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Abstract

We study the statistics of pairs of logarithms of positive integers at various scalings,
either with trivial weights or with weights given by the Euler function, proving the
existence of pair correlation functions. We prove that at the linear scaling, which is
not the usual scaling by the inverse of the average gap, the pair correlations exhibit a
level repulsion similar to radial distribution functions of fluids. We prove total loss of
mass phenomena at superlinear scalings, and constant nonzero asymptotic behaviour
at sublinear scalings. The case of Euler weights has applications to the pair correlation
of the lengths of common perpendicular geodesic arcs from the maximal Margulis cusp
neighborhood to itself in the modular curve PSLy(Z)\HZ. E|

1 Introduction

When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacings between pairs or k-tuples
of elements, seen at an appropriate scaling. These problems often arise in quantum chaos,
including energy level spacings or clusterings, and in statistical physics, including molecular
repulsion or interstitial distribution. A general setting for such a study may be described
as follows. Let .# = ((Fn)nen, w) be a nondecreasing sequence of finite subsets Fi of a
finite dimensional Euclidean space F, endowed with a multiplicity function w : | Jyeny FN —
10, +0o [ (or weight function). Note that the standard unfolding technique (see for instance
the comments after Theorem [2.1) might not work in order to study the statistics of pairs
when the weights are not constant equal to 1. Let ¢ : N — ]0, +o0[ be a nondecreasing
scaling function. We define the pair correlation measure of Z at time N with scaling 1(N)
as the measure on E with finite support

a7 = 2 w(@) w(Y) Ay(n)(y—2) »

T YeFN t x#y

where A, denotes the unit Dirac mass at z. Standard pair correlation studies use a specific
scaling, that we will introduce later on. When the sequence of measures (%’ﬁ’w) NeN, ap-
propriately renormalized, weak-star converges to a measure g Lebg absolutely continuous

with respect to the Lebesgue measure Lebg of E, the Radon-Nikodym derivative g = gz 4

'Keywords: pair correlation, logarithms of integers, level repulsion, Euler function. =~AMS codes:
11K38, 11J83, 11N37, 53C22.



is called the asymptotic pair correlation function of % for the scaling . When gz ,, van-
ishes on a neighbourhood of 0 in E, we say that the pair (%#,v) exhibits a strong level
repulsion, the standard level repulsion requiring only gz, to vanish at 0.

If the family .% consists of subsets of the unit interval [0,1], then it is customary to
use the cardinality of the finite set Fiy as the scaling function. See for example [BocZ],
where Fy = {% :p,g € Nyp < ¢,(p,q) = 1,0 < ¢ < N} is the set of Farey fractions of

order N in [0,1] (without multiplicities, hence w = 1), so that ¥(N) = 3N2 + O(NInN).
Montgomery studied (under the Riemann hypothesis) the pair correlations of the imaginary
parts of the zeros (with their multiplicity as zeros) of the Riemann zeta function ¢ in the
seminal paper [Mon|. The number of zeros % + it of ¢ with imaginary part ¢ in the
interval [0, N] is asymptotic to Y28 as N — +00 and the scaling used in [Mon] is,
analogously to the unit interval case, the standard one by the inverse of the average gap :
Y(N) = (FRN)/N = BN n this paper, in contrast to the above references as well as for
instance [RS] ILS] and [HK] we insist that we will consider pair correlations with arbitrary
scaling functions, as it has for instance been done when studying the number variance for
the Riemann zeros, see [Ber].

In Sections [2] and [3] we study the pair correlations of the family of the logarithms of
positive integers
A= (Ly={lnn : 0<n<N})yen,w=1)

without multiplicities. In order to simplify the statements in this introduction, we only
consider power scalings ¢ : N — N for a = 0, and we denote these scaling functions by
id®.

Theorem 1.1 Let @« = 0. As N — 400, the normalized pair correlation measures

fpafe?
m %]'\%N’ld on R weak-star converge to a measure g, g~ Lebgr with pair cor-

relation function given by

%e*m ifa=0
G gt teo 3 fo<a<l
)1 . .
' g LEI(LE] +1) ifa=1
0 ifa>1.

We refer to Theorems and for more complete versions of Theorem with
congruence restrictions and with more general scaling functions, as well as for error terms.
These error terms, as well as the ones in Theorems[.I]and 5.1} constitute the main technical
parts of this paper.

When a < 2, the renormalisation by ﬁ in Theorem is naturally chosen in order
for the pair correlation function to be finite. As the finite set Ly, whose order is N, is
contained in the minimal interval [0,1n N], the average gap in Ly is n— Scahng by the
inverse Y(N) = % of the average gap (as in a particular case of Theorem , as well as
by id® for 0 < a < 1 (as in the above statement) gives a nonzero constant pair correlation
function (as expected by the standard unfolding technique). As in the above result for
a > 1 and more generally by Theorem if the scaling function @ grows faster than
linearly, then the pair correlation function vanishes : the empirical measures &% ]"\? % have
a total loss of mass at infinity, regardless of what the renormalisation is (the support of
the measure itself converges to infinity). The transition from nonzero constant to zero
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correlation occurs at linear scalings, where a more exotic pair correlation function appears.
Since g, iq vanishes on | — 1, 1[, the pair (%, id) exhibits a strong level repulsion.

The figure below gives the graph of the pair correlation function g, iq of Zy at the
linear scaling ¢» = id : N +— N in the interval [—15,15] compared with the graph of
the constant function % The graph is similar to certain radial distribution functions in
statistical physics, see for example |[ZPl Sect. II|, [SdH) Fig. 7|, [Chal page 199] or [Bohl

page 18|.
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Instead of the pair correlations, one can study the gaps between consecutive elements
in the subsets Fy of the real line or, most often, of the unit interval. Marklof and Strom-
bergsson [MaS| have computed the gap distribution of the fractional parts of the family %y
(with a linear scaling, which corresponds to the average gap, and linear renormalisation)
and showed that the limiting gap distribution has two jump discontinuities.

In Section [6] we prove that the pair correlation measures of the lengths of the common
perpendiculars between the maximal Margulis cusp neighbourhood and itself in the modu-
lar curve PSLy(Z)\H2 are (up to a factor 2) the pair correlation measures of the weighted
family

LY =((Ly={lnn : 0<n < N})yen, w=oexp)

of logarithms of integers, with weights given by the Euler function ¢ : n — Card(Z/nZ)*,
see Proposition . See |PS1) [PS2] for results on the pair correlation of the lengths of
closed geodesics in negatively curved manifolds.

We study the pair correlations of the arithmetically defined family £ in Sections
and [5] where we find the pair correlation function without scaling and with linear scaling.

pP
Theorem 1.2 (1) As N — +o0, the pair correlation measures ,@]{N o R, renormalized
to be probability measures, weak-star converge to the probability measure g 21 Lebg, with

pair correlation function g1t s— e~ 2l

. . . 1 .fl\?p, id . . .
(2) As N — +o0, the normalized pair correlation measures wz Xy (with linear scaling)
on R weak-star converge to the measure g ¢ id Lebg, with pair correlation function

|
ool (1+L). (1)

1 2
9geiais— = || 1—3) 5
" s p 1 p prime, p|k p(p 2)

p prime

Lsl
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We refer to Theorems and for more complete versions of Theorem with
congruence restrictions, and for error terms. When the congruences are nontrivial, the
proof of the second claim of Theorem uses a generalization of Mirsky’s formula (see
[Mir]) that is proved in Appendix |[A| by Etienne Fouvry.

The figure below gives the graph of the pair correlation function g 22 id compared with

the graph of the constant function with value % H (1 — 1%) (1 + m) ~ 0.09239,
p prime

which is the limit of the pair correlation function ggv iq at +00 by Proposition

AAVAAVAVAVAAVAV/‘AAAAA/\A r\’\r\f\f\,\l\f\r\l\l\l\r\r\:\r\\‘r\
RARSSARSASA A 42 U IIFEITL AR AR

Theorems [41] and [5.1] imply pair correlation results for the lengths of the common
perpendiculars of cusps neighborhoods in the modular curve and on quotients of the hy-
perbolic plane by Hecke congruence subgroups of PSL(Z), see Corollary for precise
statements.

Further directions. It would be interesting, given a discrete subgroup I' of PSLa(R), to
study the asymptotic of the pair correlation measures of the complex translation lengths
lc () with absolute value at most N of the elements y € I, and given a discrete subgroup I'
of a semi-simple connected real Lie group G with finite center and without compact factor,
of the Cartan projections p(7y) with Killing norm at most N of the elements v € I'. See
Section [6] for the problem of the asymptotic of the pair correlation measures of common
perpendiculars in negative curvature, which will be studied more completely in subsequent
works of the authors. See for an abstract pair correlation result under exponential
growth assumptions on the family (Fy)nen with scaling functions ¢ of moderate growths,
and for a version of this paper on the pair correlations of complex logarithms of
lattice points.

When the finite-dimensional Euclidean space E (where the family of finite sets (F) nen
sits) is replaced by a locally compact metric space (X, d), we may also consider the positive
measure on |0, +oo[ with finite support %ﬁ’w = D yelry : ary W(@) W) Ay(N)d(zy)-

Acknowledgements: The authors thank a lot Etienne Fouvry for his proofs of Lemma[4.2] Propo-
sition [5.5] and Theorem [A-T] and for agreeing to contribute the appendix to this paper. We thank
the referee for her/his numerous very helpful comments. This research was supported by the
French-Finnish CNRS IEA BARP.

Notation. We introduce here some of the notation used throughout the paper.
The pushforward of a measure u by a mapping f is denoted by fiu, and its total mass
by |u||. We denote by sg : R — R the change of sign map t — —t.
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For every interval I in R, we denote by Leb; the Lebesgue measure on I and by 1; the
characteristic function of . We denote by BV (I) the vector space of measurable functions
f: I — R with finite total variation Var(f). For every k € N, we denote by C¥(I) the real
vector space of C*-smooth functions f : I — C with compact support in I. We denote by
Iflleo = sup,es |f(x)| the uniform norm of f e C(I).

In addition to the above, more or less standard, notation, we will use the following
indexing sets in Sections and . Let us fix throughout the paper a,b € N— {0} with
a < b. For every N € N — {0}, let

IN:I]\[,a’b:{(m,n)eN2 :0<m,n< N, m#n, mn=a mod b},
Iy={(mmn)eN? : 0<m<n

< N, m,n=a mod b}
I ={(mn)eN? : 0<n<m<N, mn=a mod b},

so that Iy = Iy 1 I]J\rf is the disjoint union of I, and I;(,.

We use Landau’s O-notation: For every function g of a variable in N — {0}, possibly
depending on parameters (including a and b), we will denote by O(g) any function f
on N — {0} such that there exists a constant C’ depending only on the parameter b and
a constant Ny possibly depending on the parameters such that for every N = Ny, we
have |f(N)| < C" |g(N)|. We write explicitly Op(g) when we want to insist on the possible
dependence on the parameter b. We think that obtaining Ny independent of the parameters
A and/or « in Theorems and is not possible.

In the proofs of Lemma [£.2] and of Proposition and in the whole Appendix [A] we
use a stronger version of this notation that is more uniform on parameters. This variant is
described in detail in the proof of Lemmal[4.2)and the parts of the paper using this notation
are indicated in the text.

2 Pair correlations without weights nor scaling

For every N € N — {0}, the (not normalised) pair correlation measure of the logarithms
of integers congruent to @ modulo b at time N, with trivial multiplicities and with trivial
scaling function, is

VN = Z Ay m—tan -

(man)eIN,a,b
If we consider the following nondecreasing sequence of finite subsets of R with trivial
multiplicity

fg’bz ((L?\}bz{lnn:0<n<N, n=a mod b})yen, wzl),

. . . . zab
then, with the notation of the introduction, we have .i”lé’l =Yy and vy = Z\" o
Theorem 2.1 As N — 400, the measures vy on R, renormalized to be probability mea-

sures, weak-star converge to the measure absolutely continuous with respect to the Lebesque
measure on R, with Radon-Nikodym derivative the function g as | : 8+ % elsl:
N

lvw]

gzl\tlz,b’l LebR .



Furthermore, for every f € CO(R) n BV(R), we have

J £(s) e ds + O <||f||oo }Var(f)> ‘

When a = b = 1, this result implies the case a = 0 of Theorem in the introduction,
with pair correlation function g¢,1 = g1 .
N

HVNH

The proof below uses at the very beginning the standard unfolding technique (see
[Bohl, p. 14] and sections 3 and 5 of [MaS|) in order to use the uniform distribution on
the unit interval. Note first that, from the point of view of pair correlations, we can study
the behaviour of the finite sequences (In & )i1<n<ny on ]—o0,0] instead of (Inn)i<,<n on
[0,4+00[. If A is a Borel subset of |—o0, 0], then

N
. 1 n . 1
Nl_l)rilooﬁ‘{neN—{O}:ngN and lnNeA}’:Nli)rile; AN

= (In, 1_1)111OO N Z A% = (Iny Lebjg 1)) (A) = L‘ e’ds.

In particular, we have & = S,HOON e® ds, so that, using the notation of [MaS|, the unfolded

sequence of (7, = In §)1<n<n is indeed the sequence (7, = §)1<n<n, Whose distribution
is regular. This elementary remark does not spare us from a more refined study when
dealing with congruences and for the error term, and is not appropriate when various
weights and scalings are introduced.

Proof of Theorem For every ¢ € N — {0} with ¢ = a mod b, let ¢’ € N be such
that ¢ = a + ¢'b and

Jy={peN:0<p<qg, p=a modb}={a+kb:0<k<d}. (2)

=) Ap,

peJy

Let

SIS

which is a finitely supported measure on [0, 1], with total mass |wq| = ¢’. When ¢’ # 0, we
hence have |wy|| = { + O(1) and Hqull = g + Ob(q%). When ¢’ # 0, we denote by wy = ”:ﬁ
the renormalisation of w, to a probability measure on [0, 1]. By well known Riemann sum
arguments, we have, as ¢ — +0o0,

wg — Lebpy -
Let f € BV([0,1]), and note that f is bounded, with | f]s < [f(0)| + Var(f). Denoting by
M}, and my, the maximum and minimum respectively of f on [“+kb a+(k+1)b] forO0 <k <¢,

q
we have
Uf dt—qu ’—Uf tdi— Y
at(k+1)b

Uf dt\+2\ﬁ+kb =2 1) |

IEFOL

pEJq q

b HfHoo " 2 (M — ) < (1| +Var(f))2



When ¢’ 0, since |w,(f) | < |wy] |f] = O(¢f]:0), we hence have

Ly a(h)

o B 1 1 b

G(f) = | foa= | foas lun o
[ [flloo + Var(f)

_L f(t)dt+o<T> .

For every N € N — {0}, with N > a + b, let us define

Hy= ), Am = 2 “a s

(m,n)ely 1<g<N, g=a mod b

313

which is a finitely supported measure on [0, 1]. Its total mass is equal to

— N?2
lunl = > logl = > (@ +0(1) = 575 + O(N) .
2b
1<¢<N, g=a mod b qu/sle—aJ

Hence —L— = 200 4 O(xs). For feBV([0,1]), we have (taking |wy|| wq(f) = 0 if ¢ = a)

luyl — N?
pylf) 1 B
H'UJV” ”M;VH 1<g<N, qZ:a mod b ”qu wq(f)
f T 2 O (£l + Var(f))
H'LLNH 1<q<N, g=a mod b
= | flloo + Var(f)
—L f(t)dt+o<+> _

Notice that In is an increasing homeomorphism from |0, 1] to | — o0, 0]. For every element
N e N — {0}, let us define
V]%f = Z Aln% )

+
(m,n)ely;

so that vy = Iny iy = VN [|—w,01, and [y | = [py[. We have, for every f € BV (] -0, 0]),

V];(f)_MN oln J foln dt+O(’|folnHoo+V&r(foln))

lvnl Ll N
V.
:f f(S) €SdS+O<HfHOO+ ar(f))
. N
Since vy = vy + v, since v = sg, vy, we have |[vy| = 3 |vn | and this proves the second
assertion of Theorem [2.1] . The first assertion follows by the density of C}(R) in C2(R) for
the uniform norm. ]

Let us give some numerical illustrations of Theorem when a = b = 1. For every
N e N — {0}, let

Card{(p,q) e Iy : InE < s}
DN 85— 4 ,
Card IN
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which is the cumulative distribution function at time NN of the differences of pairs of
logarithms of integers, that is, for all s, s’ € R with s < s’, we have
VN
(1s,8']) = Zn(s") — Dn(s) -
lvn|

The first assertion of Theorem says that as N — 400 the function Yy converges
pointwise to the C* (but not C?) function

(with derivative 2’ = g.4,.1), which is the asymptotic cumulative distribution function of
the differences of pairs of logarithms of integers. This is illustrated by the figure below,
which shows Z;5 in green.

3 Pair correlations without weights and with scaling

In this section, we study the pair correlations of logarithms of integers at various scalings,
now assumed to converge to +00. We fix two positive functions, respectively denoted by
¢ : N—{0} — ]0,400[ and ¢’ : N — {0} — |0, +oo[, with ¢’ assumed to have a positive
lower bound, which will give the scaling factors on the difference of pairs of logarithms and
the renormalizing factors on their distribution, respectively.

For every N € N— {0}, the (not normalised) pair correlation measure of the logarithms
of integers congruent to @ modulo b at time N with trivial multiplicities and with scaling
(N) is the (Borel, positive) measure with finite support in R defined by

a,b
%]{N v = Z A1/J(N)(lnm—1nn) )
(m,n)€IN,ab

d th 1 d R %"(il\clhbvw
an € normallized one 1S d’,(N) N

Theorem 3.1 Assume that the nondecreasing positive function 1 satisfies lim Y = +00
[ee}

a,b
and Nlim % = Ay € [0,+0]. As N — +0o0, the measures ,@J{N v
— 400

' (N) as given below, weak-star converge to a measure Gy Lebg absolutely continuous
N

on R, normalized by

with respect to the Lebesque measure on R,

1 fl{;’b,w *
v 950 LeDR



with Radon-Nikodym derivative the function

@)

if Ay = +o0, for any ¢’ as above ,

it Ay =0and ¢/(N) = A5, (3)

1
gg&l,bw 1t S 52
g LB (LL ]+ 1) Ay # 0,400 and @/(N) = (N) .
Furthermore, if Ay # 0,40 and ¢'(N) = (N), for every f € CLI) with support
contained in [—A, A] where A =, we have

1 L3

fd)l
_ A3 YO AY A
|10 a0 0 s+ 0, (57 191 = 5571+ ) 111+ 220055

The pair correlation function g . " depends on b but it is independent of a. The above
N

result shows in particular that renormalizing to probability measures (taking ¢'(N) =
N? — N) is inappropriate, as the limiting measure would always be 0.

. L0,
Whena > 0,a=b=1andy =id*: N - N, the measure W B\ v corresponds
b -
to the one denoted by m %ﬁN 9% 40 the introduction if o < 2. If a > 2, then
Ay = 40, and the constant renormalizing function 1)’ = 1 satisfies the hypotheses of the

a,b
first case of Equation , so that the measure W %ﬁN Y also corresponds to the one

L3P id . : o
denoted by m A" " in the introduction. The above result thus implies the

cases @ > 0 of Theorem [I.1]in the introduction, as well as the comment about the scaling
by the inverse of the average gap ¥(N) N for which Ay = 0.

TN
The fact that g s , vanishes when Ay = 400 means that the sequence of measures
N

7¢

R P

(W A" ’w) Nen On R has a total loss of mass at infinity. For error terms when Ay, = +o0
and Ay = 0, see respectively Equation and Equation ((10]).

Proof. Note that the change of variables (m,n) — (n,m) in Iy proves that we have

a,b a,b
%ﬁN v [|—c0,0]= 584 (%ﬁN v (0,400 ) We will thus only study the convergence of the
a,b
measures w,(lN) %ﬁN Y on [0, +00[, and deduce the global result by the symmetry of
I250

For every N € N — {0} and for every p € N with p = 0 mod b and 0 < p < N, let
N, = | X=2=] let
P b b

JpNn={qeN:1<¢<N-—-p,g=a modbdb} ={a+kb:0<k<N,}, (4)
and let
Wp, N = Z AI/)(N)§ and MX;I Z Wp, N -
q€Jp, N 0<p<N, p=0 mod b

Then wy, y is a measure on [0, +00[, with finite support contained in [?V(—J_\Qp, Y (N)p]. The

support of the measure p3; on ]0, +oo[ is contained in [%, (N)N]. The motivation for

the definition of the measure p; comes from the following lemma.
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Lemma 3.2 For every A > 0 and for every f € CL(R) with compact support contained in
[0, A], we have, as N — +0,

’%ﬁ‘?bw £ = uh(f)|=0 (A3 [ loo (Lf) '

a,b

A
In partlcular if tends to 0 as N — +00, the measures 7 ( ) R\ v [[0,4-00]

(5tx7)°
W(N) P(N)
and w,( ),uN on [0,+400] are asymptotic for the weak-star convergence of measures on

[0, +o0], and we will study the weak-star convergence of the latter one.

Proof. By the change of variable (p,q) — (m = p+ ¢,n = q), we have

L
AN sl = 2, Buaywe = > Ay in(1+2) -

(m,n)el 0<q<N—p, g=a mod b
N 0<p<N, p=0 mod b
By definition, we have
+ _
Iy = 2 Ay e

0<g<N-—p, g=a mod b
0<p<N, p=0 mod b

Since the support of f is contained in [0, A], if a pair (p, ¢) occurs in the index of the sum
a b
defining either %}, i ¢(f) or pu(f) with nonzero summand, then ¢(N)In(1 + %) < A
A . . o o AN .
This implies that 2 G = =0 (W) since ligjl 1 = +00, and that p = O (r(N)) since ¢ < N.

For all z,y € [0, +oo[, we have

1A (f) = Ay (D] = 1f(2) = FW < | F ol — 9] -

Recall that |In(1 +¢) — t| = O(¢?) as t — 0. Hence, by a uniform majoration of the terms
of the sum below,

D0l Y Il v 0 (B)) =0 (417 (wfvm)Q)‘ -
1<q<N
1<P<O(ﬁ)

Let us now study the convergence properties of the (renormalized) measures wy y and
of their sums uj\rf as N — +o0.
Let ¢ : ]0, +o0[ — ]0, +oo[ be the involutive diffeomorphism ¢ — . We have

La = Z A_q .
*p, N TN)p

qEJp’ N

If N, = 0, as ¢ varies in J, n, the above Dirac masses are taken on the distribution of
points given by the following picture.

P(N)p N—p
0 P(N)p
o— | | | | | o
a a+b a+2b a+(N,—1)b  a+N,b
Y(N)p Y(N)p Y(N)p P(N)p Y(N)p
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Hence if N, > 0, as in the proof of Theorem for every C! function f :]0, 4o — R

with compact support, we have
Teu7 b 7¢ b
Y(N)p P N q
F)dt — —— 1y, U £) dt — f ’
, T QEJZN T PRATTOPY
Np—1 a+(k+1)b
wuv)p $(N)p b a + k:b wuv)p
<| e+ Y U F(t)dt — f U 7 dt|
f = e Y(N)p ot Npb
b
< _ - _—
(2 If 0,%] oo + Var(f |]07%])) b(N)p
If N, <0,then N —p<a<band J, vy = J, hence w, n. Therefore
ML ey oo e
Y(N)p 10595 " (N)p

N—p
% (N)p b
F(8) dt =~ v, w () | < [1F 1,
‘Jo D(N)p
and the above majoration when IV, > 0 is still valid
Hence for every C' function f : ]0,+oo[ — R with compact support, since ¢ is a
diffeomorphism, we have

U0 [ ) s 0 (170 gy Vil 1 g )
. 10, w51 loo 10, 57551

U-)p, N(f) = b
Y(N)p (7 dt
= b w f( ) - +0 (Hf|["¢}v(71:’):,+oo[ Hoo + Var(f|[¢}\f(7ﬁ)ppy+oo[))
-p
For every t > 0, let
1 P
On(t) = = = L1 pvp (t).
? 0<pZ<N b1 N=p el
p=0 mod b
Then
1 1
On(t)=—= >k Tpwane () = 23 > k
0<k<N/b Q<]<;gW
1 tN tN
= — 1). )
2t2lb(1/1(N)+t)J([b(¢(N)+t)J+ ) (5)
Let On5(0) = 0. In particular, for every ¢t = 0, we have 6y (t) = 0 if and only if ¢ € [0, bw(N) [.
Thus, if the support of f is contained in the interval [0, A], since M ) < Aif and only
if p< w(]‘?,%, we have,
i (f) = > wan()
0<p<N, p=0 mod b
+0o0
B P dt AN
S [T IO( S e 0) 0 (10 vt %)
O0<p<N
p=0 mod b
AN
=) (6)

"0 000 dt-+ 0 (151 + Var() 23

0

= (N)
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Case 1.  Assume first that A\, = 400, that is, that lim —N_ — 0. Then for every
N—>+OO¢<N)

A = 1,if N is large enough, then for every ¢ € [0, A], we have Ox(t) = 0. Thus, whatever
the normalizing function ¢’ is (with a positive lower bound, by the assumption at the
beginning of Section , we have a total loss of mass at infinity :

More precisely, for every C! function f : 0, +00[ — R with compact support contained in
[0, A], we have

1 +

)

AN )

Y(N)YP'(N)

Note that Var(f) = 4 /()| dt < A |f'|e, and that -~ < -5 for N large enough. By
0 P(N) A

the comment following Lemma and the fact that v’ has a positive lower bound, we
have

() = O (£l + Var())

1

ZEY 2 0,
Y(N) TN
thus proving Equation under the assumptions of Case 1, and
1 LEP y AN
s A0 =0 (7 +1719) Sy (7)
Case 2. Now assume that Ay = 0, that is, that Nlim w = 0. By Equation , if we
—+0
have N > b and ¢t > b]%,(_]\lf)), then WN)H) > 1 and
B tN 2 N? t P(N) )2
w0 = 35 Gy +n OV = sy (1+0 Gy *O N )
therefore B2 B
1 t

by (N) P(NV)?
s TN—b N2

subset of [0, 400[, and pointwise converges to the constant function
Lebesgue dominated convergence theorem, we have

P(N
](Vg) py = 552 Leblo+oof - (9)

fn is bounded on any compact
Hence by the

Since @y vanishes on [0 [, this proves that

L
267"

More precisely, for every A > 3, for every C! function f : ]0, +o0[ — R with compact
support contained in [0, A], by Equations (6]) and and since ¥(N) < N for N large

12



enough, we have

wz(\f];r) () = 222]:;) £(t) dHO(w(lN) ﬁimtlf(t)! dt)
PO (U [y 101 0) 0 (e () )

- [Trwao (Mnfuw) +0 (A1)

2b% Jo »(N)
A2
20 (PN 11, (- RO ) O ((1F1e +1£1:0) )
L YmA ) )
“ g | I@ a0 (Il (PR - U M)
A2
+0 (17105
Let ¢/(N) = % and note that w’(lN)(ng\][V))Q _ ¢(1N) tends to 0 as N — +00. By

Equation @ and by the comment following Lemma we hence have

1 b 1
BN B Lebg,

W) I 202

thus proving Equation under the assumptions of Case 2. Furthermore, for every C*
function f : R — R with compact support contained in [—A, A] where A > 1, we have

1 L0 J Y(N)lnA A? p(N) $(N)
W) N =5 ) S0 e+ 0 (171 (5 To T N ~))
, 3
. 1
o (11 wuv)) (10)
Case 3. Let us finally assume that Nlim w = Ay belongs to |0, 4+00[. Let us consider
—+a0

the map 6y : [0, +00[— R defined by 6,(0) = 0 and on |0, +oo[ by

o Bt = 5 [ |51+

It vanishes on [0, b Ay [, is uniformly bounded, tends to ﬁ ast — +o0, and is piecewise

continous, with discontinuities at b A\y,N — {0}. See the first picture in the introduction
when a =b= Ay = 1.

By Equation , the sequence of uniformly bounded maps (6x)nen converges almost
everywhere to 6 (more precisely, it converges at least at every point of [0, +o0[ —bAyN).
Hence by Equation @ and by the Lebesgue dominated convergence theorem, we have

1 L
o by — b Leb[0,+oo[ .

$(N)

Let A>1, ke N— {0} and N large enough so that w Note that b)\wk <A
Y(N)bk

implies that k < % < %, and that =~ < A implies that k < W < b/\ . Hence

)\1/,

13



for every t € [0, A], we have

2A
bAw

1
| 00 (t) — On (1) o) Dk Ly oof(t) — Lo +OO[(’5)} :

=1 N—bk >

bA N)bk bA :
7/’ and ’/’( ??k > —w, The function ‘ Ly [bAyk,+o0[ — :H.[w]\(rN)bk

=g+l ‘
Yok

Besides, we have b A,k >

vanishes outside the closed interval between b A,k and ( and has value 1 on the

—bk >
interior of this interval. We hence have
+oo|]l -1, ‘ Nz;l;ckdt‘ b Ak w(N)bk|
0 [bAyk,+o0[ [ NNEC’C +OO - < b2)\2 » N —bk '

For every continuous function f : [0, +oo[ — R with compact support in [0, A], we therefore
have

714
Ny

| ”“’ka o SO0

Uﬂof ) (6:c(t) — O (1)) dt| = O bk
P(N)

A
:O<Ai 17 | A = 577 + O 1) -

By Equation @, for every C! function f : [0, +00[ — R with compact support in [0, A],
we thus have

W'L@(f) = Jf O dLeb[o,+oo[

3 2
#0 (S Il (12 =P + 0<§>> )+ o (IF15)

With ¢ s : R — R given by t — 04(|t|), by Lemma [3.2| and the comment following
it since (IN)( I )) tends to 0 as N — +o0, it follows that

1 LI
w(N) 7N 90y Lebm

thus proving Equation under the assumptions of Case 3. Furthermore, for every A > 1
and every C! function f : R — R with compact support contained in [—A4, A], we have

1 ng,w J
o) o f§bv¢ e
A3 A3
JE— J— R— / —_
+0(A2) 1o 2o = 22014 2 ) w0 (17157 *O(vw 1f1o) - (1)
Since (N) ~ AyN as N — +00, this concludes the proof of Theorem ]

Let us give a numerical illustration of Theorem when @ = b = 1 and ¥)(N) = N.
The following figure shows in red an approximation of the pair correlation function g,

computed using %%%bw, and in blue the pair correlation function g, 4, in the interval
[—4,4].

14



0.8

0.4

0.2

4 Pair correlations with Euler weights without scaling
In this section, we study the weighted family
.,iﬂlg’b’@ = ((L?(,b ={lnn:0<n<N, n=a mod b})yen, w=poexp).

The (not normalised) pair correlation measure of the logarithms of integers congruent to a
modulo b at time N with multiplicities given by the Euler function ¢, for the trivial scaling
function, is

DN = Z QD(TL) gp(m) Aln'm—lnn .

(m7n)eIN
. . . . 1.1 ~ b q
With the notation of the introduction, we have £’ ¥ = .i”gf and Uy = Z\" 7.

Theorem 4.1 As N — 400, the measures Uy on R, renormalized to be probability mea-
sures, weak-star converge to the measure absolutely continuous with respect to the Lebesque
measure on R, with Radon-Nikodym derivative the function gge 18— e~ 2lsl:

17N *
| on |

9-»2”1%"71 LebR .

Furthermore, for all f € CY(R) and a € [5, 1], we have

In N
Nl—a

2 = e ds 4 0n (i e+ aleF)le)

g

~ 1,
When a = b = 1, the measure Uy corresponds to the one denoted by %}\%ﬂN in the
introduction. The above result gives the first assertion of Theorem [I.2]in the introduction.
Furthermore, it proves that the pair correlation function g ., | exists and is independent
N )

of a and b.

15



Proof. The first assertion of Theorem follows from the second one, by taking for
instance a = 3 and by the density of C}(R) in C2(R) for the uniform norm.
For every ¢ € N — {0} with ¢ = a mod b, let ¢’ € N be such that ¢ = a + ¢'b and let J,

be given by Equation . We now define

peJq

which is a finitely supported measure on [0, 1], and nonzero if and only if ¢’ # 0. In order
to compute its total mass, we will use the following elementary adaptation of Mertens’
formula (see for example [HaW, Thm. 330]). We have not found its proof in the literature,
hence we provide one, due to Fouvry.

Let (a,b) € N — {0} be the greatest common divisor of a and b. Let

a,b 1. ._
ca,bZW H (1——2)1.

p prime, p|b

Using the Eulerian product formula of the zeta function, giving H (1— I%) = = %,
p prime
and the expression ¢(n) =n H (1-— %) of the Euler function in terms of the prime
p prime, p|n

factors, we have 0 < ¢, < min {ﬁ, g—z} < 1. In particular, ¢, tends to 0 as b — +o0
uniformly in a. Furthermore, there exists a constant C’ > 0 (independent of a, b) such that
Cap = m by for instance [HaW, Thm. 328]. When a = b = 1, we have ¢, = 1,
and the following result is exactly Mertens’ formula.

Lemma 4.2 There exists C' > 0 such that for all integers a,b = 1 and real numbers x = 1,
we have

3c
o(n) — —;b 22| < C xln(27) .
T
1<n<z, n=a mod b
Let S(z,a,b) be the above sum. This lemma implies an almost optimal uniformity in
the parameters a and b on the asymptotic of S(z,a,b) : since ¢4 > Wm(gb), we have

3cCub
a) $2

S(x,a,b) ~ —;

™

uniformly for 1 < a <b < m

Proof. (Fouvry) In this proof, for every function g of a variable in [1, 400, possibly
depending on parameters, we use the notation O(g) in order to denote any function f on
[1,400[ such that there exists a constant C, independent of the variable and of all the
parameters, such that |f| < C|g|. We do not need a more precise error term.

We refer for instance to [HaW| Sect. 16.3-16.4] for the definition of the Mdbius function
w:N—{0} - {—1,0,1}, of the Dirichlet convolution f % g of two maps f,g: N— {0} - R
and for the Mobius inversion formula, which in particular gives that ¢ = p *id. Hence

S(z,a,b) = Z Z u(d)ym = Z u(d) Z m .

Isn<z  md=n 1<d<z 1<m<zx/d
n=a mod b md=a mod b

16



Let us fix d = 1. Let us consider the congruence equation md = a mod b with unknown
m. It has no solution if the greatest common divisor (b d) of b and d does not divide a. If
(b, d) does divide a, let a’ = @ ) b = X)) b ) and d’ = (b ay- S0 that the congruence equation

is equivalent to md' = d mod b. Slnce d' is coprime with ¥, it is invertible modulo ¥,
and we denote its inverse by d’. The congruence equation becomes m = a’ d’ mod b'. The

classical formula Z 1 = # 4+ O(1) gives, by a summation by parts, the
1<m<y, m=a’ d mod v/
equality
y?
1<m<y, m=a’ d mod ¥
Therefore

S(e,a,b) = u@d) (5 (5 +0 (%))
1<d<z, (b,d)|a
ZL‘Q
_ 27)( 1(d) (bc}j) ) +O(zIn(22)) .

By decomposing d into prime powers and using the definition of the Md&bius function, we
have

>oow@® -y @@ o)

1<d<z, (b,d)|a d=1, (b,d)|a
1 1 b
- I 05 I a-p+o()
p prime, ptb p prime, p|a,p|b
1 1 v((a,b)) b 6bcap b
- L 1o Al o) L 80 o (),
2 H ( 2 2
q )pprimem'b D (a,b) x 0 T
This proves Lemma [1.2] O

Lemma says that if ¢’ # 0 (that is, when ¢ > a), then

2
| &l = —5— +O(¢In(29)) , (12)
. . 1 Ing
and in particular 7 = 3Cabq 5 (1 + Oy( q ))-

Lemma 4.3 We have as ¢ — +00,

Wy %

| &

2t dLeb[O,l] (t) .

More precisely, for all f € C*([0,1]) and o € [%, 1[, we have

S (f):f1 21 f(t) dt + O(lnq

| 0

+ f\lf o) -

17



Proof. The first assertion follows from the second one, by taking for instance a = % and
by the density of C}(R) in CO(R) for the uniform norm.

Let Q = |¢¢] e N—{0}. Forallne {0,...,Q—1}and t € |ng %, (n+1)g~“], we have
by the mean value theorem

ft) = f(ng™®) + O(g [ ') -

Since n + 1 < @ < ¢, we hence have

(n+1)q (n+1)q=«
| 20 (1) di = (Fng™) + O™ 1) | 20 dt
- qla(@n ) (g ) + O(ng 2| fl)) . (13)

. L . . .
Using the formula for Tou following Equation and twice Lemma we have

P 1
pelngt=o, (n+1)gt=*]nJy 4
2

—« —x / T lniq
(Fna™)+ 0" 1) go oz (14 0(57)

C n 2 _ ’I’Z2
% (3 a,b(( +21) )q2—2a +0 ((n + 1) 1-a ln((n + 1)q1—a))>

™

(@40 a s 40 (o 1 e + L 1)) (14

Again using Equation and Lemma since |1 — Q¢ % = O(¢~®), we have

2

pelQql=,qlnJ ” al

21 E) =0 ("G i) —0 (e sl . 09

By cutting the sum defining &, and the integral from 0 to 1, by using Equations , (14
and (15), since @ < ¢ and again |1 — Q¢ | = O(g~*), we have (using o > for the last
equality)

G- [ 2050 al

| & 0

- | 5 ( 5 £lp) 1)~ f(nH)qa 20 f(t) dt ) |
n=0

w
pelng'=* (n+l)g'~]nJy il

1
+ Z @\f(g)] + L) 2t|f(1)] at

[ &ql g
q

nlnq

= (—“|\f|\w+—20 Qa\fHoo

Q? lnq

1£10)

Wy

«Q

I£l2) = O (-1 ng

Og™ | flloo) + —= O (== f"]o0 +
(@£ )+qa (qga”f”

18



This proves Lemma ]
For every N € N — {0}, let us define

Iv= > ¢memn) An = 3 o(q) &g ,
(m,n)ely 1<q<N, g=a mod b

which is a finitely supported measure on [0, 1], which is nonzero if N is large enough. By
Lemma its total mass is

Il = > 0(@) [ = D, w(m) pn)
1<g<N, ¢g=a mod b (m,n)ely
1 9 902717 N*
= 5(( Y w@) - ) cp(q)z) =51 T O(N?InN) .
1<q<N 1<q<N
g=a mod b g=a mod b

For f e C*([0,1]), by Lemma by Equation (12)), since ¢***(lng) < N'**(In N) and
>~ < N?7° when ¢ occurs in the summations below, and by Lemma , we have

Ly g ) 2

]~ T 1eyen 2y o Tl

1 1 Ing
:j 2070 dt+ = Y o) 18] O (1 Hfum—uf Joo)
o l7in]

1<g<N
g=a mod b
1
1 (0% —Q
- [2trmaco(y ¥ @@ e oo+ )
0 1<q<N
g=a mod b

In N 1
Ni—a I flloo + W’\f’”oo) .

1
_f 2t f(t)dt + O (
0
For every N € N — {0}, let us define

= S p(m) en) Ay

(m,n)e]f,
so that Uy = Iny fiy = UN |j—c0,0], and Dy ] = [fxy]. We have, for every f e Ci(] — o,0]),
Uy v (fol ! 1
V]\i(,f) _ HN(Nf,O n) :J 2t foln(t )dt+O( Hfoln||oo+ a“(thl),HOO)
17|l (nyed 0

[fllee + wa ! “f(9)]e0) -

0
:f 2 f(s) % ds + O (s

Since Dy = Dy + j;, since Uy = sg,, ¥y, we have |75 ] = & |Dn|| and Theorem follows.
[
Let us give some numerical illustrations of Theorem with @ = b = 1. For every

N e N — {0}, let

~ ZO<m¢n$N : (Inm—Inn)<s (p(m) QO(TL)

DN : s —

ZO<m;ﬁn<N gO(’I?’L) QD(TL)
19




This is the cumulative distribution function at time N of the unscaled differences of the
logarithms of natural numbers weighted by the Euler function, that is, for all s, s’ € R with
s < s', we have
w0 O
— e (15,8']) = DIn(s’) = In(s) -
N
%" |

Theorem with @ = b = 1 says that the function Py pointwise converges as N — 400
to the C! (but not C?) function

~ {;e%ifsgo

75 Ul le i s3>0

(with derivative 2" = g $§,1)~ This is illustrated by the figure below, which shows Z5 in
red.

5 Pair correlations with Euler weights and linear scaling

In this section, we study the pair correlations of the family % ¢ defined at the beginning
of Section [4] now with a linear scaling. We leave to the reader the study of a general
scaling v, assumed to converge to +0o. For every N € N — {0}, the (not normalised) pair
correlation measure of the logarithms of integers, congruent to a modulo b, at time N
with multiplicities given by the Euler function and with scaling N is the (Borel, positive)
measure with finite support in R defined by

EN = Z So(m) QD(TZ) AN(lnm—lnn) :
(m,n)eln

. . . : ~ Z209 id

With the notation of the introduction, we have Zn = Z" .
For every k € N — {0}, we consider the arithmetic constant ¢, defined in Equation
of Appendix Note that cyp > 0 is uniformly bounded from above when a,b,k
vary in N — {0}, and has a positive lower bound in terms of a and k when b is fixed, by

Equation (24) of Appendix

Theorem 5.1 As N — +o0, the family (ﬁ ’@N)NGN of measures on R weak-star con-
verges to the measure absolutely continuous with respect to the Lebesgue measure on R,
with Radon-Nikodym derivative the function

1
. 3
gf§’b’¢,id B e E Ca,bk k )
1<k<||s| ], k=0 mod b
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that is, as N — 400,

m %N _*‘ ggg,b,gp’id Leb]R .
Furthermore, for all f € CY(R) with compact support contained in [—A, A], where A > 1
and for any o € [%, 1[, we have

A*ln®* N A3
= LER f(s) g$§”’*‘/’,id(s) ds + Ob( Nia ”f”w a“f/Hoo> )

When a = b = 1, the measure L%?’N corresponds to the one denoted by %§§ yid in the
introduction. The above result gives the second assertion of Theorem in the introduc-
tion, with pair correlation function g 2¢,id = 9t g using Mirsky’s value of ¢y 1 3 given
by Equation , as explained in Remark of Appendix

Note that, as the proof below shows, the total mass of Zy is equivalent to ¢ N4 as
N — 40, for some constant ¢ > 0, hence renormalising 7 '~ to be a probability measure
makes it weak-star converge to the zero measure on the noncompact space R (a total loss
of mass phenomenon).

Proof. The first assertion of Theorem follows from the second one, by taking for
instance a = 3 and by the density of C}(R) in C2(R) for the uniform norm.

The change of variables (m,n) — (n,m) in Iy glves ,%’N] —0,0] = 584 (%N| 0,40] ) We

will thus only study the convergence of the measures %N on [0, +0o[, and deduce the
global result by the symmetry of g a.b.¢ -
“N

51

For every N € N — {0} and for every p e N with p=0mod b and 0 <p < N, let J, n
be given by Equation . We now define the key auxiliary measure by

Gpv = ), wl@)elg+p) A .
q€Jp, N
Then @, n is a measure on [0, 4+oo[, with finite support contained in [ﬁ, %—_pp], hence in
[0,1]. The measure &, n is nonzero if and only if N > a+ p. In order to compute its total
mass, we use an adaptation with congruences of a formula by Mirsky (see [Mir, Thm. 9])
proved in the appendix by Fouvry. Theorem applied with x = N — p and k = p says

that if N > a + p, then

~ C,
|Gyl = =57 (N =p)° + O (N*(p+ 10> V)) (16)

1 _ 3 NZ2(p+In? N)
Bl = e v L+ O {5 ))-

The next result implies that the measures W, n, once normalized to be probability

and in particular

measures, weak-star converge to the measure du(t) = 3( ) t2 dLeb[ N-py, which is
Np’> Np
absolutely continuous with respect to the Lebesgue measure on the interval [ﬁ, ]yv—_pp].
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Lemma 5.2 For every p e N with 0 < p < N and p =0 mod b, for every a € 10,1[ and
for every f € C1(]0,1]), we have

N—p

. (f) =JN” 3( Np )2 f(t) dt

1

”Wp,NH L N-—p

p (N p)? (N p)3(p + In(N p))?
O (((N —-pB3(Np)> (N —=p)3(Np)-« ) 1l (N p)~

).

Proof. As in the proof of Lemma [4.3] we will estimate the difference of the main terms

in the above centered formula by cutting the sum defining the renormalized measure &, n
and by cutting similarly the integral from ﬁ to Jyv—;f.
Let Q = [(Np)O‘N pJ e N. For all n e {0,...,Q — 1}, we thus define

Sn = > F(5) L (0 $la +p)

N
ge]n(Np)t—2, (n+1)(N p)t=2]nJp n p’ | &yl

and (n+1)(N p)
n+ p)—< Np 3
I, = J 3(———)"t* f(t) dt .
n(Np)—® N-p
Let us also define the following remaining terms
q 1
Send = Z f(ﬂ) ” I ” SO(Q) SO(q +p)
1Q (Np)'=2, N=plaJp,x »N

and
N—p

Ieng = J (—=——) ¢ f(t) dt .
Q(Np)-e (N—p)

Forall te |n(Np)~®, (n+ 1)(N p)~“], we have by the mean value theorem

f&) = f(n(Np)™®) + O((Np)~ | £ -

Using the formula for o followmg Equation (|16 and twice Theorem and using

the inequality (n + 1) < Q < (N p)*S=2 we have

Np’

u ot 1 N%(p +In%N)
S = (D) ™) + 0L B 11) (= (14 O (i)

x (((n+ )N p)'=)° = (n(N p)'~)?

+o<@+0H4meP%%p+mmH4meP%fn

_ (N p)3 n2 n ~2a ¢,
e (130 4 30 1V D) 2 L0 (V) )+ O (i 1)

n2N%(p+ 2 N) (0 + xhe==)?(p + In(N —p))?
+O (T Ifl)) - a7)
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We also have

DD

e 3
b= (S vp )+ ORI k) [T ()
3
- (<3n2 30 VD) (N5 + O (o 171)) - (19
Similarly, since @ = (Np) ~= —1land N —p < N p, we have
o (W =p)P- (Q(Np)l“")3 _ (N p)?
Sent = O ( o 1) =0 (v =gy M=) 19)
and
Np 3/, N—p3 —a (N p)®
ot = O (5725 (G, ) = @OV )?) Uflio) = O (= sy Mle)
(20)
Q-1
Note that p +In?> N < (p + In(N p))?, that Z n? =0 ((Np)3*=3(N — p)?) and that
n=0
(N'p)*

Q-1
2 (n+ rpa)’ = 0 (@ )’ =0 () =0 (™) )

Putting together Equations , , , and , we have (again using the in-
equality N —p < Np)

N—p
ol le (oy) I Z ) + Send — Tona
p

< Z ‘Sn - In‘ + ‘Send’ + |Iend‘
n=0

_ (N p)° (N pp S o
= O (=g 1) + =g 2 O (g 1l

n*N?(p + In* N) (”"’W) (p + In(N — p))?
( (N —p)3(N p)2« * (N p)i+e ) Hf”oo)

_ (N p)? 1 , (N p)3(p + In(N p))?
_o((N ey Ml + e 1 e + == i e HfHOO).

This proves Lemma O

Now, let us introduce the sum

it = 3 Ly N = > (q) pa+p) Aye

0<p<N, p=0 mod b 1<qg<N—p, O<p<N
g=a mod b, p=0 mod b

where as previously ¢ : t — % (noting that the measures @, y are supported in |0, +o0[).
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Lemma 5.3 For every f € C([0, +o0[) with compact support contained in [0, A], where
A =1, we have N
| %N (f) = i3 (f) ] = O(A° N2 ') -

Proof. Using the change of variables (p,q) — (m = p + ¢,n = ¢), we have

AN oroo= ),  o(m)e(n) Ay m = > #(9) 9(q+p) Ayimise) -

(m,n)el 0<p<N, 1<g<N—p
p=0 mod b, g=a mod b

As in the proof of Lemma since the support of f is contained in [0, A], if a pair (p, )
occurs in the index of the sum defining either Zn (f) or fi%;(f) with nonzero corresponding
summand, then % =0 (%) and p = O(A). By the mean value theorem, we then have

|f(N§) — f(NIn(1+ g)) | < 1o Ng ~ Nn(l+ g) |

/ 2 A? /
=1l N O((1)*) = O (F1£1) -

Thus, using Theorem and Equation in Appendix [A] we have

- 2
v -l Y e@ e+ 0 (Gl

1<p<O(A), 1<g<N

A2
< > oWw*Ho (WHf’Hoo) = O (A N?|f']l0) -
1<p<O(A)
This proves Lemma ]
1

Lemma 5.4 For all o € [5,1] and f € C'([0, +o0[) with compact support contained in
[0, A], where A =1, we have, as N — +0,

I ® A'ln® N A3
IR = [ 16) 0000 1) s+ 0 (S 1o+ 355 1)

Proof. Let A and f be as in the statement. Since the support of @, y is contained in

1 N-p

[Nipv Np

iy and g gabe 1q(8) ds both vanish on [0, 1]. Hence we may assume that the support of f
N )

], the support of ¢4@p v is contained in [NN—fp, N p]. In particular the measures

is contained in [1, +0oo[, so that the support of f o is contained in |0, 1].

Note that |f o t|eo = || feo and [|(f © t)[lec = [[t2F(t)]lec < A%|f|e0, since the support
of f"is contained in [0, A].

By the definition of ﬁ;{,, by Equation and Lemma since N —p < N and by the
restriction on p, explained in the proof of Lemma in the summation defining ﬂj{,( f)
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due to the support of f, we have

~ - - WOp N
fin(f) = > Llp, N (f) = > |y, N ﬁ(f o)
0<p<N, p=0 mod b 0<p<N, p=0 mod b p,N
Ca
= Z (—;”p (N—p)3+O(N2(p—|—ln2N))>
0<p<N, p=0 mod b, p<O(A)
N—p N
Np p 3 9
x (L& Ny ,) f foun) de
P
(N p)?® (N p)*(p + In(N p))? 1 ,
+0 + 0L + ot
(((N—p)3(Np)‘”‘ = pyie ) Vol e 1 Vl))
3 3 Np 1
=N Z Cabp P JNP 84 f( )
0<p<N, p=0 mod b, p<O(A) N—p
P’ N2(p +1n? N)
3
o 0<p<N —OZdb <0 <O( (N —p)? HfHOO)
p<N, p=0 mod b, p<O(A)
3—a 2+a 2
p P> (p + In(N p))? A
+0 (( ~a t Nia ) 1 £leo + (Np)e )) :

N p

Noting that JN_pslan f(s)ds = O (w | fllec), we therefore have, for N large

p
compared to A,

+00 A4
% i = ( > Cabap p3f %4 £(5) ds) +0 (5 1/]0)

0<p<N, p=0 mod b b

A'In® N At A'In® N A3
O (55— Il + Gz + i) Il + 205 1)
+00 A4 A4 1112 N A3 ,
= | S6) e als) ds O ((F + iz ) o+ g5 10
This proves Lemma using that 4. = O(Aj\flffaN )if a > 1. ]
Theorem [5.1] now follows from Lemmas [5.3] and [5.4] as explained in the beginning of
the proof. L]

We close this section with a numerical illustration of Theorem B.J]when a = b = 1. The
following figure shows in red an approximation of the pair correlation function g 22id =

g giie ;g computed using %’72000 in the interval [—10,10], to be compared with the graph
L,
of gg# iq in the introduction.
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The fact that the graph of gy e jq has a horizontal asymptote near +oo follows from
the following result.

Proposition 5.5 We have im0 g2¢ ia(s) = : H (1-3)(1+ ﬁ)

p? p*-2)
p prime

Proof. (Fouvry) In this proof, we use the same convention concerning O(-) as in the
beginning of the proof of Lemma [4.2]

1
We consider the multiplicativ function f : n — H (1 + 72)) and the

2 _
p prime, p|n p(p
1
constant C] = H (1 + W) Let us prove that uniformly in z > 1, we have
p prime p (p o 2)
C
Z n3f(n) = Zl zt +0(z?) . (22)
1<n<z

By Equation and the symmetry under s — —s of g 2 id> this proves Proposition
Let g = f * u be the Dirichlet convolution of f with the Mobius function . Then g is
multiplicative. For every prime p, we have
1
p(p® —2)

and g(p*) = f(p*) (1) + f(P*1) u(p) = 0 for every k > 2. Therefore, for every m > 1, we
have

g(p) = f(p) (1) + f(1) u(p) =

1
p(p? —2)

g(m) = um?® ]

p prime, p|m

L F > 1, we h < <m™? 1—2)

emma 5.6 For every m > 1, we have 0 < g(m) <m H ( - ﬁ) :
p prime p

Proof. This is immediate if u(m) = 0. Otherwise, m = py ...pg with p1,...,px pairwise
distinct primes, and

k k
Oémgg(m)zn(&_mzn(l—i)_lé H (1—%)_1<+oo. O

p prime

?Recall that an arithmetic function f is multiplicative if f(1) = 1 and for all coprime integers m,n, we

have f(mn) = f(m)f(n).
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Therefore, using the Mdbius inversion formula f = g = 1 for the first equality, Lemma
for the fifth equality and an Eulerian product (since g is multiplicative and vanishes
on integers divisible by a nontrivial square) for the sixth equality, we have, with S(z) =

21<k$mf(k)’
S@ =Y gmy= Y gm) Y 1= Y gm)(>+0(1)

m,n=1 1<m<z 1<n<z/m 1<m<z
mn<z
- g(m) g(m) o g(m)
m=1 mz=x 1<m<z m=1
1
= 1+ =——=)+0(1)=Crxz+0(1).
xp}l;[me( pQ(p2_2)) ( ) 1 ( )

By summation by parts, we hence have

> b= [

2d[S(t)] = [t*(Cy t + O(1))]] — Br t2(C1 t +0(1)) dt

I<n<zx 1 1
C
= Lt 1 0@?).
4
This proves Equation and concludes the proof of Proposition Il

6 Pair correlations of common perpendiculars in the modular
curve PSLy(Z)\H%

In this section, we give a geometric motivation for the introduction of the Euler function as
multiplicities in the family £ of logarithms of natural numbers. We refer to [PPIl, [BPP]
for more information.

Let Y be a nonelementary geodesically complete connected proper locally CAT(—1)
good orbispace, so that the underlying space of Y is F\EN/ with Y a geodesically complete
proper CAT(—1) space and I" a discrete group of isometries of Y preserving no point nor
pair of points in Y A 0yY. Let D~ and DT be connected proper nonempty properly im-
mersed locally convex closed subsets of Y, that is, D~ and DJr are the locally finite I™-orbits
of proper nonempty closed convex subsets D~ and D* of Y. A common _perpendicular o
between D~ and D™ is the I-orbit of the unique shortest arc & between D~ and ”yD* for
some 7 € I such that d(D~,vD") > 0. The multiplicity mult(a) of a is the ratio A/B
where

e A is the number of elements (v—,v4) € (I'/Tp-) x (['/T,p+) such that & is the
unique shortest arc between ’y_D and ’y+’yD+ nd

e B is the cardinality of the pointwise stabilizer of & in I'.

The length A(«@) of the common perpendicular « is the length of the geodesic segment & in
Y. For every £ in the set OL#(D~, D*) of lengths of common perpendiculars, the length
multiplicity of £ is the sum of the multiplicities of the common perpendiculars between D™,
D™ having the length £ :

w(l) = Z mult(a) .

a common perpendicular
beween D~ and DT with A(a)=(
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If Perp(D~, D7) is the set of all common perpendiculars from D~ to Dt with multiplicities,
then (A(@))aeperp(D—, p+) is the marked ortholength spectrum from D~ to DT, and the set
OL(D—, D*) = (OLh(D ,DT), w) of the lengths of the common perpendiculars endowed
with the length multiplicity w is the ortholength spectrum from D~ to D¥.

The pair correlation measure of the common perpendiculars from D~ to D7 is the pair
correlation measure of the family

Fp-p+ = ((Fx = OL¥ (D™, D*) 1 [0,2In N]) nen, w) -

gj - b
We study the asymptotic properties of the pair correlation measures %ND ¥ for ap-
propriately growing scaling fonctions ¢ in [PP2 §4], and we only consider in this paper
the following example.

Let
d(Re z)d(Im 2)

(Im 2)? )

be the upper halfspace model of the real hyperbolic plane with constant curvature —1. For
every b € N—{0}, let I'g[b] be Hecke’s congruence subgroup modulo b of the modular group
PSLy(Z), which is the preimage of the upper triangular subgroup of PSLy(Z/bZ) under
the reduction morphism PSLo(Z) — PSLo(Z/bZ). It acts faithfully by homographies
on H2, and is a lattice in the isometry group of HZ. Let Y? = FD[ J\HZ, which is a
finite (ramified) cover of the modular curve PSLy(Z)\H%. Let D~ = D* be the horoball
Hy ={zeC:Im z > 1} in HZ, whose image D~ = D7 in Y? is a Margulis neighbourhood
of a cusp of Yb. If b = 1, then D~ = D% is actually the maximal Margulis neighbourhood
of the unique cusp of Y*. In order to emphasize the dependence on the integer b, we will
use the notation ﬂlb)_7 p+ = Fp- p+ for the family of lengths of common perpendiculars

between D~ and Dt in Y?.

The following result says that the pair correlation measures of the common perpendic-
ulars from this Margulis cusp neighbourhood to itself are, up to the homothety of factor
2, the pair correlation measures of the logarithms of the natural numbers congruent to 0

modulo b, with multiplicities given by the Euler function .
b w

?zHﬁz({zeC:Imz>0},ds2=

We use in the following result the notation %) A of the introduction with

Lo — ((Ly ={lnn : 0<n< N, n=0 mod b})yen, w = @ 0 exp) .

PropOSItlon 6.1 For every scaling function ¢ and every N € N, iof f : t — 2t, then
w b,
% D , D+’ —f*( i” 7111)

Proof. The orbit of %”oo under T'g[b] consists, besides J#; itself, of the Euclidean disks
ffp of Euclidean radius —2 tangent to the horizontal line at the rational numbers £ With

q>0 q_Omodband(p, q) = 1.
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Every common perpendicular between D~
and D™ has a unique representative which starts
from the Euclidean segment [i,i + 1[ on the
boundary of 7, and ends on the boundary of
%ﬂp with £€ Qn[0,1[ and ¢ = 0 mod b. Its hy-
perbohc length is 2Inq. In particular, we have
OL}(D~,D*%) = {2Inq: ¢ > 2, ¢ =0 mod b}.

Since PSLy(R) acts simply transitively on the unit tangent bundle of HZ, the multi-
plicities of the common perpendiculars are equal to 1. Hence the length multiplicity of
21n q is exactly the number of elements p € Z/qZ coprime with ¢, that is, w(21n¢q) = ¢(q).
(]

The following results, computing the pair correlation functions at trivial or linear scaling
of the lengths of the common perpendiculars from the Margulis cusp neighbourhood at
infinity to itself in Hecke’s modular curve I'g[b]\HZ2, follow immediately from Theorems
and [5.1] with a = b, which also give an error term, using Proposition

Corollary 6.2 (1) For every b € N — {0}, as N — 400, the pair correlation measures

(“b
R ot on R, renormalized to be probability measures, weak-star converge to a measure
absolutely continuous with respect to the Lebesque measure on R, with pair correlation
function given by s — % e~ Isl.
Fb o id
(2) For every b e N—{0}, as N — 400, the pair correlation measures %%’ND DT on R
weak-star converge to a measure absolutely continuous with respect to the Lebesgue measure
on R, with pair correlation function given by s — S% Z Chobk k3, where Ch,bk
1<k<| 2], k=0mod b

is defined in Equation . L]

A Appendix : A Mirsky formula with congruences,
by Etienne Fouvry

The aim of this appendix is to give a proof of a version with congruences, and with a
uniform estimate on the parameters, of an arithmetic formula due to Mirsky [Mir|. This
improved version is used in the proof of Theorem

Let a,b, k € N be fixed integers satisfying a,b > 1. Denoting by ¢ the Euler function,
we give an asymptotic formula, as x > 1 tends to +o0, for the quantity

S(z;a,b, k) = Z e(n) p(n+k).

1<n<zx
n=a mod b

Throughout this appendix, the letter p denotes as usual a varying positive prime in Z, and
we use the convention on O(-) of the beginning of Lemma For all integers o, 5 > 1
we denote as usual by (a, 8) and [«, 5] their positive ged et lem, respectively.
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Theorem A.1 Let
Caps = % 1—[ (1 _ (P,Qb)) H (1 — (p,b) MW) ’ (23)

P p P p
(p:d) |a+k (p;b)|a

where

1— @1 5 (pb) |a+k
na,b,k@):{( D) i (pb)fa

P
1 otherwise

1-X if plk

d r(p) = P
and i (p) {1 otherwise.

There exists an absolute constant K > 0 such that for all integers a,b > 1 and k = 0 and
real number x = 1, we have

3 ka?
| S(z;a,b,k) — cap (E + T) | < K(x(z + k)(In22) In(2z + k)) .

Before proving this theorem, we give some considerations on the constant c,p in
Remark and some considerations on the uniformity properties of the asymptotic on

S(z;a,b, k) in Remark
Remark A.2 We start from the obvious inequalities, for every prime p,

1
1 < Kapi(p) <2 and 3 < K L(p) < 1.

From these inequalities and the definition , we deduce that c, 1 satisfies the fol-
lowing inequalities

oo T1 (00 [ (2 %) cons) oo

p=3 p p=3 p
(p;b)|a+k (p;b)|a

where the local factor A(a,b, k), obtained by separating the case p = 2 in the Euler
products, is defined by

5/8 if24band 2|k,
1/2 if2¢band 21k,
1 if2]b, 2ta and 2| k,
1/2 if2|b, 24a and 21k,
1/4 if2|b, 2|aand 2|k,
1/2 if2|b,2|aand 21k.

A(a, b, k) = <

We have the positive lower bound A(a, b, k) > % in all cases. This shows in particular that
Capk > 0. A deeper look also leads to the statement that the positive product bc,p . can
be arbitrarily small : it suffices to consider the case where all the integers a, b and k are
all divisible by the t smallest primes, and letting the integer ¢ tend to infinity.

Theorem [A.1] (without the uniform control on k) was already known when a = b = 1,
this result is due to [Mir, Thm. 9, Eq. (30)], with

P 1
Clig = 1;[ (1- ];) H (1+ m) - (25)

For this computation, see Remark below.
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Remark A.3 Consider the case where a = b = 1. Since Equation gives the lower
bound ¢y 1 = l_[p (1 — ]%) > 0 for every k € N, by discussing separately the case k > 2x
so that In(2z + k) < 2lnk if £ > 2 and the case k < 2z so that In(2zx + k) < 2In(2z) if
x = 1, Theorem [AT] gives, for z tending to infinity, the following asymptotic behavior of
S(x; 1,1, k) with a large uniformity over the parameter k, that was not present in Mirsky’s

result in loc. cit..

Corollary A.4 As x tends to infinity, we have

2 ka?
1, 1,E) ~ T
S('Tv ) 7k) C1,1,k ( 3 + 9 ) 5

uniformly for
0<k<exp(z/ 1n2(2x)) . O

In the opposite direction, we now fix £ = 1 and we return to Equation , to write,
using for instance [HaW, Thm. 328] for the last very classical estimate,

2
wwg I1 (=5 TLO2)25 1102311 0-5)" - 5

1
” b (nn(36)2’

pl(b,a) plb

It is now easy to deduce from Theorem the following corollary, where the uniformity
over b is almost optimal.

Corollary A.5 As x tends to infinity, we have
3
S(IE, a, b7 1) ~ Caqb,1 * %a
uniformly for
1<b< x/(ln(2x))2(lnln(3x))3 . O

Proof of Theorem For every x > 1, let us first prove that there exists a constant
Capk € |0, 1] such that the sum

ooy Ew) etk

n n+k

1<n<x
n=a mod b

satifies the asymptotic formula, uniformly in a,b > 1, k> 0 and x > 1,

~

S(x) = copr + O((In22) In(2zx + k)) . (26)

Theorem [AT] follows classically, by applying Abel’s summation formula

5 s = (3 a) i@ (X w) o

1<n<z 1<n<z 1 1<n<t
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: _ »()  e(ntk)
to the numerical sequence (an = S

8, = 0 otherwise, and to the function f : [1, +00[ — R of class C! defined by = ~— z(x + k).
We indeed have

5n)n>1, where 6,, = 1 if n = amod b and

~

S(x;a,b, k) = S(z)x(z+ k) — Jlx S(t)(2t + k) dt

a abkk 2k
= C’% 3 C’% z? + (§ + §)ca,b,k + O (z(z + k)(In22) In(2z + k)) ,

which gives the result since cq 51 < 1.

Let us denote by 1 the constant arithmetic function with value 1. The convolution
equality ¢ = p * id implies by division that & = & « 1. Applying twice this formula, we

have (@) %)
s p p
S@= )2 T & ox b
1<d<z 1<6<a+k 1<n<z
d|n, 8| (n+k)
n=a mod b
0 mod d
The system of three congruences n =< —k mod § has a solution n < z if and only if
a mod b
there exists an integer m < x/d such that n = dm and
dm = —k mod 9
{ dm =a mod b . (27)
When (d, 0) 1 k or when (d,b) 1 a, no solution exists. We hence have
5o w(d) w(d) ~dm = —k mod
S(z) = Z 4 5 Card{méx/d. dm = a mod b }

1<d<z, 1<6<z+k
(d,6) |k, (d,b)|a

If (d,0) | k and (d,b) | a, let us denote by ﬁ the multiplicative inverse of the integer

ﬁ modulo (d676) and by % the multiplicative inverse of the integer (di,b) modulo (#%'
The system of two congruences , after division of its first equation by (d, ) and of its
second equation by (d,b), is then equivalent to the system

This system has a solution if and only if the following divisibility condition holds

5b kT d o« d
((d, 5) (. b)) @9 @o T @ @y

- ( 1) b ) | k d N a d
(d,0)" (d,b)/ " (d,0) (d,b)  (d,b) (d,0)
Since the integers ﬁ and (d% are coprime with the ged (( diﬁ)? ( dl?b)), we deduce by

multiplication that the above condition holds if and only if we have

(8(d, b),b(d, 8)) | d(k +a) .

The following lemma, where O(1) is uniformly bounded in «, 3, ag, 5o, is elementary.
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Lemma A.6 For all integers o, B, g, Bo = 1 and real number y = 1, we have

0if « mod («,
Card{m < y:m = ay mod a and m = 5y mod 8} = { : yﬂ] ﬁi(%) otherv(viseﬁ) u
o, :

This lemma implies that Card{m < x/d : + O(1)

de—kmodé} _ z
dm = amod b o d[

) b
W’W]
under the assumption that (d,d) | k, (d,b) | a and (6(d,b),b(d,d)) | d(k + a), where O(1)
is uniformly bounded in a, b, k, d, . By the classical majoration of the harmonic series, we
have

= O((In2z)In(2z + k)) .

SN
S

1<d<z, 1<0<z+k

By the relation between lcm, ged and product of two positive integers, we hence have

S) = x 3 “(dd) “f) (5(d, bzl’éz(d’ D) 4 O((n22) In(2 + k)) ,

1<d<z, 1<6<z+k
(d,0) |k, (d,b)|a
(6(d,b),b(d,0)) | d(k+a)
uniformly in a,b > 1, k>0 and x > 1.
Completing the sum with the indices d > x and § > = + k introduces an error of the
form (uniformly in a,b>1, k>0 and z > 1)

o % G =0 T Gawgep) =00

d=z, 6>1 t=1, d'>x/t, §'>1

This proves Formula by setting

B p(d) p(d) (6(d,b), b(d,d))
Cabk = 2 d 0 b ' (28)
d, 6=>1
(d,6) |k, (4b) |a
(6(d,b).b(d,8)) | d(k-+a)

Let us now prove Equation (23). By Remark this implies that 0 < copr < 1,
hence completes the proof of Theorem [A 1]

Proof of Equation . For every integer d > 1, let x4 be the characteristic function
of the set of integers 0 > 1 such that (0,d) | k. For every integer d > 1, let us define

1/1d35'—’(5,

2y @) (29)

Note that the assertion (0(d,b),b(d,d)) | d(k + a) is equivalent to the assertion

Ya(0) |

@b (k+a).

For every integer d > 1, let x7; be the characteristic function of the set of integers 6 > 1
such that the above divisibility assertion is satisfied. Let us define

¢ 3O 0) X 0) valo) (30)

0=1
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(this arithmetic function ¢* depends on the constants a, b, k). Equation then becomes

1 p(d)
Capk =3 D, - (db)c"(d). (31)
d=1
(db)]a
In order to transform the series ¢*(d) defined by Formula into an Eulerian product
and in order to analyse it, we will use the following two lemmas.

Lemma A.7 For every integer d > 1, the arithmetic functions xq, X} and g are multi-
plicative.

Proof. We have xq(1) = x;(1) = ¢4(1) = 1. Let 61, d2 be two coprime integers.

The equality (d192,d) = (d1,d)(d2,d) and the fact that (d1,d) and (2, d) are coprime
imply the multiplicativity of xg4.

In order to prove the multiplicativity of the function 4, we write

ba(6162) = (5162, (dbb) (d.5:62)) = (61, (d”b) (61,d) (52, )) (52, (dbb) (61, d)(52,d)) .

Since d; is coprime to (d2,d) and since d3 is coprime to (41, d), we obtain as wanted the
equality ¥4(6102) = 1a(d1) Ya(d2).

Finally, the multiplicativity of the function x is a consequence of the multiplicativity
of the function 14 and of the fact that 1)4(d1) and 14(d2) are coprime. O

Lemma A.8 For every prime p and every integer d = 1, we have

_[p if pld,
Ya(p) _{ (p,b) otherwise,

and
Pl (k) and p| s (k+a)
Xa(p) xa(p) =1 <1 or
ptd and (p,b)|k+a.

Proof. The first formula follows from the definition of 14(p) (see Formula (29)) by con-
sidering the three cases (p | d), (p1d and p | b), and (ptd and p{b).

The second formula follows from the first one, from the definitions of x4(p) and x%(p),
and from the fact that x4(p) xj(p) = 1 if and only if xq(p) = xj(p) = 1, by considering
the two cases (p | d) and (ptd). 0

The arithmetic function 6 — p(8)xq(6) x35(9) ¥q(0) being multiplicative by Lemma
and vanishing on the nontrivial powers of primes, the series defining ¢*(d) in Formula
(30) may be written as an Eulerian product

C*(d) _ 1;[ (1 _ Xd(p) Xi(Qp) 1/1d(P)) _ 1;[ (1 . 1/’;1?(17)) ) (32)

By Equations and , and by Lemma we have
1 d ,b 1
Cabh = > MéQ) @b J] (- (p2 )) [T a--).

=1 ptd p pl(dk)
(d,b) | a (D) | k+a p| iy (k+a)




Let us define I' 1, = H (1 _ & )) so that

p
(p,b) | k+a
Lok M p;b)\—1 1
) [T -2 -3 @
= pld P pl(dh) b
(db)|a (pb) | k+a P oy (k+a)

For every integer d > 1 without square factor such that (d,b) | a, we have

[T 6=l e-)I6-» [ -

p|(d;k) p|(dk) p|(d;k) p|(d.k)
Pl gy (k+a) Pl @y plk+a Pl (ks k+a)
1 1 1,1
- |1 (1—5) I1 (1—5) 11 (1—];)
Pl (k) pl(d.a.k) Pl (G ak)
1 1
- 11 6-D 11 a-}
Pl (k) pl(dabk)
1 1 1
= (1—2;) 11 (1—1;): 11 (1—];)
p\(%b),k) p|(db,k) p|(d.k)
Thus, Equation writes cq .k as a series % ! (d) where f is a multiplicative
d>1
(d.b)|a
function, which vanishes on the nontrivial powers of primes. By Eulerian product, we have
therefore proved Equation . [

Remark A.9 When a = b = 1, we indeed recover Mirsky’s result [Mir, Thm. 9, Eq. (30)].
Indeed, by Equation , we have

1 1-5)" 1) (1-5)"
=10~ DT ") 10~ —5—)
p b plk p pik p
1 p—1 1 1 -1
g I (G
2 2 _ 2 _ 2 _
PR Pt =1/ AR AN
1
1 - = 1 + ).
ST10- D110+ )
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