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Abstract

We study the statistics of pairs of logarithms of positive integers at various scalings,
either with trivial weights or with weights given by the Euler function, proving the
existence of pair correlation functions. We prove that at the linear scaling, which is
not the usual scaling by the inverse of the average gap, the pair correlations exhibit a
level repulsion similar to radial distribution functions of fluids. We prove total loss of
mass phenomena at superlinear scalings, and constant nonzero asymptotic behaviour
at sublinear scalings. The case of Euler weights has applications to the pair correlation
of the lengths of common perpendicular geodesic arcs from the maximal Margulis cusp
neighborhood to itself in the modular curve PSL2pZqzH2

R.
1

1 Introduction

When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacings between pairs or k-tuples
of elements, seen at an appropriate scaling. These problems often arise in quantum chaos,
including energy level spacings or clusterings, and in statistical physics, including molecular
repulsion or interstitial distribution. A general setting for such a study may be described
as follows. Let F “ p pFN qNPN, ωq be a nondecreasing sequence of finite subsets FN of a
finite dimensional Euclidean space E, endowed with a multiplicity function ω :

Ť

NPN FN Ñ
s 0,`8r (or weight function). Note that the standard unfolding technique (see for instance
the comments after Theorem 2.1) might not work in order to study the statistics of pairs
when the weights are not constant equal to 1. Let ψ : N Ñ s 0,`8r be a nondecreasing
scaling function. We define the pair correlation measure of F at time N with scaling ψpNq
as the measure on E with finite support

RF ,ψ
N “

ÿ

x,yPFN : x‰y

ωpxqωpyq∆ψpNqpy´xq ,

where ∆z denotes the unit Dirac mass at z. Standard pair correlation studies use a specific
scaling, that we will introduce later on. When the sequence of measures pRF ,ψ

N qNPN, ap-
propriately renormalized, weak-star converges to a measure g LebE absolutely continuous
with respect to the Lebesgue measure LebE of E, the Radon-Nikodym derivative g “ gF ,ψ

1Keywords: pair correlation, logarithms of integers, level repulsion, Euler function. AMS codes:
11K38, 11J83, 11N37, 53C22.
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is called the asymptotic pair correlation function of F for the scaling ψ. When gF ,ψ van-
ishes on a neighbourhood of 0 in E, we say that the pair pF , ψq exhibits a strong level
repulsion, the standard level repulsion requiring only gF ,ψ to vanish at 0.

If the family F consists of subsets of the unit interval r0, 1s, then it is customary to
use the cardinality of the finite set FN as the scaling function. See for example [BocZ],
where FN “ t

p
q : p, q P N, p ď q, pp, qq “ 1, 0 ă q ď Nu is the set of Farey fractions of

order N in r0, 1s (without multiplicities, hence ω ” 1), so that ψpNq “ 3N2

π `OpN lnNq.
Montgomery studied (under the Riemann hypothesis) the pair correlations of the imaginary
parts of the zeros (with their multiplicity as zeros) of the Riemann zeta function ζ in the
seminal paper [Mon]. The number of zeros 1

2 ` it of ζ with imaginary part t in the
interval r0, N s is asymptotic to N lnN

2π as N Ñ `8 and the scaling used in [Mon] is,
analogously to the unit interval case, the standard one by the inverse of the average gap :
ψpNq “ pN lnN

2π q{N “ lnN
2π . In this paper, in contrast to the above references as well as for

instance [RS], [LS] and [HK], we insist that we will consider pair correlations with arbitrary
scaling functions, as it has for instance been done when studying the number variance for
the Riemann zeros, see [Ber].

In Sections 2 and 3, we study the pair correlations of the family of the logarithms of
positive integers

LN “
`

pLN “ tlnn : 0 ă n ď NuqNPN, ω ” 1
˘

without multiplicities. In order to simplify the statements in this introduction, we only
consider power scalings ψ : N ÞÑ Nα for α ě 0, and we denote these scaling functions by
idα.

Theorem 1.1 Let α ě 0. As N Ñ `8, the normalized pair correlation measures
1

Nmaxt2´α,0u R LN, id
α

N on R weak-star converge to a measure gLN, id
α LebR with pair cor-

relation function given by

gLN, id
α : t ÞÑ

$

’

’

’

’

&

’

’

’

’

%

1
2 e

´|t| if α “ 0
1
2 if 0 ă α ă 1
1

2 t2
t|t|u

`

t|t|u` 1
˘

if α “ 1

0 if α ą 1 .

We refer to Theorems 2.1 and 3.1, for more complete versions of Theorem 1.1, with
congruence restrictions and with more general scaling functions, as well as for error terms.
These error terms, as well as the ones in Theorems 4.1 and 5.1, constitute the main technical
parts of this paper.

When α ď 2, the renormalisation by 1
N2´α in Theorem 1.1 is naturally chosen in order

for the pair correlation function to be finite. As the finite set LN , whose order is N , is
contained in the minimal interval r0, lnN s, the average gap in LN is lnN

N . Scaling by the
inverse ψpNq “ N

lnN of the average gap (as in a particular case of Theorem 3.1), as well as
by idα for 0 ă α ă 1 (as in the above statement) gives a nonzero constant pair correlation
function (as expected by the standard unfolding technique). As in the above result for
α ą 1 and more generally by Theorem 3.1, if the scaling function ψ grows faster than
linearly, then the pair correlation function vanishes : the empirical measures R LN, ψ

N have
a total loss of mass at infinity, regardless of what the renormalisation is (the support of
the measure itself converges to infinity). The transition from nonzero constant to zero
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correlation occurs at linear scalings, where a more exotic pair correlation function appears.
Since gLN, id vanishes on s ´ 1, 1r, the pair pLN, idq exhibits a strong level repulsion.

The figure below gives the graph of the pair correlation function gLN, id of LN at the
linear scaling ψ “ id : N ÞÑ N in the interval r´15, 15s compared with the graph of
the constant function 1

2 . The graph is similar to certain radial distribution functions in
statistical physics, see for example [ZP, Sect. II], [SdH, Fig. 7], [Cha, page 199] or [Boh,
page 18].
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Instead of the pair correlations, one can study the gaps between consecutive elements
in the subsets FN of the real line or, most often, of the unit interval. Marklof and Ström-
bergsson [MaS] have computed the gap distribution of the fractional parts of the family LN
(with a linear scaling, which corresponds to the average gap, and linear renormalisation)
and showed that the limiting gap distribution has two jump discontinuities.

In Section 6, we prove that the pair correlation measures of the lengths of the common
perpendiculars between the maximal Margulis cusp neighbourhood and itself in the modu-
lar curve PSL2pZqzH2

R are (up to a factor 2) the pair correlation measures of the weighted
family

L ϕ
N “

`

pLN “ tlnn : 0 ă n ď NuqNPN, ω “ ϕ ˝ exp
˘

of logarithms of integers, with weights given by the Euler function ϕ : n ÞÑ CardpZ{nZqˆ,
see Proposition 6.1. See [PS1, PS2] for results on the pair correlation of the lengths of
closed geodesics in negatively curved manifolds.

We study the pair correlations of the arithmetically defined family L ϕ
N in Sections 4

and 5, where we find the pair correlation function without scaling and with linear scaling.

Theorem 1.2 (1) As N Ñ `8, the pair correlation measures R
L ϕ

N ,1
N on R, renormalized

to be probability measures, weak-star converge to the probability measure gL ϕ
N ,1

LebR, with
pair correlation function gL ϕ

N ,1
: s ÞÑ e´ 2 |s|.

(2) As N Ñ `8, the normalized pair correlation measures 1
N3 R

L ϕ
N , id

N (with linear scaling)
on R weak-star converge to the measure gL ϕ

N , id
LebR, with pair correlation function

gL ϕ
N , id

: s ÞÑ
1

s4

ź

p prime

p1´
2

p2
q

t |s| u
ÿ

k“1

k3
ź

p prime, p | k

p1`
1

ppp2 ´ 2q
q . (1)
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We refer to Theorems 4.1 and 5.1 for more complete versions of Theorem 1.2 with
congruence restrictions, and for error terms. When the congruences are nontrivial, the
proof of the second claim of Theorem 1.2 uses a generalization of Mirsky’s formula (see
[Mir]) that is proved in Appendix A by Étienne Fouvry.

The figure below gives the graph of the pair correlation function gL ϕ
N , id

compared with

the graph of the constant function with value 1
4

ź

p prime

`

1 ´ 2
p2

˘`

1 ` 1
p2pp2´2q

˘

» 0.09239,

which is the limit of the pair correlation function gL ϕ
N , id

at ˘8 by Proposition 5.5.
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Theorems 4.1 and 5.1 imply pair correlation results for the lengths of the common
perpendiculars of cusps neighborhoods in the modular curve and on quotients of the hy-
perbolic plane by Hecke congruence subgroups of PSLpZq, see Corollary 6.2 for precise
statements.

Further directions. It would be interesting, given a discrete subgroup Γ of PSL2pRq, to
study the asymptotic of the pair correlation measures of the complex translation lengths
`Cpγq with absolute value at most N of the elements γ P Γ, and given a discrete subgroup Γ
of a semi-simple connected real Lie group G with finite center and without compact factor,
of the Cartan projections µpγq with Killing norm at most N of the elements γ P Γ. See
Section 6 for the problem of the asymptotic of the pair correlation measures of common
perpendiculars in negative curvature, which will be studied more completely in subsequent
works of the authors. See [PP2] for an abstract pair correlation result under exponential
growth assumptions on the family pFN qNPN with scaling functions ψ of moderate growths,
and [PP3] for a version of this paper on the pair correlations of complex logarithms of
lattice points.

When the finite-dimensional Euclidean space E (where the family of finite sets pFN qNPN
sits) is replaced by a locally compact metric space pX, dq, we may also consider the positive
measure on s0,`8r with finite support RF ,ψ

N “
ř

x,yPFN : x‰y ωpxqωpyq∆ψpNqdpx,yq.

Acknowledgements: The authors thank a lot Etienne Fouvry for his proofs of Lemma 4.2, Propo-
sition 5.5 and Theorem A.1 and for agreeing to contribute the appendix to this paper. We thank
the referee for her/his numerous very helpful comments. This research was supported by the
French-Finnish CNRS IEA BARP.

Notation. We introduce here some of the notation used throughout the paper.
The pushforward of a measure µ by a mapping f is denoted by f˚µ, and its total mass

by }µ}. We denote by sg : RÑ R the change of sign map t ÞÑ ´t.
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For every interval I in R, we denote by LebI the Lebesgue measure on I and by 1I the
characteristic function of I. We denote by BVpIq the vector space of measurable functions
f : I Ñ R with finite total variation Varpfq. For every k P N, we denote by Ckc pIq the real
vector space of Ck-smooth functions f : I Ñ C with compact support in I. We denote by
}f}8 “ supxPI |fpxq| the uniform norm of f P C0

c pIq.
In addition to the above, more or less standard, notation, we will use the following

indexing sets in Sections 2, 3, 4 and 5. Let us fix throughout the paper a, b P N´t0u with
a ď b. For every N P N´ t0u, let

IN “ IN,a,b “ tpm,nq P N2 : 0 ă m,n ď N, m ‰ n, m, n ” a mod bu ,

I´N “ tpm,nq P N
2 : 0 ă m ă n ď N, m, n ” a mod bu

I`N “ tpm,nq P N
2 : 0 ă n ă m ď N, m, n ” a mod bu ,

so that IN “ I´N \ I
`
N is the disjoint union of I´N and I`N .

We use Landau’s O-notation: For every function g of a variable in N ´ t0u, possibly
depending on parameters (including a and b), we will denote by Opgq any function f
on N ´ t0u such that there exists a constant C 1 depending only on the parameter b and
a constant N0 possibly depending on the parameters such that for every N ě N0, we
have |fpNq| ď C 1 |gpNq|. We write explicitly Obpgq when we want to insist on the possible
dependence on the parameter b. We think that obtainingN0 independent of the parameters
A and/or α in Theorems 3.1, 4.1 and 5.1 is not possible.

In the proofs of Lemma 4.2 and of Proposition 5.5, and in the whole Appendix A, we
use a stronger version of this notation that is more uniform on parameters. This variant is
described in detail in the proof of Lemma 4.2 and the parts of the paper using this notation
are indicated in the text.

2 Pair correlations without weights nor scaling

For every N P N ´ t0u, the (not normalised) pair correlation measure of the logarithms
of integers congruent to a modulo b at time N , with trivial multiplicities and with trivial
scaling function, is

νN “
ÿ

pm,nqPIN,a,b

∆lnm´lnn .

If we consider the following nondecreasing sequence of finite subsets of R with trivial
multiplicity

L a,b
N “

`

pLa,bN “ tlnn : 0 ă n ď N, n ” a mod buqNPN, ω ” 1
˘

,

then, with the notation of the introduction, we have L 1,1
N “ LN and νN “ R

L a,b
N ,1

N .

Theorem 2.1 As N Ñ `8, the measures νN on R, renormalized to be probability mea-
sures, weak-star converge to the measure absolutely continuous with respect to the Lebesgue
measure on R, with Radon-Nikodym derivative the function g

L a,b
N ,1

: s ÞÑ 1
2 e

´|s|:

νN
}νN}

˚
á g

L a,b
N ,1

LebR .
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Furthermore, for every f P C0
c pRq X BVpRq, we have

νN
}νN}

pfq “
1

2

ż

sPR
fpsq e´|s| ds ` Ob

´

}f}8 `Varpfq

N

¯

.

When a “ b “ 1, this result implies the case α “ 0 of Theorem 1.1 in the introduction,
with pair correlation function gLN,1 “ gL 1,1

N ,1
.

The proof below uses at the very beginning the standard unfolding technique (see
[Boh, p. 14] and sections 3 and 5 of [MaS]) in order to use the uniform distribution on
the unit interval. Note first that, from the point of view of pair correlations, we can study
the behaviour of the finite sequences pln n

N q1ďnďN on s´8, 0s instead of plnnq1ďnďN on
r0,`8r . If A is a Borel subset of s´8, 0s, then

lim
NÑ`8

1

N

ˇ

ˇ

ˇ

 

n P N´ t0u : n ď N and ln
n

N
P A

(

ˇ

ˇ

ˇ
“ lim

NÑ`8

1

N

N
ÿ

n“1

∆ln n
N
pAq

“
`

ln˚ lim
NÑ`8

1

N

N
ÿ

n“1

∆ n
N

˘

pAq “ pln˚ Lebs0,1sqpAq “

ż

A
es ds .

In particular, we have n
N “

şln n
N

´8 es ds, so that, using the notation of [MaS], the unfolded
sequence of pηn “ ln n

N q1ďnďN is indeed the sequence prηn “ n
N q1ďnďN , whose distribution

is regular. This elementary remark does not spare us from a more refined study when
dealing with congruences and for the error term, and is not appropriate when various
weights and scalings are introduced.

Proof of Theorem 2.1. For every q P N ´ t0u with q ” a mod b, let q1 P N be such
that q “ a` q1b and

Jq “ tp P N : 0 ă p ă q, p ” a mod bu “ ta` kb : 0 ď k ă q1u . (2)

Let
ωq “

ÿ

pPJq

∆ p
q
,

which is a finitely supported measure on r0, 1s, with total mass }ωq} “ q1. When q1 ‰ 0, we
hence have }ωq} “ q

b `Op1q and 1
}ωq}

“ b
q `Obp

1
q2
q. When q1 ‰ 0, we denote by ωq “

ωq
}ωq}

the renormalisation of ωq to a probability measure on r0, 1s. By well known Riemann sum
arguments, we have, as q Ñ `8,

ωq
˚
á Lebr0,1s .

Let f P BVpr0, 1sq, and note that f is bounded, with }f}8 ď |fp0q|`Varpfq. Denoting by
Mk andmk the maximum and minimum respectively of f on ra`kbq , a`pk`1qb

q s for 0 ď k ă q1,
we have

ˇ

ˇ

ˇ

ż 1

0
fptq dt´

b

q
ωqpfq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż 1

0
fptq dt´

ÿ

pPJq

b

q
fp
p

q
q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż a
q

0
fptq dt

ˇ

ˇ

ˇ
`

q1´1
ÿ

k“0

ˇ

ˇ

ˇ

ż
a`pk`1qb

q

a`kb
q

fptqdt´
b

q
fp
a` kb

q
q

ˇ

ˇ

ˇ

ď
b

q
}f}8 `

q1´1
ÿ

k“0

b

q
pMk ´mkq ď p}f}8 `Varpfqq

b

q
.
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When q1 ‰ 0, since |ωqpfq | ď }ωq} }f}8 “ Opq }f}8q, we hence have

ωqpfq “

ż 1

0
fptq dt´

ż 1

0
fptq dt`

b

q
ωqpfq `O

` 1

q2

˘

ωqpfq

“

ż 1

0
fptq dt`O

´

}f}8 `Varpfq

q

¯

.

For every N P N´ t0u, with N ě a` b, let us define

µ´N “
ÿ

pm,nqPI´N

∆m
n
“

ÿ

1ďqďN, q”a mod b

ωq ,

which is a finitely supported measure on r0, 1s. Its total mass is equal to

}µ´N} “
ÿ

1ďqďN, q”a mod b

}ωq} “
ÿ

0ďq1ďtN´a
b

u

pq1 `Op1qq “
N2

2 b2
`OpNq .

Hence 1
}µ´N }

“ 2 b2

N2 `Op 1
N3 q. For f P BVpr0, 1sq, we have (taking }ωq} ωqpfq “ 0 if q “ a)

µ´N pfq

}µ´N}
“

1

}µ´N}

ÿ

1ďqďN, q”a mod b

}ωq} ωqpfq

“

ż 1

0
fptq dt`

1

}µ´N}

ÿ

1ďqďN, q”a mod b

O
`

}f}8 `Varpfq
˘

“

ż 1

0
fptq dt`O

´

}f}8 `Varpfq

N

¯

.

Notice that ln is an increasing homeomorphism from s0, 1s to s ´8, 0s. For every element
N P N´ t0u, let us define

ν˘N “
ÿ

pm,nqPI˘N

∆ln m
n
,

so that ν´N “ ln˚ µ
´
N “ νN |s´8,0s, and }ν´N} “ }µ

´
N}. We have, for every f P BV ps´8, 0sq,

ν´N pfq

}ν´N}
“
µ´N pf ˝ lnq

}µ´N}
“

ż 1

0
f ˝ lnptq dt`O

´

}f ˝ ln }8 `Varpf ˝ lnq

N

¯

“

ż 0

´8

fpsq es ds`O
´

}f}8 `Varpfq

N

¯

.

Since νN “ ν´N`ν
`
N , since ν

`
N “ sg˚ ν

´
N , we have }ν

˘
N} “

1
2 }νN} and this proves the second

assertion of Theorem 2.1. The first assertion follows by the density of C1
c pRq in C0

c pRq for
the uniform norm. l

Let us give some numerical illustrations of Theorem 2.1 when a “ b “ 1. For every
N P N´ t0u, let

DN : s ÞÑ
Cardtpp, qq P IN : ln p

q ď su

Card IN
,
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which is the cumulative distribution function at time N of the differences of pairs of
logarithms of integers, that is, for all s, s1 P R with s ă s1, we have

νN
}νN}

p ss, s1 sq “ DN ps
1q ´DN psq .

The first assertion of Theorem 2.1 says that as N Ñ `8 the function DN converges
pointwise to the C1 (but not C2) function

D : s ÞÑ

#

1
2 e

s if s ď 0

1´ 1
2 e

´s if s ě 0

(with derivative D 1 “ gLN,1), which is the asymptotic cumulative distribution function of
the differences of pairs of logarithms of integers. This is illustrated by the figure below,
which shows D15 in green.
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3 Pair correlations without weights and with scaling

In this section, we study the pair correlations of logarithms of integers at various scalings,
now assumed to converge to `8. We fix two positive functions, respectively denoted by
ψ : N ´ t0u Ñ s0,`8r and ψ1 : N ´ t0u Ñ s0,`8r, with ψ1 assumed to have a positive
lower bound, which will give the scaling factors on the difference of pairs of logarithms and
the renormalizing factors on their distribution, respectively.

For every N P N´t0u, the (not normalised) pair correlation measure of the logarithms
of integers congruent to a modulo b at time N with trivial multiplicities and with scaling
ψpNq is the (Borel, positive) measure with finite support in R defined by

R
L a,b

N ,ψ

N “
ÿ

pm,nqPIN,a,b

∆ψpNqplnm´lnnq ,

and the normalized one is 1
ψ1pNq R

L a,b
N ,ψ

N .

Theorem 3.1 Assume that the nondecreasing positive function ψ satisfies lim
`8

ψ “ `8

and lim
NÑ`8

ψpNq
N “ λψ P r0,`8s. As N Ñ `8, the measures R

L a,b
N ,ψ

N on R, normalized by

ψ1pNq as given below, weak-star converge to a measure g
L a,b

N ,ψ
LebR absolutely continuous

with respect to the Lebesgue measure on R,
1

ψ1pNq
R

L a,b
N ,ψ

N
˚
á g

L a,b
N ,ψ

LebR ,
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with Radon-Nikodym derivative the function

g
L a,b

N ,ψ
: t ÞÑ

$

’

’

&

’

’

%

0 if λψ “ `8, for any ψ1 as above ,
1

2 b2
if λψ “ 0 and ψ1pNq “ N2

ψpNq ,

1
2 t2

X

|t|
b λψ

\

´

X

|t|
b λψ

\

` 1
¯

if λψ ‰ 0,`8 and ψ1pNq “ ψpNq .

(3)

Furthermore, if λψ ‰ 0,`8 and ψ1pNq “ ψpNq, for every f P C1
c pIq with support

contained in r´A,As where A ě, we have

1

ψ1pNq
R

L a,b
N ,ψ

N pfq

“

ż

sPR
fpsq g

L a,b
N ,ψ

psq ds` Ob

´A3

λ5
ψ

}f}8
`ˇ

ˇλψ ´
ψpNq

N

ˇ

ˇ`
A

N

˘

` }f 1}8p1` λ
´3
ψ q

A3

N

¯

.

The pair correlation function g
L a,b

N ,ψ
depends on b but it is independent of a. The above

result shows in particular that renormalizing to probability measures (taking ψ1pNq “
N2 ´N) is inappropriate, as the limiting measure would always be 0.

When α ą 0, a “ b “ 1 and ψ “ idα : N Ñ Nα, the measure 1
ψ1pNq R

L a,b
N ,ψ

N corresponds

to the one denoted by 1
Nmaxt2´α,0u R

L a,b
N , idα

N in the introduction if α ď 2. If α ą 2, then
λψ “ `8, and the constant renormalizing function ψ1 “ 1 satisfies the hypotheses of the

first case of Equation (3), so that the measure 1
ψ1pNq R

L a,b
N ,ψ

N also corresponds to the one

denoted by 1
Nmaxt2´α,0u R

L a,b
N , idα

N in the introduction. The above result thus implies the
cases α ą 0 of Theorem 1.1 in the introduction, as well as the comment about the scaling
by the inverse of the average gap ψpNq “ N

lnN , for which λψ “ 0.
The fact that g

L a,b
N ,ψ

vanishes when λψ “ `8 means that the sequence of measures
`

1
ψ1pNq R

L a,b
N ,ψ

N

˘

NPN on R has a total loss of mass at infinity. For error terms when λψ “ `8
and λψ “ 0, see respectively Equation (7) and Equation (10).

Proof. Note that the change of variables pm,nq ÞÑ pn,mq in IN proves that we have

R
L a,b

N ,ψ

N |s´8,0s“ sg˚
`

R
L a,b

N ,ψ

N |r0,`8r
˘

. We will thus only study the convergence of the

measures 1
ψ1pNq R

L a,b
N ,ψ

N on r0,`8r, and deduce the global result by the symmetry of
g
L a,b

N ,ψ
.

For every N P N ´ t0u and for every p P N with p ” 0 mod b and 0 ă p ă N , let
Np “ t

N´p´a
b u, let

Jp,N “ tq P N : 1 ď q ď N ´ p, q ” a mod bu “ ta` kb : 0 ď k ď Npu , (4)

and let
ωp,N “

ÿ

qPJp,N

∆ψpNq p
q

and µ`N “
ÿ

0ăpăN, p”0 mod b

ωp,N .

Then ωp,N is a measure on r0,`8r, with finite support contained in rψpNqN´p p, ψpNqps. The

support of the measure µ`N on s0,`8r is contained in rψpNqN , ψpNqN s. The motivation for
the definition of the measure µ`N comes from the following lemma.

9



Lemma 3.2 For every A ą 0 and for every f P C1
c pRq with compact support contained in

r0, As, we have, as N Ñ `8,

ˇ

ˇ R
L a,b

N ,ψ

N pfq ´ µ`N pfq
ˇ

ˇ “ O
´

A3 }f 1}8
` N

ψpNq

˘2
¯

.

In particular, if 1
ψ1pNq

`

N
ψpNq

˘2 tends to 0 asN Ñ `8, the measures 1
ψ1pNq R

L a,b
N ,ψ

N |r0,`8s

and 1
ψ1pNq µ

`
N on r0,`8s are asymptotic for the weak-star convergence of measures on

r0,`8s, and we will study the weak-star convergence of the latter one.

Proof. By the change of variable pp, qq ÞÑ pm “ p` q, n “ qq, we have

R
L a,b

N ,ψ

N |r0,`8s “
ÿ

pm,nqPI`N

∆ψpNq ln m
n
“

ÿ

0ăqďN´p, q”a mod b
0ăpăN, p”0 mod b

∆ψpNq lnp1` p
q
q .

By definition, we have
µ`N “

ÿ

0ăqďN´p, q”a mod b
0ăpăN, p”0 mod b

∆ψpNq p
q
.

Since the support of f is contained in r0, As, if a pair pp, qq occurs in the index of the sum

defining either R
L a,b

N ,ψ

N pfq or µ`N pfq with nonzero summand, then ψpNq lnp1 ` p
q q ď A.

This implies that p
q “ O

`

A
ψpNq

˘

since lim
`8

ψ “ `8, and that p “ O
`

AN
ψpNq

˘

since q ď N .

For all x, y P r0,`8r , we have

|∆xpfq ´∆ypfq| “ |fpxq ´ fpyq| ď }f
1}8|x´ y| .

Recall that | lnp1` tq ´ t| “ Opt2q as tÑ 0. Hence, by a uniform majoration of the terms
of the sum below,

ˇ

ˇ R
L a,b

N ,ψ

N pfq´µ`N pfq
ˇ

ˇ ď
ÿ

1ďqďN

1ďpďOp AN
ψpNq

q

}f 1}8 ψpNq O
´

p
p

q
q2
¯

“ O
´

A3 }f 1}8
` N

ψpNq

˘2
¯

. l

Let us now study the convergence properties of the (renormalized) measures ωp,N and
of their sums µ`N as N Ñ `8.

Let ι : s0,`8r Ñ s0,`8r be the involutive diffeomorphism t ÞÑ 1
t . We have

ι˚ωp,N “
ÿ

q PJp,N

∆ q
ψpNqp

.

If Np ě 0, as q varies in Jp,N , the above Dirac masses are taken on the distribution of
points given by the following picture.

b
ψpNqp N´p

ψpNqp

a`pNp´1qb
ψpNqp

a`Npb
ψpNqp

a
ψpNqp

0

a`b
ψpNqp

a`2b
ψpNqp

10



Hence if Np ě 0, as in the proof of Theorem 2.1, for every C1 function f : s0,`8r Ñ R
with compact support, we have

ˇ

ˇ

ˇ

ż
N´p
ψpNqp

0
fptq dt´

b

ψpNqp
ι˚ωp, N pfq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż
N´p
ψpNqp

0
fptq dt´

ÿ

q PJp, N

b

ψpNqp
f
` q

ψpNqp

˘

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż a
ψpNqp

0
fptq dt

ˇ

ˇ

ˇ
`

Np´1
ÿ

k“0

ˇ

ˇ

ˇ

ż
a`pk`1qb
ψpNqp

a`kb
ψpNqp

fptqdt´
b

ψpNqp
f
´ a` kb

ψpNqp

¯
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ż
N´p
ψpNqp

a`Npb

ψpNqp

fptq dt
ˇ

ˇ

ˇ

ď
`

2 }f |
s0, N´p

ψpNqp
s
}8 `Varpf |

s0, N´p
ψpNqp

s
q
˘ b

ψpNqp
.

If Np ă 0, then N ´ p ă a ď b and Jp,N “ H, hence ωp,N . Therefore

ˇ

ˇ

ˇ

ż
N´p
ψpNqp

0
fptq dt´

b

ψpNqp
ι˚ωp, N pfq

ˇ

ˇ

ˇ
ď }f |

s0, N´p
ψpNqp

s
}8

N ´ p

ψpNqp
ď }f |

s0, N´p
ψpNqp

s
}8

b

ψpNqp
,

and the above majoration when Np ě 0 is still valid.
Hence for every C1 function f : s0,`8r Ñ R with compact support, since ι is a

diffeomorphism, we have

ωp, N pfq “
ψpNqp

b

ż
N´p
ψpNqp

0
f ˝ ιpsq ds`O

`›

›f ˝ ι |
s0, N´p

ψpNqp
s

›

›

8
`Varpf ˝ ι |

s0, N´p
ψpNqp

s
q
˘

“
ψpNqp

b

ż `8

ψpNqp
N´p

fptq
dt

t2
`O

`›

›f |
r
ψpNqp
N´p

,`8r

›

›

8
`Varpf |

r
ψpNqp
N´p

,`8r
q
˘

.

For every t ą 0, let

θN ptq “
1

t2

ÿ

0ăpăN
p”0 mod b

p

b
1
r
ψpNqp
N´p

,`8r
ptq .

Then

θN ptq “
1

t2

ÿ

0ăkăN{b

k 1
r
ψpNqbk
N´bk

,`8r
ptq “

1

t2

ÿ

0ăkď tN
bpψpNq`tq

k

“
1

2 t2

Y tN

bpψpNq ` tq

]´Y tN

bpψpNq ` tq

]

` 1
¯

. (5)

Let θN p0q “ 0. In particular, for every t ě 0, we have θN ptq “ 0 if and only if t P r0, b ψpNqN´b r .
Thus, if the support of f is contained in the interval r0, As, since ψpNqp

N´p ď A if and only
if p ď AN

ψpNq`A , we have,

µ`N pfq “
ÿ

0ăpăN, p”0 mod b

ωp,N pfq

“ ψpNq

ż `8

0
fptq

´

ÿ

0ăpăN
p” 0 mod b

p

b
1
r
ψpNqp
N´p

,`8r
ptq

¯ dt

t2
`O

´

`

}f}8 `Varpfq
˘ AN

ψpNq

¯

“ ψpNq

ż `8

0
fptq θN ptq dt`O

´

`

}f}8 `Varpfq
˘ AN

ψpNq

¯

. (6)
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Case 1. Assume first that λψ “ `8, that is, that lim
NÑ`8

N
ψpNq “ 0. Then for every

A ě 1, if N is large enough, then for every t P r0, As, we have θN ptq “ 0. Thus, whatever
the normalizing function ψ1 is (with a positive lower bound, by the assumption at the
beginning of Section 3), we have a total loss of mass at infinity :

1

ψ1pNq
µ`N

˚
á 0 .

More precisely, for every C1 function f : s0,`8r Ñ R with compact support contained in
r0, As, we have

1

ψ1pNq
µ`N pfq “ O

´

`

}f}8 `Varpfq
˘ AN

ψpNqψ1pNq

¯

.

Note that Varpfq “
şA
0 |f

1ptq| dt ď A }f 1}8, and that N
ψpNq ď

1
A2 for N large enough. By

the comment following Lemma 3.2 and the fact that ψ1 has a positive lower bound, we
have

1

ψ1pNq
RLN,ψ
N

˚
á 0 ,

thus proving Equation (3) under the assumptions of Case 1, and

1

ψ1pNq
R

L a,b
N ,ψ

N pfq “ O
´

`

}f}8 ` }f
1}8

˘ AN

ψpNqψ1pNq

¯

. (7)

Case 2. Now assume that λψ “ 0, that is, that lim
NÑ`8

ψpNq
N “ 0. By Equation (5), if we

have N ą b and t ě bψpNq
N´b , then

tN
bpψpNq`tq ě 1 and

θN ptq “
1

2 t2
` tN

bpψpNq ` tq
`Op1q

˘2
“

N2

2 b2ψpNq2

´

1`O
` t

ψpNq

˘

`O
`ψpNq

tN

˘

¯2
,

therefore
ψpNq2

N2
θN ptq “

1

2 b2
`O

` t

ψpNq

˘

`O
`ψpNq

tN

˘

. (8)

Since θN vanishes on r0, b ψpNqN´b

“

, this proves that ψpNq2

N2 θN is bounded on any compact
subset of r0,`8r, and pointwise converges to the constant function 1

2 b2
. Hence by the

Lebesgue dominated convergence theorem, we have

ψpNq

N2
µ`N

˚
á

1

2 b2
Lebr0,`8r . (9)

More precisely, for every A ě 3, for every C1 function f : s0,`8r Ñ R with compact
support contained in r0, As, by Equations (6) and (8) and since ψpNq ď N for N large

12



enough, we have

ψpNq

N2
µ`N pfq “

1

2 b2

ż `8

b ψpNq
N´b

fptq dt`O
´ 1

ψpNq

ż A

b ψpNq
N´b

t |fptq| dt
¯

`O
´ψpNq

N

ż A

b ψpNq
N´b

1

t
|fptq| dt

¯

`O
´

`

}f}8 `Varpfq
˘A

N

¯

“
1

2 b2

ż `8

0
fptq dt`O

´ψpNq

N
}f}8

¯

`O
´ A2

ψpNq
}f}8

¯

`O
´ψpNq

N
}f}8

`

lnA´ ln
b ψpNq

N ´ b

˘

¯

`O
´

`

}f}8 ` }f
1}8

˘A2

N

¯

“
1

2 b2

ż `8

0
fptq dt`O

´

}f}8
`ψpNq lnA

N
`

A2

ψpNq
´
ψpNq

N
ln
ψpNq

N

˘

¯

`O
´

}f 1}8
A2

N

¯

.

Let ψ1pNq “ N2

ψpNq and note that 1
ψ1pNq

`

N
ψpNq

˘2
“ 1

ψpNq tends to 0 as N Ñ `8. By
Equation (9) and by the comment following Lemma 3.2, we hence have

1

ψ1pNq
R

L a,b
N ,ψ

N
˚
á

1

2 b2
LebR ,

thus proving Equation (3) under the assumptions of Case 2. Furthermore, for every C1

function f : RÑ R with compact support contained in r´A,As where A ě 1, we have

1

ψ1pNq
R

L a,b
N ,ψ

N pfq “
1

2 b2

ż

R
fptq dt`O

´

}f}8
`ψpNq lnA

N
`

A2

ψpNq
´
ψpNq

N
ln
ψpNq

N

˘

¯

`O
´

}f 1}8
A3

ψpNq

¯

. (10)

Case 3. Let us finally assume that lim
NÑ`8

ψpNq
N “ λψ belongs to s0,`8r . Let us consider

the map θ8 : r0,`8rÑ R defined by θ8p0q “ 0 and on s0,`8r by

t ÞÑ
1

t2

8
ÿ

k“1

k 1rbλψk,`8rptq “
1

2 t2

Y t

b λψ

]

`

Y t

b λψ

]

` 1
˘

.

It vanishes on r0, b λψr , is uniformly bounded, tends to 1
2 b2 λ2ψ

as tÑ `8, and is piecewise

continous, with discontinuities at b λψN ´ t0u. See the first picture in the introduction
when a “ b “ λψ “ 1.

By Equation (5), the sequence of uniformly bounded maps pθN qNPN converges almost
everywhere to θ8 (more precisely, it converges at least at every point of r0,`8r ´ b λψN ).
Hence by Equation (6) and by the Lebesgue dominated convergence theorem, we have

1

ψpNq
µ`N

˚
á θ8 Lebr0,`8r .

Let A ě 1, k P N ´ t0u and N large enough so that ψpNq
N ě

λψ
2 . Note that bλψk ď A

implies that k ď A
bλψ

ď 2A
bλψ

, and that ψpNqbk
N´bk ď A implies that k ď AN

bpψpNq`Aq ď
2A
bλψ

. Hence

13



for every t P r0, As, we have

| θ8ptq ´ θN ptq | ď
1

t2

2A
bλψ
ÿ

k“1

k
ˇ

ˇ1rb λψk,`8rptq ´ 1
r
ψpNqbk
N´bk

,`8r
ptq

ˇ

ˇ .

Besides, we have b λψk ě bλψ
2 and ψpNqbk

N´bk ě
bλψ

2 . The function
ˇ

ˇ1rb λψk,`8r ´ 1
r
ψpNqbk
N´bk

,`8r

ˇ

ˇ

vanishes outside the closed interval between b λψk and ψpNqbk
N´bk , and has value 1 on the

interior of this interval. We hence have
ż `8

0

ˇ

ˇ1rb λψk,`8rptq ´ 1
r
ψpNqbk
N´bk

,`8r
ptq

ˇ

ˇ

dt

t2
ď

ˇ

ˇ

ˇ

ż
ψpNqbk
N´bk

b λψk

dt

t2

ˇ

ˇ

ˇ
ď

4

b2λ2
ψ

ˇ

ˇ b λψk ´
ψpNqbk

N ´ bk

ˇ

ˇ .

For every continuous function f : r0,`8r Ñ R with compact support in r0, As, we therefore
have

ˇ

ˇ

ˇ

ż `8

0
fptq pθ8ptq ´ θN ptqq dt

ˇ

ˇ

ˇ
“ O

´

}f}8
λ2
ψ

2A
bλψ
ÿ

k“1

k
ˇ

ˇ b λψk ´
ψpNqbk

N ´ bk

ˇ

ˇ

¯

“ O
´A3

λ5
ψ

}f}8
ˇ

ˇλψ ´
ψpNq

N
`Op

A

N
q
ˇ

ˇ

¯

.

By Equation (6), for every C1 function f : r0,`8r Ñ R with compact support in r0, As,
we thus have

1

ψpNq
µ`N pfq “

ż

f θ8 dLebr0,`8r

`O
´A3

λ5
ψ

}f}8
`ˇ

ˇλψ ´
ψpNq

N

ˇ

ˇ`Op
A

N
q
˘

¯

`O
´

}f 1}8
A2

N

¯

.

With g
L a,b

N ,ψ
: RÑ R given by t ÞÑ θ8p|t|q, by Lemma 3.2 and the comment following

it since 1
ψpNq

`

N
ψpNq

˘2 tends to 0 as N Ñ `8, it follows that

1

ψpNq
R

L a,b
N ,ψ

N
˚
á g

L a,b
N ,ψ

LebR ,

thus proving Equation (3) under the assumptions of Case 3. Furthermore, for every A ě 1
and every C1 function f : RÑ R with compact support contained in r´A,As, we have

1

ψpNq
R

L a,b
N ,ψ

N pfq “

ż

R
fptq g

L a,b
N ,ψ

ptq dt

`O
´A3

λ5
ψ

}f}8
`
ˇ

ˇλψ ´
ψpNq

N

ˇ

ˇ`
A

N

˘

¯

`O
´

}f 1}8
A3

N

¯

`O
´ A3

λ2
ψψpNq

}f 1}8

¯

. (11)

Since ψpNq „ λψN as N Ñ `8, this concludes the proof of Theorem 3.1. l

Let us give a numerical illustration of Theorem 3.1 when a “ b “ 1 and ψpNq “ N .
The following figure shows in red an approximation of the pair correlation function gLN,ψ

computed using RLN,ψ
2000 , and in blue the pair correlation function gLN,ψ, in the interval

r´4, 4s.
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4 Pair correlations with Euler weights without scaling

In this section, we study the weighted family

L a,b,ϕ
N “

`

pLa,bN “ tlnn : 0 ă n ď N, n ” a mod buqNPN, ω “ ϕ ˝ exp
˘

.

The (not normalised) pair correlation measure of the logarithms of integers congruent to a
modulo b at time N with multiplicities given by the Euler function ϕ, for the trivial scaling
function, is

rνN “
ÿ

pm,nqPIN

ϕpnq ϕpmq ∆lnm´lnn .

With the notation of the introduction, we have L 1,1,ϕ
N “ L ϕ

N and rνN “ R
L a,b,ϕ

N ,1

N .

Theorem 4.1 As N Ñ `8, the measures rνN on R, renormalized to be probability mea-
sures, weak-star converge to the measure absolutely continuous with respect to the Lebesgue
measure on R, with Radon-Nikodym derivative the function gL ϕ

N ,1
: s ÞÑ e´ 2 |s|:

rνN
} rνN}

˚
á gL ϕ

N ,1
LebR .

Furthermore, for all f P C1
c pRq and α P r12 , 1r, we have

rνN
} rνN}

pfq “

ż

sPR
fpsq e´ 2 |s| ds ` Ob

´ lnN

N1´α
}f}8 `

1

Nα
}e|s|f 1psq}8

¯

.

When a “ b “ 1, the measure rνN corresponds to the one denoted by R
L ϕ

N ,1
N in the

introduction. The above result gives the first assertion of Theorem 1.2 in the introduction.
Furthermore, it proves that the pair correlation function g

L a,b,ϕ
N ,1

exists and is independent
of a and b.
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Proof. The first assertion of Theorem 4.1 follows from the second one, by taking for
instance α “ 1

2 and by the density of C1
c pRq in C0

c pRq for the uniform norm.
For every q P N´ t0u with q ” a mod b, let q1 P N be such that q “ a` q1b and let Jq

be given by Equation (2). We now define

rωq “
ÿ

pPJq

ϕppq ∆ p
q
,

which is a finitely supported measure on r0, 1s, and nonzero if and only if q1 ‰ 0. In order
to compute its total mass, we will use the following elementary adaptation of Mertens’
formula (see for example [HaW, Thm. 330]). We have not found its proof in the literature,
hence we provide one, due to Fouvry.

Let pa, bq P N´ t0u be the greatest common divisor of a and b. Let

ca,b “
ϕppa, bqq

b pa, bq

ź

p prime, p | b

p1´
1

p2
q´1 .

Using the Eulerian product formula of the zeta function, giving
ź

p prime

p1´ 1
p2
q “ 1

ζp2q “
6
π2 ,

and the expression ϕpnq “ n
ź

p prime, p |n

p1´ 1
pq of the Euler function in terms of the prime

factors, we have 0 ă ca,b ď min
 

1
ϕpbq ,

π2

6 b

(

ď 1. In particular, ca,b tends to 0 as b Ñ `8

uniformly in a. Furthermore, there exists a constant C 1 ą 0 (independent of a, b) such that
ca,b ě

1
C1 b ln lnp3bq by for instance [HaW, Thm. 328]. When a “ b “ 1, we have ca,b “ 1,

and the following result is exactly Mertens’ formula.

Lemma 4.2 There exists C ą 0 such that for all integers a, b ě 1 and real numbers x ě 1,
we have

ˇ

ˇ

ˇ

ÿ

1ďnďx, n”a mod b

ϕpnq ´
3 ca,b
π2

x2
ˇ

ˇ

ˇ
ď C x lnp2xq .

Let Spx, a, bq be the above sum. This lemma implies an almost optimal uniformity in
the parameters a and b on the asymptotic of Spx, a, bq : since ca,b ě 1

C1 b ln lnp3bq , we have

Spx, a, bq „
3 ca,b
π2

x2

uniformly for 1 ď a ď b ď x
lnp2xqpln lnp3xqq2

.

Proof. (Fouvry) In this proof, for every function g of a variable in r1,`8r , possibly
depending on parameters, we use the notation Opgq in order to denote any function f on
r1,`8r such that there exists a constant C, independent of the variable and of all the
parameters, such that |f | ď C|g|. We do not need a more precise error term.

We refer for instance to [HaW, Sect. 16.3-16.4] for the definition of the Möbius function
µ : N´ t0u Ñ t´1, 0, 1u, of the Dirichlet convolution f ˚ g of two maps f, g : N´ t0u Ñ R
and for the Möbius inversion formula, which in particular gives that ϕ “ µ ˚ id. Hence

Spx, a, bq “
ÿ

1ďnďx
n”a mod b

ÿ

md“n

µpdqm “
ÿ

1ďdďx

µpdq
ÿ

1ďmďx{d
md”a mod b

m .
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Let us fix d ě 1. Let us consider the congruence equation md ” a mod b with unknown
m. It has no solution if the greatest common divisor pb, dq of b and d does not divide a. If
pb, dq does divide a, let a1 “ a

pb,dq , b
1 “ b

pb,dq and d
1 “ d

pb,dq , so that the congruence equation
is equivalent to md1 ” a1 mod b1. Since d1 is coprime with b1, it is invertible modulo b1,
and we denote its inverse by d1. The congruence equation becomes m ” a1 d1 mod b1. The
classical formula

ÿ

1ďmďy, m” a1 d1mod b1

1 “
y
b1 ` Op1q gives, by a summation by parts, the

equality
ÿ

1ďmďy, m” a1 d1 mod b1

m “
y2

2b1
`Opyq .

Therefore

Spx, a, bq “
ÿ

1ďdďx, pb,dq|a

µpdq
´

pb, dq

2 b

`x

d

˘2
`O

`x

d

˘

¯

“
x2

2 b

´

ÿ

1ďdďx, pb,dq|a

µpdq
pb, dq

d2

¯

`Opx lnp2xqq .

By decomposing d into prime powers and using the definition of the Möbius function, we
have

ÿ

1ďdďx, pb,dq|a

µpdq
pb, dq

d2
“

ÿ

dě1, pb,dq|a

µpdq
pb, dq

d2
`O

` b

x

˘

“
ź

p prime, p - b
p1´

1

p2
q

ź

p prime, p | a, p | b

p1´
1

p
q `O

` b

x

˘

“
1

ζp2q

ź

p prime, p | b

p1´
1

p2
q´1 ϕppa, bqq

pa, bq
`O

` b

x

˘

“
6 b ca,b
π2

`O
` b

x

˘

.

This proves Lemma 4.2. l

Lemma 4.2 says that if q1 ‰ 0 (that is, when q ą a), then

} rωq} “
3 ca,b q

2

π2
`Opq lnp2qqq , (12)

and in particular 1
} rωq}

“ π2

3 ca,b q2

`

1`Obp
ln q
q q

˘

.

Lemma 4.3 We have as q Ñ `8,

rωq
} rωq}

˚
á 2 t dLebr0,1sptq .

More precisely, for all f P C1pr0, 1sq and α P r12 , 1 r , we have

rωq
} rωq}

pfq “

ż 1

0
2 t fptq dt ` O

´ ln q

q1´α
}f}8 `

1

qα
}f 1}8

¯

.

17



Proof. The first assertion follows from the second one, by taking for instance α “ 1
2 and

by the density of C1
c pRq in C0

c pRq for the uniform norm.
Let Q “ tqαu P N´t0u. For all n P t0, . . . , Q´ 1u and t P sn q´α, pn` 1qq´αs, we have

by the mean value theorem

fptq “ fpn q´αq `Opq´α }f 1}8q .

Since n` 1 ď Q ď qα, we hence have

ż pn`1qq´α

n q´α
2 t fptq dt “

`

fpn q´αq `Opq´α }f 1}8q
˘

ż pn`1qq´α

n q´α
2 t dt

“
1

qα
`

p2n` 1q q´αfpn q´αq `Opn q´2α}f 1}8q
˘

. (13)

Using the formula for 1
} rωq}

following Equation (12) and twice Lemma 4.2, we have

ÿ

p P sn q1´α, pn`1qq1´αsXJq

f
`p

q

˘ 1

} rωq}
ϕppq

“
`

fpn q´αq `Opq´α }f 1}8q
˘ π2

3 ca,b q2

`

1`O
` ln q

q

˘˘

ˆ

´ 3 ca,bppn` 1q2 ´ n2q

π2
q2´2α `O

`

pn` 1qq1´α lnppn` 1qq1´αq
˘

¯

“
1

qα

´

p2n` 1q q´α fpn q´αq `O
` n

q2α
}f 1}8 `

n ln q

q
}f}8

˘

¯

. (14)

Again using Equation (12) and Lemma 4.2, since |1´Qq´α| “ Opq´αq, we have

ÿ

p P sQq1´α, qrXJq

ϕppq

} rωq}

ˇ

ˇf
`p

q

˘ˇ

ˇ “ O
`q2 ´ pQq1´αq2

q2
}f}8

˘

“ O
`

q´α }f}8
˘

. (15)

By cutting the sum defining rωq and the integral from 0 to 1, by using Equations (13), (14)
and (15), since Q ď qα and again |1´Qq´α| “ Opq´αq, we have (using α ě 1

2 for the last
equality)

ˇ

ˇ

ˇ

rωq
} rωq}

pfq ´

ż 1

0
2 t fptq dt

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

Q´1
ÿ

n“0

´

ÿ

p P sn q1´α, pn`1qq1´αsXJq

ϕppq

} rωq}
f
`p

q

˘

´

ż pn`1qq´α

n q´α
2 t fptq dt

¯ ˇ

ˇ

ˇ

`
ÿ

p P sQq1´α, qrXJq

ϕppq

} rωq}

ˇ

ˇf
`p

q

˘
ˇ

ˇ `

ż 1

Qq´α
2 t |fptq| dt

“ Opq´α }f}8q `
1

qα

Q´1
ÿ

n“0

O
` n

q2α
}f 1}8 `

n ln q

q
}f}8

˘

“ Opq´α }f}8q `
1

qα
O
` Q2

q2α
}f 1}8 `

Q2 ln q

q
}f}8

˘

“ O
` ln q

q1´α
}f}8 `

}f 1}8
qα

˘

.

18



This proves Lemma 4.3. l

For every N P N´ t0u, let us define

rµ´N “
ÿ

pm,nqPI´N

ϕpmq ϕpnq ∆m
n
“

ÿ

1ďqďN, q”a mod b

ϕpqq rωq ,

which is a finitely supported measure on r0, 1s, which is nonzero if N is large enough. By
Lemma 4.2, its total mass is

}rµ´N} “
ÿ

1ďqďN, q”a mod b

ϕpqq }rωq} “
ÿ

pm,nqPI´N

ϕpmq ϕpnq

“
1

2

´

`

ÿ

1ďqďN
q”a mod b

ϕpqq
˘2
´

ÿ

1ďqďN
q”a mod b

ϕpqq2
¯

“
9 c2

a,bN
4

2π4
`OpN3 lnNq .

For f P C1pr0, 1sq, by Lemma 4.3, by Equation (12), since q1`αpln qq ď N1`αplnNq and
q2´α ď N2´α when q occurs in the summations below, and by Lemma 4.2, we have

rµ´N pfq

}rµ´N}
“

1

}rµ´N}

ÿ

1ďqďN, q”a mod b

ϕpqq }rωq}
rωqpfq

}rωq}

“

ż 1

0
2 t fptq dt`

1

}rµ´N}

ÿ

1ďqďN
q”a mod b

ϕpqq }rωq} O
` ln q

q1´α
}f}8 `

1

qα
}f 1}8

˘

“

ż 1

0
2 t fptq dt`O

` 1

N4

ÿ

1ďqďN
q”a mod b

ϕpqq
`

q1`αpln qq }f}8 ` q
2´α }f 1}8

˘

“

ż 1

0
2 t fptq dt`O

` lnN

N1´α
}f}8 `

1

Nα
}f 1}8

˘

.

For every N P N´ t0u, let us define

rν˘N “
ÿ

pm,nqPI˘N

ϕpmq ϕpnq ∆ln m
n
,

so that rν´N “ ln˚ rµ
´
N “ rνN |s´8, 0s, and }rν´N} “ }rµ

´
N}. We have, for every f P C1

c ps ´8, 0sq,

rν´N pfq

}rν´N}
“

rµ´N pf ˝ lnq

}rµ´N}
“

ż 1

0
2 t f ˝ lnptq dt`O

` lnN

N1´α
}f ˝ ln }8 `

1

Nα
}pf ˝ lnq1}8

˘

“

ż 0

´8

2 fpsq e2s ds`O
` lnN

N1´α
}f}8 `

1

Nα
}e´sf 1psq}8

˘

.

Since rνN “ rν´N ` rν`N , since rν
`
N “ sg˚ rν

´
N , we have }rν˘N} “

1
2 }rνN} and Theorem 4.1 follows.

l

Let us give some numerical illustrations of Theorem 4.1 with a “ b “ 1. For every
N P N´ t0u, let

rDN : s ÞÑ

ř

0ăm‰nďN : plnm´lnnqďs ϕpmq ϕpnq
ř

0ăm‰nďN ϕpmq ϕpnq
.
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This is the cumulative distribution function at time N of the unscaled differences of the
logarithms of natural numbers weighted by the Euler function, that is, for all s, s1 P R with
s ă s1, we have

R
L ϕ

N , 1
N

}R
L ϕ

N , 1
N }

p ss, s1 sq “ rDN ps
1q ´ rDN psq .

Theorem 4.1 with a “ b “ 1 says that the function rDN pointwise converges as N Ñ `8

to the C1 (but not C2) function

rD : s ÞÑ
! 1

2 e
2s if s ď 0

1´ 1
2 e

´2s if s ě 0

(with derivative rD 1 “ gL ϕ
N ,1

). This is illustrated by the figure below, which shows rD15 in
red.

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

5 Pair correlations with Euler weights and linear scaling

In this section, we study the pair correlations of the family L a,b,ϕ
N defined at the beginning

of Section 4, now with a linear scaling. We leave to the reader the study of a general
scaling ψ, assumed to converge to `8. For every N P N´ t0u, the (not normalised) pair
correlation measure of the logarithms of integers, congruent to a modulo b, at time N
with multiplicities given by the Euler function and with scaling N is the (Borel, positive)
measure with finite support in R defined by

rRN “
ÿ

pm,nqPIN

ϕpmq ϕpnq ∆Nplnm´lnnq .

With the notation of the introduction, we have rRN “ R
L a,b,ϕ

N , id

N .
For every k P N ´ t0u, we consider the arithmetic constant ca,b,k defined in Equation

(23) of Appendix A. Note that ca,b,k ą 0 is uniformly bounded from above when a, b, k
vary in N ´ t0u, and has a positive lower bound in terms of a and k when b is fixed, by
Equation (24) of Appendix A.

Theorem 5.1 As N Ñ `8, the family
`

1
N3

rRN

˘

NPN of measures on R weak-star con-
verges to the measure absolutely continuous with respect to the Lebesgue measure on R,
with Radon-Nikodym derivative the function

g
L a,b,ϕ

N , id
: s ÞÑ

1

s4

ÿ

1ďkďt |s| u, k”0 mod b

ca,b,k k
3 ,
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that is, as N Ñ `8,
1

N3
rRN

˚
á g

L a,b,ϕ
N , id

LebR .

Furthermore, for all f P C1pRq with compact support contained in r´A,As, where A ě 1,
and for any α P r12 , 1 r , we have

1

N3
rRN pfq “

ż

sPR
fpsq g

L a,b,ϕ
N , id

psq ds ` Ob

´A4 ln2N

N1´α
}f}8 `

A3

Nα
}f 1}8

¯

.

When a “ b “ 1, the measure rRN corresponds to the one denoted by R
L ϕ

N , id
N in the

introduction. The above result gives the second assertion of Theorem 1.2 in the introduc-
tion, with pair correlation function gL ϕ

N , id
“ gL 1,1,ϕ

N , id
, using Mirsky’s value of c1,1,k given

by Equation (25), as explained in Remark A.9 of Appendix A.
Note that, as the proof below shows, the total mass of rRN is equivalent to cN4 as

N Ñ `8, for some constant c ą 0, hence renormalising rRN to be a probability measure
makes it weak-star converge to the zero measure on the noncompact space R (a total loss
of mass phenomenon).

Proof. The first assertion of Theorem 5.1 follows from the second one, by taking for
instance α “ 1

2 and by the density of C1
c pRq in C0

c pRq for the uniform norm.
The change of variables pm,nq ÞÑ pn,mq in IN gives rRN |s´8,0s “ sg˚

`

rRN |r0,`8r
˘

. We
will thus only study the convergence of the measures 1

N3
rRN on r0,`8r, and deduce the

global result by the symmetry of g
L a,b,ϕ

N , id
.

For every N P N´ t0u and for every p P N with p ” 0 mod b and 0 ă p ă N , let Jp,N
be given by Equation (4). We now define the key auxiliary measure by

rωp,N “
ÿ

qPJp,N

ϕpqq ϕpq ` pq ∆ q
N p

.

Then rωp,N is a measure on r0,`8r, with finite support contained in r 1
N p ,

N´p
N p s, hence in

r0, 1s. The measure rωp,N is nonzero if and only if N ě a` p. In order to compute its total
mass, we use an adaptation with congruences of a formula by Mirsky (see [Mir, Thm. 9])
proved in the appendix by Fouvry. Theorem A.1 applied with x “ N ´ p and k “ p says
that if N ě a` p, then

} rωp,N} “
ca,b,p

3
pN ´ pq3 `O

`

N2pp` ln2Nq
˘

, (16)

and in particular 1
} rωp,N }

“ 3
ca,b,p pN´pq3

`

1`OpN
2pp`ln2Nq
pN´pq3

q
˘

.

The next result implies that the measures rωp,N , once normalized to be probability
measures, weak-star converge to the measure dµptq “ 3

`

N p
N´p

˘3
t2 dLeb

r 1
N p

,N´p
N p

s
, which is

absolutely continuous with respect to the Lebesgue measure on the interval r 1
N p ,

N´p
N p s.
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Lemma 5.2 For every p P N with 0 ă p ă N and p ” 0 mod b, for every α P s 0, 1 r and
for every f P C1

c ps0, 1sq, we have

rωp,N
}rωp,N}

pfq “

ż
N´p
N p

1
N p

3
` N p

N ´ p

˘3
t2 fptq dt

`O
´

` pN pq3

pN ´ pq3pN pqα
`
pN pq3pp` lnpN pqq2

pN ´ pq3pN pq1´α
˘

}f}8 `
1

pN pqα
}f 1}8

¯

.

Proof. As in the proof of Lemma 4.3, we will estimate the difference of the main terms
in the above centered formula by cutting the sum defining the renormalized measure rωp,N
and by cutting similarly the integral from 1

N p to N´p
N p .

Let Q “ tpN pqαN´pN p u P N. For all n P t0, . . . , Q´ 1u, we thus define

Sn “
ÿ

q P sn pN pq1´α, pn`1qpN pq1´αsXJp,N

f
` q

N p

˘ 1

} rωp,N}
ϕpqq ϕpq ` pq

and

In “

ż pn`1qpN pq´α

n pN pq´α
3
` N p

N ´ p

˘3
t2 fptq dt .

Let us also define the following remaining terms

Send “
ÿ

q P sQ pN pq1´α, N´psXJp,N

f
` q

N p

˘ 1

} rωp,N}
ϕpqq ϕpq ` pq

and

Iend “

ż
N´p
N p

Q pN pq´α
3
` N p

N ´ p

˘3
t2 fptq dt .

For all t P sn pN pq´α, pn` 1qpN pq´αs, we have by the mean value theorem

fptq “ fpn pN pq´αq `OppN pq´α }f 1}8q .

Using the formula for 1
} rωp,N }

following Equation (16) and twice Theorem A.1, and using

the inequality pn` 1q ď Q ď pN pqαN´pN p , we have

Sn “
´

fpn pN pq´αq `OppN pq´α }f 1}8q
¯´ 1

pN ´ pq3
`

1`O
`N2pp` ln2Nq

pN ´ pq3
˘ ˘

¯

ˆ

´

`

pn` 1qpN pq1´α
˘3
´
`

npN pq1´α
˘3

`O
` `

p` pn` 1qpN pq1´α
˘2`

p` lnppn` 1qpN pq1´αq
˘2 ˘

¯

“
pN pq3

pN ´ pq3pN pqα

´

p3n2 ` 3n` 1qpN pq´2αfpn pN pq´αq `O
` n2

pN pq3α
}f 1}8

˘

`O
` ` n2N2pp` ln2Nq

pN ´ pq3pN pq2α
`
pn` p

pNpq1´α
q2pp` lnpN ´ pqq2

pN pq1`α
˘

}f}8
˘

¯

. (17)
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We also have

In “
´

fpn pN pq´αq `OppN pq´α }f 1}8q
¯

ż pn`1qpN pq´α

n pN pq´α
3
` N p

N ´ p

˘3
t2 dt

“
pN pq3

pN ´ pq3pN pqα

´

p3n2 ` 3n` 1qpN pq´2αfpn pN pq´αq `O
` n2

pN pq3α
}f 1}8

˘

¯

. (18)

Similarly, since Q ě pN pqαN´pN p ´ 1 and N ´ p ď N p, we have

Send “ O
´

pN ´ pq3 ´ pQpN pq1´αq3

pN ´ pq3
}f}8

¯

“ O
´

pN pq3

pN ´ pq3pN pqα
}f}8

¯

(19)

and

Iend “ O
´

` N p

N ´ p

˘3
´

`N ´ p

N p

˘3
´ pQpN pq´αq3

¯

}f}8

¯

“ O
´

pN pq3

pN ´ pq3pN pqα
}f}8

¯

.

(20)

Note that p` ln2N ď pp` lnpN pqq2, that
Q´1
ÿ

n“0

n2 “ O
`

pN pq3α´3pN ´ pq3
˘

and that

Q´1
ÿ

n“0

`

n`
p

pNpq1´α
˘2
“ O

``

Q`
p

pNpq1´α
˘3˘

“ O
`pN pq3α

p3

˘

“ O
`

pN pq3α
˘

. (21)

Putting together Equations (17), (18), (19), (20) and (21), we have (again using the in-
equality N ´ p ď N p)

ˇ

ˇ

ˇ

rωp,N
}rωp,N}

pfq ´

ż
N´p
N p

1
N p

3
` N p

N ´ p

˘3
t2 fptq dt

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

Q´1
ÿ

n“0

pSn ´ Inq ` Send ´ Iend

ˇ

ˇ

ˇ

ď

Q´1
ÿ

n“0

|Sn ´ In| ` |Send| ` |Iend|

“ O
´

pN pq3

pN ´ pq3pN pqα
}f}8

¯

`
pN pq3

pN ´ pq3pN pqα

Q´1
ÿ

n“0

O
´ n2

pN pq3α
}f 1}8`

` n2N2pp` ln2Nq

pN ´ pq3pN pq2α
`

`

n` p
pNpq1´α

˘2
pp` lnpN ´ pqq2

pN pq1`α
˘

}f}8

¯

“ O
´

pN pq3

pN ´ pq3pN pqα
}f}8 `

1

pN pqα
}f 1}8 `

pN pq3pp` lnpN pqq2

pN ´ pq3pN pq1´α
}f}8

¯

.

This proves Lemma 5.2. l

Now, let us introduce the sum

rµ`N “
ÿ

0ăpăN, p”0 mod b

ι˚rωp,N “
ÿ

1ďqďN´p, 0ăpăN
q”a mod b, p”0 mod b

ϕpqq ϕpq ` pq ∆N p
q
,

where as previously ι : t ÞÑ 1
t (noting that the measures rωp,N are supported in s0,`8r ).
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Lemma 5.3 For every f P C1pr0,`8rq with compact support contained in r0, As, where
A ě 1, we have

ˇ

ˇ rRN pfq ´ rµ`N pfq
ˇ

ˇ “ OpA3N2 }f 1}8q .

Proof. Using the change of variables pp, qq ÞÑ pm “ p` q, n “ qq, we have

rRN |r0,`8r“
ÿ

pm,nqPI`N

ϕpmq ϕpnq ∆N ln m
n
“

ÿ

0ăpăN, 1ďqďN´p
p”0 mod b, q”a mod b

ϕpqq ϕpq ` pq ∆N lnp1` p
q
q .

As in the proof of Lemma 3.2, since the support of f is contained in r0, As, if a pair pp, qq
occurs in the index of the sum defining either rRN pfq or rµ`N pfq with nonzero corresponding
summand, then p

q “ O
`

A
N

˘

and p “ OpAq. By the mean value theorem, we then have

ˇ

ˇ f
`

N
p

q

˘

´ f
`

N lnp1`
p

q
q
˘ ˇ

ˇ ď }f 1}8
ˇ

ˇN
p

q
´N lnp1`

p

q
q
ˇ

ˇ

“ }f 1}8N O
``p

q

˘2˘
“ O

`A2

N
}f 1}8

˘

.

Thus, using Theorem A.1 and Equation (24) in Appendix A, we have

ˇ

ˇ rRN pfq ´ rµ`N pfq
ˇ

ˇ ď
ÿ

1ďpďOpAq, 1ďqďN

ϕpqq ϕpq ` pqO
`A2

N
}f 1}8

˘

ď
ÿ

1ďpďOpAq

OpN3qO
`A2

N
}f 1}8

˘

“ O
`

A3N2 }f 1}8
˘

.

This proves Lemma 5.3. l

Lemma 5.4 For all α P r12 , 1r and f P C1pr0,`8rq with compact support contained in
r0, As, where A ě 1, we have, as N Ñ `8,

1

N3
rµ`N pfq “

ż 8

0
fpsq g

L a,b,ϕ
N , id

psq ds`O
´A4 ln2N

N1´α
}f}8 `

A3

Nα
}f 1}8

¯

.

Proof. Let A and f be as in the statement. Since the support of rωp,N is contained in
r 1
N p ,

N´p
N p s, the support of ι˚rωp,N is contained in r N p

N´p , N ps. In particular the measures
rµ`N and g

L a,b,ϕ
N , id

psq ds both vanish on r0, 1s. Hence we may assume that the support of f
is contained in r1,`8r , so that the support of f ˝ ι is contained in s0, 1s.

Note that }f ˝ ι}8 “ }f}8 and }pf ˝ ιq1}8 “ }t2f 1ptq}8 ď A2}f 1}8, since the support
of f 1 is contained in r0, As.

By the definition of rµ`N , by Equation (16) and Lemma 5.2, since N ´p ď N and by the
restriction on p, explained in the proof of Lemma 5.3, in the summation defining rµ`N pfq
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due to the support of f , we have

rµ`N pfq “
ÿ

0ăpăN, p”0 mod b

ι˚rωp,N pfq “
ÿ

0ăpăN, p”0 mod b

}rωp,N}
rωp,N
}rωp,N}

pf ˝ ιq

“
ÿ

0ăpăN, p”0 mod b, pďOpAq

´ca,b,p
3
pN ´ pq3 `O

`

N2pp` ln2Nq
˘

¯

ˆ

´

ż
N´p
N p

1
N p

3
` N p

N ´ p

˘3
t2 f ˝ ιptq dt

`O
´

` pN pq3

pN ´ pq3pN pqα
`
pN pq3pp` lnpN pqq2

pN ´ pq3pN pq1´α
˘

}f ˝ ι}8 `
1

pN pqα
}pf ˝ ιq1}8

¯¯

“ N3
ÿ

0ăpăN, p”0 mod b, pďOpAq

ca,b,p p
3

ż N p

N p
N´p

1

s4
fpsq ds

`N3
ÿ

0ăpăN, p”0 mod b, pďOpAq

´

O
` p3N2pp` ln2Nq

pN ´ pq3
}f}8

˘

`O
´

`p3´α

Nα
`
p2`αpp` lnpN pqq2

N1´α

˘

}f}8 `
A2

pN pqα
}f 1}8

¯¯

.

Noting that
ż

N p
N´p

p

1
s4

fpsq ds “ O
`

N2p`N p2`p3

pN pq3
}f}8

˘

, we therefore have, for N large

compared to A,

1

N3
rµ`N pfq “

´

ÿ

0ăpăN, p”0 mod b

ca,b,p p
3

ż `8

p

1

s4
fpsq ds

¯

`O
`A4

N
}f}8

˘

`O
´A4 ln2N

N
}f}8 `

` A4

Nα
`
A4 ln2N

N1´α

˘

}f}8 `
A3

Nα
}f 1}8

¯

“

ż `8

0
fpsq g

L a,b,ϕ
N , id

psq ds`O
´

` A4

Nα
`
A4 ln2N

N1´α

˘

}f}8 `
A3

Nα
}f 1}8

¯

.

This proves Lemma 5.4, using that A4

Nα “ OpA
4 ln2N
N1´α q if α ě 1

2 . l

Theorem 5.1 now follows from Lemmas 5.3 and 5.4, as explained in the beginning of
the proof. l

We close this section with a numerical illustration of Theorem 5.1 when a “ b “ 1. The
following figure shows in red an approximation of the pair correlation function gL ϕ

N , id
“

gL 1,1,ϕ
N , id

computed using rR2000 in the interval r´10, 10s, to be compared with the graph
of gL ϕ

N , id
in the introduction.
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The fact that the graph of gL ϕ
N , id

has a horizontal asymptote near ˘8 follows from
the following result.

Proposition 5.5 We have limsÑ˘8 gL ϕ
N , id

psq “ 1
4

ź

p prime

`

1´ 2
p2

˘`

1` 1
p2pp2´2q

˘

.

Proof. (Fouvry) In this proof, we use the same convention concerning Op¨q as in the
beginning of the proof of Lemma 4.2.

We consider the multiplicative2 function f : n ÞÑ
ź

p prime, p |n

`

1 `
1

ppp2 ´ 2q

˘

and the

constant C1 “
ź

p prime

`

1`
1

p2pp2 ´ 2q

˘

. Let us prove that uniformly in x ě 1, we have

ÿ

1ďnďx

n3fpnq “
C1

4
x4 `Opx3q . (22)

By Equation (1) and the symmetry under s ÞÑ ´s of gL ϕ
N ,id

, this proves Proposition 5.5.
Let g “ f ˚ µ be the Dirichlet convolution of f with the Möbius function µ. Then g is

multiplicative. For every prime p, we have

gppq “ fppqµp1q ` fp1qµppq “
1

ppp2 ´ 2q

and gppkq “ fppkqµp1q` fppk´1qµppq “ 0 for every k ě 2. Therefore, for every m ě 1, we
have

gpmq “ µpmq2
ź

p prime, p |m

1

ppp2 ´ 2q
.

Lemma 5.6 For every m ě 1, we have 0 ď gpmq ď m´3
ź

p prime

`

1´
2

p2

˘´1.

Proof. This is immediate if µpmq “ 0. Otherwise, m “ p1 . . . pk with p1, . . . , pk pairwise
distinct primes, and

0 ď m3gpmq “
k
ź

i“1

p3
i

pipp2
i ´ 2q

“

k
ź

i“1

`

1´
2

p2
i

˘´1
ď

ź

p prime

`

1´
2

p2

˘´1
ă `8 . l

2Recall that an arithmetic function f is multiplicative if fp1q “ 1 and for all coprime integers m,n, we
have fpmnq “ fpmqfpnq.
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Therefore, using the Möbius inversion formula f “ g ˚ 1 for the first equality, Lemma
5.6 for the fifth equality and an Eulerian product (since g is multiplicative and vanishes
on integers divisible by a nontrivial square) for the sixth equality, we have, with Spxq “
ř

1ďkďx fpkq,

Spxq “
ÿ

m,ně1
mnďx

gpmq “
ÿ

1ďmďx

gpmq
ÿ

1ďnďx{m

1 “
ÿ

1ďmďx

gpmq
` x

m
`Op1q

˘

“ x
8
ÿ

m“1

gpmq

m
`O

`

x
ÿ

měx

gpmq

m

˘

`O
`

ÿ

1ďmďx

gpmq
˘

“ x
8
ÿ

m“1

gpmq

m
`Op1q

“ x
ź

p prime

`

1`
1

p2pp2 ´ 2q

˘

`Op1q “ C1 x`Op1q .

By summation by parts, we hence have
ÿ

1ďnďx

n3fpnq “

ż x

1
t3drSptqs “

“

t3pC1 t`Op1qq
‰x

1
´ 3

ż x

1
t2pC1 t`Op1qq dt

“
C1

4
x4 `Opx3q .

This proves Equation (22) and concludes the proof of Proposition 5.5. l

6 Pair correlations of common perpendiculars in the modular
curve PSL2pZqzH2

R

In this section, we give a geometric motivation for the introduction of the Euler function as
multiplicities in the family L ϕ

N of logarithms of natural numbers. We refer to [PP1, BPP]
for more information.

Let Y be a nonelementary geodesically complete connected proper locally CATp´1q
good orbispace, so that the underlying space of Y is ΓzrY with rY a geodesically complete
proper CATp´1q space and Γ a discrete group of isometries of rY preserving no point nor
pair of points in rY X B8 rY . Let D´ and D` be connected proper nonempty properly im-
mersed locally convex closed subsets of Y , that is, D´ and D` are the locally finite Γ-orbits
of proper nonempty closed convex subsets rD´ and rD` of rY . A common perpendicular α
between D´ and D` is the Γ-orbit of the unique shortest arc rα between rD´ and γ rD` for
some γ P Γ such that dp rD´, γ rD`q ą 0. The multiplicity multpαq of α is the ratio A{B
where
‚ A is the number of elements pγ´, γ`q P pΓ{ΓD´q ˆ pΓ{ΓγD`q such that rα is the

unique shortest arc between γ´ rD´ and γ`γ rD`, and
‚ B is the cardinality of the pointwise stabilizer of rα in Γ.

The length λpαq of the common perpendicular α is the length of the geodesic segment rα in
rY . For every ` in the set OL6pD´, D`q of lengths of common perpendiculars, the length
multiplicity of ` is the sum of the multiplicities of the common perpendiculars between D´,
D` having the length ` :

ωp`q “
ÿ

α common perpendicular
beween D´ and D` with λpαq“`

multpαq .
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If PerppD´, D`q is the set of all common perpendiculars fromD´ toD` with multiplicities,
then pλpαqqαPPerppD´, D`q is the marked ortholength spectrum from D´ to D`, and the set
OLpD´, D`q “ pOL6pD´, D`q, ωq of the lengths of the common perpendiculars endowed
with the length multiplicity ω is the ortholength spectrum from D´ to D`.

The pair correlation measure of the common perpendiculars from D´ to D` is the pair
correlation measure of the family

FD´,D` “
`

pFN “ OL6pD´, D`q X r0, 2 lnN sqNPN, ω
˘

.

We study the asymptotic properties of the pair correlation measures R
FD´,D` , ψ

N for ap-
propriately growing scaling fonctions ψ in [PP2, §4], and we only consider in this paper
the following example.

Let
rY “ H2

R “
`

tz P C : Im z ą 0u, ds2 “
dpRe zqdpIm zq

pIm zq2
˘

be the upper halfspace model of the real hyperbolic plane with constant curvature ´1. For
every b P N´t0u, let Γ0rbs be Hecke’s congruence subgroup modulo b of the modular group
PSL2pZq, which is the preimage of the upper triangular subgroup of PSL2pZ{bZq under
the reduction morphism PSL2pZq Ñ PSL2pZ{bZq. It acts faithfully by homographies
on H2

R, and is a lattice in the isometry group of H2
R. Let Y b “ Γ0rbszH2

R, which is a
finite (ramified) cover of the modular curve PSL2pZqzH2

R. Let rD´ “ rD` be the horoball
H8 “ tz P C : Im z ě 1u in H2

R, whose image D´ “ D` in Y b is a Margulis neighbourhood
of a cusp of Y b. If b “ 1, then D´ “ D` is actually the maximal Margulis neighbourhood
of the unique cusp of Y b. In order to emphasize the dependence on the integer b, we will
use the notation F b

D´,D` “ FD´,D` for the family of lengths of common perpendiculars
between D´ and D` in Y b.

The following result says that the pair correlation measures of the common perpendic-
ulars from this Margulis cusp neighbourhood to itself are, up to the homothety of factor
2, the pair correlation measures of the logarithms of the natural numbers congruent to 0
modulo b, with multiplicities given by the Euler function ϕ.

We use in the following result the notation R
L b,b,ϕ

N , ψ

N of the introduction with

L b,b,ϕ
N “ p pLN “ tlnn : 0 ă n ď N, n ” 0 mod buqNPN, ω “ ϕ ˝ expq .

Proposition 6.1 For every scaling function ψ and every N P N, if f : t ÞÑ 2t, then

R
F b
D´,D`

, ψ

N “ f˚
`

R
L b,b,ϕ

N , ψ

N

˘

.

Proof. The orbit of H8 under Γ0rbs consists, besides H8 itself, of the Euclidean disks
H p

q
of Euclidean radius 1

2q2
tangent to the horizontal line at the rational numbers p

q with
q ą 0, q ” 0 mod b and pp, qq “ 1.
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Every common perpendicular between D´

and D` has a unique representative which starts
from the Euclidean segment ri, i ` 1r on the
boundary of H8 and ends on the boundary of
H p

q
with p

q P QXr0, 1r and q ” 0 mod b. Its hy-
perbolic length is 2 ln q. In particular, we have
OL6pD´, D`q “ t2 ln q : q ě 2, q ” 0 mod bu. 0 1

q
p
q

2 ln q

i` 1i

1

1
2q2

H8

Since PSL2pRq acts simply transitively on the unit tangent bundle of H2
R, the multi-

plicities of the common perpendiculars are equal to 1. Hence the length multiplicity of
2 ln q is exactly the number of elements p P Z{qZ coprime with q, that is, ωp2 ln qq “ ϕpqq.
l

The following results, computing the pair correlation functions at trivial or linear scaling
of the lengths of the common perpendiculars from the Margulis cusp neighbourhood at
infinity to itself in Hecke’s modular curve Γ0rbszH2

R, follow immediately from Theorems
4.1 and 5.1 with a “ b, which also give an error term, using Proposition 6.1.

Corollary 6.2 (1) For every b P N ´ t0u, as N Ñ `8, the pair correlation measures

R
F b
D´,D`

, 1

N on R, renormalized to be probability measures, weak-star converge to a measure
absolutely continuous with respect to the Lebesgue measure on R, with pair correlation
function given by s ÞÑ 1

2 e
´ |s|.

(2) For every b P N´t0u, as N Ñ `8, the pair correlation measures 1
N3 R

F b
D´,D`

, id

N on R
weak-star converge to a measure absolutely continuous with respect to the Lebesgue measure
on R, with pair correlation function given by s ÞÑ 8

s4

ÿ

1ďkďt
|s|
2

u, k”0 mod b

cb,b,k k
3, where cb,b,k

is defined in Equation (23). l

A Appendix : A Mirsky formula with congruences,
by Etienne Fouvry

The aim of this appendix is to give a proof of a version with congruences, and with a
uniform estimate on the parameters, of an arithmetic formula due to Mirsky [Mir]. This
improved version is used in the proof of Theorem 5.1.

Let a, b, k P N be fixed integers satisfying a, b ě 1. Denoting by ϕ the Euler function,
we give an asymptotic formula, as x ě 1 tends to `8, for the quantity

Spx; a, b, kq “
ÿ

1ďnďx
n” a mod b

ϕpnq ϕpn` kq .

Throughout this appendix, the letter p denotes as usual a varying positive prime in Z, and
we use the convention on Op¨q of the beginning of Lemma 4.2. For all integers α, β ě 1,
we denote as usual by pα, βq and rα, βs their positive gcd et lcm, respectively.
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Theorem A.1 Let

ca,b,k “
1

b

ź

p
pp,bq | a`k

`

1´
pp, bq

p2

˘

ź

p
pp, bq | a

`

1´ pp, bq
κa,b,kppq κ

1
kppq

p2

˘

, (23)

where

κa,b,kppq “

#

p1´ pp,bq
p2
q´1 if pp, bq | a` k

1 otherwise
and κ1kppq “

"

1´ 1
p if p | k

1 otherwise.

There exists an absolute constant K ą 0 such that for all integers a, b ě 1 and k ě 0 and
real number x ě 1, we have

ˇ

ˇ Spx; a, b, kq ´ ca,b,k
` x3

3
`
k x2

2

˘
ˇ

ˇ ď K
`

xpx` kqpln 2xq lnp2x` kq
˘

.

Before proving this theorem, we give some considerations on the constant ca,b,k in
Remark A.2 and some considerations on the uniformity properties of the asymptotic on
Spx; a, b, kq in Remark A.3.

Remark A.2 We start from the obvious inequalities, for every prime p,

1 ď κa,b,kppq ď 2 and
1

2
ď κ1kppq ď 1 .

From these inequalities and the definition (23), we deduce that ca,b,k satisfies the fol-
lowing inequalities

1

b
Λpa, b, kq

ź

pě3
pp,bq|a`k

´

1´
pp, bq

p2

¯

ź

pě3
pp,bq|a

´

1´ 2 ¨
pp, bq

p2

¯

ď ca,b,k ă
1

b
, (24)

where the local factor Λpa, b, kq, obtained by separating the case p “ 2 in the Euler
products, is defined by

Λpa, b, kq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

5{8 if 2 - b and 2 | k,

1{2 if 2 - b and 2 - k,
1 if 2 | b, 2 - a and 2 | k,

1{2 if 2 | b, 2 - a and 2 - k,
1{4 if 2 | b, 2 | a and 2 | k,

1{2 if 2 | b, 2 | a and 2 - k .

We have the positive lower bound Λpa, b, kq ě 1
4 in all cases. This shows in particular that

ca,b,k ą 0. A deeper look also leads to the statement that the positive product b ca,b,k can
be arbitrarily small : it suffices to consider the case where all the integers a, b and k are
all divisible by the t smallest primes, and letting the integer t tend to infinity.

Theorem A.1 (without the uniform control on k) was already known when a “ b “ 1,
this result is due to [Mir, Thm. 9, Eq. (30)], with

c1,1,k “
ź

p

`

1´
2

p2

˘

ź

p | k

`

1`
1

ppp2 ´ 2q

˘

. (25)

For this computation, see Remark A.9 below.
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Remark A.3 Consider the case where a “ b “ 1. Since Equation (25) gives the lower
bound c1,1,k ě

ś

p

`

1 ´ 2
p2

˘

ą 0 for every k P N, by discussing separately the case k ě 2x

so that lnp2x ` kq ď 2 ln k if k ě 2 and the case k ď 2x so that lnp2x ` kq ď 2 lnp2xq if
x ě 1, Theorem A.1 gives, for x tending to infinity, the following asymptotic behavior of
Spx; 1, 1, kq with a large uniformity over the parameter k, that was not present in Mirsky’s
result in loc. cit..

Corollary A.4 As x tends to infinity, we have

Spx; 1, 1, kq „ c1,1,k

ˆ

x3

3
`
kx2

2

˙

,

uniformly for
0 ď k ď exp

`

x{ ln2p2xq
˘

. l

In the opposite direction, we now fix k “ 1 and we return to Equation (23), to write,
using for instance [HaW, Thm. 328] for the last very classical estimate,

ca,b,1 "
1

b

ź

p|pb,a`1q

´

1´
1

p

¯

ź

pě3
p|pb,aq

´

1´
2

p

¯

"
1

b

ź

pě3
p|b

´

1´
2

p

¯

"
1

b

ź

p|b

´

1´
1

p

¯2
“
ϕpbq2

b3

"
1

b pln lnp3bqq2
.

It is now easy to deduce from Theorem A.1 the following corollary, where the uniformity
over b is almost optimal.

Corollary A.5 As x tends to infinity, we have

Spx; a, b, 1q „ ca,b,1 ¨
x3

3
,

uniformly for
1 ď b ď x

L

plnp2xqq2pln lnp3xqq3 . l

Proof of Theorem A.1. For every x ě 1, let us first prove that there exists a constant
ca,b,k P s0, 1s such that the sum

rSpxq “
ÿ

1ďnďx
n” a mod b

ϕpnq

n
¨
ϕpn` kq

n` k

satifies the asymptotic formula, uniformly in a, b ě 1, k ě 0 and x ě 1,

rSpxq “ ca,b,k x`Oppln 2xq lnp2x` kqq . (26)

Theorem A.1 follows classically, by applying Abel’s summation formula

ÿ

1ďnďx

anfpnq “
´

ÿ

1ďnďx

an

¯

fpxq ´

ż x

1

´

ÿ

1ďnďt

an

¯

f 1ptq dt
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to the numerical sequence
`

an “
ϕpnq
n ¨

ϕpn`kq
n`k δn

˘

ně1
, where δn “ 1 if n ” amod b and

δn “ 0 otherwise, and to the function f : r1,`8r Ñ R of class C1 defined by x ÞÑ xpx`kq.
We indeed have

Spx; a, b, kq “ rSpxqxpx` kq ´

ż x

1

rSptqp2t` kq dt

“
ca,b,k

3
x3 `

ca,b,k k

2
x2 ` p

2

3
`
k

2
qca,b,k `O

`

xpx` kqpln 2xq lnp2x` kq
˘

,

which gives the result since ca,b,k ď 1.

Let us denote by 1 the constant arithmetic function with value 1. The convolution
equality ϕ “ µ ‹ id implies by division that ϕ

id “
µ
id ‹ 1. Applying twice this formula, we

have
rSpxq “

ÿ

1ďdďx

µpdq

d

ÿ

1ďδďx`k

µpδq

δ

ÿ

1ďnďx
d |n, δ | pn`kq
n” a mod b

1 .

The system of three congruences n ”

$

&

%

0 mod d
´k mod δ
a mod b

has a solution n ď x if and only if

there exists an integer m ď x{d such that n “ dm and
"

dm ” ´k mod δ
dm ” a mod b .

(27)

When pd, δq - k or when pd, bq - a, no solution exists. We hence have

rSpxq “
ÿ

1ďdďx, 1ďδďx`k
pd,δq | k, pd,bq | a

µpdq

d

µpδq

δ
Card

!

m ď x{d :
dm ” ´k mod δ
dm ” a mod b

)

.

If pd, δq | k and pd, bq | a, let us denote by d
pd,δq the multiplicative inverse of the integer

d
pd,δq modulo δ

pd,δq and by d
pd,bq the multiplicative inverse of the integer d

pd,bq modulo b
pd,bq .

The system of two congruences (27), after division of its first equation by pd, δq and of its
second equation by pd, bq, is then equivalent to the system

$

&

%

m ” ´ k
pd,δq

d
pd,δq mod δ

pd,δq

m ” a
pd,bq

d
pd,bq mod b

pd,bq .

This system has a solution if and only if the following divisibility condition holds
´ δ

pd, δq
,

b

pd, bq

¯

|
k

pd, δq

d

pd, δq
`

a

pd, bq

d

pd, bq

ô

´ δ

pd, δq
,

b

pd, bq

¯

|
k

pd, δq

d

pd, bq
`

a

pd, bq

d

pd, δq

Since the integers d
pd,bq and d

pd,δq are coprime with the gcd
`

δ
pd,δq ,

b
pd,bq

˘

, we deduce by
multiplication that the above condition holds if and only if we have

`

δpd, bq, bpd, δq
˘

| dpk ` aq .

The following lemma, where Op1q is uniformly bounded in α, β, α0, β0, is elementary.
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Lemma A.6 For all integers α, β, α0, β0 ě 1 and real number y ě 1, we have

Cardtm ď y : m ” α0 mod α and m ” β0 mod βu “

"

0 if α0 ı β0 mod pα, βq
y

rα,βs `Op1q otherwise . l

This lemma implies that Card
!

m ď x{d :
dm ” ´kmod δ
dm ” amod b

)

“ x

d
“

δ
pd,δq

, b
pd,bq

‰ ` Op1q

under the assumption that pd, δq | k, pd, bq | a and
`

δpd, bq, bpd, δq
˘

| dpk ` aq, where Op1q
is uniformly bounded in a, b, k, d, δ. By the classical majoration of the harmonic series, we
have

ÿ

1ďdďx, 1ďδďx`k

1

d

1

δ
“ Oppln 2xq lnp2x` kqq .

By the relation between lcm, gcd and product of two positive integers, we hence have

rSpxq “ x
ÿ

1ďdďx, 1ďδďx`k
pd,δq | k, pd,bq | a

pδpd,bq,bpd,δqq | dpk`aq

µpdq

d

µpδq

δ

pδpd, bq, bpd, δqq

dδb
`Oppln 2xq lnp2x` kqq ,

uniformly in a, b ě 1, k ě 0 and x ě 1.
Completing the sum with the indices d ą x and δ ą x ` k introduces an error of the

form (uniformly in a, b ě 1, k ě 0 and x ě 1)

O
´

ÿ

děx, δě1

pd, δq

d2δ2

¯

“ O
´

ÿ

tě1, d1ěx{t, δ1ě1

t

ptd1q2ptδ1q2

¯

“ O
`1

x

˘

.

This proves Formula (26) by setting

ca,b,k “
ÿ

d, δě1
pd,δq | k, pd,bq | a

pδpd,bq,bpd,δqq | dpk`aq

µpdq

d

µpδq

δ

pδpd, bq, bpd, δqq

dδb
. (28)

Let us now prove Equation (23). By Remark A.2, this implies that 0 ă ca,b,k ď 1,
hence completes the proof of Theorem A.1.

Proof of Equation (23). For every integer d ě 1, let χd be the characteristic function
of the set of integers δ ě 1 such that pδ, dq | k. For every integer d ě 1, let us define

ψd : δ ÞÑ
`

δ,
b

pd, bq
pd, δq

˘

. (29)

Note that the assertion pδpd, bq, bpd, δqq | dpk ` aq is equivalent to the assertion

ψdpδq |
d

pd, bq
pk ` aq .

For every integer d ě 1, let χ˚d be the characteristic function of the set of integers δ ě 1
such that the above divisibility assertion is satisfied. Let us define

c˚ : d ÞÑ
ÿ

δě1

µpδq

δ2
χdpδq χ

˚
dpδq ψdpδq (30)
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(this arithmetic function c˚ depends on the constants a, b, k). Equation (28) then becomes

ca,b,k “
1

b

ÿ

dě1
pd,bq | a

µpdq

d2
pd, bq c˚pdq . (31)

In order to transform the series c˚pdq defined by Formula (30) into an Eulerian product
and in order to analyse it, we will use the following two lemmas.

Lemma A.7 For every integer d ě 1, the arithmetic functions χd, χ˚d and ψd are multi-
plicative.

Proof. We have χdp1q “ χ˚dp1q “ ψdp1q “ 1. Let δ1, δ2 be two coprime integers.
The equality pδ1δ2, dq “ pδ1, dqpδ2, dq and the fact that pδ1, dq and pδ2, dq are coprime

imply the multiplicativity of χd.
In order to prove the multiplicativity of the function ψd, we write

ψdpδ1δ2q “
`

δ1δ2,
b

pd, bq
pd, δ1δ2q

˘

“
`

δ1,
b

pd, bq
pδ1, dqpδ2, dq

˘`

δ2,
b

pd, bq
pδ1, dqpδ2, dq

˘

.

Since δ1 is coprime to pδ2, dq and since δ2 is coprime to pδ1, dq, we obtain as wanted the
equality ψdpδ1δ2q “ ψdpδ1qψdpδ2q.

Finally, the multiplicativity of the function χ˚d is a consequence of the multiplicativity
of the function ψd and of the fact that ψdpδ1q and ψdpδ2q are coprime. l

Lemma A.8 For every prime p and every integer d ě 1, we have

ψdppq “

"

p if p | d,
pp, bq otherwise,

and

χdppq χ
˚
dppq “ 1 ô

$

&

%

p | pd, kq and p | d
pd,bq pk ` aq,

or
p - d and pp, bq | k ` a .

Proof. The first formula follows from the definition of ψdppq (see Formula (29)) by con-
sidering the three cases (p | d), (p - d and p | b), and (p - d and p - b).

The second formula follows from the first one, from the definitions of χdppq and χ˚dppq,
and from the fact that χdppq χ˚dppq “ 1 if and only if χdppq “ χ˚dppq “ 1, by considering
the two cases (p | d) and (p - d). l

The arithmetic function δ ÞÑ µpδqχdpδq χ
˚
dpδq ψdpδq being multiplicative by Lemma

A.7, and vanishing on the nontrivial powers of primes, the series defining c˚pdq in Formula
(30) may be written as an Eulerian product

c˚pdq “
ź

p

`

1´
χdppq χ

˚
dppq ψdppq

p2

˘

“
ź

p
χdppq χ

˚
d ppq“1

`

1´
ψdppq

p2

˘

. (32)

By Equations (31) and (32), and by Lemma A.8, we have

ca,b,k “
1

b

ÿ

dě1
pd,bq | a

µpdq

d2
pd, bq

ź

p - d
pp,bq | k`a

`

1´
pp, bq

p2

˘

ź

p | pd,kq

p | d
pd,bq

pk`aq

`

1´
1

p

˘

.
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Let us define Γa,b,k “
ź

p
pp,bq | k`a

`

1´ pp,bq
p2

˘

, so that

ca,b,k “
Γa,b,k
b

ÿ

dě1
pd,bq | a

µpdq

d2
pd, bq

ź

p | d
pp,bq | k`a

`

1´
pp, bq

p2

˘´1
ź

p | pd,kq

p | d
pd,bq

pk`aq

`

1´
1

p

˘

. (33)

For every integer d ě 1 without square factor such that pd, bq | a, we have

ź

p | pd,kq

p | d
pd,bq

pk`aq

`

1´
1

p

˘

“
ź

p | pd,kq

p | d
pd,bq

`

1´
1

p

˘

ź

p | pd,kq
p | k`a

`

1´
1

p

˘

ź

p | pd,kq

p | p d
pd,bq

,k`aq

`

1´
1

p

˘´1

“
ź

p | p d
pd,bq

,kq

`

1´
1

p

˘

ź

p | pd,a,kq

`

1´
1

p

˘

ź

p | p d
pd,bq

,a,kq

`

1´
1

p

˘´1

“
ź

p | p d
pd,bq

,kq

`

1´
1

p

˘

ź

p | pd,a,b,kq

`

1´
1

p

˘

“
ź

p | p d
pd,bq

,kq

`

1´
1

p

˘

ź

p | pd,b,kq

`

1´
1

p

˘

“
ź

p | pd,kq

`

1´
1

p

˘

.

Thus, Equation (33) writes ca,b,k as a series Γa,b,k
b

ÿ

dě1
pd,bq | a

fpdq
d2

where f is a multiplicative

function, which vanishes on the nontrivial powers of primes. By Eulerian product, we have
therefore proved Equation (23). l

Remark A.9 When a “ b “ 1, we indeed recover Mirsky’s result [Mir, Thm. 9, Eq. (30)].
Indeed, by Equation (23), we have

c1,1,k “
ź

p

`

1´
1

p2

˘

ź

p | k

´

1´
p1´ 1

p2
q´1p1´ 1

pq

p2

¯

ź

p - k

´

1´
p1´ 1

p2
q´1

p2

¯

“
ź

p

`

1´
1

p2

˘

ź

p | k

´

1´
p´ 1

ppp2 ´ 1q

¯

ź

p

`

1´
1

p2 ´ 1

˘

ź

p | k

´

1´
1

p2 ´ 1

¯´1

“
ź

p

`

1´
2

p2

˘

ź

p | k

`

1`
1

ppp2 ´ 2q

˘

.
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