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Abstract

In the unit tangent bundle of noncompact finite volume negatively curved Rieman-
nian manifolds, we prove the equidistribution towards the measure of maximal entropy
for the geodesic flow of the Lebesgue measure along the divergent geodesic flow orbits,
as their complexity tends to infinity. We prove the analogous result for geometrically
finite tree quotients, where the equidistribution takes place in the quotient space of
geodesic lines towards the Bowen-Margulis measure. *

1 Introduction

Let M be a finite volume complete connected Riemannian good orbifold with dimension
at least 2 and pinched negative curvature at most —1. A (locally) geodesic line ¢ in M (or
its unit tangent vector E(O)) is divergent if the map £ : R — M is a proper map. In this
paper, we define a natural type and a natural complexity of the divergent geodesic lines,
and study their counting and equidistribution properties in the unit tangent bundle 7" M
of M as their complexity tends to +00 in any given type.

The study of counting and equidistribution properties of similarly defined divergent
flats in finite volume arithmetic nonpositively curved locally symmetric spaces has pro-
duced many works, see for instance |1V, , ) , , ) |. See also
[Pol] for a specific counting problem of divergent geodesics in geometrically finite Kleinian
manifolds. Curiously, the problem of the equidistribution of divergent geodesics in gen-
eral negatively curved manifolds (in particular with variable curvature), does not seem to
have been studied so far. One possibility to go around the noncompactness of M, as in
[ , , |, could be to work in the projective space of locally finite positive Borel
measures on 7'M for the quotient topology of the weak-star topology. But as in | |, we
prefer a more precise result, exhibiting the precise scaling factor, that immediately implies
the projective convergence.

Let us introduce some definitions and notations before stating our main result. We
denote by 7 : T'M — M the footpoint projection, by (g);cr the geodesic flow on T' M and
by has the topological entropy of (g!)er. We denote by End (M) the finite set of ends? of the
locally compact space M. We fix a family (7¢)cegnd(ar) of closed Margulis neighborhoods

'Keywords: equidistribution, counting, divergent geodesic, geodesic flow, negative curvature, trees,
equilibrium states. AMS codes: 37D40, 53C22, 20E08, 37D35, 37A25.
2See for instance [Br11, Sect. 1.8.27] for the definition.



of the ends of M with pairwise disjoint interiors, see Section 3 for a definition. For every
A >0, we denote by M<4 the closed A-neighborhood in M of M~ ( UeeEnd(M) ”//e)

For every divergent geodesic £ in M, there exist two (possibly equal) ends /_ and ¢, of
M such that limy 4o £(t) = 4. The pair (¢, £, ), which varies in the finite set End(M)?2,
is called the type of ¢. Let t_ = t_({) be the first time at which ¢ exits the interior of
Y, and t4 = t,(£) be the last time at which ¢ enters the interior of #;, . We define the
complezity of the divergent geodesic ¢ as

T(Z):t+—t7>0

As usual in counting problems with symmetry, the multiplicity of ¢ is the inverse of the
order of its stabilizer in the orbifold M. See Section 3 for details on multiplicities, and
note that the multiplicities are 1 when M is a manifold.

We denote by Div(M) the quotient by the action of R by translation at the source
of the set with multiplicities of divergent geodesics with positive complexity. The set of
divergent geodesics with complexity 0 is finite up to the action of R, and can be ignored
in our discussion on equidistribution and counting of divergent geodesics. As we want to
give counting and equidistribution results of divergent geodesics with prescribed type, for
every nonempty subset .7 of End(M)2, we consider the space

Divg (M) = {€ € Div(M) : ((_,0,) e T} (1)

of divergent geodesics with type contained in 7.

We define the Lebesque measure Leby of £ in T'M as the pushforward of the Lebesgue
measure of R by the map ¢ — £(t) = gt(£(0)). The study of equidistribution properties
of divergent geodesics is made more complicated by the fact that Leb,, which is a locally
finite measure with support the geodesic flow orbit g®(£(0)), is not a finite measure.

All measures in this paper are locally finite Borel nonnegative measures. We denote
by | u| € [0, +c0] the total mass of a measure p and by -~ the weak-star convergence of
measures on locally compact Hausdorff spaces.

Let mpwm be the Bowen-Margulis measure on T M , which is the Liouville measure when
M is locally symmetric. We assume that mpy; is finite, which is for instance the case if
M is locally symmetric. Then mpgy; is mixing for the geodesic flow by results of Babillot

and Dal’Bo, see for instance | , §84.2|. Its renormalization to a probability measure
”zgm is the unique measure of maximal entropy on M by [OF] (and [DT] that removes the
implicit assumption that the sectional curvature of M has bounded derivative in [OF]).
The geodesic flow of M has exponential decay of correlation for the Sobolev regularity
with respect to mpy for instance if M has constant sectional curvature by [LP], or if M
is arithmetic locally symmetric by | I, | | and [Clo], see for instance | , §9.1].

For every end e € End(M), let 0 be the (nonzero, finite) outer/inner skinning measure
on T'M with support the outer/inner unit normal bundle of 07..® For every nonempty
subset .7 of End(M)?2, we define a measure on T*M x T'M by

O-y = Z O-;; ® O';+ ° (2)
(e—,e4)eT

3For the definitions, generalising [ , §1.2] in constant curvature, see | | and Section 2.



i il Example. Let Hﬁ be the upper halfplane model of the

/

1 T real hyperbolic plane with constant curvature —1. The
TN AT group G = PSLy(R) acts isometrically by homographies
> on the space HZ, by the map (v,2) > vz = Zjidb for all
o s b
L e i [ (il | 2 € H and v = + “ € G. Let I' = PSLy(Z) be the
S EhE N c d

L ~| g modular group, which is a nonuniform arithmetic lattice
e i in PSLo(R). Let M = I'\HZ be the modular curve, which

LA i i T is a noncompact complete connected real hyperbolic good
5:5;: = a ;2%:2 orbifold, with one end. Its standard Margulis cusp neigh-
\:;: ] :2’7 bourhood is the I'-orbit of the horoball Hy, that consists
=il | TN ||| | of the points z € H2 with Im z > 1.
<:><\ /><> The figure on the left shows all divergent geodesics of
\\><\ AT complexity at most In 10 for the standard Margulis cusp
—-~—; % < ;:.—-— neighbourhood. These divergent geodesics are the images
<_/>< ”:, \:“ 74\_> in M of the vertical lines in HZ with points at infinity oo
N A+ 1] and g, where p,q € Z, ¢ > 0, |p| < 4,1 < ¢ <10. They
<l T i N are represented lifted to the standard fundamental domain
>::></ \><::< i { EHQ‘—1<R <1 H>1}
U AT selliimy sler=g
R X A with side identifications given by z — z + 1 and z — —%.
» i N q The figure below shows the analogous set of divergent
TN T . . . .
K] > geodesics with complexity at most In 30, in the lower part
b . | </ of the fundamental domain. This illustrates the equidistri-
N4 B bution of divergent geodesics stated in the following The-

orem 1.1 (1), see also [DS1, Theo. 1.5] in this specific case.
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The following is our main result, saying that the divergent geodesics equidistribute
towards the Bowen-Margulis measure as their complexity tends to +oo.

Theorem 1.1. Let M be a finite volume complete connected Riemannian good orbifold with
dimension at least 2 and pinched negative curvature at most —1. Let 7 be a nonempty
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subset of End(M)2. Assume that the Bowen-Margulis measure on T*M is finite.
(1) As T'— +o0, we have

* mBMm

har [meml|| 3 nBM
Imem|

— Leb
lo [ T T oo

(eDiv o (M): T(£)<T

If, furthermore, M is locally symmetric with exponential decay of correlations, then there
exists k € N such that for every ® € CF(T*M) with support in 7= (M<4), there is an
additive error term in this equidistribution statement when evaluated on ® of the form
Oa (%), where || k.0 is the W5®-Sobolev norm.

(2) As T — +o0, we have

. loz| huT
Card{f e Divg(M) : 7)) <T}t ~ ————— "M* |
N ]
If, furthermore, M is locally symmetric with exponential decay of correlations, then there
exists k > 0 and an additive error term in this counting statement of the form O (e(hM_”)T).

As previously mentioned, one of the main difficulties of this paper is that the Lebesgue
measure associated with a given divergent geodesic £ is an infinite measure. We first reduce
the study to the asymptotic distribution of the “compact cores” of the divergent geodesics
in Section 3. We then apply the equidistribution results proved in | | for manifolds
in Section 5.

In Section 6, we give a version of Theorem 1.1 for divergent geodesics in geometrically
finite quotients of uniform trees. We refer to Section 2, the beginning of Section 6 and
[Lub, , ) | for the definitions and for background.

Theorem 1.2. Let X be a uniform simplicial tree without vertices of degree 1 or 2 and
let T' be a finite covolume geometrically finite discrete subgroup of Isom(X). Let T be
a nonempty subset of End(I\X)2. Assume that the length spectrum of T\X is 7Z. As
N — +oo, for the weak-star convergence of measures on the locally compact space T\Y X
of I'-orbits of geodesic lines in X, we have

1—e ) |m m
EeTwe X L g
4 ¢eDiv o (M) : 7(0)<N BM
Theorem 1.2 is part of a more general result, Theorem 6.1 proved in Section 6, that
covers also the complementary case where the length spectrum is 2Z and gives error terms
for the e-locally constant regularity. We develop an analog of the equidistribution results

of | | for tree quotients and horoballs in the proof of Theorem 6.1. In particular, the
handling of the error term is much more involved for trees than in the manifold case.
By [Lub], this theorem in particular applies when X¢ is the Bruhat-Tits tree of a rank

one simple algebraic group G over a nonarchimedean local field and I' is an arithmetic
lattice in G. For instance, let K = F,((Y 1)) be the field of formal Laurent series over F,,
with indeterminate Y~ and let G = PGLy(K). Then I' = PGLy(F,[Y]) is an arithmetic
lattice in G, called the Nagao lattice (whose length spectrum is 2Z). The quotient of the
Bruhat-Tits tree X by T is then a geodesic ray, called the modular ray (see for instance
| , §15.2]) when endowed with its quotient graph of group structure. In this special
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case, Theorem 6.1 can be deduced from the case n = 2 of | , Theo. 1.2], which gives
a stronger equidistribution result in I'\G' (which factors over I''¢ X¢). Note that X is a
(q + 1)-regular tree with boundary at infinity the projective line P}(K) = K u {o0}.

Example. When ¢ = 2, the divergent geodesics in the modular ray with complexity
at most 6 with respect to the maximal precisely invariant family of horoballs in X are
represented in the following picture (turned horizontally for convenience compared to the
analogous picture in PSLy(Z)\H2, all of the divergent geodesics meant to be pinched
vertically to [0, +00[). For each shape of image, the pair (n,m) gives the complexity n
and the number m of divergent geodesics in I'\X¢ with this complexity and shape (they
are no longer determined by the shape of their image in I'\X). The divergent geodesics
in "\ X¢ are the images in I'\ X of the geodesic lines in X¢ starting from oo and ending
mod Fa[Y] with (P, Q) € Fo[Y] x (F2[Y]~{0}). By | |, see also | , §4.3], if

at

Qlv

is the continued fraction expansion of g with a; € Fo[Y] with degree

Qv

ay +
1

R
ag

at least 1, then the complexity of the associated divergent geodesic is n = 22?11 deg a;,
and m = (q — l)q% is the number of choices of the polynomials a; with a given sequence
of degrees (degay,...,degay) that defines the shape of the image.
0 1 2 3
O L 2 L 2

Y

Acknowledgements: The authors thank the French-Finnish CNRS IEA PaCap for its support.

2 Background on negative curvature

Let X be either a complete simply connected Riemannian manifold M with dimension
at least 2 and with pinched negative sectional curvature at most —1, or the geometric
realisation of a uniform simplicial tree X without vertices of degree 1 or 2. We denote
by X U 0 X the geometric compactification of X. The horoballs in X are closed unless
otherwise stated. See for instance [BrH] for background on CAT(—1) geometry and discrete
groups, and [Ser, I, 1 , §2.6] for background on group actions on trees.

Let z, € X be a fixed basepoint, with z, € VX when X is a tree. For every £ € 05X,
let pe : [0,400[ — X be the geodesic ray with origin z, and point at infinity £. The
Busemann cocycle of X is the map 8 : X x X x 0, X — R defined by

(2,9,) = Bely) = T d(pe(t), ) — dlpe(t), )
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The visual distance d,, on 0 X seen from z, is defined by d,, (§,1) = e~ 2 (Be (@3, 9) B (2, 1))
where y is the closest point to z, on the geodesic line [£, [ between two distinct points
at infinity £ and &’. When X is a tree, we have

dy, (€,€) = em o680 (3)

When X is a manifold, we denote by Isom(X) the group of isometries of M. When
X is a tree, we denote by Isom(X) the group of graph automorphisms of X without edge
inversion. Let I" be a nonelementary discrete subgroup of Isom(X). Let M = I'\ X with its
quotient orbifold structure when X is a manifold, and M = I'\ X with its quotient graph
of groups structure when X is a tree. When S is a subset or a point in X, we denote by
I's the (global) stabiliser of S in I'. When X is a tree, we denote by VX the set of vertices
of X, and the covolume of T is

1
covolI' = Z —_— .
[z]el\VX Card(Tz)

Let dr be the critical exponent of I'. When X is a manifold and the Bowen-Margulis
measure mpgy is finite, dr coincides with the topological entropy hjps of the geodesic flow
on T'M (see [OF]):

or = ha . (4)

A continuous mapping R — X that is an isometric embedding on a closed interval of
R and constant, with value in VX when X is a tree, on each complementary component
is a generalized geodesic in X. We denote by & X the Bartels-Liick metric space of the
generalized geodesic lines [:R—>XinX , considering only the generalized geodesic lines
7 such that Z(O) is a vertex of X when X is a tree. Its distance is defined, for all Z, VedXx
by

A0T) = | o2 (o) e ar. (5)
—00
See for instance | , §2.2] for more information. Geodesic rays in X defined on + [0, +o0[

are considered as generalized geodesics by being constant on F [0, +0] .

We denote the geodesic flow on IX by (g')er when X is a manifold and by (g!)iez
when X is a tree, with g’ : £ — (s +— Z(s+t)). Let X be the subspace of ¢ X consisting of
the geodesic lines of X| which is invariant under the geodesic flow. When X is a manifold,
the space ¥ X is identiﬁed with the unit tangent bundle T'M by the Isom(X)-equivariant
homeomorphism ¢ — £(0). We denote by 7 : ¥X — X the footpoint map £ — Z(O) and
again by 7 : I\ GX — I\ X its quotient map. They are proper maps. For every le %X
let €+ = limy 4o E( ) € X U 05X, which are points at infinity when (e 9X. We denote
by p~,pt : GX — X U X the negative, positive endpoint maps defined by = E,,EJF
respectively.

For every generalized geodesic w € GX , which is isometric on a maximal interval I, if
w="Twel\ZX, we define

e the length of w by

AMw) = length(I) € [0, +00] , (6)



e the Lebesgue measure Leb,, of w as the measure on I'\ & X which is the pushforward
by the map t — glw of the Lebesgue measure on I when X is a manifold, and of the
counting measure on I N Z when X is a tree.

For every w € T\9X, we have |Leby, | = Aw). When ¢ € I'\¥X, we then have
| Leby | = 400 and the Lebesgue measure Leby is invariant under the action of the geodesic
flow on I'\¥ X, since the Lebesgue measure on R and the counting measure on Z are
invariant under translations.

We conclude Section 2 by giving details on the construction of the Bowen-Margulis
measure mpy. We denote by 02 X the complement of the diagonal in 0o X x 0, X. Hopf'’s
parametrisation with respect to the basepoint x, is the homeomorphism which identifies
4 X with 02X x R when X is a manifold and 02 X x Z when X is a tree by the map
{— (Z,,ZJF, 52, where s is the signed distance to Z(O) of the closest point to x4 on the
geodesic line ¢(R). Note that a change of base point only changes the third parameter
s by an additive constant. We fix a Patterson-Sullivan density (us)zex when X is a
manifold (see | , §4.1]), and (pz)zeyx when X is a tree (see | , §4.3]), for " (with
zero potential). Since M has finite covolume, the Patterson-Sullivan measures have full
support in dxX. The Bowen-Margulis measure on 4 X (associated with this Patterson-
Sullivan density) is the measure mpy on 4 X given by the density

dinpy () = ¢ OO T O g @) dp, (7 ds

in Hopf’s parametrisation of ¢ X with respect to x,. When X is a tree, we have
deM(Z) — o 20rd(ws, ] 0 0.]) T ([7_) dpig, (Z+) ds. (7)

The Bowen-Margulis measure mgy is independent of x4, and it is invariant under the
actions of the group I' and of the geodesic flow. Thus, it defines (see | , §2.6| for
the branched cover issues) a measure mpy on I'\% X which is invariant under the quotient
geodesic flow, called the Bowen-Margulis measure on I'\Y X .

Let D be a nonempty closed convex subset of X, which is the geometric realisation of a
subtree of X when X is a tree. We denote by G}LD the outer/inner normal bundle of D, that
is the subspace of GX consisting of the positive/negative geodesic rays p : £[0, +0[— X
with p(0) € 0D, ptr € 05X N 0dxpD and p(0) the closest point to p(+t) on D for all
t > 0, see | , §2.4] for details. We refer to | , §83] when X is a manifold and
to | , Chap. 7| in general for more background and for the basic properties of the
following measures. The (outer) skinning measure on 01D (associated with the above
Patterson-Sullivan density) is the measure 55 on (?iD defined, using the positive endpoint
homeomorphism p; : p — p; from 01D to 0 X \ 0D, by

5} (p) = e P PO 2 qpy (p).

The (inner) skinning measure dp,(p) = e70r BP0 @x) ) (p_) is the similarly defined
measure on 01 D. When D = {z,}, we immediately have

Vpedifed,  dEl,(p) = dpge,y(pz)- (8)

If the family (vD),er/r, is locally finite in X, we denote by JIJ:FD the locally finite measure
on I'\ 4 X induced by the I'-invariant locally finite measure Z'yel" T Y 32—5 on 9X. The
support of JIJ:FD is contained in the image 03 (I'D) of 1D by the map GX — I\ GX.
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3 Generalities on divergent geodesics

We assume from now on that I' has finite covolume and is furthermore geometrically finite
when X is a tree. We recall below all the necessary properties, and we refer to | | for
the definition of geometrical finiteness in the case of trees (implied by the finite covolume
assumption when X is a manifold). Note that by [Bal], there are many more finite
covolume tree lattices than geometrically finite ones.

The set End(M) of ends of the locally compact topological space M is finite and
discrete, and can be described as follows (see [Bow| for manifolds and | | for trees).
Let Parp be the countable I'-invariant set of (bounded) parabolic fixed points of elements
of I, that is the set of points £ € 0 X such that its stabilizer I'¢ acts properly and
cocompactly on 0 X\ {&}. Let us choose for every £ € Parp any geodesic ray ¢t — & in X
with limy, 4o & = & Then we have a bijection (independent of the previous choices) from
I'\ Parr to End(M) which associates to I'( the end of M towards which converges I'¢; as
t — +o0. For every end e € End(M), we fix a parabolic fixed point € € Parp such that the
above bijection maps I'é to e.

There exists a I'-equivariant family (H¢)geparp of horoballs He in X centered at every
& € Parr such that

e when X is a tree, for every ¢ € Parr, the boundary 0H¢ of H is contained in VX,

e the open horoballs He= H¢~\ 0H¢, which are the interiors of the horoballs He, are
pairwise disjoint as £ ranges over Parr,

e the quotient F\(X\UgeParp He ) is compact.

Note that 'y, = T¢ for every £ € Parp. For every e € End(I'\X), the image 7. = 'Hp
in M = I'\X of the horoball H; is a neighborhood of the end e, called a Margulis cusp
neighborhood of e if X is a manifold, and a cuspidal ray with point at infinity e if X is a
tree, with respect to the family (H¢)ecpary -

According to the definition in Section 2, the outer (resp. inner) unit normal bundle
0t Ve = T0L Hp (vesp. 017, = T'0L Hz ) of the Margulis cusp neighborhood 7 is the subset
of elements FZHO,OO[ (resp. F?”_OO’O]) in F\S?X where 0 is a geodesic line in 4 X with
{_ = ¢ (resp. [, =€) and £(0) € 9H;. When X is a manifold and 0% is a submanifold,

then the map I'¢ — I #(0) identifies 01 ¥, and 017, with the two connected components
of the unit normal bundle of the hypersurface 07, pointing respectively outwards and
inwards from 7.

A divergent geodesic in T\¥ X is an orbit £ = T' le M¥X under the action of T of a
geodesic line /e %X in X both of whose points at infinity are in Parp. This corresponds to
the definition in the introduction whether X is a manifold or not, by the above properties
of the family (H¢)¢epar,, and the fact that a geodesic line that enters in a horoball either
converges to its point at infinity or goes through its boundary after a finite time. The
multiplicity of £ (independent of the choice of ¢ and of the action of the geodesic flow on
0) is

1

We define

(_ = lim £(t) € End(M) and /{4 = tE-irpOO £(t) € End(M),



called respectively the starting end and terminating end of £. The type of £ is the pair
of ends (¢_,¢;) of M. We denote by Div(M) the set with multiplicities of orbits under
the geodesic flow of the divergent geodesics endowed with their multiplicities. For every
¢ € Div(M), the Lebesgue measure Leb, on I'\Y X as defined in Section 2 is locally finite,
since £ : R — M is a proper map.

Let ¢ € T\¥X be a divergent geodesic, and choose { € 49X such that ¢ = T/. Let
t_ = t_({) be the time at which £ exits H; ;and t, =1t (%) be the time at which ¢ enters

Hy

e

The complexity of £ with respect to the family (He¢)¢epary is
Tl) =ty —t_, (10)

which is nonnegative since the horoballs in (H¢)eepar, have pairwise disjoint interiors. It
is independent of the choice of ¢ and of the action of the geodesic flow on ¢, hence we
will again denote by 7 the induced map from Div(M) to [0, +oo[. This corresponds to the
definition in the introduction when X is a manifold.

Note that the Lebesgue measure Leby of a divergent geodesic is a locally finite measure
on M¥ X, with support the geodesic flow orbit of ¢, but it is an infinite measure.

The compact core of a divergent geodesic £ in M is the locally geodesic segment in M
denoted by oy : [0, 7(£)] — M such that ay(t) = £(t— +t) for every ¢ € [0, 7(¢)]. We identify
it with its extension to a generalized geodesic in I'\ ¢ X which is constant on ] — 0, 0] and
[7(£),+[. Note that for every ¢t € R when X is a manifold and ¢t € Z when X is a tree,
we have agy = ay.

For all A € [0,+0o0o[ and £ € Parr, let H¢[A] be the horoball contained in the horoball

H¢, whose boundary 0H¢[A] is at distance A from the boundary 0H¢ of He. Let f.(;g [A]
be the interior of H¢[A]. The A-thick part of M with respect to the family (He)eepary 18
the orbispace
M=A = F\(X\ ) He [A]) .
¢eParp

As A tends to 400, the injectivity radius at a point z € M~ M<4 tends to 0 when X
is a manifold, and the order of the stabilizer of x € M~ M<4 tends to 400 when X
is a tree. Since I' is geometrically finite with finite covolume, the A-thick part M<4 is
compact of diameter diam M<4 < 24 + diam M<?. For every compact subset K of M,
there exists A € [0, +oo[ such that K is contained in M <A Furthermore, any geodesic ray
p:]0,400] — X in X from a point p(0) in dH¢ to the point at infinity lim;—, 1o p(t) = €
meets 0H¢[A] exactly at the point p(A).

The following result relates asymptotically the Lebesgue measure of a divergent geodesic
to the one of its compact core.

Lemma 3.1. For every A € [0, +0[ , for every f € Co(I\9X) with support contained in
7 L (MSA), for every divergent geodesic { € T\Y X, we have

| Lebé(f) - Lebae(f) | < 2A|‘f”oo .

Proof. Let A, f,¢ be as in the statement. Since the above inequality is invariant under
the action of the geodesic flow, we may assume that ¢_(¢) = 0. By the definitions of the
geodesic flow and of the footpoint map, we have m(gtf) = £(t), for every t € R when X is
a manifold and t € Z when X is a tree. Hence when ¢t < 0, we have d(n(g'/), £(0)) = [t|,
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since for every £ € Parp, any geodesic ray from the boundary of H, to its point at infinity
injects isometrically in M = I'\X. Therefore, if t < —A, we have 7(gt) ¢ M<4 and in
particular f(gt¢) = 0 by the assumption on the support of f. Similarly, we have f(gt¢) = 0
ift >t (0)+ A.

Assume first that X is a manifold. By the definition of the measures Leb, and Leb,,,
by the definition of the complexity 7(¢) = ¢, (¢), we thus have

+00 (¢
| Lebﬂ(f) - Lebae (f) | = f(gtg) dt —

)
f(gt |
0

t+(0)+A L4 (£)
- rena- | s

—A 0

0 t+(0)+A
|| senas | rE0d| <241
—A t4(0)

Though we won’t use it when X is a tree, the same proof works, up to replacing A by |A],
which does not change 7~ H(M<4), and Sf:a by Zgza for a,be Z v {+oo}. ]

4 Divergent geodesics and common perpendiculars

In this section, we give an explicit description of the correspondence between the divergent
geodesics in M and the common perpendiculars between Margulis cusp neighborhoods or
cuspidal rays in M.

Let 7 < End(M)? be a nonempty set of types of divergent geodesics, and let

Div},(M) = {¢eDiv(M): ((_,4y) e T, T({) > 0}

Note that the set Div, (M) differs from the set Divz (M) defined in Equation (1) (when
X is a manifold, but the definition is valid when X is a tree) only by a finite subset, hence
has the same asymptotic distribution property.

Let e_,e; € End(M). Since I is geometrically finite (by the compactness of M<Y), the
cardinality of the set F._ ., of double classes [y] € [~ \I'/T's;, such that He~ nyHg; is
nonempty, is finite. Let [y] € Te~\I'/Tey \Fe_ ¢, . In particular, we have e~ # yéy. The
multiplicity of [y] is defined (independently of the choice of the representative v of [y]) by

1
Ml = Card(le~ n Tyt

(11)

Let Z[[v]] be the unique geodesic line in ¥ X such that (Z[M])— =e_, (ZM)+ = vé; and
ZM (0) € 0Hg~. This last condition uniquely defines ZM in its orbit under the geodesic

flow. Then £, = FZM is a divergent geodesic in M, that does not depend on the choice
of the representative v of [v].

We refer to | | and | | for background on common perpendiculars between
properly immersed locally convex closed subsets of M, especially to | | when X is a
tree. The compact core ey of £f, is a common perpendicular between 7, and 7, , with
positive length )\(agm). Furthermore, any common perpendicular between two Margulis
cusp neighborhoods when X is a manifold, or two cuspidal rays when X is a tree, arises

this way: Indeed, there is a unique way to extend a common perpendicular between two
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disjoint horoballs in X to a geodesic line in X whose points at infinity are the points at
infinity of the two horoballs. Let

Perpy(M) = | | (F=\[/TNFo_e,) -
(e—,e4)eT

Lemma 4.1. Assume that X is a manifold. The mapping from Perp 5 (M) to Divi (M)
induced by [v] — £p,) is a bijection between sets with multiplicities. For every [v] €
Perp 7 (M), we have

m(ﬂm) = mM and T(E[[“/]]) = )\(ag[m]) . (12)

Proof. For every (e_,ey) € 7, for every divergent geodesic £ in M = I'"\X with {3 = ey
and 7(¢) > 0, let £ € X be such that £ = T'/. We may assume that £ _ = €= up to the
action of an element of I' on ¢ unique modulo left multiplication by an element of I';~, and

that Z(O) € 0Hz~ up to the action of a unique element of the geodesic flow on {. Then there

exists vy, € I" such that 7 + =€y, and 7y is unique modulo multiplication on the right by
an element of I'c; and independent of the action of the geodesic flow on 7. Since T(¢) > 0,
the horoballs He~ and y,Hg; are disjoint. Hence the double class [v,] € I~ \I'/T's; is well
defined and does not belong to F,_ .. .

It is clear by construction that the maps [y] — £[,; and £ +— [v,] induce maps from
Perp (M) to Div},(M) and from Divi (M) to Perp,(M) that are inverse one of the
other. Since X is a manifold (hence nontrivial geodesic segments have a unique extension
to a geodesic line), the stabilizer in T of the common perpendicular between two disjoint
horoballs in X is equal to the stabilizer in I' of the geodesic line between the points at
infinity of the two horoballs. The equalities (12) (the first one being the definition of a
bijection between sets with multiplicities) are then immediate by the definitions of the two
multiplicities (9) and (11), of the complexity of a divergent geodesic (10) and of the length
of a generalized geodesic (6). 0

For every T' > 0, let us consider the counting function (with multiplicities) of the
common perpendiculars with length at most T', between two Margulis cusp neighborhoods
when X is a manifold, or two cuspidal rays when X is a tree, whose pair of ends belong
to 7, defined by (using the definition of sums over sets with multiplicities for the second
equality below)

N7 (T) = 2 mp,) = Card{[y] € Perp»(M) : Magy,y) < T} .
(e—,er)eT
II’YHEFQ_ \F/F§+\F67,€+
Maep, )T
For every (e_,e;) € 7, we denote respectively by o/ = o] and o., = 0y the
e__ 5+
outer skinning measure of %, = I'Hgs~ and inner skinning measure of %, = I'Hg; in

I\ 94X, defined at the end of Section 2. They are locally finite measures on T\ %X with
support contained in 017, and 017 . respectively. Since I'¢ acts cocompactly on 0H¢
for every ¢ € Parr (hence 0} ¥ is compact for every e € End(M)), and since the limit set
of I is equal to the whole 0, X, the skinning measures 0;—; are finite and nonzero, with

support exactly 6_1;//61.
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Assume till the end of Section 4 that X is a manifold and that the Bowen-Margulis mea-
sure is finite and mixing under the geodesic flow, which is the case under the assumptions of

Theorem 1.1. By the second claim of | , Coro. 12] applied with QF = (o1 H. & )rer/r-
+ &
for every (e_,ey) € 7, and by a finite summation on (e_,e;) € 7, we have as T'— +0
ol | oz
A A A )
e sDes Or [mBu]

Furthermore, if M is locally symmetric with exponential decay of correlation, then by the
second claim of | , Theo. 15 (2)| (whose assumptions are indeed satisfied, since 0H¢
is smooth for every £ € Parp and M has finite volume), there exists 7 > 0 and an additive
error term in this counting statement of the form O (e(‘sF_T)T).

By Equation (2), we have

lozl=" > locllod . (14)

(e—,er)eT

Claim (2) of Theorem 1.1 follows from Equation (4), from Lemma 4.1, and from Equation
(13) with its error term.

5 Equidistribution of divergent geodesics

The aim of this section is to prove Claim (1) of Theorem 1.1. We hence assume that (X,T")
is as in Section 2 with X a manifold. The main tool is the following theorem proved in
| , Theo. 1] applied with AT = 7, ., so that the skinning measures creijr = 0?}6 . are
finite and nonzero. Recall from the introduction that if the Bowen-Margulis measure mpy
is finite, then it is mixing for the geodesic flow on T'M, as needed in loc. cit..

Theorem 5.1. If mpy is finite, then for all (e—,ey) € T, as T — +0, we have

or [mewMm|| % _ ., MBM
5T Z Leb = o | oz, |

T oorT ) mpm|
[vlePerpgie e )y (M) Meey )<T H H

Furthermore, if M is locally symmetric with exponential decay of correlation, then there
exists k € N such that for every compact subset K in T'M and every C*-smooth function
U T'M — R with support in K, with | |r2 the W*2-Sobolev norm, we have

or [mpwm| _ mBM(¥)
T >, Leba,  (¥) = ol | oy, |
T e’r [~1 HmBM”
[[yﬂePerp{(eHei)}(M) : )\(ag[h]] )<T
L Og (W\Tm) '

Hence by a finite summation on (e—,e;) € 7, by Lemma 4.1 and by Equation (14),
for every f e C.(T*M), we have

. Op|maum]| mpwm(f)
lim ——————— E Leb, = _— 1
T—l>+OO T 65FT eb Z(f) HU7H HmBMH ( 5)
teDivE: T(0)<T

12



Furthermore, since 7~ !(M SA) is compact, with k as in Theorem 5.1, there is an error
term Oy4 (%) when f € C*(T'M) has support in 7~ 1(M<4) and when M is locally
symmetric with exponential decay of correlations.

Proof of Theorem 1.1 (1). Let f € C.(T'M) be a test function. Using sums over
sets with multiplicities, by Equation (4), by Lemma 3.1, by Equations (13) and (14), and
finally by Equation (15), we have

har [mem|
Ry [IMBMI Leby(f)
o 2 ‘
T eor leDiv o: T(0)<T
1)
_ FTT;B;M S (Lebo,(f) + O(A] fll0)
LeDiv g: T(£)<T
_ orlmsMmil Lebg, (f)) + O ( —=— (16)
il 2 ‘
T eor <£€Divg7: T(O)<T ) ( ! )
mpm(f)
1o 107 ol

This proves the convergence claim in Theorem 1.1 (1).

Now assume till the end of this proof that M is locally symmetric with exponential
decay of correlations. Let k € N be given by the error term in Equation (15). Let us fix
f e CHT'M) and A > 0 such that the support of f is contained in 7~ (M <4). Then by
Equation (16) and by the error term in Equation (15), we have

har [mswm|
T ohu T | Z Leby(f)
LeDiv g: T(£)<T

o M) o, (MY | o (ALl

Imsm| T T
Imsm| T
This ends the proof of Theorem 1.1 (1). O

It follows from the arithmeticity results of Margulis and the results of [LP], | ],
| | and [Clo] discussed in the introduction that the only case where the exponential
decay of correlations is not known is when X is a complex hyperbolic space Hg for n > 2
and M is not arithmetic.

6 Equidistribution of divergent geodesics in geometrically fi-
nite tree quotients

We assume in this section that X is the geometric realisation of a uniform simplicial
tree X without vertices of degree 1 or 2 and that I' is a finite covolume geometrically
finite nonelementary discrete subgroup of Isom(X). Recall from Section 2 the notation
M = T\X with its quotient graph of groups structure, and the notation mgy; for the
Bowen-Margulis measure on IT\¢X. Let 7 be a nonempty subset of End(M)2. We refer
for instance to | , §2.6] for background on trees and their (discrete-time) geodesic
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flow, and to | , §4.4] for background on the Bowen-Margulis measures of their discrete
groups of automorphisms.

The length spectrum Ly of I' is the subgroup of Z generated by the translation lengths
in X of the elements of I'. It is equal to Z or 2Z under the above assumptions on (X,T)
(see | , Lem. 4.18|, using the fact that since I' has finite covolume besides being
geometrically finite, the minimal nonempty I'-invariant subtree of X is equal to X). For
instance, when I' is the Nagao lattice PGL2(IF,[Y]) acting on the Bruhat-Tits tree of
(PGLo, F,((Y™1))) (see | , §10.2], | , §15.2]), then Lp = 27Z by [Ser, §11.1.2, Cor.]
or | , page 331]. See |Ser, §11.2.3] for lots of other examples with length spectrum 27Z.

We define 6. = 1 — e~ that we will use when Ly = Z, and 8% = 1 — e~2°", that we
will use when L = 27Z.

We choose a fixed vertex z, of X belonging to the horosphere that bounds one of the
horoballs of the family (H¢)eepary- Let VevenX be the set of vertices of X at even distance
from x4 and

GovenX = {0 €9X : 0(0) € VeyenX} and  Goyen X = {£ € FX : £(0) € VeyenX} .

Note that 4.yen X and ?even X are clopen subsets of ¥.X and GX , respectively.

When L = 27Z, then the following properties hold.

e The group I' preserves VevenX and %evenX, as well as their complementary subsets
in VX and 4 X.

e We choose, as we may by the previous point, the I'-equivariant family (H¢)eepary SO
that the distance between two elements of this family is even.

e We denote by mpm,even the restriction of the Bowen-Margulis measure mpy of T’
to [\%even X . Since the time-one map g' of the geodesic flow exchanges %pyen X and its
complementary subset, we have |[mpum, even| = M.

e We define Div}y even (M) as the set with multiplicities (given by Equation (9)) of the
orbits under the even-time geodesic flow (g2*)
such that ({_,¢1) € .7 and 7(£) > 0.

e For every / € Div}’ oven (M) and £ € I'\Y.yen X a representative of £, we denote by

ez, of the divergent geodesics £ € T\Geyen X

Leby even the pushforward measure on I'\Y X by the map t — g?'¢ of the counting measure
on Z. This measure has support contained in I'\%en X. It does not depend on the choice
of the representative £ of £, by the invariance under translation of the counting measure
on Z.

We fix 5 and € in ]0,1]. Given a metric space (Y, d), we denote by C2(Y) the normed
real vector space of (uniformly locally) S-Hoélder-continuous functions with compact sup-
port on Y, with norm f = [ f[g = | fle + | |3, using the convention

= sup @ ZTW

17
o<d(zgy<1  A(T,y)? a7)

of for instance | , §3.1]. We refer for instance to the beginning of Chapter 9 in | |
for the definition of the exponential decay of correlation of mpwm or mpm,even for the 3-
Holder regularity of the geodesic flow (g')ez or (g%!)ez.

Since I'\¥ X is a totally disconnected metric space, another regularity turns out to be
useful, as for instance in | , |. A function f:T\¥X — R is e-locally constant if f
is constant on every open ball of radius e. We denote by C¢ le, 8 (M¥X) the normed real
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vector space of compactly supported e-locally constant fonctions f, with norm | f|.1c. s =
€ B fllw. By | , Rem. 3.11], the space C5'“?(I\¥X) is continuously included in
c? (T\¥ X) thanks to the inequality

I+l <31 llete, - (18)

This allows us to state an error term in our theorem, and the proof will juggle between the
norm for general -Hélder-continuous functions and the norm | - |z, -
In what follows, N varies in N.

Theorem 6.1. Let X, I",.7 be as in the beginning of Section 6, and let 3, € ]0,1].

(1) Assume that Lp = Z. As N — +0, for the weak-star convergence of measures on the
locally compact space T\Y X, we have

op [lmewm| «  MBM
[o7] N &N 2 Lebe =D (19)
€eDivi (M) : T(0)<N

with an additive error term of the form

o (A D18leies)

in this equidistribution statement, when evaluated on ® € C; IC”B(F\E?X), where A > 0 is
such that the support of ® is contained in 7~ H(X<4).

(2) Assume that Ly = 2Z. As N — +0, for the weak-star convergence of measures on the
locally compact space T\Geyen X, we have

5?‘ HmBM,evenH Z Leby * MBM, even
loz| N eV e ImBM, even||

LEDIVE on(M): T(0)<2N

with an additive error term of the form

o (A D 1%leies)

in this equidistribution statement, when evaluated on ® € Ccalc’ﬁ(l“\%venX), where A = 0
is such that the support of ® is contained in w1 (X <4).

In the coming proof of Theorem 6.1, we will introduce auxiliary points zop € VX,
with 29 € VeyenX when Lpr = 2Z. We will then use the following joint equidistribution
result, extracted from | | as we explain after its statement. Though expressed in
the universal cover X, it says that the images in M = I'\X of the initial and terminal
generalized geodesics associated with the common perpendiculars between 7, and I'zg
jointly equidistribute towards their skinning measures. We first introduce the necessary
notation. For every vertex x € VX and every parabolic fixed point ¢ € Parr such that
x ¢ H¢, we denote by dag , the shortest geodesic segment in G X between H¢ and =z,

starting at time 0 from H¢ and arriving at time d(Hg, x) at x, seen as an element of GX
being stationary at time < 0 and at time > d(H¢, =). Note that giHe, ) Qg o is then the
parametrization of the common perpendicular between H¢ and {z} arriving at time 0 at
x.
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Theorem 6.2. Let eg € End(M) and zo € VX.
(1) Assume that Lp = Z. As N — +0, for the weak-star convergence of measures on the

locally compact space GX x Q?X, we have

St e N | Y Bag o ®Bungeg T T @ 5,

—1
€077 0 g
el : 0<d(H,, &, 20)<N #10: 70

Furthermore, there exists k > 0 such that this convergence has an additive error term, when
evaluated on the product function (w,w’) — (¢~ (w), ¢t (w')) of any two Hélder-continuous

functions ¢* € C2(FX), of the form O (e "N~ llgle™ls)-
(2) Assume that Ly = 27 and that zg € VeyenX. As N — +00, for the weak-star conver-
gence of measures on the locally compact space GX x G?X, we have

N _—206rN
5I‘ € r HmBM,evenH 2 A&eA 1 ®A d(HA,PAO z0) ~ = UHA ® J{:p }e
0,7~ "0 Ay &y, g 0
Yel': 0<d(H, g5, 20)<2N

Furthermore, there exists k > 0 such that this convergence has an additive error term, when
evaluated on the product function (w,w’) — (¢~ (w), d* (W) of any two Hélder-continuous

functions ¢* € C2(4X), of the form O (e™* N~ [sl0™5)-

Proof. Let us explain more precisely where to find these results in the book | |. Since
X is a uniform tree and I' has finite covolume, the Bowen-Margulis measure mgy; is finite
by | , Prop. 4.16 (3)]. Since I has finite covolume, the minimal nonempty I'-invariant

subtree of X is X, hence is uniform without vertices of degree 2. We recall the following
facts in the two cases of the statement.

(1) When Lr = Z, the Bowen-Margulis measure mpy is mixing under the geodesic flow
(g')tez by | , Prop. 4.17] with system of conductances ¢ = 0. The convergence part
of Assertion (1) then follows from | , Theo. 11.9] with system of conductances ¢ = 0,
applied with I~ =T/T'p, I" =T/Tsy, 77 = (v Hg)y-c1- and 27 = (v {zo})+eryr,, -
More precisely, it follows from the discrete-time zero-potential version of Equation (11.1) in

| | whose summation gives | , Theo. 11.9], applied with 7 and j the trivial classes
in F/FHA and I'/T',, and with a change of variable v + 7!, since o i1 = Oy, vz
and c)zﬁ/Z ;=8 d(Hy & 0)547607350 for every vy e I.

The error term part of Assertion (1) follows from | , Theo. 12.16] with system of
conductances ¢ = 0 applied with D~ the subtree whose geometric realisation is Hg; and
D* = {z}, for the following reasons.

e Its hypothesis (1) is satisfied, since €y is a bounded parabolic fixed point, hence T’ He
acts cocompactly on 0Hg;, and I';;, acts (clearly !) cocompactly on {zo}.

e These compactness properties imply that the skinning measures U;';E . and o, (o} AT€
finite.

e Its hypothesis (2) on the exponential decay of correlations is satisfied by | )
Coro. 9.6 (1)], since I' is geometrically finite.

(2) When Lr = 2Z, the restriction mpu, even of the Bowen-Margulis measure mpy of
' to I'\G.yen X is mixing under the even-time geodesic flow (g%!)ez by | , Prop. 4.17]
with system of conductances ¢ = 0. Since the basepoint z, belongs to the boundary of one
of the horoballs of the family (H¢)eepary., since the distance between two elements of the
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family (H¢)eeparp is even, and since the distance of two points of any given horosphere in
a simplicial tree is even, for every { € Parr, we have 0H¢ < VeyenX. In particular, since
29 € VevenX, for every £ € Parr such that xg ¢ H¢, the common perpendicular between
H¢ and {zo} has both endpoints in VeyenX. Furthermore, the skinning measures 0;56 . and

a;{zo} have support contained in I'\ Goven X.

The convergence part of Assertion (2) then follows from | , Eq. (11.28)| (rather
a preliminary version of it without summation, and with a change of variables v — 71,
as above) with system of conductances ¢ = 0, applied with I~ = I'/T'g__, It =TTy,

2~ = (v Hg)y-c1- and 2% = (v {zo})+er/r,,  using the definition of o and the fact

that [z, even| = 7221

The error term part of Assertion (2) follows from | , Remark (ii) page 281| with
system of conductances ¢ = 0 applied with D™ the subtree whose geometric realisation is
Hgs and DT = {x0}. O

Symmetrically, for all x € VX and £ € Parr such that x ¢ He, we define a generalized
geodesic Oy ¢ 1 t — Q¢ 5(d(Hg, x) —t) with origin & ¢(0) = . With the assumptions of
Theorem 6.2 (1), as N — +00, we similarly have the following weak-star convergence of
measures, with the same error term,

o e N mpy| 2 D,y e ®A g =0y | o = {xo} ® JH
~el: 0<d(H. g5, 70)<N Gy tag

(20)
With the assumptions of Theorem 6.2 (2), as N — +00, we similarly have, with the same
error term,

1 —26r N 2 =
5F € HmBM, even” A&IOVYSAO ®Agd(H“/€AO’ZO>& e {x0}® J
.

vel': 0<d(Hyg, z0)<2N v
(21)

Our proof of Theorem 6.1 using Theorem 6.2 is motivated by the proof of Theorem
5.1 in | , Theo. 1] for good Riemannian orbifolds. We will adapt each step of the
main convergence claim therein to the present tree case. Some reduction steps simplify
here compared to | |, since we are not considering general convex subsets, but only
horoballs. On the other hand, our computation of the error terms in Theorem 6.1 will be

much more involved than the one in | , Theo. 1], leading to a stronger result.

Proof of Theorem 6.1. The Bowen-Margulis measure on I'\¢ X is finite by for instance
| , Prop. 4.16 (3)]. Since End(M) is a finite set, we can assume that .7 contains only
one element (e_, e ), then sum the convergence results and the error terms over a general
subset 7 of the finite set End(M)2.

(1) Assume that Lp = Z.
Step 1.  Let us prove that if the convergence claim (19) is true when evaluated on

® € C.(I'\¥X) with support in 771(M<"), with an error term O (”q)”e#) when besides
o e C’CEIC’ﬁ(F\gX), then Assertion (1) of Theorem 6.1 is true.

Let A€ N, and let ® € C.(I"¥X) be such that the support of ® is contained in the
preimage 71 (MS4) of the A-thick part of M with respect to the family (He¢)¢eparp- Let
us denote by 74 : Div(M) — [0, +o0[ the complexity function of the divergent geodesics
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in M now with respect to the family (H¢[A])¢epar.. Note that 74 = 7 + 2A, and that
® has support in the preimage by 7 of the 0-thick part of M with respect to the family

(Hf [A])ﬁeParp .
Let 7., [A] = I'Hg [A] be the cuspidal ray in M with point at infinity e+ with respect
to the family (He¢[A])eepary. Let aé A= a,i [A] be the outer/inner skinning measure
k) E¢

of 7. [A] in T\9X. Let 07,4 = o, A® U:+7A. By | , Prop. 4 (iii)], since 7,
is the closed A-neighborhood of 7;, [A], we have Ha;—;,AH = ¢ 0r4 ||a;—; |. Hence since
T ={(e—,e;)} and by Equation (2), we have |07 4] = e 204 o #|.

Therefore, under the convergence assumption of Step 1, we have

r N

Sf- lmpml e™°
Lebg P
N los] 2 ()

eDiv (M) : T(0)<N

loz. 4l N +2A 8 [mpy| e or(V+24)

= Lebg(q))
~2ér4 N N 124 2
e loz| (N +2A) |o7, 4l (DI, (M) s Ta (<N 424

miwm(P)
N+ [mpwm|
If futhermore ® € C2%7 (¥ X), then under the error term assumption of Step 1

St | e N 3 Leby(®)
N Joz| bt (T
eDivy (M): T(6)<N
N +2A /mpu(P) |®[c1e, 5\ mBM(P) (A+1)[®]cic, s
=5 (o P08 = o PO ).

This concludes the proof of Step 1.
Step 2. Let us now prove the convergence part (19) of Assertion (1) of Theorem 6.1.

[e]
Let N e N. Let xg € VX\U&PMF Hg, so that its image by the canonical projection

X — M =T\X belongs to M<?. We will allow zq to vary everywhere in VXNUgeparr f}g
at the end of the proof of Step 2.
Using Hopf’s parametrisation with respect to xg (see Section 2), we define a measure
on ¥ X by
VN = Z Arei ® AW*@? ®ds.

YEET Ty : 0<d(H, — o~ H_ + ~)<N

This measure is independent of xg, hence is I'-invariant, by the invariance of the counting
measure ds on Z under translations. It is locally finite by the local finiteness of the family
(H¢)¢eparp- Since 7 = {(e—,e1)}, by the definitions (10) of the complexity 7 and (9) of
the multiplicities, the induced measure (see for instance | , §2.6] for ramified cover
issues) of vy on I\ X is equal t0 Xyepiy, . r(9<n Lebe (with the sum convention over
sets with multiplicities).

Let ¢ € C.(4X) be such that

e 1) is nonnegative,

e 1) has separate variables when considered, via Hopf’s parametrisation with respect
to xg, as defined on a subset of the product space 0 X X 0x X x Z: that is, there exist
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two nonnegative continuous functions 1* : 9, X — R and a nonnegative bounded function
Y0 : Z — R with finite support such that

V(€& 8) € 00X X Z, P(E-,&4,8) =9 (E) v (&4) ¥0(s), (22)

e 1) has support in the compact-open subset 771 ({z}) = {{ € X : £(0) = x¢} of
¢ X. In particular, by the definition of Hopf’s parametrisation with respect to zg, the map
¥ is a multiple of the characteristic function 1oy of the singleton {0}. Since we will, at
the end of the proof of Step 2, take linear combinations of such functions v, we actually
assume that 10 = Lo}

For every k € N\ {0}, let

Ay ={(y A" el T xT/Te; 1 d(H -, Hy+57) = k}

v ¥
and
Si= Y wra)vtra. (23)
(Y= )edk
We have
N
(@) = ) 5. 24
k=1

Let us subdivide the index set of the sum defining Sy using x¢ as an intermediate point:
For all 7,5 € N, we define

. ={y el)T: d(H,y_eA_, xo) =1},
Jyj+ = {’er € F/Pa_ : d(x(), H,y+gjr) = j} .

Thanks to our condition on the support of ¢, if an index (y~,v") contributes to the sum

defining vy (1)), then zg belongs to the geodesic line |y~é=, yte;[ with points at infinity
o] o

y~e~ and y*éy. Since xo ¢ Hy- U Hytey, the vertex 2o then belongs to the common

perpendicular [H,-~, H,+s ] between H, -~ and H, s . For such an index (y~,7"), we

then have for every k € N\ {0} the equivalence
(E' 7€ [[0, kﬂ, "}/7 € Q(Z{Z-_ and ’Y+ € ‘Q{l:_—z) — (’7777+) € 'Q{ka (25)

where [0, k] = [0, k] n Z. The convergence part of Assertion (1) of Theorem 6.2 applied
with eg = e_ and an integration over the first factor when projected to I'\ GX give, as
N — o0, the following weak-star convergence of measures on GX

§f e N Impy| 3

A am __ap 5. 26
o =g b 9

’Y —
ve Uil 7 & e
Let py-¢ 4 © ] —©,0] — X be the negative geodesic ray starting from the point at
infinity v~ €_ and ending at xy at time 0, seen as a generalized geodesic that is constant

on [0,+0o[. It belongs to the inner normal bundle 0 {x(} of the convex subset {z¢}. It

L . d(H - ~, ~ .
coincides with g (H e mo)afawo on [—~d(H.,-&, xo), +oo[. Hence, by Equation (5), we
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have

d(H e 20)
d(H,— ~,20) ~
d(py-& 200 &8 7 o Oy ) :f 2‘t+d &= 0)‘6% dt
—a0
- - +00 1 _ .
= Qd(HVE—’IO)J Que 2 dy = — ¢ 2= <1 (27)
0 2
. . . ~ d(H ,/\,zo)N
In particular, the distance in 4 X between p,-~ ., and g . & , tends to 0
uniformly in 7~ as d(H,- &, 7o) tends to +0. Therefore Equation (26) glves as N — +oo0,
the following weak-star convergence of measures on 0! {xq}
0p e N |mpu| 5
Z pr—éi,xo - U{zo} : (28)

+
AR
The negative endpoint map { — (_ from 9X to X U O X restricts to a homeomor-
phism p~ : 0} {xg} — 0, X. Note that by Equation (8) applied with z, = x9, we have
(p_)*G{;O} = [i{zo}- Taking the pushforward of Equation (28) by p~ and evaluating it on
1™, we hence obtain

lim 5t e N Impy | v
N—w lod |

(U (’776:) = Haxq (w7> : (29)

__ N -
v elUis1 @

For every i € N, we define

D vT(e). (30)

yTEeS

Let n > 0. By Equation (29) and since the sets <7~ for i € N are pairwise disjoint, there
exists ig = i9(n) € N\ {0} such that if se N 5at15ﬁes s = ig, then

loe I (g (¥7) — s < Z _ o uao (97) + ) s

(31)
Sp [msul o [meml|

By a similar argument, using Equation (20) with eg = e, taking the difference between
the index values j — 1 and j, integrating on the second factor when projected to I'\ GX ,
approximating long geodesic segments with origin zg by positive geodesic rays starting
from z, using the definition of. = 1 — e~ and pushing forward by the positive endpoint

map p* : 0L {zo} — X, we have
—orj
. mpmM| € —~
tim LTS e — (0. (32
oo loe, | N
”/erngj

Let us define the smooth functions f;—r : [0, 400 — R by

o) (e W) £ 1)y

Vsel0,+0[, fi(s)= Imem|
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Then, as in order to obtain Equation (31), there exists jo = jo(n) € Nx {0} such that, for
every j € N with j > jp, we have the inequalities

frlk—g)< > wr(yren) < £ (k—j). (33)
vredt
We set N .
x o)+ . x +
o D ) o () £
op [ImBMm]| [mBwm]

Fix N € N with N > max{ig, jo}. Let k € [0, N]. By decomposing the sum Sy defined in
Equation (23) using Equation (25) and by using the definition (30), we obtain

k

Se=> a Y, yYr(ytey). (34)

=0 ~yte ‘Q{kti

We can decompose the above sum Z?:o into Zf o » where we can use the upper bound in
Equation (33), and the sum Zf:kfjoﬂ which is bounded by Oj,(1) x O(e’r*) = O, (e°r%)
using Equations (29) and (32). Using Abel’s summation formula, we obtain

k—jo
Sk < Y ai fif (i) + O (€7F)
=0
k—jo0 k—jo—1
OO ED) (2 )y G+ 1) = £(0) + gy ()
i=0 i=0 1=0
k—jo—1
= 0(e"™) 0;o(1) = ), (Z ar) (fy (i +1) = £ (i) + Ojy (e F) . (35)
=0 =0

Note that for every i € [0, k], we have

ity 172 G ) 1)
Imem|
—0p Cap k=0 — (e k)

fyG+1) = £y (i) = (e —1)

k—jo—1 min{io—1,k—jo— 1}

Decomposing the sum » "7 " in Equation (35) into on the one hand }},_,
where we use the above estlmate which is uniform in i € [0, 49 + 1], and on the other hand
Zf Z]OO ! (which vanishes if k < ig + jo — 1), where we use the upper bound in Equation

(31), we obtain the inequality

k—jo—1 %
i (Z al) (% CQvﬁeér(kii) + Oig o (GSFk)
i=1g =0

< 5{“ 01777 027?7 k 66Fk + Oio,jo (66F k) .

By Equation (24) and a computation of the arithmetico-geometric sum (see for instance
| , Lem. 2.1| for a generalization that is well-adapted for the current purpose), for
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N e N large enough, we hence have

oo N

N
vn (¥) < 0p C1y Cayy P + Oio,jo (e M)

ol o, | (g (¥7) + ) (b () + ) N e Y

+ iy o (€T V). (36)
Op [mem|? 070

By our assumption on the support of ¢» and by the definition (7) of the Bowen-Margulis
measure mpy with z, = g, we have

meMm(Y) = (Hao @ pzg ® ds) () .
Taking in Equation (36) the upper limit as N — +c0 then letting n — 0, we hence obtain

O [mewm| 1 _ mpm(9)

lim sup -
Notoo NN ol | oc, |

A similar argument, this time using the lower bounds in Equation (31) and (33), gives
the inequality
) i
lim inf 5 ;HmeH — > LBM@M
Noto N et N lod | oe, |

Since 7 = {(e—,e4)} and by Equation (2), we have |l || |0z, | = [o7]. Thus

. Sp |msm|
im @ —
N—two N eorrN |oz|

() = 1)

© meM|

Let p : X — T'\X be the canonical projection. A standard argument of covering

[¢]
the support with sets 7= *({zo}) for finitely many zo € VXN Ugeparr He and of uniform
approximation by linear combinations of functions with separate variables gives us the
weak-star convergence of measures on (p o )~ H(M<0)
0p [mem| e N x BM

v — . 37
Nlogl ¥ ] (37)

Since the measure vy on ¢ X induces the measure ZZeDiV9 . r(0)<n L€bg on M¥X and
by the weak-star continuity of taking induced measures (see | , §2.6]), this concludes
the proof of Step 2.

Step 3. Let us now prove the error term part of Assertion (1) of Theorem 6.1.

Let B,e € ]0,1], and let o € VX\U&PMF He. We fix 4 in C’Calc”B(%X), where
¢ X is endowed with the Bartels-Liick distance (5). We assume again that v has support
contained in 7 ({zo}) and can be written as in Equation (22), again with ¢° = 1g,;. We

now prove that we have an error term of the form O(WHE%) in the weak-star convergence

(37) when evaluated on . By the error term part of Step 1, and by a similar lifting and
approximation process, this will conclude the proof of Step 3.

Compared to the proof of Step 2, only minor changes are needed. We keep the notation
UN, ey Sk, A, safj‘L therein. We may assume that ¢ # 0.
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First, let us prove that the function ¥~ : d,, X — R is e-locally constant for the visual
distance dg, defined in Equation (3) applied with z, = x¢. By symmetry, the same can be
done for ™.

Since 1 # 0, let (£_,£1) € 02X be such that 1~ (£_)*(&y) # 0. Let n € 0,X and
7' € 05X be at visual distance for d, less than ¢ one of each other. Let us prove that
¥~ (n) = ¥~ (n'), which gives that ¢~ is e-locally constant for d,,. We may assume that
n # n'. Since the functions ¥ are continuous and 0, X has no isolated point, we may
assume that n # &, and 1’ # &,.

Using Hopf’s parametrisation with respect to xg, we consider the geodesic lines £ and ¢/
in 4 X with parameters (7,£4,0) and (1, £, 0) respectively. We may assume that one of
these two geodesic lines, say ¢, passes through z( (at time 0): Otherwise, our assumption
on the support of 1 yields ¥~ (N (€+) = &= (1 )+ (€+) = 0, hence ¥~ (n) = ¥~ (') since
PH(&y) # 0.

Claim. Let us prove that we also have ¢/(0) = zg.

Proof. Since £ = ¢/, = &, there exists p € VX such that the intersection of the images
of £ and ¢’ is the geodesic ray [p, £, [ starting from p with point at infinity & .

gl_ = 77/ El

l_=n ¢ £(0) = zo p €+:€/+:5+

Assume for a contradiction that p € [zg,&4[, as in the above picture. Then xy belongs
to the geodesic line |n,n'[. Therefore by Equation (3) applied with z, = z(, we have
dzo(n,m') = €® =1 > €. This contradicts the fact that dg,(n,7’) < €.

N
U =n e
(_=n l D £(0) = xo b =0, =&,

Hence p belongs to the open geodesic ray |n, o[, as in the above picture. In particular, z
is the closest point to zp on the image of ¢/. By the definition of Hopf’s parametrisation
with respect to xg, since the third parameter of ¢’ is 0, we have ¢/(0) = x¢, as wanted. []

With p as in the above proof, let T € N be such that p = ¢(=T) = ¢/(—T), so that
d(xo, |n,n'[) = T. By Equation (5), we have

-T +o0
2t +T) e 2 ar = Qe_QTJ we 2t du= - e 2T,

0

| =

d(e, 0y = f

—00

By Equation (3) applied with z, = g, we have d,(n,7) = e1. Hence

de, ) =

1
5 dag (1) < 5 e <e.

Since 1 is e-locally constant, this yields ¢ (¢) = ¢(¢'). Dividing by 1 (£+) # 0, we obtain
¥~ (n) =¥~ (n'). Therefore 1)~ is e-locally constant, as wanted.
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As a consequence, since 1 has separate variables, we have
_ _B,  _ _B _
T T P B /P VY RAP I 1)

Let N € N. By the error term in Theorem 6.2 (1) for the g—Hélder—continuity, there exists

B
k > 0 such that for every function ¢~ € C¢ (9X), Equation (26) becomes

5/ 7§Nm _ dfo\w ~— — —K -
e Il Z ) (g( 0) Qy—e= zo)za{zo}(¢ )+O(€ N“¢ Hg)

”Ue H ,y_EUng:1 g{;
With p,-& ,, as defined after Equation (26), since ¢~ is g—Hélder—continuous and by
Equations (17) and (27), for all i e N and v~ € &, we have
_ — (AU = m0)
‘d) (p'y*e/:,xo)_qs (g K 0 Cry— ef,xo)

d(H_,— ~,20) ~ g _
< d(py-c a8 7T 0 a) T |0 H'g

Ax _7
" g™ s =e 2" g5 -

_B
S L
Therefore by a geometric series argument and since Card(Uf\il ﬂ%f) = 0(er V), with

k' = min{k, g}, for every ¢~ € Cg(ﬁl{xo}), Equation (28) becomes

S e N lmpy| 5

loc |

O (P ,0) = Ty (07) + O (V07 2) -
,EuN (Z(_

The negative endpoint map p~ : d' {x¢} — 0 X is %-Hb’lder-continuous by a direct adap-
tation to negative geodesics rays ending at xo of the proof of | , Lem. 3.4 (4)]. Hence

if = = 1~ op~, then by Equation (17), we have ¢~ H’ (K H’ (Ilp~ H’ )g and hence
lo~ s = O(H@b‘” ). Applying the above centered formula to this d) Equatlon (31) thus
4

becomes

° lod | sz (V™) /
VseN, a; = —— "0 Le0rs L O(>elPr S T ). 39
; S [mam| ( [¥~12) (39)

And similarly, Equation (33) is replaced by

- +
o " .
vieN, %) vl = e o ). o
'Y+64zfj+ MBM
et us define o 1 tan (¥7) o= | tna (4)
g T O.e &
C_ = “—Ow and C, = ﬂ
T — rioad]

Using Equation (18), we have
o (V) < o | 195 oo < ptao | |97 5 = O(|07 ]y, 2) -

In particular, we have Cy = O(Hd}J—FHEIC 5)-
)2
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Let k € N~ {0}. For every i € [0, k], let b; = Zﬁed,j Yt (yTel). Note that we have
=0(|¢t]w) = O(||7,/J+HEICV§). By Equation (40), we have

loc || pay (¥7F)

biiq —b; =
i+1 i ”mBMH

(7 = 1) ¢ 4 O@elrIED gt ). (41)

Equation (34), Abel’s summation formula, Equations (39) and (41), and the convergence
of the series ;- e "' yield

k k — i
Sk:Z aibi:<2ai)bk Z(Za) i+1 — bj)
=0 =0 =0 [=0
= (C, eIrk + O(e(dr_“')k W ‘g )O ||T/J+Hoo)

k—1
+ 20 (Co e O [ 5)) (O 6, 7 4 O gt 4 ))
— 2 2

— CLC B R O [ ).
Hence by Equation (38), we have
Sk = C_Cy o0 ke”™ + 0™ [ ¢e1e, 5) -
Thus, by the geometric series estimate

N
1 N—k 1 1
- kefrk — e 0rk _ — —
Ne5FNI;) ‘ ,;) N 5 O

we have
O [lmpm|

lod [l loe, | Ne

_ mBM( Hszslc B
v UN(W) = o] +0( N )
This proves that we have an error term of the form O( in the weak-star convergence
(37) when evaluated on 1, hence concluding the proof of Step 3, thereby the one of Assertion
(1) of Theorem 6.1.

zpac,
I HNI /J‘)

(2) If we assume that Lp = 2Z, the proof is completely similar to the one in the case
Ly = Z using this time Assertion (2) of Theorem 6.2. ]
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