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Abstract

We give effective asymptotic counting results for pairs of Farey neighbours and for
modular symbols in Q, in imaginary quadratic number fields and in definite quaternion
algebras over QQ, using the distribution of common perpendiculars between Margulis
cusp neighbourhoods and divergent geodesics in hyperbolic manifolds. We describe
the tangency properties of the canonical Margulis cusp neighbourhoods in Bianchi
hyperbolic 3-orbifolds. EI

1 Introduction

In this paper, we present effective asymptotic counting results for pairs of Farey neighbours
in Q, in imaginary quadratic number fields and in definite quaternion algebras over Q, when
the lower bound on the distances between the Farey neighbours shrinks to 0. These results
appear to be new even in the classical rational case. They are contributions to the study
of the distribution of pairs of the well known Farey fractions and their generalisations, see
for instance [Hal, HaT), Hay}, BZ, Marl, Mar2, [Mar3], [Ath, [Hee, BS, Lutl [PP4] [Say], and
of modular symbols of Shimura, Eichler, Birch, Manin, see for instance [Manll, [Crel Man2l
McM].

Let K be either Q or an imaginary quadratic number field, with ring of integers O,
discriminant Dy, class number hx and Dedekind zeta function (x. Recall that two ele-
ments «, 3 € PY(K) = K u {0} are Farey neighbours if there exists p,q,r, s € O with
8 =7Iand

a== :

q ps—ar| =1 M
or, equivalently, ps — ¢r € 0. The Diophantine equation ps — gr = 1 with integral
unknowns p, q,r, s is called the ged equation. See for instance [HN| for other distribution
results of solutions to the ged equation, and for instance [Schl [Dukl [EMV] [AES2] [HK] for
higher dimensional generalisations pioneered by Linnik and Maass.

When the class number hx of K is greater than 1, there are infinitely many elements
of P(K) that do not have Farey neighbours. In Section 3| we discuss a notion of gen-
eralized Farey neighbours due to Bestvina-Savin [BeS|, that geometrically corresponds to
the tangency in the real hyperbolic 3-space H% of Mendoza’s canonical horoballs [Men]|
centered at two points of P!(K). We prove in Theorem the existence of generalized
Farey neighbours of every element of P!(K), extending [For, Theo. 2] when K = Q.

'Keywords: Farey neighbours, divergent geodesics, common perpendiculars, hyperbolic spaces, count-
ing, imaginary quadratic number field, modular symbols, Bianchi groups, quaternion algebra. AMS
codes: 11B57, 20H10, 11N45, 53C22, 11R04, 22E40.
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Let 91x be the set of unordered pairs of Farey neighbours in K. The additive group
O’k acts by simultaneous translations on the set M.

Theorem 1. (1) As e > 0 tends to 0, we have
6 Ine

Card {{o, 5} eNg : a,B€[0,1], |B—a| =€} = 3 +0(e ).
(2) If K is an imaginary quadratic number field, then as € > 0 tends to 0, we have
4 1
Card (65\{{, B} € N : [B—a| > €}) = u L 0e?).

0| Dk Ck(2) €

We refer to Section @ (and in particular to Theorem for analogous results on the
effective asymptotic counting function of pairs of Farey neighbours in definite rational
quaternion algebras, noting that their definition (see Equation ) needs to address the
noncommutativity issue of the quaternion algebra. We have the following reformulation of
the first claim of Theorem [I] in terms of the solutions of the ged equation.

Corollary 2. As N € N\{0} tends to +o0, we have

ps—qr=1,0<qgs <N

4,
Cal“d{(paQaT7S)EZ : 0<p<q,0<r<s

= %Nlogjw O(N) .

The two above results follow (see Subsection from the more general Theorem El
when K = QQ and Theorem [5| otherwise, that include versions with congruences and cover
the more general case of modular symbols. Similarly, Theorem [I6]in the quaternionic case
follows from the more general Theorem

For every n € N, let H be the upper halfspace model of the real hyperbolic space.
A Farey arc in ]HI% is a hyperbolic geodesic line in ]H[]%g whose pair of points at infinity
is a pair of rational Farey neighbours. We prove Theorem [ by relating its counting
function to the counting function of common perpendicular geodesic arcs from the horoball
By = {2 € H% : Imz > 1} to the Farey arcs. This correspondence allows us to use the
recent geometric counting results of [PP5] in the proof. The arguments for Theorems
and [16| are similar, using geodesic lines in ]HI% and Hi’{ respectively.




The figure above shows the Farey arcs with endpoints g and % in [0,1] that have
denominators 1 < ¢, s < 19 in reduced forms. The dotted circles show the PSLa(Z)-orbit
of the horoball By,. The horizontal dashed line shows the points in H% at hyperbolic
distance In 20 from Bo,. It meets 23 Farey arcs with endpoints in [0, 1].

Acknowledgements : We thank Kevin Destagnol for his help with Theorem

2 Counting common perpendiculars to divergent geodesics

For every n € N\ {0, 1}, let

dac%—l—---—s—dm%)

2

R = ({Jrz(ml,...,a:n)eR”: x, > 0}, ds? =
xn

be the upper halfspace model of the n-dimensional real hyperbolic space with constant
sectional curvature —1. Let I" be a discrete group of isometries of Hg such that M = I"'\Hp
is a finite volume complete noncompact real hyperbolic orbifold. Assume that oo is a
parabolic fixed point of I', so that the image of the horoball By, = {z € Hf : z,, > 1} in
M 1is a properly immersed closed locally convex subset of M.

A locally geodesic line ¢ : R — M that is a proper mapping is a divergent geodesic in
M. We denote by m(¢(R)) the cardinality of the orbifold pointwise stabiliser in " of the
image ¢(R) of £. A locally geodesic line £ in M (or its image) is weakly reciprocal if it has
alift /: R — Hy such that an element of I' interchanges the two endpoints at infinity of
the geodesic line . We sa that ¢ (or its image) is reciprocal if there is such an element
of order 2. Let trec(¢(R)) = 1 if £ is weakly reciprocal, and tyec(¢(R)) = 2 otherwise.

Let D~ and D' be nonempty properly immersed closed locally convex subsets of M.
For every s > 0, we denote by .#p- p+(s) the cardinality of the set of common perpen-
diculars from D~ to D" with length at most s, considered with multiplicities (see [PP3]
or |[PP5]| for precisions). The following result is the main tool in the proofs of this note.

Theorem 3. Let D~ be a Margulis cusp neighbourhood in M and let D be the image of
a divergent geodesic in M. Then as s — 400, we have

(%) tree(DT) Vol 0D~

N _ (nfl)s_i_o (n—1)s .
b0+ (8) 9 D(Z) m(D+) Vol M °° ()

Proof. Let o} _| be the total mass of the outer skinning measureﬂ o}, of D~. By [PP3,

Prop. 20 (2)], we have |lo}_| = 2"~' VoldD~. By [PP5, Thm. 6], we have

L (3) tree(DF) llop,- |

~ 2w D(2L) m(D*) Vol M

Np-p+(8) set=s L OenDs)

Theorem [3] follows. OJ

The boundary at infinity of HE is doHE = R"~! U {o0}. For all distinct x,y € 0,HE,
let ¢;, : R — HE be any geodesic line in Hf with points at infinity 2 = ¢, ,(—00) and
y = g (+00), unique up to translation at the source. For every discrete group of isometries

2As in [PPH], see also [Sar].
3See Section 3 of [PP3] for the definition, that we won’t need here.
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I' of Hiz with finite covolume such that z and y are parabolic fixed points of I', we denote
by by, =T Zx,y the divergent geodesic in I'\H that is the image of Zx,y under the quotient
mapping. Using the terminology of [McM]|, the image ¢, ,(R) of the divergent geodesic
Uz, endowed with its “orientation” from x to y, pushforward by ¢, of the orientation of
R, is a degree 1 modular symbol in I'\H, that we denote by

sp(z,y) .

Note that sr(z,y) = sr(y, «) if and only if £ , is reciprocal in I'\HE, in which case st (z,y)
will be called a reciprocal modular symbol. We set

LF7rec(x7 y) = Lrec(&c,y(R)) and mr (1'7 Z/) = m(gx,y(R)) :

Note that 1 rec(x,y) and mr(x,y) are constant on the I'-orbits of pairs {x,y} of distinct
parabolic fixed points of I'.

For K € {R, C}, we denote by [} ] € PSLy(K) the image of (%) € SLy(K).

2.1 Counting modular symbols: the rational case

We identify as usual R? with C. Note that HZ = ({z eC:Imz > 0}, ds? = dii; ) The

group PSLy(R) acts on HZ U dy,HZ by the homographies g- 2z = ‘Clzzig for all z € P(C) and
g = [‘C’ 3] € PSLy(R) with the usual convention when z = oo, —% and acts faithfully by
isometries on H%. The modular group I'g = PSL(Z) is an arithmetic lattice in PSLo(R).
It acts transitively on its set of parabolic fixed points P1(Q) = Q U {0} in 0,HZ. The

stabiliser I'g,0 of o0 in I'g consists of the translations z — z + k with k € Z.

Theorem 4. Let I be a finite index subgroup of I'q = PSLa(Z), and let 'y, be the stabiliser
of o0 in I'. For all distinct z,y € Q U {00}, as € > 0 tends to 0, we have

Card (Too\{{a,B} €T - {z,y}: [B—al>¢€}) = S LF’reCE:;’ EJIZQFF%T L] hl?e +0(eh.

For instance, for every N € Nx{0,1}, with I' = {[¢ %] € PSLy(Z) : ¢ = 0 mod N}
the Hecke congruence sugbroup of level N of I'g = PSLy(Z), we have [I'g e : '] = 1
and [[g : '] = NT[,n (1+ %) by [Shi, Prop. 1.43 (1)] (as usual, the index p ranges over
primes).

Proof. Note that I' and I'gp have the same sets of parabolic fixed points. We may hence
apply Theorem [3{ with M = T'\HZ, with D~ = I'y,\ By the image of By in M (which is
a Margulis cusp neighbourhood in M), and with D = £, ,(R) = Flz,y(R) (which is the
image of a divergent geodesic in M ). We have

vol M = [[g : T]vol(Tg\HZ) = [Tg : T g
and Vol0D™ = [I'go : '] Vol(I'g,0\0Bw) = [I'g,e0 : I'ew]. Since the fixed point sets in
H]%{ of the elliptic elements of I'gp are singletons, the pointwise stabiliser in I'g hence in I
of any geodesic line in HZ is trivial. Therefore m(D%) = 1.

If o, € R satisfy |a — 5] < 2, then the length of the common perpendicular from

By, to Zaﬁ (R) is In (ﬁ) Since the stabilizer in I'g hence in I' of a nontrivial geodesic
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segment is trivial, the multiplicity of such a common perpendicular is 1 (see [PP3], §3.3]).

Using these observations and Theorem |3| with n = 2, since I‘(%) = @,

0, we obtain

as € > 0 tends to

Card (Too\{{a, B} €T - {w,y} : |B— | = €})
= Card (To\{{a. B} € T (2.4}  d(Bar, T s(R)) < n %})

s (n2) - e Tl ()2 (2

Theorem [4 follows by simplification. O

2.2 Counting modular symbols: the imaginary quadratic case

The group PSLy(C) acts on d,H = P}(C) = Cu {0} by homographies (M&bius transfor-

mations) g-z = gjig for all g = [2 4] € PSLy(C) and z € P*(C) with the usual convention

when z = o0, —%. It acts faithfully isometrically on

|dz|* + dt2)

H%z({(z,t)e(CxR:t>O}, ds* = =

by Poincaré’s extension.

In this Subsection let K be an imaginary quadratic number field. Let Ok, Dy,
hi, Ck be as in the introduction. Recall that the group of units &} of Ok is finite, and
it is equal to {+1} unless D = —4,—3. Let £k be the group of ideal classes of O,
whose order is hx. For every ideal a of O, recall that there exist a,b € Ok such that
a = a0k + b0k, and we denote by [a] the class of a in .#x. The identity element of Fx
is the principal class [Ok].

The Bianchi group I' x = PSLa(0) is an arithmetic lattice in PSL(C). The quotient
space Mxg = FK\H% is hence a finite volume noncompact complete real hyperbolic 3-
orbifold. The Bianchi group I'x acts with hx orbits on its set of parabolic fixed points
PYK) = K U {0} in 0,H3 = P1(C) : the map

FK-[xo:xl]H[l‘oﬁK—l-l‘lﬁK] (2)

is a bijectiorﬁ from I'c\P!(K) to Zx. The stabiliser of oo in T'x is

FK’OO:{[(S abl}EFKaeﬁﬁ,beﬁK}

Note that mr, (z,y) is not constant when z and y vary among the distinct elements of
K. For example, we have mr, (0,00) = WQ—’A, mr,(1,—1) = 2 and mpK(%,oo) =1. As
for ury rec(z,y) (see Subsection [2.4), an explicit arithmetic value of mp, (z,y) as z and
y vary in P1(K) does not seem to be available. See Examples to in Section [3| for

other examples of computation of tr, rec(7,y) and mr, (z,y) for some z,y € P1(K).

4See for instance [EGM) §7, Th. 2.4



Theorem 5. Let T' be a finite index subgroup of T'x = PSLa(Ok), and let Ty be the
stabiliser of oo in I'. For all distinct z,y € K U {0}, as € > 0 tends to 0, we have

Card (Too\{{a, B} €T - {z,y} : |B — a| = €})
_ 47 LF,rec(-Ta y) [FK,OO : I‘oo] 11176 6_2
671 Dic (@) mrlawy) [T T] @ 7O

Proof. Again I' and I'x have the same sets of parabolic fixed points. As in the proof of
Theorem 4| we apply Theorem [3| with n = 3, with M = I'\H2, with D~ = I',\ B, and
with Dt = ¢, ,(R). By Humbert’s volume formulaﬂ we have

Dk |?? Ck (2) .

Vol(M) = [Tk : I'] Vol(T'x\H}) = [Tk : '] 41

The index [I' o : O] in I' o of its unipotent subgroup consisting in the translations

by elements of O is equal to @. By for instance the area computation in the proof of

[PP1l, Lemma 6|, since Ok is generated as a Z-module by 1 and % M, we have
_ 2
K

, VI|DPk]
Tk Tl o5
Only finitely many I' o-orbits (hence I's- orbits) of geodesic lines Z@,Z(R) for z € C have
nontrivial stabilizers in ' (hence in I'). A given geodesic line EOOZ(R) meets perpen-
dicularly at most O(t) elements of FZx,y(R) at distance at most ¢ from By,. Hence only
linearly many I'-orbits of common perpendiculars between By, and elements of Fz%y (R)
have multiplicity different from 1. As in the proof of Theorem [ when € > 0 tends to 0,
we have

Card T\ {{ B € T fag} s 18—l > }) = A pi (102) +0 (1n2)

B F(%) LF,rec(x,y) [FK,OO : Foo] % | 9 9 o2
2/ T(2) mr(z, y) [T : ] 126P2 ) ( DE) (Z) +0(e7).

47

Theorem [5| follows by simplification, using the values I'(2) = 1 and I'(3) = @ ]

2.3 Proofs of Theorem [1] and Corollary

In this Subsection, let K be as in the introduction, either Q or an imaginary quadratic
number field. We are now ready to prove Theorem [I] by restricting Theorems [f] and [5] to
the case when z,y € P!(K) are Farey neighbours. Since I'y = PSLy(Ok) has infinitely
many orbits on the set of pairs of points of P!(K), Lemma |§| below implies in particular
that there are lots of unordered pairs of distinct elements x,y € K u{oo} that are not Farey
neighbours, though Theorems [4| and [5| still apply. See Examples to in Section

5See for instance [EGM] §8.8 and §9.6].



for explicit examples of degree 1 modular symbols, that are not pairs of Farey neighbours,
in the imaginary quadratic case. The key translation between the arithmetics and the
geometry is the following elementary lemma (that will be more involved in the quaternionic
case).

Lemma 6. Two distinct elements o, 3 € P1(K) = K U {0} are Farey neighbours if and
only if there exists v € T'x = PSLa(Ok) such that -0 =« and v-0 = (.

Proof. Let a, 3 € P}(K) be distinct. If there exists v = [§ 5] € 'k such that v-00 = «
and v-0 = 3, then p,q,r,s € Ok, a = g, B =< and ps — qr = 1, hence «, 8 are Farey
neighbours.

Conversely, if o, 8 are Farey neighbours, let p,q,7,s € Ok be such that a = g, B==:

ZZj ;], then v € 'k and we

and |ps —qr| = 1. Then u = ps — qr € 0. Henceiffyz[
have v-00 =a and v-0 = 5.

Remark 7. (i) Lemma |§|, and the fact that the ideal classes associated with oo = % and
0 = Y by Equation are the principal one [Ok], imply that if x = [zg : x1] € P}(K)
and y = [yo : y1] € P!(K) are Farey neighbours, then their two associated ideal classes
[200K + 210k and [yoOk + y1 Ok ] are the principal one.

(ii) In this remark, assume that O is Euclidean, that is, that Dg = 1 (K = Q)
or Dg = —3,-4,-7,-8,—11. Let ng = [K : Q], let I be a finite index subgroup of
I'k and let Xp = I'\(Hg* U K U {0}) be the cuspidal compactification of T'\Hg*. By
[Manil, §1.2] when K = Q and as extended in [Cre, §2.2] otherwise, the degree 1 modular
symbols sp(z,y) for distinct z,y € K U {00}, with the cusp points from which they start
(respectively end) added at their beginning (respectively end), are integral 1-cycles when
I'z = I'y, and define real 1-cycles when I'z # I'y, whose homology classes in H; (X, R)
we denote by [sp(z,y)]. By Lemma [6] precisely when z and y are Farey neighbours, the
homology classes [sr(z,y)] are called distinguished classes in [Manll, §1.5] when K = Q
and special classes in |Crel, §2.2] otherwise. Since O is Euclidean, these finitely many
classes generate the real vector space Hy(Xr,R) by [Manll Prop. 1.6 a)] when K = Q and
ICrel, page 287, lines - 9 to - 5| otherwise.

When O is not Euclidean, the same arguments prove that the homology classes of
the degree 1 modular symbols corresponding to the 1-edges of the dual ideal tesselation of
the Ford-Voronoi tesselation of H3 (whose 2-skeleton is the Mendoza I g-invariant spine
of H3, see [BeS| §4] and Section generate the real vector space Hy(Xr,R).

Proof of Theorem In order to prove Claim , we apply Theorem {4/ to I' = I'g and
(z,y) = (0,00), so that by Lemma [6] we have Mg = I - {x,y}. The divergent geodesic
lo,0 In FQ\H% is reciprocal since the elliptic element [(1) _01] € I'g of order 2 exchanges
the two points at infinity 0 and oo of the geodesic line Zoyoo(}R). Hence i1 rec(0,0) = 1.
Two images of the geodesic line Z07OO(R) under I'g either coincide or do not intersect in
H%g. If the two endpoints of such an image are different from oo, then their distance is at
most one. Thus, except the images of Eoyoo(R) under I'g o, every image of Zo,oo(R) under
an element of I' has one and only one translate modulo I'g , = Z both of whose points at
infinity lie in the unit interval [0,1]. Thus Claim of Theorem (1| follows from Theorem

2]

In order to prove Claim of Theorem (1, we apply similarly Theorem [5| with I' = '
and (z,y) = (0,00), so that by Lemma 6] we have M = I'-{z, y}. Note that the pointwise
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stabiliser in 'k of the geodesic line Z()m( R) has cardinality W |

|0k
2<.

, hence mp, (0,0) =

Note that the divergent geodesic fy« is reciprocal as in the rational case, hence
i rec(0,00) = 1. The index in ' o of its unipotent subgroup of translations by Ok

is equal to @ Hence replacing the quotient modulo ' o in the left-hand side of the
formula in Theorem [5| by the quotient modulo & amounts to multiplying the right-hand

side by ‘(}K § O

Proof of Corollary 2l Note that Equation is equivalent when gs # 0, to the equation
‘% -I|= ﬁ. For every N € Nx{0}, the map (p,q,r,s) — {£, 7} from the set

p7q77'73)€Z43p3—q7'=1,0<p<q,0<7’ S, 0<q8 N}

to the set {{o, 8} eNg : v, € [0,1], |a— ] = N} is easily checked to be 2-to-1. Hence
Corollary follows from Theoreml . with € = —. O

The next pictures illustrate Theorem |1} I and Corollary . The blue curve on the left
represents the graph of the map N — Card {{c, 8} € Mg : a,B € [0,1], |8 —a| = %}
The orange one represents the graph of the map N — % N In N. Note that the two
graphs diverge slowly one from the other since there is only a logarithmic factor between
the main term and the error term. The picture on the right represents the ratio map,
slowly converging to 1.

1.4o’r
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1000
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I 115"
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2.4 Ford circles, Farey neighbours and modular symbols

Assume in this Subsection that K = Q. Being Farey neighbours in P!(Q) has a well-
known geometric characterisation, that we recall as a motivation for Section [3] For every
aePHQ),ifa = % with p, ¢ € Z relatively prime and ¢ > 0, let B, be the intersection with
H2 of the closed Euclidean ball of center x + ﬁ and radius ﬁ. The boundary of this disc
is called the Ford circleﬂ of % € Q, see the picture below. Let By, = {z € H% : Im 2z > 1}.
The family (Ba)aepi(g) is the unique PSLy(Z)-equivariant family of maximal horoballs
with pairwise disjoint interiors. Two distinct «, 5 € P*(Q) are Farey neighbours if and only

if the horoballs B, and Bg are tangent, or if and only if their Ford circles are tangent, see
for instance [Zul, page 12| that was published before [For].

SFord himself calls them Speiser circles.



Remark 8. (i) Another counting of degree 1 modular symbols. For all distinct
z,y € P1(Q), the hyperbolic distance d(By, By) is a natural complexity for the degree 1
modular symbol sp (z,y), see [PPS]. For every T' > 0, let

GFQ(T) = {SFQ(‘rvy) ‘X, Y€ ]P)l((@)a T FY, d(Bvay) < T}

and let Grreg(T) be the subset of &r,(T') that consists of its reciprocal modular symbols.

Let D~ = D% be the Margulis neighbourhood of the cusp of I‘Q\Hi defined as the image
of any B, for a € P}(Q) under the quotient mapping HZ — T'g\HZ. Its hyperbolic area is
1. By [PP3, Cor. 21|, there exists k > 0 such that as T' — 400, we have

22-1(2 — 1) Vol(D~) Vol(D*) "
Vol§ ) VolTgumz) ¢ e

3
=— el (14 e Ty,
T

For all distinct x,y € P'(Q), the degree 1 modular symbol s (7, y) for Tg is reciprocal
if and only if the geodesic line Z%y(]R) in H2 intersects the orbit I'g - 4. This (unique)
point of intersection is the midpoint of the common perpendicular of B, and B,. Thus,
for every T' > 0, the number of reciprocal modular symbols of complexity at most 1" equals
the number of common perpendiculars in I‘Q\Hﬁ from D~ as above to D't = I'g -1 of
length at most % Since the stabilizer of ¢ in I'g has cardinality 2, by [PP3] Cor. 21], there
exists k > 0 such that as T' — +00, we have

T Vol(D™) T T 3 T _
Cd@reC N ,(—)z— 1 F2) = — 1 r 3
ar ( ) D—,D't 9 2VOI(FQ\H]%Q)62( te 2) 271'62( +e 2) ()
Thus, the proportion of reciprocal modular symbols in &r, (7)) is equivalent to 27 e~7 as

T — +o0.

(ii) Relationship between counting modular symbols and the primitive circle
problem. For every n € N, a representation by primitive sums of two squares of n is a
pair (p,q) € Z* with p, ¢ coprime such that n = p? + ¢*. Let us denote by rprim(n) their
number. As N — +00, we have

Z Pprim (1 fN+ O(VN), (4)

see [Wu, Eq. (1.1)] (and Theorem 1 in loc. cit. for a better error term conditionally to the
RH). Let us prove that Equation follows from Equation (4)).
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For every v = [‘é 3] € I'g, the integers ¢ and d are coprime, and we have

. ac + bd . 1
Re(’y'z)zc2+7d2 and Im(’y-z)zm.

(5)
In particular, the imaginary part of any element of I'g-¢ has the form % for some n € N~ {0}
which is a primitive sum of two squares. Fixing coprime integers c,d € Z and a solution

(a,b) € Z? of the ged equation ad —be = 1, all other solutions are (a + kc, b+ kd) with k € Z

a+kc)c+(b+kd)d +bd
( 22+ég ) = (clzc+d2 + k, there

exists a unique such solution (a’, ') € Z? such that R(c,d) = “C/gig;d belongs to [0,1]. We
define v, 4 = [‘é’ ZI]. For every n € N, given a representation (c,d) of n by sums of two
squares with d # +c, there are 8 representations of n obtained by changing the order and
the signs of ¢ and d. Among these 8 representations, the 4 pairs (¢, d), (—c, —d), (d, —c),
(—d,c) do not change R(c,d) (we have y_¢_q = Yeq and Yg—¢c = Y—de = Ve,d © ¢ With
v = [{ '] fixing 7). The 4 remaining pairs obtained by exchanging ¢ and d change R(c, d)
into 1 — R(c,d). The number of coprime pairs (c¢,d) € Z? such that R(c,d) € {0, 3,1} is
finite, since a vertical geodesic line in H]% meets at most one point of I'g - . The number
of all representations of integers by primitive sums of squares of two equal or opposite
integers is finite (equal to 4, since ¢ € N is coprime to *c if and only if ¢ = +1). Thus as
T — 400, by the standard computation of the hyperbolic distance of a point of H%& to the

horizontal horosphere 0D~ = {z € H3 : Im z = 1} and by Equation (4]), we have

by the uniqueness property of the Bézout identity. Since

Np- D+ (g) =Card{zelg-i:0<Rez<1, Imze [e_%,l] }
<]

T
2

< 3 T T
rrim(n)JrO(l) =—65+O(ez).
21 p o1t

|

This implies Equation , as wanted, with an explicit value k = %

(iii) On the computation of the reciprocity indexes. Given a finite index
subgroup I' of I'g, as  and y vary in P}(Q), finding an explicit arithmetic value of the
reciprocity index tr rec(,y) is somewhat delicate, even when I' = I'g. This also turns out
to be related to problems of representations by primitive sums of two squares, as we now
indicate.

By the diagonal I'g-invariance and by the transitivity of the action of I'g = PSLy(Z) on
P*(Q), we only need to compute try rec(o0, ) for # € K n [0,1[. We have ipy rec(0, ) = 1
if and only if the geodesic line Zoom(R) meets the I'g-orbit of ¢, that is, if and only if there
exists v € I'g such that Re(y i) = z. Let us write z = %’ with p,q € Z coprime and
g > 0. Note that for all a,b,c,d € Z such that ad — bc = 1, we have ¢ + d*> > 0 and
(a® + b%)(c? + d?) — (ac + bd)? = (ad — bc)? = 1 by the Diophantus identity. Hence ac + bd
and ¢® 4+ d? are coprime by the Bézout identity, so that by the uniqueness property of
reduced fractions, if % = ggjggl, then ¢ = ¢® 4+ d? and p = ac + bd. By Equation and
the discussion of Claim , we hence have LFQJGC(OO, r) =1ifand only if ¢ = ¢ + d® is a
primitive sum of two squares and p = qR(c,d).
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3 Bianchi cusps are very maximal

Let K, Ok, Fx, hi, D, 'k = PSLQ(ﬁK) and Mg = PK\H% be as in Subsection
Let fx be a square-free negative integer such that K = Q(fg), with Dg = 4fk if
fx = 2,3mod 4 and Dy = fx otherwise. When hy # 1, there are elements of P!(K)
that have no Farey neighbour as defined in Equation , by Remark m . The aim of
this Section is to advertise a more general notion of Farey neighbours and to prove that
it solves this issue. We refer for instance to [Men|, [EGM| Chap. 7|, [BeS, Sect. 4] for
background material on this Section.

Two distinct =,y € P(K) are said to be K-Farey neighbours if for any a,b,c,d € O
such that r = ¢ and y = 5, we have

(aﬁ[(-i-bﬁ[()(cﬁ[(—l-dﬁ[()=<ad—bc>ﬁ[(. (6)

This does not depend on the choices of a, b, ¢, d. We refer to Examples to below
for examples of K-Farey neighbours. After some remarks, we will recall the geometric
interpretation of this property, due to [BeS|, that proves without computation that being
K-Farey neighbours is a property invariant by the diagonal action of 'k on the set of
unordered pairs {x,y} of distinct elements of P!(K).

Remark 9. (1) If z,y € P}(K) are Farey neighbours, then they are K-Farey neighbours.
Indeed, (a,b,c,d) = (1,0,0,1) is a solution of Equation (6]), hence oo = %,O = % are
K-Farey neighbours. Being K-Farey neighbours is invariant by ', hence this Claim
follows from Lemma@ For example, Equation @ implies that the K-Farey neighbours of
T =00 = % are the points § with cOx + d0k = dOk or equivalently d | ¢, hence are the
points in O, that is, are its Farey neighbours. By I'k-invariance, the K-Farey neighbours
of an element x € P!(K) whose associated ideal class by Equation is principal are its
Farey neighbours. In particular if there exist pairs of K-Farey neighbours that are not

pairs of Farey neighbours, then hy > 2E|

(2) If 2,y € PY(K) are K-Farey neighbours, then their associated ideal classes are
inverse one of the other in the group #x : by Equation @, if a,b,c,d € Ok are such that
@ = ¢ and y = § are K-Farey neighbours, then [a0k + bOk] ™ = [cOk + dOk]. Hence if
furthermore the divergent geodesic £, , is reciprocal, then x and y in particular are in the
same I'g-orbit, thus have same associated ideal class, which is either trivial or has order
2 in the group fi. We refer to Examples to below for examples of such order 2
ideal classes.

(3) Let N(a) = [0k : a] be the norm of a nonzero ideal a of Ok, extended by multi-
plicativity to the norm of fractional ideals. For every a € K, let N(a) = N(a0). Equation
(6) implies that N(Ox + 20k ) N(Ok + yOx) = N(z — y), which is the equality case in the
inequalities with ¢; = cg = 1 pages 10 and 11 of [Men).

Let us turn to a geometric characterisation of being K-Farey neighbours in the complex
case, that is analogous to the tangency property of Ford circles discussed in Subsection
For every o € P}(K)~ {00}, writing v = ¢ with any a,b € Ok, the canonical (closed)
horoball B, in ]HI% centered at « is the intersection with H% of the Euclidean closed ball

W) e H3 and radius N(alk +b0K)

S0) OREE This does not depend on the

with center (a,

"See the comment after Theorem for the converse.
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choices of a and b. Furthermore, the canonical horoball in ]HII??& centered at oo is the already
defined horoball By, = {(z,t) e H} : t > 1}.

This family (Bz),ep1 (k), constructed and studied in [Men], is a I'k-equivariant family
of horoballs with pairwise disjoint interiors. In particular, for every v € I'r, two canonical
horoballs B, and B, with distinct z,y € P!(K) touch at one point (or equivalently are
tangent) if and only if B,., and B,., are tangent. The image of | J 2eP (K) B, in the quotient
orbifold Mg =T K\]HI% is the union of closed Margulis cusp neighbourhoods with pairwise
disjoint interiors of the hx ends of M.

The geometric characterisation alluded to above, proving the I'g-invariance of being
K-Farey neighbours, is the following one, see [BeS, Prop. 4.1] for the proof.

Proposition 10. Two distinct elements z,y € P*(K) are K-Farey neighbours if and only
if the canonical horoballs B, and B, are tangent. O

Remark 11. (1) It follows from Proposition [10] and Remark [9] that for all distinct
z,y € PY(K), if the canonical horoballs B, and B, are tangent, then the ideal classes
associated with z and y are inverse one of the other.

(2) Since N(aOk + bOk) = N(bOk) implies that a0k + b0k = b0k hence that b | a
for all a,b € Ok, it follows from their construction that the canonical horoballs that are

tangent (and distinct) to the canonical horoball By, are the ones centered at ¢ = { € O,
confirming the example claim of Remark |§| , by Proposition

The main result of this Section [3| proving the maximality of (Bx)xe]pl( k) at all cusps,
is the following one.

Theorem 12. Every element of P*(K) has infinitely many K -Farey neighbours.
By Proposition [I0] we have an equivalent, more geometric formulation of Theorem [T2]

Theorem 13. For every x € PY(K), the canonical horoball B, is tangent to infinitely
many elements of Mendoza’s canonical family (Bm)wepl(K) of horoballs. O

If hix > 2, then any element of P'(K) whose associated ideal class is not principal
admits K-Farey neighbours by Theorem and they are not Farey neighbours since this
ideal is not principal. Therefore by Remark |§| , there exist pairs of K-Farey neighbours
that are not pairs of Farey neighbours if and only if hx > 2.

Proof of Theorem Since ' preserves the set of pairs of K-Farey neighbours and
since the stabilizer of any element of P!(K) is an infinite parabolic subgroup, we only have
to prove that every element 2’ € P'(K) admits an element x in its I'-orbit that has a
K-Farey neighbour y.

Let a',b' € Ok be such that 2/ = ‘g—,/, and let a’ = d’Ok + b Ok. For all a,b € Ok, if
a = a0k + b0k belongs to the same ideal class as a’, then z = % belongs to the same I'g-
orbit as 2’ by the bijection . If a is principal, then z is the same I'i-orbit as oo, hence
has K-Farey neighbours by Remark |§| , and so does /. The norm of a nonprincipal
prime ideal is a prime integer. By Weber’s theorem in [Coll, Sect. X.12|, there are infinitely
many prime ideals in each ideal class. By for instance [Lem| Thm. 6.14], we may hence
assume that a is a nonprincipal prime ideal such that [a] = [@'] and N(a) = po is an odd
prime such that one of the following two claims holdﬁ

8The third case of [Lem| Thm. 6.14] does not occur, since otherwise po&x would be a prime ideal in
that case, and N(a) = po implies that a | po©x, so that a = poOrx and N(a) = p¢, a contradiction.

12



Case i). The prime pg ramifies in K, that is pg | Dgx. With a = \/fx Ok + poOk,
we have poOx = a® by loc. cit.. We define ap = 0 in Case . Note that we have
po | —fx = N(ag + +/fx) since py is odd (and Dk and fx have the same odd prime
factors), and pg t —fx = N(ap + +/fk) since fx is square-free.

Case ii). The prime pg splits in K, that is the discriminant D is a quadratic residue
modulo pg. Since pg is odd, there exists ag € Z~\ poZ such that ao2 = fx mod pg. Let
us define a = (ag + V/fx )0k + poOk. We then have pg@x = au by loc. cit.. We

have po | ad — fx = N(ag + \/fK). If p | N(ao + +/fx ), then p? does not divide
N(ao +po ++/fx ) = N(ao ++/fK ) +p0 + 2agpo since pg is odd and ag # 0 mod py. Hence
up to replacing ag by ag + po, which does not change a nor the fact that pg | N(ao ++/fx ),

we have pZ t N(aop + +/fk).

In both cases, Naotvix) and pg are relatively prime integers. By Bézout’s identity for
7., there exist t,u € Z such that

N(a0+\/f7<)

Po

Thus, setting a = ag++/fx, b = po, ¢ = t(ap++/fx ) and d = u that all belong
to Ok, we have a = a Ok + b0k and (a,b, ¢, d) satisfies Equation : Using Equation
for the last two equalities, we have

(aOk + bOK)(cOK + dOK)
:((a0+\/f>K)ﬁK+poﬁK)( a0-|-\/> Ok +u a0+\/7> )

:(ao-i-\/f»[()( a()-i-\/i a0+\/7)ﬁ +p0tﬁK+u(ao—m)ﬁK>

u—pot=1. (7)

= (a0 + /fx ) O = (ad — be) O . (8)
Thus z = ¢ is in the same T'g-orbit as 2’ since they have the same associated ideal class
[a] = [ '], and y = § is a K-Farey neighbour of x as wanted. 0

Note that the computation in the proof of Theorem is valid as long as the
integers N(a%g/f?) and pg in Equation are relatively prime. Thus, in order to produce

examples of K-Farey neighbours, we can use the tables at the end of [Som| (and their
reproduction at the end of [Coh|) where representatives are listed for all ideal classes of
imaginary quadratic number fields with —97 < fx < —1. Note that the representatives in
these tables are not always prime ideals, though.

Counting results for pairs of K-Farey neighbours in an orbit of a given pair {z,y}
by a finite index subgroup I' of I'x follow immediately from Theorem [f] The results
become more explicit in the cases where the values of the reciprocity index tr(z,y) and
the multiplicity mp(z,y) are known. If the K-Farey neighbours z,y € K are in two
different I'-orbits, then ur, (z,y) = 2. The following examples provide in particular
infinite collections of K-Farey neighbours z,y € K with ¢r, (z,y) = 1.

Examples 14. (1) Assume that —fx is at least 6 and is not a prime. Let py be a prime
factor of —fx. Then pg is ramified in K. As in Case [i) in the proof of Theorem the
ideal a = v/fx Ok + poOf satisfies a?> = poOy. In particular N(a) = po, hence a is prime.
Furthermore a is not principal by the following result.

13



Lemma 15. There are no elements of norm pg in Ok.

1+\/ﬂ

Proof. Let wx = +/fx if fk = 2,3mod 4 and wg = if fx = 1 mod 4, so that
Ok = 7 + Zwg. The norm of an element of O N Z is not a prime. Let u,v € Z with
v # 0, and assume for a contradiction that N(u + vwg) = po. If fx # 1 mod 4, then
N(u +vwr) = —v?f = —fx > po since pg | —fx and fx is not a prime, a contradiction.
If |v| =2 orif pi > 4, then N(u + vwg) = v*(Im wg)? > —UQfTK > pp, a contradiction.
Thus fx = 1 mod 4 and in particular fx is odd with —fx = 3pg, and v = £1. Therefore
N(u+vwg) = (ux3)*+ 3p0 Since the solutions of the equations (u & )% + 3p° = Do

with unknown u, that are u = _1_\/7 , are irrational, this contradicts the assumptlon O
Equation becomes
Iy =1, )
Po
Let (t,u) € Z? be an integral solution of Equation @D By the end of the proof of Theorem
12| the element 8 = t\/f? = " cKisa K-Farey neighbour of a = VI (but
—ulK uv/ fr Ppo
Po

note that they are not Farey neighbours since a is not principal). By Equation @, we

BV t
Jx u fK] € PSLa(K). We have C -0 = o and C' -0 = 5. Note that
o ——p

have C =

1
Lpy = [_(;0 %] € PSLy(K) is an involution exchanging the points at infinity oo and 0 of

0wH3. The conjugate involution
(te—1VFx  po+3e
— I gy (1—tuFk

belongs to PSLa(0k ) since py | —fx and satisfies E - a = (C tp,) -0 = C -0 = § and
similarly £ - 8 = «. Thus, with the notation of Section @ the divergent geodesic £, g in
M is reciprocal and tr rec(c, ) = 1.

The pointwise stabilizer I'y g of £, g(R) = C - £y o(R), which is the conjugate by C of
the pointwise stabilizer { M (0) = [ew _19] 0 e R} of Zw70(R), can also be determined.

E=CuC =

0
Note that by Equation (|9)), we have

o 2 U s Dy .
CM(0) O = cos 0 ?(1—1——@ )siné Q%t«/flgﬁme.
—2iu+/frksiné cost +i(1+ =) sing

Let 6 € R be such that C M (0) C~* belongs to PSLy(O ). Then the trace of this matrix,
which is £2 cos 0, belongs to O "R = Z. Therefore cos§ = 0, £1, i% and correspondingly

sinf = +1,0, + ‘2[ If, for a contradiction, sin # # 0, then the 2-1 entry of the above matrix,
that is equal to £ 2u+/—fx or + u+/—3 fK, also belongs to O N R = Z. But since —fx
is squarefree and at least 6 > 3, these entries are irrational, a contradiction. Thus, the

stabilizer I'y g is trivial and mr, (o, 8) = 1.

(2) Assume in this family of examples that K = Q(+/fx ) with fx =3 mod 4 and — fx >
5. Then O = Z + \/fx7Z, Dg = 4fK and 2 | Dg, so that 2 ramifies in K. Let

a=(1++fxk)0k +20k. Since 1 ++/fx =2 — (1 ++/fr ) and by for instance [Art],
14



Lem. 13.8.4], we have a*> = aa = 20k, so that the class of a has order 2 in the ideal
class group Zx. Even if the case pg = 2 does not appear in the proof of Theorem the
analogous computations work in the present infinite collection of examples.

Now, N(1 ++/fx) =1 — fx =2 mod 4. Hence I_QfK and 2 are coprime integers, and

Equation becomes 1_2fK u — 2t = 1, satisfied for instance by t = — LS

Let a =1+ +fx,b=2,c= —1+2fK and d = 1 — y/fk, that belong to Ok and satisfy

ad —bc = 2. By a computation similar to the one in Equation , the quadruple (a, b, ¢, d)

and u =

is a solution of Equation @ Hence a = § = H\Q/E and 8= 3 = — 2(11jj%) are K-Farey

neighbours (that are not Farey neighbours since a is not principal).

1+
L+ VK =

2 Vi

The element C' = € PSLy(K) maps o0 and 0 to o and 3 respec-

tively. Note that 1o = [_02 %] € PSLy(K) is an involution exchanging co and 0. The

involution

—3+fk—(5+fK)VIK  5+6fx+/} I
E=0C Lo C—l _ 4 8 K+ fK

5+ 3—fr+(5+
_ QfK‘l'\/f? Ir (4fK)\/f?

belongs to PSLy (O ) since fixr = 3 mod 4, and satisfies E -« = § and E - 8 = a. Thus,
the divergent geodesic ¢, g in M is reciprocal and tr rec(, 5) = 1.

The pointwise stabilizer I'y g of the geodesic line Za,g(R) =C- ZOO,O(R) can be deter-
mined as in the previous examples . Let 8 € R be such that the entries of the elliptic
element L fe

C M) Ol = [ cosf —ifgsing  i(1++/fx)——sind
—2i(v/fxk —1)sin@ cosf +ifx sinf

are in 0. Then by taking the sum and the difference of the diagonal entries, we have

2cosf € Ox "R =7 and 2ifisinf € O n (iR) = /fx Z. Hence cosf = O,il,i% and

2/ —frsin@ € Z. Since —fx = 5 > 3, this implies as in the previous examples that

the stabilizer T'y g is trivial, so that mr, («, 8) = 1. Note that if K = Q(1/—1), then I'y g
i 0

201 + 1) —i]’ so that mr, (a, 5) = 2.

consists of id and [

(2)P Let us consider the particular case fx = —5 of the previous family of examples .
Recall that the class number of K = Q(v/—5) is hx = 2. The ideal a = (1+iv/5) Ok +20
(that satisfies @ = @ and N(a) = 2) is a prime representative of the unique nonprincipal

ideal class. By the general computation above, the elements o = % and 8 = — 1_? 7
in Q(v/—5) are K-Farey neighbours, that are not Farey neighbours.
The orbit of 8 under the stabilizer I, of a in ' gives an infinite collection of K-Farey

neighbours of . For example by the proof of [PP1, Lemma 6], we have

- {[1H 07D CovBe T cn

The figures below show the canonical horoball B, (drawn in red) and the canonical
horoballs (drawn in beige) of some of the K-Farey neighbours of a (images of Bg by
elements of I',), that are hence tangent.
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-2 /5
2

A b the elliptic el t
s seen above, the elliptic elemen [Z\/g

] € PSLy(Ok) of order 2 exchanges «

and . Hence for all K-Farey neighbours o/ and ' in K, the divergent geodesic ¢,/ g in
M is reciprocal.

The figure below shows parts of the two families of horospheres that correspond to
the classes of principal (blue) and non-principal (orange) ideals. The horospheres are
somewhat translucent, and the horospheres can be seen even if they are behind other
canonical horoballs as seen from the viewpoint. The horospheres are restricted to the
symmetric closed fundamental domain {(z,t) € H} : |Rez| < 3, [Imz| < \/Tg} of the
stabilizer of o0 in PSLy(Ok ), and the picture is cut at height %
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el

(3) Assume in this other family of examples that K = Q(v/fx ) with fx = 2 mod 4 and

—frx = 6. Similarly as for the examples , let a =+/frx,b=2,c= fK2+2 and d = v/ [k,

that belong to k. The nonprincipal ideal class of a = a0k + b0k has order 2 in Fx
again by for instance [Art, Lem. 13.8.4] since 2 ramifies in K. Then we have ad — bc = —2

and (a, b, c,d) satisfies the condition @ Thus the elements a = § = @ and 8 = ;7;—};

of K are K-Farey neighbours that are not Farey neighbours (since [a] has order 2 hence is

2+f
\/fK - 4K

not the principal class). The element C' = € PSLy(K) maps o0 and 0 to

« and [ respectively. The involution

6+fxk ,p— A+8fKx+[}

E=CupC!t= B Tx 8 B
4+f 6+f

- 2K 4KTVfK

belongs to PSLa (0K ) and satisfies F -« = 8 and E - f = a. Thus, the divergent geodesic
lo 5 in Mg is reciprocal and tr rec(c, 8) = 1.

The pointwise stabilizer I, g of the geodesic line Za, 3(R) can be determined in the same

17



way. For 6 € R, the entries of the elliptic element

cosf —i(1+ fx)siné iV fK 2Jng sin @
—2i+/fK sin 6 cosf +i(1+ fx)siné

CM®B) C =

are in Ok if and only if sinf = 0 (as for the examples (12)), otherwise the 2-1 entry would
be an irrational real number), since —fx > 6 > 3. This implies that Iy, 5 is trivial, thus
mry (Oé, B) = 1.

(4) The last congruence property on fx is when fx = 1 mod 4. If furthermore — fx is a
prime integer, then there are no elements of order 2 in the class group i by, for instance,
[Coxl, Prop. 3.11|. By Remark@ , all reciprocal K-Farey neighbours in K are then Farey
neighbours.

4 Farey neighbours in rational definite quaternion algebras

In this Section, we study similar asymptotic countings of quaternionic Farey neighbours.
Let H be the standard Hamilton quaternion algebra over R, with canonical R-basis (1, 7, j, k)
and with conjugation z +— Z, reduced norm n and reduced trace tr. We denote by PL(H)
the right projective line of H, identified as usual with the Alexandrov compactification
H U {0} where [z:y] =2y tify#0and [1:0] =10"! = c0.

Let € be a maximal order in a quaternion algebra A over QQ, which is definite (that
is, A®qg R = H), with class number h4 and discriminant D 4. Its group 0 of invertible
elements is finite, of order 2, 4, 6, 12 (when D4 = 3) or 24 (when D4 = 2). An example
is given by the Hurwitz order 0 = Z+Zi+Zj+Zl+i;7j+k nA=Q+Qi+Qj+Qk,
in which case hq =1 and D4 = 2. We refer for these informations and more to [Vig].

We will say that two elements « and 3 in PL(A) = A U {00} are Farey neighbours with
respect to O if there exist p,q,7,s € € with o = pg~!, B = rs~!, and either we have ¢ = 0
and p,s € 0 or we have g # 0 and

n(gpg s —qr) =1. (10)

This condition is the appropriate noncommutative analog of Equation . Let 9y be
the set of unordered pairs of Farey neighbours in PL(A) with respect to &. It is easy to
check that the additive group & acts by simultaneous translations on the set 915. The
following theorem gives an effective asymptotic counting result for pairs of quaternionic
Farey neighbours with respect to ¢ when the lower bound on their distances shrinks to 0.

Theorem 16. As e > 0 tends to 0, we have

Card (ﬁ\{{a,ﬁ} €Ny :n(f—a)= 6})
_ 2160 D4 Ine -
T @O Ty, 01 @ O

As usual, the above index p ranges over primes. We will actually prove a much stronger
result, that requires some information on the Hamilton-Bianchi groups PSLo(&). See for
instance [Kel| for background; we will follow the presentation of [PP2] §3].
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The Dieudonné determinant is the group morphism Det : GLo(H) — ]0, +00[ defined
by

N|=

Det : (Z Z) — (n(ad) +n(bc) — tr(acdb))? . (11)

The Lie group SLy(H) is the kernel of Det. We denote by [ 2 4] € PSLy(H) = SLo(H)/{+ id}
the image of ( a Z) € SLo(H). The group PSLy(H) acts faithfully by homographies on the
right projective plane PL(H) = H u {oo}, by [25] -2z = (az + b)(cz + d) ! for all [2 )] €
PSLy(H) and z € PL(H), with the usual conventions when z = o0 or z = —c~1d. With dsZ
the usual translation-invariant flat Riemannian metric on H (making the canonical R-basis
(1,4, 4, k) of H orthonormal at each point), we identify H2 with

dsIQHI + dt2)

({(z,t)eHxR:t>0}, >

The group PSLy(H) acts faithfully on H3 by the Poincaré extension procedureﬂ and
PSLy(H) thus identifies with the orientation preserving isometry group of HJ.

Let 5. be the set of left ideal classes of €, whose cardinality is the class number h4.
The subgroup I'y = PSLa (&) is an arithmetic lattice in PSLy(H). By for instance [KO|
Satz 2.1, 2.2|, it acts with (h4)? orbits on its set of parabolic fixed points PL(A) = Au {0}
in 6OOH%. The stabiliser of oo in 'y is

b
rm:{[g d}ef‘ﬁ:a,deﬁx,beﬁ}.

Theorem 17. Let T' be a finite index subgroup of 'y = PSLy(0), and let Ty, be the
stabiliser of oo in I'. For all distinct x,y € A U {0}, as € > 0 tends to 0, we have

Card (Too\{{a, 8} €T - {z,y} : n(B — @) = €})
_ 2160 Dy tr,rec(2,Y) [Too0 : T lnie N 0(672)
CB) 10 (I1,1p, P = D(p— 1)) mr(z,y) [Lo: T] € '

Proof. As in the proof of Theorem , we apply Theorem [3[ with n = 5, with M = F\]HI%,
with D™ = I'x\ By, and with Dt = £, ,(R). By Emery’s volume formula [PP2, Theo. 8
and Appendix|, we have

¢3) Iy 1p,@* —p—1)

(M) = [Ty :T] Vol(To\H}) = [Ty : T
Vol(M) = [I'g : T] Vol(I'g\Hg) = [I'¢ : T] 11590
The index [I'g o : €] in I'p o of its unipotent subgroup consisting in the translations by

elements of & is equal to ‘ﬁ; 2 By the Remark just above [PP2, Lemma 15|, we have

_ D4
Vol(0D™) = [I'g,00 : o] VOI(I'p 50 \0Bw) = [I'g.o0 : I'eo] S|
The Euclidean distance in H between two elements «, 3 € H is n(5 — a)%, so that the
length of the common perpendicular from By, to Zaﬁ(R) when it exists is In e 2 )1>~
n(f—a)2

?See for instance [PP2), Eq. (14)]
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Hence as in the proof of Theorem since I'(2) = % and I'(3) = 2! = 2, as € > 0 tends
to 0, we have

Card (T \{{a, B} € T+ {z, 5} : n(B— @) > €}) = Ap-pe (m\z) +0 (m;)

F(%) LRreC(xvy) [Fﬁ’,oo T 8@7%2 ( l)( 2

4
= ) +0(e?)
B 0, D1
2 /7 D(3) mr(,y) Do : 1) bt b Ve )

2160 D4 tr,rec(2,y) [To 00 : T Ine

T — €?).
"I OE (Tyo, @ — D= 1) miGep) [T 1] @+ ) O

In order to prove Theorem [I6] the key translation between the arithmetics and the
geometry is the following lemma.

Lemma 18. Two distinct elements o, 3 € PL(A) = A U {0} are Farey neighbours with
respect to O if and only if there exists v € Ty = PSLa(O) such that v-o0 = o and v-0 = .

Proof. For every (‘i g) € GLgo(H) such that ¢ # 0, by for instance [PP2, Eq. (12)], we
have Det (%Y%) = n(cac™*d — cb)%.

Let , 3 € PL(A) be distinct elements. Assume that there exists v = [7 5] € 'y such
that v-00 = aand v-0 = 3. If ¢ = 0, then o = © and by Equation , we have
n(ps) = (Det(y))? = 1. Since p, s € €, we have n(p) = n(s) = 1 and p,s € 0, hence a, 3
are Farey neighbours with respect to &. If ¢ # 0, then p,q,r,s€ O, o = pg~ ', B = rs~!
and n(gpqg~'s — gr) = (Det(y))? = 1, hence a, 3 are Farey neighbours with respect to &.

Conversely, assume that «, 8 are Farey neighbours with respect to &. First assume
that there exists p,q,7,s € € such that « = p¢~, = rs™, ¢ = 0 and p,s € 0. Then
v = [57] belongs to I'g, and aw = o0 = v -0 and B = rs~ = 70, as wanted. Otherwise,
there exists p,q,r,s € € such that a = pg~!, 8 = rs™', ¢ # 0 and n(gpg~'s — qr) = 1.
Then (4 %) belongs to SLy(&) by the preliminary comment. Hence v = [§ 5] belongs to
PSLy (@) and maps o0 and 0 to o and [ respectively, as wanted. O

Proof of Theorem We apply Theorem to I'=T4 and (z,y) = (0,0), so that by

Lemma we have Mg = I'- {x, y}. The locally geodesic line ¢ » in Fﬁ\H% is reciprocal

as in the rational case (the order two element [? _01] € 'y exchanges the two points at

infinity of zo,oo(R)), hence i1, rec(0,00) = 1. The pointwise stabiliser in I';y of the geodesic
line ZO,OO(R) has cardinality @, hence mr, (0,00) = TTXP.
unipotent subgroup of translations by & is equal to @. Hence replacing the quotient
modulo I'g o in the left-hand side of the formula in Theorem [17] by the quotient modulo
0 amounts to multiplying the right-hand side by @ Therefore Theorem (16| does follow

from Theorem O

The index in I'p o of its
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