
Subsection [2.5]).

Proof. Assertion implies Assertion , since K is the field of fractions of R,,, hence for
every ¢’ € GL,(K), if r € R,~{0} is the product of the denominators of the nonzero entries
of ¢’ written as fractions in R,, then r¢'R," is an integral R,-lattice. It is immediate that
Assertion implies Assertion , since an integral R,-lattice is an axial R,-lattice. We
have already seen in Subsection that the Assertions and @ are equivalent.

Let us prove that Assertion @ implies Assertion . Indeed, assume that L is axial
and normalized in its homothety class to have covolume between 1 and ¢,*. Every element
ac A may be multiplied by a central element of GL, (k) in order to have absolute value
of its determinant between 1 and ¢,*. Then if a goes to infinity in ;1, it has a diagonal
entry that goes to 0. Hence the R,-lattice aL has its covolume remaining between 1 and
¢2", and has a nonzero vector on the coordinate axis corresponding to that diagonal entry
that goes to 0. Thus its image in PZ" leaves every compact subset of P.Z" by Mahler’s
compactness criterion. Note that Assertion and Assertion are equivalent, since
PA(0,) is compact and PA = PA(0,) PD.

It remains to prove that Assertion implies Assertion . We first give two lemmas.

Lemma 3.2 Thel’e exist ¢ > 1, a bounded open neighborhood W of 0 in K. and a finite
subset F' of D = D n SLy(K,), such that for every ¢" € GL,(K,) with det(¢”) € [1,q,"],
there exists f € F such that for every w € (¢"R)") n W, we have

| fwl = clw].

Proof. Each element in GL,(K,) with absolute value of its determinant in [1, ¢,"] only
multiplies the volume vol* by a constant in [1,¢,"] by Equation (8)). Hence there exists
an open ball W centered at 0 in K, with small enough radius such that for every element
g" € GL,(K,) with det(¢”) € [1, ¢.*], the K,-linear subspace generated by (¢"R) n W is
a proper K,-linear subspace of K.

For every d € [1,n — 1], let Grg(K,") be the Grassmannian space of d-dimensional
K,-linear subspaces of K", endowed with the Chabauty topology. Let us prove that there
exist ¢g > 1 and a finite subset F}; of elements in D such that for every V' € Grg(K,"), there
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exists f € F; such that for every w € V, we have | fw| = ¢q4|w|. This proves the result by

taking I = () <y, Fa and ¢ = mini<g<pn—1 cq > 1. By the compactness of Grg(K,") and

1
of the unit sphere of K", and by the homogeneity of the norm |- | (so that |, * ”w“wH =1

for every w € K"~ {0}), we only have to prove that for every V € Grg(K,"), there exists
a € D such that for every w € V' with norm 1, we have |aw| > 1.

Since d < n, there exists ig € [1,n] such that K,e;, is not contained in V. We claim
that there exists ey > 0 such that for every w = (wy,...,w,) € V with norm 1, there exists
Jw € [1,n] different from g, such that |w;, | > €. Otherwise, for every k € N, there exists
wk) = (Wi .- Wyp) €V with Hw(k) | =1 and |w;k| < k%rl for every i € [1,n]~\{ip}. Up
to extracting a subsequence by the compactness of the unit sphere of K, and since V is
closed in K", the sequence (w®))cy converges to a unit norm vector we in VA (Kyeq,),
contradicting the fact that K,e;, is not contained in V.

Now, for every k € N, let a* be the diagonal matrix with diagonal coefficients afi =T,
if © # ip and afoio = Wq()nfl)k, which belongs to D = exp(Zg). Then, if k is large enough
(for instance k = [—log,, €] + 1), for every element w = (w1,...,w,) € V with norm 1,
we have

k

la* wl = |, Fw), | = ¢ [ws,| > ¢ €0 > 1,

which proves the result. O

Lemma 3.3 For ecvery element ¢’ € GLn(Kv)\AV GL,,(K), for every bounded open neigh-
borhood W of 0 in K", for every finite subset J of ¢’ R*~{0}, for every finite subset C of
D, there exists a € DN\.C such that

(aJ) "W =F.

Proof. Let ¢’, W, J,C be as in the statement. We first claim that there exists iy € [1,n]
such that
(Kuveig) 0 (9'R") = {0}

Assume for a contradiction that for every i € [1,n] there exist w, € R}* and a; € K, ~ {0}
such that ¢'w; = a;e;. Then (wq,...,w,) is a K-basis of the K-linear space @1<;i<nKe;,
and the transition matrix P from the canonical basis (e,...,e,) to this basis (so that
Pe; = w; for every i € [1,n]) belongs to GL,(K). Let ' € A be the diagonal matrix
with diagonal coefficients a1, ..., a, in this order. Then the linear map (a’)~'¢'P fixes the
canonical basis, hence is the identity. Thus ¢’ = o/P~! € A GL,(K), a contradiction to
the assumption that ¢’ ¢ A GL,(K).

Now, for every k € N, let a* be the diagonal matrix with diagonal coefficients afi =
if ¢ # 19 and afm = m(,n_l)k, which belongs to D, and does not belong to C' if k is large
enough. For every w = (w1,...,wy,) € ¢'R)* {0}, by the preliminary claim, there exists
i # ig such that w; # 0. Hence ||a* w| = |7 %w;| = ¢* |w;| tends to +00 as k — +o0. Since
J is finite and W is bounded, this implies that for k large enough, we have (a*J) "W = &
and a* € D~C. ]

Proof that Assertion (2) implies Assertion (3). Let us fix g € PG\(PA)(PGL,(K)),
and let us prove that the map d — dg[R,)"] from PD to PZ" is not proper, which concludes
the proof of Theorem We fix a representative ¢ € GLy,(K,) A GL,(K) of g with
det(¢’) € [1,¢,"]. Let us prove that the map d — [d¢g'R,"] from the discrete space D to
PZ is not proper, which implies the result.

—k
v
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Let ¢, W, F be as in Lemma/[3.2] Without loss of generality, we may assume that id € F.
Let
Woc () W

feFUF—1

be an open ball centered at 0 in K, contained in ﬂfeFuF_l fW hence in W. Let

covol(L)

¢ = {[L] epa: covol(R?)

e [Lg/), LoWo=1{0}}, (22)
which is a compact subset of P.2" by Mahler’s compactness criterion (and by the definition
of the systole). For every finite subset C' of D, let us prove that there exists an element
dc € DN.C such that [dcg’R.)"] € C’, which concludes the proof.

Let J = (¢'R” n C~'W)~ {0}, which is a finite subset of ¢’ R\ {0} since C~'W is
bounded. By Lemma there exists dg € D~.C such that

(doJ) "W = . (23)

Let us define by induction on k£ € N an element d; € D such that with the notation
dip =dy...dg, if k=1, then d € F' and

Vwe (dp1gR)) 0 W, [dyw| = clw] . (24)

Let k € N, assume that dy, ..., d; have been constructed, and note that Jk =dy...dg
belongs to D. By Lemma applied with ¢” = dj ¢ which has absolute value of its
determinant in [1, "], there exists dj1 € F such that for every w € (d ¢ R™) n W, we
have |di4+1w|| = ¢ |w]|. This concludes the induction.
For every k = 1, by the definition of W which is contained in fW for every f € F', we
have N N N
(dk g/RUn) N WO = (dk g/RUn) N (de) = dk((dk—l g/Rvn) N W) . (25)

Hence by Equation , the minimal norm nj of a nonzero vector in (Jk gR)) n W is
at least ¢ times the minimal norm of a nonzero vector in (kal g R}) nW. Since Wy is a
ball centered at 0 contained in W, this implies that either (dy_1 ¢’R.") n Wo = {0} or that
ng = cng_1. Since Wy is bounded and ¢ > 1, this implies by a decreasing induction that
there exists k € N such that (dy ¢'R™) n Wy = {0}. Let ky € N be the smallest element
k € N for which this equality is true, so that

(dr, R "Wy ={0} and Vke[0 ks —1], (drg'R) Wy # {0}, (26)
By Equation , we have %’w = \det(c?k )| € [1,¢)"]. In particular, by the
definition of C’ in Equation , we have [di, ¢'R,'] € C'. Let us prove that d, ¢ C,
which gives the wanted result using d¢ = dy, .

If k, = 0, this follows by the construction of dy = 670. Assume that k, > 1 and for
a contradiction that c?k . € C. By the minimality of ky, let w be a nonzero element of
(Jk*,l g R n Wy. If ks > 2, by Equation (25), there exists w’ € (Jk*,g g'R)") n W such
that w = dy,_1w'. By Equation (26), we have |w| > c|w’|. Hence |w'| < |w| since
¢ > 1, and w’ belongs as w to the ball W centered at 0. Thus w' € (di,—2 ¢'R,") n Wy and
w = di,—1 w'. By induction, we may therefore write w = Jk*—lwo for a nonzero element
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wp in (¢'RN) n Wy such that c?wo e Wy for all j € [0, ks — 1]. By the definition of W)y
which contains w and is contained in f~ YW for every f € F and since k, = 1, we have
di,w e W. Hence dk*wo = dk*dk* 1wo = dy, w belongs to W. Since dk* € C, this implies
that wo € ((C~1W) A (¢'R)"))~{0} = J. Since dowy = dowy € Wy < W, this contradicts
Equation (23)). L]

Corollary 3.4 For every L € %27, the following assertions are equivalent.
(1) The orbit map a — aL from A; to 27 is a proper map.
(2) The orbit map d — dL from D to 27 is a proper map.
(3) There exists g€ A; GLL(K) such that L = g R".
(4) The orbit AL of L by the diagonal subgroup A of GL,(Ky) contains an integral
(possibly nonunimodular) R,-lattice.
(5) The orbit A1L contains an azial (unimodular) Ry,-lattice.
(6) Ewvery element of the orbit A1L is an axial (unimodular) R,-lattice.

Proof. Using the notation of Subsection we have a canonical onto map 27 — P21
which associates to a unimodular R,-lattice its homothety class. This map is equivariant
with respect to the canonical morphism G; — G1/ZG1, hence with respect to the canonical
morphisms A; — PA and D — PD. The above map £7 — PZ1 is a proper map, since its
fibers are the compact subsets & L for L € Z7.

The image of A; in PA is a finite index subgroup, with index n (and representatives of

k0
the classes the elements for k € [0,n — 1]). As seen in Subsection [2.5] the
0 Infl
space P2 is the finite union of the strata P2}, for k € [1,n] that are transitively permuted
by PA.

Therefore for every L € 27, the orbit map a — aL from Ay to 27 (respectively d — dL
from D to 27) is a proper map if and only if the orbit map [a] — [a] [L] from PA to PZ
(respectively [d] — [d] [L] from PD to PZ") is a proper map.

The result then follows from Theorem [3.1] ]

4 A description of the divergent diagonal orbits

4.1 Compact core and quasicenters of divergent diagonal orbits

Let x € Z1 be a unimodular R,-lattice in K", which is axial, or equivalently by Corol-
lary such that its orbit in 27 under the diagonal subgroup A;p is divergent. In this
subsection, we define and study several invariants associated with x or with its Aj-orbit
All‘.

For every i € [1,n], we define

sys;(x) = log, min {|lw| : w e (z N Kye;){0}} € Z ,

that we call the (logarithmic) ith-directional systole. As seen in Subsection since x is
axial, there exists \; € K such that = n K,e; = Ry,\;e;, hence we have sys;(x) = log,, |\
We define

=TAz = Z sys; ( (27)
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that we call the (truncated) covolume of the divergent orbit Ajx, and that we will use
as a complexity for divergent orbits. Assertion of Proposition below says that the
covolume 7, is indeed an invariant of the Aj-orbit of z. We will illustrate in Proposition
[44] when n = 2 why we think of 7, as the volume of a canonically truncated divergent
orbit Ajz. Let

A" ={k = (ki,...,kn) €Zy:Vie[l,n], ki =—sys;(z)}, (28)
which is a finite subset of Zf, and let A7 = A1(0,) exp(A”). The subset
Cyp = Cuyr = ATz = A1(0,) exp(A”)x (29)

of the Aj-orbit of z is compact and open in A;x since A;(0,) is a compact-open subgroup of
Aj, and is called the compact core of the divergent orbit A;x. Assertion of Proposition
below says that the compact core C, is indeed an invariant of the Aj-orbit of x.

The coordinate sublattice of x is

10 = (:E N Kvel) + ...+ ($ N Kven) . (30)

It is indeed an R,-lattice contained in z, and a(x°°) = (azx)*° for every a € A;. In
particular, the covolume of ° is constant on the Aj-orbit of x.

The quasicenter of the Aj-orbit of z is the unique point Z € A1z modulo the left action
of A1(0,) (see Assertion of Proposition below for its existence and uniqueness)
such that if (P = |Z],Q = 7, —n|Z=|) € N? is the Euclidean division (with 0 < Q < n) of
e = Pn + @Q by n, then

Vie[l,Q], sys;(Z)=P+1 and Vie]Q+1,n], sys;(Z)=P. (31)

For instance (see Proposition [4.6| for other examples), if x = R,', we have sys;(xz) = 0
for every i € [1,n], hence °°° = ¥ = z and

7. =0, A*={0} and C, = Ai(0,)x.

Proposition 4.1 Let x € 27 be an azial unimodular R,-lattive, and let i € [1,n].
(1) We have qf,ysi(m) = ¢"%vol, ((Kvei)/(z N Kye;)) and covol(z9°°) = RN
(2) For every a = diag(ay,...,an) € A1, we have

sys;(ax) = sys;(x) —v(a;), Taxz =Tz and Cgp = Cy.

(3) We have 1, € N. Furthermore 1, = 0 if and only if x = x°°.
(4) There exists a quasicenter T of the Ai-orbit of x, unique modulo the action of A1(0,).

(5) With ¢, = ﬁ, as 7, — +00, we have

Card A® = ¢, 7771 + O(r77?%) .

Proof. Let x and i be as in the statement.
As said above, there exists A\; € K such that x n Kye; = R,\e; and we have

sys;(z) = log,, |\i|. By Equations and (11)), we have

vol, ((Kvei)/(:n N Kvei)) = |\;| covol(R,) = qf,ysi(m)qg_1 .
17



The first claim of Assertion follows. The second one follows from the first one and the
definition of 7.

We have ming e azniye; |W| = @il mingeznk,e, |w]. Hence the first claim of As-

sertion follows since |a;| = ¢y v(a) " The second claim follows by summation since

|det a| = 1. By the definition of A" and the first claim, we have
AY ={k = (k1,...,kn) € Z5 :Yie[l,n], ki =—sys;(z)+v(a;)}.

For every i € [1,n], there exists a, € 0 such that a; = a} my 7Y@ We may hence write

a =d expk’ with o’ € 4;(0,) and k' = (—v(a1),...,—v(ay)) € Z§. Therefore
A = A" — K, (32)
so that since Ay is Abelian, we have

Coz = A1(0) exp(A™)az = A1(O,)d’ exp(A™ + k' )z = A1(0,) exp(A®)x = C,,.

Since the unimodular R,-lattice x contains its coordinate sublattice £°°°, we have
covol(z°) = covol(x) = covol(R,"), with equality if and only if x = z°°. Hence by
Equation ([11)) and by Assertion , we have ¢,;* = % > 1. Therefore 7, > 0, with
equality if and only if z = z°°°.

Let P =[] and Q = 7, — n|™|. Let a = expk where
k= (—=sysy(z) + P+1,...,—sysg(x) + P+ 1,—sysg 1 (z) + P,...,—sys,(z) + P).

It is easy to check that k € Z{ by the definitions of 7, = Y7 sys;(z), and of P and @ so
that 7, = nP + Q). By the first claim of Assertion and by Equation , the element

T = ax is a quasicenter of Ajx. If Z is another quasicenter of Ajx, if a € A; is such that
~ sysi(é)
T = al, then for every i € [1,n], we have |a;| = % by the first claim of Assertion @.

Hence |a;| = 1 by the definition of the quasicenter and since 7, is constant on the
Aj-orbit of z by Assertion . Therefore a € A1(0,), thus proving the uniqueness claim.

For every m € N, let A(m) ={k=(ki,...,kn) € Zy:Vie[l,n], k;i>=—m}. By
Equation and the definition of the quasicenter, we have

Card(ﬁ([%J)) < Card(A?) = Card(A?) < Card(ﬁ([%J +1)).

Let us prove that if ¢, = (:LL%II)!, then, as m — +00, we have

Card(A(m)) = ¢,m™ ' + O(m"?). (33)

This implies Assertion with ¢, = nﬁ—l’il = ﬁ

We start the proof by the following elementary integral computation. We consider the
Euclidean subspace R} = {t = (¢1,...,t,) € R": > t; = 0} of the standard Euclidean
space R", endowed with its Lebesgue measure Lebrp. By invariance under translation,
this measure is proportional to the measure dt; ...dt,—1 on Ry, and the proportionality
constant is classically computed as follows. Let u = —-(1,1,...,1) which is a unit normal

vn
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vector to the hyperplane Rj'. Let P be the fundamental polytope of the Z-lattice Zg in
Ry generated by the vectors

w = (1,-1,0,...,0), wuy=(0,1,—-1,0,...,0), ..., Up_1 =(0,...,0,1,—1).

Note that the first n — 1 coordinates of a point sju; + ...+ s,_1u,_1 of the polytope P,
with (s1,...,8,-1) € [0,1]"7!, are t; = s1, to = 83 — 81, - -+, tn1 = Sp_1 — Sp_2, SO that
dty...dtn,—1 =dsy...dsp—1 and dty ...dt,—1(P) = 1. Therefore

d LebR(}L LebR(;L (P)

dty .. dty_1  dt1...dtn1(P) ebrp (P) = |det(u,. .., up—1,u)| = v/n

Note for future use that
covol(Rg'/Zg') = Lebgn(P) = v/n.. (34)

For every o > 0, let A’(a) ={t=(t1,....tp) eRy : Vie [L,n], t; > —a}.

n—1

Lemma 4.2 For every a > 0, we have LebRgz(A’(oz)) =4/n %

Proof. Up to using an homothety of ratio o, we may assume by homogeneity that o = 1.
For every k € [1,n], using the standard conventions that ** = 1 and Z@ * = 0, we define

amap gy : R"* - R by

k—1

1 n—k
(F1ree by ) o m(k— Zl ti)

Note that g1 = 1 and g,, = % are constant. For all k € [1,n—1] and ¢1,...,t,—x—1 € R,
by a straightforward integration, we have
k=Y 1 1 n- k-l kys=k=Y7rF 1t
SRR PR B S A SIS s
f_l gk(t1 n—k—1,8) ds = ; i=s) ]

= gk+1(t1, - s tn—k—1)-

We have t; > —1 and > ;" ; t; = 0 for every i € [1,n] if and only if —1 < ¢; < n—i—zz;ll t;

for every i € [1,n — 1]. Hence by an easy induction, we have, for every k € [1,n — 1],

R (n=1) p(n—2)—t1 -2
Lebrn (A'(1)) = \/ﬁf J f dtp—1...dtadty
-1 -1

-1

(n—1) (n—2)—t; R A
I\/ﬁf f J gk<t1,...,tn,k)dtn,k...dtgdtl.
-1 -1

-1

When k£ =n — 1, we get LebROn(A’(l)) =4/n Sinl_l) gn—1(t1) dt; = \/n g, as wanted. []

By the standard Gauss counting argument, by Lemma and by Equation , Equa-
tion follows since

. Lebgp (A'(m))  (nm)n—!
Card(A(m)) ~ covol®Ry/Zg) ~ (-1 D
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4.2 The mass behavior of the compact cores of divergent diagonal orbits

In this subsection, we prove that for continuous functions with support in a fixed compact
subset of 27, most of their mass for the orbital measure i, = fi4,, (defined in Subsection
2.6) on a divergent orbit Ajx is carried by the compact core of Ajx as the truncated
covolume goes to infinity.

We keep denoting by = an axial unimodular R,-lattice. We denote by

1
Ve =VAjx = =~ Mz |Cs 35
o= gy Tl (35)

the restriction of the orbital measure f, to the compact core C, = C4,, of the divergent
orbit Ajz, normalized to be a probability measure on £7. It is well defined since C, is
a nonempty compact open subset of Ajx, hence 0 < f1,,(Cy) < +00. It is independent of
the choice = of an element in the orbit A;x, and its support is equal to C,. By Equation
[29), C» = Ai(0,) exp(A”¥) z is the disjoint union of the clopen subsets A (0,)(expk)z
for k € A*. By the normalisation of the Haar measure of A; in Equation , we have

Fiz(Cr) = ma, (A1(0y) exp(A7)) = Card(A”). (36)

This formula, paired with Assertion (|b|) of Proposition says that up to an error term, up
to a multiplicative constant and up to a power constant depending only on n, the truncated
covolume 7, is the orbital measure of the compact core of the divergent orbit A;z, again
justifying its name. With the simplified notation of Subsection for a € A1(0,) and
k € A*, we have

dv,(aexp(k)x) da dk|a= . (37)

1
~ Card(A%)
If y e Z', then Ay is divergent in 2 if and only if A,y is divergent in 27, and we then

similarly denote by
1

Vy = VAy = 11, (Cy ~ Ay) Hylcynay
the restriction of the orbital measure 1, to the compact core Cy N Ay = A(0,) exp(AY)y
of the divergent orbit Ay, normalized to be a probability measure on 2. For a € A(0),)
and k € AY, again with the simplified notation of Subsection now for A(0,), we have

dvy(aexp(k)y) da dk|av . (38)

1
- Card(AvY)

By Equation (20)), the measure 7, on 27 is an average of normalized restrictions of orbital
measures on 2 :

7, = qilf €Ny dvoly(A). (39)
Qv \eO,

In the next lemma, we denote by | |lo the uniform norm of continuous functions with
compact support.

Lemma 4.3 For every m € N, for every continuous function f € C.(%£1) with compact

. . >q, " .
support contained in X7, for every azial element x € 27, as T, — 400, we have

() =m0 (e
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Similarly, for ally € & azxial and f € C.(Z") with support in 220" as Ty — +00, we

have
L) = )+ 0 (DL

CnTy Ty
Proof. Let m, f,x be as in the first statement (the second one is similar). We define
={k=(ki,...,kp) € Zy:Vie[l,n], ki >—sys;(z)—m},

AT = A1(0,) exp(A™™) and Cy = AT x, which respectively contain A%, A7 and C,.
By Equation and the definition of the quasicenter, as in the proof of Proposition
, we have

Card(ﬁ([ nJ +m)) < Card(A™™) = Card(A™™) < Card(ﬁ([ nJ +m+1)).
Hence by Equation , as 7, — +00, we have
Card(A™™) = ¢, (1, + nm)" ™1 + O((1p + nm)"?). (40)

Note that if a = diag(ay,...,a,) € A1 N A7™, then there exist i € [1,n], k; € Z and
a, € 0 such that a; = agw i and k; = —v(a;) < —sys;(z) —m. Hence since z is
unimodular, by the definition of the sybtole in Subsection and of the logarithmic
directional systoles in this section, and by Proposition , we have

log,, sys(az) < 1r<njlgn sys;j(ar) = lgljign(sysj(x) —v(a;)) < sys;(x) —v(a;) < —m.

Thus ax ¢ %fq’;m and f(ax) = 0. Therefore, using
e Equations and for the first and second equalities (and similarly for Cy ),

e Equation for the third equality,
e with a O( ) which depends only on n for 7,, = nm for the last equality,

we have
1 1 1
CHTTNx(f) Vz‘ ’—‘( e 1Mx’sz W}%’C )( )’
Bz(Cam)  Ba(C) Card(A™™)
( it card(Aw)>HfH°° - (W N 1)“”00
o (T n—1 0 . n—2
_ (c (T2 + nm) Cn—;? E(T + nm)" %) _1)HfHoo
_ nm, n—1 nm., o1y o (m+1) | fle
—((1+ ) o (e T ) e =0 ( = ).
as wanted. O

4.3 Zigzag length and continued fractions

We assume in this whole subsection that n = 2 (and we will then use n as a variable
element of N), that K = F,(Y) and that degv = 1 so that R, = F,[Y] (see Subsection
. We give in this particular case a geometric interpretation (using the geodesic flow on
a Bruhat-Tits tree) and an arithmetic interpretation (using continued fraction expansions)
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of the quantities defined in Subsection We refer for instance to [BPP, §15.1, 15.2] for
the background information.

Let T, be the Bruhat-Tits tree of (PGLq, K,), see for instance [Ser2|]. It is a regular
tree of degree Card Py(0,/m,0),) = q + 1 (since ¢, = ¢ here) and its set of vertices VT, is
the set of homothety classes (under K*) [A] of O,-lattices A in K, x K,,. We denote by #,
the homothety class of the 0,-lattice 0, x 0, generated by the canonical basis of K, x K.
The left linear action of G; = GL%(KU) on K, x K, induces a left action of Gy on T,,
which preserves and is transitive on the set Viyen Ty of vertices at even distance from =,,. Let
a= <7Bv 7T01> eD=Dn SLa(Ry), which generates D ~ Z. The lattice I'; = GLa(R,)

v
in G (or its projective version PT') is called the Nagao lattice, see [Nag, [Weil].

We identify the projective line Py (K,) with K, U {00} using the map [z : y] — zy~ ! as
usual, and we endow P;(K,) with the projective action of G;. The boundary at infinity
0w Ty of T, identifies G1-equivariantly with P (K, ). The Nagao lattice I'y acts transitively
on the subset 1 (K) of Py (Ky).

We denote by ¢T, the space of geodesic lines in T, (that is, the set of isometric maps
¢ :7 — VT, endowed with the compact-open topology), endowed with the action by
post-composition of G defined by (g,¢) — {g ¢ : k+— gl(k)}. Let

Goven Ty = {E e¥T,: B(O) € ‘/evenTv} )

which is invariant by G7. Let £, € 4T, be the unique geodesic line with £,(—o0) = 0 €
0Ty, Ly(+0) =0 € Ty, and £,(0) = #,, so that £4(2n) = a™ %, for every n € Z.

A geodesic line ¢ in ¥T,, as well as its image in T'1\¥T,, is called birational if its
two points at infinity ¢(+£00) belong to P1(K). For instance, ¢, belongs to %eyvenT, and is
birational.

We denote by (¢™)nez the (discrete-time) geodesic flow on the space 4T, defined by
@™l k — l(k+mn) for all n € Z and ¢ € 4T,, which commutes with the action of G, as
well as its quotient flow on I'1\¥T,. The stabilizer of ¢, for the transitive action of G on
GvenTy is exactly A1(0,). Hence the map A1(0,)g — g~ ' {4 is a homeomorphism = from
A1(Oy)\G1 t0 Deyen Ty, which is (anti-)equivariant with respect to the actions of I'y on the
right on A;(0,)\G1 and on the left on Yoyen Ty, :

VgeGi, Vyely, E(A1(0,)g7) =7 'E(A1(On)g).

~

We denote by E : A1(0,)\G1/T1 — I't1\%even Ty the homeomorphism induced by =. We
have the following crucial property relating the right action of A; (or the commuting right
actions of D and A;(0,)) on 27 = G1/T'1 and the even-time geodesic flow on I'1\%eyven Ty
for every n € Z, we have Soa "= ¢ o i, or equivalently

VgeGi, ¢*(gls) =ga"ly. (41)

Refering to [Ser2| for background, the quotient graph of groups I'1\T, is the following
modular ray
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where H_; =T'y n GLy(F,), H) = Hyp n H_; and, for every n € N,

b
Hn:{<g d)en : a,deF;,bqu[Y],degb<n+1}.

A birational geodesic line in I'1\¢T, starts from the point at infinity of the ray I'1\T,, goes
down to the origin I'y #,, then makes some back-and-forth to the origin for some (even,
possibly zero) finite time, then goes up all the way to the point at infinity of the ray (see
[Ser2l page 116], [Paul, §6.1] and the above picture).

Half the (even) length of the birational geodesic line I'1¢ in I'1\%even Ty between the
first and last time of passage through the origin I'y #, is called the zigzag length of I'1 £, and
denoted by zz(I'1¢) € N. It is invariant under the action of the geodesic flow. For instance,
zz(T'14y) = 0.

Any element f € K, = F;((Y 1)) may be uniquely written as a sum f = [f]+{f} with
[f] € Ry, = Fy[Y] (called the integral part of f) and {f} € 7,0, (called the fractional part
of f). The Artin map ¥ : 71,0, ~{0} — 7,0, is defined by f — {%} Any fe K =TF,(Y)
has a unique finite continued fraction expansion

f:[ao;ala"'7an]:a0+ = =5
ay +
as +

e —
an,

with ap = ao(f) = [f] € Ry and if f # ap then n = n(f) € N\ {0} is such that we

have ¥™(f — ag) = 0 and a; = a;(f) = [m] is a nonconstant polynomial for
1 < i < n. The elements ag,a1,...,a, € R, are called the coefficients of the continued

fraction expansion of f. The fraction £t = [ap; a1, ...,a;] € K is called the i-th convergent

of f and is uniquely defined by induction by

P,y=1 P =ao, Py =P qa; + P2
Q1=0 Qo=1 Qi=Qi—1a;+Qi2

for 1 < i < n. We refer for instance to |Las|, [Schl [Pau] for background on the above notions.

The stabilizer of oo € Py(K,) for the projective action of T'; is its upper triangular
subgroup Hy = |J,,on Hn- For every f € K, = Py(K,) {0}, there exists g € Hy such
that gf € m,0, (for instance g = (é _[f]) ) and if ¢’ € Hy, also satisfies that ¢'f € 7,0,

1
then there exists u € F ¢ such that ¢'f = u(gf). Hence every birational geodesic line /

(42)

in 4T, has a representative { in its class #“T'1¢ modulo the (commuting) actions of the
geodesic flow and of I'y which starts at time —oo from o0 € 0, T,, passes at time t = 0
through # € VT, and ends at a point in 7,0, € 0xT,, unique up to multiplication by an
element of . Note that ¢ = 0 is the time when U starts its zigzag part (see Proposition

for the computation of the time { ends its zigzag part). We define the continued fraction
total length cf(T'1¢) of T'1¢ as the sum of the degrees of the coefficients of the continued

~

fraction expansion [0;a1,as...,ay] of £(+0) :

cf(T0) = ' deg(as) .
=1
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This does not depend on the choice of Z, since for all u € Fy' and ay,...,a, € Ry~\Fy, we
have u[0; a1, as . .., a,] = [0;u " a1, uay, ..., u"Y"a,]. We define the height ht(I'1£) of I'1/
as the degree of the denominator of the last convergent % of {(+0) :

ht(I'14) = deg(Qy) -

The following result says that the truncated covolume of a divergent orbit in G1/I'; coin-
cides with the zigzag length, with the continued fraction total length and with the height
of the corresponding orbit of the even-time geodesic flow in I'1\%even Ty -

Proposition 4.4 For every g € Gy, the Aj-orbit AigR?2 of the R,-lattice gR? is divergent
in 21 if and only if the geodesic line Z(A1(0,)gl'1) = I'1g~ Yy € T1\Goyen Ty is birational,
and we then have

TAIgR2 = ht(Tyg 1) = cf (T1g 1) = zz(T1g71¢y) . (43)

Proof. Let g € G;. By Corollary we know that AjgR2 is divergent if and only if
ge A GLY(K).

The group GL3(K) acts transitively on the set of ordered pairs of distinct points of
Py (K), since for all z,y € K, the element ($ 1,) € GL}(K) maps « to o and the element
((1) _13/) € GL(K) maps y to 0 while fixing oo. Hence if the geodesic line g~y € Goyen Ty, is
birational, then there exist h € GL3(K) and n € N such that hg=14, = $*"£, = a"/,, using
Equation for the last equality. Hence a="hg~! fixes /,, whose stabilizer is A1(0,).
Therefore g € A; GLi(K).

Conversely, assume that g € A; GLI(K). Since A; = DA;(0,), there exist n € Z,
W e A1(0,) and h € GLY(K) such that g = a”h’h. The points at infinity of g~'/, are
hence equal to the points at infinity of h~1'/,, which are both in P;(K), hence g~'4, is
birational. This proves the first claim.

Let us prove the first equality of Equation . If AjgR?2 is divergent, we may assume
that g € GL}(K) by Corollary [3.4L By the transitivity properties of I'y, up to multiplying
g on the left by an element of A} n GL3(K) and on the right by an element of I';, we may
assume that g~ ', = *, and that the projective action of g~! fixes o0 and sends 0 to the
last convergent % of g7 (+00). Thus g has the form (¢ %) with a,b,d € K with |ad| = 1.
In particular, we have g~ '/, = ﬁ; with the above notation. Since multiplying g on the
left by an element of A; nT'; does not change g~ 4, (+00), we may assume that a = d = 1.
Then b = —%. Now, we have gR2 = Rye1 + (bey + e2)R,. Hence gR? n Kye1 = Rye;
and gRE N Kyes = RyQnes. Thus by Equation and the definition of the directional

systoles, we have

sys;(gR;) =log,1 =0 and sysy(gR;) = log, |Qn| = deg Qn ,

so that 74, 4r2 = deg@Qn = ht('1g~'4,), as wanted. For use in the following remark, note
that if m = [%], then by Proposition , we have

deg QnJ '

sysi(a "gR2) = ~v(m, ™) =m and  sysy(a"gRE) = deg Qn — v(m, ™) = |

(44)
The middle equality of Equation follows by induction from Equation , noting
that dega; > 1if i = 1. The last equality follows from [Pau, §6.3, Remarque 2.]. Il
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Remark. The above proof also gives that the compact core of a divergent A;-orbit A;gR2
corresponds to the part of the geodesic flow orbit of a birational geodesic line I'1/ in the
space I'1\Zoven T, where the base point I'1£(0) lies exactly in the zigzag part: more precisely

E(A1(00)Cargry) = {T10% (9710 ) : 0 < k < za(Thg ')} .

Note that a quasicenter Z of a divergent Aj-orbit z is well defined up to the action of
A1(0,), and Z is a homeomorphism from A;(0,)\Z7 to I'1\Zeyen Ty, hence looking at
the image =(A1(0,)T) of the set of quasicenters is well defined. Equation in the
above proof gives besides that the quasicenter of a divergent Aj-orbit A;gR? (defined by
Equation (31])) corresponds to the geodesic flow orbit point of a birational geodesic line in
the space I'1\Zeven Ty, Where the base point is almost at the midpoint of the zigzag part:
more precisely

- o -1
E(A1(0,)A1gR2) =T1¢°" (g4« ) where m = [W]-

4.4 Type and discriminant of the divergent diagonal orbits

In this section, we introduce two new invariants of the divergent diagonal orbits in 27,
we gather the technical notation that will be used in the following sections, and we give a
precise description of the divergent orbits whose equidistribution we will study.

Let x € PZ" be the homothety class of an R,-lattice whose PA-orbit is divergent in
PZ". By Theorem , we know that the orbit PAx contains at least one homothety
class [L] of an integral R,-lattice L. Since the normalized covolume % € ql of L
is at least 1 as L ¢ R, and since any nonempty subset of N has a lower bound, there
exists at least one integral R,-lattice L, whose homothety class belongs to PA x and whose
covolume is minimal. We define

o the discriminant of the divergent PA-orbit PAx as disc(PAx) = log,, % eN
and

e the type of the divergent PA-orbit PA x as the set of types (see Subsection of the
finitely many integral lattices L, minimizing the covolume among the integral R,-lattices
whose homothety class belongs to PA x.

We refer to the proof of Proposition for examples of divergent PA-orbits having

nonunique homothety classes of covolume-minimizing integral R,-lattices.
We endow the infinite sets (R, ~{0})"~! and R, {0} with the Fréchet filter of the
complementary sets of their finite subsets, and we will denote as usual by lJirm the limits
0

along this filter.
Let us introduce the notation that will be used in the remainder of this paper. In this
section, we fix an element s = (s, ..., ;) € (R,~{0})"~! such that

3 o € Bij([2, n]), So-12) | So=13) | -+ | So-1(n) and s5-1(,) ENZ. (45)

We then define sy = s,-1(,) € nZ. Since the valuation v is nonpositive on R, {0} by
Equation (3)), we have v(ss) < 0. Note that s — +o0 if and only if s, — +00, hence if and
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only if —v(s) — 4+00. We define (independently of the choice of such a permutation o)

s = {(72 i} ,r—") :Vie[2,n], rie Ry andmRv+s@-Rv=Rv} mod Rv"_l,

82783’ Sn
As={k=(ki,....kn) € Z{ : k1 > v(ss) and V i € [2,n], k; > 0},
Os = {k = (k1,ooo ko) € Zg : Vi€ [2,n], 0 < ks < ki —v(sa)}

n—1 1 L
kS=< . v(s*),—ﬁv(s*),...,—57)(5*))62”7
As:As_ks:{k:(kh"'?kTL)EZg:ViE[[l’n]]’ kz}v(:b*)}7
N noy o v(sx)

Do = Os =k = {k = (kryr ko) € Z s Vi€ [20m], 22 < by < by}
n

Let us make some comments on this notation. We have kg € Qs < Ag (see the following
picture when n = 3). We have

n

Card(Ag) = H wu(s;), hence Card(A(S’m’S)) = (gov(s))”fl , (46)
i=2

where ¢, is the Euler function of R, defined in Equation (4)).

(0,0,0)
~1,1,0)

/ \\m

(—2,1,1)

Os

(v(s3),0, —v(s3)) (v(s3), —v(s3),0)

We denote by §, the unit Dirac mass at y. With u for t € K,”~! defined in Equation ,
we define two probability measures on 2~ by

1
A
s T Card A, Card A, teASleeAs LeA(ﬁv) aexp(uRy 40, (47)
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and similarly, replacing Ag by Os,

: J
O
Vs = g ex w da. 48
Card Ag Card Q¢ teAs,ZkeoS weA(0y) p(k) ug R (48)

We define similarly two probability measures 75 and 7¢ on 27 by replacing A by A; in

Equations and , so that by Equation we have

7 L J £t dvol,(N). (49)
@w—1 \eOy”

We denote by ., the permutation group of [1,n], and by .#,_; the stabilizer of {1}
in .#,. The group .%,,_1 acts K-linearly on K"~! (preserving the subset (R,~{0})"~!) by
0t =(to-102),-- s to-1(n)) forallo € 7,1 and t = (t2,...,t,) € K"~ By construction,
for all o € .1 and s € (R, ~{0})" "}, the element s satisfies Equation if and only if
o - s does, and we have

Aos=0-As, v((0-8)s) =0v(84), Aps=Ag, Ops=70s, and k,s=ks. (50)

The group %), acts Z-linearly on Zy by 0 -k = (k;-1(1, ..., ko—1(p)) for all o € .7, and
k = (k1,...,kn) € Z§. Note that the subset AS of Zg is invariant under the action of .7,.
As said above, the subsets Ag and Qs of Zg, as well as their point kg, are invariant under
the action of .#;,_1 = Staby, {1}. Let o, = (1...n) be the standard n-cycle in .#,. The
cyclic group o,Z of order n generated by o, acts freely on Ag~ {0} where 0 = (0,...,0).
The subset {s is a (weak) fundamental domain for the action of 5, on Ag : we have (with
nondisjoint union)

n—1
As=J o 0s.
J=0

For every o € .7, we denote by P, € GL,(K,) = GL(K,") the corresponding per-
mutation matrix of the canonical basis (e1,...,en) of K, so that P,(e;) = e, for
every i € [1,n]. The map o — P, is a group morphism from .#, to GL,(K,). This
K,-linear action of ., on K gives an action of .7, on the set of R,-lattices z of K
by z +— o(x) = {Py(w) : w € x}, that preserves 27 since the determinant of P, is the

signature (o) € {£1} of o for every o € .7,.

Lemma 4.5 For everys € (R,~{0})"~! satisfying Equation and for every o € Sp_1,

we have Vﬁs = O'*(VSA), Vﬁ,s = 0*(Vé>), ﬁﬁ,s = 0*(§SA) and Pg,s = 0*(32),

Proof. We only prove the first equality. The proofs of the other ones are similar. Let o,s
be as in the statement. Let a € A(0,), k € Z§ and t € K" 1. Since u,t = P,ug P, 1 and
R is invariant by P, !, we have
o(a exp(k) uy R) = P,a exp(k) wy R = Pya P, 'P, exp(k) P, ' P,us P, ' R
= (P,aP;Y)exp(o k) uss R™.
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For every o € .7, the conjugation by P, in GL,(K,) preserves A(0,) and its Haar
measure. Hence, by Equation and by changes of variables in the sums and integral,
we have

1 f

A

Vos = 5aex » da
Card AU.S Card AU.S teAU-s,ZkEAg-s aeA(ﬁ’U) p(k) utRU

1
_ S oo . da =0, (V).
Card As Card As teASZkeAS LeA(m) (PraPi yexp(ok)upaiig 40 = 03 (v5) - T

Note for future use that for all 0 € .%,,, a € A1(0,), k € Z§ and t € K"}, we have

o(a exp(k) ug R)") = exp(o-k) o(aut R)). (51)

For every t = (t2,...,tn) € K71, let

n
xtzuthanv(el+Z tie;)+ Ryezt ...+ Ryey. (52)
=2

Note that z¢ € 2 since uy € G = SL,,(K,). We have g = R, and if t' € t + R/*~!, then
xy = x¢. Note that z¢ is a unimodular R,-lattice, which is rational if and only if t € K"~!
and integral if and only if t € R*~!. For every i € [2,n], we have ¢ n (K,e;) = Ry e;.
Hence by the definition of the directional systoles and by Equation , we have

Vie[2,n], sys;(w¢) = log,, se%ii\%o} |s| =0. (53)
Since
xy 0 (Kyper) = {\e1: A1 € Ry and Vi€ [2,n], \it;€ Ry}, (54)

the R,-lattice x¢ is axial if and only if it is rational, hence if and only if t € K.

Proposition 4.6 Lets e (R~\{0})""! satisfying Equation [45)). Lett = (Z—;, ce ;—Z) € As.
(1) The first directional systole of the R,-lattice xy is sys,(z¢) = —v(sx). The truncated
covolume of the Aj-orbit of xy is 7, = —v(sx). The coordinate sublattice of xy is
(2¢)°°° = Rysye1 + Ryea + -+ + Rye,. The compact core of the Aj-orbit of zy is
Cr, = A1(Oy) exp(Ag)xy. A quasicenter of the Aj-orbit of xy is Ty = exp(ks)x.
(2) Ass — 400, we have

Card Os — %(—v(s*))”_l +O((—u(sa))"2) = % Card As + O((—v(s:))"2) . (55)

(3) We have xx N R = Rysxe1+ Ryea + -+ -+ Rye, = (4)°°. Hence the type of the

integral lattice xy N R is (1,...,1,84).
(4) The PA-orbit of the homothety class of x¢ has discriminant | [;_, |si| and has type
{(1,85-1(2), -+ 8g-1(n))} where o0 € Sy is such that s,—1(2) | ... | So-1(p)-

(5) With vy, for ye Z the probability measure given by Equation , we have

1
A
Ys T Card Ag t; Vi -
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As s — 400 in Ry~ {0} with v(s) € nZ, defining s = (s,...,s) € (R,~{0})""!, for
every f € C.(Z"), we have

% Z +O<Hf|(oo)).

Proof. If ro, ... 1,75, ... .10 e R, satisfy ), = ry mod sg,...,r], = r, mod sy, and if
t = (—2 . Z—Z), t = (%’ e ) then we have t’ —t € R ! and 2y = xy. In particular,
the R,-lattice x¢, as well as the measures v,,, v2 and v¢, do not depend on the choice of

representatives of the elements t in the index set Ag = K"~ 1/Rr~1.

(1)) By Equation (54)), the set zy N (Kye1) consists in the elements A\je; where A\; € R,

is such that, for every i € [2,n], we have )\1—1' € R,. Since r; is invertible modulo s;

and by Equation (45]), this occurs if and only if A1 € ﬂl 9 8%, = sy« R,. Hence we have

N (Kype1) = sy R By the definition of the first directional systole, this proves the first

claim. By the definition of the truncated covolume and by Equation , we hence

have 75, = > | sys;(z¢) = —v(sx). By the definition of the coordinate sublattice, we
have

(2¢)°° = (¢ N Kper) + ...+ (xy n Kye,) = Ryscer + Ryea+ -+ Ry ey .

By Equation , by the above computation of the directional systoles of x¢ and by the
definition of Ag, we have A" = Ag. This gives the description of the compact core of the
Aj-orbit of zy by Equation .

Recall that —v(s,) € nN and that ks = (k1 = Z20v(sy), ko = _us) g, = —U(S*)).
By the first claim of Proposition , we have that

sys; (exp(ks)we) = sys;(z¢) —v(m, ) = sys;(z¢) + ki

is equal to —@ if i € [2,n] by Equation and to —v(ss) + ZLu(s,) = —@ if

= 1. The description of the quasicenters of the Aj-orbit of zy (well-defined up to left
translation by an element of A;(&,)) then follows from their definition that requires, by
Equation and since 7,, = —v(sy) € Z, that we have sys;(f) = =t = ”(S*) for every

i€ [1,n].

Using the facts that A* = Ag and 7,, = —v(sx) seen in Assertion (|1, the first
equality in Equation follows by the same proof as the one of Proposition , by
comparing with the Euclidean volume of the polytop

~

O'la) ={t=(t1,....,tn) eRG : Vi€ [2,n], 0<t; <ty + o}
for « = —wv(ss) whose images under the powers o,0,0,},...,0,""! of 0, have pairwise

disjoint interior and cover A’(«). The second equality in Equation then follows from

Proposition u @

. ) Let A\i,...,\, € R,. We have )\1(61 + D o ez) + Do Aie; € R if and only if
for every i € [2, n]] we have A1 it € Ry, hence if and only if Aj € sy R, as seen in Assertion
. The result follows by Equatlon .
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Let a € A be a diagonal matrix with diagonal coefficients ay,...,a, € K. The
Ry-lattice azy = Ry(ar1er + X, o oa ei) + Ryases + ...+ Ry ay e, is integral, that is
contained in R, if and only if a; € R, for every i € [2, n]] a1 € R, and —% a; € R, for
every i € [2,n], hence if and only if a; € R, and a; € s; R, for every i € [2, n]] since r; is
invertible modulo s;,

Recall that by Equation (3)), for every z € R,~ {0}, we have |z| > 1 with equality if
and only if z € R . Recall that x¢ is unimodular. Hence by Equation (|1 , we have

covol(a ) covol(zy) - L
—————= =|deta] ——5 = | > ;
covol(R*) | detal covol(R?) Zl_[|al| H|Sl|

with equality if and only if a; € R and a; € s; R for every i € [2,n]. Therefore
the integral R,-lattices contained in elements of the orbit A z+ with minimal covolume
are exactly the R,-lattices L = R, (61 + Dy Tl ei) + R,82e9 + ...+ R, s, e, where
ay,...,al, € R). Note that there is no uniqueness of such an R,-lattice L in general.
Since R = R, (61 + Dy T al ei) + Ryez + ...+ R, e, by an immediate change of
R,-basis, the R,-module R,"/L is isomorphic to | [}y Ry/(s;R,) for every such L. All such

integral lattices L hence have the same type, and this proves the result by Equation .
(5) Since A*t = Ag for every t € Ag by Assertion , the first claim of Assertion
follows from the definitions of the measure 5 in Equation and of the measure v, for

any R,-lattice y € 2" in Equation .
Let us prove the second claim of Assertion (F]), which uses the symmetry of the (n—1)-

uples (s,...,s) for s € R,. We start with a computational lemma.
We fix s € R, with v(s) € nZ and we consider the (n — 1)-uple s = (s,...,s). Let
a € A(0,) with diagonal coefficients aq,...,a, and let t = (%2, ce %") mod R ! e A,.

Let s’ € 0, be such that s = va(s) s', and let 7,, € R, be an inverse of r, modulo s. Let

a’ be the element of A(0),) with diagonal coefficients
dy = (s) Lan, dy = s'ar,ay = as,...,al, = an_1.

n

Note that the map a — a’ is a homeomorphism of A(&),) preserving its Haar measure. Let

t/ = (T, fnr2  Inimol) mod R/, and note that the map t — t' is a bijection of A,
. . ! ! rhr rhoel ol
with inverse (“2,...,2) mod R}"! — ( 283,...,%,?2) mod R/L.

Lemma 4.7 Denoting by ya ¢ the R,-lattice a exp(ks) x4 € 2, we have 0y(Yart) = Yo' ¢/ -

=1y v(s)
Proof. Let w = s1(a} e; + g T a; ej) € K. Since m, " ( )al =my " s tah, by

Equation and by the diagonal action, we have

v(s) n
Yar = a exp(ks)ze = 1 " (Row + ). Ryaje;).

=2
v(s) v(s) v(s) o(s)
In particular, m, ™ w,m, ™ ages,..., T " ane, belong to y,¢. Hence m, " a’2 e1 belongs
to Yo ¢ since ah e; = s w — Z?:z rj aj ej and s,79,...,r, € R,. Let w' = 7, w, so that

w(s) v(s)
T " w =Ty (my ™ w) belongs to the R,-lattice y, ¢, and

v(s) n
Yar =m " (Ryw+ Ryw' + Ryayer + Y Ryaj¢;).
j=2
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Let so € R, be such that 1 = 7, r, + s sg, so that w = rpw’ + s (a/2 €1 +Z;'L=2 Ty 6]’) and

we can remove I, w in the above expression of y, . Therefore, plugging in the expressions
/e =14 n P r

of w' =7y s (ag e1 + Zj:2 T aj ej) and a;, = s'a;, we have

v(s)
Yat = To " (R s~ ( (s'ar)er + (Tpra)azes + ...+ (Fn Tne1) Gpn_1€n_1 + 5'(s

1—1 an)en)

+Ry(sar) er + Ryasea + ...+ Ryan—1en1 + Ry s' (s ay) en) :
The result follows by the action P, : e; — e;41 (for i € [1,n] modulo n) of o, on the
canonical basis, and by the definition of @’ and t’. O

Recall that s = (s,...,s) till the end of the proof of the second claim of Assertion
(5). Since we have aexp(k)uzR,)" = exp(k — ks) yot and by using the change of variable
k e Os — k — k; € Q5 in Equation , we have

1
= 0, da . 56
s = Card Ag Card Qs EA%@ LeA(ﬁU) exp(k) ya,e 40 (56)

Similarly, by Equation , we have

da. (57)

A 1
]/ =
5 Card A, Card A, Z acA(6 Oexp(10) vo.s
teAs, keA5

Let $f be a strict fundamental domain for the (free) action of 0% on A~ {0}, so that
_ n . . U(S) ) Al N
{k= (k1o ko) € Z5 2V j e [2,m], = <y < ka} < O < O
and A~ {0} = |_|j 0 o) - OF (see the picture at the beginning of this Section for an

illustration when n = 3 of this partition, after translating by —k;). By the standard Gauss
counting argument and by Assertion applied with s =5 = (s,...,s), we have

Card ($s~ 0%) 1 Card A, 1
T\ 2 VE) q 28 58s '
Card Qs © (—v(s)) Card Qs O (—v(s)) (58)
Let )
= J B d
v X a a,
®  Card A Card s t@;(é@g weA(0) exp(k) Ya,t

so that by Equation and by the left hand part of Equation , for every f e C.(Z),

we have

20 =in +o (L), (59)
By Equation and by Lemma we have

(Jn)*dexp(k) Yart 5an(exp(k) Ya,t) 5exp(an~k) on(Yart) 6exp(0n~k) Yol 47

By the changes of variable a — a’ in the integral, and k — o, - k as well as t — t’ in the
sum, we hence have

1
(O'n)*ljg = J exp ) Ya,t da.
Card A Card Qs acA(6 @
teAs, kecrn <>5
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By iteration, we therefore have

1 '« 1 f
n 2 () = Oexp(k) ya,e 40 -
n ; 5 n Card A4 Card O ben. ke%;}_—ol i3 A0y p(k) Ya,t

By Assertion , for every f e C.(Z"), we have
1 _ [flo N _ o (1Sl
n Card A; Card Qs t;ﬁ LeA(m) f(Yas) da =0 ((—v(s))n—1) =0 (_U(S)> :

Since A, = {0} u |_|J_0 o - <>5, by Equations (59) and (57)) and by the right hand part of
Equation ., the result follows. O

The aim of the following sections will be to prove that the probability measures I/é>
weak-star converge as s — 400 (with appropriate conditions the components of s that
are satisfied if they are all equal and have absolute values equal to a multiple of n) to
the G-homogeneous measure mg- on 2, renormalized to be a probability measure, see
Theorem In the particular case when s = (s, s, ..., s), this will imply Theorem by
the following lemma. We denote by cx ,, the constant defined in the statement of Theorem

Lemma 4.8 Assume that lim y? — "% Then
s—o0, v(s)enZ \5r ) lm 2 |
. CK.n -
lim : fiy pe = Mo, .
s—00, v(s) ENZ (SO'U(S) Iquv |S| )nfl te[\;ﬂys) Ut [Ty 1

Proof. For every s € R, such that v(s) € nZ, let s = (s,s,...,5) € (R,~{0}) "~ . By the
assumption of the lemma and by a finite average using the last claim of Proposition

(5) (the only point where we use the symmetry of s), we have lim v = B2
s—>007 v(s)EnZ [ T

By the ﬁrst claim of Proposition E and by Equation on the right, we have
JA W Diten, Vae- By Proposition . we have Tz, = —v(s) = log,, |s| for

S

all t € A;. Hence by the last claim of Lemma 3| (and the definition of the weak-star
convergence), we have

s—0, v(s)enZ Cn (Pu(s )logqu 8‘ )" ! teAs

Again by averaging, this time over the compact probability space (€,/R, q”q(q 11) vol)))
defined at the end of Section and using Equations and , we have

lim - Z T, = 4
s>, v(s)EnZ Cp (9011( )logq ‘S| n teA, nggle

By Equation giving the value of |mg; | and by Proposition giving the value of
Cn, we have

[mas | (n — Do — 1) T Gol=
= ) H

Cn q_ zlqv
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This is exactly the value of the constant cg , defined in the statement of Theorem
The result follows. ]

Remark. Equation says that the distribution statement in 2 analogous to the one
of Theorem [1.2]in .27 will also follow from Theorem [8.1]

5 The high entropy method for equidistribution problem

In this section, we explain how we are going to use entropy technics in homogeneous
dynamics of diagonal actions (that are currently more and more used, see for instance
[ELL LSS, [ELW] [KiLP]) in order to prove the equidistribution of our families of measures.
We start by a brief reminder of entropy theory.

Let (X', /) be a Borel probability space, ¢ : X’ — X’ a measurable map, and &, &’
finite measurable partitions of X'.

We denote by ¢~ 12 = {¢~1(B) : Be &, $—1(B) # J} the pull-back partition and
by v " ={BnB :Be P, B e Bn B # ¢} the joint partition. Using the
convention 0log, 0 = 0, the entropy of the partition & with respect to w s

Hy(2) = — 3 1/(P)log,, w/(P) € [0,00] .
Pez

The usual definition of the entropy of a partition uses the Neperian logarithm In in-
stead of log, , but the above convention will be technically easier in this paper. We
have Hy, v (2) = H,y(¢~12). We have the following concavity properties of the entropy
of a partition as a function of the measure.

Lemma 5.1 (David-Shapira [DS2, Lem 3.4]) Let (X', 1), ¢, P be as above.
(1) For all M < N in N\{0}, we have

%H% NG (6 (\/ 67P) > (\/ o' 2) ——1ogq Card 2.

(2) Let (,w) be a probability space and let x — !, be a measurable map from Q to the
space of probability measures on X' such that p' = §__o ph dw(z). Then we have
Hy(P) =2 qHu (2) dw(z). 0

If ¢ preserves the measure y, the (dynamical) entropy of ¢ with respect to p is defined
by h(¢) = supgy hy (¢, &) where the least upper bound is taken over all finite measurable
partitions & of X’ and

M—-1

ha(é,P) = lim %HM,(\/WE@). (61)

M
ot i=0

The following result says that the homogeneous measure m g is after renormalisation
the unique probability measure of maximal entropy on the space 2" for the transformation
n—1

& 0 : .
a=(" 0wl ) given by Equation (2).

Theorem 5.2 (Einsiedler-Lindenstrauss) Let v be an a-invariant probability measure
on Z. Then h,(a) < hngg (a) = n(n — 1) with equality if and only if v = 2

2| [mal”
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We will apply this theorem in Section [§| to every weak-star accumulation point v of the
measures VS as s tends appropriately to +00. Since the space 2" is not compact, we will
first need to prove that v is a probability measure (see the arguments in Section , and
then that its entropy h,(a) is equal to hL'l(a) (see Section .

[m g

Proof. Let G be the algebraic group SL,, over the local field K, and let G = SL,,(K,) be
its locally compact group of K,-points, so that I' = SL,(R,) is a lattice in G. Let

G ={geqG: llir_nooaigafi =1I,} = {(,1] Ino_l) tbe Kvnfl}

and

n—1

GT='G"={geG: lim dga ' =1Ip}= (0 ):beKk 1)

be respectively the unstable and stable horospherical groups of a in G. By [BoT!, Prop 4.11],
the groups G~ and Gt generate a normal subgroup H of G. It is well known that H = G
when n = 2. Hence H contains the copies of SLo(K,) with upper and lower unipotent sub-
groups contained in G~ and G respectively. Therefore H contains the diagonal subgroup
A of G, thus contains properly the center of G, hence is equal to G since PSL, (K,) is
simple. By [EL, Th. 7.10|, the normalized Haar measure 2 of the homogeneous space

[m o]
G/T is hence the unique measure of maximal entropy on G/I" for the left action of a.
The entropy of a with respect to the homogeneous measure of % is well-known

(see for instance [ELL §7.8]) to be the logarithm (in basis ¢, for entropy computations in
nonarchimedian local fields with residual fields of order ¢,) of the unstable Jacobian of
a. That is, with u™ the strict lower triangular linear subspace of the Lie algebra sl,(K,)
of SL,(K,), with basis the family of elementary matrices (F;;)i1<j<i<n, since we have
Ada (E;j) =m, "E;; if j =1 and Ada (E;;) = E; j otherwise, we have

ﬁﬂ["’zn(n—l). O

Jj=2

h mg (a) =log, |det(Ada) | = log,,

[m g1

6 Constructing high entropy partitions from dynamical neigh-
borhoods

In this section, using the contraction and dilation properties of the action of the diagonal
1

UO 7rv_101n71 )
G™, we give a construction of good measurable partitions in the homogeneous space 2,
that will turn out in Section [8] to be well adapted in order to obtain entropy lower bounds
of a-invariant measures. This construction is essentially due to [ELMV2, Lem. 4.5] in
dimension 2 (see [DS1, Lem. 2.9] correcting a small inaccuracy in [ELMV?2]) and to [DS2]
Lem. 3.7| for any dimension, see also [LSS| §2.3|, [KiKL, §3.3|, all these references in the

real case, and [KiLLP| §6.1] in the function fields case.

element a = ( on its unstable and stable horospherical subgroups G~ and

6.1 Dynamical neighbourhoods in SL, (K,)

We first define the dynamical neighbourhoods of the identity element I,, in SL,,(K,) that
we will consider.
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We denote by | | : 4, (K,) — [0,+00[ the ultrametric norm on .4, (K,) defined by
(%ij)1<ij<n = MaXi<ij<n | Tij |, which is, since the absolute value of K, is ultrametric, a
submultiplicative norm on the K,-algebra ., (K,).

For all £, N € Z, let

Win = {w = (wij)1<ij<n € Mn(Ky) : |w| < g, Cand Vi€ [2,n], |wi1| < gy,
—{we M(xl0,) :Vie[2,n], wiq € NGy,
B@,N = (In + W@’N) N SLn<Kv) . (62)

We also define W, = Wy = M (7t 0,) and By = Byo. For all £,{',N € Z, by the

v
ultrametric inequalities, we have
W&N + Wg/,N C Wmin((,(’),N and Wg7NWgI7N c Wg+g/7N . (63)

We also have the following decreasing properties Wy y11 © Wy n, By n+1 © By in the
parameter N and, in the parameter £,

Weiin € Wen, Beriny © B, ﬂ Wi n = {0}, ﬂ Byn = {I.}. (64)
leN leN

Since the multiplication by an element of &, preserves the absolute value on K,, for every
a€ A(0,), we have

aWyna ' =W,y and aByya'=DBy (65)

The action by conjugation of the transformation a on these dynamical balls W, y and By x
satisfy the following contraction/dilation properties: For all £,¢', N € Z, we have

Vi,je[2,n], w1, wi;ento

V4 % ) ) , W11, Wij v Yy

a WZ’N a = {w € %n(Kv) : {+(N—0n , }
Wi,1 € Ty ( ) ﬁv, wi,; € 7TU€+n£ ﬁv

c Wmin{ﬁ,ﬂ-‘rnﬂ’}, N—¢

v -
hence a B&N a c Bmin{& L4nl'}, N—¢' - (66)

The dynamical neighbourhoods Wy n and By y satisfy the following three elementary lem-
mas. The first one says that the balls By y are invariant upon taking inverses.

Lemma 6.1 Let N € N, £ € N\{0} andw e Wy n. Then (I, +w)tel,—w+ Wan. In
particular, we have (Byn)™' = By y.

Proof. By Equations and , we have w' € Wie n and lim;, 4 o w® = 0 since £ > 0.
Hence I, +w is invertible with (I,, + w) ™' = I,, —w + Y~ o (—1)*w’. By Equation and
since Wy, y is closed, we have 2;22(—1)iwi € Wy n. In particular we have the inclusion
(B, N e By n, and equality holds by taking the inverses. O

The next lemma is a version, for dynamical balls in 2" of the form B, y x centred at
any point x € 2, of the intersection property of ultrametric balls.

Lemma 6.2 For all N e N, £ € N\{0} and z,y € Z with Bynyx N Byny # &, we have
Binx=Byny.
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Proof. First notice the inclusion

Bg’NBgyN (e ((In + Wg,N)(In + Wg’N)) N SLn<KfU)
< (In +Win + Wayn) nSL,(Ky) © By (67)

Let g, h € By n be such that gr = hy. Using Lemma and the latter inclusion, we have

Bynyr=Byng "hyc Bin(Ben) 'Biny = BonBenBiny < Biny.

By symmetry, the result follows. O

The final lemma gives a quantitative covering property for any dynamical ball By y in
SL,,(K,) by smaller dynamical balls By, ¢ v .

Lemma 6.3 Let N € N and ¢,0' € N\{0} with ¢' < (. Let S < By . Then, there exist an

integer C' < (q,f/)”2 and matrices gi,...,9c € S such that

C

Sc |_| Bero N gi-
=1

Proof. We may assume that S is nonempty, otherwise C' = 0 works. As a preliminary
remark, let us prove that for all integers £, ¢’ > 0, there exist an integer C' < (qf/)"2 and
points wi, ..., wc € Wy n such that

c

Win = |_|(wi + WeyeN) - (68)
=1

Indeed, recall that Equation (8) when n = 1 gives vol, (7!t &,) = ¢, vol,(7,l0,). Let
{z; : i € I} be a set of representatives of the classes in wf0,/m ' 0,, so that we have
a partition 7,/0, = ey (@i + 7TUe+£, 0,). Furthermore, by the invariance of vol, under
translations, we have Card(I) < vol,(wt6,)/voly (' 6,) = ¢f. The same argument
replacing ¢ by £+nN proves that 7.V @, can be covered by at most q,f, pairwise disjoint
translates of the ball WUZMUF”N 0. Equation follows by applying this construction for
each matrix entries.

Now, take C' < (qf/)"2 and wi,...,wc € Wy as in Equation . We obtain a
partition

S = (In + w; + Wz+gl7N) N SLn(Kv) NnS.

—a

=1

Up to decreasing C', we may assume that the set S; = (I,, +w; + Wyyp n) N SLp(Ky) NS is
nonempty for every i € [1,C]. Let us fix an element g; € S; and let us prove that we have
(I, + w; + Wg_;_g/’]v)gi_l N SL,(Ky) © Beyp n. By Equations and , since ¢/ </
and I, € Wy n, we have

2
w;” € WynWyn c Woyn € Wypprny and Wyp NWorn © Wi v © Wegp N,

(In + wi)Wop, € (Won + Win)Warn € WonWarn € Worn € Weso N -
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By Lemma we know that 91_1 € I, — w; + Way n. We hence have

(In +wi + Wigo n) 97 © (In + wi + Wegor n) (I — w; + Wag )
Iy —wi + (In + wi)Warn + Wose n(In — w;) + Wepo NWorn
cl,+ Wer@’,N'

We obtain the inclusions S; © By v ¢; by taking the intersection with SL,,(K}), so that
S c Ulcz1 By n gi- Up to decreasing C, we may assume that this intersection is disjoint
by using Lemma [6.2] This concludes the proof. O

6.2 Dynamical partitions in 2~

We now construct measurable partitions of 2", that will be useful for entropy lower bounds
computations. We start with a systole minoration result for R,-lattices that are close
enough to the standard “cubic” R,-lattice. Recall that the map exp is defined just before
Subsection [2.6] and the systole function in Subsection [2.4]

Lemma 6.4 Let {,d € N~ {0}, k = (ki,...,kq) € Z¢ and g € My(K,) be such that
lg| < g% Then if L = (I + exp(k) g exp(—k))RE, we have sys(L) =1 — ¢, *.

v

Proof. By the equality case of the ultrametric triangular inequality and since |g| < 1,
note that |det(Iy + g)| = maxees, [[1<icqlZa + 9)ion| = 1, hence I + g belongs to
G1 and so does exp(k)(Ig + g) exp(—k). Therefore L is indeed an R,-lattice in K, and
covol(L) = covol(RZ) by Equation (10)).

By Equation , assume for a contradiction that sys(L) = min,er o) |w|| < 1— q; "
Let x = (z1,...,24) € RE~{0} be such that ||(I; + exp(k)g exp(—k))x| < 1 — ¢; "
For every ig € [1,d] such that x;, # 0, by computing the ip-th coordinate of the vector
(I3 + exp(k) g exp(—k))x, by the ultrametric triangular inequality and since |g|| < ¢,°,
we then have
kj+k

d
_ kj—k; —kj+ki
=gy > fmig + ) m’ °gig] = || — max [aj] [gij| @
= 1<j<d

.y —kj+k;
> |wio| =g, max gl go "
Noting that |x,| > 1 since 2;, € R,~{0}, and since ¢/ —1 > 0, we have |z;,|(¢f—1) = ¢ —1,
thus |z;,| < ¢f(|zi| — 1+ ¢,¢). Therefore

—k; _ —k; —k;
i qv ° < ql(Jzig] =1+ ¢, ) v © < max |z;] g™

. . . —k; —k; . . . .
Thus, there exists i; # ig such that |z;,| ¢» ° < |zi;| qv *. By iteration, and since there is
no strictly increasing sequence in the finite subset {|;| ¢;% : i € [1,d], z; # 0} of [0, +oo],

we obtain a contradiction. n
Let us fix s = (s2,...,8n) € (Ry~{0}) "' satisfying Equation (45)): There exists a

permutation o of [2,n] such that s,—1() | $5-1(3) | -+ | 85 = s5-1(,) and
v(sy) = 221121 v(s;) EnZ. (69)

The next lemma gives a cardinality estimate for the number of R,-lattices whose equidis-
tribution we want to study, that belong to a small dynamical ball of 2 .
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Lemma 6.5 For every x € 2" = G/T', every integer £ > max{0, —log, (sys(z))}, every

k = (ki,...,kn) € Ag and every N € [0, 7U(s*)7£+k1;max2<i<" ki]], we have

Card({t + Rvn—l eAg:exp(k)up T € Bon x}) < on—1 qv—f(n—l)—v(s*)(n—l)—n(n—l)N_
Proof. Fix z, ¢, k and N as in the lemma. Let g € G be such that x = gI'. For simplicity,
we fix a lift K; of A in K™ ! hence having the same cardinality [Ty pu(si) as As.

We want to evaluate the number of points t € As such that exp(k)weI' € By ngl', in
other words such that there exist v € I' and h € By y verifying h ! exp(k) = gyu_¢. Since
BZ ]1\, = By n by Lemma we have to bound from above the nonnegative quantity

Card{t € K; :3yel, gyu_y € By nyexp(k)}.

We may assume that this quantity is nonzero. Let us take t = (%’ ceey Z—Z) € K; and yeT
whose column matrices are denoted by 71, ...,7,. Recall the notation (eq,...,ey,) for the
canonical K,-basis of K*. Let us consider the constraints on the columns in the condition
gyu—_g € (I, + Wy n) exp(k), which is equivalent to the condition gyu_¢ € By n exp(k) since

det(gyu_¢ exp(—k)) = 1. We obtain the equivalent system of conditions

n
T _ _ _ _
gn =, g € m e+ (w7 Gy) x (N TR gy (70)
i=2 """
Vie[2,n], gw e m e+ (rO)" (71)

Since £ > —log,, (sys(w)), the lattice z = gR," contains at most one point in each translate
of (mf0,)". As seen in the proof of Equation (68), for every i € [2,n], since k; > 0 as
k € A, we can cover (any translate of) (m,/7%@,)" by at most ¢" pairwise disjoint
translates of (7£@,)". Hence for each fixed i € [2,n], the condition on ; € R, given in
Equation has at most ¢, solutions, and this set of solutions is independent of t.
Let us fix a solution (72,...,7,) of the system of equations . Given an element
t=(2,...,2)€ As, let us fix a solution y = (Y172 ... ) € I' of Equation with

s9? ) Sp
prescribed last n — 1 columns 72, ..., 7,. Note that since v € I' = SL,(R,), the vectors of
K, with column matrices 71, ...,7, form an R,-basis of R,'. Hence any other solution
v = (71 Y2 ... ) €T of this equation with these last n — 1 columns has a first column

74 such that there exists A1,...,\, € R, with v{ = A71 + Aoy2 + - + Apyn. Since
the determinant of n-tuples of elements of K" is multilinear and alternating, and since
dety = dety = 1, we have

A1 = det( A 171,72, - -5 Vn) = det(Y], 72, -5 Yn) = 1.
Hence Equation for the matrix 7' becomes
n
r; _ _ _ _
gn+ Y, (i 2)gn € mter + (w7 ) x (m N TR g, (72)
i=2 v

We denote by pr : K, — K,/ ! the projection onto the last n — 1 coordinates. Let
0 = diag(n 2, ..., 7). Let us multiply Equation by the scalar s, (defined above
Equation (69), so that T2* € Ry for every i € [2,n]). Let then project it to K1 as well
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as Equation ([71]). Let us then multiply them by the matrix 0 = dlag( 2., ,va”) on the
left. The condltlon gyu_t € By v exp(k) thus provides the system of condltions

n n
Z (Aise = 22 )opr(gn) € swdpr(gn) +s. [ [(r/ VR, (73)
=2 Si =2

Vie[2,n], opr(gw) € e +0(n, Mo, (74)

We want to give an upper bound on the number of elements t € K; such that there
exists Ao,..., A\, € R, satisfying this System. By Equation , since £ > 0, there exists a
matrix § € #p—1(K,) with ||g] < ¢, ¢ such that the R,-lattice L = @®a<ij<n R0 pr(gy;) in
K./ !isequal to (I,—1 +0g0 )R ! By Lemma applied with d = n — 1, we have
sys(L) = 1— ¢, “ > 3. Note that for every i € [2,n], the assumption on N of Lemma
gives the 1nequahtles —v(s*) f—nN —k; + k1 = 0. Note that s, € ﬂ”(s*)ﬁvx. Since each
solution (A s, + 2%, ... A8, — 7% € € R! of Equation corresponds to one point
of the lattice L, the assocnated number of solutions is bounded from above by

1 -1 T tenNki—k
[sys(L)”—l voly) <s* 11 b 16"U)]
< [2n—1 H vol, (ﬂ_;J(s*)+€+nN+ki—k1 m)] _ ogn—1 H qv—v(s*)—E—nN—ki—&-kl

2<i<n 2<isn
< 2n—1 q —(n—1)—v(sx)(n—1)—n(n—1)N+(n—1)k1—> " 5 k;

~ v

Combining this with the previous counting results for the columns ~s,...,y,, recalling
that > ; k; = 0 (since k € Ag < Z{}), we finally obtain, as wanted,

Card({exp(k)uel" : t € Ast N (Bew )
< gn1 g D) D) —nn DN+ Db Y b ﬁ s

=2
< gn—1 qv—f(n—l)—v(s*)(n—l)—n(n—l)N .0

Before stating the main result of Subsection [6.2] let us give some definitions. For all
¢,m € N, an (m, {)-partition of 2" is a finite measurable partition & = {Py, Py,..., Pz}
of 2 such that P; is equal to the ¢;-thin part 2<% = {z e 2 :sys(z) < ¢;™} of
2 (see Subsection and such that for every i € [2,|Z|], there exists x; € 2 with
P; ¢ Byx; with By = By defined in Equation . Note that for every (m,¢)-partition
P of 2" and every a € A(0,), since sys(ax) = sys(z) for every z € 2" and by Equation
(65), the partition a=' &2 is also an (m, £)-partition of 2.

For every N € N~ {0}, the N-th dynamical partition for a associated with a finite
measurable partition & of 2 is the finite measurable partition

N—-1
N=\/a'z. (75)
1=0
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Note that for every a € A(0,), since a commutes with a, we have a=1(2N) = (a ' 2)V
The N-th Birkhoff average for a of a Borel probability measure p on 2 is

N-1

Sni =~ zZO LT (76)

The next lemma says that the thick part of the space 2~ of special unimodular R,-
lattices may be almost entirely covered by dynamical balls By y x; that are essentially finer
than the partition 2%, with a good control of the cardinality of this cover.

Lemma 6.6 For every m € N, there exists £,, € N\{0} such that for every integer £ = £,
for every (m,)-partition &2 of Z~, for every k € 10,1[, and for every N € N~ {0}, the
" _thick part %" of X contains a measurable subset X’ = %&)H’N satisfying the
two following conditions.
(1) There exists a subset ' of PN such that ' = |J ' and such that, for every

P e P, there exists a finite subset Fp of P with cardinality at most q,* N such that
Pc Ua:GFp BZ,N—I xT.
(2) For every Borel probability measure i on %", we have u(Z') > 1—1 Sypu(Z <™.

Proof. Let m, x, N and p be as in the statement. Since the action by left translations
of G on G/T is locally free and since 2 >% " is compact, there exists £,, € Nx.{0} such
that for every z € 2 >%" | the map g — gz is injective on the dynamical ball By, —n. We
may assume that £, > n for future use. Let £ > £, and let & = {Py,..., P »} be an

(m, £)-partition of 2" so that P, = 2<% " and for every k € [2,]|2|], there exists zj € 2
such that P, ¢ Byxp. We define a function fy : 2" — [0, +o0[ counting in average the
excursions before time IV of the diagonal orbits under a into the g, ™-thin part of Z by

1 N-1 '
wa'—)N 2 ]1%<q;m<ajx)
7=0

We define 27/ = {z € 2" : fy(x) < k}. By Markov’s inequality applied to the nonnegative
random variable fx, we have

L= () = pl{we 2 fula) > 1)) < fdeu—Ef oo (@02) da(a)

1 N-1

i 1
T kN Z L{ 1, om d(esp) = ESN,UI(H%.<q;m).
j=0

Hence the set 2" satisfies Assertion .
In order to prove Assertion , first notice that fy can be described on the partition

PN as follows. For all P = ﬂj_ol a*ijj e 2N where ky,...,ky_1 € [1,]|2]], since

Py = 2<% we have, for all x € P,

f(z) = % Card{j e [0, N — 1] : k; = 1}. (77)

In particular, fy is constant on every P € Y. The definition of 2" then implies that
there exists a subset &’ of the partition 2% such that 27 = J 2.
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Now let P € &, so that we have fn|p < £ < 1. By the definition of the partition
2N and since & is an (m,{)-partition of 27, for every j € [0, N — 1], we have either
WP c 220" or /P c 2<% Theset {je[0,N—1]:a’P c 22"} is nonempty,
since otherwise we would have a/P ¢ 2<% for every j € [0, N — 1], hence fyp =1,
a contradiction. Let jo € [0, N — 1] be the minimum of this nonempty subset of N. By
the definition of the partition 2V and since & is an (m, £)-partition of .2, there exists
ko € [2,|2|] such that a’° P = Py, = Byxy,. This inclusion a’° P = By xy, is the starting
point in order to prove Assertion by using iterations of Lemma and of Equation
. We define, for every j € [0, N — 1],

Vi ={ie[0,j] : a'P c 2=<%"},

and we denote by |Vj| its cardinality.
Let C' = qU"2 be the constant satisfying Lemma for ¢ = 1 (allowing multiplicities),
so that C" = q,U"3 is the constant satisfying Lemma for ¢/ = n.

Claim. For every j € [0,N — 1] such that |Vj| # j + 1, there exist R,-lattices
Yi,gs- - Yomivyl 5 € P such that

C”\Vj\
Pc B&j Yi,j- (78)

i=1

We have [Viy_1| < kN < N (hence C™V~=1l < ¢7°5N) gince INip = WNiN‘l‘ by Equation
and since P < 2" so that In|p < k. Therefore the case j = N — 1 of this claim
implies Assertion .

Proof of the claim. We proceed by induction on j € [0, N — 1]. By definition, we have
Jjo = min{j € [0, N —1] : |V}| # j + 1}, hence we begin the induction at the step jo, the
previous cases being empty. If jo = 0, we have P < By xy, and by Lemma applied
with V = 0, we can assume that xy, € P, which proves the Claim at the jo-th step (since
then |Vp| = 0 or equivalently C™Vol = 1). If jy > 1, then we apply njo times Lemma
with N = 0, ¢ = 1 and S successively equal to By, Bry1, Beto, ..., Brinj,—1. This gives
the existence of ¢1,..., goni, € G such that B, Ug’:ljo Byynj, 9i- Hence by the inclusion
aoP < By Tk, we have aop UlC:nIJO By ynjy 9iTk,- Up to allowing multiplicities, we may
assume that for every i e [1,C™°], the intersection (a’°P) N (Byinj, 9i%k,) is nonempty,
hence contains an element ajoyi, jo with y; ;o € P. By Lemma and since I, € By,
we have Byinj, iTky = Brinj, @°yi, jo. Therefore a’o P UZ{O Byinj, @°y; j,. Hence by
Equation applied with N = 0, ¢/ = —jy and ¢ replaced by ¢ + njy, we have

ano ano
Pc () a7 Brinjo ®yijo = | Bejo iro-
i=1 i=1

Since |Vj,| = jo, this proves the jo-th step of the Claim. If jo = N — 1, there is nothing
more to be proved, hence we assume that jo < N — 2.
Now let j € [jo, N — 2] and assume that the j-th step of the Claim is satisfied, so that

C"\Vj\
Pc Uizl Bf,j Yi,j where Yi,55--- ’nd‘VJ",j e P.
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e First assume that a/T1P < 2>%" or equivalently that \Vis1| = |Vj]. Let us fix
an element ¢ € [[I,C"WJ"]] and let us prove that By jq1yi;j 0 P = By ; 0 P.
This will imply the (j + 1)-th step of the Claim by setting v; j+1 = vi,;. The
inclusion By j1yi,; NP < By jy; j 0 P is clear by the inclusion just above Equation
(64). For the converse one, let g€ By ; be such that gy, ; € P. Since we have
@t P c 229" and since & is an (m, £)-partition of 2, there exists k € [2,|Z[]
such that a/ 1P < P, < Byay. Let us define ¥ = o/Tly; ; and § = o/Tlg a0+,
Since y;, ; € P, we have

N ) . —m
T = a]HyM € Cl]+1P c 27 A (Bg .Tk)

Similarly, since gy; ; € P, we have §% = a’™!(gyx ;) € Brag. Therefore we have
g e By(By) 1'% < By% by Lemmaand Equation (both with N = 0 therein).
By Equations and , we have § = a/tlga Ut ¢ By_1 < By_y, < By, .
We have B, ¢ By, < By, _y since £ > {,, > {,, — n, again by Equation . Since
G¥ € ByT, since ¥ € 2% " and by the definition of ¢,,, we have § € B,. Therefore,
by Equation again, we finally obtain

—(+) 5 g+l @ =G+ g, it
g=a Ugat e aUtVB o/ A By j & By_n(jsn,j+1 0 Bej < Bujsa

so that gyx, ; € By, j+1 Yk, j N P, thus proving the wanted converse inclusion.

o Now assume that a/*1'P = 2°<%" or equivalently that |V; 1| = |[V;| + 1. The proof
of the (j + 1)-th step of the Claim is then straightforward by applying Lemma
with ¢/ = n (so that £ > £, >n > {') and N = j to S = By in order to cover each
By jyi,j 0 P forie[l, C™Vil] by C™ subsets of 2 of the form

Biyn, yz‘(’z,)j+1 NP < By yi(’z,)j—i-l np,

where i’ € [1,C™"] and yzg)jﬂ € 2, thus covering P by c™Vilc™ = ¢™Vit1l subsets

By j+1 yi(f;)jH_ As in the jo-th step, by Lemma we may assume that yg,"’)jﬂ e P.
L]

7 Non-escape of mass in the thin part

In this section, according to the first step of the program announced after the statement
of Theorem [5.2] we provide the material that will be used in Section [§ in order to prove
that every weak-star accumulation point p of the measures Ijé> as s tends appropriately to
+00 is a probability measure on 2.

For every fixed J € .#;, we first estimate the number of nonzero ideals that are
coprime to J and whose norm is comparatively small with respect to the one of J. Recall
(see Subsection that @, (J) is the number of prime factors of J. For every ¢ > 0, let

Ejpim(e) ={I €7} :(I,J) =1, NI) < eN(J)}.
Lemma 7.1 There exists c; = 0 such that for all J € Z} and e € ¢ n]0,1[, we have

¢ hK q2—g (QU - 1)
(¢—1)2q
42

Card(EJ, prim(e)) —

o) | < e 2™,



Proof. Let cx = % > 0. Let Ej(e) = {I € £} : N(I) < eN(J)}. By astandard
sieving argument, with p,, the Mobius function defined in Subsection 2.1 by Lemma [2.]

since € € ¢Z and N(I') € ¢" for every I' € .Z;, and by Equation , we have

Card(Ejprim(€)) = ) po(l) Card(Ey1(e))

Ieg I|J
= D D) (ex eN(UJITH) +0(1))
Ies; I|J
fio (1)
=ecg N(J) Z +O< Z |MU(I)|)
N(I)
Iesf 1|J Iesf 1|J
= e cx @uo(J) + 027 ),
This proves the result. O

Lemma 7.2 Assume that R, is principal. There exists a constant co = 1 such that for all
s=(82,...,8) € (R~{0)"t and k = (k1,...,kn) € Ag with
|sil

Vie 2’ 7 2wv($i) k;—k1 <
ief2n] e max{1,Inln |s;|}’

(79)
and for every e € ¢“n]0,1[, we have

1
(Godi 2 Fepion ) (2= <cre™.
S teAs

Proof. Let s, k, € be fixed as in the statement. Let t = ({2,...,7*) mod R that
varies in Ag. Recall that x4 = ugR,". By the definition in Subsection @ of the e-thin part
2S¢ of 27, we have exp(k) ¢y € 2S¢ if and only if there exists a nonzero element A € R
such that | exp(k)us A| < €, or equivalently by an easy computation if and only if the
following joint system of inequalities with unknown (A1, Ag,...,A,) in R has a nonzero

solution
M| < eg™ (80)
Vie[2,n], ’A1Q+Ai < eqrhi. (81)
Si

Note that if (A1,...,A,) € R is a nonzero solution to the joint system and ,
then A\ # 0. Indeed, by Equation , the only element of R, contained in the closed ball
B(0,q, ") of center 0 and radius ¢, ! is 0. Hence if \; = 0, then for every i € [2,n], since
e <1landk; >0 as ke Ag, we have \; € R, n B(0,¢,%¢) = {0}, which contradicts the
fact that (A,...,A,) # 0.

By the ultrametric triangle inequality, if A, \" are distinct elements of R,,, then the closed
balls B()\, g, ') and B()\,¢q, ') are disjoint. Again by the ultrametric triangle inequality,
for every p = q, 7!, the closed ball B(0, p) contains U)\eRmB(O’p) B(\, ¢, 1), and this union
is a disjoint union. Recall that vol,(B(0,q,!)) = ¢,! by the normalisation of the Haar
measure vol, of K,. Separating the cases when eqv_kl < g, ! or the contrary, and since
e € ¢Z, the number of nonzero solutions \; of Equation hence satisfies

vol,(B(0,eq, ™)) ki1

Card((R,~{0}) n B(O7€qv—k1)) < V01U<B(07qv_1)) =e€q, ) (82)
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Let us now fix \; € (R,~{0}) n B(0,q; %) and i € [2,n]. In this proof, the O( )
functions do not depend on Ay, s, k, €. Let

Hi(\) = Card{g mod Ry : (r;,8;) =1, 3\ € Ry, !)\ + i | €q, }

Claim 1 : We have (A1) = O (eq, ¥ pu(s:)).

By the discussion above Equations , , by Equation and this claim, since
ki = =X 5 ki as k € Ag < Z{, and by Equation on the left, this will imply the
inequality

Card{t € As : exp(k)zt € 2S¢} < Z 1_[,/%()\1)

AL E(Ry~{0})nB(0, gy "Te) =2

=0 (e g, ! ﬁ eq, ™ @v(«%‘))

i=2
=0 (e” Card AS) .
This estimate will prove Lemma [7.2]

Proof of Claim 1. Let J; = s; R, € IF Slnce R, is ass11~med to be principal, let d; € R,
be such that MR, + J; = d;R,. Let )\1 d , 5 = Z—i and J; = 5;R, € .Z,;". By dividing by

d; and since the fibers of the canonical morphism (R,/J;)* — (Ry/ jz) X have order £u(/2)

@v(Jiy
we have
Ai(M1) = Card {r; + J; € (Ry/J;)* : 3N € Ry, | Aimi + Ni si] < eqy ™ |sil}
v Jz T g ~ Y
_? EJ; C I’d{TZ+J € (Ry/J;)* : 3\ € Ry, |)\1ri+)\i si| < e€gq, ki |sl\}
Puldi

Since Xl and §; are coprime, let Xf € R, be such that A\; Xf —1le JZ The multiplication
by A] is a bijective map from (R,/J;)* to itself. Hence by Lemma ﬂ, we have

o(Ji)

Hi(A\1) = Card {r; + J; € (Ry/Ji)* : 3N € Ry, |1i + N 51| < eq ¥ |5}
‘Pv(Jz)
< ‘p”({’) Card{I e .7, : (I, ;) = 1, N(I) < eq, " N(Ji)}
‘Pv(Jz)
©u(Ji) i 2 (Ji)

Y O (a, ™ @u() +27)) = O (e, ™ ou(7) +

Claim 2 : We have 2;12%) = O(eq, ).

With the previous formula, this implies Claim 1, hence concludes Lemma [7.2]
Proof of Claim 2. By Lemma since wv(ji) < wy(J;) as J; divides J;, since
N(J;) < N(J;) = N(J;) N(M R, + J;), and since N(\ R, + J;) < N(AMR,) = |\1] < eqy* by
Equation ., we have

(pv(']i)) .

0

wo(J3)

N

©

Wv( ) ~ ~ . ~
2T 0 (2 MY g (qemn M) i g )
o) N(J;) N(J;)
InlnN(J;)
_ —k1 wv(J) 7
O (eq;*2 N(J,) )
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Claim 2 hence follows by the technical Assumption of Lemma OO0
Let s = (s2,...,8n) € (Ry~{0})"! satisfying Equation (45]), so that there exists a

permutation o of [2,n] with s,-1(9) | S5-1(3) - - - | 8x = S5-1() and v(sx) € nZ. Let

v(Sx) w

w=(1-n,1,...,1) € Zy, sothat kg=—

and a = exp(w).

For all k € Qs and N € N\{0}, we denote by [k, ]| (see picture below) the discrete interval
in Zg defined by
[k, N]={k+{w: ¢ €e[0,N—1]}.

By the convexity of Os, we have [k, N| < {s if and only if k + (N — 1)w € {s. Let

1
= — 0, / 83
Vs [k,N] N Card A, . e/ez[[%) N exp(k+0'w)xt » ( )

which is a probability measure on 2.

O S
.

.- — — e — — 0 — — @ — — —& — —
n

The next corollary proves the non-escape of mass at infinity property for averages of mea-
sures parametrized by the discrete interval [k, N]. Let us recall the positive constant ¢,
introduced in Equation (7). For every s = (so,...,5,) € (R,~{0})"~! satisfying Equation

, let

1 2@ (1) max{1,Inln|s;
K (s) = E( —v(sx) + ﬁiﬁfﬂ log,, |s§| |sil} ) . (84)
Remark 7.3 If there ezists co = 0 such that maxe[a ) v(8:) —v(8x) < com,
then k/(s) < L(cw, +co + l)m In particular, k'(s) is negligible with respect

to —v(sx) as —v(sx) — +00.
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Proof. Since |s;| = qv_v(si), since % < In2 < Ingq, and by Equation , since the maps
fi:te— m and fo : t — 2In(max{l,Int}) on [0,+00[ are nondecreasing with
f2 < f1, and by the assumption of the remark, we have

n x'(s) = max <logqv 9u(si) 4 log,, (max{1,In(—v(s;))}) + v(s;) — v(s*)>

i€[2,n]
_U<Si> —U(S; vVIS;) — UIS
< s (co o ey 2 n(max{L In(—v(si)}) + o) — v(se))
< (Cw, +1) —uls) + ¢ —lsy)

max{1,In(—v(s«))} max{1, In(—v(ss))}’

which proves the result. ]

Corollary 7.4 Assume that R, is principal. For all s € (R,~{0})"~! satisfying Equation
[@5), k€ Os, N € N\ {0} and € € ¢Zn]0,1[ such that

K'(s)

k+(N—-1)weds and N = ;
Cco €N

(85)

we have
Ve N (2759) < 2¢0 €™

Proof. Let s = (s2,...,8,), k= (k1,...,kn), N, € be fixed as in the statement. Let ¢’ be
an integer that will vary in [0, N — 1]. First assume that ¢/ < N — 1 — £/(s). Note that
K'(s) = L log,, (27(5%) max{1,Inln|s,|}) = 0.

By the definition of Qs, since k + (N — 1)w € Qg by the left hand side of Assumption
(85), we have maxoc;<n(k + (N — 1)w); < (k + (N — 1)w); — v(s,). Hence for every
i € [2,n], since £/ < N — 1 — £/(s) and by the definition of /(s), we have

(k+'w); = (k+ 'w)y = (k; + £) = (k1 + (1 = n)t)
=k+(N-1w);— (k+(N—-1)w) +n(l' =N +1)

|s:]

< —w(sy) —nk'(s) <lo .

v(sx) —n K (S) 8qv 2@ (s1) max{1,Inln |s;|}
Therefore the element k + #'w of {4 satisfies the technical Assumption of Lemma
and we have

1
(a2 Dot ) (%) < €.
S teAs

There are at most N (resp. £/(s)) integral elements in the real interval [0, N — 1 — £/(s)]
(resp. [N — 1 — k/(s), N — 1]). Therefore separating, in Equation that defines the
measure Vg ], the summation over ¢ € [0, N — 1] in firstly ¢ € [0, N — 1 — #'(s)] and
secondly ¢ € |N — 1 — k/(s), N — 1], we have

1 K (s
Vs,[k,N](%ge) < N(N C2 En) + ]if) .
By the right hand side of Assumption (85)), this proves Corollary OJ
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8 Optimal entropy lower bound

In this final section, we prove the main equidistribution result of this paper, in the space
2 = SL,(K,)/SL,(R,) of special unimodular R,-lattices in K" towards its homoge-
neous measure mg-, of the measures supported on large subsets of divergent orbits of type
(1,52,...,8,) (up to permutation) as s = (s2,...,8,) € (Ry~{0})""! tends to infinity
(for the Fréchet filter or equivalently when minepa ,j v(si) tends to —o0). We will actually
require some uniform convergence to —o0 of the valuations of the components so, ..., s, of
s, and precisely

Jcg = 0, i) — i) = i) — < . (86
@ ity 100 o) = g vl =) < @y
Note that this is for instance satisfied if s, = ... = s, as in Theorem[I.2)in the Introduction,

and that this assumption is optimal by Remark [7.3]

Theorem 8.1 Assume that R, is principal. Ass e (R,~{0})"! satisfying Equations (45)
and tends to infinity, the measures v9 weak-star converge to % on X .

Proof. Let us fix a weak-star accumulation point v of the measures 10 as s € (R,~{0})"*
satisfying Equations and tends to infinity. We will prove that v is a probability
measure using the work of Section|7|and that v = ‘zé H using the entropy method described
in Section |5, which will conclude using the BanacL—Alaoglu theorem.

Lemma 8.2 The measure v is a-itnvariant.

Proof. Recall that w = (1 —n,1,...,1) € Zj. Using the definitions and , since
a = exp(w) commutes with A(&,), we have

1
o _

vy = Og exn(ktw) 2. A -

*Ys = Gard A, Card O teg;(e% LeA(m) plctw)

In order to compare VSO and a*l/g, let us give an upper estimate on the cardinality of the
symmetric difference between ¢g and Og + w.

By construction, the boundary of g is contained in the hyperplanes with equations k; = 0
and kj = ki — v(sy) for i,j € [2,n]. Hence Os\(Os + W) = Ucpnp{k € Os : 0 < ki < 1}

47



(see the above picture). By Proposition in dimension n — 1, for every i € [2,n], we
have Card{k € Os : k; = 0} = O((—v(s4))"~2). Therefore

Card(Os~ (0s + W) = O((—v(s4))"?).

Similarly, we have Qs (0s — W) = Uie[[Q,n]]{k € Qs ki —v(se) —n < kb < k1 —v(sy)}
(see the above picture) and Card((Qs + w)\0s) = Card(Os\(Os — w)) = O((—v(s«))"2).
Therefore by Proposition E . the cardinality of the symmetric difference between Qg
and Qs + w is negligible with respect to the cardinality of Qs.

This implies the weak-star convergence vg — a4 Vs A Dass —> 4o Finally, since
the transformation a : 2~ — 2" is a homeomorphism (in particular, it is continuous and
proper), we have a,v = v. L]

Let us recall the notation E € N~ {0} introduced in Lemma [6.6] for every m € N and
'(s) introduced in Equation (8 for every s € (R,~{0})"~! satisfying Equation (45]). Let
us recall the notation 2V = \/Z _0 a~' 2 introduced in Equation (75)) for every N € N\{O}
and every finite measurable partition &2 of Z .

Lemma 8.3 Assume that R, is principal. For everyn € ]0,1[, there exists m = m(n) € N
such that with ¢ = max{l,,,m + 1}, for every (m,{)-partition &2 of Z and for every
M € N~A{0}, there exists Ng = No(n, 2, M) € N\{0} such that for every s € (R,~{0})" !
satisfying FEquations and , for every k = (k1,...,ky) € Os and for every N € N
satisfying the three assumptions

k+ (N -1)we Qsg,

4(1 —n) —v(sx) K'(s)
fax {NO’ n (n+ 1)(eo + 1)max{l, In(—v(s«))} ¢ qu"} sN
and N < —’U(S*) — 4+ k- maxogi<n Ki ’
n
we have
1

= Hyy (P 2 (L= ) = 1) = .

Proof. For every n € ]0,1[, let kK = n(n;gl)" €]0,1[, let m = [ — %logqv 772;0(;;,1)] which

belongs to N since n? < 1 < 2co, and let € = ¢;™ € ¢2n]0,1[. Let £, 22, M be as in the
statement. With c,, the constant introduced in Equation @, let

2
Ny = max{ ; log,, Card Z, (nn)(n —1)(n+1~-log,, c%)} e N~ {0}

and let N € N with N > Ny. Let s,k be as in the statement. Let

1
S 6eX
Ysk = Card A, tZA] p(k

Note that by the definition of vg [y n in Equation (83), since a = exp(w) and by the
definition in Equation of the N-th Birkhoff average of measures for a, we have

N—

1

=N Z )sVsk = SNVsk -
=0
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By Lemma applied with ¢/ = vgx and ¢ = a since N > No > M > 1, we have

1 1
MHVS,[k,N]( N

Since N > Ny, we have &£ log,, Card & < 1.
As in Lemma (@), let 27" = 2% .. n be a measurable subset of 220" let P’ be
a subset of the partition 2N and for every P € &', let Fp be a finite subset of P with
cardinality at most g’ wN Un(nfl)nN such that 27 =J 2 and P c |
Since Fp ¢ P < 2" < 22" for every & € Fp, we have sys(z) > ¢;™. Hence

max{0, —log, (sys(z))} < m < ¢ by the definition of /. Therefore by the assumptions on
s and k, by Lemma and by Equation on the left, for every x € Fip, we have

My > —H,  (?V) - % log,, Card 2. (87)

werp Ben-12.

1
Vsx(Bry_1 1) = CaT(A) Card({t + RJ“I € As s exp(k) z¢ € By y_1 az})
n—1
2 —f(n—1)~v(s4) (n—1)—n(n—1)(N-1)

S = ———~ ¢
H?:Q ou(si) "

Thus, since &' < 2N since we have P < User
P
every P e &' and since 2"/ = | |p. 5 P, we have

Hypo(#Y) = = S vasc(P)logy, vex(P) = — 3 wes(P) log,, vax(P)
PepN Pez!

n(n 1)nN

By n_1x and Card Fp < for

217,—1

> — Vs k P)log ) qvn(n 1)nN _ qén Hl(n—1)—v(sx)(n—1)—n(n—1)N
P;’/?’ (P) ¢ ( [ iz Pu(si) )

In2
In g,

(n—1)—(n—0)(n—1)+ i log,, ‘P”S(*Si)) . (88)

= v (27) ((1 —pn(n—1)N — ~
=2

By Equation @, by computations similar to the ones done in the proof of Remark and
by the assumptions on s in the statement of Lemma we have

n

2 SO’U Sz Zl og c‘Pv ’874’
> ® max{1,In(—v(s;))} |s«]

n

= Z log,, (max{1,In(—v(s;))}) + log,, cp, — v(8i) + v(sx)

—v(84)

max{1, ln(—v(s*))}>

> —(n— 1)(logqv(max{l,ln(—v(s*))}) —log,, ¢p, + o

—v(S4)
max{1, In(—v(ss))} logg, %”)

> —(n—l)((co—l—l)

=

N+ (n—1)log,, cyp, -

4(1— n)
Since N = Ny, we have
In2
. m—1)+n—-~0)Mn-1)—(n— 1)logqv Co
< (n—1)(n+1-log, cp,) < — 1 N

4(1—n)
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Therefore Equation becomes

1 n
—H, (2N) > 5&”’(1— —1—7>.
N s,k( ) % ;k< ) ( T’)n(n ) 2(1 _ ,’7)
We have N > : “'Ei)m = :;(:2 by the assumptions on s and the definition of € at the

beginning of this pr(Q)g%. By Lemma applied with p = vy, by Corollary proving
that there is no escape of mass (the only place in this proof that requires the principal
assumption on R,) whose assumptions (85)) are satisfied, and by the definitions of £ and
m = m(n) at the beginning of this proof, we have

1 —m 2c9 €™ 2¢o q; ™03
2N =1-= L= ) =1 - =l-—— >1-1.
Z/S,k( ) HVS,[k,N]( ) P n(n_ 1)77 n
Hence Lemma follows using Equation . ]
End of the proof of Theorem 8.1 Let us fix a sequence (s));cy of elements of
(R,~{0})"~! satisfying Equations (45]) and and tending to infinity such that we have
v= lim vgy.
J—+00

Let us fix n > 0, that will tend to 0 at the very end of the proof. Let m = m(n),
¢ = max{ly,,,m + 1}, & a (m,{)-partition of 2", M € Nx\{0} and Ny = Ny(n, &, M) be
as in Lemma Since hy(a) is the upper bound of h,(a, 2') where &’ varies over all
finite measurable partitions of 2", and by Equation applied with ¢/ = v and ¢ = q, if
M is large enough, we have

1
hy(a) = hy(a, P) = 7 H,(2M) —q.

For all s € (R,~{0})"~! satisfying Equations and (86), and k = (k1,...,kn) € Os,
let N = max{¢' € N\{0} : k+ (¢’ —=1)w € Qs}. For every ¢ € N, the point k + ¢"w belongs
to Qs if and only if, for every i € [2,n], we have 0 < k; +¢” < k1 + (1 —n)¢” — v(sx). Hence

1
Ne—1= [f . ke — ki J
k ~(—v(se) + 2 Jnax. 1)
Let
6+<>S = {k= (kl,...,kn) GOS : min k‘z = 0}
i€[2,n]

be the upper part of the boundary of g (see the picture above Remark . Since Qg is
the disjoint union of the maximal vertical (directed by w) segments contained in it, we
have Qs = | |ico+o {k + ¢'w : £ € [0, N — 1]}, Let

1

—(—v(ss) — €+ k1 — max kl)J +1.

N = [
S ie[2,n]

Note that 0 < N — N, < [£] is uniformly bounded for 7 fixed and that Ny, satisfies
the upper bound assumption on N in Lemma [8:3] With ¢, the constant introduced in

Equation (7), let ¢, = max {@(n +1)(eo + 1), =150 and

neg gy, ™M™

—v(Sx)

max{1l, In(—v(s4))} }} ’

Note that for every k € Qg, by Remark whose assumption holds true since s verifies
Equation , the number NV} satisfies the lower bound assumption on N in Lemma
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]{73 =0

Let 0% = |_lkeq, {k+¢'w : £ € [0, Ny —1], which is obtained from O by removing a bounded
size neighborhood of the lower part of the boundary of s and a comparatively small part
of the vertical side of {5 (see the above picture). More precisely, O = Os~ (04 U OY) where
O = |yeq, {k +¢'w : £/ € [N}, Ny, — 1], whose cardinality is O((—v(s«))""?) as seen in
the proof of Lemma , and O = | lyeoto, o, {k+€w : £/ € [0, Ny —1]. Since we have
Ny =0 (max{1,_111)1((sj<3(s*))}) when k € 07 Qg €, and since Card (01 0s) = O((—v(s4))"?)
as seen in the proof of Lemma , the cardinality of Q% is O (ma)(({_fj(li”z)) (S*))}) Modifying
Equation , let

o _ 1

v, Og exn(k) 2. A -
s Card Ag Card <>,s teAleceo’ LeA(ﬁv) p(k) z¢

Since the cardinalities of Q% and (2 are negligible compared to the one of ¢g (given by

Proposition . we have hm 1/<>( ) = ]Er}rnoo VO(]) = v. In particular, for every j € N
large enough, we have
1
ho(a) = — H o (2M) -2
)= 37 B (2 =20,

Let ws be the probability measure on the finite (discrete) set Qg defined by ws(k) = Ca]r\; o

for every k € Q. Then by Equation , we have

1/0/ _ j J a*ys,[k,N]/(] dws (k) da .
aeA(Oy) JkeQs

By Lemma applied with (Q,w) = (A(0,) x Qs,da ® ws), since a~1 P is also an
(m, £)-partition for every a € A(0,), and by Lemma applied with N = N] and inte-
grated over (a,k) € A(0),) x g for the probability measure da ® ws, we have

1 1
—H (2™ > — Hg,, M > (1—n)? —1)—n.
@2 [ He gy (P s da > () (1)

Thus hy(a) = (1 —n)? n(n — 1) — 3n. By letting n — 0, we have h,(a) > n(n — 1).
By the Einsiedler—Lindenstrauss Theorem we hence have h,(a) = n(n — 1) and then
as wanted at the beginning of the proof of Theorem O

o1

Hm P



The following result follows by averaging Theorem over the permutations of [2,n]
2 (q+1)

| vol)) as in the proof of Lemma

and over the compact probability space (0,/R,,
43

Corollary 8.4 Assume that R, is principal. For every s in the set S, (endowed with the
Fréchet filter) of elements (sa,...8,) € (Ry~{0}))" "1 with so | 53| ... | sp, v(sp) € nZ and

v(s2) —v(sy) < %, let us define

! !
o . T2y ...y Tn, Sy, ..., 8, € Ry,
/ n -1 . /
A= (?7) mod R : Vje[2.n], rjRy + iRy = Ry,
/ /
2 n {shy...,sh} ={s2,...,8n}.

For the weak-star convergence of Radon measures on the locally compact space 271, we have

1 . my:
Z Mut R = : D

im _— .
S€Sh, |sn|—+00 Card A,S te A, Hmu@/l “
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