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APPENDIX A. THE TRANSLATION LENGTH OF PRODUCT OF HYPERBOLIC
ISOMETRIES OF R-TREES

MATTHEW J. CONDER AND FREDERIC PAULIN

As noticed by the first author of this appendix in the first version of this paper,
Assertion (i¢) of Proposition 1.6 (2) in [16] is incorrect. Explicit counter-examples
are given after the proof of Proposition 3.5. This appendix serves as an erratum of
the paper [16] where Proposition 1.6 (2)(¢7) therein should be replaced by Assertion
(2)(i7) of the following Proposition A.1. Except this replacement, the remainder of
the paper [16] is unchanged.

The second author of this appendix is extremely grateful to the first one for
finding the mistake and for fixing it.

We keep the notation of [16] in this appendix, in order to facilitate the checking
process. In particular, if v is an hyperbolic isometry of T', then I(v) is its translation
length and A, is its translation axis. Most of the statements in the following result
also follow from [1, Propositions 8.1, 8.3].

Proposition A.1. Let 7y,d be two hyperbolic isometries of an R-tree T'.

(1) Assume that A,NAs = (. Let D be the length of the connecting arc S between
A, and As. Then S is contained in the translation azxis of vd, and the isometry v6
translates S N As towards SN A,. We have

I(v6) =1U(y) +1(0) +2D .
(2) Assume that A, N As # 0. Let D € [0, +00] be the length of the intersection
A, N As, with D = 0 if this intersection is reduced to a point, and D = oo if this
intersection s noncompact.

(1) Either if D > 0 and the translation directions of v and 6 on Ay N As
coincide, or if D =0, then

W(y6) = 1(v) +1(9) -

(#i) Assume that D > 0 and that the translation directions of v and & are
opposite on AyNAs. Let D' € [0, 400] be the length of the (possibly empty or
infinite) segment AsNyAs (resp. AyNOA,) if 1(8) > () (resp. 1(6) < (7)),
then

® 1(v0) =1(7) +U(6) — 2D if min{l(v),1(6)} > D,

* [(76) = [l(v) = U(8)] if min{l(y),1(8)} < D < max{l(y),1(8)} or
max{l(y),1(d)} < D,

o [(v6) =0 if min{l(v),1(0)} = D < max{i(v),1(6)} < D+ 2D’,

o [(v6) = max{l(y),1(0)} — D — 2D’ if min{i(~),1(6)} = D and
max{l(7),1(0)} > D +2D’.

In all four cases, we have l(y0) < I(~y) + ().

Proof. We may assume that I(y) < I(6). The proofs of Assertions (1) and (2)(4),
as well as the first two cases of Assertion (2)(ii), are the same ones as in [16], see
also [1, Propositions 8.1, 8.3].

Hence we assume that [(y) = D < I(§). In particular D is finite and nonzero,
and A, N As is a compact segment which may be written [x,y] with y = yz. We
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denote by z the point in T such that [y, z] = vA4s N As, if this segment is compact,
or the point at infinity of T such that [y, z[ = yAs N As otherwise.
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Assume first that [(§) > D + 2D’; so that in particular D’ is finite, z € T and
D’ = d(y,z). See the above picture. Since I(§) > D + D', the point x belongs to
[2,0z] and besides d(x,dz) = £(0) — D — D’ > D’. Therefore vdz does not belong
to As. The germ at z of the segment from z to vz is hence not sent to the germ
at vz of the segment from vz to z. Thus, as wanted,

1(v6) = d(z,762) = d(vdz,y) — d(y,2) = d(6z,x) — d(y,z) = £(§) — D — 2D’".
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Assume now that [(§) < D + D’. See the above picture. Note that 6!z does
not belong to A, since [(§) > D, and that d(6~'z,y) = 1(§) — D < D’. Let m be
the midpoint of the segment [y, 1z], so that d(dm,x) = d(m,é *x) = d(m,y).
Hence vdm, which is the point of [y, z] (or [y, z[ if D’ = 400) at distance d(dm, )
from y, is equal to m and I(yd) = 0, as wanted.

S

v As

Assume finally that D + D’ < [(§) < D + 2D’. See the above picture. In
particular D’ is finite, z € T and D’ = d(y, z). Note that 0z does not belong to A,
since {(0) > D + D', and that

d(6z,2) = d(6z,2) — d(z,y) —d(y,z) =1(§) — D - D' < D".
Hence vz € [y, z] and d(vdz,y) = d(dz,2) =1(6) — D — D', so that
d(y8z,2) = d(z,y) — d(y0z,y) = D' — (I(6) = D — D) = D +2D" —1(5) .

Let m be the midpoint of the segment [ydz, 2], so that d(m, z) = (D +2D’" —1(¥)).
Hence

d(y,m) = dly. =) — d(z,m) = S(I(5) - D).
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But since m belongs to As and comes after z on A oriented by the translation
direction of ¢, we have

d(om, ) = d(6m, 52) + d(62, ) = %(D LoD 1) + (I6) — D — D)

1
= L)~ D) = dly.m) < D
Hence vém, which is the point of [y, z] at distance d(ém,x) from y, is equal to m
and [(vyd) = 0, as wanted. O
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