Erratum to Spiraling spectra of geodesic lines in negatively curved manifolds

Jouni Parkkonen Frédéric Paulin

The correct statement of Proposition 1.4 of [PP] is the following one.

Proposition 1.4 For the Golden Ratio $\phi = \frac{1+\sqrt{5}}{2}$, we have $K_{\phi} = 3/\sqrt{5} - 1 \approx 0.34$, and K_{ϕ} is not isolated in Sp_{ϕ}.

The proof of Proposition 1.4 follows from the following corrected version of Proposition 4.11.

Proposition 4.11 Let Γ_0 be the cyclic subgroup of $\Gamma = \text{PSL}_2(\mathbb{Z})$ generated by $\gamma_1 = \pm \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, and let $\mathscr{D} = (\mathbb{H}^2_{\mathbb{R}}, \Gamma, \Gamma_0, C_{\infty})$. Then $K_{\mathscr{D}} = 3/\sqrt{5} - 1$, and $K_{\mathscr{D}}$ is not isolated in the approximation spectrum $\text{Sp}(\mathscr{D})$.

Proof. The penultimate sentence of the proof of [PP, Prop. 4.11] is incorrect. For every $n \in \mathbb{N}$, let L_1 , γ_n be as in the original version of the proof, and let A_n be the geodesic line from ∞ to the repelling fixed point γ_n^- of γ_n . In order to compute the (strictly increasing) limit, as n tends to $+\infty$, of the approximation constant $c(\gamma_n^-)$ of γ_n^- (using its expression given by Eq. (11) in [PP]), we need not only to consider the Γ -translates of L_1 intersecting A_n and to minimise $1 - \cos \theta$ where θ is its intersection angle, but also to consider the Γ -translates of L_1 not intersecting A_n and to minimise $\cosh \ell - 1$ where ℓ is its distance to A_n .

Consider the common perpendicular arc between the translation axis L_n of γ_n and a disjoint Γ -translate of L_1 . By the symmetry at i and the computation (done in the original version of the proof) of the translation length of γ_n , we may restrict to the case when the endpoint on L_n of this common perpendicular arc lies between i and i + n. Let L be the translate by $z \mapsto z + 1$ of L_1 , whose points at infinity are $\frac{3\pm\sqrt{5}}{2}$. Clearly (see in particular the picture in the original version of the proof), the common perpendicular arc δ_n between L_n and L realises the minimum distance between L_n and a Γ -translate of L_1 disjoint from L_n whose closest point on L_n lies between i and i + n. As $n \to \infty$, the segments δ_n converge (with strictly increasing lengths) to the common perpendicular arc δ_∞ between the positive imaginary axis and L. Since δ_∞ is contained in the Euclidean unit circle (which is the angle bisector through i of the equilateral geodesic triangle with vertices i, 1+i, $\frac{1+i}{2}$), its hyperbolic length is $\arg\cosh\frac{3}{\sqrt{5}}$ by an easy computation. Since we analysed the contribution of the Γ -translates of L_1 that intersect L_n in the original version of the proof, and since $\frac{3}{\sqrt{5}} - 1 < 1 - \frac{1}{\sqrt{5}}$, the (strictly increasing) limit of $c(\gamma_n^-)$ is $\frac{3}{\sqrt{5}} - 1$.

To conclude, we also need to improve the last claim of the second paragraph of the proof of [PP, Prop. 4.11]. Let T be a triangle as in this second paragraph. The distance from a geodesic line γ meeting T to the geodesic line containing the side of T which is not cut by γ is maximal when γ goes through its opposite vertex and is perpendicular to

the angle bisector of T at this vertex. This distance is equal to $\operatorname{argcosh}^3_{\sqrt{5}}$ by the above computation. Since we analysed the contribution of the sides of T intersecting γ in the original version of the proof, and since $\frac{3}{\sqrt{5}} - 1 < 1 - \frac{1}{\sqrt{5}}$, we have $c(\xi) \leq \frac{3}{\sqrt{5}} - 1$ for every $\xi \in \mathbb{R} - \mathbb{Q}$. The result follows.

We are grateful to Yann Bugeaud for pointing out the mistake. See [Bug] for an arithmetic proof of the above result.

References

[Bug] Y. Bugeaud. On the quadratic Lagrange spectrum. Preprint 2012.

[PP] J. Parkkonen and F. Paulin. Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268 (2011) 101–142.

Department of Mathematics and Statistics, P.O. Box 35 40014 University of Jyväskylä, FINLAND. *e-mail: jouni.t.parkkonen@jyu.fi*

Département de mathématique, UMR 8628 CNRS, Bât. 425 Université Paris-Sud, 91405 ORSAY Cedex, FRANCE *e-mail: frederic.paulin@math.u-psud.fr*