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Abstract

We prove an abstract result on the correlations of pairs of elements in an exponen-
tially growing discrete subset E of r0,`8r endowed with a weight function. Assume
that there exist α P R, c, δ ą 0 such that, as t Ñ `8, the weighted number rωptq
of elements of E that are not greater than t is equivalent to c tαeδt. We prove that
the distribution function of the unscaled differences of elements of E is t ÞÑ δ

2 e
´|t|,

and that, under an error term assumption on rωptq, the pair correlation with a scaling
with polynomial growth exhibits a Poissonian behaviour. We apply this result to an-
swer a question of Pollicott and Sharp on the pair correlations of closed geodesics and
common perpendiculars in negatively curved manifolds and metric graphs. 1

1 Introduction

When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacing between pairs or k-tuples
of elements, seen at an appropriate scaling. This problematic is largely developped in
quantum chaos, including energy level spacings or clusterings, and in statistical physics,
including molecular repulsion or interstitial distribution. See for instance [Mon, Ber, RS,
BZ, MaS, LS, HK]. In [PS1, PS2], Pollicott-Sharp study the pair correlations of lengths of
closed geodesics in negatively curved manifolds as the word length of the elements of the
fundamental group that represent them tends to `8. They mention that a result replacing
the word length by the Riemannian length does not seem to be available. One aim of this
note is to answer this problem, by a very general method.

For any set E , a weight function (or multiplicity function when its values are positive
integers) on E is simply a function ω : E Ñ s 0,`8r . The growth function (or counting
function when the weights are integers) of a locally finite subset E of r 0,`8r endowed
with a weight function ω is the map NE ,ω : r0,`8rÑ r 0,`8r defined by

NE ,ω : t ÞÑ
ÿ

xPEXr0,ts

ωpxq .

Let F “ p pFN qNPN, ωq be a nondecreasing sequence of finite subsets FN of a finite
dimensional Euclidean space E, endowed with a weight function ω :

Ť

NPN FN Ñ s 0,`8r .
Let ψ be any function from N to r1,`8r, called a scaling function, and let ψ1 : NÑs0,`8r

1Keywords: pair correlation, counting function, growth function, equidistribution, closed geodesics,
common perpendiculars. AMS codes: 05A16, 11N45, 26E99, 28A33, 53C22, 37C35.
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be an appropriately chosen function, called a renormalising function. The pair correlation
measure of F at time N with scaling ψpNq is the measure on E with finite support

RF ,ψ
N “

ÿ

x,yPFN

ωpxqωpyq∆ψpNqpy´xq , (1)

where ∆z denotes the unit Dirac mass at z in any measurable space. When the sequence of
measures RF ,ψ

N , renormalised by ψ1pNq, weak-star converges to a measure gF ,ψ LebE ab-
solutely continuous with respect to the Lebesgue measure LebE of E, the Radon-Nikodym
derivative gF ,ψ is called the asymptotic pair correlation function of F for the scaling ψ
and renormalisation ψ1. When gF ,ψ is a positive constant, we say that F has a Poissonian
behaviour for the scaling ψ and renormalisation ψ1.

Theorem 1.1. Let E be a locally finite subset of r0,`8r endowed with a weight function
ω. Assume that there exist α P R, c, δ ą 0 and κ ě 0 such that, as tÑ `8, we have

NE , ωptq „ c tα eδ tp1` ope´κ tqq .

Let ψ : NÑ r1`8r be an at most polynomially growing scaling function, with renormalising
function ψ1 : N ÞÑ

NE , ωpNq
2

ψpNq . Then the family F “ p pFN “ tx P E : x ď NuqNPN, ωq has
a pair correlation function gF ,1 : t ÞÑ δ

2 e
´ δ |t| if ψ “ 1, and has Poissonian behaviour with

gF ,ψ “
δ
2 if lim

`8
ψ “ 8 and κ ą 0.

We give some comments on the above statement at the beginning of Section 3. We
refer to Theorem 3.1 for a more precise version, including error terms. The work on error
terms constitutes the main technical parts of this paper.

Numerous settings in number theory, in geometry and in dynamical systems2 give rise
to counting functions that satisfy the assumption of Theorem 1.1. We will give some
applications of the above result on geometry and dynamics in Section 4. Following the
notation of [PS1], for all a ă b in R and N P N, let

πE pN, ra, bsq “ RF ,1
N pra, bsq “

ÿ

x,yPE : x,yďN, aďy´xďb

ωpxqωpyq

be the weighted number of differences of elements in E X r0, N s that lie in the interval
ra, bs. Since the limit measure is atomless, under the assumptions of Theorem 3.1, we have
the following corollary (see also Corollary 4.1).

Corollary 1.2. For all a ă b in R, as N Ñ `8, we have

πE pN, ra, bsq „
δ

2
NE , ωpNq

2

ż b

a
e´δ|t| dt . l

This answers the question of Pollicott-Sharp [PS1] when E is the set of lengths of closed
geodesics in a closed negatively curved manifold, δ is the topological entropy of its geodesic
flow and ω is the multiplicity function of these lengths (see Remark (3) in Section 3).

We suspect that when the scaling function has superexponential growth, the empirical
measures 1

ψ1pNqR
F ,ψ
N have a total loss of mass as N Ñ `8 whatever the renormalising

2See, for instance [PPo], [EM].
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function ψ1 is, hence that the pair correlation function gF ,ψ exists and is identically 0.
The main open problem related to Theorem 1.1 is to study the pair correlations for scaling
functions ψ which are at the threshold, that is, are just exponentially growing. For instance,
the set E “ t lnn : n P N ´ t0uu endowed with the trivial multiplicity function ω : x ÞÑ 1
satisfies the assumption of the above theorem with c “ 1, α “ 0 and δ “ 1. In [PP4], we
study the pair correlations of this family for general scalings and some arithmetic weights
functions, proving surprising level repulsion phenomena when ψpNq “ eN .

Acknowledgements: This research was supported by the French-Finnish CNRS IEA BARP.

2 Preliminaries on the growth of positive sequences

In this section, we recall some standard terminology used in the paper, and we prove two
technical results used in the proof of the main results in Section 3.

Recall that given a set of parameters P and a positive map h defined on a neighborhood
of`8 in N or R, we denote by OP phq (respectively oP ) any Landau function (as the variable
goes to `8) from R to R such that there exists a constant M ą 0 depending only on the
parameters in P and t0 ě 0 (possibly depending on ambient data) such that for every
t ě t0, we have |OP phqptq| ďM hptq (respectively such that lim

`8

| oP phqptq|
hptq “ 0).

A positive sequence pxnqnPN is
‚ subexponentially growing if for every γ ą 0, we have limnÑ`8

xn
eγn “ 0,

‚ at most polynomially growing if there exists γ ą 0 such that limnÑ`8
xn
nγ “ 0,

‚ strictly sublinearly growing if there exists γ P s0, 1r such that limnÑ`8
xn
nγ “ 0.

The first result generalises a classical result on the geometric sums (when b “ 0) to the
generality needed for the proofs in Section 3.

Lemma 2.1. For every b P R, for every sequence paM qMPN in s1,`8r such that the
sequence p 1

ln aM
qMPN is strictly sublinearly growing, as M tends to `8 in N, we have

M
ÿ

k“1

kbpaM q
k “

aM
aM ´ 1

M bpaM q
M
`

1`Obp
1
?
M
q
˘

.

Proof. Let γ P s0, 1r be such that limMÑ`8M
γ ln aM “ `8. As a preliminary remark,

note that we have nbpaM qn “ ObpM
bpaM q

M q for every n P t1, . . . ,Mu : This is immediate
if b ě 0, and follows when b ă 0 by considering separately the case n ě M

2 (in which case
we have nbpaM q

n

MbpaM qM
ď 2|b|) and n ď M

2 (in which case we have

nbpaM q
n

M bpaM qM
ďM |b|paM q

´M{2 “ e´
M1´γ

2

`

Mγ ln aM´2|b| lnM
M1´γ

˘

,

which converges to 0 as M tends to `8).
Recall that p1 ´ 1

n`1q
b “ 1 ` Obp

1
nq for every n ě 1. With ΣM “

řM
n“1 n

bpaM q
n, for

every S P r1,M s, by the standard telescopic sum argument and by cutting the third sum
below for n ď S and for n ą S (using in this second case the preliminary remark), we
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hence have

paM ´ 1q ΣM “

M
ÿ

n“1

nbpaM q
n`1 ´ ΣM “

M
ÿ

n“1

pn` 1qbp1´
1

n` 1
qbpaM q

n`1 ´ ΣM

“ pM ` 1qbpaM q
M`1 ´ aM `Ob

`

M
ÿ

n“1

1

n
pn` 1qbpaM q

n`1
˘

“ pM ` 1qbpaM q
M`1 ´ aM `ObppS ` 1qb`1paM q

S`1q `Ob

`M ´ S

S
pM ` 1qbpaM q

M`1
˘

.

As M Ñ `8, by taking S “ 4M2

p1`
?

1`4M q2
„ M , so that M ´ S „

?
M and M´S

S „ 1?
M
,

the sum of the Obp¨q functions in the above centered line is an Ob

`MbpaM q
M

?
M

˘

function. The
result follows. l

In order to simplify the notation in the main body of this text, let

rω : t ÞÑ NE ,ωptq “
ÿ

xPE , xďt

ωpxq . (2)

This function is defined on R with the usual convention that a sum over an empty set
of indices is 0. The local finiteness assumption of the subset E of r0,`8r ensures the
finiteness of the growth function rω “ NE , ω, and the local finiteness (hence regularity) of
the pair correlation measures RF ,ψ

N on R for F “ p pFN “ tx P E : x ď NuqNPN, ωq,
defined in Equation (1). We denote by

(PA) the assumption that rωptq „ c tα eδt as t Ñ `8 for some constants c, δ ą 0 and
α P R, and by

(ET) the assumption that rωptq “ c tα eδt
`

1`Ope´κ tq
˘

as tÑ `8 for some constants
c, δ, κ ą 0 and α P R.

For all t P R and η ą 0, we define the pt, ηq-slice of weights as

rωpt, ηq “ rωptq ´ rωpt´ ηq . (3)

The next result describes the asymptotic behaviour for the thin, though not too thin, slices
of weights under one of the two assumptions (PA) or (ET).

Lemma 2.2. (1) Let η ą 0. Under Assumption (PA), as t ą 0 tends to `8, we have

rω pt, ηq “ c tα eδ tp1´ e´δ ηq
`

1` oα,ηp1q
˘

.

(2) Let η : t ÞÑ ηt be a map from r0,`8r to s0, 1s. Under Assumption (ET), if
lim
tÑ`8

ηt e
κ t “ `8, then, as t tends to `8, we have

rω pt, ηtq “ c tα eδ tp1´ e´δ ηtq
´

1`
1

ηt
Oδpe

´κ tq `Oα,δ

`1

t

˘

¯

.

In particular, as t tends to `8, under these assumptions, we have

rω pt, ηtq “ Oα,δpt
α eδ tq .

If α “ 0, then as t tends to `8, we have more precisely

rω pt, ηtq “ c eδ tp1´ e´δ ηtq
`

1`
1

ηt
Oδpe

´κ tq
˘

.
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Proof. (1) For every t P R, let rt “ c´1t´α e´δ t rω ptq´1, which converges to 0 as tÑ `8

since Assumption (PA) holds. If t ą 0, we have

rω pt, ηq “ rωptq ´ rωpt´ ηq “ c tα eδ tp1` rtq ´ c pt´ ηq
α eδ pt´ηqp1` rt´ηq

“ c tα eδ t
´

1` rt ´
`

1´
η

t

˘α
e´δ ηp1` rt´ηqq

¯

“ c tα eδ t
´

1´ e´δ η ` rt ´ e
´δ ηrt´η ´ e

´δ η Oα

`η

t

˘

¯

.

Since limtÑ`8
maxtrt, rt´η ,

1
t
u

1´e´δ η
“ 0, this concludes the proof of Assertion (1).

(2) Since ηt P s0, 1s, we have Opeκ ηtq “ Op1q as t Ñ `8. Recall that p1 ` sqα “
1 ` Oαpsq as s Ñ 0. Since Assumption (ET) holds, when t ą 0 tends to `8, we hence
have

rω pt, ηtq “ rωptq ´ rωpt´ ηtq “ c tα eδ t
´

1`Ope´κ tq ´
`

1´
ηt
t

˘α
e´δ ηtp1`Ope´κ tqq

¯

“ c tα eδ t
´

1´ e´δ ηt `Ope´κ tq `Oαp
ηt
t
q

¯

.

Since 1
1´e´δ ηt

“ Oδp
1
ηt
q as tÑ `8, and since limtÑ`8

e´κ t

ηt
“ 0, this proves the result for

general α. The proof in the special case when α “ 0 is even simplier. l

3 An extension of Theorem 1.1 with error terms

We will use in this section the notation NE , ω and RF ,ψ
N defined in the Introduction, as

well as the notation rωp¨q and rωp¨, ¨q of Equations (2) and (3). For every scaling function
ψ : NÑ r1,`8r , we consider the renormalising function

ψ1 : N ÞÑ
NE , ωpNq

2

ψpNq
“

rωpNq2

ψpNq
. (4)

We denote by }µ} the total mass of a measure µ.

We start this section by some comments on the statement of Theorem 1.1.

Remarks. (1) When ψ “ 1, then ψ1pNq “ }RF ,ψ
N }, and the renormalisation in Theorem

1.1 (as well as in Theorem 3.1) is chosen in order to obtain probability measures 1
ψ1pNq RF ,ψ

N ,
which turns out to converge to a probability measure gF ,1 dt as N Ñ `8.

When lim
`8

ψ “ `8, as the proof below shows, the renormalisation is precisely chosen in
order to obtain a locally finite nonzero measure, but there is an infinite loss of mass at in-
finity, in the sense that lim

NÑ`8

1
ψ1pNq }R

F ,ψ
N } “ `8 even though lim

NÑ`8

1
ψ1pNq } pR

F ,ψ
N q|K}

is finite for every compact subset K of r0,`8r .

(2) The pair correlation measures are sometimes defined (see for instance [PP4]) by

rRF ,ψ
N “

ÿ

x,yPFN : x‰y

ωpxqωpyq∆ψpNqpy´xq ,

that is by adding the assumption x ‰ y on the set of pair of indices px, yq P FN
2 in

the summation (compare with Equation (1)). Note that when the renormalised measures
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1
ψ1pNq RF ,ψ

N weak-star converge to a measure µ on R which has no atom at 0 (for instance
if the family F admits a pair correlation function for the scaling ψ and renormalisation
ψ1, as it is the case in Theorem 1.1), then we also have limNÑ`8

1
ψ1pNq

rRF ,ψ
N “ µ, that is,

the contribution of the diagonal set of indices in the sum defining 1
ψ1pNq RF ,ψ

N is negligible.

(3) An archetypical example of a pair pE , ωq is given by a countable set rE endowed
with a map ` : rE Ñ s 0,`8r with finite fibers whose image E “ `p rE q is locally finite and
endowed with the multiplicity function ω : x ÞÑ Cardp`´1pxqq. In this case, we have

RF ,ψ
N “

ÿ

x,y P rE : `pxq, `pyqďN

∆ψpNqp`pyq´`pxqq .

Theorem 1.1 when ψ “ 1 then says that if there exist α P R and c, δ ą 0 such that, as
tÑ `8, we have Cardtx P rE : `pxq ď tu „ c tα eδ t then 1

}RF,1
N }

RF ,1
N weakstar converges

to the measure δ
2 e

´ δ |t| dt on the locally compact space R as N Ñ `8.

We now state an extended version with error terms of Theorem 1.1, from which it
follows, using Assumption (ET). Let

gδ : t ÞÑ
δ

2
e´ δ |t| .

Theorem 3.1. Let E be a locally finite subset of r0,`8r endowed with a weight function
ω, and let α P R and c, δ ą 0. Assume that there exists κ ą 0 such that as t Ñ `8, we
have

NE , ωptq “ c tα eδ tp1`OE ,ωpe
´κ tqq . (5)

Let ψ : N Ñ r1 ` 8r be a scaling function and let A ě 1. For every function f P C1pRq
with compact support in r´A,As, as N Ñ `8, with Landau functions O “ OE ,ω,c,α,δ,κ and
κ1 “ mintκ, δu, we have

RF ,ψ
N pfq

ψ1pNq
“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ş

R fptq gδptq dt`OpAeδAe´
κ1

12
N }f}8q `OpAe´

κ1

4
N }f 1}8q

if α “ 0 and ψ “ 1,
ş

R fptq gδptq dt`O
`

A2

N p}f}8 ` }f
1}8q

˘

if α ‰ 0 and ψ “ 1,

δ
2

ş

R fptq dt`O
`A2}f}8
ψpNq

˘

`O
`

A2 e´
κ1

4
N ψpNq }f 1}8

˘

if α “ 0 and ψ converges to `8 with subexponential growth

δ
2

ş

R fptq dt`O
`

A2

mintN,ψpNqup}f}8 ` }f
1}8q

˘

if α ‰ 0 and ψ converges to `8 with at most polynomial growth.

Proof. Let E , ω, c, α, δ, κ be the fixed data in the statement of Theorem 3.1. Though we
won’t indicate the dependency, the Landau functions Op¨q below will depend on these fixed
data, in the sense defined at the beginning of Section 2. Up to replacing κ by mintκ, δu
which does not change the conclusion of Theorem 3.1 and is implied by its hypothesis (5),
we may assume that

κ ď δ . (6)
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Let ψ, f , A and N be the varying data in the statement of Theorem 3.1. The Landau
functions Op¨q below will not depend on these varying data, in the sense defined at the
beginning of Section 2.

Note that if ι : t ÞÑ ´t, then ι˚R
F ,ψ
N “ RF ,ψ

N by using the change of variables
px, yq ÞÑ py, xq in the summation of Equation (1), and that gδ ˝ ι “ gδ. In order to prove
Theorem 3.1, we may hence assume by additivity that the support of f is contained in
r0, As, and again by additivity that f ě 0.

Note that lim`8 ψ
1 “ `8 by Equation (4) since rω is exponentially growing and ψ is

subexponentially growing in all the cases of Theorem 3.1. As N Ñ `8, by Equations (4)
and (5), we have

1

ψ1pNq
“

ψpNq

c2 N2α e2δN

`

1`Ope´κN q
˘

. (7)

We consider throughout this proof two small quantities ε, τ 1 P s0, 1s which will depend on
N and converge to 0. We define

τ “
τ 1

ψpNq
,

and we assume that τ ě 2ε when N is large. We will check this inequality after defining ε
and τ 1 in Equations (22) and (27).

The following lemma describes the work on the set of indices of some of the following
sums in order to be able to separate the variables x and y.

Lemma 3.2. Let x, y P E and k, n ě 1. The system of inequalities

0 ă x ď y ď N, pk ´ 1qε ă x ď k ε, pn´ 1qτ 1 ă ψpNqpy ´ xq ď nτ 1 (8)

implies the system of inequalities

pk´1qε ă x ď k ε, pnτ`k εq´pτ`εq ă y ď nτ`k ε, k ďM`
ε “

YN ´ pn´ 1qτ

ε

]

`1 , (9)

and is implied by the system of inequalities

pk´ 1qε ă x ď k ε, pnτ ` k εq´ τ ă y ď nτ ` k ε´ ε, k ďM´
ε “

YN ´ nτ

ε

]

` 1 . (10)

Proof. Since we have τ “ τ 1

ψpNq , the last two inequalities of Equation (8) are equivalent to
pn´ 1qτ ` x ă y ď nτ ` x. With the middle two inequalities of Equation (8), this implies
that pnτ ` k εq´ pτ ` εq ă y ď nτ ` k ε and is implied by pnτ ` k εq´ τ ă y ď nτ ` k ε´ ε.

The inequalities pnτ ` k εq ´ pτ ` εq ă y and y ď N imply that k ε ď N ´ pn´ 1qτ ` ε,
hence that k ďM`

ε .
The inequalities y ď nτ`k ε´ε and k ďM´

ε imply that y ď nτ`ε
`

N´nτ
ε `1

˘

´ε “ N .
The inequalities pk ´ 1qε ă x and k ě 1 implies that x ą 0. The inequalities x ď k ε,
pnτ ` k εq ´ τ ă y and n ě 1 imply that x ď y. The result follows. l

Note that by the definitions of M˘
ε in Equations (9) and (10), when τ ě 2ε, we have

ε M˘
ε “ ε

´YN ´ pn´ 1
2p1˘ 1qqτ

ε

]

` 1
¯

“ N ´ nτ `Opτq . (11)
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Let us define

µN pfq “
ÿ

x,yPE , 0ăxďyďN

ωpxq ωpyq fpψpNqpy ´ xqq . (12)

Since the support of f is contained in r0, As and ψ ě 1, we have

0 ď RF ,ψ
N pfq ´ µN pfq “

ÿ

x,yPE , 0“xďyďN

ωpxq ωpyq fpψpNqpy ´ xqq

ď
ÿ

yPEXr0,As

ωp0q ωpyq }f}8 ,

and the term on the right hand is independent of N . Note that 1
ψ1pNq “ Ope´κN q by

Equations (4), (5) and (6), and by the subexponential growth of ψ in all the cases of
Theorem 3.1. Hence in order to prove Theorem 3.1, we therefore only have to prove that
µN pfq
ψ1pNq converges, with the appropriate error terms, to

ş

f gδ dt when ψ “ 1 and to δ
2

ş

f dt
when ψ Ñ `8.

We will use Riemann sums in order to approximate these integrals, with subdivision
step given by τ 1. Since the support of f is contained in r0, As, we only need to subdivide
this interval into

P

A
τ 1

T

intervals of length τ 1. For all n P t1, . . . ,
P

A
τ 1

T

u and t P spn´1qτ 1, nτ 1s,
we have

fptq “ fpnτ 1q ´

ż nτ 1

t
f 1ptq dt “ fpnτ 1q `O

`

ż nτ 1

pn´1qτ 1
|f 1ptq| dt

˘

“ fpnτ 1q `Opτ 1 }f 1}8q .

(13)
Since f ě 0, we may assume that fpnτ 1q `Opτ 1 }f 1}8q ě 0. Let us define

an,N “
`8
ÿ

k“1

ÿ

x,yPE : 0ăxďyďN,
pk´1qεăxďk ε,

pn´1qτ 1ăψpNqpy´xqďnτ 1

ωpxq ωpyq (14)

which is a nonnegative finite sum and depends also on ε and on τ 1. With the help of Equa-
tion (13), Equation (12) becomes, by subdividing the range of x into half-open intervals of
length ε and the range of ψpNqpy´xq (with values at most A in order to be in the support
of f) into half-open intervals of length τ 1,

µN pfq “

r A
τ 1

s
ÿ

n“1

`8
ÿ

k“1

ÿ

x,yPE : 0ăxďyďN,
pk´1qεăxďk ε,

pn´1qτ 1ăψpNqpy´xqďnτ 1

ωpxq ωpyq fpψpNqpy ´ xqq

“

r A
τ 1

s
ÿ

n“1

`

fpnτ 1q `Opτ 1 }f 1}8q
˘

an,N . (15)

We now proceed by a majoration and minoration of an,N . Let us define

a`n,N “
M`
ε

ÿ

k“1

ÿ

x,yPE : pk´1qεăxďk ε
pnτ`k εq´pτ`εqăyďnτ`k ε

ωpxq ωpyq (16)
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and

a´n,N “
M´
ε

ÿ

k“1

ÿ

x,yPE : pk´1qεăxďk ε
pnτ`k εq´τăyďpnτ`k εq`ε

ωpxq ωpyq . (17)

By Lemma 3.2, we have
a´n,N ď an,N ď a`n,N .

Since the variables x, y are separated in the sums defining a˘n,N and by the definition (3)
of the slices of weights, we have

a`n,N “
M`
ε

ÿ

k“1

rω pkε, εq rω pnτ ` kε, τ ` εq (18)

and

a´n,N “
M´
ε

ÿ

k“1

rω pkε, εq rω pnτ ` kε` ε, τ ´ εq . (19)

We study the quantities a˘n,N under the assumption (5) on the asymptotic behaviour of
the weights.

Asymptotics on a˘n,N . By Equation (18) and by two applications of Lemma 2.2 (2) with
pt, ηtq “ pkε, εq and pt, ηtq “ pnτ ` kε, τ ` εq as k Ñ `8, and up to verifying when we will
define ε and τ 1 that the assumption of this lemma (besides Assumption (ET) which holds
by Equation (5)) is satisfied, for all N large enough and n P t1, . . . , rAτ 1 su, we have

a`n,N “
M`
ε

ÿ

k“1

c pkεqα eδkεp1´ e´δεq
´

1`
1

ε
Ope´κkεq `O

` 1

kε

˘

¯

ˆ c pnτ ` kεqα eδpnτ`kεqp1´ e´δpτ`εqq
´

1`
1

τ ` ε
Ope´κpnτ`kεq `O

` 1

nτ ` kε

˘

¯

“ c2p1´ e´δεqp1´ e´δpτ`εqq eδnτ
M`
ε

ÿ

k“1

z`k , (20)

where

z`k “ pkεq
2α e2δkε

`

1`
nτ

kε

˘α
´

1`
1

ε
Ope´κkεq`O

` 1

kε

˘

¯´

1`
1

τ ` ε
Ope´κpnτ`kεqq`O

` 1

nτ ` kε

˘

¯

.

Since τ ˘ ε ě ε, nτ ` kε ě kε and e´κnτ ď 1, this simplifies as

z`k “ pkεq
2α e2δkε

`

1`
nτ

kε

˘α
´

1`
1

ε
Ope´κkεq `O

` 1

kε

˘

¯2
. (21)

Case 1: Let us first assume that α “ 0. We define in this case

ε “ e´
κ
3
N and τ 1 “ e´

κ
4
NψpNq . (22)

In particular, we have limNÑ`8 ε e
κN “ `8, we have τ ě 2ε if N is large enough, and

since ψ grows subexponentially under the two assumptions of Theorem 3.1 when α “ 0,
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the quantity τ 1 tends to 0 as N Ñ `8. By the last claim of Lemma 2.2 (2), Equation (21)
for z`k simplifies as

z`k “ e2δkε
`

1`
1

ε
Ope´κkεq

˘2
“ e2δkε `

1

ε2
Opep2δ´κqkεq .

Hence by a geometric series summation, since 2δ ą δ ě κ by Equation (6), we have

M`
ε

ÿ

k“1

z`k “
e2δεpM`

ε `1q ´ 1

e2δε ´ 1
`

1

ε2
O
` ep2δ´κqεpM

`
ε `1q ´ 1

ep2δ´κqε ´ 1

˘

.

Note that e2δε´1
ep2δ´κqε´1

“ Op1q as ε Ñ 0, and recall that nτ “ nτ 1

ψpNq ď
A`1
ψpNq for every

n P t1, . . . , rAτ 1 su. By Equation (11), by the definition (22) of ε and since 2δ ě δ ě κ ě κ
3

by Equation (6), we hence have

M`
ε

ÿ

k“1

z`k “
e2δpN´nτq

e2δε ´ 1

`

eOpτq ´ eδpnτ´Nq `
1

ε2
Opeκpnτ´Nqq

˘

“
e2δpN´nτq

e2δε ´ 1

`

p1`Ope´
κ
4
N qq `Ope

δA
ψpNq e´δN q `Ope

κA
ψpNq e´

κ
3
N q

˘

“
e2δpN´nτq

e2δε ´ 1

`

1`Ope
δA
ψpNq e´

κ
4
N q

˘

.

By the definition (22) of ε and τ 1 (so that τ “ e´
κ
4
N ), we have

1´ e´δpτ˘εq “ δτp1˘
ε

τ
qp1`Opτ ` εqq “ δτp1`Ope´

κ
12
N qq ,

and
1´ e´δε

e2δε ´ 1
“

1

2
p1`Opεqq “

1

2
p1`Ope´

κ
3
N qq .

Therefore Equation (20) becomes

a`n,N “ c2 e2δN 1´ e´δε

e2δε ´ 1
p1´ e´δpτ`εqq e´δnτ

`

1`Ope
δA
ψpNq e´

κ
4
N q

˘

“ pc2 e2δN qp
δ

2
τ e´δnτ q

`

1`Ope
δA
ψpNq e´

κ
12
N q

˘

.

Taking into account the small differences between a`n,N and a´n,N in Equations (16) and
(17), a similar computation gives the same formula for a´n,N . Since a´n,N ď an,N ď a`n,N ,
we hence have

an,N “ pc
2 e2δN qp

δ

2
τ e´δnτ q

`

1`Ope
δA
ψpNq e´

κ
12
N q

˘

. (23)

End of the proof of Theorem 3.1 when α “ 0. Note that
řr A

τ 1
s

n“1 e
´ δnτ 1

ψpNq “ OpAτ 1 q as
N Ñ `8. Since τ “ τ 1

ψpNq , by Equations (15), (7) and (23), for N large enough, we have

µN pfq

ψ1pNq
“

r A
τ 1

s
ÿ

n“1

`

fpnτ 1q `Opτ 1 }f 1}8q
˘ δ

2
τ 1 e

´ δnτ 1

ψpNq
`

1`Ope
δA
ψpNq e´

κ
12
N q

˘`

1`Ope´κN q
˘

“

´

r A
τ 1

s
ÿ

n“1

fpnτ 1q
δ

2
τ 1 e

´ δnτ 1

ψpNq

¯

`OpAe
δA
ψpNq e´

κ
12
N}f}8q `OpAτ 1 }f 1}8q . (24)
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Assume first that ψ “ 1. Recall that gδ : t ÞÑ δ
2 e
´δt is bounded with bounded derivative

on r0,`8r . By the standard Riemann sum approximation with error term of an integral,
and since the support of f is contained in r0, As with A ě 1, we have

r A
τ 1

s
ÿ

n“1

fpnτ 1q
δ

2
τ 1 e´δnτ

1

“

ż `8

0
fptq gδptq dt`O

`

τ 1p}fgδ}8 `Varpfgδqq
˘

“

ż `8

0
fptq gδptq dt`O

`

Aτ 1p}f}8 ` }f
1}8q

˘

. (25)

With Equation (24), this proves Theorem 3.1 when α “ 0 and ψ “ 1.

Assume now that lim
`8

ψ “ `8. Note that e´
δnτ 1

ψpNq “ 1`Op A
ψpNqq since n ď rAτ 1 s. Hence

a similar Riemann sum argument gives

r A
τ 1

s
ÿ

n“1

fpnτ 1q
δ

2
τ 1 e

´δn τ 1

ψpNq “

´ δ

2

ż `8

0
fptq dt`O

`

Aτ 1p}f}8 ` }f
1}8q

˘

¯

p1`Op
A

ψpNq
qq

“
δ

2

ż `8

0
fptq dt`O

`A2}f}8
ψpNq

˘

`O
`

A2 τ 1p}f}8 ` }f
1}8q

˘

.

(26)

Since ψ grows subexponentially, Equations (24) and (26) imply Theorem 3.1 when α “ 0
and lim

`8
ψ “ `8.

Case 2: Let us now assume that α ‰ 0. The scheme of proof is the same one as
in Case 1, though more technical. We will only be able to obtain the result under a bit
stronger assumption on the scaling function ψ and with a much weaker error term, due
to the polonomial term in the asymptotic growth of the counting function rω. Since ψ is
assumed to have polynomial growth, we fix γ1 ě 1 such that limNÑ`8

ψpNq

Nγ1´1
“ 0. We

define in this case
ε “

1

N2γ1
and τ 1 “

1

Nγ1
ψpNq . (27)

In particular, we have lim
NÑ`8

ε eκN “ `8, we have τ ě 2ε if N is large enough, and τ 1

tends to 0 as N Ñ `8.
For N is large enough, since nτ “ nτ 1

ψpNq is bounded by A ` 1 ď 2A for n ď rAτ 1 s and
since A ě 1, as k Ñ `8, Equation (21) gives

z`k “ pkεq
2α e2δkε

`

1`Op
nτ

kε
q
˘

´

1`
1

ε
Ope´κkεq `O

` 1

kε

˘

¯2

“ pkεq2α e2δkε `O
`

A pkεq2α´1 e2δkε
˘

`
1

ε2
O
`

A pkεq2α ep2δ´κqkε
˘

.

We now apply Lemma 2.1 with M “M`
ε , with b “ 2α or b “ 2α´ 1, and with aM “ e2δε

or aM “ ep2δ´κqε. The hypothesis of this lemma is satisfied, since by the definition of ε in
Equation (27) and of M˘

ε in Equations (9) and (10), and with b1 “ 2δ or b1 “ 2δ ´ κ for
every γ P s 2γ1

2γ1`1 , 1r , we have

pM˘
ε q

γ lnpeb
1εq „ b1Nγ ε1´γ “ b1Nγ´p1´γqp2γ1q “ b1Nγp2γ1`1q´2γ1 ,
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which converges to `8 as N Ñ `8 by the assumption on γ. We hence have

M`
ε

ÿ

k“1

z`k “
e2δε

e2δε ´ 1
pεM`

ε q
2α e2δ εM`

ε
`

1`Op

?
ε

a

εM`
ε

q
˘

`O
`

A
e2δε

e2δε ´ 1
pεM`

ε q
2α´1e2δεM`

ε
˘

`
1

ε2
O
`

A
ep2δ´κqε

ep2δ´κqε ´ 1
pεM`

ε q
2α ep2δ´κqεM

`
ε
˘

.

Since e2δε´1
ep2δ´κqε´1

“ Op1q as ε Ñ 0, by Equation (11), since nτ ď 2A as seen above, and
since

?
ε “ 1

Nγ1
ď 1?

N
, for N large enough, we have

M`
ε

ÿ

k“1

z`k “
N2αe2δN

e2δε ´ 1
e´2δnτ

´

eOpεqp1´
nτ `Opτq

N
q2αeOpτq

`

1`Op

?
ε

?
N
q
˘

`Op
A

N
q `

1

ε2
OpAe´κN q

¯

“
N2αe2δN

e2δε ´ 1
e´2δnτ

`

1`Op
A

N
q
˘

.

By the definition (27) of ε and τ 1 (so that τ “ 1
Nγ1

), we have

1´ e´δpτ˘εq “ δτp1˘
ε

τ
qp1`Opτ ` εqq “ δτ

`

1`Op
1

Nγ1
q
˘

,

and
1´ e´δε

e2δε ´ 1
“

1

2
p1`Opεqq “

1

2

`

1`Op
1

N2γ1
q
˘

.

Since γ1 ě 1, Equation (20) therefore becomes

a`n,N “ c2 N2α e2δN 1´ e´δε

e2δε ´ 1
p1´ e´δpτ`εqq e´δnτ

`

1`Op
A

N
q
˘

“ pc2 N2α e2δN qp
δ

2
τ e´δnτ q

`

1`Op
A

N
q
˘

.

As when α “ 0, computing similarly a´n,N , we have

an,N “ pc
2 N2α e2δN qp

δ

2
τ e´δnτ q

`

1`Op
A

N
q
˘

. (28)

End of the proof of Theorem 3.1 when α ‰ 0. As when α “ 0, by Equations (15),
(7) and (28), for N large enough, we have

µN pfq

ψ1pNq
“

r A
τ 1

s
ÿ

n“1

`

fpnτ 1q `Opτ 1 }f 1}8q
˘ δ

2
τ 1 e

´ δnτ 1

ψpNq
`

1`Op
A

N
q
˘`

1`Ope´κN q
˘

“

´

r A
τ 1

s
ÿ

n“1

fpnτ 1q
δ

2
τ 1 e

´ δnτ 1

ψpNq

¯

`Op
A2

N
}f}8q `OpAτ 1 }f 1}8q . (29)

When ψ “ 1, since τ 1 “ N´γ
1 with γ1 ě 1 and A ě 1, Equations (29) and (25) prove

Theorem 3.1 when α ‰ 0 and ψ “ 1.
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When lim
`8

ψ “ `8, since limNÑ`8
ψpNq

Nγ1´1
“ 0 so that

τ 1 “
ψpNq

Nγ1
“

1

N

ψpNq

Nγ1´1
“ O

` 1

mintN,ψpNqu

˘

,

Equations (29) and (26) imply Theorem 3.1 when α ‰ 0 and lim
`8

ψ “ `8. l

Let us now prove the analogous result under Assumption (PA) when ψ “ 1, following
closely the scheme of proof of Theorem 3.1, and using the same notation. This is useful in
order to deal with counting asymptotics that sometimes do not come with a known error
term.

Theorem 3.3. Let E be a locally finite subset of r0,`8r endowed with a weight function
ω, and let α P R and c, δ ą 0. Assume that as tÑ `8, we have

NE , ωptq „ c tα eδ t .

Then the family F “ p pFN “ tx P E : x ď NuqNPN, ωq admits a pair correlation function
for the scaling function ψ “ 1 and renormalizing function ψ1 : N ÞÑ NE , ωpNq

2, which is
equal to gδ : t ÞÑ δ

2 e
´δ|t|.

Proof. In order to prove, as requested for the weak-star convergence, that 1
ψ1pNq RF ,ψ

N pfq

converges to
ş

R f gδ dt for every continuous fonction f with compact support on R, we may
assume by density that f is of class C1.

Since ψ “ 1, analogously with the beginning of the proof of Theorem 3.1, as N Ñ `8,
we have

1

ψ1pNq
“

1

c2 N2α e2δN
p1` op1qq . (30)

The first part of the proof is identical with the proof of Theorem 3.1 until Equation (19),
and we will not repeat it here. In the same way, we are lead to study the quantities a˘n,N
given by the equations (18) and (19). Here, we do not separate the treatment of the cases
α “ 0 and α ‰ 0.

Asymptotics on a˘n,N . Let σ˘ “ 1´˘1
2 . Note that pkεq2αe2δkε tends to `8 as k Ñ `8,

in order to control the beginning of the following summations over k. Furthermore, since
ε ď 1 ď A and nτ ď nτ 1 ď A` 1, as k Ñ `8, we have p1` nτ`σ˘ε

kε qα “ 1`Op Akεq. In the
following estimates, except for Opτq taken as τ Ñ 0 uniformly on everything else unless
indicated by a subscript, the Landau functions O and o are taken as N Ñ `8, uniformly
in n P t1, . . . , rAτ 1 su up to Equation (32). By Equations (18) and (19), we hence have

a˘n,N “
´

M˘
ε

ÿ

k“1

c pkεqα eδkεp1´ e´δεq

ˆ c pnτ ` kε` σ˘εqq
α eδpnτ`kε`σ˘εqp1´ e´δpτ˘εqq

¯

p1` oε,τ p1qq

“ c2p1´ e´δεqp1´ e´δpτ˘εqq eδnτ
´

M`
ε

ÿ

k“1

pkεq2αe2δkε
¯

p1` oε,τ,Ap1qq . (31)

13



By Lemma 2.1 with M “ M˘
ε which goes to `8 as N Ñ `8 when ε is fixed, and

aM “ e2δε which is constant when ε is fixed, by Equation (11), since ε ď τ
2 and since

p1´ nτ`Opτq
N qα “ 1`OpAN q, as N Ñ `8, we have

M`
ε

ÿ

k“1

pkεq2αe2δkε “
e2δε

e2δε ´ 1
pεM`

ε q
2α e2δ εM`

ε p1` oε,τ p1qq

“
eOpτq

e2δε ´ 1
N2α e2δpN´nτqp1` oε,τ,Ap1qq .

Therefore Equation (31) becomes

a˘n,N “ c2N2α e2δN eOpτq 1´ e´δε

e2δε ´ 1
p1´ e´δpτ˘εqq e´δnτ p1` oε,τ,Ap1qq . (32)

End of the proof. By Equations (15) and (30), since a´n,N ď an,N ď a`n,N and τ 1 “ τ ,
we have

lim sup
NÑ`8

µN pfq

ψ1pNq
ď

r A
τ 1

s
ÿ

n“1

1´ e´δε

e2δε ´ 1
eOpτ 1q

`

fpnτ 1q `Of pτ
1q
˘

p1´ e´δpτ
1`εqq e´δnτ

1

.

By taking the limit as εÑ 0, we then have

lim sup
NÑ`8

µN pfq

ψ1pNq
ď

r A
τ 1

s
ÿ

n“1

eOpτ 1q
`

fpnτ 1q `Of pτ
1q
˘ 1´ e´δτ

1

2
e´δnτ

1

.

Since 1 ´ e´δτ
1

„ δτ 1 as τ 1 Ñ 0, by taking the limit as τ 1 Ñ 0 and by a Riemann sum
argument, we have

lim sup
NÑ`8

µN pfq

ψ1pNq
ď

ż A

0
fptq gδptq dt .

A similar computation gives

lim inf
NÑ`8

µN pfq

ψ1pNq
ě

ż A

0
fptq gδptq dt ,

which proves Theorem 3.3. l

4 Geometric applications

In this section, we apply the Theorems 3.3 and 3.1 to the sets (with multiplicities) of the
lengths of closed geodesics and common perpendiculars in negatively curved spaces, and
to other discrete sets with similar growth properties that arise in geometry and dynamics.
We assume familiarity with geometry and ergodic theory in negative curvature, and we
refer, for instance, to [BPP] for more background and for definitions of the various objects
below.

Let X be either a proper R-tree without terminal points or a complete simply con-
nected Riemannian manifold with pinched negative curvature at most ´1. Let Γ be a
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nonelementary discrete group of isometries of X. Assume that the critical exponent δΓ of
Γ is finite. Let D˘ “ pD˘k qkPI˘ be locally finite Γ-equivariant families of nonempty proper
closed convex subsets of X. Assume that the outer and inner skinning measures σ˘D¯ of the
families D¯ are finite and nonzero, and that the Bowen-Margulis measure mBM is finite
and mixing for the geodesic flow on the space ΓzGX of geodesic lines of X modulo Γ.

A common perpendicular from πpD´k q to πpD
`
j q is a locally geodesic path γ in ΓzX

starting perpendicularly from πpD´k q and arriving perpendicularly to πpD`j q. For every
t ą 0, we denote by PerppD´,D`, tq the (locally finite) set of lengths `pγq at most t of
common perpendiculars γ from elements of πpD´q to elements of πpD`q (considered with
multiplicities). Let Perp “ pPerppD´,D`, NqqNPN.

For every t ą 0, we denote by Geodptq the (locally finite) set of lengths at most t
of primitive closed geodesics in ΓzX (considered with multiplicities). If Γ is furthermore
assumed to be geometrically finite, let Geod “ pGeodpNqqNPN.

We refer to Remark (3) at the beginning of Section 3 for the use of sets with multiplic-
ities in order to compute pair correlations.

Corollary 4.1. Let X, Γ and D˘ be as above. Then the families Perp and Geod admit pair
correlation functions gPerp and gGeod for the scaling function ψ “ 1 (and renormalisation
to probability measures) with

gPerp “ gGeod : t ÞÑ
δΓ

2
e´δΓ |t| .

Proof. By [BPP, Thm. 1.5], the number of common perpendiculars with length at most

t (counted with multiplicities) is asymptotic with
}σ`

D´
} }σ´

D`
}

δΓ }mBM}
eδΓ t. If Γ is furthermore as-

sumed to be geometrically finite, by [PPS, Cor. 1.7] and [BPP, Cor. 13.5(1)], the number of
primitive closed geodesics with length at most t (counted with multiplicities) is asymptotic
with eδΓt

δΓ t
as t Ñ `8. The claim follows from Theorem 3.3 with constants respectively

pc “
}σ`

D´
} }σ´

D`
}

δΓ }mBM}
, α “ 0, δ “ δΓq and pc “ 1

δΓ
, α “ ´1, δ “ δΓq. l

Remarks. (1) Refering to [PPS] and [BPP] for the terminology, when rF is a bounded
Γ-invariant potential on ΓzT 1X which is Hölder-continuous if X is a manifold, assuming
the pressure of rF to be positive and finite, the Gibbs measure on ΓzGX for rF to be finite
and mixing for the geodesic flow, and the outer and inner skinning measures of the families
D¯ for the potential rF to be finite and nonzero, then the same statement as Corollary 4.1
is satisfied when Perp and Geod are endowed with weights defined by the potential as in
[BPP, §1.2].

(2) The assumptions of Corollary 4.1 are satisfied, as a very special case, when X
is a real, complex or quaternionic hyperbolic symmetric space with finite covolume un-
der Γ, and the images of the elements of D˘ in ΓzX are points, finite volume totally
geodesic submanifolds or Margulis cusp neighbourhoods, see [PP1, Cor. 21], [PP2, Theo. 3],
[PP3, Thm. 8¨1]. For instance, if x P X and D´ “ D` “ Γx “ tγx : γ P Γu, then
PerppD´,D`, tq “ tdpx, γxq : γ P Γu X r0, ts, and the number of common perpendiculars
of length at most N (counted with multiplicities) is given by the growth function of the
orbit Γx.

(3) In [PTV], Peigné, Tapie and Vidotto construct for all 1 ă α ă 2 examples of com-
plete simply connected Riemannian manifolds X with pinched negative sectional curvature
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and geometrically finite convergent groups Γ of isometries of X such that the growth func-
tion of the orbit of any point x P X is asymptotic with t ÞÑ C tαeδΓt for some C ą 0.
Theorem 3.3 implies that, also in this case, the family Perp for D´ “ D` “ Γx admits
a pair correlation function gPerp for the scaling function ψ “ 1 (and renormalisation to
probability measures), given by gPerp : t ÞÑ δΓ

2 e´δΓ |t| as in Corollary 4.1.

(4) Discrete sets with growth functions for which Theorem 3.3 can be applied to prove
analogs of Corollary 4.1 arise in many important dynamical systems. To name some notable
ones, Parry and Pollicott [PPo] proved that the number of lengths at most t of closed orbits
of Axiom A flows on compact manifolds (counted with multiplicities) is asymptotic with
t ÞÑ eht

ht with h the topological entropy of the flow, and Eskin and Mirzakhani [EM] proved
the analogous behaviour for the lengths of closed Teichmüller geodesics in the moduli space
of closed Riemann surfaces of genus g. Athreya, Bufetov, Eskin and Mirzakhani [ABEM]
proved the exponential growth of orbits of the mapping class group in the Teichmüller
space of closed Riemann surfaces of genus g.

Under additional assumptions, the asymptotic behaviour of counting functions used in
the proof of Corollary 4.1 comes with an error term required for an application of Theorem
3.1.

Corollary 4.2. Let X, Γ and D˘ be as in the beginning of Section 4. Assume that ΓzX is
a compact Riemannian manifold and mBM is exponentially mixing under the geodesic flow
for the Hölder regularity, or that ΓzX is a locally symmetric space, the boundary of D˘k is
smooth, mBM is finite, smooth, and exponentially mixing under the geodesic flow for the
Sobolev regularity. Assume that the strong stable/unstable ball masses by the conditionals
of mBM are Hölder-continuous in their radius.

Let ψ : N Ñ r1 ` 8r be an at most polynomially growing scaling function, and let
ψ1 : N ÞÑ

CardpPerppD´,D`,Nqq2

ψpNq be the associated renormalizing function. Then the family

Perp has a pair correlation function gPerp,1 : t ÞÑ δΓ
2 e´ δΓ |t| if ψ “ 1, and has Poissonian

behaviour with gPerp,ψ “
δΓ
2 if lim

`8
ψ “ 8, with error terms as in Theorem 3.1.

Proof. By [BPP, Thm. 1.8 (2)], the family Perp of common perpendiculars has exponential
growth C eδΓtp1`Opeκtqq for some κ ą 0. Thus, Theorem 3.1 implies the claim. l

The geodesic flow is known to have exponential decay of Hölder correlations for com-
pact manifolds M “ ΓzĂM when M is two-dimensional by [Dol], M is 1{9-pinched [GLP,
Coro. 2.7], and when M is locally symmetric by [Sto]. When X is a symmetric space and
Γ is an arithmetic lattice, the geodesic flow has exponential decay of Sobolev correlations
by for some ` P N by [KM1, Theorem 2.4.5], with the help of [Clo, Theorem 3.1] to check
its spectral gap property, and of [KM2, Lemma 3.1] to deal with finite cover problems. See
also [MO, LT].

Corollary 4.2 also has generalisations when the lengths are weighted by potentials. See,
for instance, the introduction of [BPP] for counting results in this generality.
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