Appendix A. The translation length of product of hyperbolic isometries of \mathbb{R} -trees

MATTHEW J. CONDER AND FRÉDÉRIC PAULIN

As noticed by the first author of this appendix in the first version of this paper, Assertion (ii) of Proposition 1.6 (2) in [16] is incorrect. Explicit counter-examples are given after the proof of Proposition 3.5. This appendix serves as an erratum of the paper [16] where Proposition 1.6 (2)(ii) therein should be replaced by Assertion (2)(ii) of the following Proposition A.1. Except this replacement, the remainder of the paper [16] is unchanged.

The second author of this appendix is extremely grateful to the first one for finding the mistake and for fixing it.

We keep the notation of [16] in this appendix, in order to facilitate the checking process. In particular, if γ is an hyperbolic isometry of T, then $l(\gamma)$ is its translation length and A_{γ} is its translation axis. Most of the statements in the following result also follow from [1, Propositions 8.1, 8.3].

Proposition A.1. Let γ, δ be two hyperbolic isometries of an \mathbb{R} -tree T.

(1) Assume that $A_{\gamma} \cap A_{\delta} = \emptyset$. Let D be the length of the connecting arc S between A_{γ} and A_{δ} . Then S is contained in the translation axis of $\gamma\delta$, and the isometry $\gamma\delta$ translates $S \cap A_{\delta}$ towards $S \cap A_{\gamma}$. We have

$$l(\gamma \delta) = l(\gamma) + l(\delta) + 2D$$
.

(2) Assume that $A_{\gamma} \cap A_{\delta} \neq \emptyset$. Let $D \in [0, +\infty]$ be the length of the intersection $A_{\gamma} \cap A_{\delta}$, with D = 0 if this intersection is reduced to a point, and $D = \infty$ if this intersection is noncompact.

(i) Either if D > 0 and the translation directions of γ and δ on $A_{\gamma} \cap A_{\delta}$ coincide, or if D = 0, then

$$l(\gamma\delta) = l(\gamma) + l(\delta) \; .$$

- (ii) Assume that D > 0 and that the translation directions of γ and δ are opposite on $A_{\gamma} \cap A_{\delta}$. Let $D' \in [0, +\infty]$ be the length of the (possibly empty or infinite) segment $A_{\delta} \cap \gamma A_{\delta}$ (resp. $A_{\gamma} \cap \delta A_{\gamma}$) if $l(\delta) > l(\gamma)$ (resp. $l(\delta) < l(\gamma)$), then
 - $l(\gamma\delta) = l(\gamma) + l(\delta) 2D$ if $\min\{l(\gamma), l(\delta)\} > D$,
 - $l(\gamma\delta) = |l(\gamma) l(\delta)|$ if $\min\{l(\gamma), l(\delta)\} < D < \max\{l(\gamma), l(\delta)\}$ or $\max\{l(\gamma), l(\delta)\} \le D$,

• $l(\gamma\delta) = 0$ if $\min\{l(\gamma), l(\delta)\} = D < \max\{l(\gamma), l(\delta)\} \le D + 2D'$,

• $l(\gamma\delta) = \max\{l(\gamma), l(\delta)\} - D - 2D' \text{ if } \min\{l(\gamma), l(\delta)\} = D \text{ and } \max\{l(\gamma), l(\delta)\} > D + 2D'.$

In all four cases, we have $l(\gamma \delta) < l(\gamma) + l(\delta)$.

Proof. We may assume that $l(\gamma) \leq l(\delta)$. The proofs of Assertions (1) and (2)(*i*), as well as the first two cases of Assertion (2)(*ii*), are the same ones as in [16], see also [1, Propositions 8.1, 8.3].

Hence we assume that $l(\gamma) = D < l(\delta)$. In particular D is finite and nonzero, and $A_{\gamma} \cap A_{\delta}$ is a compact segment which may be written [x, y] with $y = \gamma x$. We denote by z the point in T such that $[y, z] = \gamma A_{\delta} \cap A_{\delta}$, if this segment is compact, or the point at infinity of T such that $[y, z] = \gamma A_{\delta} \cap A_{\delta}$ otherwise.

Assume first that $l(\delta) > D + 2D'$, so that in particular D' is finite, $z \in T$ and D' = d(y, z). See the above picture. Since $l(\delta) > D + D'$, the point x belongs to $[z, \delta z]$ and besides $d(x, \delta z) = \ell(\delta) - D - D' > D'$. Therefore $\gamma \delta z$ does not belong to A_{δ} . The germ at z of the segment from z to $\gamma \delta z$ is hence not sent to the germ at $\gamma \delta z$ of the segment from $\gamma \delta z$ to z. Thus, as wanted,

$$d(\gamma\delta) = d(z,\gamma\delta z) = d(\gamma\delta z,y) - d(y,z) = d(\delta z,x) - d(y,z) = \ell(\delta) - D - 2D'.$$

Assume now that $l(\delta) \leq D + D'$. See the above picture. Note that $\delta^{-1}x$ does not belong to A_{γ} since $l(\delta) > D$, and that $d(\delta^{-1}x, y) = l(\delta) - D \leq D'$. Let *m* be the midpoint of the segment $[y, \delta^{-1}x]$, so that $d(\delta m, x) = d(m, \delta^{-1}x) = d(m, y)$. Hence $\gamma \delta m$, which is the point of [y, z] (or [y, z] if $D' = +\infty$) at distance $d(\delta m, x)$ from *y*, is equal to *m* and $l(\gamma \delta) = 0$, as wanted.

Assume finally that $D + D' < l(\delta) \leq D + 2D'$. See the above picture. In particular D' is finite, $z \in T$ and D' = d(y, z). Note that δz does not belong to A_{γ} since $l(\delta) > D + D'$, and that

 $d(\delta z, x) = d(\delta z, z) - d(z, y) - d(y, x) = l(\delta) - D - D' \le D'.$

Hence $\gamma \delta z \in [y, z]$ and $d(\gamma \delta z, y) = d(\delta z, x) = l(\delta) - D - D'$, so that

 $d(\gamma \delta z, z) = d(z, y) - d(\gamma \delta z, y) = D' - (l(\delta) - D - D') = D + 2D' - l(\delta) .$

Let *m* be the midpoint of the segment $[\gamma \delta z, z]$, so that $d(m, z) = \frac{1}{2}(D + 2D' - l(\delta))$. Hence

$$d(y,m) = d(y,z) - d(z,m) = \frac{1}{2}(l(\delta) - D)$$
.

But since m belongs to A_{δ} and comes after z on A_{δ} oriented by the translation direction of δ , we have

$$d(\delta m, x) = d(\delta m, \delta z) + d(\delta z, x) = \frac{1}{2} (D + 2D' - l(\delta)) + (l(\delta) - D - D')$$

= $\frac{1}{2} (l(\delta) - D) = d(y, m) \le D'$.

Hence $\gamma \delta m$, which is the point of [y, z] at distance $d(\delta m, x)$ from y, is equal to m and $l(\gamma \delta) = 0$, as wanted.

References

- R. Alperin and H. Bass, Length functions of group actions on Λ-trees, in: Combinatorial Group Theory and Topology, Ann. of Math. Stud. 111:265–378, 1987.
- [2] S. Alvarez, D. Filimonov, V. Kleptsyn, D. Malicet, C. Meniño Cotón, A. Navas and M Triestino, Groups with infinitely many ends acting analytically on the circle, *J. Topol.* 12:1315-1367, 2019.
- [3] A. F. Beardon, Pell's equation and two generator free Möbius groups, Bull. London Math. Soc. 25:527-532, 1993.
- [4] B. H. Bowditch, Markoff triples and quasifuchsian groups, Proc. London Math. Soc. 77:697-736, 1998.
- [5] J. W. S. Cassels, Local Fields, Cambridge Univ. Press, 1986.
- [6] Y. Cornulier and P. de la Harpe, Metric Geometry of Locally Compact Groups, Eur. Math. Soc., 2016.
- [7] M. Culler and J. W. Morgan, Group actions on R-trees, Proc. London Math. Soc. 55:571-604, 1987.
- [8] M. Culler and K. Vogtmann, The boundary of Outer space in rank two, in: Arboreal Group Theory, Math. Sci. Res. Inst. Publ. 19:189-230, 1991.
- [9] B. Eick, M. Kirschmer and C. Leedham-Green, The constructive membership problem for discrete free subgroups of rank 2 of SL₂(ℝ), LMS J. Comput. Math. 17:345-359, 2014.
- [10] D. Gaboriau and G. Levitt, The rank of actions on R-trees, Ann. Sci. École Norm. Sup. 28:549-570, 1995.
- [11] G. Levitt and V. Guirardel, Deformation spaces of trees, Groups Geom. Dyn. 1:135-181, 2007.
- [12] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, 1977.
- [13] R. C. Lyndon and J. L. Ullman, Groups generated by two parabolic linear fractional transformations, *Canadian J. Math.* 21:1388-1403, 1969.
- [14] J. W. Morgan and P. B. Shalen, Valuations, trees and degenerations of hyperbolic structures I, Ann. of Math. 120:401-476, 1984.
- [15] M. Newman, Pairs of matrices generating discrete free groups and free products, Michigan Math. J. 15:151-160, 1968.
- [16] F. Paulin, The Gromov topology on R-trees, *Topology Appl.* 32:197-221, 1989.
- [17] N. Purzitsky, Two-generator discrete free products, Math. Z. 126:209-223, 1972.
- [18] G. Rosenberger, Fuchssche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichung $x^2 + y^2 + z^2 = xyz$, Math. Ann. 199:213-227, 1972.
- [19] J. P. Serre (translated by J. Stilwell), Trees, Springer, 2002.
- [20] M. Urbański and L. Zamboni, On free actions on Λ-trees, Math. Proc. Cambridge Philos. Soc. 113:535-542, 1993.

M. J. CONDER, DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS, CENTRE FOR MATHEMATICAL SCIENCES, UNIVERSITY OF CAMBRIDGE, WILBERFORCE ROAD, CAMBRIDGE, CB3 0WB, UNITED KINGDOM

Email address: mjc271@cam.ac.uk

F. PAULIN, LABORATOIRE DE MATHÉMATIQUE D'ORSAY, UMR 8628 UNIV. PARIS-SUD ET CNRS, UNIVERSITÉ PARIS-SACLAY, 91405 ORSAY CEDEX, FRANCE

Email address: frederic.paulin@math.u-psud.fr