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Abstract

We study the correlations of pairs of complex logarithms of Z-lattice points in
C at various scalings, proving the existence of pair correlation functions. We prove
that at the linear scaling, the pair correlations exhibit level repulsion, as it sometimes
occurs in statistical physics. We prove total loss of mass phenomena at superlinear
scalings, and Poissonian behaviour at sublinear scalings. The case of Euler weights has
applications to the pair correlation of the lengths of common perpendicular geodesic
arcs from the maximal Margulis cusp neighborhood to itself in the Bianchi orbifold

PSLa(Z[i])\H. [T

1 Introduction

When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacing (or gaps) between pairs
or k-tuples of elements, seen at an appropriate scaling. These problems often arise in
quantum chaos, including energy level spacings or clusterings, and in statistical physics,
including molecular repulsion or interstitial distribution. See for instance [Monl Berl RS,
BocZl, MaS| ILS|, [HoKl [PP3]. This paper may be seen as a complex version of our paper
[PP2] where we study the pair correlation of logarithms of pairs of natural integers, though
new phenomena occur, including the necessity to take limits of the underlying spaces, as
we now explain.

The general setting for our study may be described as follows. Let E be an abelian
locally compact group. Let & = (An, wn)nen be a sequence of finite subsets Ay of
E, endowed with a weight function wy : Ay — ]0,4+00[ (or multiplicity function when
its values are positive integers). When studying the asymptotic distribution of differences
of elements of Ay, looking at them at various scalings is often desirable. As explained
by Gromov (see for instance |[Groll), scaling a metric space sometimes requires to change
the space, especially at the limit (unless this space has a nice family of homotheties, as
the Euclidean space R™ does). We thus introduce a sequence (En)nen of abelian locally
compact groups converging for the pointed Hausdorff-Gromov convergence to an abelian
locally compact group E, (see for instance |[Gro2|). Let Haarg,, be a Haar measure on E.
Let ¢ : N — () be a scaling function, that is, for every N € N\ {0}, let »(N) : E — Ey
be any map, typically a dilating homeomorphism for appropriate distances, that we think
of as “scaling” the space E. Let ¢’ : N\ {0} — [1, +o0[ be an appropriately chosen function,
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called a renormalising function. The pair correlation measure of o/ at time N with scaling
(N) is the measure on En with finite support

Ay =Y wn(@) wn ) Ay s - (1)
T, YEAN ,XFY

where A, denotes the unit Dirac mass at z in any measurable space. When the se-
quence of measures (%ﬁ’w) NeN, renormalized by ¢'(N), converges (see Section [3|for back-
ground definitions) for the pointed Hausdorff-Gromov weak-star convergence to a measure
9.7, Haarg, absolutely continuous with respect to Haarg, , the Radon-Nikodym deriva-
tive gy is called the asymptotic pair correlation function of &/ for the scaling v and
renormalisation 1'. When g, 4 is a positive constant, we say that </ has a Poissonian
behaviour for the scaling v and renormalisation ¥'. When g, ,, vanishes on a neighbour-
hood of 0 in Ey but is not the constant 0-function, we say that the pair (<7, ) exhibits a
strong level repulsion. The standard level repulsion only requires g . to vanish at 0.

Recall that a Z-lattice in C is a discrete (free abelian) subgroup of (C, +) generating
C as an R-vector space. Let A be a Z-grid in C (or an affine (Euclidean) lattice in the
terminology of [MaS, [EBMV]), that is, a translate A = a + A of a Z-lattice A in the
Euclidean space C for some a € C (well defined modulo A), see for instance [AES]. We
denote by covoly = Vol(C/A) the area of a fundamental parallelogram for A. We denote
by
Sysg =min{|z|: z € A~ {0}} >0

the systole of the Z-lattice K. Recall that the complex logarithm is an isomorphism of
abelian topological groups log : C* — E = C/(2miZ). Given N € N \ {0} and a function
¥ : NN {0} —]0,+00[, we again denote by ¥(N) the scaling map from F to Ey =
C/(2miyy(N)Z) defined by z mod 27wiZ — (N )z mod 27it)(N)Z. In Sections [2| and |3 we
study the pair correlations of the family of the complex logarithms of grid points

Ly = (Lﬁ\\,:{logz:zeA, 0 <zl <N}, wn =1) vy

without multiplicities.

In order to simplify the statements in this introduction, we only consider power scalings
Y : N — N for @« > 0, and we denote them by id®. We use the notation Leb, for the
Lebesgue measures on A = C and A = C/(2miZ).

Theorem 1.1 Let a > 0 and let A be a Z-grid. As N — +oo, the normalized pair
correlation measures ﬁ %ﬁ“’ld on the cylinder En = C/(2niN®Z) converge for the
pointed Hausdorff-Gromov weak-star convergence to the measure g.g, g« Lebg, on Ey =
C/(2miZ) if « = 0 and Ey = C otherwise, with pair correlation function given by

(_ m —2|Re z| ; —
2 covoly € ZfOé - 0’
T )
Zeovol if0<a<l,
9Lp,id> * 2o 1 2
covolz |z[|* Z |p| ifa=1,
A —
pek: pl<ll
L0 ifa>1.

The convergence is uniform on A varying in any given compact subset of the set of Z-grids
of C endowed with the Chabauty topology.



The renormalisation by ﬁ in Theorem is naturally chosen in order for the pair
correlation function to be finite. We refer to Theorems [2.2] and [3.] for more complete
versions of Theorem [I.1] with more general scaling functions, as well as for error terms.
These error terms, as well as the ones in Theorems[5.1]and [6.1], constitute the main technical
parts of this paper.

A standard scaling function in dimension n is the inverse of the n-th root of the average
volume gap, which is the quotient of the volume of the ball of smallest radius containing
Fy by the number of elements in Fiy. See for instance [Monl RS, BocZ, LS, [HoK], though
these references are in dimension n = 1. For the family %, this average volume gap is
equivalent to (h}vj\;)Q, up to a positive multiplicative constant. As we shall see in Theorem
the corresponding scaling function ¢ : N +— % gives, as for ¢p : N — N¢ for
0 < a < 1 in the above theorem, a Poissonian behaviour (see also [Vanl, for a
similar behaviour).

There is a phase transition from a Poissonian behaviour when 0 < o < 1 to a total loss
of mass when a > 1. In fact, the support of the measure itself converges to infinity for
a > 1. The transition occurs at the linear scaling (when o = 1 in Theorem, where an
exotic pair correlation function g ,.id! appears, which has a discontinuity along every circle

o
(centered at 0) through a grid point. Since ggA?idl(z) vanishes when z € B(0, Sysy), the
pair (%), id') exhibits a strong level repulsion. Hence g #,.ia+ has near z = 0 a behaviour
similar to the case a > 1. Note that g4 g1 (z) converges to m when z goes to o0,

corresponding to the Poissonian behaviour of 0 < o < 1, see Lemma with k = 2.

The figure below gives the graph of the pair correlation function g¢,  of £, for the
Z-grid (which is a Z-lattice) A = A = Z[i] of the Gaussian integers at the linear scaling
¢ = id! : N — N in the ball of center 0 and radius 5. The blue lines on the bounding

box represent the limit W = 5 at +o of gy, 4. We refer to the end of Section |3| for

further illustrations, also in the case of the Eisenstein integers.

We now give some existence results of pair correlation functions of logarithms of lattice
points with weights, restricting to integral lattices with an arithmetic weight motivated by
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geometric applications. Let K be an imaginary quadratic number field K, with discrim-
inant Dy, whose ring of integers Ok is principal. We fix a nonzero ideal A in Of, and
we denote by ¢ : Ok \ {0} — N the Euler function a — Card((Og/a0k)*) of K. In
the products below, p runs over the prime ideals of k. The following result describes the
asymptotic behaviour of the pair correlation measures associated with the family

L8 = (Ly ={logz:z€ A, 0<|z| <N}, wy =K 0exp) yoy - (2)

: : 20K
Theorem 1.2 (1) As N — +o, the pair correlation measures %" on the constant
cylinder E = C/(2miZ), renormalized to be probability measures, weak-star converge to the

probability measure 9pex Lebg, with pair correlation function independent of A given by

.S 1 _—4|Re 7|
Ggpry 7 =z )

)

PK , id?!
(2) As N — +o0, the normalized pair correlation measures ﬁ%’NﬁK on the vary-
ing cylinders En = C/(2mi NZ) converge for the pointed Hausdorff-Gromov weak-star

convergence to the measure g ek ;1 Lebc, with pair correlation function
Ok’

A 2 6 o
v A AP YL § R e
LINE]

We refer to Theorems [5.1] and for more complete versions of Theorem including
possible congruence restrictions, and for error terms. The proof of Theorem [1.2| (2) uses
Theorems 1.1 and 4.1 of that describe the asymptotic behaviour in angular sectors
in C for the Euler function of K. For the reader’s convenience, we briefly review these
results in Section[4] In order to simplify the treatment, we only consider the constant and
linear scaling in Theorem [I.2]

2 4 6 8 10

The pair correlation functions at the linear scaling are radially symmetric by Theorem
(2). The figure above compares the radial profiles of the pair correlation functions
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92K il for K = Q(i) and A = O = Z[i] in blue and K = Q(i+/3) and A = O =

Z[%ﬁ] in orange. The radial profiles of the pair correlation functions converge to a limit

™ 2 1
ol L0 567 O igpagr —2)

at infinity, where p ranges over the prime ideals of Ok, see Proposition This limit is
approximately 0.346 for the blue curve and 0.634 for the orange one.

The radial profiles of the pair correlation functions in the weighted and unweighted cases
are similar to certain radial distribution functions in statistical physics, see for example
[ZP| Sect. 11|, [SdH, Fig. 7], [Chal page 199| or [Bohl page 18]. See also |[Mat™|. The
unfolding technique (see for instance [Bohl p. 14| and [MaS, §3, §5]), though guiding the
very first step of the proofs of Theorem [I.1]and falls short of giving a complete answer,
in particular when varying the scalings and weights and for the error term analysis.

As explained in Section [7] our motivation for introducing the weights by the Euler
function comes from hyperbolic geometry. We prove in Proposition [7.]] that the pair cor-
relation measures of the lengths (counted with multiplicity) of the common perpendiculars
between the maximal Margulis cusp neighbourhood and itself in the (one-cusped) Bianchi
orbifold PSLa (€ )\H3 are closely related to the pair correlation measures of the weighted
family £ If; . Theorem implies a pair correlation result for the lengths of common per-
pendiculars of cusps neighborhoods in the Bianchi orbifold PSLo(0)/H2, see Corollary
for a precise statement and a version with congruences.

Acknowledgements: This research was supported by the French-Finnish CNRS IEA BARP and
PaCap. We thank Rafael Sayous for his correction to the proof of Lemma 2.1]

Notation. We introduce here some of the notation used throughout the paper.

All our measures are Borel, positive, regular measures on locally compact spaces. The
pushforward of a measure p by a mapping f is denoted by f.u, and its total mass by | u/.
We denote by Lebg the restriction of Lebesgue’s measure of C to any Borel subset K of
C. For every smooth manifold with boundary Y and every k € N, we denote by C*(Y") the
set of complex-valued C* functions with compact support on Y.

We equivariantly identify the space Grids of Z-grids in the real Euclidean plane C,
endowed with the Chabauty topology and the affine action of GLa(R) x R? with the
homogeneous space (GL2(R) x R?)/(GLg(Z) x Z?), which smoothly fibers by the map
a+ A — A over the space of Z-lattices GLa(R)/ GLy(Z), with fibers the elliptic curves
C/A.

We will use the following indexing sets in Sections [2 B] and [} Given a Z-grid A, for
every N € N~ {0}, let

In =Ina ={(m,n)eA® : 0<|m| |n| <N, m#n},

Iy ={(m,n)ely : |m| <|n|]} and Iy ={(m,n)ely : |n|]<|m|}.

Given a subset b of the set of ambient parameters, for every positive function g of a
variable in N ~\ {0}, we will denote by O(g) (and O(g) when b is empty) any function f
on N~ {0} such that there exists a constant C’ depending only on the parameters in b and
a constant Ny possibly depending on the all the parameters (including the ones in b) such
that for every N > Ny, we have |f(N)| < C |g(N)|.
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2 Pair correlation of grid points without weight or scaling

In this section, we work on the constant cylinder E = C/(27iZ), endowed with its quotient
Riemann surface structure, with its quotient additive abelian locally compact group struc-
ture, and with its Haar measure d Lebg(z’ + 1y/) = da'dy’ where 2/ € R and ¢/ € R/(27Z).
We endow the multiplicative group C* with its Riemann surface structure as an open
subset of C and with the restriction of the Lebesgue measure Lebg of C. The logarithm
map log : C* — FE defined by pe?? — Inp + i6 is a biholomorphic group isomorphism,
whose inverse is the exponential map 2z’ = @’ + iy’ — exp(z’) = % ¥, The real part map
Re : E — R defined by 2’ + iy’ — 2’ is a smooth (trivial) fibration, and

Re. Lebp = 27 Lebg . (4)
Note that for every z € C \ {0}, we have
In(|z|?) = 2 Re(log 2) . (5)
Since d Lebe(pe®) = pdpdh, we have
d(log, Lebg)(2') = €28 dLebp(z') . (6)

Let A = a + A be a Z-grid. We choose a Z-basis (v1,v2) of A such that the (weak)
fundamental parallelogram

11
ﬁ[i:{svl‘i‘tll)Z : Sate[_§7§]}

for the action of A on C has smallest diameter. We then denote by
diamy = diam(.Fy) = max{|vy + va|, [v1 — v2|}

the diameter of %5, which is the length of a longest diagonal of the parallelogram .#;. We
denote by
covoly = Vol(C/A) = Area(F;) = |det(vi, v2) |

the area of the elliptic curve C/K for the measure induced by the Lebesgue measure on C,
or the area of the parallelogram .73 (which does not depend on the choice of the Z-basis
(v1,v2) of K) We will use several times the following well known result, having a more
precise error term that we won’t need, and we only give a proof in order to make the
dependence on the parameters k and A explicit.

Lemma 2.1 For every k € N, there exists a constant Cy > 0 such that for all A € Grids
and x = 1, we have

(1 + diamg)z + diam?2

2m
k_ k2| < o K kY 7
‘peAZh:?lq i (k +2) covol; . ‘ k( covoly ) Q




Proof. The case k¥ = 0 is the standard Gauss

counting result of lattice points in discs. With SR
Ay ={pe A : |p| <z}and By = Uyen, (0 + F5), 0 T T
so that Area(B,) = Card(A,) Area(.#%), we have //// /\\/\X A
. _ e/ 88
B(0,2 — diam;) ¢ B, < B(0, + diamy) , VAV YAYAYE
\.)< ;/ ////’

(with the convention that B(0,7) = & if r < 0) e - ,\- : - B - 7. 7.
so that the result for £ = 0 with a slightly simpler / x}(iL‘/ // / /

. . 2
T dlamK +d1amx

error term O( ) follows by computing S S )

covolx
the area of the two above discs.
Let now k > 1. We consider the sequence (a, = Card{pe A:n—1 < |p| < n}), .,

and the smooth functions f : [1, +o0[ — R defined by ¢ — t* or by t — (t — 1)¥. For every
x = 1, we have the estimate

Z an (n — 1)k < Z |p|k < Z annk . (8)

1<n<|z| peEA: |p|<z 1<n<|(z]

- 2 diam (t+diamy)
covol t+0 ( covolz

Using the case k = 0 showing that >}, ., an = ), the general

result follows from Abel’s summation formula

S anfm = (X w)f@ -] (X w)rod

1<n<z 1<n<a L 1ot

applied to the above sequence (ay),>1 and to the two functions f, the first one for the
majoration in Formula , the second one for its minoration. O

For every N € N~ {0}, the (not normalised) pair correlation measure of the logarithms
of nonzero grid points in A, with trivial multiplicities and with trivial scaling function, is
the finite measure on the cylinder ' defined by

LN, 1
VN =VUNA = ‘@N = Z Alogmflogn .
(m,n)eln

Note that for every k € N~ {0}, we have Iyn xa = Iy a and vgn ga = vn,a. Let us consider
the function (actually independent on A) on E defined by

L 2Re()|

!/
Lh,1 PR
9n, 2

Theorem 2.2 As N — +0o0, the measures vy on E, renormalized to be probability mea-
sures, weak-star converge to g¢, 1 Lebg. The convergence is uniform for A varying in any
given compact subset of Grids. Furthermore, for every f € CL(E), we have

diamp

v 1
() ~

lon]™7 2w

| 1) e anebp() + 0 (F (e + e dr @)
E

This result implies the case a = 0 of Theorem in the introduction, since we will
2
prove in Formula (T5) that limy_, ;o 22350 = 7>

N4 2
covolA
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Remark 2.3 Theorem 2.2 is still valid if we allow n = m in the definition of the index set
I (this correspond to removing the condition p # ¢ in the definition below of .J;), see also
Remark (2) in [PP3] §3] for a general argument. We will use this comment in the proofs

of Corollary 2.4 and [2.5]
Proof of Theorem For all N e N and g€ A with 0 < |g| < N, let

Jo={peA:0<lp<lg, p#q} and w,= ) Av, 9)

pEJq

which is a finitely supported measure on the closed unit disc D of C. Note that the
assumptions 0 < |p| and 0 < |¢| are automatic when 0 ¢ A, that is, when A is not a
Z-lattice. As ¢ — 40, by Equation (7)) with & = 0 (and its slightly better error term), its
total mass, which is nonzero since —q € J,, satisfies

diamy (|q| + diamy)

Card Jy = [wg| = lal* + O (

) (10)

covol I covol 3

for some O(:) uniform in A. Note that we need to remove 0 if 0 € A and ¢ from the
counting of Equation , but this is taken care of by the above O(:). In particular, we

diam?%
have |w,| = O ( C;iz’}) uniformly in A if |¢| < diam; and otherwise
A
T diamz |q|?
quHZﬁM\QJFO( IA|Q‘):O( 1 ) -
voly covoly covoly

We hence have, if [¢| > diamy,

1 covol i o ( diam i covol i )
[ — lq|? ’
Wq

for some O(:) uniform in A. We denote by w; =

= o the renormalisation of w, to a
q

probability measure on D.
Let f € C*(D). Assume that |g| > diamy. Let

pEJq

Note that the symmetric difference (D ~\ %) v (% ~. D) is contained in the union of the

annulus B(0,1 + di?;?’—‘) ~B(0,1- diT;TK) and (when 0 € A) the parallelogram :0;77‘, hence
has area at most
covol ¢ diam diamy diam
A A\2 AN\2 A
+m((1+ ) —(1- )?) =0 .
lq|? ( lq] lq] ) ( lq] )

diamy covolz diamz || 1|0 .
Also note that Wk‘}q( =0 (\AT) by Equation (10). Therefore

=] ) drebes) - wp)]

covol z

- ’ifc f(2) dLebg(z) — —2w (f)]+0(

diam| floo
lq

).

gl !
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p+37/-\‘

By the mean value inequality, for all p € J, and z € , we have

1) = 1) < e | 2= 2.

Hence
covol ¢
‘f o f(2) dLebe(z) — TqPAwq(f)] = ’p;qﬁw - fC )) dLeb(2)|
<L Y Wle sup |e 2] Area" )
peEJy 267 q

q
diamy diamg covol ¢

la  lql?
diamy |df |«
=0(—A"2) .
( lq| )

N

1
— Card(Jy) =8 K df],

Therefore, if |q| > diamy, then

diamy (|| fle + [df[eo)
( )

Wy *l z ebc(z
() = 1 | 1) dLebe(z) +0 7

(11)

In particular, as ¢ — 400, we have Wy AL — Lebp.
Assume that N > dlam Let us now deﬁne

D RV R
(m,n)ely qel, 0<|g|<N

which is a finitely supported measure on D. By Equations (10)) and . with k£ = 2,1,0,
an heavy computation since N > diamy gives that its total mass is equal to

diamy|q| + diam?

L _ 2 A
bl = % fenl= X (el O (=S

g€eA, 0<[q|<N geA, 0<|q|<N
2 1 + diam N*
- N0 (— AN —o(——) . (12)
2 covol % covol 2 covol %

It follows that if NV > diamy, then

1 2 covol% (1+ diamy) covol% covol%
bl ~ s 0T ~0F) 1)

Let f € CY(D). By Equations , , and with & = 1, we have, as



dlam tends to oo,

L n elmns Y ledm)

HMNH HMNH geA, 0<|g|<diamy geA, diam; <[q|<N

1= [ | = ltdiam 1N 1
-0 (M]—VludimK 1o ) + ( = )% JD f(2) dLebg(z)

[l

=O(CO;$ j:;?!\fl\oo) + (1 +o(d ff ) dLeb(2)
+O<mNA(VM+VUwD
= 2 [ 16y debe(a) + 0 (R (1l + 1)) m

Let B+ = (£]0, o[ +iR)/(2miZ) so that E = E~ U E*. Note that log : D\ {0} — E~
and log : C D — E* are homeomorphisms. Let us define a measure with finite support

on ET by
V]i\_f = Z Alog% )
(m,n)e]%,
so that vy = log, iy = vn |g-, and |lvy| = |lpy|. For every f € CL(E™), we have

fologe CLHD~{0}) (hence folog may be extended to a C! function on D which vanishes
on a neighborhood of 0). By Equations and @, we have

vy(f) _ py(f olog)
lvnl Il

diam 7
- ifoolog(Z) dLebc(z) + O ( EJL\T A (£ o log oo + Hd(fOIOg)HOO))

1 , dia
=7er2Re<Z>dLebE( )+O<

L (1l + le™df (2) ) -

Let sg : E — E be the horizontal change of sign map 2’ + iy’ — —2’ + i3/, which maps E~
to E*. Then vy = sg, vy and vy = vy + v, Since E~ n E™ has zero measure for the
Haar measure Lebg and since vy || = S lon| + O(diamzN?), the last claim of Theorem
[2.2] follows. Note that, as needed just after the statement of Theorem 2.2] as N — +co,
we have

w2 4

— 15
vol% (15)

vl ~ 2yl ~

The first claim of Theorem follows by approximating continuous functions with
compact support by C! ones. The uniformity of the convergence on compact subsets of
lattices follows from the uniformity of the functions O(-) and the fact that the constants
covol; and diamy vary in a compact subset of 10, +00[ when A varies in a compact subset
of Grids. O
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The following picture illustrates the weak-star convergence statement in Theorem
when A = A = Z[i] is the ring of Gaussian integers and N = 20, using as horizontal
coordinates (2/,y') € E with 2’ € R and ¢’ € [—m,7[. A smooth histogram scaled to a
probability density is displayed in orange, and the limiting distribution in grey.

Arithmetic applications. (1) Let K be an imaginary quadratic number field, with
discriminant Dy, ring of integers Ok and Dedekind zeta function (x. We denote by
S+ the semigroup of nonzero (integral) ideals of the Dedekind ring Ok (with unit Ok).
We denote by N(I) = Card(Ok/I) the norm of an ideal I € %7, which is completely
multiplicative. The norm of a € Ok ~ {0} is

N(a) = N(aOk) .

It coincides with the (relative) norm Ny g(a) of a (see for instance [Nar]), and in particular
is equal to |a|? since K is imaginary quadratic. The norm of a fractional ideal m of Oy is
ﬁg N(cm) for any ¢ € Ok ~ {0} such that em ¢ OF.

Let m be a nonzero fractional ideal of Ok . Note that m is a Z-lattice in C with

covoly = VI D] N(m) and diamy = O(\/|Dg| N(m) ), (16)

2

for a O( ) uniform in K, since O = Z+ \/%T‘Z and diamg, = |1+ \/?Tﬂ if Dg =0 mod 4,
and since O = Z + %WZ and diamg, = |%m| if D =1 mod 4. In particular, the
Gauss ball counting argument of Equation @ with & = 0 (with its slightly simpler error
term) and = = v/ N’ gives, as N’ > N(m) tends to +c0,

) ne _ ™ , diamy v/ N’ + diam?Z |\ 2
(Card{m e m: 0 < N(m) < N'})? = (Covolm N +0( . ))
i [Drc| N(m)
= B (O )
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Hence Theorem implies the existence of a pair correlation function (independent of m)
for the family of the complex logarithms of nonzero elements of m

L= (AR = {logn : nem, 0 <N(n) < N'},wy =1) vy

without weights or scaling, as stated in the following result, using Remark
Corollary 2.4 For every f € CX(E), as N' — +o0, we have

| Dic| N(m)? D

LZNT f(logm —logn)

m,nem : 0<N(m),N(n)<N’
1

1 [Dic| N(m)
2 E

VN’
(2) For every positive integer d, let ro 4 : N\ {0} — N be the integral function where

ro.a(n) = Card{(z,y) € Z* : 2% + dy* = n}

f() e 2Rl dLebp (=) + O ( (1o + le™*df (2)]1)) - O

is the number of integral solutions of the Diophantine equation z? + dy? = n, for every
n € N. In particular, if d = 1, then 7 4 = r9 is the well known function counting the sum
of two squares representatives of a given positive integer (see for instance [Cox| or [HaW,
Sect. 16.9]). The following result proves that the map

1 _
gR:t'—>§6 1t

on R is the pair correlation function for the family

flgw = (AN ={lnn : 0<n <N, roq(n) #0}, wy =724 oexp)NEN

of the logarithms of the nonzero natural integers, without scaling but with weights given by
r9,q (removing the zero weights). Other weights have been considered in [PP2] (including
the one given by the Euler function ¢). Note that the following corollary holds also when
r2,4(n) is replaced by the number of representations of n by the norm form of any imaginary
quadratic number field, evaluated on any order of their ring of integers (as for instance the
norm form (x,y) — x? — xy + y? of the Eisenstein integers).

Corollary 2.5 As N — 40, we have

1
(Z ( ))2 Z T2,d(m) 7AQ,d(”) Alnm—Inn A gr Lebg .
0<m<N2 72,d\Th m,neN : 0<m,n<N?2

Proof. Let us consider the Z-lattice A = Z + iv/d Z in C. Using Remark we remove

. . . . 2 ST
the assumptions m # n in the summations defining %}\f“’l as well as Z,5

By the linearity of (2Re), and 2Re, and by Equation (f]), for every N € N \ {0}, we
have

a1\
(2 Re)* (%N ) - Z AQ Re(log p)—2Re(log q)
p.geA : 0<|p|,lq|<N
= ) )3 Ain((p[2)~Inlql?)
0<m,n<N2 pgeA : p|2=m,|q|?=n
224

— N
= N2
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The pushforward map (2 Re), preserves the total mass and is continuous for the weak-star
topology, since the map 2Re : F — R is proper. Hence by the weak-star convergence
statement in Theorem and by , we have

"2d 2 1
e AN 1 /
N — (2Re)e(—E—) & (2Re)s(=— e 2R dLebp(2)
72, 7% * E
HQﬁZ 41 | (|ggNA > (277 )
= %e* 1 d Lebg(t) .
Corollary [2.5] follows. ]

As covoly iz = Vd, by Lemma H with £ = 0, we have
Z rod(n) = Card(B(O,et/z) A (Z +ivd Z)) = T et(1 + O(e?)) .
Inn<t \/E
Thus, the conclusion of Corollary also follows from |[PP3, Theo. 1.1, whose proof only
uses the exponential growth property of the weighted family 92”1\?2"1.

3 Pair correlation of grid points with scaling without weight

In this section, we study the pair correlations of complex logarithms of grid points at various
scaling. We fix a positive scaling function ¢ : N\ {0} — ]0, +0oo[ such that lilg ) = +00.

We consider a normalisation function ¢’ : N \ {0} — ]0, +0o[ depending on v, which will
be made precise later on, but which in most cases will not yield the renormalisation to a
probability measure.

We will work on the following family (Ey) NeN~{o} of varying cylinders. For every
N e N~ {0}, we consider Exy = C/(2mi¢(N) Z), endowed with its quotient Riemann surface
structure and its quotient additive abelian locally compact group structure. Since a real
number 6 is well defined modulo 27Z if and only if ()6 is well defined modulo 27y (N)Z,
the scaled logarithm map 1(N)log : C* — Ey defined by pe — (N)Inp + ip(N)0
is a biholomorphic group isomorphism, /whose inverse is the rescaled exponential map

/ sy
=2+ - eXp(w(ZiN) = P ¢'#(N) . The real part map Re : C — R induces a

map again denoted by Re : Enx — R, which is a trivial smooth bundle map with fibers
iR/(2mitp(N)Z), such that for every z € E,

Re((N)z) = ¢(N) Re(z) . (17)

We consider also En as a pointed metric space, with distance the quotient of the
Euclidean distance on C and base point its (additive) identity element 0. Note that Ey is
a proper metric space. As lim 1 = +o0, for every R > 0, there exists Nz € N~ {0} such

e}

that for every N > Npg, the closed ball B(0, R) in C injects isometrically by the canonical
projection py : C — Ex. Hence the sequence (Ey) NeN-{o} of proper pointed metric spaces
converges to the proper metric space C pointed at 0 for the pointed Hausdorft-Gromov
convergence (see [Gro2| for background).

Any function f € CO(C) defines for all N large enough a function fy € CO(Ey) as
follows. Let R > 0 be such that the support of f is contained in B(0, Rf). Then for every

13



N = Ng;, the function fy € C)(Ey) is the function which vanishes outside py (B(0, Ry))
and coincides with f o (PN|B(0,Rf))_1 on pn(B(0, Ry)). Note that fy is Ctif fis CL.
We say that a sequence (N ) ven- (o} of measures py on Ey converges to a measure fio
on C for the pointed Hausdorff-Gromov weak-star convergence if for every f € C?(C), the
sequence (MN(fN))NzNRf converges in C to peo(fo) (see [Gro2, Chap. 33] for background).

We again use the symbol = in order to denote this convergence.

Let A be a Z-grid in C. For every N € N\ {0}, the (not normalised, empirical) pair
correlation measure of the complex logarithms of points in A at time N with trivial weights
and with scaling 1 (IN) is the measure with finite support in En defined by

A(Z 71Z)
‘%NA = Z Aw(N) logm—1(N)logn »

(m7 n)EIN

. . 1 LN Y
and the normalized one is TN %N .

Theorem 3.1 Let A = a+A be a Z-grid in C. Assume that the scaling function v satisfies

Nlim % = Ay € [0,+0]. As N — +00, the measures %}g"’w on En, normalized by
—+00

Y (N) as given below, converge for the pointed Hausdorff-Gromov weak-star convergence

to a measure g, 4 Lebc on C, absolutely continuous with respect to the Lebesgue measure

on C, with Radon-Nikodym derivative the function

0 if Ay =+ and ¥’ =1,
PRI prr. it Ay =0 and ¥/(N) = ;i (18)
WZM:@K% Ip|>  if Ay # 0,400 and ¢'(N) = (N)?.
The convergence
¢'(1N) BV B gy Lebe, (19)

is uniform on every compact subset of Z-grids A in the space Grids.
Furthermore, if Ay # 0,+00, for all A > 1 and f € CH(C) with support contained in
B(0, A), we have

1 Lr f
BN = 2) g\ o (2) dLebe(z
V'(N) N (fn) ze(Cf( )9 A7¢( ) (2)
cof A5 floo | A — Y0 Atdiamg |dff,,  A%(diamg + ) |f ] >
)\i Sys% covol% )\i covol% Sysg ¥(IV) )\i covol% »(N)

Note that the pair correlation function g¢, , depends on X but is independent of a.
The above result shows in particular that renormalizing to probability measures (taking

P'(N) ~ gjﬁ; by Equation [7| with & = 0) is inappropriate, as the limiting measure would
always be 0. We will see during the proof that the above result implies the cases a > 0 of
Theorem [L.1] in the introduction.
The fact that gg, , vanishes when Ay, = +00 means that the sequence of measures
(—,1 %‘ZAW) on
Y'(N) “°N NeN~{0}
when Ay = +00 and Ay = 0, see respectively Equation (37)) and Equation (40)).

14

(EN)Nen~{o} has a total loss of mass at infinity. For error terms



Proof. Let A = a + A be a Z-grid in C. We may assume that a € Fx. Let N e N~ {0}.
Let
Ey = (£[0, 0] +iR)/(2mi ¢(N) Z)

(which contains the base point 0) so that Ey = EyUFE};. Note that (E5) NeN« {0} converges
for the pointed Hausdorff-Gromov convergence to the closed halfplane C* = +[0, oo[ +iR
and that C~ n C* has measure 0 for any measure absolutely continuous with respect to
the Lebesgue measure on C. Note that if f € C}(C*), then for N large enough, we have
fn € CL(E%), with the above notation.

Let sgy : EN — En be the change of sign map 2’ — —z/, which maps Ey to Ey
and converges to the change of sign map sg : 2z — —z on C. The change of variables
(m,n) — (n,m) in the index set Iy proves that we have %]{A’w ’E;,: (sgn)s (%’ﬁ“ﬂ |EX] ).

We will thus only study the convergence of the measures ﬁf\/) ,@]{A’w on E]J\r,, and deduce
the global result by the symmetry of g¢, , under sg.
For every p e A ~ {0}, let

Jpn ={qeA:0<|q| <|p+gq| <N}, (20)
and let
wpN = )] Ay(nyz  and HY= D, wnn- (21)
q€Jp, N peA~{0}

Note that wy, y is a measure on C with finite support, which vanishes if |p| > 2N by the
triangle inequality, hence ,uj(, is also a measure on C with finite support.

Lemma 3.2 As N > diamj tends to +o0, we have

N? + diamz) N
pr7N“ = Card Jp,N . 4 <(|p’ A) ) '

2 covol z covol I

Proof. We may assume that [p| < 2N. Note that J, y is the finite set of nonzero grid
points in the intersection

~

Cpn={2€C:|z| <|p+2| <N} (22)

of the disc B(—p, N) of radius N centered at —p with the closed halfplane containing 0
with boundary the perpendicular bisector of 0 and —p (see the picture below).

15



Since CN'p, N is contained in a halfdisc of radius N and contains the complement in
this halfdisc of its intersection with a rectangle of length 2N and height b |, we have
IN? —[p|N < Area(C, ) < < ZN?, so that

Area(Cy, y) = 5N2 +O(|]p| N) .

Let
Con = | (a+ 7). (23)

qEJIL N

By a Gauss counting argument similar to the one in the proof of Equation @ with k = 0,
we have

ey, ]| = Card J, x — Area(Cy, n) _ Area(Cp N) N Area(Cp, n) — Area(Cy, n)
’ ’ Covol > covol - covol X

N? p| + diamy N+d1ama
o ) by,

2 covol I covol X

The lemma follows. ]

Lemma 3.3 For every A > 0 and for every f € CL(C*) with support contained in B(0, A),
as N — 400 and uniformly on A varying in a compact subset of Grida, we have

A" | df [0 N4)

[ (™) e (Fn) = 1 (F)| = O (covcﬂ;fw(N)?’

Proof. Let A and f be as in the statement of this lemma. Note that since ¥(N) > 0 and
by Equation (B)), for every (m,n) € I, we have (m,n) € I}, that is |n| < |m|, if and only if
Y(N)logm—1(N)logn € E5;. Hence by the change of variable (p, ¢) — (m = p+q,n = q)
(which is a bijection from A x A to A x A), we have

) e () = D) In(@(N)logm — &(N) logn)

+
(m,n)ely,

= > In(9(N)log(p + q) —¢(N)logq) .
peA~{0}, geA
0<|q|<|p+ql<N

By the assumption on the support of f, if an index (p,q) contributes to the above sum,

then Re(y)(N)log(p + q) — ¥(N)logq) < A. Hence by Equations and (), we have
In ’1 + %‘ < ﬁ, which tends to 0 as N — +o00, since lJirm 1 = +00. In particular, using
o0

the assumption on ¢, we have

AN

ool 0(x)-

A
=0(——=) and |p|=
a ~ G

so that ‘g‘ < 1if N is large enough. This allows to use the principal branch, again denoted
by log, of the complex logarithm in the open ball of center 1 and radius 1. By the analytic
expansion of this branch, we have

(24)

A2
logl—i- ‘—

16



The mean value theorem hence implies that

(@ (N) log(p + q) — (V) log q) = f ((IV) log(1 + §>)

p A?|df oo
= N)=)+ 0 (——— 25
By Lemma and Equation with k£ = 0, we have
Card{(p,q) eAxA:0< lgf <|p+ql <N, |p|=0 (Ai)}
P(N)
- AN N?
peA~{0} : |p|=0O (%)
A?N*
o(- 2N (20
Y(IN)? covols

Similarly, if an index (p, q) contributes to the sum

iy =Y Fem)E),
peA~{0}, geA
0<lgq|<|p+gl<N

then Equation holds. By summing Equation on the set of elements (p, q) € AxA
such that 0 < |¢| < |[p+¢| < N and |p| = O (%), and by using Equation (26]), Lemma
[3.3] follows. OJ

Let us now study the convergence properties (after renormalization) of the measures
wp, N and of their sums p}; as N — +o0. We assume in what follows that |p| < N (which is
possible if N is large enough since we will have |p| = O (%) ). Let ¢+ : C* — C* be the
involutive diffeomorphism z — %, which maps C* \ {0} to C™ \ {0}, whose holomorphic
derivative at z is Z%, hence whose Jacobian at z is

1

By the equation on the left in Formula , we have
LyWp, N = Z A’d)(lq\f)p . (28)

qGJP7 N

When ¢ varies in Jp, y, as seen in the proof of Lemma the above Dirac masses are

exactly at the nonzero points of the Z-grid A, v = m A that belong to the set
¥; L ¢
N = N -
P p(N)p P

17



Note that

F B covol g )
o) " e @ :

By Equation , the set )N/pJV is the intersec-

covoly = Area
- (

tion of the disc B(— =, ) with the closed AN
TN (N (N)p|
halfplane containing 0 with boundary the perpen- . /\ *\"° \ \
dicular bisector of 0 and ———=~. Let us define 1 >\ o\ ¢
v) TN C ’\T 0 N

Zyn={2€C: Rez>0, |2|<

Ny
G(N)fpl” VN
Note that ' i i M

Plply
2

(30)

[’(Zp,N):{ZE(CI Re z = 0, ‘z‘ >

The symmetric difference of ffp, ~ and Z, n, that we denote by ?Zp, N, is contained in

the union of the rectangle [ — W, 0] X [ — w(NL)IpI’ MNL)\M] and the half-annulus

N 1 N }

{ze(C: Rez =0, H(N)[p| _qp(N) <l Sm

(well defined since |p| < N). In particular, its area satisfies Leb(c(?Zp,N) =0 (m)
Let

1

Yon = S(N)p CpN (31)

so that, as in the proof of Lemma the symmetric difference of Y, y and EN/p, ~ has area

0 ( Ndiam ) as N — +oo0. The symmetric difference of Y, y and Z, , that we denote by

$(N)?pl? .
YZ, N, hence has area Leb(C(YZp,N) =0 (W) as N — +oo. In particular, for
every ¢ € CL(CT \ {0}), since Z, y = B(0, IMNL)lpl) and Y, y < B(0, 71\;)??;?"‘), we have

[ el diebe(s) - | () dLebe(a)|
Zp’N Yp,N
o P Mmoo .
- SN PIoP ' o

By Equations , , and , by the mean value theorem and by Lemma as
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N — +00, we have

covol ¢

], o) dten() — SRy v @)

_ ‘ y LT? (qﬁ(z)—qﬁ(w(]%)p)) dLeb@(z)]

qEJp,N P(N)
< (Card J ) covol H ¢> diamK
x ar N +diam ~ —_—
»N | $(N)2 [p2 177180 S lo 9 (N) [p]
diam quﬁ Nediame | N2
L)

)
(N)? |pf? '
Hence by Equation (32), we have

won @) = PEVIE ) arenc )
Z.

covolK N
dlamK N+diamx N2 (dlamK + ‘p|) H¢ N+d1amA N
|B(07 0 0, =) lloo
10 ( CIeIF] I DIEIF] ) . (33)
covoly Y(N) |p| covoly

Let f € C1(C* \ {0}) with support contained in B(0, A). Note that f o e CL(C* ~ {0}),

that H iam H and that
Fouy, <ol f\{lz\>N‘”+éfi‘£l}
d ol 1amﬂ A2 d
H Y |{\z|\NJ{L)‘p Hloo I Imﬂ?i’:ﬁ‘-}”w

since the support of f is contained in B(0, A). The change of variable by ¢ in the integral
of Equation applied with ¢ = f o, together with Equations and , hence give

(V)2 [p?
() = Fo B | 106) T dLebe(2)

2 i 2 :
., A diamg |15 syl N* - (diamg =+ 120) [y 0wy oo
+
* ( covoly Y(N) |p| covol g

For every z € Ct ~ {0}, let

O E DN T PO R D M D

2 2|
peA~{0}

[

Note that if z and N are fixed, then for |p| large enough, we have |z| < W, thus the
above sum has only finitely many nonzero terms. Let 6x(0) = 0.

Note that 6y (z) vanishes if and only if |z| < PN )SysA , by the definition of the systole
of A.

As seen in the proof of Lemma , the only elements p € A that give a nonzero
contribution to the sum ZpEK\{O} wp, N (f) satisfy p # 0 and |p| = <w(N)) By Equation
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with k£ =0, as N — 400, we have
- AN A?N?
Card A~N{0}:|p|=0(—=)} =0 (—)
ar {pe ~ {0} : |p| (¢(N>)} COVOIA%/J(N)Q
if Ay, < +00. Otherwise, if Ay = +00, we have O (%) < Sysy if N is large enough, hence
if IV is large enough, we have

- AN
Card{pe AN{0}:|p|=0(—=)}=0. 35
Thus, by the right equality in Formula , we have
N 2
= Y e =S8 [ ) o) dLebe(z)
peA~{0} A JzeCr
. . AN
A* diamy df [EE s lop V% (diamng + t77) | (21> S loo 4% °
+0 ( 3 3 + 5 5 ) . (36)
covols Sysy ¥(N) covols ¥(N)
Case 1. Let us first assume that Ay = +o00, that is, lim % =0.
N—+0

For every A > 1, if N is large enough (uniformly on A varying in a compact subspace
of Grids, since then A varies in a compact subspace of the space of Z-lattices, on which
the systole function A Sysj has a positive lower bound), then for every z € B(0, A), we
have fy(z) = 0 by Equation (34), and pf(f) = 0 by Formulas and (35)), since the
sum defining p3;(f) is an empty sum. Thus, whatever the (positive) normalizing function
1)’ is, we have a total loss of mass at infinity :

1
Y'(N)
Assume that the renormalizing function ¢’ is such that WQ’U\’) tends to 0 as N

tends to oo, for instance v’ = 1), as assumed in the first case of Equation . Note that
if )(N) = N® with o > 1, then we indeed have Ay = +0o0 and if ¢/(N) = N*72% as in the
statement of Theorem we do have limpy_, ;o WJZ,(M =0.

Together with Lemma , the above centered formula proves Formula when Ay =
+00, with a convergence which is uniform on every compact subset of A in Grids, as well as
the case a > 1 in Theorem [I.1] Furthermore, if follows from the error term in Lemma [3.3]
that for every f € C}(C) with support contained in B(0, A), as N — +o0 and uniformly

on A varying in a compact subset of Grids, we have

uj\r,—*‘O.

1 o At ||df |0 N*
B =0 37
i A =0 (o iy ) BT
Case 2. Let us now assume that Ay = 0, that is, Nlim w = 0.
400
For all z € C* ~\ {0}, by Equations and for k = 2, we have
P(N)* _ (Y(N) 4 2
pei: |p|< s
o ( (1 + diamy) (N)  diam% ¢(N)? ) (38)
~ 2covoly covolg N |z| covoly N2 |z|?

20



In particular, if |z| > %, then %91\/(2) is uniformly bounded. Since Oy(z)
Y(N) Sysg

4
vanishes if |z| < ——x—=, this proves that the function wg\],\i) Oy is uniformly bounded on
C* ~\ {0}, and pointwise converges to the constant function m Hence by Equation

and by the Lebesgue dominated convergence theorem, we have, with a convergence
which is uniform on every compact subset of A in Grids,

P(N)? ut A
N* N 2covol%

Lebes . (39)

More precisely, for every A > 1, for every f € CL(C* \ {0}) with support in B(0, A),
and for every A in a compact subset of Grids, we have the following control. At each point
z € C* where 0y does not vanish, the second error term in Equation is at most the
first one, as it satisfies

diam?2 5 (N )2 _ diam? 5 YN )2 _ (1 4 diamgy) ¢ (N)
covolK N2 |z[> = covolg SysA N2[z| = covol; N |z|

for N large enough since w( ) tends to 0. By Equations (36]) and , and since (N) < N
/2

for N large enough, using the equality J —pdpdf = A in order to integrate the
—7/2 p

first error term in Equation (3 , we have

P(N)? V)
NA py(f) = W o f(2) On(2) dLebe(2)

N ( A* diamgg |df [ N A?(diamg + A) [ f]eo )
covol% Sysg ¥(N) covol% P(N)

At diam;, |d
= o il > J f(z) dLebc(z) + O ( — |f]eo
covols Jzec+ covol§ Sysg 1(N)
A?(diamg + A) [ £l | AL+ diamg) (V)] f]oo )
COVOI% P(N) covol% N '

If ¥/(N) = #]\?)2 as assumed in the second case of Equation (18], it follows from
Formula and Lemma by symmetry that

1 &, * T
Zr? A — Leb
P(N) TN 200\/01% e

This proves Formula when )\, = 0, with a convergence which is uniform on every
compact subset of A in Grids, as well as the case 0 < o < 1 in Theorem Furthermore,
for every f e C1(C) with support contained in B(0, A), as N — +c0 and uniformly on A
varying in a compact subset of Grids, using the error term in Lemma [3.3] with the fact
that that Sys; < diamy, we have

1 L f At diamg ||df |0
RN dLebc + O
P(N) TN (fv) = 2covol2 f dLebe ( covol% Sysg ¢(N)

AQ(dlam,{ + A) [ fl | AQ + diamg) p(N) | £l )
covol% W(N) covol% N .
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Case 3. Let us finally assume that lim % = Ay belongs to |0, 400 .

N—+o0

We consider the function 0y : C — [0, +o0[ defined by

1
ZHW Z pl?

pel: pl<

where by convention 6, (0) = 0, and replacing p € Abype A~ {0} makes no difference.

[}
Note that 6 vanishes on the open disc B(0, Ay Sysy), is uniformly bounded and tends
to m as |z| — +oo by Equation with £ = 2. Furthermore, 0 is piecewise
continuous, with discontinuities along each circle S(0, |p|) centered at 0 passing through a
nonzero lattice point p € A. See the picture in the introduction representing the graph of
0 when A = A = Z[i] (so that covoly = 1) and Ay, = 1.

By Equation , the sequence of uniformly bounded maps (6x)nen converges almost
everywhere to 6, (more precisely, it converges at least outside Upe R {0} S(0,|p|)). Hence
by Equation (36) and by the Lebesgue dominated convergence theorem, we have

1 - 1

— - — L . 41
P(N)? N covol g beo Lebet (41)

Let A > 1. Note that |z| < A implies that Ll « /\A < i—A If N is large enough so that
» "

A
% > /\71”, then |z| < A implies that % < %. Hence for every 2z € Ct n B(0, A), if N

is large enough, we have

1 2
| 00(2) — On(2) | < [ Z Ip| ’]l|z\>)\w\p|<z) =15 e (Z)‘ :
A 24
peA : |p|<>\w
Note that if N is large enough, the left term vanishes if |z| < )‘71” Sysg-
Let f € C1(C™") with support in B(0, A). By integration on annuli and Equation ([7)
with k = 3, we have

I.f lloo 2 P(N)|p
Op — 6 dLeb =0(—— E 2T | A I /=
’ c+ f n) dLebc ’ ((/\1,0 SYSK)4 pEK:|p‘<§z | ’ vlpl N ‘ )

A% Sys% covolg -

N

Hence by Equation , we have

5 PN
w(]l\/*)z tn(f) = Covlolx LEC+ f(2) 0 (2) dLebc(z) + O (A lggoyL;wC;/Ol%) | )
‘o ( A4ou§unK ldf]lo Nt A%(diamg +2J27%)) |f|ocN3)
covoly Sys; (V)5 covol; P (N)*
- covlolK Le(c+ f(2) 6(2) dLebe(z)
Lo ( A5 £, |;\“’ _ % oA dianng ldfl,,  A%(diamg +2 50) 1f oo ) )
), Sys covoly Ay, covoly Sysg ¥(N) A3, covol ¥(N)
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If ¢/(N) = 1(IN)? as assumed in the third case of Equation (18], it follows from Formula
and Lemma by symmetry that

REY 2 0 Lebe .
YP'(N) covol g

This proves Formula (19) when Ay # 0,00, with a convergence which is uniform on every
compact subset of A in Grida, as well as the case @ = 1 in Theorem 1.1 (since if (N) = N,
then Ay = 1 and ¢'(N) = ¢(N)? = N? = N*72%). Furthermore, for every f € C}(CT)
with support contained in B(0, A), as N — +00 and uniformly on A varying in a compact
subset of Grida, using Equation and the error term in Lemma with the fact that
that Sys; < diamj, we have

1

1 At |df |0 N*
(%ﬁ )\E+(fN) WMXI(JC) (covol%z/J(N)5)

bo(2)
d Lebc
Lem covolﬂ (2)+

( A5 floo | Ay — Y0 Atdiamg |dff,,  A%(diamg + ) [ f] )
)\Zj Sys? 3 COVOI% )\i covol% Sysg ¥(IV) )\i covol% W(N)
By symmetry, this concludes the proof of Theorem O

Let us give a numerical illustration of Theoremwhen A=A =7Z[i] and »(N) = N.
The following figure shows the points 60 logm — 60logn contained in the ball of radius 5
centered at 0 for (m,n) € Ig.
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The second figure shows an approximation (given by Mathematica and its smooth-
ing process) of the pair correlation function g¢, , computed using the empirical measure

#%&% ¥ in the ball of center 0 and radius 5. We refer to the first picture in the intro-
duction for the actual graph of the pair correlation function g, .
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The figure below gives on the left the graph of the pair correlation function g¢, , of

the Z-lattice A = A = Z[#] of the Eisenstein integers at the linear scaling ¢ : N — N

in the ball of center 0 and radius 5. The blue lines on the bounding box represent the limit

m = %’r at +o0 of gg, 4, given by Equation @ with £ = 2. On the right, we have
A

the approximation of the pair correlation function computed with the empirical measure

L%fAﬂ/)

602760

4 Mertens and Mirsky formulae for algebraic number fields

In this short section, we recall the notation and statements of [PP4] that we will use in
Sections [Bl and [6l

Let K be an imaginary quadratic number field (with Dk, Ok, (k, f;, N the no-
tation introduced before Corollary . We assume in Sections @7 and |§| that Ok
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is principal (or equivalently factorial (UFD)). This implies, see for instance |[Nar|, that
Dy € {—4,-8,-3,—7,—11,—19, 43, —67,—163}. For all I,J € .Z;- we write J | I if
I c J, we denote by (I,J) = I + J the greatest common ideal divisor of I and J, and by
1J the product ideal of I and J.

We denote by ¢k : f; — N the Euler function of K, defined (see for instance [Narl
page 13]) equivalently by

1

Vae j}? oK (a) = Card((ﬁK/a)X) - N(O)H (1 — m) )

pla
where, here and thereafter, p ranges over the prime ideals of 0. For every a € Ok ~ {0},
we define v (a) = pg(aOfk).

We first give a version in angular sectors of the Mertens formula on the average of the
Euler function that will be needed in the proof of Theorem . For all z e C*, 6 € ]0, 27]
and R > 0, we consider the truncated angular sector

- 0 R
C(z,0,R) ={pez:te |-, -], 0<p< —}. (43)
272 |z
Note that for every 2z’ € C*, we have
2'C(2,0,R) = C(z2',0,R||) . (44)

It is important that the function O(-) in the following result is uniform in m, z and 6. For

every m e ,/E, let
1

Ol

e =Nm) [ J(1+

plm

Theorem 4.1 (A Sectorial Mertens formula) For all m € %5, 2 € C* and 0 €
10,27], as x — +00, we have

zt +0(2?) .

0
Zz,@,x) prel) = 24/|Dk|Ck(2) em

aemnC/(

Proof. See [PP4, Thm. 1.1]. O

We now give a uniform asymptotic formula for the sum in angular sectors in C of the
products of two shifted Euler functions with congruences, which is used in the proof of
Theorems and When K = Q (the sectorial restriction is then meaningless), this
formula is due to Mirsky [Mirl, Thm. 9, Eq. (30)] without congruences, and to Fouvry [PP2,
Appendix| with congruences.

For allme ., 2€ C*,0€10,2n], k€ O, and z > 1, let

S, z0k(T) = Z vr(a) pr(a+k) . (45)

aemnC(z,0,z)

Let

N(m) N(p)2 N(p)?

=TT (- MGy T el ) M)y
p p
(bm) [ kOK
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where

(1= D" if (pom) | kO , L-wwp i plEOK
K = and kK = (p)
wk(P) { 1 otherwise «(p) 1 otherwise.
(47)
For instance, if m = Ok then by [PP4, Eq. (15)], we have
2 1
= 1—-——= 14+ ——+———) . 48
ot =10 =gp) 110 e —2) )
p plkOK
Since it will be useful in Section [6 by [PP4, Lem. 4.2|, we have
Cp = Inf cpi>0. (49)

kEﬁK

Theorem 4.2 (A Sectorial Mirsky Formula) There exists a constant Cx > 0 such
that for allme 75, ze C*, 0 €]0,2r], k€ Ok and x > 1, we have

0 ok 6 5 4 2
Sz - < Cr((1 4+ A/N(k + N(k + N(k) In(N(k In(2 .
o) = 5 a8 Cre((14 VAR 2 4 N4 0(8) () 2)
Proof. See [PP4, Thm. 4.1 and Lem. 4.2]. 1l

5 Pair correlation of integral lattice points with Euler weight
and no scaling

In this section, we fix an imaginary quadratic number field K whose ring of integers O is
principal. We fix a nonzero ideal A € ;5. Note that A = A is a Z-lattice (hence a Z-grid)

in C, with covoly = N(A) 7”?1(‘ as seen in Equation . As in Section , we work on the
constant cylinder F = C/(2miZ) in this section.

Recall that £Z{* is the family defined in Equation (2). For every N € N\ {0}, the
(not normalised, empirical) pair correlation measure of the logarithms of nonzero elements
in A, with trivial scaling function ¥ = 1 and multiplicities given by the Euler function, is
the measure on I with finite support defined, with Iy = Iy A by

~ 27K
VN = ‘%NA = Z @K(m) @K(n) A]Ogmflogn .

(m,n)eln

Theorem 5.1 As N — 400, the measures Uy on E, renormalized to be probability mea-
sures, weak-star converge to the measure absolutely continuous with respect to the Lebesque
measure on E, with Radon-Nikodym derivative the function Jorr 2 %e“”Re 7
which is independent of A and K :

v

T e Lebe

Furthermore, for all f € CL(E) and o €10, 5[, with cx = N(A) H(l +

——), we have
sia )

DiN — i —4|Re #/| ! / CA ”f”oo He_Z’df(Z/)”oo
| on] (f) = LeE e f(2") dLebg(z") + O ( i+ 2B ).
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This result gives the first assertion of Theorem [1.2]in the introduction. As in Remark
[2.3] Theorem [5.1] remains valid if we allow n = m in the definition of the index set Iy, and
we will use this remark in the proof of Corollary

Proof. In this proof, all functions O(:) are absolute, since there are finitely many fields
K as in this section. The first assertion of Theorem follows from the second one, by
the density of C1(E) in C%(E) for the uniform convergence.

For all N e N and ¢ € A with 0 < |¢| < N, let J; be given by the equation on the left
in Formula @ We now define

B = ), () As

peJy

which is a finitely supported measure on the closed unit disc D = B(0,1) of C, and is
nonzero since —q € Jy.

Lemma 5.2 As |q| — 4+, we have | &4 = lg|* + O(lq|?).

7r
VIDx|Ck(2) ea
Proof. This follows from Theorem applied with m = A, z = 1, = 27 and =z = |q|,
since ¢ (q) = O(N(g)) and

| &5l = > o) =( D> ex(@))—ex(@. O

peA : 0<|p|<|ql, p#q pEANC(1,2m,|q|)

Lemma 5.3 For all f € C'(D) and o €]0,% [, as |q| > +0, we have

~

Wq

= [ 21eP s arebete) + o (AL 4 L2y,

| lg[' =2 fgl*

Proof. Note that ¢y > 1 and let us define
C;/\ = 2\/ |DK| CK(Q) CA = O(CA) .

By Lemma [5.2] as |g| — +00, we have

Let Q = | |q|*|] = 1, which tends to +o0
as |q| — +o0o. For all elements m and
nin {0,...,Q — 1}, let

]ﬁ n+1]
Q Q7
m m+1]}
Q7 Q )
so that D ~\ {0} is the disjoint union of
the sets A, ,, for m,n e {0,...,Q —1}.

An,m _ {p62i7rt:pe

te ]
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With the notation of Equation , we have

m+1/2 2r n+1 2inmtl/2 2T n
Apm = C(2™ @ |2 )N C(¥a ==, 2). 51
G N G at-N0 1)
Note that since n + 1 < @, as ) tends to +00, we have
T n+1 2z7rm+1 n+1 2im 3 n+1 2im 3 n 2z7r— 1
diam( A \‘ Q e ’ ’ e — —).
(Anm Q Q Q° (Q)
Hence for every z € A, ,,, we have by the mean value theorem
n 27,71' “deoo
flz)=7f +0 . 52
&)= 1(5 %) +o (L) 52)
Since
ormil  nil nt
Q Q 21 (n + 1) — 1
2| d Lebg(z) = f J pPdpdfd = ————" — =0(=),
J o orm Jz Q 4Q4 (QQ)

we have therefore

n Qiﬂm) +O(df|00))j %|Z|2dLeb(c(Z)

122 z e z) = — e
. Sl se) aebee) = (r(G .
n 1_nt n ogpm df || o
:712<—( +21223 f(=e” )+O(H i )) (53)

By Equations (51)) and (44]), we have
24 MEL/2 2m (n + 1)|Q’ 24 MEL/2 2m n"]|
qAnm =Cl(qe Qe —, N~ Clge e, —,—).
= 2% and ¢ =

By Equations (52| , , applying twice Theorem . with m = A, 6 = 0
lal tends to +o as |g| — +00 since @ < 1, we have,

il gl 2 Q? and using the fact that o

|qu—>

1

pqu;m m,qf(z) 5. Px®
- (e o (W) L e
- (178 + o () ><2W|q|4 )
(& ("+34 =0 (D)
ot TR L R o R

29



Note that gD = B(0, |q]). By cutting the sum defining &, and the integral over I into Q*
subparts, by using Equations and , and since n < @ < |q|%, as |¢| — +00, we have

»; 2
o = [ 2R G dLebe(s) |
Q-1
2

S S(n B[ 2R e ) |

n,m=0 peqhAnm nJy n,m
_ ol 110 ea
_O( Q )+O(|q|1—2a)'

This proves Lemma [5.3 L]

For every N € N\ {0}, let us define

fin= Y ¢x(m) ex(n) An = > er(q) @q
(m,n)ely qeA—{0} : [q|<N

which is a finitely supported measure on D. By Theorems [£.1] and [£.2] both with m = A,
0 = 27, x = N and the second one with £ = 0, since ¢y = 1 and cpp < 1 by Equation
, and since there are finitely many such fields K, its total mass is

I = > er() @ = >, ex(m) ex(n)
geAN{0} : |q|<N (m,n)ely
1 2 272
=30 X wx)’ = X wx)?) = (5 N+ ONT).
peA~{0} peA~{0} A
Ip|<N Ipl<N

For every f e C'(D), by Lemmas and , again by Theorem withm = A, 0 = 2x
and x = N, we have

&q(f)

[

0r(q) @

An(f) _ 1 Z
IENT 0N en T 1a1<nv

2 1 - c d
[ s diebe) - s Tt [ 0 (A2 + 1)
D7 |MN|| geA~{0} |q‘ |q‘

lg|<N

:f 222 f(2) dLebe(2)
D 7

/2
PO (AL S k@I e e+ N L)

2 8
2me N Ao A
lal<N
_ 2 9 ealfllo | lldflloo
_fD = o f(z) dLebe(s) + O (Ayz 1202y

For every N € N~ {0}, let us define

’7]%/ = Z QOK(m) SOK(n) Alogmflogn s

+
(m,n)ely
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which is a measure with finite support on E* = (£[0, [ +iR)/(27iZ), so that Uy =
log, fiy = Un |-, and |[Uy] = |fy|l. For every f e CL(E™), the function f olog is a C!
function on D which vanishes on a neighborhood of 0. By Equation @, we have

Un(f)  Hiy(folog)

ol Al
2, callf ologllo | [d(f olog)lloo
= JD - |z|* f olog(z) dLebc(z) + O ( N1=2a + o )
2 4Re(~ ealfle | e df (2)]oo
- JE —e () f(2') dLebg(z') + O ( Ni—2a T Na ).

Since Uy = Uy + U on E N (iR)/(2iwZ) and Lebg((iR)/(2inZ)) = 0, since Uy = sg, Uy

where sg : E — E is the map 2’ + iy’ — —a’ + i/, we have [75| = & [P and the last
claim of Theorem [5.1] follows by symmetry. O

6 Pair correlation of integral lattice points with scaling and
Euler weight

As in Section [0, we fix an imaginary quadratic number field K whose ring of integers
Ok is principal, and a nonzero ideal A = Ae f; We also study the pair correlations
of the family Z{* defined in the introduction, but now with the linear scaling function
¢ = id' : N — N. We leave to the reader the study of a general scaling 1, assumed to
converge to +00, proving a Poissonian behaviour for sublinear scalings and total loss of
mass behaviour for superlinear scalings. We also leave to the reader a statement similar to
Theorem [6.1] replacing the above Z-lattice A by a Z-grid a + A for any a € Ok.

As in Section |3} we work on the family of varying cylinders (Ey = C/(27i N Z)) yen- {0} -
As in Section [3] for every f e CL(C), for every N large enough such that the support of f

is contained in é(O, 7N), we denote by fy € C}(Ey) the map which coincides with f on
B(0,7N) modulo 27i N Z and vanishes elsewhere. For every N € N\ {0}, we consider the
measure on Ky with finite support defined with Iy = In s by

~ s&/ﬁwK’ ldl
AN = ’%NA = Z QOK(TTL) (,OK(TL) AN(logm—logn) )

(m,n)eln

which is the (not normalised) empirical pair correlation measure at time N of the complex
logarithms of the elements of A with multiplicities given by the Euler function and with
linear scaling 1) = id' : N — N.

Theorem 6.1 As N — +o0, the family (% '@N)NEN of measures on En converges (for
the pointed Hausdorff-Gromov weak-star convergence) to the measure absolutely continuous
with respect to the Lebesgue measure on C, with Radon-Nikodym derivative the function

1 2cpa 6
JpPK g1 P 2> = = | k|
Lyt ,id |Z|8 keAZ /|DK| ’

: kl<l

that is, as N — 400,



Furthermore, for all A > 1 and f € CY(C) with compact support contained in B(0, A), as
N — +0, we have

A4
covolp ¢y N1/2

1

75 n () = LC F(2) 9o s (2) dLebe(z) + O ( (14fllo + 1710) ) -

The above result with A = Ok gives the second assertion of Theorem in the
introduction, using the values of cg, 1 for k € O given in Equatlon

Note that, as the proof below shows, the total mass of %N is equlvalent to ¢ N® as
N — 400, for some constant ¢ > 0. Hence renormalising %N to be a probability measure
would make it converge to the zero measure on C.

Proof. We proceed as in the beginning of the proof of Theorem : We only have
to prove the second assertion above; We define EZ = (£[0, o[ +iR)/(27i N Z); We only
study the convergence of the measures % «@N on the half-cylinder E]J\r[ to the measure
922K sar Lebe+ on the half-plane CT = {2z € C : Re(z) > 0} as N — +o0; And we deduce
the global result by the symmetry of g PP id) under z — —2z.

For all N € N~ {0} and p € A \ {0}, let J,, n be given by Equation (20)). Note that

(AN A0} A B(O,N —[p|) = Jp,.v = (AN {0}) n B(O,N) . (55)
We now define the key auxiliary measure by

Bp.n = Y, vK(q) ¢x(q+p) A

qEJp, N

Then &, y is a measure with finite support on B(0, ﬁ) . {0}, which is nonzero if N > 2|p|
(which is the case if p is bounded and N — +00), and vanishes if [p| > 2N. If N > 2|p|,
by Theorem with m = A, k = p and 6 = 27, by Formula (55)), since |p| > 1, and since
cap < 1 (see Equation (46))), we have

~ 27TCA
Wp, N|| = + — =P (N +0O
| &p, N qe%wa(Q) er(q+p) = 3\/‘D— (Ip]))®
O (Ip| (N + O(Ip]))® + [pI* (N + O(lp))* + [p|* In [p| (N + O(|p|))* In(N + O(|p|)))
2T D NG 4 O( |p| NF) | (56)

~ 3Dk
In particular, if N > 2|p|, since ¢, > 0 by Equation , we have

! 3 V/IDx| (1 +O(ﬂ)). (57)

| &p, | 27TCAPN6 AN

The next result implies that the measures @, 5, once normalized to be probability mea-
sures, weak-star converge to the measure du(z) = 2 [p|® |z|? dLebp T1|)<Z) on B(0, ﬁ)
lp

as N — +00, uniformly on p € A \ {0} bounded.

Lemma 6.2 For allpe A~ {0}, a€]0,1[ and f € C}(C), as N — +o, we have

0 d
CpN_ gy :J H .(I:Hoo N I%?I ”j;”jZ N Hfl\;o) ‘
|, B(0 Nelpl - ey N N

2 pl° 21t 7(2) dLebe(2) + O (

|~

> pl
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Proof. As in the proof of Lemma [5.3] we will estimate the difference of the main terms
in the above centered formula by cutting the sum defining the renormalized measure @&, n
and by cutting similarly the integral on B(0, ﬁ) We assume, as we may, that N > 2|p|.

Let @ = | N®| = 1, which tends to 4+ as N — +oo. For all m,n € {0,...,Q — 1}, let

Ay = {pezmt: pE ]Cﬁm,w], te ]g,mc—;l]}j (58)

so that B(0, ﬁ) {0} is the disjoint union of the sets A7, ,, for m,n € {0,...,Q—1}. With
the notation of Equation , we have

iemtly2 21 n41 Qirmtl/2 2T n
A;Lm:C’eQZ7r @, )NC(eTe T — ——). 59
’ ( Q Q\pl) ( Q le!) %9)
Note that diam( 4}, ,,) = O (ﬁ) Hence for every z € Aj, ,,, we have by the mean value
theorem Idf|
N 2 0
f(z)=f(=—e"Q)+0 . 60
(2) (QM ) (QM) (60)

If |p] < N1=% (which is the case if p is bounded and N — +c0) and if n < Q — 2, then

n+1 < NQ -1
Q lp] Q
Hence for all m,n € {0,...,Q — 1}, by Formula , if [p] < N'"@and ifn # Q — 1, we
have

N|p| SN-NI"“<N—p|.

(NpA;Lm) NJpNn=AnNn (NpA;LM) . (61)
For all m,n € {0,...,Q — 1}, let

q 1
Snm = Z f(Ni) m vr(q) (g +p)-
qe(NpAy )y L TEPN

n,m

If n # Q — 1, by Equations and for the first equality, and for the second one, by

Equations , and , by Theorem applied twice withm = A, k=p, 0 = %r

and = N(’I’é—i—l)’ %, we have, as N — +o0 (so that in particular N > max{2,c\} |p|),

S, = _M 2y Lo df [0 ~1
: (f(Q|p|6 “)+0 (g, )) Eon qum(g;A;m)@K(Q) wrc(a+p)

B n gipm ldfllo\\ 3VIPk] p|
_<f(m6 Q)+O(Q|p‘)>27TCA,pN6<1+O(C/AN)>

2

O CAp Nn+1)y6 Nne lp| (Nnys Mﬂ‘*
g (T ) G 0l () ()

+ ’f,|21n \p!(]\g)2ln(m)))

Q
A
(e D0y 0y o (e Q)

Q2 Q° Q lp| AN

n

Q |p|

£ (62)
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Note that by Equations , and for the first inequality, and for the second one,
by Equations and twice , as N — 400, we have

% Sg-m | < ko Tz > orcla) ercla +p)
o<Km<Q-1 PN qgeAn (B(O,N)\B(O,N*%))
3+/|D
~ ey 25 (10 ()
27TcAp 6 v N |p’ _ o (Moo

For all m,n € {0,...,Q — 1}, let

3
In,m = J - |p\6 ‘2‘4 f(Z) dLeb(c(Z) .
A’ s

n,m

By Equations and , we have

2w (m+1) n+1
T df |l P 3
Lnm = (f(ﬁ @) + 0 (“QfL )) LmQ Jil 2 1pl® o dp
Q Qlpl
o Ln+ 1)6 —nb N gipm ldf [l
_Q2< Q5 f(Q|p|6 Q)+O(Q|p|))' (64)
Furthermore,
B |10
Io—1m » Sp°dpdd =0 (=27) .
0<mz<:Q 1 e ‘ 141 f f ]p| P ( Q ) (%5)

Since B(0,

~ {0} = |_| A;, .., putting together Equations (62), (64), and (65),

|| n,m=0

and since Q = | N%| € [%, N?] for N large enough, we have

iy j 2 pl0 21" £(2) dLebe(z) |
HWpNH B O,ﬁ ™
:‘Z(S - ZSle EIle‘
n,m=0
Q-2 - -
< Z |Sn,m - In,m| + | 2 SQ—Lm| + | Z IQ—l,m ‘
n,m=0 m=0 m=0
ldflloo . QIpll Sl 9 o [ flloo [ flloc
=0 + +0 +0 + O (———
CQur = on ) Olgy) ol r oY)
_ ol Pl | [fleo
- (Na ‘p| + C§\ Nl-«a + N ) )
This proves Lemma [6.2] O
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Now, let us introduce the finitely supported measure on C \ {0} defined by

Bh= ), iy = > ¢r(9) vr(g+p) Ay,
peA~{0} P,aeAS{0} : [al <lg+p|<N

where as previously ¢ : z — % (recalling that the measure @, y vanishes if |p| > 2N and
has finite support contained in B(0, ﬁ) ~ {0}).

Lemma 6.3 For all A > 1 and f € C'(C*) with compact support contained in B(0, A),
as N — 400, we have

A% df [0 N5>

covoly

| B | (Fv) = B (1) [ = O (

Proof. Let us assume that N > %, so that the ball B(0, A) injects by the canonical
projection C — Ey = C/(2mi N Z). Note that fy has support in Ey;. Using the change
of variables (p,q) = (m =p+¢,n = q), we have

An(fN) = Y, ¢r(m) ex(n) fn(Nlogm — Nlogn)
(m,n)ell"\',

- > vr(q) exc(q +p) fn(Nlog(p +q) — Nlogg) .
p,geAN{0} : [gl<|g+pl<N

As in the proof of Lemma [3.3] (see Formulas and with ¢(N) = N), if a pair (p, q)
occurs in the index of the sum defining either Zy (fn) or fix;(f) with nonzero corresponding

summand, then % =0 (%), Ip| = O(A), and

A% df [0

| fn(Nlog(p +q) — Nlogq) — f(Ng)l =0(—x )

Hence, by Equation , since cp p < 1 (see Equation ) and by Lemmawith k=0,
as N > diamy tends to 400, we have

~ - A?|df
| Zn(fn) — B ()| < > vK(q) (PK(Q“‘p)O(‘JVOO)
peAN{0} : |p|=0(A), geJp N
A?|df A4 df |0 N?
oo oty
PEAN{0} : [p[=0(A)
This proves Lemma [6.3 L]

Lemma 6.4 For all A > 1 and f € C1(C*) with compact support contained in B(0, A),
as N — 400, we have

1 4

6 R = [ £G) aem s (2) dLebe(z) + O ( (1dfle + 1£1:0)) -

covoly ¢y N 1/2
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Proof. Let A and f be as in the statement, let N be large enough, and let a € 0, 1.
Since the support of @, y is contained in B(0, ﬁ), the support of t4@W), n is contained in
{z € C: |z| = |p|}. Since a nonzero element of Ok has norm, hence absolute value, at

least 1, the measures [i}; and 9ok iqt (z) d Lebc(z) both vanish on l%(O, 1). Hence we may

assume that the support of f is contained in {z € C: |z| = 1}, so that the support of f o
is compact. Note that ||f o t|eo = | f|lc and as the support of f is contained in B(0, A),
that

[d(f o )lloo < A?[dlf oo -

By Equation and by Lemma by Equation (27), since 1 < |p| = O(A) and
canp < 1,as N — +00, we hence have

B = 2wl = Y 18l (o)

peA~{0} peA~{0} H b, H

- 2T NS 4 O Jp| N7)
peAZ\{O} <3’V | D )
Ll bl 1))

O 16,4
X(JB(Ol)ﬂ_|p| 2] fOL(z)dLeb@(z)JrO( Nep 7N T Ne

ol

N6 Z 2CA,p p‘
2 VIDk| iz 12

vl Al Al 1l
N No d Ni—a " No )

|8 £() dLebe(2)

+0

peA : [p[=0(4)

By Lemma 2.1 with £ = 0, as N — 400, we hence have

AN _ [ 1 2eaplPl® by pen
N? ‘[C ’Z eAZp|<| | \/|D7 ( ) ‘ C(Z)

2 2
o (2 (Al , Alfle anoo».

covoly N cy Ni-e N

Taking o = 5, this proves Lemma since ¢y <1 and A > ]

Theorem @ now follows from Lemmas [6.3] and [6.4] as explained in the beginning of
the proof. O

The following figure illustrates Theorem when K = Q(HEJ) and A = Ok =

Z[l%‘/g] It shows an approximation of the pair correlation function g K ! computed

using the empirical measure ﬁ@g,o in the ball of radius 5 centered at the origin, to be
compared with the orange radial profile of g 2PK il in the second figure of the introduction.
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The graph of 94K ial is bounded by Lemma with & = 6 since cp, < 1. It is

asymptotic to a horizontal plane at infinity, by the following result. In its proof, we use
the Mébius function pg : f;{ — Z of K, defined by

0 if p? | a for some prime ideal p

Vae 7, a) =
Ko 1 () {(—l)m if a=p1...py, for distinct prime ideals p1,...,pm

(in particular pux(Ok) = 1). For every a € Ok ~ {0}, we define ug(a) = px(aCk). We
have (see for instance [Shal) the Mdbius inversion formula: for all f,g: Z5% — C,

f(a) = Z g(b) if and only if g(a Z wi (b 1. (66)

bla bla

Proposition 6.5 We have

S
] T NpREpE -2)

lim ex .1(2) =
‘Z|—>OO gz ld _D

Proof. Let us consider the multiplicativeﬂ function on f; defined by

1
fram L0+ mer =)

pla

and the constant C = 7 \/IDT I (1 + 5 (N(p) )). Let us prove that uniformly in
x = 1, we have
C
>, N@)f(a) = 71 et +0@E"?). (67)

aeSE  N(a)<z

®Recall that a function f : #;5 — C* is multiplicative if f(0x) = 1 and for all coprime integral ideals
a,bin .Z;f, we have f(ab) = f(a)f(b).
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Applying this with = = |z|2, by Equation (3)), since the map k — kO from Ok ~ {0} onto
S5 is |OF|-to-1, this proves Proposition
Let
g=Ffrpkam Y pg(b)f(ab™)

bla

be the Dirichlet convolution of f with the Mobius function ugx of K. Then g is multiplica-
tive. For every prime ideal p of Ok, we have

1
N(p)(N(p)* —2)

and g(p*) = f(p*) ux(Or) + f(p* 1) ur(p) = 0 for every k > 2. Therefore, for every
be f;{, we have

gp) = f(p) ux (Ok) + f(OKk) pr(p) =

1
9(0) = px(0)* | | =~ -
L a2
By for instance Equation with A = O, k =0 and = = /y, by Equation with
m = O, and again since the map k — kO is |0} |-to-1, as y — 400, we have (see also
[IMvOl Theo. 15])

Card{a € .Z;f : N(a) <y} = (68)

2 1
op o O
2
N(p)?

Lemma 6.6 For every b € #;7, we have 0 < g(b) < N(b)_SH(l— )_1. In particular,
p

b 1
> ﬁgbi =0 (ﬁ)-
be.s L N(b) >z

Proof. This is immediate if g (b) = 0. Otherwise, b = py ... pr with k € N and p1, ..., pk
pairwise distinct prime ideals, and

13
0 < N(b)°g(b) = 1_! N(lﬂi)(l\ll\]((pzi))2 -2)

2

K 2 1 2 1
:1(1_N(pi)2) <1;[(1—N(p)2) < 4.

The last claim follows from the well known error term in the Dedekind zeta function
summation: as a, = Card{a € ;% : N(a) = n} = O(n) (see for instance Equation (68)),
we have by the first claim

Y sm-ol N mp-o(Xm-of

beS it 1 N(b) = x

+<X)1

t3

Using the Mobius inversion formula for the first equality, Equation with
Yy = ﬁ for the third equality, Lemma W for the fifth equality and an Eulerian product
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(since ¢ is multiplicative and vanishes on ideals divisible by a nontrivial square) for the
sixth equality, with S(z) = Zaeﬂ; N(a)<z f(a), uniformly in x > 1, we have

b,cef;{r bejg CEJ;E
N(bt)ﬁl‘ N(b)gaj N(C)SLL‘/N([])
2mx 21/2
- b +O(2
b§+ o )<|ﬁ}§| [Dc| N(b) (N(b)1/2)>
K
N(b)<z
2mx g(b) g(b) 12 4(b)
N T O =) +0 |z
“evimn 2w ¢ 2 im) 10" 2 )
K “K
N(b)=x N(b)<a

_ 2mz Z ﬂ+o( 1/2

) +0(z'?) = Cy . + O(='/?) .

2mx 1
" 1071\ 1Dx] H< (N(p) —2)

By summation by parts, we hence have

S N fa) = J Bd[s(1)] = [£4(Cy t + O(E/2)] — 3Jx 2(Cy t+ O(tY2)) dt
aeﬂ; :N(a)<z ! 1

= % ot + O(sc7/2) )

This proves Equation @ and concludes the proof of Proposition O

7 Pair correlations of common perpendiculars in the Bianchi
manifolds PSL(0)\H3,

We again fix an imaginary quadratic number field K whose ring of integers Ok is principal,
and a nonzero ideal A = A € & E . In this section, we give a geometric motivation for the
introduction of the Euler function as multiplicities in the family 2% of complex logarithms
of elements of A defined in Equation (2)), and we give a geometric application of the results
in Section [

We refer to [PP1, BPP| for more information on the following notions. Let Y be a
nonelementary geodesically complete connected proper locally CAT(—1) good orbispace,
so that the underlying space of Y is F\Y with Y a geodesically complete proper CAT(—1)
space and I' a discrete group of isometries of Y preserving no point nor pair of points in
Y Ud,Y. Let D~ and DT be connected proper nonempty properly immersed locally convex
closed subsets of Y, that is, D~ and DJr are locally finite ['-orbits of proper nonempty
closed convex subsets D~ and Dt of Y. A common  perpendicular a between D™ and Dt
is the T'-orbit of the unique shortest arc & between D~ and ’yDJr for some v € I" such that
d(D~,~D") > 0. The multiplicity mult(c) of « is the ratio A/B where

e A is the number of elements (y_,7vy) € (I'/Tp-) x (I'/T,p+) such that & is the

unique shortest arc between 7715_ and 7+75+, and
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e B is the cardinality of the pointwise stabilizer of & in T.
The length A(a) of the common perpendicular « is the length of the geodesic segment & in
Y. For every £ in the set OL”(D‘, D7) of lengths of common perpendiculars, the length
multiplicity of £ is the sum of the multiplicities of the common perpendiculars between D™,
D™ having the length ¢ :

w(l) = > mult(c) . (69)

« common perpendicular
beween D~ and DT with A(a)=¢

If Perp(D~, D7) is the set of all common perpendiculars from D~ to Dt with multiplicities,
then (A())aeperp(D—, p+) 18 the marked ortholength spectrum from D™ to DT, and the set
OL(D~, D*) = (OL#(D~, D), w) of the lengths of the common perpendiculars endowed
with the length multiplicity w is the ortholength spectrum from D~ to D¥.

As defined in [PP2, §6], the pair correlation measure of the common perpendiculars
from D~ to D7 is the pair correlation measure of the family

p-pr = (AR P" = OLE (D=, D) A [0,21n N) e, @) -
Let us specialize these objects as follows. Let

do? + dy? + dt?
t2 )

?zH%z({(z=:c—|—z'y,t)e(C><R:t>O},d82:

be the upper halfspace model of the real hyperbolic 3-space with constant curvature —1.
We identify as usual its space at infinity doH = (C x {0}) U {00} with P}(C) = C U {o0}.

For every b € fig, let Tg[b] be Hecke’s congruence subgroup modulo b of the Bianchi
group PSLa (O ), which is the preimage of the upper triangular subgroup of PSLy (0 /b)
under the reduction morphism PSLy(0k) — PSLa(Ok/b). It acts faithfully on H3 by
Poincaré’s extension, and is a lattice in the isometry group of HZ. Let Y°® = I'g[b]\H3,
which is a finite (possibly ramified) cover of the Bianchi orbifold PSLy(Ok)\HZ. Note
that since Ok is principal, this Bianchi orbifold has only one cusp (the number of cusps
being the class number of K, see for instance [EGM], Sect. 7.2|).

Let D~ = D% be the horoball 5, = {(z,t) € H3 : ¢t > 1} in HZ, whose image
D~ = DT in Y is a Margulis neighbourhood of a cusp of Y. In order to emphasize the
dependence on the ideal b, we will use the notation ,ij:b)_, p+ = 9p- p+ for the family of
lengths of common perpendiculars between D~ and D% in Y.

The following result relates the pair correlation measures of the common perpendiculars
from this Margulis cusp neighbourhood to itself to the pair correlation measures of the
complex logarithms of the elements of A = b, with multiplicities given by the Euler function

K. As explained in Remark 2:3] in the following result, we remove from the index set Iy
of/® _ ,1 g‘/’K
of the summations defining Z," " " and RHN° " the assumption that m # n. Recall

that the map 2Re : E — R is a continuous proper map.

Proposition 7.1 For every ideal b € ﬂ;g, we have

1y
o)

LLK

b
B (2Re)s(Zrr ).
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Proof. The orbit of #, under I'g[b] consists, besides .77, itself, of the Euclidean 3-balls
%ﬂg of Euclidean radius ﬁ tangent to the horizontal plane C at the rational elements g
(with this point removed), with p € Ok, ¢ € b~ {0} and (p,q) = 1. Note that .7, meets
v (and then is tangent to it) if and only if ¢ € 0, since the hyperbolic distance betwen

q
o and A2 is equal to 21n|g].
q

Every common perpendicular between t o
D~ and D™ has a vertical representative 1
in H3 which starts from a point in C x {1} I j\
and ends on the boundary of %”% with < 921n

g as above and ¢ ¢ 0. Its hyperbolic
length is 2Inlg|. In particular, the set A /“?”zl
OLY(D~, D*) is equal to .

{2In|q| = 2Re(logq) : qe b\ O} . q C

The stabilizer of %, or equivalently of oo, in I'g[b] is the upper triangular subgroup
U of T'y[b], hence of PSLa(0k). It contains the upper unipotent subgroup consisting of

translations by Ok with finite index, equal to @. Hence given a denominator g € b\ 0’7,
the points at infinity with denominator ¢ of the geodesic lines containing a lift of a common
perpendicular between D~ and D™ are, modulo translation by Ok, exactly the points

% where p ranges over a set of representatives of (0 /q0k)*. Note that for any unit

u € O, we have (£ = L. Thus, the number modulo U of fractions 2 with [¢| = n is

PE Z\ |=n ¢k (q)-
|0k1? =19
By Equation (5), the map z — ¢ = 2Re(z) from LY = {logq : g € (b~ {0}), |g| = n}
to the set A2 mDT of lengths of the common perpendiculars between D~ and D' with
X |2
length 2 Inn hence sends the sum of the Euler weights ZM:” oK (q) to @ times the

multiplicity w(lnn) defined in Equation of the common perpendiculars of length £.
The claim follows. ]

The following result computes the pair correlation function without scaling of the
lengths of the common perpendiculars from the Margulis cusp neighbourhood at infin-
ity to itself in the Hecke-Bianchi orbifold T'o[b]\HZ, giving a new proof of this special case
of [PP3], Cor. 4.2|, see also the remark after Corollary . The maps Re : Exy — R for

N € N being not uniformly proper, the case with scalings requires a new analysis.

Corollary 7.2 For every ideal b € 7, as N — +oo, the pair correlation measures

A ,
%ND LT on R, renormalized to be probability measures, weak-star converge to a mea-
sure absolutely continuous with respect to the Lebesque measure on R, with pair correlation
function given by s — e~ 2lsl

Proof. This follows from Theorem [5.I] with A = b as in the proof of Corollary using
Proposition O]
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