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Abstract

Given a local field pK with positive characteristic, we study the dynamics of the
diagonal subgroup of the linear group GLnp pKq on homogeneous spaces of discrete
lattices in pK n. We first give a function field version of results by Margulis and
Tomanov-Weiss, characterizing the divergent diagonal orbits. When n “ 2, we relate
the divergent diagonal orbits with the divergent orbits of the geodesic flow in the
modular quotient of the Bruhat-Tits tree of PGL2p pKq. Using the (high) entropy
method by Einsiedler-Lindentraus et al, we then give a function field version of a
result of David-Shapira on the equidistribution of a natural family of these divergent
diagonal orbits, with height given by a new notion of discriminant of the orbits. 1

1 Introduction

Equidistribution problems of periodic orbits have been widely studied in many different
settings. In hyperbolic dynamical systems, in particular for closed orbits of geodesic flows
in negative curvature, see for instance [Mar, Bow] and many others, including [PauPS,
§9.3] (see references therein). In homogeneous dynamics for diagonalisable group actions
(sometimes in an arithmetic framework), see for instance [ELMV1] and many others, in-
cluding [DaL] (see references therein). See also [Sha, SY, KePS] (this last one also over
function fields) for possible chaotic behaviors of weak-star limits of homogeneous measures
on periodic orbits, including surprising loss of mass phenomena.

Much less studied has been the problem of equidistribution of divergent orbits, as
they require noncompact phase spaces and a specific study of equidistribution of (locally
finite) infinite measures. See [PaPS] for geodesic flows in variable curvature, as well as
[DS1, DS2] in homogeneous dynamics. Considering homogeneous dynamics over various
local field is important and fruitful. The first purpose of this paper is to extend to local
fields in positive characteristic works of Margulis, Tomanov-Weiss [TW] and Tomanov
[Tom1] on the characterisation of divergent orbits. The second purpose is to extend David-
Shapira [DS1, DS2] results on their equidistribution (with the challenges required for such
an extension). The study of divergent orbits in homogeneous dynamics, through the Dani
correspondence, has strong ties with Diophantine approximation problem, see for instance
[KW, CG, KaKLM, DFSU, AK, BKL], these last two references also over function fields.

1Keywords: Equidistribution, divergent orbits, diagonal actions, positive characteristic, function
fields. AMS codes: 22F30, 11N45, 20G30, 14G17, 28C10, 11J70, 11P21.
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Throughout this paper, referring to [Gos, Ros2] and Subsection 2.1 for definitions and
complements, we fix a function field K of genus g over a finite field Fq of order q, a valuation
v of K and a uniformiser πv of v. We denote by Kv the completion of K for v, by Ov its
valuation ring, by qv the order of its residual field, by | ¨ | “ q

´vp ¨ q
v its (normalized) absolute

value, by Rv the affine function ring associated with v, by ζv the Dedekind zeta function
of Rv, and by φv the Euler function of Rv.

We fix n P N∖t0, 1u. The unimodular group GL1
npKvq “ tg P GLnpKvq : | det g| “ 1u is

endowed with the Haar measure giving mass 1 to the maximal compact subgroup GLnpOvq.
We denote by X1 the GL1

npKvq-homogeneous space of Rv-lattices in K n
v with normalized

covolume 1 (identified with GL1
npKvq{GLnpRvq when pointed at the standard Rv-lattice

R n
v ). We endow X1 with the induced GL1

npKvq-invariant measure, that we denote by mX1

and which is finite.
We denote by A1 the diagonal subgroup of GL1

npKvq, and we normalize its Haar measure
to give mass 1 to its maximal compact subgroup A1 X GLnpOvq. The diagonal orbit A1x
of an element x P X1 is said to be divergent if the orbital map a ÞÑ ax from A1 to X1

is proper. The homogeneous measure on A1x, that we denote by µx, is then the (locally
finite) pushforward measure by this orbital map of the Haar measure of A1.

The first main result of this paper (see Corollary 3.4 for a more general result and
Theorem 3.1 for the analog result for the projective linear group PGLnpKvq ) is an algebraic
characterisation of the divergent orbits, saying that they are the “rational” ones, that is,
they come from a rational point (in GL1

npKq) of GL1
npKvq, up to the action of an element

of A1.

Theorem 1.1 Let x P X1. The diagonal orbit A1x is divergent if and only if there exists
g P A1GL1

npKq such that x “ g Rn
v .

This result has a long history. In the real field case with n “ 2, an orbit of the diagonal
subgroup of PSL2pRq on PSL2pRq{PSL2pZq is well known to be divergent if and only if
it corresponds to a modular group orbit of a geodesic line in the upper halfspace model
H2

R of the real hyperbolic plane both of whose endpoints are rational points (that is, are
in P1pQq) of the circle at infinity P1pRq of H2

R. In the function field case with n “ 2, the
corresponding result is also well known: The quotient of the Bruhat-Tits tree of PGL2pKvq

by PGL2pRvq replaces the quotient of the real hyperbolic plane by PSL2pZq, and the set
of rational points at infinity is P1pKq in P1pKvq (see for instance [Ser2] and Section 4.3).
The real field case for any integer n is due to Margulis (see [TW, Appendix]). It has been
extended to all reductive algebraic groups over Q in [TW, Theo. 1.1], and to the S-adic
case over number fields in [Tom2]. The case of divergent orbits of proper subgroups of the
full maximal Q-torus subgroup has been studied by [Tam], with surprising differences.

For every k P N∖t0u, we identify each element of K k
v with the column matrix of its

coordinates in the canonical basis of K k
v . For every element t P K n´1

v , we define

ut “

ˆ

1 0
t In´1

˙

P SLnpKvq . (1)

Note that if t P Kn´1, then utR
n
v is an Rv-lattice with normalized covolume 1 whose

diagonal orbit is divergent by Theorem 1.1.
The second main result of this paper (see Corollary 8.4 for a more general result) is

the following equidistribution result in X1 for natural families of divergent diagonal orbits
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in X1. We emphazise the fact that the measures that equidistribute are infinite measures.
But for the weak-star convergence, sequences of locally finite infinite measures may indeed
converge to a finite measure. Such is not the case for the narrow convergence.

Theorem 1.2 Let cK,n “
pn´1q!

śn´1
i“1 ζvp´iq

qv pq´1q
śn´1

i“2 pq i
v ´1q

. For every nonzero s P Rv, let us define

Λpsq “ tp r2s , . . . ,
rn
s q : r2, . . . , rn P Rv, @j P t2, . . . , nu, rjRv ` sRv “ Rvu mod R n´1

v .
Assume that Rv is principal. For the weak-star convergence of Radon measures on the
locally compact space X1, we have

lim
|s|Ñ`8, |s|Pq nZ

v

cK,n

pφvpsq logqv |s| qn´1

ÿ

tPΛpsq

µutR n
v

“ mX1 .

Let us discuss the scope of this result. We believe that the principal assumption on Rv

may not be necessary, since we are only using it to prove the non-escape of mass property
in Section 7, and an approach along the lines of [DKMS] could allow its removal. Over the
real field, this result is due to [DS1] in dimension n “ 2 and to [DS2] in general. Starting
from Section 5, we will follow their scheme of proof. Our result has two new aspects,
besides the fact that the algebraic properties of the ring Rv are much more involved than
the ones of Z. Firstly, we obtain an explicitely renormalized weak-star convergence, and
not only a projective convergence of the measures. Secondly, we cover a larger set of types
of divergent orbits, as we now explain. It follows from Theorem 1.1 that an A1-orbit Θ
is divergent if and only if it contains an element containing a sub-Rv-lattice Λ of R n

v .
We define the type of a sub-Rv-lattice Λ of R n

v as the isomorphism class of the torsion
Rv-module R n

v {Λ, and the type of Θ as the finite set of types of the sub-Rv-lattices of R n
v

with minimal covolume contained in the elements of Θ. For instance, for every t P Λpsq,
the type of the A1-orbit A1utR

n
v is reduced to tpRv{sRvqn´1u (see Proposition 4.6 (4)).

We choose this type in this Introduction for simplicity, but we refer to Corollary 8.4 for a
generalisation.

The techniques of the second part of this paper, that we now present, rely in particular
on the (high) entropy method in homogeneous dynamics (see for instance [EL]). Let

a “

ˆ

π n´1
v 0
0 π ´1

v In´1

˙

P SLnpKvq . (2)

Let U´ “ tut : t P K n´1
v u, which is the unipotent radical of the parabolic subgroup of

SLnpKvq fixing the hyperplane t0u ˆ K n´1
v of K n

v . Note that for all k P Z and t P K n´1
v ,

we have akuta
´k “ uπ ´nk

v t, so that U´ is contained in (and actually equal to) the unstable
horospherical group of the one-parameter diagonal group pakqkPZ.

Using Mahler’s criterion that a sequence pxnqnPN in X1 goes out of every compact
subset if and only if the systole of xn goes to 0, the first step (see Section 4) is to describe
a canonical “compact core” Cx of a divergent diagonal A1-orbit x by trimming out the
parts were the systole of the elements of x are small. When n “ 2, this correspond to
removing the first and last intersections with a cuspidal ray of the corresponding geodesic
line in the quotient graph of groups by PGL2pRvq of the Bruhat-Tits tree of PGL2pKvq

(see [Ser2, BPP] for background and Subsection 4.3). Let us denote by νx the restriction
of the homogeneous measure µx to Cx normalized to be a probability measure, and by
µs “

ř

tPΛs
µutR n

v
and νs “ 1

CardΛs

ř

tPΛs
νutR n

v
. It will follow from Subsection 4.2 (with
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the help of computations done in Subsection 4.4) that the measures cK,n

pφvpsq logqv |s| qn´1 µs

have as |s| Ñ `8 the same weak-star asymptotic properties as the probability measures νs.
Furthermore, we prove that the measures νs on X1 are averages over a compact subgroup
C1
n of GL1

npKvq of natural measures νs on SLnpKvq{SLnpRvq.
The second step (see Section 7) is to prove that the measures νs on SLnpKvq{SLnpRvq

as |s| Ñ `8 do not suffer any loss of mass, that is, any weak-star accumulation point ν of
νs as |s| Ñ `8 is also a probability measure. We did not try to write our equidistribution
result replacing the set Λs by a logarithmic full proportion of it, as it is done in [DS1, DS2].
This extension requires a non escape of mass assumption, that has been lifted in [DKMS]
when n “ 2 in the real case.

The third step (see Section 8) is to prove that the entropy hνpaq, which is well defined
by the second step, of any weak-star accumulation point ν for the diagonal transformation
a on SLnpKvq{SLnpRvq is equal to the maximal entropy of this transformation. This
requires, as in [ELMV2], a construction of high entropy partitions for a, that are build
using dynamical neighborhoods for the action of a on its unstable horospherical group U´.

The last step (see Section 5) is to apply Einsiedler-Lindenstraus [EL] uniqueness of
the probability measure of maximal entropy on SLnpKvq{SLnpRvq for a, which is the
measure mX1 renormalized to be a probability measure, and to average back on the above-
mentionned compact subgroup C1

n in order to prove Theorem 1.2.
Obtaining an error term in Theorem 1.2 would require an effective version of the unique-

ness of measures of maximal entropy for diagonal actions in positive characteristic, and
would constitute another project. We believe that our results could be extended to the
S-adic case (working with a nonempty finite set of places S instead of just one v) or to the
adelic setting (for the nonuniform lattice PGLnpKq of PGLnpAKq, where AK is the adèle
ring of K).

Acknowledgements: This research was supported by the French-Finnish CNRS IEA PaCap. We
thank Taehyeong Kim for mentionning the paper [DKMS] and for his comments about the loss of
mass problem.

2 Background material

For all r, r1 P Z with r ď r1, we denote Jr, r1K “ rr, r1s X Z.

2.1 Function fields over finite fields

For the following notions and complements, we refer to [Gos, Ros2], as well as to [BPP,
§14.2] whose notation we follow. Let Fq be a finite field of order a positive power q of a
prime p. Let K be a (global) function field over Fq of genus g, that is, the function field of
a geometrically connected smooth projective curve C of genus g defined over Fq. We denote
by hK the number of divisor classes of degree 0 on C. Let v be a (normalised discrete)
valuation of K, let Kv be the associated completion of K, let Ov “ tx P Kv : vpxq ě 0u be
its valuation ring, let πv P K with vpπvq “ 1 be a uniformiser of v, let qv be the order of
the residual field Fqv “ Ov{πvOv (that we identify with its lift in Ov), and let | ¨ | “ q

´vp ¨ q
v

be the (normalized) absolute value associated with v. We denote by deg v P N∖t0u the
degree of the closed point of C corresponding to v, so that qv “ qdeg v. Let Rv be the
affine function ring associated with v, that is, the affine algebra of the curve C minus
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its closed point corresponding to v. Recall that Rv is a Dedekind ring whose field of
fractions is K. The class number hv of the Dedekind ring Rv is hv “ pdeg vqhK by [Gos,
Coro. 4.1.3]. In particular Rv is principal if and only if hK “ 1 and deg v “ 1, which
occurs in positive genus for exactly 4 isomorphisms classes of function fields K (one for
each pg, qq “ p1, 2q, p1, 3q, p1, 4q, p2, 2q) by [MS, Theo. 1.1] and [MaQ, Theo. 2]. Note that
Oˆ

v “ tx P Kv : |x| “ 1u and (see for instance [BPP, Eq. (14.2) and (14.3)]

Rv X Ov “ Fq and Rˆ
v “ Fˆ

q Ă Oˆ
v . (3)

The simplest example, used in Section 4.3, is given by the field K “ FqpY q of rational
fractions over Fq with one indeterminate Y , with genus g “ 0, endowed with the valuation
at infinity v with deg v “ 1 defined for all P,Q P FqrY s with Q ‰ 0 by vpPQq degQ´degP .
Then Kv “ FqppY ´1qq is the field of formal Laurent series in Y ´1 over Fq, Ov “ FqrrY ´1ss

is the local ring of formal power series in Y ´1 over Fq, πv “ Y ´1, qv “ q, and Rv “ FqrY s

is the ring of polynomials in Y over Fq.

Let I `
v be the semigroup of nonzero ideals of the ring Rv. As usual, p ranges through-

out the text over prime ideals in I `
v and NpIq “ rRv : Is P qN is the absolute norm of

I P I `
v . Let Npsq “ NpsRvq for every s P Rv∖t0u, and note that Npsq “ |s|. For all r, s P Rv,

we write as usual pr, sq “ 1 if r and s are coprime, that is, satisfy r Rv ` sRv “ Rv.
We denote by µv : I `

v Ñ Z the Möbius function of Rv, so that µvpIq “ 0 if I has a
squared prime factor, and otherwise µvpIq “ p´1qk where k is the number of prime factors
of I.

We denote by φv : I `
v Ñ N the Euler function of Rv, defined by

φvpIq “ Card
`

Rv{Iqˆ “ NpIq
ź

p | I

`

1 ´
1

Nppq

˘

“ NpIq
ÿ

I 1PI `
v , I 1 | I

µvpI 1q

NpI 1q
, (4)

and φvpsq “ φvpsRvq for every s P Rv.
The Dedekind zeta function of the Dedeking ring Rv is (see, for instance, [Gos, §7.8])

the map ζv : tz P C : Re z ą 1u Ñ C defined by

ζv : z ÞÑ
ÿ

IPI `
v

1

NpIqz
.

By for instance [Gos, page 219, line 2] or [Ros2, page 244, Eq. (1)], it is related to the
zeta function ζK of the field K (which is an Eulerian product over all closed points of C,
including the one corresponding to v) by the formula

ζKpzq “
1

1 ´ q´z
v

ζvpzq . (5)

By for instance [Ros2, Theo. 5.9], ζK has an analytic continuation on C∖t0, 1u with simple
poles at z “ 0 and z “ 1 (it is actually a rational function of q´z). Hence the value ζvp´kq

for every k P N∖t0u is well defined. We recall the following counting result.

Lemma 2.1 As t Ñ `8, we have

Card tI P I `
v : NpIq ď tu “

hK q2´g pqv ´ 1q

pq ´ 1q2 qv
qtlogq tu ` Op1q .
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Proof. We give a proof for completeness. Let z P C with Re z ą 1. For every n P N,
let cn “ CardtI P I `

v : NpIq “ qnu. Since NpIq P qN for every I P I `
v , we have ζvpzq “

ř8
n“0 cn q

´nz. By for instance [Ros2, end of page 52], we have ζKpzq “
ř8

n“0 bn q
´nz with

bn “ hK
qn´g`1´1

q´1 if n ą 2 g ´ 2. Hence by Equation (5), we have

ζvpzq “ p1 ´ q´z
v q ζKpzq “ p1 ´ q´z deg vq

8
ÿ

n“0

bn q
´nz

“

deg v ´1
ÿ

n“0

bn q
´nz `

8
ÿ

n“deg v

pbn ´ bn´deg vq q´nz .

Hence by identification, if n ě 2 g ` deg v, we have

cn “ bn ´ bn´deg v “ hK
qn´g`1 ´ qn´g`1´deg v

q ´ 1
“

hK q1´g p1 ´ q´1
v q

q ´ 1
qn .

Therefore, by a geometric series argument, for every n P N, we have

Card tI P I `
v : NpIq ď qnu “

n
ÿ

i“0

ci “

n
ÿ

i“2g`deg v

ci ` Op1q

“
hK q1´g p1 ´ q´1

v q

pq ´ 1q

qn`1

q ´ 1
` Op1q “

hK q2´g p1 ´ q´1
v q

pq ´ 1q2
qn ` Op1q .

Since NpIq P qN for every I P I `
v , this proves the result. l

The following lemma is an effective version of [Poo, Lem. 3]. Its proof follows the one
of [HaW, Th. 328] given in Chap. XXII, §22.9 where Z is replaced by Rv. Again, we add
a proof for completeness. We denote by γ the Euler constant.

Lemma 2.2 If c1 “
qg´1 pq´1q ln q

p1´q´1
v q eγ hK

, then lim inf
NpIqÑ`8

φvpIq ln lnpNpIqq

NpIq
“ c1.

In particular, since Npsq “ |s| “ q
´vpsq
v for every s P Rv∖t0u, we have

D cφv P s0, 1s, @s P Rv∖t0u, φvpsq ě cφv

|s|

maxt1, lnp´vpsqqu
. (6)

Proof. Since we will only use the minoration (6), we only prove that the lower limit in
the statement of Lemma 2.2 is at least c1. Let F : s0,`8r Ñ R be the map

t ÞÑ F ptq “ pln tq
´

1 ´
1

t

¯
t

ln t
ź

Nppqďt

´

1 ´
1

Nppq

¯

.

By [Ros1, Th. 3] (which gives an asymptotic expansion of the partial product over all
closed points of C, including the one corresponding to v, which explains the factor 1´ q´1

v

in the constant c1), as t Ñ `8, we have
ś

Nppqďt

`

1 ´ 1
Nppq

˘

„ c1 1
ln t . Hence as t Ñ `8

we have F ptq „ c1p1 ´ 1
t q

t
ln t „ c1p1 ´ 1

ln tq, which tends to c1. For every I P I `
v , let

AI “ tp : p | I, Nppq ď ln NpIqu and BI “ tp : p | I, Nppq ą ln NpIqu. Since N is completely
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multiplicative, we have pln NpIqqCard BI ď
ś

pPBI
Nppq ď NpIq, hence Card BI ď

ln NpIq

ln ln NpIq
.

Thus as ln NpIq Ñ `8, we have

φvpIq ln ln NpIq

NpIq

“ ln ln NpIq
ź

p | I

´

1 ´
1

Nppq

¯

ě ln ln NpIq

´

1 ´
1

ln NpIq

¯Card BI ź

pPAI

´

1 ´
1

Nppq

¯

ě ln ln NpIq

´

1 ´
1

ln NpIq

¯

ln NpIq

ln ln NpIq
ź

Nppqďln NpIq

´

1 ´
1

Nppq

¯

“ F pln NpIqq „ c1 . l

Denote by ϖv : I `
v Ñ N the omega function counting the prime factors of ideals:

ϖv : I ÞÑ Cardtp : p | Iu .

We define ϖvpsq “ ϖvpsRvq for every s P Rv∖t0u. For every I P I `
v , with the notation of

the above proof, we have Card AI “ O
` ln NpIq

ln ln NpIq

˘

by the prime number theorem in K (see

for instance [Ros2, Theo. 5.12]) and Card BI ď
ln NpIq

ln ln NpIq
. Hence as NpIq Ñ `8, we have

ϖvpIq “ Card pAI Y BIq “ O
` ln NpIq

ln ln NpIq

˘

. In particular, since Npsq “ |s| “ q
´vpsq
v for every

s P Rv∖t0u, and since ϖvpsq “ 0 when s P Rˆ
v , we have

D cϖv ą 0, @s P Rv∖t0u, ϖvpsq ď cϖv

´vpsq

maxt1, lnp´vpsqqu
. (7)

We fix n P N∖t0u throughout this paper. We denote by pe1, . . . , enq the canonical
basis of the product Kv-vector space K n

v . Let } } : K n
v Ñ r0,`8r be the standard norm

px1, . . . , xnq ÞÑ max1ďiďn |xi |. We denote by volv the normalized Haar measure on the
locally compact additive group Kv such that volvpOvq “ 1. Let volnv be the normalized
Haar measure on K n

v such that volnv pO n
v q “ 1. Note that for every g P GLnpKvq, we have

d volnv pgxq “ | detpgq | d volnv pxq . (8)

In particular, we have volvpπvOvq “ q ´1
v and

volvpOˆ
v q “ volvpOv∖πvOvq “ 1 ´ q ´1

v . (9)

If G is a discrete subgroup of the additive group K n
v (for instance any nonzero, not neces-

sarily principal, ideal of Rv when n “ 1), we also denote by volnv the unique Haar measure
on the quotient abelian topological group K n

v {G such that the covering map K n
v Ñ K n

v {G
locally preserves the measure.

2.2 Lattices

An Rv-lattice L in K n
v is a free rank-n Rv-submodule in K n

v that generates K n
v as a Kv-

vector space. It is a discrete cocompact additive subgroup of K n
v . For instance, a nonzero

ideal I of Rv is an Rv-lattice in Kv if and only if it is principal.
The covolume of L, denoted by covolpLq, is defined as the measure of the (compact)

quotient space K n
v {L :

covolpLq “ volnv pK n
v {Lq .
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For every g P GLnpKvq, by Equation (8), we have

covolpgLq “ | detpgq | covolpLq . (10)

In particular, if λ P Kˆ
v , then covolpλLq “ |λ|n covolpLq. Since the set of values of | ¨ | is

t0u Y q Z
v , every Rv-lattice is hence homothetic under Kˆ

v to an Rv-lattice with covolume
in r1, q n

v s. For example, Rn
v is an Rv-lattice in K n

v , and by for instance [BPP, Lem. 14.4],
we have

covolpRn
v q “ qpg´1qn . (11)

The normalized covolume of an Rv-lattice L is covolpLq

covolpRn
v q

, which belongs to q Z
v since GLnpKvq

acts transitively on the set of Kv-basis of K n
v , hence on the set of Rv-lattices of K n

v , and
by using Equation (10).

An Rv-lattice L in K n
v is said to be

‚ unimodular if covolpLq “ covolpRn
v q (by Equation (11) for instance, as well as for

other integrality purposes, it is not appropriate to define them by requiring covolpLq “ 1),
‚ special unimodular if L admits an Rv-basis pb1, . . . , bnq such that b1 ^ . . . ^ bn is

equal to the canonical generator e1 ^ . . . ^ en of the n-th exterior power n̂pK n
v q (where,

as already said, pe1, . . . , enq is the canonical Kv-basis of K n
v ).

‚ integral if L is contained in Rn
v ,

‚ rational if L is contained in Kn,
‚ axial if for every i P J1, nK, we have pKveiq X L ‰ t0u.

Any element of GLnpKvq mapping the canonical Kv-basis pe1, . . . , enq of K n
v to a Kv-basis

pb1, . . . , bnq such that b1 ^ . . . ^ bn “ e1 ^ . . . ^ en has determinant 1. Hence by Equation
(10), special unimodular Rv-lattices are unimodular.

For instance, if I1, . . . , In are nonzero principal ideals of Rv, then
śn

i“1 Ii is an integral
Rv-lattice in K n

v . Note that an integral Rv-lattice, being a finite index subgroup of Rn
v , is

axial. If x is an axial Rv-lattice, since x has an Rv-basis pb1, . . . , bnq which is a Kv-basis of
K n

v , by Kramer’s formula to solve a system of n´1 linearly independent linear equations in
n variables in terms of one of these variables, for every i P J1, nK, the intersection RveiXx is
a rank-1 Rv-submodule of Kvei. Hence there exists λi P Kˆ

v such that Rvei X x “ Rvλiei.
For every integral Rv-lattice L, by the structure theorem of finitely generated torsion

modules over a Dedekind ring (see for instance [Nar, Theo. 1.41] without the uniqueness
statement), there exist unique nonzero ideals I1, . . . , In P I `

v such that I1 | I2 | . . . | In
and Rn

v {L is isomorphic to
śn

i“1Rv{Ii as an Rv-module. The n-tuple pI1, . . . , Inq, or
the isomorphism class of the Rv-module R n

v {L, is called the type of the integral lattice
L. If I1 “ s1Rv, . . . , In “ snRv are principal ideals, we will also say that the type of
L is ps1, . . . , snq (which is well defined modulo pRˆ

v qn). For instance, the type of R n
v is

p1, . . . , 1q. The group GLnpRvq acts on the set of integral Rv-lattices of K n
v and two

integral Rv-lattices are in the same GLnpRvq-orbit if and only if they have the same type.

2.3 Homogeneous spaces of lattices

We denote by In the n ˆ n identity matrix. Let PG “ PGLnpKvq “ GLnpKvq{pKˆ
v Inq,

which is a totally disconnected metrisable locally compact topological group, and PΓ “

PGLnpRvq “ GLnpRvq{pRˆ
v Inq, which is a nonuniform lattice in PG. Throughout the

paper, for every element g “ pgijq1ďi,jďn P GLnpKvq, we denote by rgs “ rgijs1ďi,jďn its
image in PG, when necessary. Otherwise, abusing notation, we omit the brackets.

8



Let PX be the homogeneous space PG{PΓ, that identifies PG-equivariantly with the
space of the homothety classes rLs “ Kˆ

v L under Kˆ
v of the Rv-lattices L in K n

v by the
orbital map rgsPΓ ÞÑ rgRn

v s. Contrarily to the case of the real field R and the ring of
integers Z of the number field Q, in positive characteristic, there is a difference between
SLnpKvq{SLnpRvq and PGLnpKvq{PGLnpRvq and it is sometines preferable to work with
the latter one, or with the following avatar.

Let
G1 “ GL1

npKvq “ tg P GLnpKvq : |det g| “ 1u ,

which is a unimodular totally disconnected metrisable locally compact topological group
with center ZG1 “ O ˆ

v In. We identify the image of G1 in PG with G1{ZG1. Let us
denote Γ1 “ GLnpRvq. By Equation (3), we have Γ1 Ă G1 and PΓ Ă G1{ZG1. Besides,
Γ1 is a nonuniform lattice in G1.

Finally, let G “ SLnpKvq, which is a unimodular closed normal subgroup of G1 with a
split exact sequence of topological groups

1 ÝÑ G ÝÑ G1 ÝÑ O ˆ
v ÝÑ 1 (12)

with section ξ : Oˆ
v Ñ G1 defined by

ξ : λ ÞÑ
`

λ 0
0 In´1

˘

.

Let Γ “ SLnpRvq, which is a nonuniform lattice in G, with an induced split exact sequence

1 ÝÑ Γ ÝÑ Γ1 ÝÑ Rˆ
v ÝÑ 1 (13)

with section ξ
|Rˆ

v
.

We endow PG (respectively G1 and G) with its right-invariant Haar measure mPG

(respectively mG1 and mG) such that its maximal compact-open subgroup PGpOvq “

PGLnpOvq (respectively G1pOvq “ GLnpOvq and GpOvq “ SLnpOvq ) has Haar measure 1.
Equation (12) induces a split exact sequence 1 ÝÑ GpOvq ÝÑ G1pOvq ÝÑ O ˆ

v ÝÑ 1 of
compact groups. Since volvpO ˆ

v q “ 1´ q´1
v by Equation (9), for all λ P O ˆ

v and g P G, we
hence have

d mG1pξpλqgq “
qv

qv ´ 1
d volvpλq d mGpgq . (14)

Let X1 be the space of unimodular Rv-lattices in K n
v , endowed with the Chabauty

topology. As justified by Equation (10), we identify homeomorphically and G1-equivar-
iantly the homogeneous space G1{Γ1 with X1 by the orbital map gΓ1 ÞÑ g Rn

v .
Since Γ1 is a discrete subgroup of the unimodular group G1, we endow the homo-

geneous space G1{Γ1 with the unique G1-invariant measure such that the orbital map
G1 Ñ G1{Γ1 defined by g ÞÑ g Γ1 locally preserves the measure, and we endow X1 with
the corresponding measure mX1 . By for instance [HoP, Eq. (41)] (building on [Ser1, §3]),
we have

}mX1} “
qv ´ 1

qvpq ´ 1q

n´1
ź

i“1

ζvp´iq

q i
v ´ 1

. (15)

Let X be the closed subspace of X1 consisting in the special unimodular Rv-lattices
in K n

v , which is equal to the orbit in X1 of the standard Rv-lattice R n
v under the action of

the subgroup G of G1. The stabiliser of R n
v in G is exactly Γ. The homogeneous space G{Γ

9



identifies homeomorphically and G-equivariantly with the space X by the map gΓ ÞÑ g R n
v .

Since Γ “ Γ1 X G, the inclusion map G Ñ G1 induces an injection G{Γ Ñ G1{Γ1 which is
a homeomorphism onto its image, and the following diagram is commutative:

G{Γ Ñ G1{Γ1

» Ó Ó»

X ãÑ X1 .

The compact group O ˆ
v {Rˆ

v acts continuously and freely on the topological space X1 by
pλRˆ

v ,Λq ÞÑ ξpλqΛ. By Equations (12) and (13), the inclusion map X Ñ X1 induces a
homeomorphism X Ñ pO ˆ

v {Rˆ
v qzX1.

Since Γ is a discrete subgroup of the unimodular group G, we endow the homogeneous
space G{Γ with the unique G-invariant measure such that the orbital map G Ñ G{Γ defined
by g ÞÑ g Γ locally preserves the measure, and we endow X with the corresponding measure
mX . We denote by vol1v the measure on O ˆ

v {Rˆ
v such that the map O ˆ

v Ñ O ˆ
v {Rˆ

v locally
preserves the measure. Its total mass is vol1vpO ˆ

v {Rˆ
v q “

volvpO ˆ
v q

Card Rˆ
v

“
1´q´1

v
q´1 . By Equation

(14), for all λRˆ
v P O ˆ

v {Rˆ
v and x P X , we have

d mX1pξpλqxq “
qv

qv ´ 1
d vol1vpλRˆ

v q d mX pxq and } mX } “ pq ´ 1q } mX1} . (16)

2.4 Systoles of lattices

The (normalized) systole of an Rv-lattice L in K n
v , which depends only on the homothety

class rLs of L modulo K ˆ
v , is defined by

sysprLsq “ syspLq “

´covolpR n
v q

covolpLq

¯
1
n

min
wPL∖t0u

}w} . (17)

If L is unimodular, we simply have syspLq “ minwPL∖t0u }w}. Mahler’s compactness crite-
rion (see for instance [KlST, Theo. 1.1]) says that for every ϵ ą 0, the ϵ-thick part of PX ,
defined by

PX ěϵ “
␣

x P PX : syspxq ě ϵ
(

,

is compact in PX . For every compact subset K of PX , there exists ϵ ą 0 such that
K Ă PX ěϵ. Similarly, the ϵ-thick parts

X ěϵ
1 “

␣

L P X1 : syspLq ě ϵ
(

and X ěϵ “
␣

L P X : syspLq ě ϵ
(

of X1 and X respectively are compact. For every compact subset K of X1 or X , there
exists ϵ ą 0 such that K is contained in X ěϵ

1 or X ěϵ. We denote by PX ăϵ “ PX∖PX ěϵ,
X ăϵ

1 “ X1∖X ěϵ
1 and X ăϵ “ X ∖X ěϵ the ϵ-thin parts of PX , X1 and X respectively.

Since GLnpKvq acts transitively on the set of Rv-lattices in K n
v and by Equation (10),

the set of values of the (continuous) systole function sys : PX Ñ R is contained in q
1
n
Z

v .
More precisely, let us prove that we have

q
´ 1

n
N

v Ă syspPX q Ă q
1
n
Z

v X r0, qvq
g´1s .

The left inclusion follows by considering, for every k P N, the lattice L “ gkR
n
v with

gk “

´

π´k
v 0
0 In´1

¯

(giving syspLq “ q
´ k

n
v since |π´k

v | “ qkv ą 1). In order to prove the right

10



inclusion, let rLs P PX . Up to rescaling, we may assume that minwPL∖t0u }w} “ 1. Then
the closed ball Bp0, q´1

v q in K n
v injects in K n

v {L by the ultrametric triangle inequality.
Thus by Equation (11) and the line before Equation (9), we have as wanted

syspLq “

´covolpR n
v q

covolpLq

¯
1
n

ď

´ qpg´1qn

volnv pBp0, q´1
v qq

¯
1
n

“
qg´1

volvpπvOvq
“ qv q

g´1 .

When g “ 0 and deg v “ 1, we have syspLq ď 1, which is optimal since syspR n
v q “ 1.

Since the image syspPX q is contained in q
1
n
Z

v , there is a partition PX “
Ťn

k“1 PXk

into nonempty closed and open subsets of PX , defined by

@ k P J1, nK, PXk “ tx P PX : n logqvpsyspxqq ” k ´ 1 mod nu .

The norm } ¨ } having values on K n
v ∖ t0u in qZv , for every Rv-lattice L and every

g P GLnpKvq, by Equation (10), we have

n logqvpsyspgLqq ” logqv

´covolpR n
v q

covolpgLq

¯

” logqv

´covolpR n
v q

covolpLq

¯

´ logqv | det g|

” n logqvpsysLq ´ logqv | det g| mod n .

Hence the image G1{ZG1 of G1 in PG acts transitively on each one of the strata PXk for
k P J1, nK. Since PΓ Ă G1{ZG1, the stratum PX1 thus identifies pG1{ZG1q-equivariantly
with the homogeneous space pG1{ZG1q{PΓ. Furthermore, for every k1 P N, the element
gk1 “

´

πk1

v 0
0 In´1

¯

maps PXk to PXk2 where k2 P J1, nK satisfies k2 “ k ` k1 mod n.

2.5 Diagonal subgroups

We denote by rA the diagonal subgroup of GLnpKvq, and by PA its image in PG, that we
also call the diagonal subgroup of PG. Let

rD “

$

’

&

’

%

¨

˚

˝

π´k1
v 0

. . .
0 π´kn

v

˛

‹

‚

: k1, . . . , kn P Z

,

/

.

/

-

Ă rA .

We denote by PD the image of rD in PG. Note that the diagonal subgroup PA is a closed
noncompact subgroup of PG which is the direct product PA “ PApOvqPD of its maximal
compact subgroup PApOvq “ PA X PGLnpOvq and its discrete subgroup PD. As seen at
the end of the previous subsection 2.4, the group PD permutes transitively the strata PXk

for k P J1, nK.
Also note that if L is an axial Rv-lattice in K n

v , then aL is an axial Rv-lattice for every
a P rA, and in particular, every Rv-lattice homothetic to L is axial. Hence we may define
an axial PA-orbit in PX to be a PA-orbit which contains the homothety class of an axial
Rv-lattice, or equivalently a PA-orbit all of whose elements are homothety classes of axial
Rv-lattices.

Let exp : Zn Ñ GLnpKvq be the map k “ pk1, . . . , knq ÞÑ

¨

˚

˝

π´k1
v 0

. . .
0 π´kn

v

˛

‹

‚

, which is

an injective group morphism with image rD. We have a “ expp1´n, 1, . . . , 1q by Equation
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(2). We will also denote by exp its restriction to

Zn
0 “ tk “ pk1, . . . , knq P Zn : k1 ` . . . ` kn “ 0u .

Note that there exists no global exponential map of matrices in positive characteristic.
The above map exp is a (very weak) ersatz for it.

We define A1 “ rA X G1, A “ rA X G and D “ rD X G1 “ rD X G “ exppZn
0 q. Thus A1

and A are the direct products A1 “ A1pOvqD and A “ ApOvqD of their maximal compact
subgroups A1pOvq “ A1XGLnpOvq “ rAXGLnpOvq and ApOvq “ AXSLnpOvq respectively
with their discrete subgroup D. The split exact sequence in Equation (12) gives a split
exact sequence

1 ÝÑ A ÝÑ A1 ÝÑ O ˆ
v ÝÑ 1 (18)

with section ξ (which has values in A1).

2.6 Homogeneous measures on diagonal orbits

Recalling that A1pOvq and ApOvq are the maximal compact-open subgroups of the diagonal
groups A1 and A, we endow the abelian locally compact groups A1 and A with their unique
Haar measure mA1 and mA normalized so that

mA1pA1pOvqq “ mApApOvqq “ 1 . (19)

By Equation (18), for all λ P O ˆ
v and a P A, we have

d mA1pξpλqaq “
qv

qv ´ 1
d volvpλq d mApaq . (20)

We denote by mZn
0

the counting measure on Zn
0 , and, in order to simplify notation,

da “ d mA1 |A1pOvqpaq, da “ d mA|ApOvqpaq and dk “ d mZn
0

pkq ,

which are measures on A1pOvq, ApOvq and Zn
0 respectively.

The maps pa,kq ÞÑ a exppkq from A1pOvq ˆ Zn
0 to A1 and from ApOvq ˆ Zn

0 to A are
isomorphisms of topological groups, and we have

d mA1pa exppkqq “ da dk and d mApa exppkqq “ da dk .

For every x P X1 (resp. x P X ), with θx : a ÞÑ ax the orbital map from A1 to A1x
(resp. A to Ax), we define the orbital measure µx “ µA1x (resp. µx “ µAx) on the orbit
A1x (resp. Ax) by

µx “ µA1x “ pθxq˚mA1 (resp. µx “ µAx “ pθxq˚mA ) ,

so that for a P A1pOvq (resp. a P ApOvq) and k P Zn
0 , we have

dµxpa exppkqxq “ da dk (resp. dµxpa exppkqxq “ da dk ) .

If θx is a proper map (see Corollary 3.4 for characterisations), then µx is an A1-invariant
infinite locally finite measure on X1 with support equal to the orbit A1x (resp. µx is an
A-invariant locally finite infinite measure on X with support equal to the orbit Ax).

By Equation (20) and by the definition of vol1v at the end of Section 2.3, for every
x P X , the measure µx on X1 is an average of orbital measures on X :

µx “
qv

qv ´ 1

ż

λPO ˆ
v

ξpλq˚µx d volvpλq “
qvpq ` 1q

qv ´ 1

ż

O ˆ
v {Rˆ

v

ξpλq˚µx d vol1vpλRˆ
v q . (21)
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3 A classification of the divergent diagonal orbits

The following characterisation of the divergent diagonal orbits is due to Margulis in the
case of the real field R and the ring of integers Z, see [TW, Theo. 1.2]. See for instance
[Wei1, Wei2, ST] for complementary studies in the real case. Our proof follows the same
scheme of proof as in the real case.

Theorem 3.1 For every x “ rLs P PX , the following assertions are equivalent.
(1) The map a ÞÑ a x from PA to PX is a proper map.
(2) The map d ÞÑ d x from PD to PX is a proper map.
(3) There exists g P pPAqpPGLnpKqq such that rLs “ grR n

v s.
(4) The orbit PAx contains the homothety class of an integral Rv-lattice.
(5) The orbit PAx contains the homothety class of an axial Rv-lattice.
(6) Every element of the orbit PAx is the homothety class of an axial Rv-lattice.

If one of the above assertions is satisfied, we say that the orbit PAx of x by the diagonal
subgroup PA is divergent. Hence the divergent PA-orbits are the axial ones (as defined in
Subsection 2.5).

Proof. Assertion (3) implies Assertion (4), since K is the field of fractions of Rv, hence for
every g1 P GLnpKq, if r P Rv∖t0u is the product of the denominators of the nonzero entries
of g1 written as fractions in Rv, then rg1R n

v is an integral Rv-lattice. It is immediate that
Assertion (4) implies Assertion (5), since an integral Rv-lattice is an axial Rv-lattice. We
have already seen in Subsection 2.5 that the Assertions (5) and (6) are equivalent.

Let us prove that Assertion (6) implies Assertion (1). Indeed, assume that L is axial
and normalized in its homothety class to have covolume between 1 and q n

v . Every element
a P rA may be multiplied by a central element of GLnpKvq in order to have absolute value
of its determinant between 1 and q n

v . Then if a goes to infinity in rA, it has a diagonal
entry that goes to 0. Hence the Rv-lattice aL has its covolume remaining between 1 and
q 2n
v , and has a nonzero vector on the coordinate axis corresponding to that diagonal entry

that goes to 0. Thus its image in PX leaves every compact subset of PX by Mahler’s
compactness criterion. Note that Assertion (1) and Assertion (2) are equivalent, since
PApOvq is compact and PA “ PApOvqPD.

It remains to prove that Assertion (2) implies Assertion (3). We first give two lemmas.

Lemma 3.2 There exist c ą 1, a bounded open neighborhood W of 0 in K n
v and a finite

subset F of D “ rD X SLnpKvq, such that for every g2 P GLnpKvq with detpg2q P r1, q n
v s ,

there exists f P F such that for every w P pg2R n
v q X W , we have

}fw} ě c}w} .

Proof. Each element in GLnpKvq with absolute value of its determinant in r1, q n
v s only

multiplies the volume vol nv by a constant in r1, q n
v s by Equation (8). Hence there exists

an open ball W centered at 0 in K n
v with small enough radius such that for every element

g2 P GLnpKvq with detpg2q P r1, q n
v s, the Kv-linear subspace generated by pg2R n

v q X W is
a proper Kv-linear subspace of K n

v .
For every d P J1, n ´ 1K, let GrdpK n

v q be the Grassmannian space of d-dimensional
Kv-linear subspaces of K n

v , endowed with the Chabauty topology. Let us prove that there
exist cd ą 1 and a finite subset Fd of elements in D such that for every V P GrdpK n

v q, there
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exists f P Fd such that for every w P V , we have }fw} ě cd}w}. This proves the result by
taking F “

Ť

1ďdďn´1 Fd and c “ min1ďdďn´1 cd ą 1. By the compactness of GrdpK n
v q and

of the unit sphere of K n
v , and by the homogeneity of the norm }¨} (so that }π

logqv }w}
v w} “ 1

for every w P K n
v ∖t0u), we only have to prove that for every V P GrdpK n

v q, there exists
a P D such that for every w P V with norm 1, we have }aw} ą 1.

Since d ă n, there exists i0 P J1, nK such that Kvei0 is not contained in V . We claim
that there exists ϵ0 ą 0 such that for every w “ pw1, . . . , wnq P V with norm 1, there exists
jw P J1, nK different from i0, such that |wjw | ě ϵ0. Otherwise, for every k P N, there exists
wpkq “ pw1,k, . . . , wn,kq P V with }wpkq} “ 1 and |wi,k| ď 1

k`1 for every i P J1, nK∖ti0u. Up
to extracting a subsequence by the compactness of the unit sphere of K n

v and since V is
closed in K n

v , the sequence pwpkqqkPN converges to a unit norm vector w8 in V X pKvei0q,
contradicting the fact that Kvei0 is not contained in V .

Now, for every k P N, let ak be the diagonal matrix with diagonal coefficients akii “ π´k
v

if i ‰ i0 and aki0i0 “ π
pn´1qk
v , which belongs to D “ exppZn

0 q. Then, if k is large enough
(for instance k “ r´ logqv ϵ0s ` 1), for every element w “ pw1, . . . , wnq P V with norm 1,
we have

}ak w} ě |π´k
v wjw | “ q k

v |wjw | ě q k
v ϵ0 ą 1 ,

which proves the result. l

Lemma 3.3 For every element g1 P GLnpKvq∖ rA GLnpKq, for every bounded open neigh-
borhood W of 0 in K n

v , for every finite subset J of g1R n
v ∖t0u, for every finite subset C of

D, there exists a P D∖C such that

paJq X W “ H .

Proof. Let g1,W, J, C be as in the statement. We first claim that there exists i0 P J1, nK
such that

pKvei0q X pg1R n
v q “ t0u .

Assume for a contradiction that for every i P J1, nK there exist wi P R n
v and ai P Kv∖t0u

such that g1wi “ aiei. Then pw1, . . . , wnq is a K-basis of the K-linear space ‘1ďiďnKei,
and the transition matrix P from the canonical basis pe1, . . . , enq to this basis (so that
Pei “ wi for every i P J1, nK) belongs to GLnpKq. Let a1 P rA be the diagonal matrix
with diagonal coefficients a1, . . . , an in this order. Then the linear map pa1q´1g1P fixes the
canonical basis, hence is the identity. Thus g1 “ a1P´1 P rA GLnpKq, a contradiction to
the assumption that g1 R rA GLnpKq.

Now, for every k P N, let ak be the diagonal matrix with diagonal coefficients akii “ π´k
v

if i ‰ i0 and aki0i0 “ π
pn´1qk
v , which belongs to D, and does not belong to C if k is large

enough. For every w “ pw1, . . . , wnq P g1R n
v ∖t0u, by the preliminary claim, there exists

i ‰ i0 such that wi ‰ 0. Hence }ak w} ě |π´k
v wi| “ q k

v |wi| tends to `8 as k Ñ `8. Since
J is finite and W is bounded, this implies that for k large enough, we have pakJqXW “ H

and ak P D∖C. l

Proof that Assertion (2) implies Assertion (3). Let us fix g P PG∖pPAqpPGLnpKqq,
and let us prove that the map d ÞÑ dgrR n

v s from PD to PX is not proper, which concludes
the proof of Theorem 3.1. We fix a representative g1 P GLnpKvq∖ rA GLnpKq of g with
detpg1q P r1, q n

v s. Let us prove that the map d ÞÑ rdg1R n
v s from the discrete space D to

PX is not proper, which implies the result.
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Let c,W, F be as in Lemma 3.2. Without loss of generality, we may assume that id P F .
Let

W0 Ă
č

fPFYF´1

fW

be an open ball centered at 0 in K n
v , contained in

Ş

fPFYF´1 fW hence in W . Let

C 1 “

!

rLs P PX :
covolpLq

covolpR n
v q

P r1, q n
v s, L X W0 “ t0u

)

, (22)

which is a compact subset of PX by Mahler’s compactness criterion (and by the definition
(17) of the systole). For every finite subset C of D, let us prove that there exists an element
dC P D∖C such that rdCg

1R n
v s P C 1, which concludes the proof.

Let J “ pg1R n
v X C´1W q∖t0u, which is a finite subset of g1R n

v ∖t0u since C´1W is
bounded. By Lemma 3.3, there exists d0 P D∖C such that

pd0Jq X W “ H . (23)

Let us define by induction on k P N an element dk P D such that with the notation
rdk “ d0 . . . dk, if k ě 1, then dk P F and

@ w P prdk´1 g
1R n

v q X W, }dkw} ě c }w} . (24)

Let k P N, assume that d0, . . . , dk have been constructed, and note that rdk “ d0 . . . dk
belongs to D. By Lemma 3.2, applied with g2 “ rdk g

1 which has absolute value of its
determinant in r1, q n

v s, there exists dk`1 P F such that for every w P prdk g
1R n

v q X W , we
have }dk`1w} ě c }w}. This concludes the induction.

For every k ě 1, by the definition of W0 which is contained in fW for every f P F , we
have

prdk g
1R n

v q X W0 Ă prdk g
1R n

v q X pdkW q “ dk
`

prdk´1 g
1R n

v q X W
˘

. (25)

Hence by Equation (24), the minimal norm nk of a nonzero vector in prdk g
1R n

v q X W0 is
at least c times the minimal norm of a nonzero vector in prdk´1 g

1R n
v q X W . Since W0 is a

ball centered at 0 contained in W , this implies that either prdk´1 g
1R n

v q XW0 “ t0u or that
nk ě c nk´1. Since W0 is bounded and c ą 1, this implies by a decreasing induction that
there exists k P N such that prdk g

1R n
v q X W0 “ t0u. Let k˚ P N be the smallest element

k P N for which this equality is true, so that

prdk˚
g1R n

v q X W0 “ t0u and @ k P J0, k˚ ´ 1K, prdk g
1R n

v q X W0 ‰ t0u . (26)

By Equation (10), we have covolp rdk g1R n
v q

covolpR n
v q

“ | detprdk g
1q| P r1, q n

v s. In particular, by the

definition of C 1 in Equation (22), we have rrdk˚
g1R n

v s P C 1. Let us prove that rdk˚
R C,

which gives the wanted result using dC “ rdk˚
.

If k˚ “ 0, this follows by the construction of d0 “ rd0. Assume that k˚ ě 1 and for
a contradiction that rdk˚

P C. By the minimality of k˚, let w be a nonzero element of
prdk˚´1 g

1R n
v q X W0. If k˚ ě 2, by Equation (25), there exists w1 P prdk˚´2 g

1R n
v q X W such

that w “ dk˚´1w
1. By Equation (26), we have }w} ě c }w1}. Hence }w1} ď }w} since

c ě 1, and w1 belongs as w to the ball W0 centered at 0. Thus w1 P prdk˚´2 g
1R n

v q XW0 and
w “ dk˚´1w

1. By induction, we may therefore write w “ rdk˚´1w0 for a nonzero element
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w0 in pg1R n
v q X W0 such that rdjw0 P W0 for all j P J0, k˚ ´ 1K. By the definition of W0

which contains w and is contained in f´1W for every f P F and since k˚ ě 1, we have
dk˚

w P W . Hence rdk˚
w0 “ dk˚

rdk˚´1w0 “ dk˚
w belongs to W . Since rdk˚

P C, this implies
that w0 P ppC´1W q X pg1R n

v qq∖t0u “ J . Since d0w0 “ rd0w0 P W0 Ă W , this contradicts
Equation (23). l

Corollary 3.4 For every L P X1, the following assertions are equivalent.
(1) The orbit map a ÞÑ aL from A1 to X1 is a proper map.
(2) The orbit map d ÞÑ dL from D to X1 is a proper map.
(3) There exists g P A1GL1

npKq such that L “ g R n
v .

(4) The orbit rAL of L by the diagonal subgroup rA of GLnpKvq contains an integral
(possibly nonunimodular) Rv-lattice.

(5) The orbit A1L contains an axial (unimodular) Rv-lattice.
(6) Every element of the orbit A1L is an axial (unimodular) Rv-lattice.

Proof. Using the notation of Subsection 2.4, we have a canonical onto map X1 Ñ PX1

which associates to a unimodular Rv-lattice its homothety class. This map is equivariant
with respect to the canonical morphism G1 Ñ G1{ZG1, hence with respect to the canonical
morphisms A1 Ñ PA and D Ñ PD. The above map X1 Ñ PX1 is a proper map, since its
fibers are the compact subsets Oˆ

v L for L P X1.
The image of A1 in PA is a finite index subgroup, with index n (and representatives of

the classes the elements

»

–

π´k
v 0

0 In´1

fi

fl for k P J0, n ´ 1K). As seen in Subsection 2.5, the

space PX is the finite union of the strata PXk for k P J1, nK that are transitively permuted
by PA.

Therefore for every L P X1, the orbit map a ÞÑ aL from A1 to X1 (respectively d ÞÑ dL
from D to X1) is a proper map if and only if the orbit map ras ÞÑ ras rLs from PA to PX
(respectively rds ÞÑ rds rLs from PD to PX ) is a proper map.

The result then follows from Theorem 3.1. l

4 A description of the divergent diagonal orbits

4.1 Compact core and quasicenters of divergent diagonal orbits

Let x P X1 be a unimodular Rv-lattice in K n
v , which is axial, or equivalently by Corol-

lary 3.4 such that its orbit in X1 under the diagonal subgroup A1 is divergent. In this
subsection, we define and study several invariants associated with x or with its A1-orbit
A1x.

For every i P J1, nK, we define

sysipxq “ logqv min
␣

}w} : w P px X Kveiq∖t0u
(

P Z ,

that we call the (logarithmic) ith-directional systole. As seen in Subsection 2.2, since x is
axial, there exists λi P Kˆ

v such that xXKvei “ Rvλiei, hence we have sysipxq “ logqv |λi|.
We define

τx “ τA1x “

n
ÿ

i“1

sysipxq P Z , (27)
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that we call the (truncated) covolume of the divergent orbit A1x, and that we will use
as a complexity for divergent orbits. Assertion (2) of Proposition 4.1 below says that the
covolume τx is indeed an invariant of the A1-orbit of x. We will illustrate in Proposition
4.4 when n “ 2 why we think of τx as the volume of a canonically truncated divergent
orbit A1x. Let

∆x “ tk “ pk1, . . . , knq P Zn
0 : @ i P J1, nK, ki ě ´ sysipxqu , (28)

which is a finite subset of Zn
0 , and let Ax

1 “ A1pOvq expp∆xq. The subset

Cx “ CA1x “ Ax
1x “ A1pOvq expp∆xqx (29)

of the A1-orbit of x is compact and open in A1x since A1pOvq is a compact-open subgroup of
A1, and is called the compact core of the divergent orbit A1x. Assertion (2) of Proposition
4.1 below says that the compact core Cx is indeed an invariant of the A1-orbit of x.

The coordinate sublattice of x is

xcoo “ px X Kve1q ` . . . ` px X Kvenq . (30)

It is indeed an Rv-lattice contained in x, and apxcooq “ paxqcoo for every a P A1. In
particular, the covolume of xcoo is constant on the A1-orbit of x.

The quasicenter of the A1-orbit of x is the unique point px P A1x modulo the left action
of A1pOvq (see Assertion (4) of Proposition 4.1 below for its existence and uniqueness)
such that if

`

P “ t τxn u, Q “ τx ´nt τxn u
˘

P N2 is the Euclidean division (with 0 ď Q ă n) of
τx “ Pn ` Q by n, then

@ i P J1, QK, sysippxq “ P ` 1 and @ i P JQ ` 1, nK, sysippxq “ P . (31)

For instance (see Proposition 4.6 for other examples), if x “ R n
v , we have sysipxq “ 0

for every i P J1, nK, hence xcoo “ px “ x and

τx “ 0, ∆x “ t0u and Cx “ A1pOvqx .

Proposition 4.1 Let x P X1 be an axial unimodular Rv-lattive, and let i P J1, nK.
(1) We have q

sysipxq
v “ q1´g volv

`

pKveiq{px X Kveiq
˘

and covolpxcooq “ qnpg´1qq τx
v .

(2) For every a “ diagpa1, . . . , anq P A1, we have

sysipaxq “ sysipxq ´ vpaiq , τax “ τx and Cax “ Cx .

(3) We have τx P N. Furthermore τx “ 0 if and only if x “ xcoo.
(4) There exists a quasicenter px of the A1-orbit of x, unique modulo the action of A1pOvq.
(5) With cn “ 1

pn´1q! , as τx Ñ `8, we have

Card ∆x “ cnτ
n´1
x ` Opτn´2

x q .

Proof. Let x and i be as in the statement.
(1) As said above, there exists λi P Kˆ

v such that x X Kvei “ Rvλiei and we have
sysipxq “ logqv |λi|. By Equations (10) and (11), we have

volv
`

pKveiq{px X Kveiq
˘

“ |λi| covolpRvq “ q
sysipxq
v qg´1 .
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The first claim of Assertion (1) follows. The second one follows from the first one and the
definition of τx.

(2) We have minw P axXKvei }w} “ |ai|minw PxXKvei }w}. Hence the first claim of As-
sertion (2) follows since |ai| “ q

´vpaiq
v . The second claim follows by summation since

| det a| “ 1. By the definition (28) of ∆x and the first claim, we have

∆ax “ tk “ pk1, . . . , knq P Zn
0 : @ i P J1, nK, ki ě ´ sysipxq ` vpaiqu .

For every i P J1, nK, there exists a1
i P Oˆ

v such that ai “ a1
i π

´p´vpaiqq
v . We may hence write

a “ a1 expk1 with a1 P A1pOvq and k1 “ p´vpa1q, . . . ,´vpanqq P Zn
0 . Therefore

∆ax “ ∆x ´ k1 , (32)

so that since A1 is Abelian, we have

Cax “ A1pOvq expp∆axqax “ A1pOvqa1 expp∆ax ` k1qx “ A1pOvq expp∆xqx “ Cx .

(3) Since the unimodular Rv-lattice x contains its coordinate sublattice xcoo, we have
covolpxcooq ě covolpxq “ covolpR n

v q, with equality if and only if x “ xcoo. Hence by
Equation (11) and by Assertion (1), we have q τx

v “
covolpxcooq

covolpR n
v q

ě 1. Therefore τx ě 0, with
equality if and only if x “ xcoo.

(4) Let P “ t τxn u and Q “ τx ´ nt τxn u. Let a “ expk where

k “ p´ sys1pxq ` P ` 1, . . . ,´ sysQpxq ` P ` 1,´ sysQ`1pxq ` P, . . . ,´ sysnpxq ` P q .

It is easy to check that k P Zn
0 by the definitions of τx “

řn
i“1 sysipxq, and of P and Q so

that τx “ nP ` Q. By the first claim of Assertion (2) and by Equation (31), the element
px “ ax is a quasicenter of A1x. If ppx is another quasicenter of A1x, if a P A1 is such that
p

px “ apx, then for every i P J1, nK, we have |ai| “
q
sysipppxq
v

q
sysippxq
v

by the first claim of Assertion (2).

Hence |ai| “ 1 by the definition (31) of the quasicenter and since τx is constant on the
A1-orbit of x by Assertion (2). Therefore a P A1pOvq, thus proving the uniqueness claim.

(5) For every m P N, let p∆pmq “ tk “ pk1, . . . , knq P Zn
0 : @ i P J1, nK, ki ě ´mu. By

Equation (32) and the definition of the quasicenter, we have

Card
`

p∆
`Xτx

n

\˘˘

ď Cardp∆xq “ Cardp∆pxq ď Card
`

p∆
`Xτx

n

\

` 1
˘˘

.

Let us prove that if c1
n “ nn´1

pn´1q! , then, as m Ñ `8, we have

Cardpp∆pmqq “ c1
nm

n´1 ` Opmn´2q . (33)

This implies Assertion (5) with cn “
c1
n

nn´1 “ 1
pn´1q! .

We start the proof by the following elementary integral computation. We consider the
Euclidean subspace Rn

0 “ tt “ pt1, . . . , tnq P Rn :
řn

i“1 ti “ 0u of the standard Euclidean
space Rn, endowed with its Lebesgue measure LebRn

0
. By invariance under translation,

this measure is proportional to the measure dt1 . . . dtn´1 on Rn
0 , and the proportionality

constant is classically computed as follows. Let u “ 1?
n

p1, 1, . . . , 1q which is a unit normal
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vector to the hyperplane Rn
0 . Let P be the fundamental polytope of the Z-lattice Zn

0 in
Rn
0 generated by the vectors

u1 “ p1,´1, 0, . . . , 0q, u2 “ p0, 1,´1, 0, . . . , 0q, . . . , un´1 “ p0, . . . , 0, 1,´1q .

Note that the first n ´ 1 coordinates of a point s1u1 ` . . . ` sn´1un´1 of the polytope P ,
with ps1, . . . , sn´1q P r0, 1sn´1, are t1 “ s1, t2 “ s2 ´ s1, . . ., tn´1 “ sn´1 ´ sn´2, so that
dt1 . . . dtn´1 “ ds1 . . . dsn´1 and dt1 . . . dtn´1pP q “ 1. Therefore

dLebRn
0

dt1 . . . dtn´1
“

LebRn
0

pP q

dt1 . . . dtn´1pP q
“ LebRn

0
pP q “ |detpu1, . . . , un´1, uq| “

?
n .

Note for future use that

covolpRn
0 {Zn

0 q “ LebRn
0

pP q “
?
n . (34)

For every α ą 0, let p∆1pαq “ tt “ pt1, . . . , tnq P Rn
0 : @ i P J1, nK, ti ě ´αu.

Lemma 4.2 For every α ą 0, we have LebRn
0

pp∆1pαqq “
?
n pnαqn´1

pn´1q! .

Proof. Up to using an homothety of ratio α, we may assume by homogeneity that α “ 1.
For every k P J1, nK, using the standard conventions that ˚0 “ 1 and

ř

H ˚ “ 0, we define
a map gk : Rn´k Ñ R by

pt1, . . . , tn´kq ÞÑ
1

pk ´ 1q!

´

k ´

n´k
ÿ

i“1

ti

¯k´1
.

Note that g1 “ 1 and gn “ nn´1

pn´1q! are constant. For all k P J1, n´1K and t1, . . . , tn´k´1 P R,
by a straightforward integration, we have

ż k´
řn´k´1

i“1 ti

´1
gkpt1, . . . , tn´k´1, sq ds “

1

pk ´ 1q!

”

´
1

k

´

k ´

n´k´1
ÿ

i“1

ti ´ s
¯k ıs“k´

řn´k´1
i“1 ti

s“´1

“ gk`1pt1, . . . , tn´k´1q .

We have ti ě ´1 and
řn

i“1 ti “ 0 for every i P J1, nK if and only if ´1 ď ti ď n´ i´
ři´1

j“1 tj
for every i P J1, n ´ 1K. Hence by an easy induction, we have, for every k P J1, n ´ 1K,

LebRn
0

pp∆1p1qq “
?
n

ż pn´1q

´1

ż pn´2q´t1

´1
. . .

ż 1´
řn´2

i“1 ti

´1
dtn´1 . . . dt2 dt1

“
?
n

ż pn´1q

´1

ż pn´2q´t1

´1
. . .

ż k´
řn´k´1

i“1 ti

´1
gkpt1, . . . , tn´kq dtn´k . . . dt2 dt1 .

When k “ n ´ 1, we get LebRn
0

pp∆1p1qq “
?
n
şpn´1q

´1 gn´1pt1q dt1 “
?
n gn, as wanted. l

By the standard Gauss counting argument, by Lemma 4.2 and by Equation (34), Equa-
tion (33) follows since

Cardpp∆pmqq „
LebRn

0
pp∆1pmqq

covolpRn
0 {Zn

0 q
“

pnmqn´1

pn ´ 1q!
. l
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4.2 The mass behavior of the compact cores of divergent diagonal orbits

In this subsection, we prove that for continuous functions with support in a fixed compact
subset of X1, most of their mass for the orbital measure µx “ µA1x (defined in Subsection
2.6) on a divergent orbit A1x is carried by the compact core of A1x as the truncated
covolume goes to infinity.

We keep denoting by x an axial unimodular Rv-lattice. We denote by

νx “ νA1x “
1

µxpCxq
µx |Cx (35)

the restriction of the orbital measure µx to the compact core Cx “ CA1x of the divergent
orbit A1x, normalized to be a probability measure on X1. It is well defined since Cx is
a nonempty compact open subset of A1x, hence 0 ă µxpCxq ă `8. It is independent of
the choice x of an element in the orbit A1x, and its support is equal to Cx. By Equation
(29), Cx “ A1pOvq expp∆xqx is the disjoint union of the clopen subsets A1pOvqpexpkqx
for k P ∆x. By the normalisation of the Haar measure of A1 in Equation (19), we have

µxpCxq “ mA1pA1pOvq expp∆xqq “ Cardp∆xq . (36)

This formula, paired with Assertion (5) of Proposition 4.1, says that up to an error term, up
to a multiplicative constant and up to a power constant depending only on n, the truncated
covolume τx is the orbital measure of the compact core of the divergent orbit A1x, again
justifying its name. With the simplified notation of Subsection 2.6, for a P A1pOvq and
k P ∆x, we have

dνxpa exppkqxq “
1

Cardp∆xq
da dk |∆x . (37)

If y P X , then Ay is divergent in X if and only if A1y is divergent in X1, and we then
similarly denote by

νy “ νAy “
1

µypCy X Ayq
µy |CyXAy

the restriction of the orbital measure µy to the compact core Cy X Ay “ ApOvq expp∆yqy
of the divergent orbit Ay, normalized to be a probability measure on X . For a P ApOvq

and k P ∆y, again with the simplified notation of Subsection (2.6) now for ApOvq, we have

dνypa exppkqyq “
1

Cardp∆yq
da dk |∆y . (38)

By Equation (20), the measure νy on X1 is an average of normalized restrictions of orbital
measures on X :

νy “
qv

qv ´ 1

ż

λPO ˆ
v

ξpλq˚νy d volvpλq . (39)

In the next lemma, we denote by } }8 the uniform norm of continuous functions with
compact support.

Lemma 4.3 For every m P N, for every continuous function f P CcpX1q with compact
support contained in X ěq´m

v
1 , for every axial element x P X1, as τx Ñ `8, we have

1

cnτ
n´1
x

µxpfq “ νxpfq ` O
´

pm ` 1q }f}8

τx

¯

.
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Similarly, for all y P X axial and f P CcpX q with support in X ěq´m
v , as τy Ñ `8, we

have
1

cnτ
n´1
y

µypfq “ νypfq ` O
´

pm ` 1q }f}8

τy

¯

.

Proof. Let m, f, x be as in the first statement (the second one is similar). We define

∆x,m “
␣

k “ pk1, . . . , knq P Zn
0 : @ i P J1, nK, ki ě ´ sysipxq ´ m

(

,

Ax,m
1 “ A1pOvq expp∆x,mq and Cx,m “ Ax,m

1 x, which respectively contain ∆x, Ax
1 and Cx.

By Equation (32) and the definition of the quasicenter, as in the proof of Proposition 4.1
(5), we have

Card
`

p∆
`Xτx

n

\

` m
˘˘

ď Cardp∆x,mq “ Cardp∆px,mq ď Card
`

p∆
`Xτx

n

\

` m ` 1
˘˘

.

Hence by Equation (33), as τx Ñ `8, we have

Cardp∆x,mq “ cnpτx ` nmqn´1 ` Oppτx ` nmqn´2q . (40)

Note that if a “ diagpa1, . . . , anq P A1∖Ax,m
1 , then there exist i P J1, nK, ki P Z and

a1
i P O ˆ

v such that ai “ a1
iπ

´ki
v and ki “ ´vpaiq ă ´ sysipxq ´ m. Hence since x is

unimodular, by the definition (17) of the systole in Subsection 2.4 and of the logarithmic
directional systoles in this section, and by Proposition 4.1 (2), we have

logqv syspaxq ď min
1ďjďn

sysjpaxq “ min
1ďjďn

psysjpxq ´ vpajqq ď sysipxq ´ vpaiq ă ´m.

Thus ax R X ěq´m
v

1 and fpaxq “ 0. Therefore, using
‚ Equations (35) and (36) for the first and second equalities (and similarly for Cx,m),
‚ Equation (40) for the third equality,
‚ with a Op q which depends only on n for τx ě nm for the last equality,

we have
ˇ

ˇ

ˇ

1

cnτ
n´1
x

µxpfq ´ νxpfq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

´ 1

cnτ
n´1
x

µx |Cx,m ´
1

Cardp∆xq
µx |Cx

¯

pfq

ˇ

ˇ

ˇ

ď

´µxpCx,mq

cnτ
n´1
x

´
µxpCxq

Cardp∆xq

¯

}f}8 “

´Cardp∆x,mq

cnτ
n´1
x

´ 1
¯

}f}8

“

´cnpτx ` nmqn´1 ` Oppτx ` nmqn´2q

cnτ
n´1
x

´ 1
¯

}f}8

“

´

`

1 `
nm

τx

˘n´1
` O

`

p1 `
nm

τx
qn´2 1

τx

˘

´ 1
¯

}f}8 “ O
´

pm ` 1q }f}8

τx

¯

,

as wanted. l

4.3 Zigzag length and continued fractions

We assume in this whole subsection that n “ 2 (and we will then use n as a variable
element of N), that K “ FqpY q and that deg v “ 1 so that Rv “ FqrY s (see Subsection
2.1). We give in this particular case a geometric interpretation (using the geodesic flow on
a Bruhat-Tits tree) and an arithmetic interpretation (using continued fraction expansions)
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of the quantities defined in Subsection 4.1. We refer for instance to [BPP, §15.1, 15.2] for
the background information.

Let Tv be the Bruhat-Tits tree of pPGL2,Kvq, see for instance [Ser2]. It is a regular
tree of degree Card P1pOv{πvOvq “ q ` 1 (since qv “ q here) and its set of vertices V Tv is
the set of homothety classes (under K ˆ

v ) rΛs of Ov-lattices Λ in Kv ˆKv. We denote by ˚v

the homothety class of the Ov-lattice Ov ˆOv generated by the canonical basis of Kv ˆKv.
The left linear action of G1 “ GL1

2pKvq on Kv ˆ Kv induces a left action of G1 on Tv,
which preserves and is transitive on the set VevenTv of vertices at even distance from ˚v. Let

a “

ˆ

πv 0
0 π ´1

v

˙

P D “ rD X SL2pRvq, which generates D » Z. The lattice Γ1 “ GL2pRvq

in G1 (or its projective version PΓ) is called the Nagao lattice, see [Nag, Weil].
We identify the projective line P1pKvq with Kv Y t8u using the map rx : ys ÞÑ xy´1 as

usual, and we endow P1pKvq with the projective action of G1. The boundary at infinity
B8Tv of Tv identifies G1-equivariantly with P1pKvq. The Nagao lattice Γ1 acts transitively
on the subset P1pKq of P1pKvq.

We denote by GTv the space of geodesic lines in Tv (that is, the set of isometric maps
ℓ : Z Ñ V Tv endowed with the compact-open topology), endowed with the action by
post-composition of G1 defined by pg, ℓq ÞÑ tg ℓ : k ÞÑ g ℓpkqu. Let

GevenTv “ tℓ P GTv : ℓp0q P VevenTvu ,

which is invariant by G1. Let ℓ˚ P GTv be the unique geodesic line with ℓ˚p´8q “ 8 P

B8Tv, ℓ˚p`8q “ 0 P B8Tv, and ℓ˚p0q “ ˚v, so that ℓ˚p2nq “ an ˚v for every n P Z.
A geodesic line ℓ in GTv, as well as its image in Γ1zGTv, is called birational if its

two points at infinity ℓp˘8q belong to P1pKq. For instance, ℓ˚ belongs to GevenTv and is
birational.

We denote by pϕnqnPZ the (discrete-time) geodesic flow on the space GTv, defined by
ϕnℓ : k ÞÑ ℓpk ` nq for all n P Z and ℓ P GTv, which commutes with the action of G1, as
well as its quotient flow on Γ1zGTv. The stabilizer of ℓ˚ for the transitive action of G1 on
GevenTv is exactly A1pOvq. Hence the map A1pOvqg ÞÑ g´1 ℓ˚ is a homeomorphism rΞ from
A1pOvqzG1 to GevenTv, which is (anti-)equivariant with respect to the actions of Γ1 on the
right on A1pOvqzG1 and on the left on GevenTv :

@ g P G1, @ γ P Γ1, rΞpA1pOvqgγq “ γ´1
rΞpA1pOvqgq .

We denote by Ξ : A1pOvqzG1{Γ1 Ñ Γ1zGevenTv the homeomorphism induced by rΞ. We
have the following crucial property relating the right action of A1 (or the commuting right
actions of D and A1pOvq) on X1 “ G1{Γ1 and the even-time geodesic flow on Γ1zGevenTv:
for every n P Z, we have rΞ ˝ a´n “ ϕ2n ˝ rΞ, or equivalently

@ g P G1, ϕ2npg ℓ˚q “ g an ℓ˚ . (41)

Refering to [Ser2] for background, the quotient graph of groups Γ1zzTv is the following
modular ray

Γ1ℓ

H´1 H0

H 1
0

H1

H0

H2

H1 H2
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where H´1 “ Γ1 X GL2pFqq, H 1
0 “ H0 X H´1 and, for every n P N,

Hn “

"ˆ

a b
0 d

˙

P Γ1 : a, d P Fˆ
q , b P FqrY s, deg b ď n ` 1

*

.

A birational geodesic line in Γ1zGTv starts from the point at infinity of the ray Γ1zTv, goes
down to the origin Γ1 ˚v, then makes some back-and-forth to the origin for some (even,
possibly zero) finite time, then goes up all the way to the point at infinity of the ray (see
[Ser2, page 116], [Pau, §6.1] and the above picture).

Half the (even) length of the birational geodesic line Γ1ℓ in Γ1zGevenTv between the
first and last time of passage through the origin Γ1 ˚v is called the zigzag length of Γ1ℓ, and
denoted by zzpΓ1ℓq P N. It is invariant under the action of the geodesic flow. For instance,
zzpΓ1ℓ˚q “ 0.

Any element f P Kv “ FqppY ´1qq may be uniquely written as a sum f “ rf s`tfu with
rf s P Rv “ FqrY s (called the integral part of f) and tfu P πvOv (called the fractional part
of f). The Artin map Ψ : πvOv∖t0u Ñ πvOv is defined by f ÞÑ

␣

1
f

(

. Any f P K “ FqpY q

has a unique finite continued fraction expansion

f “ ra0; a1, . . . , ans “ a0 `
1

a1 `
1

a2 `
1

¨ ¨ ¨ `
1

an

“
Pn

Qn
,

with a0 “ a0pfq “ rf s P Rv and if f ‰ a0 then n “ npfq P N∖ t0u is such that we
have Ψnpf ´ a0q “ 0 and ai “ aipfq “

“

1
Ψi´1pf´a0q

‰

is a nonconstant polynomial for
1 ď i ď n. The elements a0, a1, . . . , an P Rv are called the coefficients of the continued
fraction expansion of f . The fraction Pi

Qi
“ ra0; a1, . . . , ais P K is called the i-th convergent

of f and is uniquely defined by induction by

P´1 “ 1 P0 “ a0, Pi “ Pi´1ai ` Pi´2

Q´1 “ 0 Q0 “ 1, Qi “ Qi´1ai ` Qi´2
(42)

for 1 ď i ď n. We refer for instance to [Las, Sch, Pau] for background on the above notions.
The stabilizer of 8 P P1pKvq for the projective action of Γ1 is its upper triangular

subgroup H8 “
Ť

nPNHn. For every f P Kv “ P1pKvq∖t8u, there exists g P H8 such
that gf P πvOv (for instance g “

`

1 ´rf s

0 1

˘

) and if g1 P H8 also satisfies that g1f P πvOv,
then there exists u P Fˆ

q such that g1f “ upgfq. Hence every birational geodesic line ℓ

in GTv has a representative rℓ in its class ϕZΓ1ℓ modulo the (commuting) actions of the
geodesic flow and of Γ1 which starts at time ´8 from 8 P B8Tv, passes at time t “ 0
through ˚ P V Tv, and ends at a point in πvOv Ă B8Tv, unique up to multiplication by an
element of Fˆ

q . Note that t “ 0 is the time when rℓ starts its zigzag part (see Proposition 4.4
for the computation of the time rℓ ends its zigzag part). We define the continued fraction
total length cfpΓ1ℓq of Γ1ℓ as the sum of the degrees of the coefficients of the continued
fraction expansion r0; a1, a2 . . . , ans of rℓp`8q :

cfpΓ1ℓq “

n
ÿ

i“1

degpaiq .
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This does not depend on the choice of rℓ, since for all u P Fˆ
q and a1, . . . , an P Rv∖Fq, we

have ur0; a1, a2 . . . , ans “ r0;u´1a1, ua2, . . . , u
p´1qnans. We define the height htpΓ1ℓq of Γ1ℓ

as the degree of the denominator of the last convergent Pn
Qn

of rℓp`8q :

htpΓ1ℓq “ degpQnq .

The following result says that the truncated covolume of a divergent orbit in G1{Γ1 coin-
cides with the zigzag length, with the continued fraction total length and with the height
of the corresponding orbit of the even-time geodesic flow in Γ1zGevenTv.

Proposition 4.4 For every g P G1, the A1-orbit A1gR
2
v of the Rv-lattice gR 2

v is divergent
in X1 if and only if the geodesic line ΞpA1pOvqgΓ1q “ Γ1g

´1ℓ˚ P Γ1zGevenTv is birational,
and we then have

τA1gR 2
v

“ htpΓ1g
´1ℓ˚q “ cfpΓ1g

´1ℓ˚q “ zzpΓ1g
´1ℓ˚q . (43)

Proof. Let g P G1. By Corollary 3.4, we know that A1gR
2
v is divergent if and only if

g P A1GL1
2pKq.

The group GL1
2pKq acts transitively on the set of ordered pairs of distinct points of

P1pKq, since for all x, y P K, the element
`

0 1
1 ´x

˘

P GL1
2pKq maps x to 8 and the element

`

1 ´y
0 1

˘

P GL1
2pKq maps y to 0 while fixing 8. Hence if the geodesic line g´1ℓ˚ P GevenTv is

birational, then there exist h P GL1
2pKq and n P N such that hg´1ℓ˚ “ ϕ2nℓ˚ “ anℓ˚, using

Equation (41) for the last equality. Hence a´nhg´1 fixes ℓ˚, whose stabilizer is A1pOvq.
Therefore g P A1GL1

2pKq.
Conversely, assume that g P A1GL1

2pKq. Since A1 “ DA1pOvq, there exist n P Z,
h1 P A1pOvq and h P GL1

2pKq such that g “ anh1h. The points at infinity of g´1ℓ˚ are
hence equal to the points at infinity of h´1ℓ˚, which are both in P1pKq, hence g´1ℓ˚ is
birational. This proves the first claim.

Let us prove the first equality of Equation (43). If A1gR
2
v is divergent, we may assume

that g P GL1
2pKq by Corollary 3.4. By the transitivity properties of Γ1, up to multiplying

g on the left by an element of A1 XGL1
2pKq and on the right by an element of Γ1, we may

assume that g´1˚v “ ˚v and that the projective action of g´1 fixes 8 and sends 0 to the
last convergent Pn

Qn
of g´1ℓ˚p`8q. Thus g has the form

`

a b
0 d

˘

with a, b, d P K with |ad| “ 1.

In particular, we have g´1ℓ˚ “ Čg´1ℓ˚ with the above notation. Since multiplying g on the
left by an element of A1 XΓ1 does not change g´1ℓ˚p`8q, we may assume that a “ d “ 1.
Then b “ ´ Pn

Qn
. Now, we have gR 2

v “ Rve1 ` pbe1 ` e2qRv. Hence gR 2
v X Kve1 “ Rve1

and gR 2
v X Kve2 “ RvQne2. Thus by Equation (3) and the definition of the directional

systoles, we have

sys1pgR 2
v q “ logq 1 “ 0 and sys2pgR 2

v q “ logq |Qn| “ degQn ,

so that τA1gR 2
v

“ degQn “ htpΓ1g
´1ℓ˚q, as wanted. For use in the following remark, note

that if m “
P

degQn

2

T

, then by Proposition 4.1 (2), we have

sys1pa´mgR 2
v q “ ´vpπ´m

v q “ m and sys2pa´mgR 2
v q “ degQn ´ vpπ´m

v q “

YdegQn

2

]

.

(44)
The middle equality of Equation (43) follows by induction from Equation (42), noting

that deg ai ě 1 if i ě 1. The last equality follows from [Pau, §6.3, Remarque 2.]. l
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Remark. The above proof also gives that the compact core of a divergent A1-orbit A1gR
2
v

corresponds to the part of the geodesic flow orbit of a birational geodesic line Γ1ℓ in the
space Γ1zGevenTv where the base point Γ1ℓp0q lies exactly in the zigzag part: more precisely

ΞpA1pOvqCA1gΓ1q “
␣

Γ1ϕ
2k
`

Čg´1ℓ˚

˘

: 0 ď k ď zzpΓ1g
´1ℓ˚q

(

.

Note that a quasicenter px of a divergent A1-orbit x is well defined up to the action of
A1pOvq, and Ξ is a homeomorphism from A1pOvqzX1 to Γ1zGevenTv, hence looking at
the image ΞpA1pOvqpxq of the set of quasicenters is well defined. Equation (44) in the
above proof gives besides that the quasicenter of a divergent A1-orbit A1gR

2
v (defined by

Equation (31)) corresponds to the geodesic flow orbit point of a birational geodesic line in
the space Γ1zGevenTv where the base point is almost at the midpoint of the zigzag part:
more precisely

ΞpA1pOvq {A1gR 2
v q “ Γ1ϕ

2m
`

Čg´1ℓ˚

˘

where m “

QzzpΓ1g
´1ℓ˚q

2

U

.

4.4 Type and discriminant of the divergent diagonal orbits

In this section, we introduce two new invariants of the divergent diagonal orbits in X1,
we gather the technical notation that will be used in the following sections, and we give a
precise description of the divergent orbits whose equidistribution we will study.

Let x P PX be the homothety class of an Rv-lattice whose PA-orbit is divergent in
PX . By Theorem 3.1 (4), we know that the orbit PAx contains at least one homothety
class rLs of an integral Rv-lattice L. Since the normalized covolume covolpLq

covolpR n
v q

P q Z
v of L

is at least 1 as L Ă R n
v , and since any nonempty subset of N has a lower bound, there

exists at least one integral Rv-lattice Lx whose homothety class belongs to PAx and whose
covolume is minimal. We define

‚ the discriminant of the divergent PA-orbit PAx as discpPAxq “ logqv
covolpLxq

covolpR n
v q

P N
and

‚ the type of the divergent PA-orbit PAx as the set of types (see Subsection 2.2) of the
finitely many integral lattices Lx minimizing the covolume among the integral Rv-lattices
whose homothety class belongs to PAx.

We refer to the proof of Proposition 4.6 (4) for examples of divergent PA-orbits having
nonunique homothety classes of covolume-minimizing integral Rv-lattices.

We endow the infinite sets pRv∖t0uqn´1 and Rv∖t0u with the Fréchet filter of the
complementary sets of their finite subsets, and we will denote as usual by lim

`8
the limits

along this filter.
Let us introduce the notation that will be used in the remainder of this paper. In this

section, we fix an element s “ ps2, . . . , snq P pRv∖t0uqn´1 such that

D σ P BijpJ2, nKq, sσ´1p2q | sσ´1p3q | . . . | sσ´1pnq and sσ´1pnq P nZ . (45)

We then define s˚ “ sσ´1pnq P nZ. Since the valuation v is nonpositive on Rv∖t0u by
Equation (3), we have vps˚q ď 0. Note that s Ñ `8 if and only if s˚ Ñ `8, hence if and
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only if ´vpsq Ñ `8. We define (independently of the choice of such a permutation σ)

Λs “

!

`r2
s2

,
r3
s3

, . . . ,
rn
sn

˘

: @ i P J2, nK, ri P Rv and riRv ` siRv “ Rv

)

mod R n´1
v ,

∆s “
␣

k “ pk1, . . . , knq P Zn
0 : k1 ě vps˚q and @ i P J2, nK, ki ě 0

(

,

♢s “
␣

k “ pk1, . . . , knq P Zn
0 : @ i P J2, nK, 0 ď ki ď k1 ´ vps˚q

(

,

ks “

´n ´ 1

n
vps˚q,´

1

n
vps˚q, . . . ,´

1

n
vps˚q

¯

P Zn
0 ,

r∆s “ ∆s ´ ks “

!

k “ pk1, . . . , knq P Zn
0 : @ i P J1, nK, ki ě

vps˚q

n

)

,

r♢s “ ♢s ´ ks “
␣

k “ pk1, . . . , knq P Zn
0 : @ i P J2, nK,

vps˚q

n
ď ki ď k1

(

.

Let us make some comments on this notation. We have ks P ♢s Ă ∆s (see the following
picture when n “ 3). We have

CardpΛsq “

n
ź

i“2

φvpsiq , hence CardpΛps,...,sqq “ pφvpsqqn´1 , (46)

where φv is the Euler function of Rv defined in Equation (4).

♢s

ks ∆s

pt
vps3q

2 u,´t
vps3q

2 u, 0qpt
vps3q

2 u, 0,´t
vps3q

2 uq

pvps3q,´vps3q, 0qpvps3q, 0,´vps3qq

p´2, 2, 0q

p´1, 1, 0q

p0, 0, 0q

p´2, 0, 2q

p´1, 0, 1q

p´2, 1, 1q

We denote by δy the unit Dirac mass at y. With ut for t P K n´1
v defined in Equation (1),

we define two probability measures on X by

ν∆s “
1

Card Λs Card ∆s

ÿ

tPΛs, kP∆s

ż

aPApOvq

δa exppkq utR n
v
da , (47)
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and similarly, replacing ∆s by ♢s,

ν♢s “
1

Card Λs Card ♢s

ÿ

tPΛs, kP♢s

ż

aPApOvq

δa exppkq utR n
v
da . (48)

We define similarly two probability measures ν∆s and ν♢s on X1 by replacing A by A1 in
Equations (47) and (48), so that by Equation (20) we have

ν∆s “
qv

qv ´ 1

ż

λPO ˆ
v

ξpλq˚ν
∆
s d volvpλq . (49)

We denote by Sn the permutation group of J1, nK, and by Sn´1 the stabilizer of t1u

in Sn. The group Sn´1 acts K-linearly on Kn´1 (preserving the subset pRv∖t0uqn´1) by
σ ¨ t “ ptσ´1p2q, . . . , tσ´1pnqq for all σ P Sn´1 and t “ pt2, . . . , tnq P Kn´1. By construction,
for all σ P Sn´1 and s P pRv∖t0uqn´1, the element s satisfies Equation (45) if and only if
σ ¨ s does, and we have

Λσ¨s “ σ ¨ Λs, vppσ ¨ sq˚q “ vps˚q, ∆σ¨s “ ∆s, ♢σ¨s “ ♢s, and kσ¨s “ ks . (50)

The group Sn acts Z-linearly on Zn
0 by σ ¨k “ pkσ´1p1q, . . . , kσ´1pnqq for all σ P Sn and

k “ pk1, . . . , knq P Zn
0 . Note that the subset r∆s of Zn

0 is invariant under the action of Sn.
As said above, the subsets ∆s and ♢s of Zn

0 , as well as their point ks, are invariant under
the action of Sn´1 “ StabSnt1u. Let σn “ p1 . . . nq be the standard n-cycle in Sn. The
cyclic group σ Z

n of order n generated by σn acts freely on r∆s∖t0u where 0 “ p0, . . . , 0q.
The subset r♢s is a (weak) fundamental domain for the action of σ Z

n on r∆s : we have (with
nondisjoint union)

r∆s “

n´1
ď

j“0

σ j
n ¨ r♢s .

For every σ P Sn, we denote by Pσ P GLnpKvq “ GLpK n
v q the corresponding per-

mutation matrix of the canonical basis pe1, . . . , enq of K n
v , so that Pσpeiq “ eσpiq for

every i P J1, nK. The map σ ÞÑ Pσ is a group morphism from Sn to GLnpKvq. This
Kv-linear action of Sn on K n

v gives an action of Sn on the set of Rv-lattices x of K n
v

by x ÞÑ σpxq “ tPσpwq : w P xu, that preserves X1 since the determinant of Pσ is the
signature εpσq P t˘1u of σ for every σ P Sn.

Lemma 4.5 For every s P pRv∖t0uqn´1 satisfying Equation (45) and for every σ P Sn´1,
we have ν∆σ¨s “ σ˚pν∆s q, ν♢σ¨s “ σ˚pν♢s q, ν∆σ¨s “ σ˚p ν∆s q and ν♢σ¨s “ σ˚p ν♢s q.

Proof. We only prove the first equality. The proofs of the other ones are similar. Let σ, s
be as in the statement. Let a P ApOvq, k P Zn

0 and t P Kn´1. Since uσ¨t “ PσutP
´1
σ and

R n
v is invariant by P´1

σ , we have

σpa exppkq ut R
n
v q “ Pσ a exppkq ut R

n
v “ Pσ aP

´1
σ Pσ exppkqP´1

σ Pσut P
´1
σ R n

v

“ pPσ aP
´1
σ q exppσ ¨ kq uσ¨t R

n
v .
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For every σ P Sn, the conjugation by Pσ in GLnpKvq preserves ApOvq and its Haar
measure. Hence, by Equation (50) and by changes of variables in the sums and integral,
we have

ν∆σ¨s “
1

Card Λσ¨s Card ∆σ¨s

ÿ

tPΛσ¨s, kP∆σ¨s

ż

aPApOvq

δa exppkq utR n
v
da

“
1

Card Λs Card ∆s

ÿ

tPΛs, kP∆s

ż

aPApOvq

δ
pPσaP

´1
σ q exppσ¨kq uσ¨tR n

v
da “ σ˚

`

ν∆s
˘

. l

Note for future use that for all σ P Sn, a P A1pOvq, k P Zn
0 and t P Kn´1, we have

σ
`

a exppkq ut R
n
v

˘

“ exppσ ¨ kq σpa ut R
n
v q . (51)

For every t “
`

t2, . . . , tn
˘

P K n´1
v , let

xt “ utR
n
v “ Rv

´

e1 `

n
ÿ

i“2

ti ei

¯

` Rv e2 ` . . . ` Rv en . (52)

Note that xt P X since ut P G “ SLnpKvq. We have x0 “ R n
v , and if t1 P t ` R n´1

v , then
xt1 “ xt. Note that xt is a unimodular Rv-lattice, which is rational if and only if t P Kn´1

and integral if and only if t P R n´1
v . For every i P J2, nK, we have xt X pKveiq “ Rv ei.

Hence by the definition of the directional systoles and by Equation (3), we have

@ i P J2, nK, sysipxtq “ logqv min
sPRv∖t0u

|s| “ 0 . (53)

Since
xt X pKve1q “ tλ1e1 : λ1 P Rv and @ i P J2, nK, λ1ti P Rvu , (54)

the Rv-lattice xt is axial if and only if it is rational, hence if and only if t P Kn´1.

Proposition 4.6 Let s P pRv∖t0uqn´1 satisfying Equation (45). Let t “
`

r2
s2
, . . . , rnsn

˘

P Λs.
(1) The first directional systole of the Rv-lattice xt is sys1pxtq “ ´vps˚q. The truncated

covolume of the A1-orbit of xt is τxt “ ´vps˚q. The coordinate sublattice of xt is
pxtq

coo “ Rv s˚ e1 ` Rv e2 ` ¨ ¨ ¨ ` Rv en. The compact core of the A1-orbit of xt is
Cxt “ A1pOvq expp∆sqxt. A quasicenter of the A1-orbit of xt is pxt “ exppksqxt.

(2) As s Ñ `8, we have

Card ♢s “
1

n!
p´vps˚qqn´1 `Opp´vps˚qqn´2q “

1

n
Card ∆s `Opp´vps˚qqn´2q . (55)

(3) We have xt X R n
v “ Rv s˚ e1 ` Rv e2 ` ¨ ¨ ¨ ` Rv en “ pxtq

coo. Hence the type of the
integral lattice xt X R n

v is p1, . . . , 1, s˚q.
(4) The PA-orbit of the homothety class of xt has discriminant

śn
i“2 |si| and has type

tp1, sσ´1p2q, . . . , sσ´1pnqqu where σ P Sn´1 is such that sσ´1p2q | . . . | sσ´1pnq.
(5) With νy for y P X the probability measure given by Equation (38), we have

ν∆s “
1

Card Λs

ÿ

tPΛs

νxt .
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As s Ñ `8 in Rv∖t0u with vpsq P nZ, defining s “ ps, . . . , sq P pRv∖t0uqn´1, for
every f P CcpX q, we have

ν∆s pfq “
1

n

n´1
ÿ

j“0

pσ j
n q˚ν

♢
s pfq ` O

´

}f}8

´vpsq

¯

.

Proof. If r2, . . . , rn, r1
2, . . . , r

1
n P Rv satisfy r1

2 ” r2 mod s2, . . . , r
1
n ” rn mod sn, and if

t “
`

r2
s2
, . . . , rnsn

˘

, t1 “
` r1

2
s2
, . . . , r

1
n
sn

˘

, then we have t1 ´t P R n´1
v and xt “ xt1 . In particular,

the Rv-lattice xt, as well as the measures νxt , ν∆s and ν♢s , do not depend on the choice of
representatives of the elements t in the index set Λs Ă Kn´1{Rn´1

v .

(1) By Equation (54), the set xt X pKve1q consists in the elements λ1e1 where λ1 P Rv

is such that, for every i P J2, nK, we have λ1
ri
si

P Rv. Since ri is invertible modulo si
and by Equation (45), this occurs if and only if λ1 P

Şn
i“2 siRv “ s˚ Rv. Hence we have

xt X pKve1q “ s˚ Rv. By the definition of the first directional systole, this proves the first
claim. By the definition (27) of the truncated covolume and by Equation (53), we hence
have τxt “

řn
i“1 sysipxtq “ ´vps˚q. By the definition (30) of the coordinate sublattice, we

have

pxtq
coo “ pxt X Kve1q ` . . . ` pxt X Kvenq “ Rv s˚ e1 ` Rv e2 ` ¨ ¨ ¨ ` Rv en .

By Equation (28), by the above computation of the directional systoles of xt and by the
definition of ∆s, we have ∆xt “ ∆s. This gives the description of the compact core of the
A1-orbit of xt by Equation (29).

Recall that ´vps˚q P nN and that ks “
`

k1 “ n´1
n vps˚q, k2 “ ´

vps˚q

n , . . . , kn “ ´
vps˚q

n

˘

.
By the first claim of Proposition 4.1 (2), we have that

sysipexppksqxtq “ sysipxtq ´ vpπ´ki
v q “ sysipxtq ` ki

is equal to ´
vps˚q

n if i P J2, nK by Equation (53) and to ´vps˚q ` n´1
n vps˚q “ ´

vps˚q

n if
i “ 1. The description of the quasicenters of the A1-orbit of xt (well-defined up to left
translation by an element of A1pOvq) then follows from their definition that requires, by
Equation (31) and since τxt “ ´vps˚q P Z, that we have sysip pxtq “

τxt
n “ ´

vps˚q

n for every
i P J1, nK.

(2) Using the facts that ∆xt “ ∆s and τxt “ ´vps˚q seen in Assertion (1), the first
equality in Equation (55) follows by the same proof as the one of Proposition 4.1 (5), by
comparing with the Euclidean volume of the polytop

p♢1pαq “
␣

t “ pt1, . . . , tnq P Rn
0 : @ i P J2, nK, 0 ď ti ď t1 ` α

(

for α “ ´vps˚q whose images under the powers σ 0
n , σ

1
n , . . . , σ

n´1
n of σn have pairwise

disjoint interior and cover ∆1pαq. The second equality in Equation (55) then follows from
Proposition 4.1 (5).

(3) Let λ1, . . . , λn P Rv. We have λ1

`

e1 `
řn

i“2
ri
si

ei
˘

`
řn

i“2 λi ei P R n
v if and only if

for every i P J2, nK we have λ1
ri
si

P Rv, hence if and only if λ1 P s˚ Rv as seen in Assertion
(1). The result follows by Equation (52).
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(4) Let a P rA be a diagonal matrix with diagonal coefficients a1, . . . , an P K ˆ
v . The

Rv-lattice a xt “ Rv

`

a1 e1 `
řn

i“2
ri
si

ai ei
˘

` Rv a2 e2 ` . . . ` Rv an en is integral, that is
contained in R n

v , if and only if ai P Rv for every i P J2, nK, a1 P Rv and ri
si

ai P Rv for
every i P J2, nK, hence if and only if a1 P Rv and ai P siRv for every i P J2, nK since ri is
invertible modulo si,

Recall that by Equation (3), for every z P Rv∖t0u, we have |z| ě 1, with equality if
and only if z P Rˆ

v . Recall that xt is unimodular. Hence by Equation (10), we have

covolpa xtq

covolpR n
v q

“ |det a|
covolpxtq

covolpR n
v q

“

n
ź

i“1

|ai| ě

n
ź

i“2

|si|

with equality if and only if a1 P Rˆ
v and ai P siR

ˆ
v for every i P J2, nK. Therefore

the integral Rv-lattices contained in elements of the orbit rAxt with minimal covolume
are exactly the Rv-lattices L “ Rv

`

e1 `
řn

i“2 ri a
1
i ei

˘

` Rv s2 e2 ` . . . ` Rv sn en where
a1
2, . . . , a

1
n P Rˆ

v . Note that there is no uniqueness of such an Rv-lattice L in general.
Since R n

v “ Rv

`

e1 `
řn

i“2 ri a
1
i ei

˘

` Rv e2 ` . . . ` Rv en by an immediate change of
Rv-basis, the Rv-module R n

v {L is isomorphic to
śn

i“2Rv{psiRvq for every such L. All such
integral lattices L hence have the same type, and this proves the result by Equation (45).

(5) Since ∆xt “ ∆s for every t P Λs by Assertion (1), the first claim of Assertion (5)
follows from the definitions of the measure ν∆s in Equation (47) and of the measure νy for
any Rv-lattice y P X in Equation (38).

Let us prove the second claim of Assertion (5), which uses the symmetry of the pn´1q-
uples ps, . . . , sq for s P Rv. We start with a computational lemma.

We fix s P Rv with vpsq P nZ and we consider the pn ´ 1q-uple s “ ps, . . . , sq. Let
a P ApOvq with diagonal coefficients a1, . . . , an and let t “

`

r2
s , . . . ,

rn
s

˘

mod R n´1
v P Λs.

Let s1 P O ˆ
v be such that s “ π

vpsq
v s1, and let rn P Rv be an inverse of rn modulo s. Let

a1 be the element of ApOvq with diagonal coefficients

a1
1 “ ps1q´1an, a

1
2 “ s1a1, a

1
3 “ a2, . . . , a

1
n “ an´1 .

Note that the map a ÞÑ a1 is a homeomorphism of ApOvq preserving its Haar measure. Let
t1 “

`

rn
s ,

rn r2
s , . . . , rn rn´1

s

˘

mod R n´1
v , and note that the map t ÞÑ t1 is a bijection of Λs

with inverse
` r1

2
s , . . . ,

r1
n
s

˘

mod R n´1
v ÞÑ

` r1
2 r

1
3

s , . . . ,
r1
2 r

1
n

s ,
r1
2
s

˘

mod R n´1
v .

Lemma 4.7 Denoting by ya,t the Rv-lattice a exppksqxt P X , we have σnpya,tq “ ya1,t1.

Proof. Let w “ s´1
`

a1
2 e1 `

řn
j“2 rj aj ej

˘

P K n
v . Since π

´n´1
n

vpsq
v a1 “ π

vpsq

n
v s´1a1

2, by
Equation (52) and by the diagonal action, we have

ya,t “ a exppksqxt “ π
vpsq

n
v

`

Rv w `

n
ÿ

j“2

Rv aj ej
˘

.

In particular, π
vpsq

n
v w, π

vpsq

n
v a2e2, . . . , π

vpsq

n
v anen belong to ya,t. Hence π

vpsq

n
v a1

2 e1 belongs
to ya,t since a1

2 e1 “ s w ´
řn

j“2 rj aj ej and s, r2, . . . , rn P Rv. Let w1 “ rn w, so that

π
vpsq

n
v w1 “ rn pπ

vpsq

n
v wq belongs to the Rv-lattice ya,t, and

ya,t “ π
vpsq

n
v

`

Rv w ` Rv w
1 ` Rv a

1
2 e1 `

n
ÿ

j“2

Rv aj ej
˘

.
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Let s0 P Rv be such that 1 “ rn rn`s s0, so that w “ rnw
1 `s0

`

a1
2 e1`

řn
j“2 rj aj ej

˘

and
we can remove Rv w in the above expression of ya,t. Therefore, plugging in the expressions
of w1 “ rn s´1

`

a1
2 e1 `

řn
j“2 rj aj ej

˘

and a1
2 “ s1a1, we have

ya,t “ π
vpsq

n
v

´

Rv s
´1
`

rn ps1 a1q e1 ` prn r2q a2 e2 ` . . . ` prn rn´1q an´1en´1 ` s1ps1´1 anqen
˘

` Rv ps1 a1q e1 ` Rv a2 e2 ` . . . ` Rv an´1 en´1 ` Rv s
1ps1´1 anq en

¯

.

The result follows by the action Pσn : ei ÞÑ ei`1 (for i P J1, nK modulo n) of σn on the
canonical basis, and by the definition of a1 and t1. l

Recall that s “ ps, . . . , sq till the end of the proof of the second claim of Assertion
(5). Since we have a exppkq utR

n
v “ exppk ´ ksq ya,t and by using the change of variable

k P ♢s ÞÑ k ´ ks P r♢s in Equation (48), we have

ν♢s “
1

Card Λs Card ♢s

ÿ

tPΛs, kPr♢s

ż

aPApOvq

δexppkq ya,t da . (56)

Similarly, by Equation (47), we have

ν∆s “
1

Card Λs Card ∆s

ÿ

tPΛs, kPr∆s

ż

aPApOvq

δexppkq ya,t da . (57)

Let r♢7
s be a strict fundamental domain for the (free) action of σ Z

n on r∆s∖t0u, so that

␣

k “ pk1, . . . , knq P Zn
0 : @ j P J2, nK,

vpsq

n
ď kj ă k1

(

Ă r♢7
s Ă r♢s

and r∆s∖ t0u “
Ůn´1

j“0 σ j
n ¨ r♢7

s (see the picture at the beginning of this Section for an
illustration when n “ 3 of this partition, after translating by ´ks). By the standard Gauss
counting argument and by Assertion (2) applied with s “ s “ ps, . . . , sq, we have

Card
`

r♢s∖r♢7
s

˘

Card ♢s
“ O

´ 1

´vpsq

¯

and
Card ∆s

Card ♢s
“ n ` O

´ 1

´vpsq

¯

. (58)

Let
ν7
s “

1

Card Λs Card ♢s

ÿ

tPΛs, kPr♢7
s

ż

aPApOvq

δexppkq ya,t da ,

so that by Equation (56) and by the left hand part of Equation (58), for every f P CcpX q,
we have

ν♢s pfq “ ν7
spfq ` O

´

}f}8

´vpsq

¯

. (59)

By Equation (51) and by Lemma 4.7, we have

pσnq˚δexppkq ya,t “ δσnpexppkq ya,tq “ δexppσn¨kq σnpya,tq “ δexppσn¨kq ya1,t1
.

By the changes of variable a ÞÑ a1 in the integral, and k ÞÑ σn ¨ k as well as t ÞÑ t1 in the
sum, we hence have

pσnq˚ν
7
s “

1

Card Λs Card ♢s

ÿ

t PΛs, k Pσn¨ r♢7
s

ż

aPApOvq

δexppkq ya,t da .
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By iteration, we therefore have

1

n

n´1
ÿ

j“0

pσ j
n q˚ν

7
s “

1

n Card Λs Card ♢s

ÿ

t PΛs, k P
Ůn´1

j“0 σ j
n ¨ r♢7

s

ż

aPApOvq

δexppkq ya,t da .

By Assertion (2), for every f P CcpX q, we have

1

n Card Λs Card ♢s

ÿ

tPΛs

ż

aPApOvq

fpya,tq da “ O
´

}f}8

p´vpsqqn´1

¯

“ O
´

}f}8

´vpsq

¯

.

Since r∆s “ t0u Y
Ůn´1

j“0 σ j
n ¨ r♢7

s, by Equations (59) and (57) and by the right hand part of
Equation (58), the result follows. l

The aim of the following sections will be to prove that the probability measures ν♢s
weak-star converge as s Ñ `8 (with appropriate conditions the components of s that
are satisfied if they are all equal and have absolute values equal to a multiple of n) to
the G-homogeneous measure mX on X , renormalized to be a probability measure, see
Theorem 8.1. In the particular case when s “ ps, s, . . . , sq, this will imply Theorem 1.2 by
the following lemma. We denote by cK,n the constant defined in the statement of Theorem
1.2.

Lemma 4.8 Assume that lim
sÑ8, vpsq PnZ

ν♢
ps,...,sq

“
mX

}mX }
. Then

lim
sÑ8, vpsq PnZ

cK,n

pφvpsq logqv |s| qn´1

ÿ

tPΛps,...,sq

µutR n
v

“ mX1 .

Proof. For every s P Rv such that vpsq P nZ, let s “ ps, s, . . . , sq P pRv∖t0uq n´1. By the
assumption of the lemma and by a finite average using the last claim of Proposition 4.6
(5) (the only point where we use the symmetry of s), we have lim

sÑ8, vpsq PnZ
ν∆s “

mX
}mX }

.

By the first claim of Proposition 4.6 (5) and by Equation (46) on the right, we have
ν∆s “ 1

pφvpsqqn´1

ř

tPΛs
νxt . By Proposition 4.6 (1), we have τxt “ ´vpsq “ logqv |s| for

all t P Λs. Hence by the last claim of Lemma 4.3 (and the definition of the weak-star
convergence), we have

lim
sÑ8, vpsq PnZ

1

cn pφvpsq logqv |s| qn´1

ÿ

tPΛs

µxt “
mX

}mX }
. (60)

Again by averaging, this time over the compact probability space pO ˆ
v {Rˆ

v , qvpq´1q

qv´1 vol1vq

defined at the end of Section 2.3, and using Equations (21) and (16), we have

lim
sÑ8, vpsq PnZ

1

cn pφvpsq logqv |s| qn´1

ÿ

tPΛs

µxt
“

mX1

}mX1}
.

By Equation (15) giving the value of }mX1} and by Proposition 4.1 (5) giving the value of
cn, we have

}mX1}

cn
“

pn ´ 1q! pqv ´ 1q

qv pq ´ 1q

n´1
ź

i“1

ζvp´iq

q i
v ´ 1

.
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This is exactly the value of the constant cK,n defined in the statement of Theorem 1.2.
The result follows. l

Remark. Equation (60) says that the distribution statement in X analogous to the one
of Theorem 1.2 in X1 will also follow from Theorem 8.1.

5 The high entropy method for equidistribution problem

In this section, we explain how we are going to use entropy technics in homogeneous
dynamics of diagonal actions (that are currently more and more used, see for instance
[EL, LSS, ELW, KiLP]) in order to prove the equidistribution of our families of measures.
We start by a brief reminder of entropy theory.

Let pX 1, µ1q be a Borel probability space, ϕ : X 1 Ñ X 1 a measurable map, and P,P 1

finite measurable partitions of X 1.
We denote by ϕ´1P “ tϕ´1pBq : B P P, ϕ´1pBq ‰ Hu the pull-back partition and

by P _ P2 “ tB X B1 : B P P, B1 P P 1, B X B1 ‰ Hu the joint partition. Using the
convention 0 logqv 0 “ 0, the entropy of the partition P with respect to µ1 is

Hµ1pPq “ ´
ÿ

PPP

µ1pP q logqv µ
1pP q P r0,8r .

The usual definition of the entropy of a partition uses the Neperian logarithm ln in-
stead of logqv , but the above convention will be technically easier in this paper. We
have Hϕ˚µ1pPq “ Hµ1pϕ´1Pq. We have the following concavity properties of the entropy
of a partition as a function of the measure.

Lemma 5.1 (David-Shapira [DS2, Lem 3.4]) Let pX 1, µ1q, ϕ,P be as above.
(1) For all M ď N in N∖t0u, we have

1

M
H 1

N

řN´1
i“0 pϕiq˚µ1

´

M´1
ł

i“0

ϕ´iP
¯

ě
1

N
Hµ1

´

N´1
ł

i“0

ϕ´iP
¯

´
M

N
logqv Card P .

(2) Let pΩ, ωq be a probability space and let x ÞÑ µ1
x be a measurable map from Ω to the

space of probability measures on X 1 such that µ1 “
ş

xPΩ µ1
x dωpxq. Then we have

Hµ1pPq ě
ş

xPΩHµ1
x
pPq dωpxq. l

If ϕ preserves the measure µ1, the (dynamical) entropy of ϕ with respect to µ1 is defined
by hµ1pϕq “ supP hµ1pϕ,Pq where the least upper bound is taken over all finite measurable
partitions P of X 1 and

hµ1pϕ,Pq “ lim
MÑ`8

1

M
Hµ1

´

M´1
ł

i“0

ϕ´iP
¯

. (61)

The following result says that the homogeneous measure mX is after renormalisation
the unique probability measure of maximal entropy on the space X for the transformation
a “

` π n´1
v 0

0 π ´1
v In´1

˘

given by Equation (2).

Theorem 5.2 (Einsiedler-Lindenstrauss) Let ν be an a-invariant probability measure
on X . Then hνpaq ď h mX

}mX }

paq “ npn ´ 1q with equality if and only if ν “
mX

}mX }
.
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We will apply this theorem in Section 8 to every weak-star accumulation point ν of the
measures ν♢s as s tends appropriately to `8. Since the space X is not compact, we will
first need to prove that ν is a probability measure (see the arguments in Section 7), and
then that its entropy hνpaq is equal to h mX

}mX }

paq (see Section 8).

Proof. Let G be the algebraic group SLn over the local field Kv and let G “ SLnpKvq be
its locally compact group of Kv-points, so that Γ “ SLnpRvq is a lattice in G. Let

G´ “ tg P G : lim
iÑ´8

aiga´i “ Inu “
␣`

1 0
b In´1

˘

: b P K n´1
v

(

and
G` “ tG´ “ tg P G : lim

iÑ`8
aiga´i “ Inu “

␣`

1 tb
0 In´1

˘

: b P K n´1
v

(

be respectively the unstable and stable horospherical groups of a in G. By [BoT, Prop 4.11],
the groups G´ and G` generate a normal subgroup H of G. It is well known that H “ G
when n “ 2. Hence H contains the copies of SL2pKvq with upper and lower unipotent sub-
groups contained in G´ and G` respectively. Therefore H contains the diagonal subgroup
A of G, thus contains properly the center of G, hence is equal to G since PSLnpKvq is
simple. By [EL, Th. 7.10], the normalized Haar measure mX

}mX }
of the homogeneous space

G{Γ is hence the unique measure of maximal entropy on G{Γ for the left action of a.
The entropy of a with respect to the homogeneous measure of mX

}mX }
is well-known

(see for instance [EL, §7.8]) to be the logarithm (in basis qv for entropy computations in
nonarchimedian local fields with residual fields of order qv) of the unstable Jacobian of
a. That is, with u´ the strict lower triangular linear subspace of the Lie algebra slnpKvq

of SLnpKvq, with basis the family of elementary matrices pEi,jq1ďjăiďn, since we have
Ad a pEi,jq “ π ´n

v Ei,j if j “ 1 and Ad a pEi,jq “ Ei,j otherwise, we have

h mX
}mX }

paq “ logqv | detpAd aq| u´ | “ logqv

ˇ

ˇ

ˇ

n
ź

j“2

π ´n
v

ˇ

ˇ

ˇ
“ npn ´ 1q . l

6 Constructing high entropy partitions from dynamical neigh-
borhoods

In this section, using the contraction and dilation properties of the action of the diagonal
element a “

` π n´1
v 0

0 π ´1
v In´1

˘

on its unstable and stable horospherical subgroups G´ and
G`, we give a construction of good measurable partitions in the homogeneous space X ,
that will turn out in Section 8 to be well adapted in order to obtain entropy lower bounds
of a-invariant measures. This construction is essentially due to [ELMV2, Lem. 4.5] in
dimension 2 (see [DS1, Lem. 2.9] correcting a small inaccuracy in [ELMV2]) and to [DS2,
Lem. 3.7] for any dimension, see also [LSS, §2.3], [KiKL, §3.3], all these references in the
real case, and [KiLP, §6.1] in the function fields case.

6.1 Dynamical neighbourhoods in SLnpKvq

We first define the dynamical neighbourhoods of the identity element In in SLnpKvq that
we will consider.
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We denote by } } : MnpKvq Ñ r0,`8r the ultrametric norm on MnpKvq defined by
pxijq1ďi,jďn ÞÑ max1ďi,jďn |xij |, which is, since the absolute value of Kv is ultrametric, a
submultiplicative norm on the Kv-algebra MnpKvq.

For all ℓ,N P Z, let

Wℓ,N “ tw “ pwi,jq1ďi,jďn P MnpKvq : }w} ď q ´ℓ
v and @ i P J2, nK, |wi,1| ď q ´pℓ`nNq

v u,

“ tw P Mnpπ ℓ
v Ovq : @ i P J2, nK, wi,1 P π ℓ`nN

v Ovu,

Bℓ,N “ pIn ` Wℓ,N q X SLnpKvq . (62)

We also define Wℓ “ Wℓ,0 “ Mnpπℓ
vOvq and Bℓ “ Bℓ,0. For all ℓ, ℓ1, N P Z, by the

ultrametric inequalities, we have

Wℓ,N ` Wℓ1,N Ă Wminpℓ,ℓ1q,N and Wℓ,NWℓ1,N Ă Wℓ`ℓ1,N . (63)

We also have the following decreasing properties Wℓ,N`1 Ă Wℓ,N , Bℓ,N`1 Ă Bℓ,N in the
parameter N and, in the parameter ℓ,

Wℓ`1,N Ă Wℓ,N , Bℓ`1,N Ă Bℓ,N ,
č

ℓPN
Wℓ,N “ t0u,

č

ℓPN
Bℓ,N “ tInu . (64)

Since the multiplication by an element of Oˆ
v preserves the absolute value on Kv, for every

a P ApOvq, we have

aWℓ,N a´1 “ Wℓ,N and aBℓ,N a´1 “ Bℓ,N (65)

The action by conjugation of the transformation a on these dynamical balls Wℓ,N and Bℓ,N

satisfy the following contraction/dilation properties: For all ℓ, ℓ1, N P Z, we have

aℓ
1

Wℓ,N a´ℓ1

“

!

w P MnpKvq :
@ i, j P J2, nK, w1,1, wi,j P π ℓ

v Ov,

wi,1 P π
ℓ`pN´ℓ1qn
v Ov, w1,j P π ℓ`nℓ1

v Ov

)

Ă Wmintℓ, ℓ`nℓ1u, N´ℓ1

hence aℓ
1

Bℓ,N a´ℓ1

Ă Bmintℓ, ℓ`nℓ1u, N´ℓ1 . (66)

The dynamical neighbourhoods Wℓ,N and Bℓ,N satisfy the following three elementary lem-
mas. The first one says that the balls Bℓ,N are invariant upon taking inverses.

Lemma 6.1 Let N P N, ℓ P N∖t0u and w P Wℓ,N . Then pIn `wq´1 P In ´w `W2ℓ,N . In
particular, we have pBℓ,N q´1 “ Bℓ,N .

Proof. By Equations (63) and (64), we have wi P Wiℓ,N and limiÑ`8 wi “ 0 since ℓ ą 0.
Hence In `w is invertible with pIn `wq´1 “ In ´w`

ř8
i“2p´1qiwi. By Equation (63) and

since W2ℓ,N is closed, we have
ř8

i“2p´1qiwi P W2ℓ,N . In particular we have the inclusion
pBℓ,N q´1 Ă Bℓ,N , and equality holds by taking the inverses. l

The next lemma is a version, for dynamical balls in X of the form Bℓ,N x centred at
any point x P X , of the intersection property of ultrametric balls.

Lemma 6.2 For all N P N, ℓ P N∖t0u and x, y P X with Bℓ,N x X Bℓ,N y ‰ H, we have
Bℓ,N x “ Bℓ,N y.
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Proof. First notice the inclusion

Bℓ,NBℓ,N Ă ppIn ` Wℓ,N qpIn ` Wℓ,N qq X SLnpKvq

Ă pIn ` Wℓ,N ` W2ℓ,N q X SLnpKvq Ă Bℓ,N . (67)

Let g, h P Bℓ,N be such that gx “ hy. Using Lemma 6.1 and the latter inclusion, we have

Bℓ,N x “ Bℓ,N g´1hy Ă Bℓ,N pBℓ,N q´1Bℓ,N y “ Bℓ,NBℓ,NBℓ,N y Ă Bℓ,N y .

By symmetry, the result follows. l

The final lemma gives a quantitative covering property for any dynamical ball Bℓ,N in
SLnpKvq by smaller dynamical balls Bℓ`ℓ1,Ngi.

Lemma 6.3 Let N P N and ℓ, ℓ1 P N∖t0u with ℓ1 ď ℓ. Let S Ă Bℓ,N . Then, there exist an
integer C ď pq ℓ1

v qn
2 and matrices g1, . . . , gC P S such that

S Ă

C
ğ

i“1

Bℓ`ℓ1,N gi .

Proof. We may assume that S is nonempty, otherwise C “ 0 works. As a preliminary
remark, let us prove that for all integers ℓ, ℓ1 ą 0, there exist an integer C ď pq ℓ1

v qn
2 and

points w1, . . . , wC P Wℓ,N such that

Wℓ,N “

C
ğ

i“1

pwi ` Wℓ`ℓ1,N q . (68)

Indeed, recall that Equation (8) when n “ 1 gives volvpπ ℓ`ℓ1

v Ovq “ q ´ℓ1

v volvpπ ℓ
v Ovq. Let

txi : i P Iu be a set of representatives of the classes in π ℓ
v Ov{π ℓ`ℓ1

v Ov, so that we have
a partition π ℓ

v Ov “
Ů

iPIpxi ` π ℓ`ℓ1

v Ovq. Furthermore, by the invariance of volv under
translations, we have CardpIq ď volvpπ ℓ

v Ovq{ volvpπ ℓ`ℓ1

v Ovq “ q ℓ1

v . The same argument
replacing ℓ by ℓ`nN proves that π ℓ`nN

v Ov can be covered by at most q ℓ1

v pairwise disjoint
translates of the ball π ℓ`ℓ1`nN

v Ov. Equation (68) follows by applying this construction for
each matrix entries.

Now, take C ď pq ℓ1

v qn
2 and w1, . . . , wC P Wℓ,N as in Equation (68). We obtain a

partition

S “

C
ğ

i“1

pIn ` wi ` Wℓ`ℓ1,N q X SLnpKvq X S .

Up to decreasing C, we may assume that the set Si “ pIn `wi `Wℓ`ℓ1,N q XSLnpKvq XS is
nonempty for every i P J1, CK. Let us fix an element gi P Si and let us prove that we have
pIn ` wi ` Wℓ`ℓ1,N q g´1

i X SLnpKvq Ă Bℓ`ℓ1,N . By Equations (63) and (64), since ℓ1 ď ℓ
and In P W0,N , we have

w 2
i P Wℓ,NWℓ,N Ă W2ℓ,N Ă Wℓ`ℓ1,N and Wℓ`ℓ1,NW2ℓ,N Ă W3ℓ`ℓ1,N Ă Wℓ`ℓ1,N ,

pIn ` wiqW2ℓ,n Ă pW0,N ` Wℓ,N qW2ℓ,N Ă W0,NW2ℓ,N Ă W2ℓ,N Ă Wℓ`ℓ1,N .
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By Lemma 6.1, we know that g´1
i P In ´ wi ` W2ℓ,N . We hence have

pIn ` wi ` Wℓ`ℓ1,N q g´1
i Ă pIn ` wi ` Wℓ`ℓ1,N qpIn ´ wi ` W2ℓ,N q

Ă In ´ w2
i ` pIn ` wiqW2ℓ,N ` Wℓ`ℓ1,N pIn ´ wiq ` Wℓ`ℓ1,NW2ℓ,N

Ă In ` Wℓ`ℓ1,N .

We obtain the inclusions Si Ă Bℓ`ℓ1,N gi by taking the intersection with SLnpKvq, so that
S Ă

ŤC
i“1Bℓ`ℓ1,N gi. Up to decreasing C, we may assume that this intersection is disjoint

by using Lemma 6.2. This concludes the proof. l

6.2 Dynamical partitions in X

We now construct measurable partitions of X , that will be useful for entropy lower bounds
computations. We start with a systole minoration result for Rv-lattices that are close
enough to the standard “cubic” Rv-lattice. Recall that the map exp is defined just before
Subsection 2.6 and the systole function in Subsection 2.4.

Lemma 6.4 Let ℓ, d P N∖ t0u, k “ pk1, . . . , kdq P Zd and g P MdpKvq be such that
}g} ď q´ℓ

v . Then if L “ pId ` exppkq g expp´kqqR d
v , we have syspLq ě 1 ´ q´ℓ

v .

Proof. By the equality case of the ultrametric triangular inequality and since }g} ă 1,
note that |detpId ` gq| “ maxσPSd

ś

1ďiďd |pId ` gqiσpiq| “ 1, hence Id ` g belongs to
G1 and so does exppkqpId ` gq expp´kq. Therefore L is indeed an Rv-lattice in K d

v and
covolpLq “ covolpR d

v q by Equation (10).
By Equation (17), assume for a contradiction that syspLq “ minwPL∖t0u }w} ă 1´ q´ℓ

v .
Let x “ px1, . . . , xdq P R d

v ∖ t0u be such that }pId ` exppkq g expp´kqqx } ă 1 ´ q´ℓ
v .

For every i0 P J1, dK such that xi0 ‰ 0, by computing the i0-th coordinate of the vector
pId ` exppkq g expp´kqqx, by the ultrametric triangular inequality and since }g} ď q´ℓ

v ,
we then have

1 ´ q´ℓ
v ą

ˇ

ˇxi0 `

d
ÿ

j“1

xj π
kj´ki0
v gi0j

ˇ

ˇ ě |xi0 | ´ max
1ďjďd

|xj | |gi0j | q
´kj`ki0
v

ě |xi0 | ´ q´ℓ
v max

1ďjďd
|xj | q

´kj`ki0
v .

Noting that |xi0 | ě 1 since xi0 P Rv∖t0u, and since q ℓ
v ´1 ě 0, we have |xi0 |pq ℓ

v ´1q ě q ℓ
v ´1,

thus |xi0 | ď q ℓ
v

`

|xi0 | ´ 1 ` q´ℓ
v

˘

. Therefore

|xi0 | q
´ki0
v ď q ℓ

v

`

|xi0 | ´ 1 ` q´ℓ
v

˘

q
´ki0
v ă max

1ďjďd
|xj | q

´kj
v .

Thus, there exists i1 ‰ i0 such that |xi0 | q
´ki0
v ă |xi1 | q

´ki1
v . By iteration, and since there is

no strictly increasing sequence in the finite subset t|xi| q
´ki
v : i P J1, dK, xi ‰ 0u of r0,`8r ,

we obtain a contradiction. l

Let us fix s “ ps2, . . . , snq P pRv∖t0uq n´1 satisfying Equation (45): There exists a
permutation σ of J2, nK such that sσ´1p2q | sσ´1p3q | . . . | s˚ “ sσ´1pnq and

vps˚q “ min
2ďiďn

vpsiq P nZ . (69)

The next lemma gives a cardinality estimate for the number of Rv-lattices whose equidis-
tribution we want to study, that belong to a small dynamical ball of X .
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Lemma 6.5 For every x P X “ G{Γ, every integer ℓ ą maxt0,´ logqvpsyspxqqu, every
k “ pk1, . . . , knq P ∆s and every N P J0, ´vps˚q´ℓ`k1´max2ďiďn ki

n K, we have

Card
`

tt ` R n´1
v P Λs : exppkq ut Γ P Bℓ,N xu

˘

ď 2n´1 q´ℓpn´1q´vps˚qpn´1q´npn´1qN
v .

Proof. Fix x, ℓ, k and N as in the lemma. Let g P G be such that x “ gΓ. For simplicity,
we fix a lift ĂΛs of Λs in Kn´1, hence having the same cardinality

śn
i“2 φvpsiq as Λs.

We want to evaluate the number of points t P ĂΛs such that exppkqutΓ P Bℓ,NgΓ, in
other words such that there exist γ P Γ and h P Bℓ,N verifying h´1 exppkq “ gγu´t. Since
B´1

ℓ,N “ Bℓ,N by Lemma 6.1, we have to bound from above the nonnegative quantity

Cardtt P ĂΛs : Dγ P Γ, gγu´t P Bℓ,N exppkqu .

We may assume that this quantity is nonzero. Let us take t “ p r2s2
, . . . , rnsn q P ĂΛs and γ P Γ

whose column matrices are denoted by γ1, . . . , γn. Recall the notation pe1, . . . , enq for the
canonical Kv-basis of K n

v . Let us consider the constraints on the columns in the condition
gγu´t P pIn `Wℓ,N q exppkq, which is equivalent to the condition gγu´t P Bℓ,N exppkq since
detpgγu´t expp´kqq “ 1. We obtain the equivalent system of conditions

gγ1 ´

n
ÿ

i“2

ri
si
gγi P π´k1

v e1 ` pπℓ´k1
v Ovq ˆ pπℓ`nN´k1

v Ovqn´1 , (70)

@ i P J2, nK, gγi P π´ki
v ei ` pπℓ´ki

v Ovqn . (71)

Since ℓ ą ´ logqvpsyspxqq, the lattice x “ gR n
v contains at most one point in each translate

of pπ ℓ
v Ovqn. As seen in the proof of Equation (68), for every i P J2, nK, since ki ě 0 as

k P ∆s, we can cover (any translate of) pπ ℓ´ki
v Ovqn by at most q kin

v pairwise disjoint
translates of pπℓ

vOvqn. Hence for each fixed i P J2, nK, the condition on γi P R n
v given in

Equation (71) has at most q kin
v solutions, and this set of solutions is independent of t.

Let us fix a solution pγ2, . . . , γnq of the system of equations (71). Given an element
t “ p r2s2

, . . . , rnsn q P ĂΛs, let us fix a solution γ “ pγ1 γ2 . . . γnq P Γ of Equation (70) with
prescribed last n ´ 1 columns γ2, . . . , γn. Note that since γ P Γ “ SLnpRvq, the vectors of
K n

v with column matrices γ1, . . . , γn form an Rv-basis of R n
v . Hence any other solution

γ1 “ pγ1
1 γ2 . . . γnq P Γ of this equation with these last n ´ 1 columns has a first column

γ1
1 such that there exists λ1, . . . , λn P Rv with γ1

1 “ λ1γ1 ` λ2γ2 ` ¨ ¨ ¨ ` λnγn. Since
the determinant of n-tuples of elements of K n

v is multilinear and alternating, and since
det γ “ det γ1 “ 1, we have

λ1 “ detpλ1γ1, γ2, . . . , γnq “ detpγ1
1, γ2, . . . , γnq “ 1 .

Hence Equation (70) for the matrix γ1 becomes

gγ1 `

n
ÿ

i“2

`

λi ´
ri
si

˘

gγi P π´k1
v e1 ` pπℓ´k1

v Ovq ˆ pπℓ`nN´k1
v Ovqn´1 . (72)

We denote by pr : K n
v Ñ K n´1

v the projection onto the last n ´ 1 coordinates. Let
d “ diagpπ k2

v , . . . , π kn
v q. Let us multiply Equation (72) by the scalar s˚ (defined above

Equation (69), so that ri s˚

si
P Rv for every i P J2, nK). Let then project it to K n´1

v as well
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as Equation (71). Let us then multiply them by the matrix d “ diagpπ k2
v , . . . , π kn

v q on the
left. The condition gγu´t P Bℓ,N exppkq thus provides the system of conditions

n
ÿ

i“2

´

λi s˚ ´
ri s˚

si

¯

d prpgγiq P s˚dprpgγ1q ` s˚

n
ź

i“2

pπ ℓ`nN`ki´k1
v Ovq , (73)

@ i P J2, nK, dprpgγiq P ei ` dpπ ℓ´ki
v Ovqn´1 . (74)

We want to give an upper bound on the number of elements t P ĂΛs such that there
exists λ2, . . . , λn P Rv satisfying this system. By Equation (74), since ℓ ą 0, there exists a
matrix rg P Mn´1pKvq with }rg} ď q ´ℓ

v such that the Rv-lattice L “ ‘2ďiďnRvdprpgγiq in
K n´1

v is equal to pIn´1 ` d rg d´1qR n´1
v . By Lemma 6.4 applied with d “ n ´ 1, we have

syspLq ě 1 ´ q´ℓ
v ě 1

2 . Note that for every i P J2, nK, the assumption on N of Lemma 6.5
gives the inequalities ´vps˚q ´ ℓ´ nN ´ ki ` k1 ě 0. Note that s˚ P πvps˚qO ˆ

v . Since each
solution pλ2 s˚ `

r2 s˚

s2
, . . . , λn s˚ ´

rn s˚

sn
q P R n´1

v of Equation (73) corresponds to one point
of the lattice L, the associated number of solutions is bounded from above by

Q 1

syspLqn´1
voln´1

v

´

s˚

n
ź

i“2

π ℓ`nN`ki´k1
v Ov

¯U

ď

Q

2n´1
ź

2ďiďn

volv
`

π vps˚q`ℓ`nN`ki´k1
v Ov

˘

U

“ 2n´1
ź

2ďiďn

q´vps˚q´ℓ´nN´ki`k1
v

ď 2n´1 q
´ℓpn´1q´vps˚qpn´1q´npn´1qN`pn´1qk1´

řn
i“2 ki

v .

Combining this with the previous counting results for the columns γ2, . . . , γn, recalling
that

řn
i“1 ki “ 0 (since k P ∆s Ă Zn

0 ), we finally obtain, as wanted,

Card
`

texppkqutΓ : t P rΛsu X pBℓ,N xq
˘

ď 2n´1 q
´ℓpn´1q´vps˚qpn´1q´npn´1qN`pn´1qk1´

řn
i“2 ki

v

n
ź

i“2

q nki
v

ď 2n´1 q´ℓpn´1q´vps˚qpn´1q´npn´1qN
v . l

Before stating the main result of Subsection 6.2, let us give some definitions. For all
ℓ,m P N, an pm, ℓq-partition of X is a finite measurable partition P “ tP1, P2, . . . , P|P|u

of X such that P1 is equal to the q´m
v -thin part X ăq´m

v “ tx P X : syspxq ă q´m
v u of

X (see Subsection 2.4) and such that for every i P J2, |P|K, there exists xi P X with
Pi Ă Bℓ xi with Bℓ “ Bℓ,0 defined in Equation (62). Note that for every pm, ℓq-partition
P of X and every a P ApOvq, since syspaxq “ syspxq for every x P X and by Equation
(65), the partition a´1P is also an pm, ℓq-partition of X .

For every N P N∖ t0u, the N -th dynamical partition for a associated with a finite
measurable partition P of X is the finite measurable partition

PN “

N´1
ł

i“0

a´iP . (75)
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Note that for every a P ApOvq, since a commutes with a, we have a´1pPN q “ pa´1PqN .
The N -th Birkhoff average for a of a Borel probability measure µ on X is

SNµ “
1

N

N´1
ÿ

i“0

ai˚µ . (76)

The next lemma says that the thick part of the space X of special unimodular Rv-
lattices may be almost entirely covered by dynamical balls Bℓ,N xj that are essentially finer
than the partition PN , with a good control of the cardinality of this cover.

Lemma 6.6 For every m P N, there exists ℓm P N∖t0u such that for every integer ℓ ě ℓm,
for every pm, ℓq-partition P of X , for every κ P s0, 1r , and for every N P N∖t0u, the
q´m
v -thick part X ěq´m

v of X contains a measurable subset X 1 “ X 1
P, κ,N satisfying the

two following conditions.
(1) There exists a subset P 1 of PN such that X 1 “

Ť

P 1 and such that, for every
P P P 1, there exists a finite subset FP of P with cardinality at most q n3κN

v such that
P Ă

Ť

xPFP
Bℓ,N´1 x.

(2) For every Borel probability measure µ on X , we have µpX 1q ě 1´ 1
κ SNµpX ăq´m

v q.

Proof. Let m, κ, N and µ be as in the statement. Since the action by left translations
of G on G{Γ is locally free and since X ěq´m

v is compact, there exists ℓm P N∖t0u such
that for every x P X ěq´m

v , the map g ÞÑ gx is injective on the dynamical ball Bℓm´n. We
may assume that ℓm ě n for future use. Let ℓ ě ℓm and let P “ tP1, . . . , P|P|u be an
pm, ℓq-partition of X so that P1 “ X ăq´m

v and for every k P J2, |P|K, there exists xk P X
such that Pk Ă Bℓ xk. We define a function fN : X Ñ r0,`8r counting in average the
excursions before time N of the diagonal orbits under a into the q´m

v -thin part of X by

fN : x ÞÑ
1

N

N´1
ÿ

j“0

1
X ăq´m

v
pajxq .

We define X 1 “ tx P X : fN pxq ď κu. By Markov’s inequality applied to the nonnegative
random variable fN , we have

1 ´ µpX 1q “ µ
`

tx P X : fN pxq ą κu
˘

ď
1

κ

ż

X
fN dµ “

1

κN

N´1
ÿ

j“0

ż

X
1

X ăq´m
v

pajxq dµpxq

“
1

κN

N´1
ÿ

j“0

ż

X
1

X ăq´m
v

dpaj˚µq “
1

κ
SNµp1

X ăq´m
v

q .

Hence the set X 1 satisfies Assertion (2).
In order to prove Assertion (1), first notice that fN can be described on the partition

PN as follows. For all P “
ŞN´1

j“0 a´jPkj P PN , where k0, . . . , kN´1 P J1, |P|K, since
P1 “ X ăq´m

v , we have, for all x P P ,

fN pxq “
1

N
Cardtj P J0, N ´ 1K : kj “ 1u . (77)

In particular, fN is constant on every P P PN . The definition of X 1 then implies that
there exists a subset P 1 of the partition PN such that X 1 “

Ť

P 1.
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Now let P P P 1, so that we have fN |P ď κ ă 1. By the definition of the partition
PN and since P is an pm, ℓq-partition of X , for every j P J0, N ´ 1K, we have either
ajP Ă X ěq´m

v or ajP Ă X ăq´m
v . The set tj P J0, N ´ 1K : ajP Ă X ěq´m

v u is nonempty,
since otherwise we would have ajP Ă X ăq´m

v for every j P J0, N ´ 1K, hence fN |P “ 1,
a contradiction. Let j0 P J0, N ´ 1K be the minimum of this nonempty subset of N. By
the definition of the partition PN and since P is an pm, ℓq-partition of X , there exists
k0 P J2, |P|K such that aj0P Ă Pk0 Ă Bℓ xk0 . This inclusion aj0P Ă Bℓ xk0 is the starting
point in order to prove Assertion (1) by using iterations of Lemma 6.3 and of Equation
(66). We define, for every j P J0, N ´ 1K,

Vj “ ti P J0, jK : aiP Ă X ăq´m
v u ,

and we denote by |Vj | its cardinality.
Let C “ q n2

v be the constant satisfying Lemma 6.3 for ℓ1 “ 1 (allowing multiplicities),
so that Cn “ q n3

v is the constant satisfying Lemma 6.3 for ℓ1 “ n.

Claim. For every j P J0, N ´ 1K such that |Vj | ‰ j ` 1, there exist Rv-lattices
y1, j , . . . , yCn|Vj |, j

P P such that

P Ă

Cn|Vj |

ď

i“1

Bℓ, j yi, j . (78)

We have |VN´1| ď κN ă N (hence Cn|VN´1| ď q n3κN
v ) since fN |P “

|VN´1|

N by Equation
(77) and since P Ă X 1 so that fN |P ď κ. Therefore the case j “ N ´ 1 of this claim
implies Assertion (1).

Proof of the claim. We proceed by induction on j P J0, N ´ 1K. By definition, we have
j0 “ mintj P J0, N ´ 1K : |Vj | ‰ j ` 1u, hence we begin the induction at the step j0, the
previous cases being empty. If j0 “ 0, we have P Ă Bℓ xk0 and by Lemma 6.2 applied
with N “ 0, we can assume that xk0 P P , which proves the Claim at the j0-th step (since
then |V0| “ 0 or equivalently Cn|V0| “ 1). If j0 ě 1, then we apply nj0 times Lemma 6.3
with N “ 0, ℓ1 “ 1 and S successively equal to Bℓ, Bℓ`1, Bℓ`2, . . . , Bℓ`nj0´1. This gives
the existence of g1, . . . , gCnj0 P G such that Bℓ Ă

ŤCnj0

i“1 Bℓ`nj0 gi. Hence by the inclusion
aj0P Ă Bℓ xk0 , we have aj0P Ă

ŤCnj0

i“1 Bℓ`nj0 gixk0 . Up to allowing multiplicities, we may
assume that for every i P J1, Cnj0K, the intersection paj0P q X pBℓ`nj0 gixk0q is nonempty,
hence contains an element aj0yi, j0 with yi, j0 P P . By Lemma 6.2 and since In P Bℓ`nj0 ,
we have Bℓ`nj0 gixk0 “ Bℓ`nj0 a

j0yi, j0 . Therefore aj0P Ă
ŤCnj0

i“1 Bℓ`nj0 a
j0yi, j0 . Hence by

Equation (66) applied with N “ 0, ℓ1 “ ´j0 and ℓ replaced by ℓ ` nj0, we have

P Ă

Cnj0
ď

i“1

a´j0Bℓ`nj0 a
j0yi, j0 Ă

Cnj0
ď

i“1

Bℓ, j0 yi, j0 .

Since |Vj0 | “ j0, this proves the j0-th step of the Claim. If j0 “ N ´ 1, there is nothing
more to be proved, hence we assume that j0 ď N ´ 2.

Now let j P Jj0, N ´ 2K and assume that the j-th step of the Claim is satisfied, so that
P Ă

ŤCn|Vj |

i“1 Bℓ, j yi, j where y1, j , . . . , yCn|Vj |, j
P P .
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• First assume that aj`1P Ă X ěq´m
v or equivalently that |Vj`1| “ |Vj |. Let us fix

an element i P J1, Cn|Vj |K and let us prove that Bℓ, j`1 yi, j X P “ Bℓ, j yi, j X P .
This will imply the pj ` 1q-th step of the Claim by setting yi, j`1 “ yi, j . The
inclusion Bℓ, j`1 yi, j XP Ă Bℓ, j yi, j XP is clear by the inclusion just above Equation
(64). For the converse one, let g P Bℓ,j be such that gyk,j P P . Since we have
aj`1P Ă X ěq´m

v and since P is an pm, ℓq-partition of X , there exists k P J2, |P|K
such that aj`1P Ă Pk Ă Bℓ xk. Let us define rx “ aj`1yi, j and rg “ aj`1g a´pj`1q.
Since yi, j P P , we have

rx “ aj`1yi, j P aj`1P Ă X ěq´m
v X pBℓ xkq .

Similarly, since gyi, j P P , we have rg rx “ aj`1pgyk, jq P Bℓ xk. Therefore we have
rg rx P BℓpBℓq

´1
rx Ă Bℓ rx by Lemma 6.1 and Equation (67) (both with N “ 0 therein).

By Equations (66) and (64), we have rg “ aj`1g a´pj`1q P Bℓ,´1 Ă Bℓ´n Ă Bℓm´n.
We have Bℓ Ă Bℓm Ă Bℓm´n since ℓ ě ℓm ě ℓm ´ n, again by Equation (64). Since
rg rx P Bℓ rx, since rx P X ěq´m

v and by the definition of ℓm, we have rg P Bℓ. Therefore,
by Equation (66) again, we finally obtain

g “ a´pj`1q
rg aj`1 P a´pj`1qBℓ a

j`1 X Bℓ, j Ă Bℓ´npj`1q, j`1 X Bℓ, j Ă Bℓ, j`1 ,

so that gyk, j P Bℓ, j`1 yk, j X P , thus proving the wanted converse inclusion.
• Now assume that aj`1P Ă X ăq´m

v or equivalently that |Vj`1| “ |Vj | ` 1. The proof
of the pj ` 1q-th step of the Claim is then straightforward by applying Lemma 6.3
with ℓ1 “ n (so that ℓ ě ℓm ě n ě ℓ1) and N “ j to S “ Bℓ,j in order to cover each
Bℓ, j yi, j X P for i P J1, Cn|Vj |K by Cn subsets of X of the form

Bℓ`n, j y
piq
i1, j`1 X P Ă Bℓ, j`1 y

piq
i1, j`1 X P ,

where i1 P J1, CnK and y
piq
i1, j`1 P X , thus covering P by Cn|Vj |Cn “ Cn|Vj`1| subsets

Bℓ, j`1 y
piq
i1, j`1. As in the j0-th step, by Lemma 6.2, we may assume that y

piq
i1, j`1 P P .

l

7 Non-escape of mass in the thin part

In this section, according to the first step of the program announced after the statement
of Theorem 5.2, we provide the material that will be used in Section 8 in order to prove
that every weak-star accumulation point µ of the measures ν♢s as s tends appropriately to
`8 is a probability measure on X .

For every fixed J P I `
v , we first estimate the number of nonzero ideals that are

coprime to J and whose norm is comparatively small with respect to the one of J . Recall
(see Subsection 2.1) that ϖvpJq is the number of prime factors of J . For every ϵ ą 0, let

EJ,primpϵq “
␣

I P I `
v : pI, Jq “ 1, NpIq ď ϵ NpJq

(

.

Lemma 7.1 There exists c1 ě 0 such that for all J P I `
v and ϵ P qZ X s 0, 1r , we have

ˇ

ˇ

ˇ
CardpEJ,primpϵqq ´ ϵ

hK q2´g pqv ´ 1q

pq ´ 1q2 qv
φvpJq

ˇ

ˇ

ˇ
ď c1 2

ϖvpJq .
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Proof. Let cK “
hK q2´g pqv´1q

pq´1q2 qv
ą 0. Let EJpϵq “

␣

I P I `
v : NpIq ď ϵ NpJq

(

. By a standard
sieving argument, with µv the Möbius function defined in Subsection 2.1, by Lemma 2.1
since ϵ P qZ and NpI 1q P qN for every I 1 P I `

v , and by Equation (4), we have

CardpEJ,primpϵqq “
ÿ

IPI `
v , I | J

µvpIq CardpEJI´1pϵqq

“
ÿ

IPI `
v , I | J

µvpIq
`

cK ϵNpJI´1q ` Op1q
˘

“ ϵ cK NpJq
ÿ

IPI `
v , I | J

µvpIq

NpIq
` O

´

ÿ

IPI `
v , I | J

|µvpIq|

¯

“ ϵ cK φvpJq ` Op2ϖvpJqq .

This proves the result. l

Lemma 7.2 Assume that Rv is principal. There exists a constant c2 ě 1 such that for all
s “ ps2, . . . , snq P pRv∖t0uqn´1 and k “ pk1, . . . , knq P ∆s with

@ i P J2, nK, 2ϖvpsiqq ki´k1
v ď

|si|

maxt1, ln ln |si|u
, (79)

and for every ϵ P q Z
v X s0, 1r , we have

´ 1

Card Λs

ÿ

tPΛs

δexppkqxt

¯

pX ďϵq ď c2 ϵ
n .

Proof. Let s, k, ϵ be fixed as in the statement. Let t “ p r2s2
, . . . , rnsn q mod Rn´1

v that
varies in Λs. Recall that xt “ utR

n
v . By the definition in Subsection 2.4 of the ϵ-thin part

X ďϵ of X , we have exppkqxt P X ďϵ if and only if there exists a nonzero element λ P Rn
v

such that } exppkq ut λ} ď ϵ, or equivalently by an easy computation if and only if the
following joint system of inequalities with unknown pλ1, λ2, . . . , λnq in Rn

v has a nonzero
solution

|λ1| ď ϵ q´k1
v (80)

@ i P J2, nK,
ˇ

ˇ

ˇ
λ1

ri
si

` λi

ˇ

ˇ

ˇ
ď ϵ q´ki

v . (81)

Note that if pλ1, . . . , λnq P Rn
v is a nonzero solution to the joint system (80) and (81),

then λ1 ‰ 0. Indeed, by Equation (3), the only element of Rv contained in the closed ball
Bp0, q´1

v q of center 0 and radius q´1
v is 0. Hence if λ1 “ 0, then for every i P J2, nK, since

ϵ ă 1 and ki ě 0 as k P ∆s, we have λi P Rv X Bp0, q´ki
v ϵq “ t0u, which contradicts the

fact that pλ1, . . . , λnq ‰ 0.
By the ultrametric triangle inequality, if λ, λ1 are distinct elements of Rv, then the closed

balls Bpλ, q´1
v q and Bpλ1, q´1

v q are disjoint. Again by the ultrametric triangle inequality,
for every ρ ě q´1

v , the closed ball Bp0, ρq contains
Ť

λPRvXBp0, ρq Bpλ, q´1
v q, and this union

is a disjoint union. Recall that volvpBp0, q´1
v qq “ q´1

v by the normalisation of the Haar
measure volv of Kv. Separating the cases when ϵ q´k1

v ă q´1
v or the contrary, and since

ϵ P q Z
v , the number of nonzero solutions λ1 of Equation (80) hence satisfies

CardppRv∖t0uq X Bp0, ϵ q´k1
v qq ď

volvpBp0, ϵ q´k1
v qq

volvpBp0, q´1
v qq

“ ϵ q´k1`1
v . (82)
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Let us now fix λ1 P pRv∖t0uq X Bp0, q´k1
v ϵq and i P J2, nK. In this proof, the Op q

functions do not depend on λ1, s, k, ϵ. Let

Nipλ1q “ Card
!ri
si

mod Rv : pri, siq “ 1, D λi P Rv,
ˇ

ˇλ1
ri
si

` λi

ˇ

ˇ ď ϵ q´ki
v

)

.

Claim 1 : We have Nipλ1q “ O
`

ϵ q´ki
v φvpsiq

˘

.

By the discussion above Equations (80), (81), by Equation (82) and this claim, since
k1 “ ´

řn
i“2 ki as k P ∆s Ă Zn

0 , and by Equation (46) on the left, this will imply the
inequality

Card
␣

t P Λs : exppkqxt P X ďϵ
(

ď
ÿ

λ1PpRv∖t0uqXBp0, q
´k1
v ϵq

n
ź

i“2

Nipλ1q

“ O
´

ϵ q´k1`1
v

n
ź

i“2

ϵ q´ki
v φvpsiq

¯

“ O
`

ϵnCard Λs

˘

.

This estimate will prove Lemma 7.2.

Proof of Claim 1. Let Ji “ siRv P I `
v . Since Rv is assumed to be principal, let di P Rv

be such that λ1Rv ` Ji “ diRv. Let rλ1 “ λ1
di

, rsi “
si
di

and rJi “ rsiRv P I `
v . By dividing by

di and since the fibers of the canonical morphism pRv{Jiq
ˆ Ñ pRv{ rJiq

ˆ have order φvpJiq

φvp rJiq
,

we have

Nipλ1q “ Card
␣

ri ` Ji P pRv{Jiq
ˆ : D λi P Rv,

ˇ

ˇλ1 ri ` λi si
ˇ

ˇ ď ϵ q´ki
v |si|

(

“
φvpJiq

φvp rJiq
Card

␣

ri ` rJi P pRv{ rJiq
ˆ : D λi P Rv,

ˇ

ˇ rλ1 ri ` λi rsi
ˇ

ˇ ď ϵ q´ki
v |rsi|

(

.

Since rλ1 and rsi are coprime, let rλ´
1 P Rv be such that λ1

rλ´
1 ´ 1 P rJi. The multiplication

by rλ´
1 is a bijective map from pRv{ rJiq

ˆ to itself. Hence by Lemma 7.1, we have

Nipλ1q “
φvpJiq

φvp rJiq
Card

␣

ri ` rJi P pRv{ rJiq
ˆ : D λi P Rv,

ˇ

ˇ ri ` λi rsi
ˇ

ˇ ď ϵ q´ki
v |rsi|

(

.

ď
φvpJiq

φvp rJiq
Card

␣

I P I `
v : pI, rJiq “ 1, NpIq ď ϵ q´ki

v Np rJiq
(

“
φvpJiq

φvp rJiq
O
`

ϵ q´ki
v φvp rJiq ` 2ϖvp rJiq

˘

“ O
´

ϵ q´ki
v φvpJiq `

2ϖvp rJiq

φvp rJiq
φvpJiq

¯

.

Claim 2 : We have 2ϖvp rJiq

φvp rJiq
“ Opϵ q´ki

v q.

With the previous formula, this implies Claim 1, hence concludes Lemma 7.2

Proof of Claim 2. By Lemma 2.2, since ϖvp rJiq ď ϖvpJiq as rJi divides Ji, since
Np rJiq ď NpJiq “ Np rJiq Npλ1Rv ` rJiq, and since Npλ1Rv ` rJiq ď Npλ1Rvq “ |λ1| ď ϵ q´k1

v by
Equation (80), we have

2ϖvp rJiq

φvp rJiq
“ O

´

2ϖvp rJiq
ln ln Np rJiq

Np rJiq

¯

“ O
´

2ϖvpJiq
ln ln NpJiq

NpJiq
Npλ1Rv ` rJiq

¯

“ O
´

ϵ q´k1
v 2ϖvpJiq

ln ln NpJiq

NpJiq

¯

.
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Claim 2 hence follows by the technical Assumption (79) of Lemma 7.2. l l l

Let s “ ps2, . . . , snq P pRv∖t0uqn´1 satisfying Equation (45), so that there exists a
permutation σ of J2, nK with sσ´1p2q | sσ´1p3q . . . | s˚ “ sσ´1pnq and vps˚q P nZ. Let

w “ p1 ´ n, 1, . . . , 1q P Zn
0 , so that ks “ ´

vps˚q

n
w and a “ exppwq .

For all k P ♢s and N P N∖t0u, we denote by rk, N s (see picture below) the discrete interval
in Zn

0 defined by
rk, N s “ tk ` ℓ1w : ℓ1 P J0, N ´ 1Ku .

By the convexity of ♢s, we have rk, N s Ă ♢s if and only if k ` pN ´ 1qw P ♢s. Let

νs,rk,Ns “
1

N Card Λs

ÿ

tPΛs, ℓ1PJ0, N´1K

δexppk`ℓ1wqxt
, (83)

which is a probability measure on X .

k ` 2w

k ` 3w

k

k ` w

k ` pN ´ 1qw

k2 “ 0 k3 “ 0

k3 “ k1 ´ vps˚q k2 “ k1 ´ vps˚q

B`♢s

♢s

ks

pt
vps3q

2
u,´t

vps3q

2
u, 0qpt

vps3q

2
u, 0,´t

vps3q

2
uq

p0, 0, 0q

p´1, 0, 1q p´1, 1, 0q

p´2, 0, 2q p´2, 2, 0q

k2 “ k3

The next corollary proves the non-escape of mass at infinity property for averages of mea-
sures parametrized by the discrete interval rk, N s. Let us recall the positive constant cϖv

introduced in Equation (7). For every s “ ps2, . . . , snq P pRv∖t0uqn´1 satisfying Equation
(45), let

κ1psq “
1

n

´

´ vps˚q ` max
iPJ2,nK

logqv
2ϖvpsiq maxt1, ln ln |si|u

|si|

¯

. (84)

Remark 7.3 If there exists c0 ě 0 such that maxiPJ2,nK vpsiq ´ vps˚q ď c0
´vps˚q

maxt1, lnp´vps˚qqu
,

then κ1psq ď 1
npcϖv ` c0 ` 1q

´vps˚q

maxt1, lnp´vps˚qqu
. In particular, κ1psq is negligible with respect

to ´vps˚q as ´vps˚q Ñ `8.
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Proof. Since |si| “ q
´vpsiq
v , since 1

2 ď ln 2 ď ln qv and by Equation (7), since the maps
f1 : t ÞÑ t

maxt1, ln tu and f2 : t ÞÑ 2 lnpmaxt1, ln tuq on r0,`8r are nondecreasing with
f2 ď f1, and by the assumption of the remark, we have

n κ1psq “ max
iPJ2,nK

´

logqv 2
ϖvpsiq ` logqvpmaxt1, lnp´vpsiqquq ` vpsiq ´ vps˚q

¯

ď max
iPJ2,nK

´

cϖv

´vpsiq

maxt1, lnp´vpsiqqu
` 2 lnpmaxt1, lnp´vpsiqquq ` vpsiq ´ vps˚q

¯

ď pcϖv ` 1q
´vps˚q

maxt1, lnp´vps˚qqu
` c0

´vps˚q

maxt1, lnp´vps˚qqu
,

which proves the result. l

Corollary 7.4 Assume that Rv is principal. For all s P pRv∖t0uqn´1 satisfying Equation
(45), k P ♢s, N P N∖t0u and ϵ P q Z

v X s0, 1r such that

k ` pN ´ 1qw P ♢s and N ě
κ1psq

c2 ϵn
, (85)

we have
νs,rk,NspX

ďϵq ď 2 c2 ϵ
n .

Proof. Let s “ ps2, . . . , snq, k “ pk1, . . . , knq, N , ϵ be fixed as in the statement. Let ℓ1 be
an integer that will vary in J0, N ´ 1K. First assume that ℓ1 ď N ´ 1 ´ κ1psq. Note that
κ1psq ě 1

n logqvp2ϖvps˚q maxt1, ln ln |s˚|uq ě 0.
By the definition of ♢s, since k ` pN ´ 1qw P ♢s by the left hand side of Assumption

(85), we have max2ďiďnpk ` pN ´ 1qwqi ď pk ` pN ´ 1qwq1 ´ vps˚q. Hence for every
i P J2, nK, since ℓ1 ď N ´ 1 ´ κ1psq and by the definition of κ1psq, we have

pk ` ℓ1wqi ´ pk ` ℓ1wq1 “ pki ` ℓ1q ´ pk1 ` p1 ´ nqℓ1q

“ pk ` pN ´ 1qwqi ´ pk ` pN ´ 1qwq1 ` npℓ1 ´ N ` 1q

ď ´ vps˚q ´ nκ1psq ď logqv
|si|

2ϖvpsiq maxt1, ln ln |si|u
.

Therefore the element k` ℓ1w of ♢s satisfies the technical Assumption (79) of Lemma 7.2,
and we have

´ 1

Card Λs

ÿ

tPΛs

δexppk`ℓ1wqxt

¯

pX ďϵq ď c2 ϵ
n .

There are at most N (resp. κ1psq) integral elements in the real interval r0, N ´ 1 ´ κ1psqs

(resp. sN ´ 1 ´ κ1psq, N ´ 1s). Therefore separating, in Equation (83) that defines the
measure νs,rk,Ns, the summation over ℓ1 P J0, N ´ 1K in firstly ℓ1 P r0, N ´ 1 ´ κ1psqs and
secondly ℓ1 P sN ´ 1 ´ κ1psq, N ´ 1s, we have

νs,rk,NspX
ďϵq ď

1

N
pN c2 ϵ

nq `
κ1psq

N
.

By the right hand side of Assumption (85), this proves Corollary 7.4. l
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8 Optimal entropy lower bound

In this final section, we prove the main equidistribution result of this paper, in the space
X “ SLnpKvq{SLnpRvq of special unimodular Rv-lattices in K n

v towards its homoge-
neous measure mX , of the measures supported on large subsets of divergent orbits of type
p1, s2, . . . , snq (up to permutation) as s “ ps2, . . . , snq P pRv∖t0uqn´1 tends to infinity
(for the Fréchet filter or equivalently when miniPJ2,nK vpsiq tends to ´8). We will actually
require some uniform convergence to ´8 of the valuations of the components s2, . . . , sn of
s, and precisely

D c0 ě 0, max
i,jPJ2,nK

| vpsiq ´ vpsjq | “ max
iPJ2,nK

vpsiq ´ vps˚q ď c0
´vps˚q

maxt1, lnp´vps˚qqu
. (86)

Note that this is for instance satisfied if s2 “ . . . “ sn as in Theorem 1.2 in the Introduction,
and that this assumption is optimal by Remark 7.3.

Theorem 8.1 Assume that Rv is principal. As s P pRv∖t0uqn´1 satisfying Equations (45)
and (86) tends to infinity, the measures ν♢s weak-star converge to mX

}mX }
on X .

Proof. Let us fix a weak-star accumulation point ν of the measures ν♢s as s P pRv∖t0uqn´1

satisfying Equations (45) and (86) tends to infinity. We will prove that ν is a probability
measure using the work of Section 7 and that ν “

mX
}mX }

using the entropy method described
in Section 5, which will conclude using the Banach-Alaoglu theorem.

Lemma 8.2 The measure ν is a-invariant.

Proof. Recall that w “ p1 ´ n, 1, . . . , 1q P Zn
0 . Using the definitions (48) and (2), since

a “ exppwq commutes with ApOvq, we have

a˚ν
♢
s “

1

Card Λs Card ♢s

ÿ

tPΛs, kP♢s

ż

aPApOvq

δa exppk`wqxt
da .

In order to compare ν♢s and a˚ν
♢
s , let us give an upper estimate on the cardinality of the

symmetric difference between ♢s and ♢s ` w.

k2 “ 1
ks

p0, 0, 0q

k2 “ k1 ´ vps˚q ´ n

k2 “ k1 ´ vps˚q

k2 “ 0

♢s

♢s ´ w

♢s ` w

By construction, the boundary of ♢s is contained in the hyperplanes with equations ki “ 0
and kj “ k1 ´ vps˚q for i, j P J2, nK. Hence ♢s∖p♢s ` wq “

Ť

iPJ2,nKtk P ♢s : 0 ď ki ă 1u
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(see the above picture). By Proposition 4.6 (2) in dimension n ´ 1, for every i P J2, nK, we
have Cardtk P ♢s : ki “ 0u “ Opp´vps˚qqn´2q. Therefore

Card
`

♢s∖p♢s ` wq
˘

“ Opp´vps˚qqn´2q .

Similarly, we have ♢s∖p♢s ´ wq “
Ť

iPJ2,nKtk P ♢s : k1 ´ vps˚q ´ n ă ki ď k1 ´ vps˚qu

(see the above picture) and Card
`

p♢s `wq∖♢s

˘

“ Cardp♢s∖p♢s ´wqq “ Opp´vps˚qqn´2q.
Therefore by Proposition 4.6 (2), the cardinality of the symmetric difference between ♢s

and ♢s ` w is negligible with respect to the cardinality of ♢s.
This implies the weak-star convergence νs ´ a˚νs

˚
á 0 as s Ñ `8. Finally, since

the transformation a : X Ñ X is a homeomorphism (in particular, it is continuous and
proper), we have a˚ν “ ν. l

Let us recall the notation ℓm P N∖t0u introduced in Lemma 6.6 for every m P N and
κ1psq introduced in Equation (84) for every s P pRv∖t0uqn´1 satisfying Equation (45). Let
us recall the notation PN “

ŽN´1
i“0 a´iP introduced in Equation (75) for every N P N∖t0u

and every finite measurable partition P of X .

Lemma 8.3 Assume that Rv is principal. For every η P s0, 1r , there exists m “ mpηq P N
such that with ℓ “ maxtℓm,m ` 1u, for every pm, ℓq-partition P of X and for every
M P N∖t0u, there exists N0 “ N0pη,P,Mq P N∖t0u such that for every s P pRv∖t0uqn´1

satisfying Equations (45) and (86), for every k “ pk1, . . . , knq P ♢s and for every N P N
satisfying the three assumptions

k ` pN ´ 1qw P ♢s ,

max
!

N0,
4p1 ´ ηq

η
pn ` 1qpc0 ` 1q

´vps˚q

maxt1, lnp´vps˚qqu
,

κ1psq

c2 q
´mn
v

)

ď N

and N ď
´vps˚q ´ ℓ ` k1 ´ max2ďiďn ki

n
,

we have
1

M
Hνs,rk,Ns

pPM q ě p1 ´ ηq2 npn ´ 1q ´ η .

Proof. For every η P s0, 1r, let κ “
npn´1q η

n3 P s0, 1r, let m “
P

´ 1
n logqv

η2npn´1q

2c2n3

T

which
belongs to N since η2 ă 1 ď 2c2, and let ϵ “ q´m

v P qZv X s0, 1r . Let ℓ,P,M be as in the
statement. With cφv the constant introduced in Equation (6), let

N0 “ max
!

M,
2M

η
logqv CardP,

4p1 ´ ηq

η
pn ´ 1qpn ` 1 ´ logqv cφvq

)

P N∖t0u

and let N P N with N ě N0. Let s,k be as in the statement. Let

νs,k “
1

Card Λs

ÿ

tPΛs

δexppkqxt
.

Note that by the definition of νs,rk,Ns in Equation (83), since a “ exppwq and by the
definition in Equation (76) of the N -th Birkhoff average of measures for a, we have

νs,rk,Ns “
1

N

N´1
ÿ

i“0

paiq˚νs,k “ SNνs,k .
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By Lemma 5.1 (1) applied with µ1 “ νs,k and ϕ “ a since N ě N0 ě M ě 1, we have

1

M
Hνs,rk,Ns

pPM q ě
1

N
Hνs,kpPN q ´

M

N
logqv Card P . (87)

Since N ě N0, we have M
N logqv Card P ď

η
2 .

As in Lemma 6.6 (1), let X 1 “ X 1
P, κ,N be a measurable subset of X ěq´m

v , let P 1 be
a subset of the partition PN and for every P P P 1, let FP be a finite subset of P with
cardinality at most q n3κN

v “ q
npn´1qηN
v such that X 1 “

Ť

P 1 and P Ă
Ť

xPFP
Bℓ,N´1 x.

Since FP Ă P Ă X 1 Ă X ěq´m
v , for every x P FP , we have syspxq ě q´m

v . Hence
maxt0,´ logqvpsyspxqqu ď m ă ℓ by the definition of ℓ. Therefore by the assumptions on
s and k, by Lemma 6.5 and by Equation (46) on the left, for every x P FP , we have

νs,kpBℓ,N´1 xq “
1

CardpΛsq
Card

`

tt ` R n´1
v P Λs : exppkqxt P Bℓ,N´1 xu

˘

ď
2n´1

śn
i“2 φvpsiq

q´ℓpn´1q´vps˚qpn´1q´npn´1qpN´1q
v .

Thus, since P 1 Ă PN , since we have P Ă
Ť

xPFP
Bℓ,N´1 x and Card FP ď q

npn´1q ηN
v for

every P P P 1, and since X 1 “
Ů

PPP 1 P , we have

Hνs,kpPN q “ ´
ÿ

PPPN

νs,kpP q logqv νs,kpP q ě ´
ÿ

PPP 1

νs,kpP q logqv νs,kpP q

ě ´
ÿ

PPP 1

νs,kpP q logqv

´

q npn´1q ηN
v

2n´1

śn
i“2 φvpsiq

q pn´ℓqℓpn´1q´vps˚qpn´1q´npn´1qN
v

¯

“ νs,kpX 1q

´

p1 ´ ηqnpn ´ 1qN ´
ln 2

ln qv
pn ´ 1q ´ pn ´ ℓqpn ´ 1q `

n
ÿ

i“2

logqv
φvpsiq

|s˚|

¯

. (88)

By Equation (6), by computations similar to the ones done in the proof of Remark 7.3 and
by the assumptions on s in the statement of Lemma 8.3, we have

n
ÿ

i“2

logqv
φvpsiq

|s˚|
ě

n
ÿ

i“2

logqv
cφv |si|

maxt1, lnp´vpsiqqu |s˚|

“

n
ÿ

i“2

´ logqv
`

maxt1, lnp´vpsiqqu
˘

` logqv cφv ´ vpsiq ` vps˚q

ě ´ pn ´ 1q

´

logqvpmaxt1, lnp´vps˚qquq ´ logqv cφv ` c0
´vps˚q

maxt1, lnp´vps˚qqu

¯

ě ´ pn ´ 1q

´

pc0 ` 1q
´vps˚q

maxt1, lnp´vps˚qqu
´ logqv cφv

¯

ě ´
η

4p1 ´ ηq
N ` pn ´ 1q logqv cφv .

Since N ě N0, we have

ln 2

ln qv
pn ´ 1q ` pn ´ ℓqpn ´ 1q ´ pn ´ 1q logqv cφv

ď pn ´ 1qpn ` 1 ´ logqv cφvq ď
η

4p1 ´ ηq
N .
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Therefore Equation (88) becomes

1

N
Hνs,kpPN q ě νs,kpX 1q

´

p1 ´ ηqnpn ´ 1q ´
η

2p1 ´ ηq

¯

.

We have N ě
κ1psq

c2 q
´mn
v

“
κ1psq

c2 ϵn
by the assumptions on s and the definition of ϵ at the

beginning of this proof. By Lemma 6.6 (2) applied with µ “ νs,k, by Corollary 7.4 proving
that there is no escape of mass (the only place in this proof that requires the principal
assumption on Rv) whose assumptions (85) are satisfied, and by the definitions of κ and
m “ mpηq at the beginning of this proof, we have

νs,kpX 1q ě 1 ´
1

κ
νs,rk,NspX

ăq´m
v q ě 1 ´

2 c2 ϵ
n

κ
“ 1 ´

2 c2 q
´mn
v n3

npn ´ 1q η
ě 1 ´ η .

Hence Lemma 8.3 follows using Equation (87). l

End of the proof of Theorem 8.1. Let us fix a sequence pspjqqjPN of elements of
pRv∖t0uqn´1 satisfying Equations (45) and (86) and tending to infinity such that we have
ν “ lim

jÑ`8
νspjq .

Let us fix η ą 0, that will tend to 0 at the very end of the proof. Let m “ mpηq,
ℓ “ maxtℓm,m ` 1u, P a pm, ℓq-partition of X , M P N∖t0u and N0 “ N0pη,P,Mq be
as in Lemma 8.3. Since hνpaq is the upper bound of hνpa,P 1q where P 1 varies over all
finite measurable partitions of X , and by Equation (61) applied with µ1 “ ν and ϕ “ a, if
M is large enough, we have

hνpaq ě hνpa,Pq ě
1

M
HνpPM q ´ η .

For all s P pRv∖t0uqn´1 satisfying Equations (45) and (86), and k “ pk1, . . . , knq P ♢s,
let Nk “ maxtℓ1 P N∖t0u : k`pℓ1 ´1qw P ♢su. For every ℓ2 P N, the point k`ℓ2w belongs
to ♢s if and only if, for every i P J2, nK, we have 0 ď ki ` ℓ2 ď k1 ` p1´nqℓ2 ´vps˚q. Hence

Nk ´ 1 “

Y 1

n

`

´ vps˚q ` k1 ´ max
iPJ2,nK

ki
˘

]

.

Let
B`♢s “ tk “ pk1, . . . , knq P ♢s : min

iPJ2,nK
ki “ 0u

be the upper part of the boundary of ♢s (see the picture above Remark 7.3). Since ♢s is
the disjoint union of the maximal vertical (directed by w) segments contained in it, we
have ♢s “

Ů

kPB`♢s
tk ` ℓ1w : ℓ1 P J0, Nk ´ 1Ku. Let

N 1
k “

Y 1

n

`

´ vps˚q ´ ℓ ` k1 ´ max
iPJ2,nK

ki
˘

]

` 1 .

Note that 0 ď Nk ´ N 1
k ď r ℓ

n s is uniformly bounded for η fixed and that N 1
k satisfies

the upper bound assumption on N in Lemma 8.3. With cϖv the constant introduced in
Equation (7), let cη “ max

␣4p1´ηq

η pn ` 1qpc0 ` 1q, cϖv`c0`1

n c2 q
´mpηq n
v

(

and

Ωs “

!

k P B`♢s : N
1
k ě max

␣

N0, cη
´vps˚q

maxt1, lnp´vps˚qqu

(

)

.

Note that for every k P Ωs, by Remark 7.3 whose assumption holds true since s verifies
Equation (86), the number N 1

k satisfies the lower bound assumption on N in Lemma 8.3.
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k3 “ 0k2 “ 0

k2 “ k1 ´ vps˚qk3 “ k1 ´ vps˚q

k2 “ k1 ´ vps˚q ´ ℓk3 “ k1 ´ vps˚q ´ ℓ

Ωs

♢1
s

ks

p0, 0, 0q

p´1, 1, 0qp´1, 0, 1q

Let ♢1
s “

Ů

kPΩs

␣

k`ℓ1w : ℓ1 P J0, N 1
k´1K, which is obtained from ♢s by removing a bounded

size neighborhood of the lower part of the boundary of ♢s and a comparatively small part
of the vertical side of ♢s (see the above picture). More precisely, ♢1

s “ ♢s∖
`

♢2
s Y♢3

s

˘

where
♢2
s “

Ů

kPΩs

␣

k ` ℓ1w : ℓ1 P JN 1
k, Nk ´ 1K, whose cardinality is Opp´vps˚qqn´2q as seen in

the proof of Lemma 8.2, and ♢3
s “

Ů

kPB`♢s∖Ωs

␣

k ` ℓ1w : ℓ1 P J0, Nk ´ 1K. Since we have
Nk “ O

`

´vps˚q

maxt1, lnp´vps˚qqu

˘

when k P B`♢s∖ Ωs, and since Card pB`♢sq “ Opp´vps˚qqn´2q

as seen in the proof of Lemma 8.2, the cardinality of ♢3
s is O

`

p´vps˚qqn´1

maxt1, lnp´vps˚qqu

˘

. Modifying
Equation (48), let

ν♢
1

s “
1

Card Λs Card ♢1
s

ÿ

tPΛs, kP♢1
s

ż

aPApOvq

δa exppkqxt
da .

Since the cardinalities of ♢2
s and ♢3

s are negligible compared to the one of ♢s (given by
Proposition 4.6 (2)) we have lim

jÑ`8
ν♢

1

spjq “ lim
jÑ`8

ν♢
spjq “ ν. In particular, for every j P N

large enough, we have

hνpaq ě
1

M
H

ν♢
1

spjq

pPM q ´ 2η .

Let ωs be the probability measure on the finite (discrete) set Ωs defined by ωspkq “
N 1

k
Card ♢1

s

for every k P Ωs. Then by Equation (83), we have

ν♢
1

s “

ż

aPApOvq

ż

kPΩs

a˚νs,rk,N 1
ks dωspkq da .

By Lemma 5.1 (2) applied with pΩ, ωq “ pApOvq ˆ Ωs, da b ωsq, since a´1P is also an
pm, ℓq-partition for every a P ApOvq, and by Lemma 8.3 applied with N “ N 1

k and inte-
grated over pa,kq P ApOvq ˆ Ωs for the probability measure da b ωs, we have

1

M
H

ν♢
1

s
pPM q ě

ż

aPApOvq

ż

kPΩs

1

M
Ha˚νs,rk,N 1

k
s
pPM q dωspkq da ě p1 ´ ηq2 npn ´ 1q ´ η .

Thus hνpaq ě p1 ´ ηq2 npn ´ 1q ´ 3 η. By letting η Ñ 0, we have hνpaq ě npn ´ 1q.
By the Einsiedler-Lindenstrauss Theorem 5.2, we hence have hνpaq “ npn ´ 1q and then
ν “

mX
}mX }

, as wanted at the beginning of the proof of Theorem 8.1. l
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The following result follows by averaging Theorem 8.1 over the permutations of J2, nK
and over the compact probability space pO ˆ

v {Rˆ
v , qvpq`1q

qv´1 vol1vq as in the proof of Lemma
4.8.

Corollary 8.4 Assume that Rv is principal. For every s in the set Sn (endowed with the
Fréchet filter) of elements ps2, . . . snq P pRv∖t0uqn´1 with s2 | s3 | . . . | sn, vpsnq P nZ and
vps2q ´ vpsnq ď

´vpsnq

maxt1, lnp´vpsnqq
, let us define

Λ1
s “

$

&

%

´r2
s1
2

, . . . ,
rn
s1
n

¯

mod R n´1
v :

r2, . . . , rn, s
1
2, . . . , s

1
n P Rv,

@ j P J2, nK, rjRv ` s1
jRv “ Rv,

ts1
2, . . . , s

1
nu “ ts2, . . . , snu .

,

.

-

For the weak-star convergence of Radon measures on the locally compact space X1, we have

lim
sPSn, |sn|Ñ`8

1

Card Λ1
s

ÿ

t PΛ1
s

µutR n
v

“
mX1

}mX1}
. l
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