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Abstract

We give effective asymptotic counting results for pairs of Farey neighbours and for
modular symbols in Q, in imaginary quadratic number fields and in definite quaternion
algebras over Q, using the distribution of common perpendiculars between Margulis
cusp neighbourhoods and divergent geodesics in hyperbolic manifolds. We describe
the tangency properties of the canonical Margulis cusp neighbourhoods in Bianchi
hyperbolic 3-orbifolds. 1

1 Introduction

In this paper, we present effective asymptotic counting results for pairs of Farey neighbours
in Q, in imaginary quadratic number fields and in definite quaternion algebras over Q, when
the lower bound on the distances between the Farey neighbours shrinks to 0. These results
appear to be new even in the classical rational case. They are contributions to the study
of the distribution of pairs of the well known Farey fractions and their generalisations, see
for instance [Hal, HaT, Hay, BZ, Mar1, Mar2, Mar3, Ath, Hee, BS, Lut, PP4, Say], and
of modular symbols of Shimura, Eichler, Birch, Manin, see for instance [Man1, Cre, Man2,
McM].

Let K be either Q or an imaginary quadratic number field, with ring of integers OK ,
discriminant DK , class number hK and Dedekind zeta function ζK . Recall that two ele-
ments α, β P P1pKq “ K Y t8u are Farey neighbours if there exists p, q, r, s P OK with
α “

p
q , β “ r

s and
| ps ´ qr | “ 1 (1)

or, equivalently, ps ´ qr P Oˆ
K . The Diophantine equation ps ´ qr “ 1 with integral

unknowns p, q, r, s is called the gcd equation. See for instance [HN] for other distribution
results of solutions to the gcd equation, and for instance [Sch, Duk, EMV, AES2, HK] for
higher dimensional generalisations pioneered by Linnik and Maass.

When the class number hK of K is greater than 1, there are infinitely many elements
of P1pKq that do not have Farey neighbours. In Section 3, we discuss a notion of gen-
eralized Farey neighbours due to Bestvina-Savin [BeS], that geometrically corresponds to
the tangency in the real hyperbolic 3-space H3

R of Mendoza’s canonical horoballs [Men]
centered at two points of P1pKq. We prove in Theorem 12 the existence of generalized
Farey neighbours of every element of P1pKq, extending [For, Theo. 2] when K “ Q.

1Keywords: Farey neighbours, divergent geodesics, common perpendiculars, hyperbolic spaces, count-
ing, imaginary quadratic number field, modular symbols, Bianchi groups, quaternion algebra. AMS
codes: 11B57, 20H10, 11N45, 53C22, 11R04, 22E40.
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Let NK be the set of unordered pairs of Farey neighbours in K. The additive group
OK acts by simultaneous translations on the set NK .

Theorem 1. (1) As ϵ ą 0 tends to 0, we have

Card
␣

tα, βu P NQ : α, β P r0, 1s , |β ´ α| ě ϵ
(

“ ´
6

π2

ln ϵ

ϵ
` Opϵ´1q .

(2) If K is an imaginary quadratic number field, then as ϵ ą 0 tends to 0, we have

Card
`

OKz
␣

tα, βu P NK : |β ´ α| ě ϵ
(˘

“
4π

|Oˆ
K | DK ζKp2q

ln ϵ

ϵ2
` Opϵ´2q .

We refer to Section 4 (and in particular to Theorem 16) for analogous results on the
effective asymptotic counting function of pairs of Farey neighbours in definite rational
quaternion algebras, noting that their definition (see Equation (10)) needs to address the
noncommutativity issue of the quaternion algebra. We have the following reformulation of
the first claim of Theorem 1 in terms of the solutions of the gcd equation.

Corollary 2. As N P N∖t0u tends to `8, we have

Card
!

pp, q, r, sq P Z4 :
ps ´ qr “ 1 , 0 ă qs ď N
0 ď p ď q , 0 ď r ď s

)

“
12

π2
N logN ` OpNq .

The two above results follow (see Subsection 2.3) from the more general Theorem 4
when K “ Q and Theorem 5 otherwise, that include versions with congruences and cover
the more general case of modular symbols. Similarly, Theorem 16 in the quaternionic case
follows from the more general Theorem 17.

For every n P N, let Hn
R be the upper halfspace model of the real hyperbolic space.

A Farey arc in H2
R is a hyperbolic geodesic line in H2

R whose pair of points at infinity
is a pair of rational Farey neighbours. We prove Theorem 4 by relating its counting
function to the counting function of common perpendicular geodesic arcs from the horoball
B8 “ tz P H2

R : Im z ě 1u to the Farey arcs. This correspondence allows us to use the
recent geometric counting results of [PP5] in the proof. The arguments for Theorems 5
and 16 are similar, using geodesic lines in H3

R and H5
R respectively.
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The figure above shows the Farey arcs with endpoints p
q and r

s in r0, 1s that have
denominators 1 ď q, s ď 19 in reduced forms. The dotted circles show the PSL2pZq-orbit
of the horoball B8. The horizontal dashed line shows the points in H2

R at hyperbolic
distance ln 20 from B8. It meets 23 Farey arcs with endpoints in r0, 1s.

Acknowledgements : We thank Kevin Destagnol for his help with Theorem 12.

2 Counting common perpendiculars to divergent geodesics

For every n P N∖t0, 1u, let

Hn
R “

´

tx “ px1, . . . , xnq P Rn : xn ą 0u, ds2 “
dx21 ` ¨ ¨ ¨ ` dx2n

x2n

¯

be the upper halfspace model of the n-dimensional real hyperbolic space with constant
sectional curvature ´1. Let Γ be a discrete group of isometries of Hn

R such that M “ ΓzHn
R

is a finite volume complete noncompact real hyperbolic orbifold. Assume that 8 is a
parabolic fixed point of Γ, so that the image of the horoball B8 “ tx P Hn

R : xn ě 1u in
M is a properly immersed closed locally convex subset of M .

A locally geodesic line ℓ : R Ñ M that is a proper mapping is a divergent geodesic in
M . We denote by mpℓpRqq the cardinality of the orbifold pointwise stabiliser in Γ of the
image ℓpRq of ℓ. A locally geodesic line ℓ in M (or its image) is weakly reciprocal if it has
a lift rℓ : R Ñ Hn

R such that an element of Γ interchanges the two endpoints at infinity of
the geodesic line rℓ. We say2 that ℓ (or its image) is reciprocal if there is such an element
of order 2. Let ιrecpℓpRqq “ 1 if ℓ is weakly reciprocal, and ιrecpℓpRqq “ 2 otherwise.

Let D´ and D` be nonempty properly immersed closed locally convex subsets of M .
For every s ą 0, we denote by ND´, D`psq the cardinality of the set of common perpen-
diculars from D´ to D` with length at most s, considered with multiplicities (see [PP3]
or [PP5] for precisions). The following result is the main tool in the proofs of this note.

Theorem 3. Let D´ be a Margulis cusp neighbourhood in M and let D` be the image of
a divergent geodesic in M . Then as s Ñ `8, we have

ND´,D`psq “
Γpn2 q ιrecpD

`q Vol BD´

2
?
π Γpn`1

2 qmpD`q VolM
sepn´1q s ` Opepn´1qsq .

Proof. Let }σ`

D´} be the total mass of the outer skinning measure3 σ`

D´ of D´. By [PP3,
Prop. 20 (2)], we have }σ`

D´} “ 2n´1Vol BD´. By [PP5, Thm. 6], we have

ND´,D`psq “
Γpn2 q ιrecpD

`q }σ`

D´}

2n
?
π Γpn`1

2 qmpD`q VolM
sepn´1q s ` Opepn´1qsq .

Theorem 3 follows. l

The boundary at infinity of Hn
R is B8Hn

R “ Rn´1 Y t8u. For all distinct x, y P B8Hn
R,

let rℓx,y : R Ñ Hn
R be any geodesic line in Hn

R with points at infinity x “ rℓx,yp´8q and
y “ rℓx,yp`8q, unique up to translation at the source. For every discrete group of isometries

2As in [PP5], see also [Sar].
3See Section 3 of [PP3] for the definition, that we won’t need here.
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Γ of Hn
R with finite covolume such that x and y are parabolic fixed points of Γ, we denote

by ℓx,y “ Γ rℓx,y the divergent geodesic in ΓzHn
R that is the image of rℓx,y under the quotient

mapping. Using the terminology of [McM], the image ℓx,ypRq of the divergent geodesic
ℓx,y, endowed with its “orientation” from x to y, pushforward by ℓx,y of the orientation of
R, is a degree 1 modular symbol in ΓzHn

R, that we denote by

sΓpx, yq .

Note that sΓpx, yq “ sΓpy, xq if and only if ℓx,y is reciprocal in ΓzHn
R, in which case sΓpx, yq

will be called a reciprocal modular symbol. We set

ιΓ,recpx, yq “ ιrecpℓx,ypRqq and mΓpx, yq “ mpℓx,ypRqq .

Note that ιΓ,recpx, yq and mΓpx, yq are constant on the Γ-orbits of pairs tx, yu of distinct
parabolic fixed points of Γ.

For K P tR,Cu, we denote by
“

a b
c d

‰

P PSL2pKq the image of
`

a b
c d

˘

P SL2pKq.

2.1 Counting modular symbols: the rational case

We identify as usual R2 with C. Note that H2
R “

`

tz P C : Im z ą 0u, ds2 “
|dz|2

pIm zq2

˘

. The
group PSL2pRq acts on H2

R Y B8H2
R by the homographies g ¨ z “ az`b

cz`d for all z P P1pCq and
g “

“

a b
c d

‰

P PSL2pRq with the usual convention when z “ 8,´d
c , and acts faithfully by

isometries on H2
R. The modular group ΓQ “ PSL2pZq is an arithmetic lattice in PSL2pRq.

It acts transitively on its set of parabolic fixed points P1pQq “ Q Y t8u in B8H2
R. The

stabiliser ΓQ,8 of 8 in ΓQ consists of the translations z ÞÑ z ` k with k P Z.

Theorem 4. Let Γ be a finite index subgroup of ΓQ “ PSL2pZq, and let Γ8 be the stabiliser
of 8 in Γ. For all distinct x, y P Q Y t8u, as ϵ ą 0 tends to 0, we have

Card
`

Γ8z
␣

tα, βu P Γ ¨ tx, yu : |β ´ α| ě ϵ
(˘

“ ´
6 ιΓ,recpx, yq rΓQ,8 : Γ8s

π2 rΓQ : Γs

ln ϵ

ϵ
` Opϵ´1q .

For instance, for every N P N∖t0, 1u, with Γ “ t
“

a b
c d

‰

P PSL2pZq : c ” 0 mod Nu

the Hecke congruence sugbroup of level N of ΓQ “ PSL2pZq, we have rΓQ,8 : Γ8s “ 1
and rΓQ : Γs “ N

ś

p|N

`

1 ` 1
p

˘

by [Shi, Prop. 1.43 (1)] (as usual, the index p ranges over
primes).

Proof. Note that Γ and ΓQ have the same sets of parabolic fixed points. We may hence
apply Theorem 3 with M “ ΓzH2

R, with D´ “ Γ8zB8 the image of B8 in M (which is
a Margulis cusp neighbourhood in M), and with D` “ ℓx,ypRq “ Γ rℓx,ypRq (which is the
image of a divergent geodesic in M). We have

volM “ rΓQ : Γs volpΓQzH2
Rq “ rΓQ : Γs

π

3

and Vol BD´ “ rΓQ,8 : Γ8sVolpΓQ,8zBB8q “ rΓQ,8 : Γ8s. Since the fixed point sets in
H2

R of the elliptic elements of ΓQ are singletons, the pointwise stabiliser in ΓQ hence in Γ
of any geodesic line in H2

R is trivial. Therefore mpD`q “ 1.
If α, β P R satisfy |α ´ β| ă 2, then the length of the common perpendicular from

B8 to rℓα,βpRq is ln
`

2
|α´β|

˘

. Since the stabilizer in ΓQ hence in Γ of a nontrivial geodesic

4



segment is trivial, the multiplicity of such a common perpendicular is 1 (see [PP3, §3.3]).
Using these observations and Theorem 3 with n “ 2, since Γp32q “

?
π
2 , as ϵ ą 0 tends to

0, we obtain

Card
`

Γ8z
␣

tα, βu P Γ ¨ tx, yu : |β ´ α| ě ϵ
(˘

“Card
´

Γ8z

!

tα, βu P Γ ¨ tx, yu : d
`

B8, rℓα,βpRq
˘

ď ln
2

ϵ

)¯

“ ND´,D`

´

ln
2

ϵ

¯

“
1 ¨ ιΓ, recpx, yq ¨ rΓQ,8 : Γ8s

2
?
π

?
π
2 ¨ 1 ¨ rΓQ : Γs π

3

ln
´2

ϵ

¯2

ϵ
` O

´2

ϵ

¯

.

Theorem 4 follows by simplification. l

2.2 Counting modular symbols: the imaginary quadratic case

The group PSL2pCq acts on B8H3
R “ P1pCq “ CY t8u by homographies (Möbius transfor-

mations) g ¨ z “ az`b
cz`d for all g “

“

a b
c d

‰

P PSL2pCq and z P P1pCq with the usual convention
when z “ 8,´d

c . It acts faithfully isometrically on

H3
R “

´

tpz, tq P C ˆ R : t ą 0u, ds2 “
|dz|2 ` dt2

t2

¯

by Poincaré’s extension.
In this Subsection 2.2, let K be an imaginary quadratic number field. Let OK , DK ,

hK , ζK be as in the introduction. Recall that the group of units Oˆ
K of OK is finite, and

it is equal to t˘1u unless DK “ ´4,´3. Let IK be the group of ideal classes of OK ,
whose order is hK . For every ideal a of OK , recall that there exist a, b P OK such that
a “ aOK ` bOK , and we denote by ras the class of a in IK . The identity element of IK

is the principal class rOKs.
The Bianchi group ΓK “ PSL2pOKq is an arithmetic lattice in PSL2pCq. The quotient

space MK “ ΓKzH3
R is hence a finite volume noncompact complete real hyperbolic 3-

orbifold. The Bianchi group ΓK acts with hK orbits on its set of parabolic fixed points
P1pKq “ K Y t8u in B8H3

R “ P1pCq : the map

ΓK ¨ rx0 : x1s ÞÑ rx0OK ` x1OKs (2)

is a bijection4 from ΓKzP1pKq to IK . The stabiliser of 8 in ΓK is

ΓK,8 “

"„

a b
0 a´1

ȷ

P ΓK : a P Oˆ
K , b P OK

*

.

Note that mΓK
px, yq is not constant when x and y vary among the distinct elements of

K. For example, we have mΓK
p0,8q “

|Oˆ
K |

2 , mΓK
p1,´1q “ 2 and mΓK

p13 ,8q “ 1. As
for ιΓK , recpx, yq (see Subsection 2.4), an explicit arithmetic value of mΓK

px, yq as x and
y vary in P1pKq does not seem to be available. See Examples (1) to (3) in Section 3 for
other examples of computation of ιΓK , recpx, yq and mΓK

px, yq for some x, y P P1pKq.
4See for instance [EGM, §7, Th. 2.4]
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Theorem 5. Let Γ be a finite index subgroup of ΓK “ PSL2pOKq, and let Γ8 be the
stabiliser of 8 in Γ. For all distinct x, y P K Y t8u, as ϵ ą 0 tends to 0, we have

Card
`

Γ8z
␣

tα, βu P Γ ¨ tx, yu : |β ´ α| ě ϵ
(˘

“
4 π ιΓ, recpx, yq rΓK,8 : Γ8s

|Oˆ
K | DK ζKp2q mΓpx, yq rΓK : Γs

ln ϵ

ϵ2
` Opϵ´2q.

Proof. Again Γ and ΓK have the same sets of parabolic fixed points. As in the proof of
Theorem 4, we apply Theorem 3 with n “ 3, with M “ ΓzH3

R, with D´ “ Γ8zB8, and
with D` “ ℓx,ypRq. By Humbert’s volume formula,5 we have

VolpMq “ rΓK : Γs VolpΓKzH3
Rq “ rΓK : Γs

|DK |3{2 ζKp2q

4π
.

The index rΓK,8 : OKs in ΓK,8 of its unipotent subgroup consisting in the translations

by elements of OK is equal to |Oˆ
K |

2 . By for instance the area computation in the proof of

[PP1, Lemma 6], since OK is generated as a Z-module by 1 and DK`i
?

|DK |

2 , we have

VolpBD´q “ rΓK,8 : Γ8sVolpΓK,8zBB8q “ rΓK,8 : Γ8s
2

|Oˆ
K |

VolpOKzCq

“ rΓK,8 : Γ8s

a

|DK |

|Oˆ
K |

.

Only finitely many ΓK,8-orbits (hence Γ8- orbits) of geodesic lines rℓ8,zpRq for z P C have
nontrivial stabilizers in ΓK (hence in Γ). A given geodesic line rℓ8,zpRq meets perpen-
dicularly at most Optq elements of Γ rℓx,ypRq at distance at most t from B8. Hence only
linearly many Γ8-orbits of common perpendiculars between B8 and elements of Γ rℓx,ypRq

have multiplicity different from 1. As in the proof of Theorem 4, when ϵ ą 0 tends to 0,
we have

Card
`

Γ8z
␣

tα, βu P Γ ¨ tx, yu : |β ´ α| ě ϵ
(˘

“ ND´,D`

´

ln
2

ϵ

¯

` O
´

ln
2

ϵ

¯

“

Γp32q ιΓ, recpx, yq rΓK,8 : Γ8s

?
|DK |

|Oˆ
K |

2
?
π Γp2q mΓpx, yq rΓK : Γs

|DK |3{2 ζKp2q

4π

´

ln
2

ϵ

¯´2

ϵ

¯2
` Opϵ´2q .

Theorem 5 follows by simplification, using the values Γp2q “ 1 and Γp32q “
?
π
2 . l

2.3 Proofs of Theorem 1 and Corollary 2

In this Subsection, let K be as in the introduction, either Q or an imaginary quadratic
number field. We are now ready to prove Theorem 1, by restricting Theorems 4 and 5 to
the case when x, y P P1pKq are Farey neighbours. Since ΓK “ PSL2pOKq has infinitely
many orbits on the set of pairs of points of P1pKq, Lemma 6 below implies in particular
that there are lots of unordered pairs of distinct elements x, y P KYt8u that are not Farey
neighbours, though Theorems 4 and 5 still apply. See Examples (1) to (3) in Section 3

5See for instance [EGM, §8.8 and §9.6].
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for explicit examples of degree 1 modular symbols, that are not pairs of Farey neighbours,
in the imaginary quadratic case. The key translation between the arithmetics and the
geometry is the following elementary lemma (that will be more involved in the quaternionic
case).

Lemma 6. Two distinct elements α, β P P1pKq “ K Y t8u are Farey neighbours if and
only if there exists γ P ΓK “ PSL2pOKq such that γ ¨ 8 “ α and γ ¨ 0 “ β.

Proof. Let α, β P P1pKq be distinct. If there exists γ “ r
p r
q s s P ΓK such that γ ¨ 8 “ α

and γ ¨ 0 “ β, then p, q, r, s P OK , α “
p
q , β “ r

s and ps ´ qr “ 1, hence α, β are Farey
neighbours.

Conversely, if α, β are Farey neighbours, let p, q, r, s P OK be such that α “
p
q , β “ r

s

and | ps ´ qr | “ 1. Then u “ ps ´ qr P Oˆ
K . Hence if γ “

”

pu´1 r
qu´1 s

ı

, then γ P ΓK and we
have γ ¨ 8 “ α and γ ¨ 0 “ β. l

Remark 7. (i) Lemma 6, and the fact that the ideal classes associated with 8 “ 1
0 and

0 “ 0
1 by Equation (2) are the principal one rOKs, imply that if x “ rx0 : x1s P P1pKq

and y “ ry0 : y1s P P1pKq are Farey neighbours, then their two associated ideal classes
rx0OK ` x1OKs and ry0OK ` y1OKs are the principal one.

(ii) In this remark, assume that OK is Euclidean, that is, that DK “ 1 (K “ Q)
or DK “ ´3,´4,´7,´8,´11. Let nK “ rK : Qs, let Γ be a finite index subgroup of
ΓK and let XΓ “ Γ zpHnk

R Y K Y t8uq be the cuspidal compactification of ΓzHnk
R . By

[Man1, §1.2] when K “ Q and as extended in [Cre, §2.2] otherwise, the degree 1 modular
symbols sΓpx, yq for distinct x, y P K Y t8u, with the cusp points from which they start
(respectively end) added at their beginning (respectively end), are integral 1-cycles when
Γx “ Γy, and define real 1-cycles when Γx ‰ Γy, whose homology classes in H1pXΓ,Rq

we denote by rsΓpx, yqs. By Lemma 6, precisely when x and y are Farey neighbours, the
homology classes rsΓpx, yqs are called distinguished classes in [Man1, §1.5] when K “ Q
and special classes in [Cre, §2.2] otherwise. Since OK is Euclidean, these finitely many
classes generate the real vector space H1pXΓ,Rq by [Man1, Prop. 1.6 a)] when K “ Q and
[Cre, page 287, lines - 9 to - 5] otherwise.

When OK is not Euclidean, the same arguments prove that the homology classes of
the degree 1 modular symbols corresponding to the 1-edges of the dual ideal tesselation of
the Ford-Voronoi tesselation of H3

R (whose 2-skeleton is the Mendoza ΓK-invariant spine
of H3

R, see [BeS, §4] and Section 3) generate the real vector space H1pXΓ,Rq.

Proof of Theorem 1. In order to prove Claim (1), we apply Theorem 4 to Γ “ ΓQ and
px, yq “ p0,8q, so that by Lemma 6, we have NQ “ Γ ¨ tx, yu. The divergent geodesic
ℓ0,8 in ΓQzH2

R is reciprocal since the elliptic element
“

0 ´1
1 0

‰

P ΓQ of order 2 exchanges
the two points at infinity 0 and 8 of the geodesic line rℓ0,8pRq. Hence ιΓQ,recp0,8q “ 1.
Two images of the geodesic line rℓ0,8pRq under ΓQ either coincide or do not intersect in
H2

R. If the two endpoints of such an image are different from 8, then their distance is at
most one. Thus, except the images of rℓ0,8pRq under ΓQ,8, every image of rℓ0,8pRq under
an element of Γ has one and only one translate modulo ΓQ,8 “ Z both of whose points at
infinity lie in the unit interval r0, 1s. Thus Claim (1) of Theorem 1 follows from Theorem
4.

In order to prove Claim (2) of Theorem 1, we apply similarly Theorem 5 with Γ “ ΓK

and px, yq “ p0,8q, so that by Lemma 6, we have NK “ Γ ¨ tx, yu. Note that the pointwise

7



stabiliser in ΓK of the geodesic line rℓ0,8pRq has cardinality |Oˆ
K |

2 , hence mΓK
p0,8q “

|Oˆ
K |

2 . Note that the divergent geodesic ℓ0,8 is reciprocal as in the rational case, hence
ιΓK ,recp0,8q “ 1. The index in ΓK,8 of its unipotent subgroup of translations by OK

is equal to |Oˆ
K |

2 . Hence replacing the quotient modulo ΓK,8 in the left-hand side of the
formula in Theorem 5 by the quotient modulo OK amounts to multiplying the right-hand
side by |Oˆ

K |

2 . l

Proof of Corollary 2. Note that Equation (1) is equivalent when qs ‰ 0, to the equation
ˇ

ˇ

p
q ´ r

s

ˇ

ˇ “ 1
|qs|

. For every N P N∖t0u, the map pp, q, r, sq ÞÑ t
p
q ,

r
su from the set

␣

pp, q, r, sq P Z4 : ps ´ qr “ 1 , 0 ď p ď q , 0 ď r ď s , 0 ă qs ď N
(

to the set
␣

tα, βu P NQ : α, β P r0, 1s , |α ´ β| ě 1
N

(

is easily checked to be 2-to-1. Hence
Corollary 2 follows from Theorem 1 (1) with ϵ “ 1

N . l

The next pictures illustrate Theorem 1 (1) and Corollary 2. The blue curve on the left
represents the graph of the map N ÞÑ Card

␣

tα, βu P NQ : α, β P r0, 1s , |β ´ α| ě 1
N

(

.
The orange one represents the graph of the map N ÞÑ 6

π2 N lnN . Note that the two
graphs diverge slowly one from the other since there is only a logarithmic factor between
the main term and the error term. The picture on the right represents the ratio map,
slowly converging to 1.

100 200 300 400 500

500

1000

1500

2000

100 200 300 400 500

1.15

1.20

1.25

1.30

1.35

1.40

2.4 Ford circles, Farey neighbours and modular symbols

Assume in this Subsection that K “ Q. Being Farey neighbours in P1pQq has a well-
known geometric characterisation, that we recall as a motivation for Section 3. For every
α P P1pQq, if α “

p
q with p, q P Z relatively prime and q ą 0, let Bα be the intersection with

H2
R of the closed Euclidean ball of center x` i

2q2
and radius 1

2q2
. The boundary of this disc

is called the Ford circle6 of p
q P Q, see the picture below. Let B8 “ tz P H2

R : Im z ě 1u.
The family pBαqαPP1pQq is the unique PSL2pZq-equivariant family of maximal horoballs
with pairwise disjoint interiors. Two distinct α, β P P1pQq are Farey neighbours if and only
if the horoballs Bα and Bβ are tangent, or if and only if their Ford circles are tangent, see
for instance [Zul, page 12] that was published before [For].

6Ford himself calls them Speiser circles.
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Remark 8. (i) Another counting of degree 1 modular symbols. For all distinct
x, y P P1pQq, the hyperbolic distance dpBx, Byq is a natural complexity for the degree 1
modular symbol sΓQpx, yq, see [PPS]. For every T ą 0, let

SΓQpT q “ tsΓQpx, yq : x, y P P1pQq, x ‰ y, dpBx, Byq ď T u

and let Srec
ΓQ

pT q be the subset of SΓQpT q that consists of its reciprocal modular symbols.
Let D´ “ D` be the Margulis neighbourhood of the cusp of ΓQzH2

R defined as the image
of any Bα for α P P1pQq under the quotient mapping H2

R Ñ ΓQzH2
R. Its hyperbolic area is

1. By [PP3, Cor. 21], there exists κ ą 0 such that as T Ñ `8, we have

CardSΓQpT q “ ND´, D`pT q “
22´1p2 ´ 1qVolpD´qVolpD`q

VolpS2´1qVolpΓQzH2
Rq

eT p1 ` e´κT q

“
3

π2
eT p1 ` e´κT q .

For all distinct x, y P P1pQq, the degree 1 modular symbol sΓQpx, yq for ΓQ is reciprocal
if and only if the geodesic line rℓx,ypRq in H2

R intersects the orbit ΓQ ¨ i. This (unique)
point of intersection is the midpoint of the common perpendicular of Bx and By. Thus,
for every T ą 0, the number of reciprocal modular symbols of complexity at most T equals
the number of common perpendiculars in ΓQzH2

R from D´ as above to D1` “ ΓQ ¨ i of
length at most T

2 . Since the stabilizer of i in ΓQ has cardinality 2, by [PP3, Cor. 21], there
exists κ ą 0 such that as T Ñ `8, we have

CardSrec
ΓQ pT q “ ND´, D1`

´T

2

¯

“
VolpD´q

2VolpΓQzH2
Rq

e
T
2 p1 ` e´κT

2 q “
3

2π
e

T
2 p1 ` e´κT

2 q . (3)

Thus, the proportion of reciprocal modular symbols in SΓQpT q is equivalent to 2π e´T
2 as

T Ñ `8.

(ii) Relationship between counting modular symbols and the primitive circle
problem. For every n P N, a representation by primitive sums of two squares of n is a
pair pp, qq P Z2 with p, q coprime such that n “ p2 ` q2. Let us denote by rprimpnq their
number. As N Ñ `8, we have

N
ÿ

n“1

rprimpnq “
6

π
N ` O

`

?
N

˘

, (4)

see [Wu, Eq. (1.1)] (and Theorem 1 in loc. cit. for a better error term conditionally to the
RH). Let us prove that Equation (3) follows from Equation (4).
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For every γ “
“

a b
c d

‰

P ΓQ, the integers c and d are coprime, and we have

Repγ ¨ iq “
ac ` bd

c2 ` d2
and Impγ ¨ iq “

1

c2 ` d2
. (5)

In particular, the imaginary part of any element of ΓQ ¨i has the form 1
n for some n P N∖t0u

which is a primitive sum of two squares. Fixing coprime integers c, d P Z and a solution
pa, bq P Z2 of the gcd equation ad´bc “ 1, all other solutions are pa`kc, b`kdq with k P Z
by the uniqueness property of the Bézout identity. Since pa`kcqc`pb`kdqd

c2`d2
“ ac`bd

c2`d2
`k, there

exists a unique such solution pa1, b1q P Z2 such that Rpc, dq “ a1c`b1d
c2`d2

belongs to r0, 1r . We
define γc,d “

“

a1 b1

c d

‰

. For every n P N, given a representation pc, dq of n by sums of two
squares with d ‰ ˘c, there are 8 representations of n obtained by changing the order and
the signs of c and d. Among these 8 representations, the 4 pairs pc, dq, p´c,´dq, pd,´cq,
p´d, cq do not change Rpc, dq (we have γ´c,´d “ γc,d and γd,´c “ γ´d,c “ γc,d ˝ ι with
ι “

“

0 ´1
1 0

‰

fixing i). The 4 remaining pairs obtained by exchanging c and d change Rpc, dq

into 1 ´ Rpc, dq. The number of coprime pairs pc, dq P Z2 such that Rpc, dq P t0, 12 , 1u is
finite, since a vertical geodesic line in H2

R meets at most one point of ΓQ ¨ i. The number
of all representations of integers by primitive sums of squares of two equal or opposite
integers is finite (equal to 4, since c P N is coprime to ˘c if and only if c “ ˘1). Thus as
T Ñ `8, by the standard computation of the hyperbolic distance of a point of H2

R to the
horizontal horosphere BD´ “ tz P H2

R : Im z “ 1u and by Equation (4), we have

ND´, D1`

´T

2

¯

“ Card
␣

z P ΓQ ¨ i : 0 ď Re z ă 1, Im z P re´T
2 , 1s

(

“
1

4

X

e
T
2

\

ÿ

n“1

rprimpnq ` O
`

1
˘

“
3

2π
e

T
2 ` O

`

e
T
4

˘

.

This implies Equation (3), as wanted, with an explicit value κ “ 1
2 .

(iii) On the computation of the reciprocity indexes. Given a finite index
subgroup Γ of ΓQ, as x and y vary in P1pQq, finding an explicit arithmetic value of the
reciprocity index ιΓ,recpx, yq is somewhat delicate, even when Γ “ ΓQ. This also turns out
to be related to problems of representations by primitive sums of two squares, as we now
indicate.

By the diagonal ΓQ-invariance and by the transitivity of the action of ΓQ “ PSL2pZq on
P1pQq, we only need to compute ιΓQ,recp8, xq for x P K X r0, 1r . We have ιΓQ,recp8, xq “ 1

if and only if the geodesic line rℓ8,xpRq meets the ΓQ-orbit of i, that is, if and only if there
exists γ P ΓQ such that Repγ ¨ iq “ x. Let us write x “

p
q with p, q P Z coprime and

q ą 0. Note that for all a, b, c, d P Z such that ad ´ bc “ 1, we have c2 ` d2 ą 0 and
pa2 ` b2qpc2 ` d2q ´ pac` bdq2 “ pad´ bcq2 “ 1 by the Diophantus identity. Hence ac` bd
and c2 ` d2 are coprime by the Bézout identity, so that by the uniqueness property of
reduced fractions, if p

q “ ac`bd
c2`d2

, then q “ c2 ` d2 and p “ ac ` bd. By Equation (5) and
the discussion of Claim (ii), we hence have ιΓQ,recp8, xq “ 1 if and only if q “ c2 ` d2 is a
primitive sum of two squares and p “ qRpc, dq.
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3 Bianchi cusps are very maximal

Let K, OK , IK , hK , DK , ΓK “ PSL2pOKq and MK “ ΓKzH3
R be as in Subsection

2.2. Let fK be a square-free negative integer such that K “ QpfKq, with DK “ 4fK if
fK ” 2, 3 mod 4 and DK “ fK otherwise. When hK ‰ 1, there are elements of P1pKq

that have no Farey neighbour as defined in Equation (1), by Remark 7 (i). The aim of
this Section is to advertise a more general notion of Farey neighbours and to prove that
it solves this issue. We refer for instance to [Men], [EGM, Chap. 7], [BeS, Sect. 4] for
background material on this Section.

Two distinct x, y P P1pKq are said to be K-Farey neighbours if for any a, b, c, d P OK

such that x “ a
b and y “ c

d , we have

paOK ` bOKqpcOK ` dOKq “ pad ´ bcqOK . (6)

This does not depend on the choices of a, b, c, d. We refer to Examples 14 (1) to (3) below
for examples of K-Farey neighbours. After some remarks, we will recall the geometric
interpretation of this property, due to [BeS], that proves without computation that being
K-Farey neighbours is a property invariant by the diagonal action of ΓK on the set of
unordered pairs tx, yu of distinct elements of P1pKq.

Remark 9. (1) If x, y P P1pKq are Farey neighbours, then they are K-Farey neighbours.
Indeed, pa, b, c, dq “ p1, 0, 0, 1q is a solution of Equation (6), hence 8 “ 1

0 , 0 “ 0
1 are

K-Farey neighbours. Being K-Farey neighbours is invariant by ΓK , hence this Claim (1)
follows from Lemma 6. For example, Equation (6) implies that the K-Farey neighbours of
x “ 8 “ 1

0 are the points c
d with cOK ` dOK “ dOK or equivalently d | c, hence are the

points in OK , that is, are its Farey neighbours. By ΓK-invariance, the K-Farey neighbours
of an element x P P1pKq whose associated ideal class by Equation (2) is principal are its
Farey neighbours. In particular if there exist pairs of K-Farey neighbours that are not
pairs of Farey neighbours, then hK ě 2.7

(2) If x, y P P1pKq are K-Farey neighbours, then their associated ideal classes are
inverse one of the other in the group IK : by Equation (6), if a, b, c, d P OK are such that
x “ a

b and y “ c
d are K-Farey neighbours, then raOK ` bOKs´1 “ rcOK ` dOKs. Hence if

furthermore the divergent geodesic ℓx,y is reciprocal, then x and y in particular are in the
same ΓK-orbit, thus have same associated ideal class, which is either trivial or has order
2 in the group IK . We refer to Examples (1) to (3) below for examples of such order 2
ideal classes.

(3) Let Npaq “ rOK : as be the norm of a nonzero ideal a of OK , extended by multi-
plicativity to the norm of fractional ideals. For every a P K, let Npaq “ NpaOKq. Equation
(6) implies that NpOK ` xOKq NpOK ` yOKq “ Npx ´ yq, which is the equality case in the
inequalities with c1 “ c2 “ 1 pages 10 and 11 of [Men].

Let us turn to a geometric characterisation of being K-Farey neighbours in the complex
case, that is analogous to the tangency property of Ford circles discussed in Subsection
2.4. For every α P P1pKq∖t8u, writing α “ a

b with any a, b P OK , the canonical (closed)
horoball Bα in H3

R centered at α is the intersection with H3
R of the Euclidean closed ball

with center
`

α, NpaOK`bOKq

2 Npbq

˘

P H3
R and radius NpaOK`bOKq

2 Npbq
. This does not depend on the

7See the comment after Theorem 12 for the converse.
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choices of a and b. Furthermore, the canonical horoball in H3
R centered at 8 is the already

defined horoball B8 “ tpz, tq P H3
R : t ě 1u.

This family pBxqxPP1pKq, constructed and studied in [Men], is a ΓK-equivariant family
of horoballs with pairwise disjoint interiors. In particular, for every γ P ΓK , two canonical
horoballs Bx and By with distinct x, y P P1pKq touch at one point (or equivalently are
tangent) if and only if Bγ¨x and Bγ¨y are tangent. The image of

Ť

xPP1pKq Bx in the quotient
orbifold MK “ ΓKzH3

R is the union of closed Margulis cusp neighbourhoods with pairwise
disjoint interiors of the hK ends of MK .

The geometric characterisation alluded to above, proving the ΓK-invariance of being
K-Farey neighbours, is the following one, see [BeS, Prop. 4.1] for the proof.

Proposition 10. Two distinct elements x, y P P1pKq are K-Farey neighbours if and only
if the canonical horoballs Bx and By are tangent. l

Remark 11. (1) It follows from Proposition 10 and Remark 9 (2) that for all distinct
x, y P P1pKq, if the canonical horoballs Bx and By are tangent, then the ideal classes
associated with x and y are inverse one of the other.

(2) Since NpaOK ` bOKq “ NpbOKq implies that aOK ` bOK “ bOK hence that b | a
for all a, b P OK , it follows from their construction that the canonical horoballs that are
tangent (and distinct) to the canonical horoball B8 are the ones centered at c “ c

1 P OK ,
confirming the example claim of Remark 9 (1), by Proposition 10.

The main result of this Section 3, proving the maximality of pBxqxPP1pKq at all cusps,
is the following one.

Theorem 12. Every element of P1pKq has infinitely many K-Farey neighbours.

By Proposition 10, we have an equivalent, more geometric formulation of Theorem 12.

Theorem 13. For every x P P1pKq, the canonical horoball Bx is tangent to infinitely
many elements of Mendoza’s canonical family pBxqxPP1pKq of horoballs.

If hK ě 2, then any element of P1pKq whose associated ideal class is not principal
admits K-Farey neighbours by Theorem 12, and they are not Farey neighbours since this
ideal is not principal. Therefore by Remark 9 (1), there exist pairs of K-Farey neighbours
that are not pairs of Farey neighbours if and only if hK ě 2.

Proof of Theorem 12. Since ΓK preserves the set of pairs of K-Farey neighbours and
since the stabilizer of any element of P1pKq is an infinite parabolic subgroup, we only have
to prove that every element x1 P P1pKq admits an element x in its ΓK-orbit that has a
K-Farey neighbour y.

Let a1, b1 P OK be such that x1 “ a1

b1 , and let a1 “ a1OK ` b1OK . For all a, b P OK , if
a “ aOK ` bOK belongs to the same ideal class as a1, then x “ a

b belongs to the same ΓK-
orbit as x1 by the bijection (2). If a is principal, then x is the same ΓK-orbit as 8, hence
has K-Farey neighbours by Remark 9 (1), and so does x1. The norm of a nonprincipal
prime ideal is a prime integer. By Weber’s theorem in [Coh, Sect. X.12], there are infinitely
many prime ideals in each ideal class. By for instance [Lem, Thm. 6.14], we may hence
assume that a is a nonprincipal prime ideal such that ras “ ra1s and Npaq “ p0 is an odd
prime such that one of the following two claims hold.8

8The third case of [Lem, Thm. 6.14] does not occur, since otherwise p0OK would be a prime ideal in
that case, and Npaq “ p0 implies that a | p0OK , so that a “ p0OK and Npaq “ p 2

0 , a contradiction.
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Case i). The prime p0 ramifies in K, that is p0 | DK . With a “
?
fKOK ` p0OK ,

we have p0OK “ a2 by loc. cit.. We define a0 “ 0 in Case i). Note that we have
p0 | ´fK “ Npa0 `

?
fKq since p0 is odd (and DK and fK have the same odd prime

factors), and p20 ∤ ´fK “ Npa0 `
?
fKq since fK is square-free.

Case ii). The prime p0 splits in K, that is the discriminant DK is a quadratic residue
modulo p0. Since p0 is odd, there exists a0 P Z∖p0Z such that a 2

0 “ fK mod p0. Let
us define a “ pa0 `

?
fK qOK ` p0OK . We then have p0OK “ a a by loc. cit.. We

have p0 | a 2
0 ´ fK “ Npa0 `

?
fK q. If p 2

0 | Npa0 `
?
fK q, then p 2

0 does not divide
Npa0 ` p0 `

?
fK q “ Npa0 `

?
fK q ` p 2

0 ` 2a0p0 since p0 is odd and a0 ‰ 0 mod p0. Hence
up to replacing a0 by a0 ` p0, which does not change a nor the fact that p0 | Npa0 `

?
fK q,

we have p20 ∤ Npa0 `
?
fKq.

In both cases, Npa0`
?
fK q

p0
and p0 are relatively prime integers. By Bézout’s identity for

Z, there exist t, u P Z such that

Npa0 `
?
fK q

p0
u ´ p0 t “ 1 . (7)

Thus, setting a “ a0 `
?
fK , b “ p0, c “ tpa0 `

?
fK q and d “ u

Npa0`
?
fK q

p0
that all belong

to OK , we have a “ aOK ` bOK and pa, b, c, dq satisfies Equation (6) : Using Equation
(7) for the last two equalities, we have

paOK ` bOKqpcOK ` dOKq

“
`

pa0 `
a

fK qOK ` p0 OK

˘`

t pa0 `
a

fK qOK ` u
Npa0 `

?
fK q

p0
OK

˘

“ pa0 `
a

fK q

´

t pa0 `
a

fK qOK ` u
Npa0 `

?
fK q

p0
OK ` p0 tOK ` u pa0 ´

a

fK qOK

¯

“ pa0 `
a

fK qOK “ pad ´ bcqOK . (8)

Thus x “ a
b is in the same ΓK-orbit as x1 since they have the same associated ideal class

ras “ ra1s, and y “ c
d is a K-Farey neighbour of x as wanted. l

Note that the computation (8) in the proof of Theorem 12 is valid as long as the
integers Npa0`

?
fK q

p0
and p0 in Equation (7) are relatively prime. Thus, in order to produce

examples of K-Farey neighbours, we can use the tables at the end of [Som] (and their
reproduction at the end of [Coh]) where representatives are listed for all ideal classes of
imaginary quadratic number fields with ´97 ď fK ď ´1. Note that the representatives in
these tables are not always prime ideals, though.

Counting results for pairs of K-Farey neighbours in an orbit of a given pair tx, yu

by a finite index subgroup Γ of ΓK follow immediately from Theorem 5. The results
become more explicit in the cases where the values of the reciprocity index ιΓpx, yq and
the multiplicity mΓpx, yq are known. If the K-Farey neighbours x, y P K are in two
different ΓK-orbits, then ιΓK

px, yq “ 2. The following examples provide in particular
infinite collections of K-Farey neighbours x, y P K with ιΓK

px, yq “ 1.

Examples 14. (1) Assume that ´fK is at least 6 and is not a prime. Let p0 be a prime
factor of ´fK . Then p0 is ramified in K. As in Case i) in the proof of Theorem 12, the
ideal a “

?
fKOK ` p0OK satisfies a2 “ p0OK . In particular Npaq “ p0, hence a is prime.

Furthermore a is not principal by the following result.
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Lemma 15. There are no elements of norm p0 in OK .

Proof. Let ωK “
?
fK if fK ” 2, 3 mod 4 and ωK “

1`
?
fK

2 if fK ” 1 mod 4, so that
OK “ Z ` ZωK . The norm of an element of OK X Z is not a prime. Let u, v P Z with
v ‰ 0, and assume for a contradiction that Npu ` v ωKq “ p0. If fK ı 1 mod 4, then
Npu ` v ωKq ě ´v2fK ě ´fK ą p0 since p0 | ´fK and fK is not a prime, a contradiction.
If |v| ě 2 or if ´fK

p0
ą 4, then Npu ` v ωKq ě v2pIm ωKq2 ě ´v2 fK4 ą p0, a contradiction.

Thus fK ” 1 mod 4 and in particular fK is odd with ´fK “ 3 p0, and v “ ˘1. Therefore
Npu ` v ωKq “ pu ˘ 1

2q2 `
3 p0
4 . Since the solutions of the equations pu ˘ 1

2q2 `
3 p0
4 “ p0

with unknown u, that are u “
˘1˘

?
p0

2 , are irrational, this contradicts the assumption. l

Equation (7) becomes

´
fK
p0

u ´ p0 t “ 1 . (9)

Let pt, uq P Z2 be an integral solution of Equation (9). By the end of the proof of Theorem
12, the element β “

t
?
fK

´u
fK
p0

“ ´
t p0

u
?
fK

P K is a K-Farey neighbour of α “

?
fK
p0

(but

note that they are not Farey neighbours since a is not principal). By Equation (9), we

have C “

«?
fK t

p0 ´
u

?
fK

p0

ff

P PSL2pKq. We have C ¨ 8 “ α and C ¨ 0 “ β. Note that

ιp0 “

”

0 1
p0

´p0 0

ı

P PSL2pKq is an involution exchanging the points at infinity 8 and 0 of

B8H3
R. The conjugate involution

E “ C ιp0 C´1 “

»

–

ptu ´ 1q
?
fK t2 p0 `

fK
p0

´
u2 fK
p0

´ p0 p1 ´ tuq
?
fK

fi

fl

belongs to PSL2pOKq since p0 | ´fK and satisfies E ¨ α “ pC ιp0q ¨ 8 “ C ¨ 0 “ β and
similarly E ¨ β “ α. Thus, with the notation of Section 2, the divergent geodesic ℓα,β in
MK is reciprocal and ιΓK , recpα, βq “ 1.

The pointwise stabilizer Γα,β of rℓα,βpRq “ C ¨ rℓ8,0pRq, which is the conjugate by C of
the pointwise stabilizer

!

Mpθq “

”

eiθ 0
0 e´iθ

ı

: θ P R
)

of rℓ8,0pRq, can also be determined.
Note that by Equation (9), we have

CMpθqC´1 “

«

cos θ ´ i p1 `
2fKu
p0

q sin θ ´2i t
?
fK sin θ

´2i u
?
fK sin θ cos θ ` i p1 `

2fKu
p0

q sin θ

ff

.

Let θ P R be such that CMpθqC´1 belongs to PSL2pOKq. Then the trace of this matrix,
which is ˘2 cos θ, belongs to OK XR “ Z. Therefore cos θ “ 0,˘1,˘1

2 and correspondingly
sin θ “ ˘1, 0,˘

?
3
2 . If, for a contradiction, sin θ ‰ 0, then the 2-1 entry of the above matrix,

that is equal to ˘ 2u
?

´fK or ˘u
?

´3 fK , also belongs to OK X R “ Z. But since ´fK
is squarefree and at least 6 ą 3, these entries are irrational, a contradiction. Thus, the
stabilizer Γα,β is trivial and mΓK

pα, βq “ 1.

(2) Assume in this family of examples that K “ Qp
?
fK q with fK ” 3 mod 4 and ´fK ě

5. Then OK “ Z `
?
fK Z, DK “ 4 fK and 2 | DK , so that 2 ramifies in K. Let

a “ p1 `
?
fK qOK ` 2OK . Since 1 `

?
fK “ 2 ´ p1 `

?
fK q and by for instance [Art,
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Lem. 13.8.4], we have a2 “ a a “ 2OK , so that the class of a has order 2 in the ideal
class group IK . Even if the case p0 “ 2 does not appear in the proof of Theorem 12, the
analogous computations work in the present infinite collection of examples.

Now, Np1 `
?
fK q “ 1 ´ fK ” 2 mod 4. Hence 1´fK

2 and 2 are coprime integers, and
Equation (7) becomes 1´fK

2 u ´ 2 t “ 1, satisfied for instance by t “ ´
1`fK

4 and u “ 1.
Let a “ 1 `

?
fK , b “ 2, c “ ´

1`fK
2 and d “ 1 ´

?
fK , that belong to OK and satisfy

ad´ bc “ 2. By a computation similar to the one in Equation (8), the quadruple pa, b, c, dq

is a solution of Equation (6). Hence α “ a
b “

1`
?
fK

2 and β “ c
d “ ´

1`fK

2p1´
?
fK q

are K-Farey
neighbours (that are not Farey neighbours since a is not principal).

The element C “

»

–

1 `
?
fK ´

1`fK
4

2
1´

?
fK

2

fi

fl P PSL2pKq maps 8 and 0 to α and β respec-

tively. Note that ι2 “

”

0 1
2

´2 0

ı

P PSL2pKq is an involution exchanging 8 and 0. The
involution

E “ C ι2 C
´1 “

»

–

´3`fK´p5`fKq
?
fK

4

5`6fK`f2
K

8 `
?
fK

´
5`fK

2 `
?
fK

3´fK`p5`fKq
?
fK

4

fi

fl

belongs to PSL2pOKq since fK ” 3 mod 4, and satisfies E ¨ α “ β and E ¨ β “ α. Thus,
the divergent geodesic ℓα,β in MK is reciprocal and ιΓK , recpα, βq “ 1.

The pointwise stabilizer Γα,β of the geodesic line rℓα,βpRq “ C ¨ rℓ8,0pRq can be deter-
mined as in the previous examples (1). Let θ P R be such that the entries of the elliptic
element

C Mpθq C´1 “

«

cos θ ´ ifK sin θ ip1 `
?
fKq

1`fK
2 sin θ

´2ip
?
fK ´ 1q sin θ cos θ ` ifK sin θ

ff

are in OK . Then by taking the sum and the difference of the diagonal entries, we have
2 cos θ P OK X R “ Z and 2ifK sin θ P OK X piRq “

?
fK Z. Hence cos θ “ 0,˘1,˘1

2 and
2

?
´fK sin θ P Z. Since ´fK ě 5 ą 3, this implies as in the previous examples (1) that

the stabilizer Γα,β is trivial, so that mΓK
pα, βq “ 1. Note that if K “ Qp

?
´1q, then Γα,β

consists of id and
„

i 0
2p1 ` iq ´i

ȷ

, so that mΓK
pα, βq “ 2.

(2)bis Let us consider the particular case fK “ ´5 of the previous family of examples (2).
Recall that the class number of K “ Qp

?
´5q is hK “ 2. The ideal a “ p1`i

?
5qOK `2OK

(that satisfies a “ a and Npaq “ 2) is a prime representative of the unique nonprincipal
ideal class. By the general computation above, the elements α “ 1`i

?
5

2 and β “ ´ 2
1´i

?
5

in Qp
?

´5q are K-Farey neighbours, that are not Farey neighbours.
The orbit of β under the stabilizer Γα of α in ΓK gives an infinite collection of K-Farey

neighbours of α. For example by the proof of [PP1, Lemma 6], we have

Γα “

"„

1 ` p1 ` i
?
5qx p2 ´ i

?
5qx

2x 1 ´ p1 ` i
?
5qx

ȷ

: x P OK

*

.

The figures below show the canonical horoball Bα (drawn in red) and the canonical
horoballs (drawn in beige) of some of the K-Farey neighbours of α (images of Bβ by
elements of Γα), that are hence tangent.
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As seen above, the elliptic element
„

´2 i
?
5

i
?
5 2

ȷ

P PSL2pOKq of order 2 exchanges α

and β. Hence for all K-Farey neighbours α1 and β1 in K, the divergent geodesic ℓα1,β1 in
MK is reciprocal.

The figure below shows parts of the two families of horospheres that correspond to
the classes of principal (blue) and non-principal (orange) ideals. The horospheres are
somewhat translucent, and the horospheres can be seen even if they are behind other
canonical horoballs as seen from the viewpoint. The horospheres are restricted to the
symmetric closed fundamental domain tpz, tq P H3

R : |Re z| ď 1
2 , | Im z| ď

?
5
2 u of the

stabilizer of 8 in PSL2pOKq, and the picture is cut at height 1
3 .

16



(3) Assume in this other family of examples that K “ Qp
?
fK q with fK ” 2 mod 4 and

´fK ě 6. Similarly as for the examples (2), let a “
?
fK , b “ 2, c “

fK`2

2 and d “
?
fK ,

that belong to OK . The nonprincipal ideal class of a “ aOK ` bOK has order 2 in IK

again by for instance [Art, Lem. 13.8.4] since 2 ramifies in K. Then we have ad´ bc “ ´2

and pa, b, c, dq satisfies the condition (6). Thus the elements α “ a
b “

?
fK
2 and β “

2`fK
2

?
fK

of K are K-Farey neighbours that are not Farey neighbours (since ras has order 2 hence is

not the principal class). The element C “

»

–

?
fK ´

2`fK
4

2 ´

?
fK
2

fi

fl P PSL2pKq maps 8 and 0 to

α and β respectively. The involution

E “ C ι2 C
´1 “

»

–

´
6`fK

4

?
fK

4`8fK`f2
K

8

´
4`fK

2

6`fK
4

?
fK

fi

fl

belongs to PSL2pOKq and satisfies E ¨ α “ β and E ¨ β “ α. Thus, the divergent geodesic
ℓα,β in MK is reciprocal and ιΓK , recpα, βq “ 1.

The pointwise stabilizer Γα,β of the geodesic line rℓα,βpRq can be determined in the same

17



way. For θ P R, the entries of the elliptic element

C Mpθq C´1 “

«

cos θ ´ ip1 ` fKq sin θ i
?
fK

2`fK
2 sin θ

´2i
?
fK sin θ cos θ ` ip1 ` fKq sin θ

ff

are in OK if and only if sin θ “ 0 (as for the examples (2), otherwise the 2-1 entry would
be an irrational real number), since ´fK ě 6 ą 3. This implies that Γα,β is trivial, thus
mΓK

pα, βq “ 1.

(4) The last congruence property on fK is when fK ” 1 mod 4. If furthermore ´fK is a
prime integer, then there are no elements of order 2 in the class group IK by, for instance,
[Cox, Prop. 3.11]. By Remark 9 (2), all reciprocal K-Farey neighbours in K are then Farey
neighbours.

4 Farey neighbours in rational definite quaternion algebras

In this Section, we study similar asymptotic countings of quaternionic Farey neighbours.
Let H be the standard Hamilton quaternion algebra over R, with canonical R-basis p1, i, j, kq

and with conjugation x ÞÑ x, reduced norm n and reduced trace tr. We denote by P1
rpHq

the right projective line of H, identified as usual with the Alexandrov compactification
H Y t8u where rx : ys “ xy´1 if y ‰ 0 and r1 : 0s “ 1 0´1 “ 8.

Let O be a maximal order in a quaternion algebra A over Q, which is definite (that
is, A bQ R “ H), with class number hA and discriminant DA. Its group Oˆ of invertible
elements is finite, of order 2, 4, 6, 12 (when DA “ 3) or 24 (when DA “ 2). An example
is given by the Hurwitz order O “ Z ` Z i ` Z j ` Z 1`i`j`k

2 in A “ Q ` Q i ` Q j ` Q k,
in which case hA “ 1 and DA “ 2. We refer for these informations and more to [Vig].

We will say that two elements α and β in P1
rpAq “ A Y t8u are Farey neighbours with

respect to O if there exist p, q, r, s P O with α “ pq´1, β “ rs´1, and either we have q “ 0
and p, s P Oˆ or we have q ‰ 0 and

npqpq´1s ´ qrq “ 1 . (10)

This condition is the appropriate noncommutative analog of Equation (1). Let NO be
the set of unordered pairs of Farey neighbours in P1

rpAq with respect to O. It is easy to
check that the additive group O acts by simultaneous translations on the set NO . The
following theorem gives an effective asymptotic counting result for pairs of quaternionic
Farey neighbours with respect to O when the lower bound on their distances shrinks to 0.

Theorem 16. As ϵ ą 0 tends to 0, we have

Card
`

Oz
␣

tα, βu P NO : npβ ´ αq ě ϵ
(˘

“ ´
2160 DA

ζp3q |Oˆ|2
ś

p |DA
pp3 ´ 1qpp ´ 1q

ln ϵ

ϵ2
` Opϵ´2q .

As usual, the above index p ranges over primes. We will actually prove a much stronger
result, that requires some information on the Hamilton-Bianchi groups PSL2pOq. See for
instance [Kel] for background; we will follow the presentation of [PP2, §3].
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The Dieudonné determinant is the group morphism Det : GL2pHq Ñ s0,`8r defined
by

Det :

ˆ

a b
c d

˙

ÞÑ
`

npa dq ` npb cq ´ trpa c d b q
˘

1
2 . (11)

The Lie group SL2pHq is the kernel of Det. We denote by
“

a b
c d

‰

P PSL2pHq “ SL2pHq{t˘ idu

the image of
`

a b
c d

˘

P SL2pHq. The group PSL2pHq acts faithfully by homographies on the
right projective plane P1

rpHq “ H Y t8u, by
“

a b
c d

‰

¨ z “ paz ` bqpcz ` dq´1 for all
“

a b
c d

‰

P

PSL2pHq and z P P1
rpHq, with the usual conventions when z “ 8 or z “ ´c´1d. With ds2H

the usual translation-invariant flat Riemannian metric on H (making the canonical R-basis
p1, i, j, kq of H orthonormal at each point), we identify H5

R with

´

tpz, tq P H ˆ R : t ą 0u,
ds2H ` dt2

t2

¯

.

The group PSL2pHq acts faithfully on H5
R by the Poincaré extension procedure,9 and

PSL2pHq thus identifies with the orientation preserving isometry group of H5
R.

Let OI be the set of left ideal classes of O, whose cardinality is the class number hA.
The subgroup ΓO “ PSL2pOq is an arithmetic lattice in PSL2pHq. By for instance [KO,
Satz 2.1, 2.2], it acts with phAq2 orbits on its set of parabolic fixed points P1

rpAq “ AYt8u

in B8H5
R. The stabiliser of 8 in ΓO is

ΓO,8 “

"„

a b
0 d

ȷ

P ΓO : a, d P Oˆ , b P O

*

.

Theorem 17. Let Γ be a finite index subgroup of ΓO “ PSL2pOq, and let Γ8 be the
stabiliser of 8 in Γ. For all distinct x, y P A Y t8u, as ϵ ą 0 tends to 0, we have

Card
`

Γ8z
␣

tα, βu P Γ ¨ tx, yu : npβ ´ αq ě ϵ
(˘

“ ´
2160 DA ιΓ, recpx, yq rΓO,8 : Γ8s

ζp3q |Oˆ|2
`
ś

p |DA
pp3 ´ 1qpp ´ 1q

˘

mΓpx, yq rΓO : Γs

ln ϵ

ϵ2
` Opϵ´2q.

Proof. As in the proof of Theorem 4, we apply Theorem 3 with n “ 5, with M “ ΓzH5
R,

with D´ “ Γ8zB8, and with D` “ ℓx,ypRq. By Emery’s volume formula [PP2, Theo. 8
and Appendix], we have

VolpMq “ rΓO : Γs VolpΓOzH5
Rq “ rΓO : Γs

ζp3q
ś

p |DA
pp3 ´ 1qpp ´ 1q

11520
.

The index rΓO,8 : Os in ΓO,8 of its unipotent subgroup consisting in the translations by
elements of O is equal to |Oˆ|2

2 . By the Remark just above [PP2, Lemma 15], we have

VolpBD´q “ rΓO,8 : Γ8sVolpΓO,8zBB8q “ rΓO,8 : Γ8s
DA

8 |Oˆ|2
.

The Euclidean distance in H between two elements α, β P H is npβ ´ αq
1
2 , so that the

length of the common perpendicular from B8 to rℓα,βpRq when it exists is ln
´

2

npβ´αq
1
2

¯

.

9See for instance [PP2, Eq. (14)]
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Hence as in the proof of Theorem 4, since Γ
`

5
2

˘

“
3

?
π

4 and Γp3q “ 2! “ 2, as ϵ ą 0 tends
to 0, we have

Card
`

Γ8z
␣

tα, βu P Γ ¨ tx, yu : npβ ´ αq ě ϵ
(˘

“ ND´,D`

´

ln
2

?
ϵ

¯

` O
´

ln
2

?
ϵ

¯

“
Γp52q ιΓ, recpx, yq rΓO,8 : Γ8s

DA
8 |Oˆ|2

2
?
π Γp3q mΓpx, yq rΓO : Γs

ζp3q
ś

p |DA
pp3´1qpp´1q

11520

´

ln
2

?
ϵ

¯´ 2
?
ϵ

¯4
` Opϵ´2q

“ ´
2160 DA ιΓ, recpx, yq rΓO,8 : Γ8s

ζp3q |Oˆ|2
`
ś

p |DA
pp3 ´ 1qpp ´ 1q

˘

mΓpx, yq rΓO : Γs

ln ϵ

ϵ2
` Opϵ´2q . l

In order to prove Theorem 16, the key translation between the arithmetics and the
geometry is the following lemma.

Lemma 18. Two distinct elements α, β P P1
rpAq “ A Y t8u are Farey neighbours with

respect to O if and only if there exists γ P ΓO “ PSL2pOq such that γ ¨8 “ α and γ ¨0 “ β.

Proof. For every
`

a b
c d

˘

P GL2pHq such that c ‰ 0, by for instance [PP2, Eq. (12)], we
have Det

`

a b
c d

˘

“ npcac´1d ´ cbq
1
2 .

Let α, β P P1
rpAq be distinct elements. Assume that there exists γ “ r

p r
q s s P ΓO such

that γ ¨ 8 “ α and γ ¨ 0 “ β. If q “ 0, then α “ 8 and by Equation (11), we have
nppsq “ pDetpγqq2 “ 1. Since p, s P O, we have nppq “ npsq “ 1 and p, s P Oˆ, hence α, β
are Farey neighbours with respect to O. If q ‰ 0, then p, q, r, s P O, α “ pq´1, β “ rs´1

and npqpq´1s ´ qrq “ pDetpγqq2 “ 1, hence α, β are Farey neighbours with respect to O.
Conversely, assume that α, β are Farey neighbours with respect to O. First assume

that there exists p, q, r, s P O such that α “ pq´1, β “ rs´1, q “ 0 and p, s P Oˆ. Then
γ “ r

p r
0 s s belongs to ΓO , and α “ 8 “ γ ¨ 8 and β “ rs´1 “ γ ¨ 0, as wanted. Otherwise,

there exists p, q, r, s P O such that α “ pq´1, β “ rs´1, q ‰ 0 and npqpq´1s ´ qrq “ 1.
Then p

p r
q s q belongs to SL2pOq by the preliminary comment. Hence γ “ r

p r
q s s belongs to

PSL2pOq and maps 8 and 0 to α and β respectively, as wanted. l

Proof of Theorem 16. We apply Theorem 17 to Γ “ ΓO and px, yq “ p0,8q, so that by
Lemma 18, we have NO “ Γ ¨ tx, yu. The locally geodesic line ℓ0,8 in ΓOzH5

R is reciprocal
as in the rational case (the order two element

“

0 ´1
1 0

‰

P ΓO exchanges the two points at
infinity of rℓ0,8pRq), hence ιΓO ,recp0,8q “ 1. The pointwise stabiliser in ΓO of the geodesic
line rℓ0,8pRq has cardinality |Oˆ|2

2 , hence mΓO
p0,8q “

|Oˆ|2

2 . The index in ΓO,8 of its
unipotent subgroup of translations by O is equal to |Oˆ|2

2 . Hence replacing the quotient
modulo ΓO,8 in the left-hand side of the formula in Theorem 17 by the quotient modulo
O amounts to multiplying the right-hand side by |Oˆ|2

2 . Therefore Theorem 16 does follow
from Theorem 17. l
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