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tIn this paper, we study the distribution of integral points on parametri
 familiesof a�ne homogeneous varieties. By the work of Borel and Harish-Chandra, the setof integral points on ea
h su
h variety 
onsists of �nitely many orbits of arithmeti
groups, and we establish an asymptoti
 formula (on average) for the number of theorbits indexed by their Siegel weights. In parti
ular, we dedu
e asymptoti
 formulasfor the number of inequivalent integral representations by de
omposable forms and bynorm forms in division algebras, and for the weighted number of equivalen
e 
lasses ofintegral points on se
tions of quadrati
 surfa
es. Our arguments use the exponentialmixing property of diagonal �ows on homogeneous spa
es. 11 Introdu
tionLet L be a redu
tive linear algebrai
 group de�ned and anisotropi
 over Q, let π : L →
GL(V) be a rational linear representation of L de�ned over Q and let Λ be a Z-latti
e in
V(Q) invariant under L(Z). For every v ∈ V(Q) whose orbit Xv under L is Zariski-
losedin V, Borel-Harish-Chandra's �niteness theorem [BHC, Theo. 6.9℄ says that the numberof orbits of L(Z) in Xv ∩ Λ is �nite. The aim of this paper is to study the asymptoti
behaviour of this number as v tends to ∞ in V(Q), in appropriate averages (for instan
ein order to take into a

ount the fa
t that Xv ∩ Λ 
ould be empty). We will 
ount theorbits using appropriate weights. For every u ∈ Xv(Q) with stabiliser Lu in L, de�ne theSiegel weight of u as

wL,π(u) =
vol

(
Lu(Z)\Lu(R)

)

vol
(
L(Z)\L(R)

) ,using Weil's 
onvention for the normalisation of the measures on Lu(R) (depending on the
hoi
e of a left Haar measure on L(R) and of a L(R)-invariant measure on Xv(R), seeSe
tion 2). These weights generalise the ones o

uring in Siegel's weight formula when L isan orthogonal group (see for instan
e [Sie, ERS℄, and [Vos, Chap. 5℄ for general L) and areused in many works (see for instan
e [BR, Oh1℄; 
ontrarily to the last two referen
es, wewill also need the redu
tive non semisimple 
ase for our appli
ations). We do not assume
Xv(R) to be an a�ne symmetri
 spa
e, 
ontrarily to [DRS℄ and many other referen
es.1Keywords: integral point, homogeneous variety, Siegel weight, 
ounting, de
omposable form, normform, diagonalisable �ow, mixing, exponential de
ay of 
orrelation. AMS 
odes: 37A17, 37A45, 14M17,20G20, 14G05, 11E20 1



In order to motivate the statement of our main result, let us give two appli
ations usingthe above setting.The �rst one is an asymptoti
 estimate on the number of inequivalent representationsof integers by de
omposable forms. Re
all that a de
omposable form F (x1, . . . , xn) is apolynomial in n variables with 
oe�
ients in Q whi
h is the produ
t of d linear forms with
oe�
ients in Q. In parti
ular, a norm form is a de
omposable form NK/Q(α1x1 + · · · +
αnxn) where α1, . . . , αn are �xed elements in a number �eld K of degree d and x1, . . . , xnare rational variables. We will work only with d = n. The aim is not to study the existen
eof integral solutions to one equation F (x) = m (see for instan
e [CTX℄, building on work ofJ. Sansu
, J.-L. Colliot-Thélène, D. Harari, R. Heath-Brown, A. Skorobogatov, M. Borovoi,C. Demar
he and others for the existen
e of rational solutions, see for instan
e [Pey℄), butto 
onsider the inequality |F (x)| ≤ m whi
h goes around the existen
e problem. There aremany works on integral solutions to de
omposable form inequalities, and in parti
ular fornorm forms, by W. M. S
hmidt, K. Györy, J.-H. Evertse, H. P. S
hli
kewei, J. Thunder,Z. Chen, M. Ru, see for instan
e [S
h, Gyö, Thu, Ko
℄ and their referen
es. But, besidesthe frequent assumption that d > n, most of these referen
es work under a hypothesis(nondegenerate as in [S
h, Gyö℄ or of �nite type as in [Thu℄) whi
h is not satis�ed in oursituation, sin
e the number of our solutions might be in�nite. As explained in [S
h℄, anatural approa
h is to 
ount the solutions by families of them, in our 
ase by orbits ofnaturally a
ting arithmeti
 groups. Another approa
h, formulated by Linnik and Sarnak,and espe
ially developed in [EO, GO1, Oh1℄, is to use dilations of relatively 
ompa
tsubsets. For the �niteness of this number of orbits, see for instan
e [Ko
, Theo. 2.14.1,page 63℄.Theorem 1 Let n ≥ 2, let F ∈ Q[x1, . . . , xn] be a rational polynomial in n variables, whi
his irredu
ible over Q, splits as a produ
t of n linearly independant over C linear forms with
oe�
ients in Q, and satis�es F−1(]0,+∞[) 6= ∅. Let ΓF = {g ∈ SLn(Z) : F ◦ g = F},and for every k ∈ Q, let Σk be the set of x ∈ Zn su
h that F (x) = k. Then there exist
c = c(F ) > 0 and δ = δ(n) ∈ ]0, 1[ su
h that, as r → +∞,

∑

k∈[1,r]

Card
(
ΓF\Σk

)
= c r +O

(
rδ
)
.With L the stabiliser of F in SLn(C), V = Cn, Λ = Zn and π the in
lusion of L in

GL(V), this result �ts into the above program, sin
e ΓF = L(Z), the algebrai
 torus Lis anisotropi
 over Q (see Lemma 19) and a
ts simply transitively on the a�ne subva-riety of V with equation F (x) = k if k 6= 0, noting that the Siegel weights wL,π(u) =
1/ vol

(
L(Z)\L(R)

) are then 
onstant. We will expli
it c in Se
tion 3.1.When K is a number �eld of degree n with ring of integers OK , taking an integral basis
(α1, . . . , αn) of K, and F (x1, . . . , xn) the parti
ular norm form NK/Q(α1x1 + · · ·+ αnxn),we re
over the well-known 
ounting result of the number of nonzero integral ideals of OKwith trivial ideal 
lass and norm at most s (see for instan
e [Lan, Theorem 3, page 132℄),giving

{a ideal in OK : NK/Q(a) ≤ s} =
2r1(2π)r2RKhK

ωK

√
|DK |

s+O(s1−ǫ) , (1)where r1 and r2 are the numbers of real and 
omplex 
onjugate embeddings of K, RK isthe regulator of K, hK is the ideal 
lass number of K, ωK is the number of roots of unityof OK , DK is the dis
riminant of K and ǫ = 1/n.2



The se
ond appli
ation is an asymptoti
 estimate on the (weighted) number of inequiv-alent integral points on hyperplane se
tions of a�ne quadrati
 surfa
es. See for instan
e[Sie, DRS, ERS, BR, EMS, GO1, Oh1, EO, GO2℄, as well as the surveys [Bab, Oh2℄, for
ounting results of integral or rational points in a�ne homogeneous varieties. Our resultis quite di�erent, sin
e we are 
ounting whole orbits, weighted by the Siegel weights, ofintegral points. Another approa
h to properties of sums of Siegel weights is to expressthem as produ
t of lo
al densities, using the Siegel weight formula as in [Sie, ERS, Oh1℄.But we believe that our results do not follow from this formula in any obvious way, ando�er a really new approa
h to the asymptoti
 of Siegel weights.Theorem 2 Let n ≥ 3, let q : Cn → C be a nondegenerate rational quadrati
 form,whi
h is isotropi
 over Q, let ℓ : Cn → C be a nonzero rational linear form, and let
L = {g ∈ SLn(C) : q ◦ g = q, ℓ ◦ g = ℓ}. For every k ∈ Q, let Σk be the set of primitive
x ∈ Zn su
h that q(x) = 0 and ℓ(x) = k. Assume that the restri
tion of q to the kernel of ℓis nondegenerate and anisotropi
 over Q. Then there exist c = c(q, ℓ) > 0 and δ = δ(q) > 0su
h that, as r → +∞,

∑

k∈[1,r]

∑

[u]∈(L(Z)∩L(R)0)\Σk

vol
(
(Lu(Z) ∩ L(R)0)\(Lu ∩ L(R)0)

)
= c rn−2 +O

(
rn−2−δ

)
.This result also �ts into the above program (up to a slight modi�
ation of the Siegelweights, see Se
tion 2), by taking V = Cn, Λ = Zn, and π : L → GL(V) the in
lusionmap, noting that L is semisimple, and de�ned and anisotropi
 over Q as a 
onsequen
e ofthe assumptions (see Se
tion 3.2 for details, where we also expli
it c).We will prove the above two results in Se
tion 3. As another appli
ation of our mainresult, we also give there an asymptoti
 formula for the number of orbits under the groupof integral units of the integral points of given norm in a division algebra over Q.A parti
ular 
ase of the main result of this paper is the following one.Theorem 3 Let G be a simply 
onne
ted redu
tive linear algebrai
 group de�ned over Q,without nontrivial Q-
hara
ters. Let P be a maximal paraboli
 subgroup of G de�ned over

Q, and let P = AMU be a relative Langlands de
omposition of P, su
h that A(R)0 is aone-parameter subgroup (as)s∈R, with λ = log det (Ad a1)|U > 0, where U is the Lie algebraof U(R). Let ρ : G → GL(V) be a rational representation of G de�ned over Q su
hthat there exists v0 ∈ V(Q) whose stabiliser in G is MU. Let L be a redu
tive algebrai
subgroup of G de�ned and anisotropi
 over Q. Assume that LP is Zariski-open in G andthat for every s ∈ R, the orbit Xs = ρ(Las)v0 is Zariski-
losed in V.Let Λ be a Z-latti
e in V(Q) invariant under G(Z), and let Λprim be the subset ofindivisible elements of Λ. Assume ρ to be irredu
ible over C. Then there exist c, δ > 0su
h that, as t tends to +∞,
∑

0≤s≤t

∑

[x]∈L(Z)\(Xs∩Λprim)

wL,ρ|L(x) = c eλt +O(e(λ−δ)t) .More pre
isely, let G,P,A,M,U,V,L, ρ, v0, (as)s∈R be as above (ρ not ne
essarilyirredu
ible). Endow G(R) with a left-invariant Riemannian metri
, for whi
h the Liealgebras of MU(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of
P(R) is 
ontained in the Lie algebra of L(R).3



Theorem 4 There exists δ > 0 su
h that, as t tends to +∞,
∑

0≤s≤t

∑

[x]∈L(Z)\(ρ(L(R)as)v0∩ρ(G(Z))v0)

wL,ρ|L(x)

=
vol

(
MU(Z)\MU(R)

)
vol(aZ1\A(R)0)

λ vol(G(Z)\G(R)
eλt +O(e(λ−δ)t) .We will prove a more general version of this result in Se
tion 2 without the maximality
ondition on P, involving the more elaborate root data of P, and without the simple
onne
tedness assumption on G (up to a slight modi�
ation of the Siegel weights), seeTheorem 6 and Theorem 16. We are using the proof of the main result of [PP1℄ as aguideline.Another main di�eren
e with the 
ounting results of [EMS, Oh1, EO, GO2℄ is thatthese papers are using the dynami
s of unipotent �ows, as instead we are using here themixing property with exponential de
ay of 
orrelations of diagonalisable �ows, in the spiritof [KM1℄ (see also [EM, BO℄).A
knowledgment. We thank Jean-Louis Colliot-Thélène for dis
ussions of our de
omposableform result. The se
ond author thanks the University of Bristol for a very fruitful short stay wherethis paper was 
on
eived. The �rst author thanks the University Paris-Sud 11 for a month ofinvited professor where this paper was 
ompleted.2 Counting Siegel weightsHere are a few notational 
onventions. By linear algebrai
 group G

′ de�ned over a sub�eld
k of C, we mean a subgroup of GLN (C) for some N ∈ N whi
h is a 
losed algebrai
 subsetof MN (C) de�ned over k, and we de�ne G

′(Z) = G
′ ∩GLN (Z). For every linear algebrai
group G

′ de�ned over R, we denote by G
′(R)0 the identity 
omponent of the Lie group ofreal points of G′. We denote by log the natural logarithm.Let us �rst re
all Weil's normalisation of measures on homogeneous spa
es. Let G′be a unimodular real Lie group, endowed with a transitive smooth left a
tion of G′ on asmooth manifold X ′, with unimodular stabilisers. A triple (νG′ , νX′ , (νG′

x
)x∈X′) of a leftHaar measure νG′ on G′, a left-invariant (Borel, positive, regular) measure νX′ on X ′ andof a left Haar measure νG′

x
on the stabiliser G′

x of every x ∈ X ′, is 
ompatible if, for every
x ∈ X ′, for every f : G′ → R 
ontinuous with 
ompa
t support, with fx : X ′ → R the map(well) de�ned by gx 7→

∫
h∈G′

x
f(gh) dνG′

x
(h) for every g ∈ G, we have

∫

G′

f dνG′ =

∫

X′

fx dνX′ .Weil proved (see for instan
e [Wei, �9℄) that, for every left-invariant measure νX′ on X ′,then
• for every left Haar measure νG′ on G′, there exists a unique 
ompatible triple

(νG′ , νX′ , (νG′
x
)x∈X′).

• for every x0 ∈ X ′, for every left Haar measure ν0 on G′
x0
, there exists a unique
ompatible triple (νG′ , νX′ , (νG′

x
)x∈X′) with νG′

x0
= ν0.The following remark should be well-known, though we did not found a pre
ise refer-en
e. 4



Lemma 5 If (νG′ , νX′ , (νG′
x
)x∈X′) is a 
ompatible triple, then for every ℓ ∈ G′ and x ∈ X ′,with iℓ : h 7→ ℓhℓ−1 the 
onjugation by ℓ, we have

νG′
ℓx

= (iℓ)∗νG′
x
.Proof. Let x ∈ X ′, ℓ ∈ G′, H ′ = G′

x and H ′′ = G′
ℓx = ℓH ′ℓ−1. Using the left invarian
eof νX′ for the �rst inequality and the bi-invarian
e of the Haar measure on G′ for the lastone, we have, for every f : G′ → R 
ontinuous with 
ompa
t support,

∫

g′ℓx∈X′

∫

h′′∈H′′

f(g′h′′) d(iℓ)∗νG′
x
(h′′) dνX′(g′ℓx)

=

∫

g′ℓx∈X′

∫

h′′∈H′′

f(ℓg′h′′) d(iℓ)∗νG′
x
(h′′) dνX′(g′ℓx)

=

∫

g′ℓx∈X′

∫

h′∈H′
f(ℓg′ℓh′ℓ−1) dνG′

x
(h′) dνX′(g′ℓx)

=

∫

gx∈X′

∫

h′∈H′
f ◦ iℓ(gh

′) dνG′
x
(h′) dνX′(gx)

=

∫

G′

f ◦ iℓ dνG′ =

∫

G′

f dνG′ .The result then follows by uniqueness. �In order to deal with non simply 
onne
ted groups, we introdu
e a modi�ed version ofthe Siegel weights.Let L
′ be a redu
tive linear algebrai
 group de�ned and anisotropi
 over Q, let π :

L
′ → GL(V′) be a rational linear representation of L′ de�ned over Q, let v ∈ V

′(Q) besu
h that its orbit X
′
v under L

′ is Zariski-
losed in V
′, let u ∈ X

′
v(Q) and let L

′
u be thestabiliser of u in L

′. We de�ned the modi�ed Siegel weight of u as
w′

L′,π(u) =
vol

(
(L′

u(Z) ∩ L
′(R)0)\(L

′
u ∩ L

′(R)0)
)

vol
(
(L′(Z) ∩ L′(R)0)\L′(R)0

) , (2)using Weil's 
onvention for the normalisation of the measures on L
′
u(R) (depending on the
hoi
e of a left Haar measure on L

′(R) and of a L
′(R)-invariant measure on X

′
v(R)). Notethat the denominator of the standard Siegel weight wL′,π(u) is an integral multiple (de-pending only on L

′) of the denominator of the modi�ed one, sin
e (L′(Z)∩L
′(R)0)\L

′(R)0is a 
onne
ted 
omponent of L′(Z)\L′(R). But the ratio of the numerator of the Siegelweight by the numerator of the modi�ed one may depend on u.Let us now des
ribe the framework of our main result. Let G be a 
onne
ted redu
tivelinear algebrai
 group de�ned over Q. Let P be a (proper) paraboli
 subgroup of Gde�ned over Q (see for instan
e [BJ, �III.1℄, [Spr, �5.2℄)). Re
all that a linear algebrai
group de�ned over Q is Q-anisotropi
 if it 
ontains no nontrivial Q-split torus.Re
all that there exist a (nontrivial) maximal Q-split torus S in G (
ontained in P andunique modulo 
onjugation by an element of P(Q)), su
h that if ΦC = Φ(G,S) is the rootsystem of G relative to S (seen 
ontained in the set of 
hara
ters of S), if gCβ is the rootspa
e of β ∈ ΦC, then there exist a unique set of simple roots ∆ = ∆P in ΦC and a uniqueproper subset I = IP of ∆, su
h that, with ΦC
+ the set of positive roots of ΦC de�ned by5



∆ and ΦC
I the set of roots of Φ that are linear 
ombinations of elements of I, if A is theidentity 
omponent of ⋂

α∈I

kerα ,whi
h is a Q-split subtorus of S, if U is the 
onne
ted algebrai
 subgroup of G de�nedover Q whose Lie algebra is
uC =

⊕

β∈ΦC
+−ΦC

I

gCβ ,then P is the semi-dire
t produ
t of its unipotent radi
al U and of the 
entraliser of A in
G. Note that A is one-dimensional if P is a maximal (proper) paraboli
 subgroup of Gde�ned over Q (that is, if ∆− I is a singleton).Let g be the Lie algebra of G(R). Using the multipli
ative notation on the group of
hara
ters of S, for every α ∈ ∆, we de�ne mα = mα,P ∈ N by

∏

β∈ΦC
+−ΦC

I

β dimR(g
C

β
∩g) =

∏

α∈∆

αmα .Let (α∨)α∈∆−I in A(R)0
∆−I be su
h that log β(α∨) is equal to 1 if α = β and to 0otherwise. Let Λ∨ be the latti
e in A(R)0 generated by {α∨ : α ∈ ∆ − I}. For everyelement T = (tα)α∈∆−I of [0,+∞[∆−I , let

AT = {a ∈ A(R)0 : ∀ α ∈ ∆− I, 0 ≤ log(α(a)) ≤ tα} .Re
all that by the de�nition of a relative Langlands de
omposition of the paraboli
subgroup P de�ned over Q, there exists a 
onne
ted redu
tive algebrai
 subgroup M of
P de�ned over Q without nontrivial Q-
hara
ters su
h that AM is the 
entraliser of A in
G. In parti
ular, AM is a Levi subgroup of P de�ned over Q, A 
entralises M and is thelargest Q-split subtorus of the 
entre of AM, AM normalises U, and

P = AMU .For every Lie group G′ endowed with a left Haar measure, for every dis
rete subgroup
Γ′ of G′, we endow Γ′\G′ with the unique measure su
h that the 
anoni
al 
overing map
G′ → Γ′\G′ lo
ally preserves the measures.In what follows, we will need a normalisation of the Haar measures, whi
h behavesappropriately when passing to some subgroups. We will start with a Riemannian metri
on G(R), take the indu
ed Riemannian volumes on the real points of the various algebrai
subgroups of G de�ned over Q that will appear, whi
h will give us the 
hoi
es ne
essaryfor using Weil's normalisation to de�ne the Siegel weights.The main result of this paper is the following one.Theorem 6 Let G be a 
onne
ted redu
tive linear algebrai
 group de�ned over Q, withoutnontrivial Q-
hara
ters. Let G = G(R)0 and Γ = G(Z)∩G. Let P be a paraboli
 subgroupof G de�ned over Q, and let P = AMU be a relative Langlands de
omposition of P. Let
ρ : G → GL(V) be a rational representation of G de�ned over Q su
h that there exists
v0 ∈ V(Q) whose stabiliser in G is H = MU. Let L be a redu
tive algebrai
 subgroup of
G de�ned and anisotropi
 over Q. 6



Assume that LP is Zariski-open in G and that for every a ∈ A, the orbit ρ(La)v0 isZariski-
losed in V. Endow G(R) with a left-invariant Riemannian metri
, for whi
h theLie algebras of H(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of
P(R) is 
ontained in the Lie algebra of L(R).Then there exists δ > 0 su
h that, as T = (tα)α∈∆−I ∈ [0,+∞[∆−I and minα∈∆−I tαtends to +∞, ∑

a∈AT

∑

[x]∈(L(R)0∩Γ)\(ρ(L(R)0a)v0∩ρ(Γ)v0)

w′
L,ρ|L(x) =

vol
(
(H ∩ Γ)\(H ∩G)

)
vol(Λ∨ \A(R)0)

vol(Γ\G)

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminα∈∆−I tα)

)
.Proof. Let us start by �xing the notation that will be used throughout the proof ofTheorem 6, and by making more expli
it the above-mentionned 
onventions about thevarious volumes that o

ur in the asymptoti
 formula.Consider the 
onne
ted real Lie group G = G(R)0, its (
losed) Lie subgroups

A = A(R)0, H = H ∩G, L = L(R)0, M = M ∩G, P = P ∩G, U = U(R) .We have H =MU and P = AMU =MUA, sin
e A and U are 
onne
ted. Note that L isalso 
onne
ted, but H and M are not ne
essarily 
onne
ted. We denote by
a, g, h, l, m, p, uthe Lie algebras of the real Lie groups A,G,H,L,M,P,U respe
tively, endowed with therestri
tion of the s
alar produ
t on g de�ned by the Riemannian metri
 of G. Sin
e L is

Q-anisotropi
, so is L ∩ P. Sin
e the map L ∩P → P/H ≃ A is de�ned over Q and A isa Q-split torus, this implies that the identity 
omponent of L ∩ P is 
ontained in H. Inparti
ular
l ∩ h = l ∩ p . (3)Note that g = l+ p sin
e LP is Zariski-open in G. We have assumed that a is orthogonalto h and that the orthogonal p⊥ of p is 
ontained in l. In parti
ular, with q the orthogonalof l ∩ h in h, we have the following orthogonal de
ompositions

g = p⊥
⊥
⊕ (l ∩ h)

⊥
⊕ q

⊥
⊕ a, h = (l ∩ h)

⊥
⊕ q, l = p⊥

⊥
⊕ (l ∩ h), p = h

⊥
⊕ a . (4)The left-invariant Riemannian metri
 on G indu
es a left Haar measure ωG on G, and aleft-invariant Riemannian metri
 on every Lie subgroup G′ of G, hen
e a left Haar measure

ωG′on G′ (whi
h is the 
ounting measure if G′ is dis
rete). Note that A,G,H,L,M,U,L ∩Hare unimodular: indeed A,G,L,M are redu
tive and U is unipotent; furthermore, L ∩His the stabiliser of v0 in L, the orbit of v0 under L is a�ne and hen
e L ∩H is redu
tiveby [BHC, Theo. 3.5℄. But P is not unimodular.The map A ×M × U → P de�ned by (a,m, u) 7→ amu is a smooth di�eomorphism(see for instan
e [BJ, page 273℄). We will denote by dωAdωH the measure on P whi
h is7



the push-forward of the produ
t measure by the di�eomorphism (a, h) 7→ ah. Sin
e A nor-malises H, the measure dωAdωH is left-invariant by P , so that dωP (ah) and dωA(a)dωH(h)are proportional. Sin
e these measures are indu
ed by Riemannian metri
s, and sin
e aand h are orthogonal, we hen
e have
dωP (ah) = dωA(a)dωH(h) .Sin
e A normalises U , the group A a
ts on the Lie algebra U of U by the adjoint repre-sentation. The roots of this linear representation of A are exa
tly the restri
tions to Aof the elements β in ΦC

+ − ΦC
I , with root spa
es gCβ ∩ g and a set of simple roots is theset of restri
tions of the elements of ∆ − I to A (see for instan
e [BJ, Rem. III.1.14℄).Sin
e A is 
onne
ted, these roots have value in ]0,+∞[ . The map A → R∆−I de�ned by

a 7→ (log(α(a)))α∈∆−I is hen
e a smooth di�eomorphism. We will denote by ∏
α∈∆−I dtαthe measure on A whi
h is the push-forward of the produ
t Lebesgue measure by theinverse of this di�eomorphism. By invarian
e, there exists a 
onstant cA > 0 su
h that

dωA = cA
∏

α∈∆−I

dtα .By the de�nition of Λ∨, we have cA = Vol(Λ∨\A).Let Γ = G(Z) ∩ G, whi
h is a dis
rete subgroup of G a
ting isometri
ally for theRiemannian metri
 of G by left translations. Let YG = Γ\G and let π : G → YG = Γ\Gbe the 
anoni
al proje
tion, whi
h is equivariant under the right a
tions of G. Then YGis a 
onne
ted Riemannian manifold (for the unique Riemannian metri
 su
h that π is alo
al isometry) endowed with the transitive right a
tion of G by translations on the right.To simplify the notation, for every Lie subgroup G′ of G, de�ne
YG′ = π(G′) ,whi
h is a inje
tively immersed submanifold in YG, endowed with the Riemannian metri
indu
ed by YG, and identi�ed with (G′ ∩ Γ)\G′ by the map indu
ed by the in
lusion of G′in G. Note that YL and YU are 
onne
ted, but YH and YM are not ne
essarily 
onne
ted.For every Lie subgroup G′ of G, let

µG′be the Riemannian measure on YG′ , whi
h lo
ally is the push-forward of the left Haarmeasure ωG′ .Sin
e G and the identity 
omponent of MU have no nontrivial Q-
hara
ter, the Rie-mannian manifolds YG and YH have �nite volume (see [BHC, Theo. 9.4℄) and YH is 
losedin YG (see for instan
e [Rag, Theo. 1.13℄). Sin
e L is redu
tive and Q-anisotropi
, the sub-manifold YL is 
ompa
t (see [BHC, Theo. 11.6℄). Sin
e U is unipotent, the submanifold
YU is 
ompa
t (see for instan
e [BHC, � 6.10℄).For every Lie subgroup G′ of G su
h that YG′ has �nite measure (that is, su
h that
Γ ∩G′ is a latti
e in G′), we denote by

µG′ =
µG′

‖µG′‖the �nite measure µG′ normalised to be a probability measure. In parti
ular, µG, µH , µL,
µU are well de�ned. 8



For every T = (tα)α∈∆−I and T ′ = (t′α)α∈∆−I in [0,+∞[∆−I , let
A[T,T ′] = {a ∈ A : ∀ α ∈ ∆− I, tα ≤ log(α(a)) ≤ t′α} .and P[T,T ′] = UMA[T,T ′]

−1 = HA[T,T ′]
−1. De�ne YP[T,T ′]

= π(P[T,T ′]), whi
h is a subman-ifold with boundary of YG, invariant under the right a
tion of H, sin
e A normalises H.To shorten the notation, we de�ne
AT = A[0,T ] , PT = P[0,T ] = HAT

−1 and YPT
= YP[0,T ]

= π(PT ) = YHA
−1
T ,as well as minT = minα∈∆−I tα ≥ 0, whi
h measures the 
omplexity of T and will 
onvergeto +∞. We will need to estimate the volume of π(PT ) for µP .Lemma 7 For every T = (tα)α∈∆−I in [0,+∞[∆−I , we have

µP (YPT
) = vol(Λ∨ \A(R)0) ‖µH‖

∏

α∈∆−I

emαtα

mα
.Proof. Denote by duβ the Lebesgue measure on the Eu
lidean spa
e gβ = gCβ ∩ g. Forany order on ΦC

+ − ΦC
I , the map from ∏

β∈ΦC
+−ΦC

I
gβ to U de�ned by (uβ)β∈ΦC

+−ΦC

I
7→∏

β∈ΦC
+−ΦC

I
expuβ is a smooth di�eomorphism, and there exists cU > 0 su
h that dωU isthe push-forward by this di�eomorphism of the measure cU ∏

β∈ΦC
+−ΦC

I
duβ .For every a ∈ A, if ia : g 7→ aga−1 is the 
onjugation by a, then for every uβ ∈ gβ, wehave ia(exp uβ) = exp((Ad a)(uβ)) = exp(β(a)uβ). Hen
e

(i−1
a )∗(ωU ) =

∏

β∈ΦC
+−ΦC

I

β(a)dim gβωU =
∏

α∈∆−I

α(a)mαωUby the de�nition of (mα)α∈∆ and sin
e the elements of I are trivial on A. Sin
e A 
ommuteswith M , we hen
e have (i−1
a )∗(ωH) =

∏
α∈∆−I α(a)

mαωH .We have, sin
e A is unimodular,
dωP (ha

−1) = dωP (a
−1aha−1) = dωA(a

−1)dωH(aha−1) = dωA(a)d((i
−1
a )∗ωH)(h) .Sin
e Γ ∩ P = Γ ∩H (see for instan
e the lines following Proposition III.2.21 in [BJ, page285℄) and A ∩H = {e}, we have π(Ha) 6= π(Ha′) if a 6= a′. Hen
e

µP (YPT
) =

∫

y∈YH

∫

a∈AT

dµP (ya
−1) =

∫

AT

∏

α∈∆−I

α(a)mαdωA(a)

∫

YH

dµH (5)
= ‖µH‖ cA

∏

α∈∆−I

∫ tα

0
emαs ds .Sin
e mα > 0, the result follows. �To simplify the notation, we write ρ(g)x = gx for every g ∈ G and x ∈ V, we de�ne

va = av0 for every a ∈ A, and we denote by Lx = Gx ∩L the stabiliser of x in L for every
x ∈ V(R).Sin
e we have a left Haar measure ωL on L and ωL∩H on L ∩H, Weil's normalisationgives a L-invariant measure on the homogeneous spa
e L/(L ∩H), and hen
e a left Haar9



measure on the stabilisers ℓ(L∩H)ℓ−1 for every ℓ in L, as explained above. As announ
ed,the modi�ed Siegel weights w′
L,ρ|L(·) are de�ned using this Weil's normalisation, as follows.For every ℓ ∈ L and a ∈ A, if x = ℓav0, sin
e H = MU is normalised by A and is thestabiliser of v0 in G, we have

Lx = L ∩ StabG x = L ∩ (ℓHℓ−1) = ℓ(L ∩H)ℓ−1 . (6)Note that
L(R)0 ∩ L(Z) = L(R)0 ∩G(Z) = L(R)0 ∩G(R)0 ∩G(Z) = L ∩ Γ , (7)and similarly L(R)0 ∩ Lx(Z) = Lx ∩ Γ for every x ∈ Lva ∩ Γv0. Hen
e the denominatorof the modi�ed Siegel weight w′

L,ρ|L(x) is equal to vol
(
(L ∩ Γ)\L

)
= vol(YL), using themeasure µL on YL indu
ed by the Haar measure ωL on L. Its numerator vol ((Lx∩Γ)\Lx

)is de�ned by using the measure on (Lx ∩ Γ)\Lx indu
ed by the left Haar measure on
Lx = ℓ(L ∩H)ℓ−1 given by Weil's normalisation.We now pro
eed to the proof of Theorem 6.Step 1. The �rst step of the proof is the following group theoreti
 lemma, whi
h relatesthe 
ounting fun
tion of modi�ed Siegel weights to the 
ounting fun
tion of volumes oforbits of L∩H. We denote with square bra
kets the (left or right) appropriate orbit of anelement.Lemma 8 For every a ∈ A, there exists a bije
tion between �nite subsets

Θa : (L ∩ Γ)\(Lva ∩ Γv0) −→ (YL ∩ YHa
−1)/(L ∩H)su
h that for every x ∈ Lva ∩ Γv0, if [y] = Θa([x]), then

vol
(
(Lx ∩ Γ)\Lx

)
= vol

(
y(L ∩H)

)
. (8)In parti
ular, for every T ∈ [0,+∞[∆−I , we have

∑

a∈AT

∑

[x]∈(L∩Γ)\(Lva∩Γv0)

w′
L,ρ|L(x) =

∑

a∈AT

∑

[y]∈(YL∩YHa−1)/(L∩H)

vol
(
y(L ∩H)

)

vol(YL)
.Proof. Fix a ∈ A. First note that the groups L ∩ Γ and L ∩H do preserve the subsets

Lva ∩ Γv0 of V (R) and YL ∩ YHa
−1 of Y respe
tively for their left and right a
tion, sin
e

A normalises H. The �niteness of the set (L ∩ Γ)\(Lva ∩ Γv0) follows from Borel-Harish-Chandra's �niteness theorem as in the introdu
tion. Also re
all that H = MU is thestabiliser of v0 in G.De�ne
Θa : [ℓva] 7→ [π(ℓ)] .Let us prove that this map is well de�ned and bije
tive. Let ℓ, ℓ′ ∈ L.We have ℓva ∈ Γv0 if and only if there exists γ ∈ Γ su
h that ℓav0 = γv0, that is,if and only if there exist γ ∈ Γ and h ∈ H su
h that ℓ = γha−1, that is, if and onlyif π(ℓ) ∈ YL ∩ YHa

−1. This proves that Θa has values in (YL ∩ YHa
−1)/(L ∩ H) and issurje
tive. 10



Let us prove that Θa does not depend on the 
hoi
e of representatives and is inje
tive.We have [ℓ′va] = [ℓva] if and only if there exists γ ∈ L ∩ Γ su
h that ℓ′av0 = γℓav0, hen
eif and only if there exist γ ∈ L ∩ Γ and h ∈ H su
h that ℓ′a = γℓah. Note that thisequation implies that aha−1 ∈ L if and only if γ ∈ L. Sin
e A normalises H, we hen
ehave [ℓ′va] = [ℓva] if and only if ℓ′ ∈ Γℓ(L ∩H), that is if and only if [π(ℓ)] = [π(ℓ′)].To prove the se
ond assertion, let ℓ ∈ L be su
h that x = ℓva ∈ Γv0 and let y = π(ℓ), sothat Θa([x]) = [y]. The orbit of y under L∩H in YG is the image by the lo
ally isometri
map π of the Riemannian submanifold ℓ(L ∩ H) of G. The left translation by ℓ−1 is anisometry (hen
e is volume preserving) from ℓ(L ∩H) to (L ∩H). By Lemma 5, the map
g 7→ ℓgℓ−1 from L ∩H to ℓ(L ∩H)ℓ−1, whi
h is equal to Lx by Equation (6), is measurepreserving. Therefore the map ϕ : [z] 7→ [zℓ] from (Lx ∩ Γ)\Lx to y(L ∩H) is a measurepreserving bije
tion. This proves the volume equality of Equation (8).The last 
laim follows from the other ones, sin
e the numerator of the modi�ed Siegelweight w′

L,ρ|L
(x) is vol ((Lx ∩ Γ)\Lx

). �Step 2. The se
ond step of the proof is an equidistribution result, in the spirit of [KM1℄,saying that the pie
e YPT
of orbit of P equidistributes in YG as minT → +∞.For every smooth Riemannian manifold Z and q ∈ N, we denote by C

q
c (Z) the normedve
tor spa
e of Cq maps with 
ompa
t support on Z, with norm ‖ · ‖q.Proposition 9 There exist q ∈ N and κ > 0 su
h that for every f ∈ C
q
c (YG) and T =

(tα)α∈∆−I ∈ [0,+∞[∆−I , we have, as minT tends to +∞,
1

µP (YPT
)

∫

YPT

f dµP =

∫

YG

f dµG +O
(
e−κminT ‖f‖q

)
.To prove the proposition, we will use the disintegration formula already seen in theproof of Lemma 7

∫

YPT

f dµP =

∫

AT

( ∫

YH

f(ya−1) dµH(y)
)( ∏

α∈∆−I

α(a)mα

)
dωA(a) .This formula indi
ates that the proposition would follow from (an averaging of) the equidis-tribution of the translates YHa−1, whi
h is established in Proposition 10 below. To statethis proposition, we need to introdu
e additional notation.The linear algebrai
 group G de
omposes as an almost dire
t produ
t

G = Z(G)G1 · · ·Gswhere Z(G) is the 
entre ofG, andG1, . . . ,Gs are Q-simple 
onne
ted algebrai
 subgroupsof G. The maximal Q-split torus S de
omposes as an almost dire
t produ
t
S = S1 · · ·Sswhere Si is a maximal Q-split torus in Gi. We also get an almost dire
t produ
t de
om-position

G = Z(G)G1 · · ·Gs, (9)11



where Z(G) is the 
entre of G (whi
h is equal to Z(G)0 sin
e G is 
onne
ted and Gis Zariski-dense in G) and Gi = Gi(R)0 for 1 ≤ i ≤ s. Sin
e G has no nontrivial Q-
hara
ter, and sin
e M is the 
entraliser of A, this gives 
orresponding almost dire
tprodu
t de
ompositions of the Lie groups A = A1 . . . As (this one being a dire
t produ
t),
U = U1 . . . Us, M = Z(G)M1 . . .Ms, H = Z(G)H1 . . . Hs. The set of simple roots ∆de
omposes as a disjoint union

∆ = ∆1 ⊔ · · · ⊔∆swhere ∆i is a set of simple roots of Gi relatively to Si, and the positive (
losed) Weyl
hamber A+ in A asso
iated to ∆ de
omposes as
A+ = A+

1 · · ·A+
s ,where A+

i is the positive (
losed) Weyl 
hamber in A ∩Gi asso
iated to ∆i.For 1 ≤ i ≤ s and a ∈ Ai, we de�ne
Ei(a) = exp

(
−

(
max

α∈∆i−I
log α(a)

))
> 0 (10)if ∆i − I 6= ∅, and Ei(a) = 0, otherwise. For every κ > 0, we also de�ne

Eκ(a) =
s∑

i=1

Ei(ai)
κfor every a ∈ A+ with a1 ∈ A+

1 , · · · , as ∈ A+
s and a = a1 · · · as.Proposition 10 There exist q ∈ N and κ > 0 su
h that for all f ∈ C

q
c (YG) and a ∈ A+,

∫

YH

f(ya−1) dµH(y) =

∫

YG

f dµG +O
(
Eκ(a) ‖f‖q

)
.Given a Lie subgroup D of G su
h that Γ ∩ D is a latti
e in D, we denote by νDthe normalised right invariant measure on (Γ ∩D)\D. Re
all that YD = π(D) is a 
losedsubmanifold of YG, and that µD is the invariant measure on YD indu
ed by the Riemannianmetri
, with normalised measure µD.We identify (Γ ∩H)\H with YH using the (well de�ned) map h 7→ Γh (denoting againby h ∈ H a representative of a 
oset h ∈ (Γ ∩H)\H). Sin
e the groups Z(G),H1, · · · ,Hs
ommute, we also have the map

(Γ ∩ Z(G))\Z(G) × (Γ ∩H1)\H1 · · · × (Γ ∩Hs)\Hs → YHwell de�ned by (h0, h1, . . . , hs) 7→ Γh0h1 · · · hs (using 
onventions similar to the aboveone for 
oset representatives). Then the normalised invariant measures µH , µH1
, . . . , µHssatisfy, for all f ∈ Cc(YG),

∫

YH

f(y) dµH(y) =

∫

(Γ∩H)\H
f(Γh)dνH(h)

=

∫

(Γ∩Z(G))\Z(G)×···×(Γ∩Hs)\Hs

f(Γh0h1 · · · hs)dνZ(G)(h0) · · · dνHs(hs). (11)12



We will prove Proposition 10 by using an indu
tive argument on the number of fa
tors.We start by analysing the distribution of YUi
a−1 in Lemma 11 and then the distributionof YHi

a−1 in Lemma 12.Let D be a produ
t of almost dire
t fa
tors of G in the de
omposition (9). For every
f ∈ C 0

c (YG), we de�ne a map PDf : YG → C by
(PDf)(Γg) =

∫

(Γ∩D)\D
f(Γdg) dνD(d)whi
h does not depend on the 
hoi
e of the representative of Γg, by the right invarian
e of

νD under D. Note that PDf is 
ontinuous and invariant under the right a
tion of D.Lemma 11 There exist q ∈ N and κ1 > 0 su
h that for every i ∈ {1, . . . , s} with Ai 6= {1},for every f ∈ C
q
c (YG) and a ∈ A+

i ,
∫

YUi

f(ya−1) dµUi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ1‖f |YGi
‖q
)
.Proof. For 1 ≤ i ≤ s, we 
onsider the unitary representation of the group Gi on theorthogonal 
omplement of the spa
e of Gi-invariant (hen
e 
onstant on YGi
) fun
tions inthe Hilbert spa
e L2(YGi

, µGi
), whose s
alar produ
t we denote by 〈·, ·〉YGi

(using the nor-malised measure µGi
). We note that for every f ∈ Cc(YG), the fun
tion f |YGi

−(PGi
f)(Γe)belongs to this spa
e.We say that a unitary representation of a 
onne
ted real semisimple Lie group G′ hasthe strong spe
tral gap property if the restri
tion to every non
ompa
t simple fa
tor of G′is isolated from the trivial representation for the Fell topology (see for instan
e [Cow℄,[BHV, Appendix℄, [KM2, Appendix℄ for equivalent de�nitions and examples, and 
omparefor instan
e with [Nev, KS℄ for variations on the terminology). We 
laim that the aboveunitary representation of Gi has the strong spe
tral gap property. Indeed, if Gi is simply
onne
ted and Γi is a 
ongruen
e subgroup in Gi, then the strong spe
tral gap property on

Γi\Gi is a dire
t 
onsequen
e of the property τ proved in [Clo℄, see Theorem 3.1 therein.By [KM2, Lemma 3.1℄, this also implies, when Gi is simply 
onne
ted, the strong spe
tralproperty on Γi\Gi for subgroups Γi that are 
ommensurable with 
ongruen
e subgroups,and, in parti
ular, for arithmeti
 subgroups of Gi. Now let pi : G̃i → Gi be a simply
onne
ted 
over of Gi, and let G̃i = G̃i(R). Then YGi
≃ p−1

i (Γ ∩ Gi)\G̃i, and the strongspe
tral gap property for L2(YGi
, µGi

) follows from the above arguments.Applying [KM1, Theorem 2.4.3℄, we dedu
e that there exist q ∈ N and κ′1, C > 0 su
hthat for every i ∈ {1, . . . , s} su
h that Ai 6= {e}, for every φ ∈ C
q
c (YGi

) and a ∈ A+
i ,

〈
(f |YGi

− (PGi
f)(Γe)) ◦ a−1, φ

〉
YGi

≤ C Ei(a)
κ′
1 ‖f |YGi

‖q ‖φ‖q , (12)where Ei(a) is de�ned in Equation (10).Let P−
i denote the paraboli
 subgroup in Gi opposite to Ui. The produ
t map Ui ×

P−
i → Gi is a di�eomorphism between neighbourhoods of the identities. Sin
e YUi

= π(Ui)is 
ompa
t, if ǫ > 0 is small enough, there exists an open ǫ-neighbourhood Ωǫ of the identityin P−
i su
h that the produ
t map YUi

×Ωǫ → YGi
is a di�eomorphism onto its image YUi

Ωǫ.We have (see also Lemma 14)
∀ y ∈ YUi

, ∀ p ∈ Ωǫ, dµGi
(yp) = dµUi

(y)dω(p),13



for a suitably normalised smooth measure ω on Ωǫ. There exists σ > 0 (depending on q)su
h that for every ǫ > 0 small enough, there exists a nonnegative fun
tion ψǫ ∈ C
q
c (Ωǫ)satisfying ∫

Ωǫ

ψǫ dω = 1 and ‖ψǫ‖q = O(ǫ−σ) .De�ne a Cq fun
tion φǫ : YGi
→ [0,+∞[ supported on YUi

Ωǫ by
∀ y ∈ YUi

, ∀ p ∈ Ωǫ, φǫ(yp) = ψǫ(p) .Then ∫

YGi

φε dµGi
= 1 and ‖φǫ‖q = O(ǫ−σ) .Sin
e for all a ∈ A+

i and p ∈ Ωǫ,
d(apa−1, e) = O(ǫ),we obtain

〈
f |YGi

◦ a−1, φǫ
〉
YGi

=

∫

YUi
×Ωǫ

f(ypa−1)ψǫ(p) dµUi
(y)dω(p)

=

∫

YUi

f(ya−1) dµUi
(y) + O

(
ǫ‖f |YGi

‖1
)
.Sin
e PGi

f is Gi-invariant,
〈
PGi

f, φǫ
〉
YGi

= (PGi
f)(Γe)

( ∫

YGi

φε dµGi

)
= (PGi

f)(Γe).Combining these estimates with (12) (we may assume that q ≥ 1), we 
on
lude that
∫

YUi

f(ya−1) dµUi
(y) = (PGi

f)(Γe) + O
(
(ǫ+ Ei(a)

κ′
1ǫ−σ) ‖f |YGi

‖q
)
.Finally, taking ǫ = Ei(a)

κ′
1/(1+σ) whi
h is small if a lies outside a 
ompa
t subset of A+

i ,we dedu
e that
∫

YUi

f(ya−1) dµUi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ′
1/(1+σ)‖f |YGi

‖q
)
,as required. �Lemma 12 There exist q ∈ N and κ2 > 0 su
h that for every f ∈ C

q
c (YG) and a ∈ A+

i ,for every i ∈ {1, . . . , s}, we have
∫

YHi

f(ya−1) dµHi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ2‖f |YGi
‖q
)
.

14



Proof. We �rst observe that if Ai = {e}, then Hi = Gi, and the 
laim of the lemma isobvious. Now we assume that Ai 6= {e} in whi
h 
ase Lemma 11 applies.Let Ni = (Γ ∩ Mi)\Mi. The spa
e YHi
= π(UiMi) is a bundle over Ni with �bresisomorphi
 to YUi

, and the invariant measure µHi
on YHi

de
omposes with respe
t to thisstru
ture. Expli
itly, for every m ∈Mi, the integrals ∫YUi

f(ym) dµUi
(y) for all f ∈ Cc(YG)de�ne a Ui-invariant probability measure on YUi

m, whi
h depends only on the 
oset n = [m]of m in Ni = (Γ ∩Mi)\Mi, and the Hi-invariant probability measure on YHi
is given by∫

Ni

( ∫
YUi

f(ym) dµUi
(y)

)
dνMi

([m]) for all f ∈ Cc(YG). Hen
e, denoting again by n anyrepresentative of a 
oset n in Ni, sin
e A 
entralises M ,
∫

YHi

f(ya−1) dµHi
(y) =

∫

Ni

∫

YUi

f(yna−1) dµUi
(y) dνMi

(n)

=

∫

Ni

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n) .For m ∈ Mi and f ∈ Cc(YG), we 
onsider the fun
tion fm : YG → C de�ned by
y 7→ f(ym). We note that there exist c1, C ′ > 0 su
h that for every f ∈ C

q
c (YG), we have

‖fm|YGi
‖q ≤ C ′ec1d(e,m)‖f |YGi

‖q .Hen
e, by Lemma 11, for every f ∈ C
q
c (YG) and m ∈ Mi, sin
e PGi

fm = PGi
f byinvarian
e under Gi,∫

YUi

f(ya−1m) dµUi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ1ec1 d(e,m)‖f |YGi
‖q
)
. (13)We �x n0 ∈ Ni and for R > 0, we set

(Ni)R = {n ∈ Ni : d(n0, n) ≤ R} ,where d(·, ·) denotes the distan
e on Ni with respe
t to the indu
ed Riemannian metri
.We shall use the following estimate on the volumes of the �
usp�: there exists c2 > 0 su
hthat for every R > 0,
νMi

(Ni − (Ni)R) = O(e−c2R). (14)To prove this estimate, we may pass to an equivalent Riemannian metri
 and to a �niteindex subgroup of Γ∩Mi. This way, we redu
e the proof to the 
ase whenMi is semisimple,
Γ ∩Mi is an nonuniform latti
e in Mi, and the Riemannian metri
 on Mi is bi-invariantunder a maximal 
ompa
t subgroup in Mi. Then Equation (14) follows from [KM2, �5.1℄(whi
h notes that the irredu
ible assumption on Γ ∩Mi is not ne
essary).Equation (14) implies that

∫

Ni−(Ni)R

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n) = O
(
e−c2R ‖f |YGi

‖0
)
. (15)Given m ∈Mi su
h that (Γ∩Mi)m ∈ (Ni)R, there exists m′ ∈Mi su
h that (Γ∩Mi)m =

(Γ ∩Mi)m
′ and d(e,m′) ≤ R. Therefore, it follows from Equation (13) that

∫

(Ni)R

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n)

= νMi
((Ni)R)(PGi

f)(Γe) + O
(
Ei(a)

κ1ec1 R ‖f |YGi
‖q
)

= (PGi
f)(Γe) + O

(
(e−c2R + Ei(a)

κ1ec1R) ‖f |YGi
‖q
)
. (16)15



Finally, 
ombining (15) and (16), we obtain that
∫

Ni

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n)

= (PGi
f)(Γe) + O

(
(e−c2R + Ei(a)

κ1ec1R) ‖f |YGi
‖q
)
.Taking R = logEi(a)

−
κ1

c1+c2 , we dedu
e the 
laim of Lemma 12 with κ2 = κ1c2
c1+c2

. �Proof of Proposition 10. For a subsemigroup D whi
h de
omposes as a produ
t
D = Dp · · ·Dq and p ≤ i ≤ q, we write

D≤i = Dp · · ·Di and D>i = Di+1 · · ·Dq.We show indu
tively on i ∈ {0, . . . , s} that for every a = a1 . . . ai ∈ A+
≤i (by 
onvention

a = e if i = 0) and g ∈ G>i, we have
∫

YH≤i

f(ya−1g) dµH≤i
(y) = (PG≤i

f)(Γg) +

i∑

j=1

O
(
Ej(aj)

κ‖f‖q
) (17)with κ = κ2 and q as in Lemma 12. Sin
e H≤0 = G≤0 = Z(G), this is obvious for i = 0.To get this estimate for i = 1, we apply Lemma 12 to the fun
tion fg(y) = (PG≤0

f)(yg)with g ∈ G>1. Sin
e G1 
ommutes with G≤0 and G>1, we have
‖fg|YG1

‖q ≤ ‖f‖q and (PG1PG≤0
f)(Γg) = (PG≤1

f)(Γg) .This proves Equation (17) with i = 1.Now suppose that Equation (17) is proved at rank i. As in Equation (11), for f ∈
Cc(YG),

∫

YH≤i+1

f(y) dµH≤i+1
(y) =

∫

(Γ∩Hi)\Hi

∫

YH≤i

f(yh) dµH≤i
(y) dνHi

(h) .Hen
e, for every a′ = a1 . . . ai ∈ A+
≤i, ai+1 ∈ A+

i+1 and g ∈ G>i+1, with a = a′ai+1, by theright invarian
e of νHi+1 under Hi+1 and by Equation (17), we have
∫

YH≤i+1

f(ya−1g) dµH≤i+1
(y)

=

∫

(Γ∩Hi+1)\Hi+1

∫

YH≤i

f(y(a′)−1ha−1
i+1g) dµH≤i

(y) dνHi+1(h)

=

∫

(Γ∩Hi+1)\Hi+1

(PG≤i
f)(Γha−1

i+1g) dνHi+1(h) +

i∑

j=1

O
(
Ej(aj)

κ‖f‖q
)
.Applying Lemma 12 to the fun
tions fg : y 7→ (PG≤i

f)(yg) on YG, we obtain
∫

(Γ∩Hi+1)\Hi+1

(PG≤i
f)(Γha−1

i+1g) dνHi+1(h)

= (PGi+1fg)(Γe) + O
(
Ei+1(ai+1)

κ ‖f g|YGi+1
‖q
)

= (PG≤i+1
f)(Γg) + O

(
Ei+1(ai+1)

κ ‖f‖q
)
.16



This 
ompletes the proof of Equation (17). Sin
e
(PG≤s

f)(Γe) =

∫

YG

f dµG,the proposition follows. �Proof of Proposition 9. Sin
e
∫

YPT

f dµP =

∫

AT

( ∫

YH

f(ya−1) dµH(y)
)( ∏

α∈∆−I

α(a)mα

)
dωA(a) ,it follows from Proposition 10 and from Equation (5) that

∫

YPT

f dµP = µP (YPT
)

∫

YG

f dµG +O
(
‖f‖q

∫

AT

Eκ(a)
( ∏

α∈∆−I

α(a)mα

)
dωA(a)

)
.For every i ∈ {1, . . . , s} su
h that ∆i − I 6= ∅, let β ∈ ∆i − I. For every bi ∈ Ai, we have

Ei(bi) ≤ e− log β(bi).Hen
e, by Lemma 7, we have, assuming that κ < minα∈∆−I mα (whi
h is possible),
∫

AT

Ei(ai)
κ
( ∏

α∈∆−I

α(a)mα

)
dωA(a) ≤ cA

( ∏

α∈∆−I−{β}

∫ tα

0
emαs ds

)∫ tβ

0
e(mβ−κ)s ds

= O
(
µP (YPT

) e−κtβ
)
.Therefore, sin
e Eκ(a) =

∑
1≤i≤s : ∆i−I 6=∅Ei(ai)

κ, we have
1

µP (YPT
)

∫

YPT

f dµP =

∫

YG

f dµG +O(e−κminT ‖f‖q),as required. �Step 3. In this last step of the proof of Theorem 6, we will di�use the orbits of L ∩Hwe want to 
ount using bump fun
tions, and apply the equidistribution result given byProposition 9 in Step 2 to infer our main theorem.Before starting this program, we rewrite the sum whose asymptoti
 we want to studyin a more 
on
ise way. Let T, T ′ ∈ [0,+∞[∆−I . By transversality (see for instan
e [Hir,p. 22, Theo. 3.3℄), the interse
tion
Z[T,T ′] = YL ∩ YP[T,T ′]is a 
ompa
t Riemannian submanifold of YG, invariant under the right a
tion of L ∩ H,and for every x ∈ Z[T,T ′], we have TxZ[T,T ′] = (TxYL) ∩ (TxYP[T,T ′]

). Sin
e l ∩ p = l ∩ h byEquation (3), the Lie group L ∩H has open orbits in Z[T,T ′]. Hen
e the 
ompa
t subset
Z[T,T ′] is a �nite union of orbits of L∩H (see the pi
ture below when A is 1-dimensional).17



YHa
−1
T

YHa
−1
T ′

YP[T,T ′]

YL

Z[T,T ′] =
⊔

i yi(L ∩H)

We will denote by µZ[T,T ′]
the Riemannian measure on Z[T,T ′]. Using Riemannianvolumes, we hen
e have

µZ[T,T ′]
(Z[T,T ′]) =

∑

[y]∈(YL∩YP
[T,T ′]

)/(L∩H)

vol
(
y(L ∩H)

)

=
∑

a∈A[T,T ′]

∑

[y]∈(YL∩YHa−1)/(L∩H)

vol
(
y(L ∩H)

)
.By Lemma 8 in Step 1, the quantity µZ[0,T ]

(Z[0,T ]), when divided by vol(YL), is the sumwhose asymptoti
 we want to study.We �rst start by studying the supports of the bump fun
tions we will de�ne: they willbe appropriate neighbourhoods of YL and Z[T,T ′]. Fix ǫ > 0, whi
h will be appropriately
hoosen small enough later on. Consider the open ball B(0, ǫ) of 
enter 0 and radius ǫ inthe orthogonal 
omplement q⊕ a of l∩ p in p, and let Oǫ = expB(0, ǫ), whi
h is 
ontainedin P .Sin
e L is 
ompa
t, if ǫ is small enough, the right a
tion of G on YG indu
es a map YL×
Oǫ → YG, with (y, g) 7→ yg, whi
h is a smooth di�eomorphism onto an open neighbourhood
YLOǫ of the submanifold YL in YG. Similarly, if ǫ is small enough, then for every T, T ′ ∈
[0,+∞[∆−I , the map Z[T,T ′]×Oǫ → YP de�ned by (y, g) 7→ yg is a smooth di�eomorphismonto an open neighbourhood Z[T,T ′]Oǫ of the submanifold Z[T,T ′] in YP . If η ∈ R and
T ′′ = (t′′α)α∈∆−I ∈ [0,+∞[∆−I , we denote T ′′ + η = (t′′α + η)α∈∆−I .Lemma 13 There exists c > 0 su
h that if ǫ > 0 is small enough, for every T, T ′ ∈
[0,+∞[∆−I , then

Z[T+cǫ,T ′−cǫ]Oǫ ⊂ YLOǫ ∩ YP[T,T ′]
⊂ Z[T−cǫ,T ′+cǫ]Oǫ .Proof. We �rst 
laim that there exists c > 0 su
h that

P[T+cǫ,T ′−cǫ] ⊂ P[T,T ′]Oǫ ⊂ P[T−cǫ,T ′+cǫ] .Sin
e the produ
t map (h, a) 7→ ha is a di�eomorphism from H × A to P , sin
e Oǫ is
ontained in P , and sin
e the distan
es are Riemannian ones, there exists c1 > 0 su
h thatif ǫ > 0 is small enough, then for every g ∈ Oǫ, there exist h ∈ H and a ∈ A with g = haand d(a, e) ≤ c1ǫ. Sin
e the Riemannian distan
e on A is equivalent to the image by expof the distan
e on a de�ned by the norm ‖x‖ = maxα∈∆−I | log(α(exp x))|, there exists
c2 > 0 su
h that | log α(a)| ≤ c2d(a, e) for every a ∈ A.18



Let g ∈ Oǫ, h ∈ H and a ∈ A be su
h that g = ha and d(a, e) ≤ c1ǫ. Sin
e Anormalises H, we have HA−1
[T,T ′]g = HA−1

[T,T ′]ha = HA−1
[T,T ′]a. Hen
e HA−1

[T,T ′]g is 
ontainedin HA−1
[T−c1c2ǫ,T ′+c1c2ǫ]

and 
ontains HA−1
[T+c1c2ǫ,T ′−c1c2ǫ]

. This proves the �rst 
laim.Now, let y ∈ YL, g ∈ Oǫ and p ∈ P[T,T ′] be su
h that yg = π(p). Then y = π(pg−1).Sin
e Oǫ is invariant by taking inverses, pg−1 belongs to P[T,T ′]Oǫ, hen
e by the �rst 
laim,
yg ∈ Z[T−cǫ,T ′+cǫ]Oǫ. The left in
lusion is proven similarly. �We now study the properties of the Riemannian measures on the neighbourhoods YLOǫand Z[T,T ′]Oǫ.Lemma 14 For every ǫ > 0 small enough, there exist smooth measures ν and ν̃ on Oǫ su
hthat the produ
t maps YL × Oǫ → YG and Z[T,T ′] × Oǫ → YP send the produ
t measures
µL ⊗ ν and µZ[T,T ′]

⊗ ν̃ to the restri
ted measures µG|YLOǫ
and µP |Z[T,T ′]Oǫ

, respe
tively.Furthermore, dν̃
dν (e) = 1.Proof. Sin
e the measure µG|YLOǫ

(respe
tively µP |Z[T,T ′]Oǫ
) is Riemannian, it disintegrateswith respe
t to the trivialisable �bration YLOǫ → YL (respe
tively Z[T,T ′]Oǫ → Z[T,T ′] withmeasure on the basis µL (respe
tively µZ[T,T ′]

), and 
onditional measures νy (respe
tively
ν̃y on the �bers yOǫ for all y ∈ YL (respe
tively y ∈ Z[T,T ′]). By left invarian
e of themeasures ωL and ωL∩H , there exist smooth measures ν (respe
tively ν̃) on Oǫ su
h thatthe maps Oǫ → yOǫ de�ned by g 7→ yg send ν (respe
tively ν̃) to νy (respe
tively ν̃y) forall y ∈ YL (respe
tively y ∈ Z[T,T ′]). This proves the �rst 
laim.Sin
e q+ a is orthogonal to l (respe
tively l ∩ h) by Equation (4), the manifold yOǫ isorthogonal to YL (respe
tively Z[T,T ′]) at every y ∈ YL (respe
tively y ∈ Z[T,T ′]). Hen
e anyorthonormal frame F of Ty(yOǫ) at a given y ∈ Z[T,T ′] may be 
ompleted to an orthonormalframe whose last ve
tors form a basis of TyYL, whose �rst ve
tors form a basis of TyZ[T,T ′].By desintegration, the orthogonal frame F has the same in�nitesimal volume for ν and ν̃.The last assertion follows. �Let us now de�ne our bump fun
tions. By the standard 
onstru
tion of bump fun
tionson manifolds, for every q ∈ N, there exists κ′ > 0 su
h that for every ǫ > 0 small enough,there exists a Cq map ψǫ from Oǫ to [0,+∞[ , with 
ompa
t support, su
h that ∫ ψǫ dν = 1and ‖ψǫ‖q = O(ǫ−κ′

). Sin
e dν̃
dν = 1 + O(ǫ) on Oǫ by Lemma 14, we have

∫

Oǫ

ψǫ dν̃ = 1 + O(ǫ) .For every ǫ > 0 small enough, de�ne fǫ : YG → [0,+∞[ by fǫ(y) = 0 if y /∈ YLOǫ and
fǫ(yg) = ψǫ(g) for every y ∈ YL and g ∈ Oǫ. Note that fǫ is Cq with 
ompa
t support,sin
e YL is 
ompa
t. We have

∫

YG

fǫ dµ =

∫
YLOǫ

fǫ dµG

vol(YG)
=

∫
g∈Oǫ

∫
y∈YL

ψǫ(g) dµL(y)dν(g)

vol(YG)
=

vol(YL)

vol(YG)
,and ‖fǫ‖q = O(ǫ−κ′

).
19



Sin
e the support of fǫ is 
ontained in YLOǫ, by Lemma 14, and by the right in
lusionin Lemma 13, we have, for every T ∈ [0,+∞[∆−I ,
∫

YPT

fǫ dµP ≤

∫

Z[−cǫ,T+cǫ]Oǫ

fǫ dµP

=

∫

g∈Oǫ

∫

y∈Z[−cǫ,T+cǫ]

ψǫ(g) dµZ[−cǫ,T+cǫ]
(y)dν̃(g)

= vol(Z[−cǫ,T+cǫ])
(
1 + O(ǫ)

)
. (18)Similarly, sin
e fǫ ≥ 0 and by the left in
lusion in Lemma 13, we have, for every T ∈

[0,+∞[∆−I ,
∫

YPT

fǫ dµP ≥

∫

Z[cǫ,T−cǫ]Oǫ

fǫ dµP = vol(Z[cǫ,T−cǫ])
(
1 + O(ǫ)

)
. (19)Finally, we apply Step 2 to our bump fun
tions. By Proposition 9, we have the equality

1
µP (YPT

)

∫
YPT

fǫ dµP =
∫
YG
fǫ dµG +O

(
e−κminT ‖fǫ‖q

). Hen
e, by the properties of fǫ,
∫

YPT

fǫ dµP =
vol(YL)µP (YPT

)

vol(YG)

(
1 + O(ǫ−κ′

e−κminT )
)
. (20)Let δ = κ

κ′+1 > 0 and ǫ = e−δminT (whi
h tends to 0 as minT tends to +∞). Then
ǫ−κ′

e−κminT = e(κ
′δ−κ)minT = e−δminT . By the equations (19) and (20), and by Lemma7, we have, as minT tends to +∞,

vol(Z[cǫ,T−cǫ]) ≤
(∫

YPT

fǫ dµP

)(
1 + O(e−δminT )

)

=
vol(YL)µP (YPT

)

vol(YG)

(
1 + O(e−δminT )

)

=
Vol(Λ∨\A) vol(YL) vol(YH)

vol(YG)

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminT )

)
.Sin
e ex = 1 + O(x) as x tends to 0, we have ec e−δminT

∑
α∈∆−I mα = 1 + O(e−δminT )as minT tends to +∞. Sin
e Z[0,cǫ] is bounded, we hen
e have, as minT tends to +∞,

vol(Z[0,T ]) ≤
Vol(Λ∨\A) vol(YL) vol(YH)

vol(YG)

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminT )

)
.The 
onverse inequality is proven similarly, using Equation (18) instead of Equation (19)Sin
e ∑

a∈AT

∑
[x]∈(L∩Γ)\(Lva∩Γv0)

w′
L,ρ|L(x) =

vol(Z[0,T ])

vol(YL)
as said in the beginning ofStep 3, this ends the proof of Theorem 6. �Remark 15 Let G,P,A,M,U,L,V, ρ, v0 be as in the statement of Theorem 6, andassume furthermore that G is simply 
onne
ted. Then we have the following 
ountingresults using the standard Siegel weights. 20



There exists δ > 0 su
h that, as T = (tα)α∈∆−I ∈ [0,+∞[∆−I and minα∈∆−I tα tendsto +∞, ∑

a∈AT

∑

[x]∈L(Z)\(ρ(L(R)a)v0∩ρ(Γ)v0)

wL,ρ|L(x) =

vol
(
MU(Z)\MU(Z)

)
vol(Λ∨ \A(R)0)

vol(G(Z)\G(R))

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminα∈∆−I tα)

)
.The proof is the same as the one of Theorem 6, with the following modi�
ations. Sin
e

G is simply 
onne
ted, G(R) is 
onne
ted (see for instan
e [PR, �7.2℄). Hen
e with theprevious notation, we have G = G(R) and Γ = Γ(Z) (and the 
onne
tedness of G wasuseful). Now take L = L(R) instead of L = L(R)0 (whi
h is still 
ontained in G, butwould not have been if G was only taken to be G(R)0 while G(R) is not 
onne
ted).Though L and YL may be no longer 
onne
ted, the proof stays valid.To end this se
tion, we give two slightly di�erent versions of Theorem 6 when P ismaximal.Theorem 16 Let G be a 
onne
ted redu
tive linear algebrai
 group de�ned over Q, withoutnontrivial Q-
hara
ters. Let P be a maximal (proper) paraboli
 subgroup of G de�ned over
Q, and let P = AMU be a relative Langlands de
omposition of P, su
h that A(R)0 is aone-parameter subgroup (as)s∈R, with λ = log det (Ad a1)|U > 0, where U is the Lie algebraof U(R). Let ρ : G → GL(V) be a rational representation of G de�ned over Q su
hthat there exists v0 ∈ V(Q) whose stabiliser in G is MU. Let L be a redu
tive algebrai
subgroup of G de�ned and anisotropi
 over Q. Assume that LP is Zariski-open in G andthat for every s ∈ R, the orbit Xs = ρ(Las)v0 is Zariski-
losed in V.(1) Endow G(R) with a left-invariant Riemannian metri
, for whi
h the Lie algebrasof MU(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of P(R) is
ontained in the Lie algebra of L(R). Let G = G(R)0 and Γ = G(Z) ∩ G. There exists
δ > 0 su
h that, as t ≥ 0 tends to +∞,

∑

0≤s≤t

∑

[x]∈(L(R)0∩Γ)\(ρ(L(R)0as)v0∩ρ(Γ)v0)

w′
L,ρ|L(x)

=
vol

(
(MU ∩ Γ)\(MU ∩G)

)
vol(aZ1\A(R)0)

λ vol(Γ\G)
eλt +O(e(λ−δ)t) .(2) Let Λ be a Z-latti
e in V(Q) invariant under G(Z), and let Λprim be the subset ofindivisible elements of Λ. Assume ρ to be irredu
ible over C. Then there exist c, δ > 0su
h that, as t ≥ 0 tends to +∞,

∑

0≤s≤t

∑

[x]∈(L(Z)∩L(R)0)\(Xs∩Λprim)

w′
L,ρ|L

(x) = c eλt +O(e(λ−δ)t) .Proof. (1) In this 
ase, ∆−I 
onsists of one simple root α0. Changing the parametrisationof the one-parameter subgroup (as)s∈R appearing in Theorem 16 by multiplying s by apositive 
onstant does not 
hange the asymptoti
 formula in the statement of Theorem 16(1). Hen
e we may assume that a1 = (α0)
∨, hen
e that the group aZ1 generated by a1 isequal to the latti
e Λ∨. The 
onstant λ de�ned in Theorem 16 is then equal to mα0 . The�rst part of Theorem 16 hen
e follows from Theorem 6.(2) We start by proving two lemmas. 21



Lemma 17 If ρ is irredu
ible, then the stabiliser of Cv0 in G is P and there exists χ ∈ Rsu
h that asv0 = eχsv0 for every s ∈ R.Proof. Let T be a maximal torus of G 
ontaining S, and let ∆T be a set of primitiveroots of G relative to T, whose set of nonzero restri
tions to S is ∆ (see for instan
e [Bor3,�21.8℄. Then the unipotent subgroup U
+
T
, whose Lie algebra is the sum of the positive rootspa
es of G relative to T, is 
ontained in MU. By the properties of the highest weights,if ρ is irredu
ible, the spa
e {v ∈ V : U

+
T
v = v} is one-dimensional, hen
e equal to

Cv0. Sin
e A normalises MU, hen
e U
+
T
, it preserves Cv0, and the result follows, by the
onne
tedness of A. �Lemma 18 There exist v1, . . . , vk in Λprim su
h that Λprim ∩Gv0 =

⊔k
i=1 Γvi.Proof. By [Bor3, Prop. 20.5℄, the natural map G(Q) → (G/P)(Q) is onto. Sin
e Gv0 ≃

G/MU, this implies that every x ∈ (Gv0)(Q) may be written as x = gpv0 for some
g ∈ G(Q) and p ∈ P. Hen
e by Lemma 17,

(Gv0)(Q) ⊂ C×
G(Q)v0.By [Bor2, Prop. 15.6℄, there exists a �nite subset F of G(Q) su
h that G(Q) = ΓFP(Q).Hen
e,

(Gv0)(Q) ⊂ C×ΓFv0.In parti
ular, we 
on
lude that there exist v1, . . . vk in Λprim su
h that
Λprim ∩Gv0 ⊂

k⊔

i=1

C×Γvi.Sin
e for every v ∈ Λprim,
C×v ∩ Λprim = {±v},this implies the lemma. �Now, sin
e the identity 
omponent L of L(R) has �nite index in L(R), there exist

ℓ1 . . . , ℓk′ in L(R) su
h that L(R) =
⊔k′

j=1 L ℓj . Hen
e, sin
e v0 belongs to V(R) and
Xs ⊂ Gv0, by Lemma 17 and Lemma 18, we have

Xs ∩ Λprim = (L(R)eχsv0) ∩ (Λprim ∩Gv0) =
⊔

1≤i≤k , 1≤j≤k′

eχsL ℓjv0 ∩ Γvi . (21)If L ℓjv0∩Γvi is nonempty, �x vi,j ∈ Lℓjv0∩Γvi. In parti
ular, there exist γ ∈ Γ and ℓ ∈ Lsu
h that vi,j = ℓ ℓjv0 = γvi. Sin
e vi ∈ V(Q), we have vi,j ∈ V(Q). Hen
e the stabiliser
Pi,j of vi,j in G is an algebrai
 subgroup de�ned over Q. Sin
e vi,j is in the G-orbit of
v0, the stabilisers of v0 and of vi,j are 
onjugate, hen
e Pi,j is a paraboli
 subgroup of
G. Sin
e two paraboli
 subgroups of G, whi
h are de�ned over Q and 
onjugate in G,are 
onjugated by an element of G(Q) (see for instan
e [Bor4, Theo. 20.9 (iii)℄), thereexists αi,j ∈ G(Q) su
h that Pi,j = αi,jPα

−1
i,j . Furthermore, using Lemma 17, we have

Cvi,j = Cαi,jv0. A relative Langlands de
omposition of Pi,j is Pi,j = Ai,jMi,jUi,j where
Ai,j = αi,jPα

−1
i,j , Mi,j = αi,jMα−1

i,j , Ui,j = αi,jUα
−1
i,j .22



We have Ai,j(R)0 =
(
ai,js = αi,jasα

−1
i,j

)
s∈R

and the Lie algebra of Ui,j(R) is Ui,j =

Adαi,j(U). Hen
e ai,js vi,j = eχsvi,j for every s ∈ R and
log det(Ad ai,j1 )|Ui,j

= λ ,for every i, j with L ℓjv0 ∩ Γvi 6= ∅.By Assertion (1) of Theorem 16 applied to the (maximal) paraboli
 subgroup Pi,jde�ned over Q, there exist ci,j , δi,j > 0 (with ci,j expli
it) su
h that, as t ≥ 0 tends to +∞,
∑

0≤s≤t

∑

[x]∈(L∩Γ)\(Lai,js vi,j∩Γvi,j)

w′
L,ρ|L(x) = ci,j e

λt +O(e(λ−δi,j )t) .Hen
e, using the equations (7) and (21), with δ = mini,j δi,j and c = ∑
i,j ci,j , we have, as

t ≥ 0 tends to +∞,
∑

0≤s≤t

∑

[x]∈(L(Z)∩L(R)0)\(Xs∩Λprim)

w′
L,ρ|L(x)

=
∑

1 ≤ i ≤ k

1 ≤ j ≤ k′

Lℓjv0 ∩ Γvi 6= ∅

∑

0≤s≤t

∑

[x]∈(L∩Γ)\(Lai,js vi,j∩Γvi,j )

w′
L,ρ|L(x)

= c eλt +O(e(λ−δ)t) .This ends the proof of Assertion (2) of Theorem 16. �Remark. Using Remark 15 instead of Theorem 6 in the above proof gives Theorem 4 andTheorem 3 in the introdu
tion.3 Appli
ations3.1 Counting inequivalent representations of integers by norm formsIn this subse
tion, we �x n ≥ 2, an algebrai
 
losure Q of Q in C, and F ∈ Q[x1, . . . , xn]a rational polynomial in n variables, whi
h is irredu
ible over Q and splits as a produ
t of
n linearly independant linear forms with 
oe�
ients in Q. We assume that F−1(]0,+∞[)is nonempty.Remarks. (1) With the notation of Theorem 1, for every k ∈ R, de�ne N(k) =
Card

(
ΓF\Σk

). If Σk is not empty and if e is the least 
ommon multiple of the denominatorsof the 
oe�
ients of F , then k ∈ 1
eZ. In parti
ular, there are only �nitely many k in any
ompa
t interval of R su
h that N(k) 6= 0 (and moreover these numbers k are rational,and even integral if F has integral 
oe�
ients). In parti
ular, the sum in the left handside of the asymptoti
 formula in Theorem 1 is a �nite sum.(2) If n = 2, Theorem 1 is well known. It is easy to see that

F (x1, x2) = a(x1 + αx2)(x1 + αx2)where a ∈ Q and α is a quadrati
 irrational with Galois 
onjugate α. Theorem 1 followsfrom Equation (1) when α is an algebrai
 integer, where K = Q(α). When the binary23



quadrati
 form F is inde�nite, we refer to [Coh, page 164℄ for an algebrai
 proof and to[PP1, Coro. 1.3℄ for a geometri
 proof of the main term (and [PP2℄ for the error term), andthese last two papers for geometri
 extensions to higher dimensional hyperboli
 manifolds.(3) By for instan
e [Ko
, Theo. 2.3.3, page 38℄, any polynomial F as in the beginningof this subse
tion is a rational multiple of a norm form. Let us give a qui
k proof for
ompleteness.The absolute Galois group Gal = Gal(Q/Q) naturally a
ts on the Q-ve
tor spa
e
Q[x1, . . . , xn]. Let L1, . . . , Ln ∈ Q[x1, . . . , xn] be linear forms su
h that F =

∏n
i=1 Li. Bythe uniqueness property of irredu
ible de
ompositions, the group Gal preserves the set oflines {QL1, . . . ,QLn}. If this a
tion is not transitive, and {QLk1 , . . . ,QLkm} is an orbit,then the nonzero polynomial ∏m

i=1 Lki has its 
oe�
ients that are invariant by Gal up tomultipli
ation by an element of Q. Dividing ∏m
i=1 Lki by one of its nonzero 
oe�
ients, wehen
e get an element of Q[x1, . . . , xn] (with degree di�erent from 0 and n) whi
h divides

F . This 
ontradi
ts the irredu
ibility of F over Q.We may assume that one of the 
oe�
ients of L1 is 1 (up to dividing L1 by one of itsnonzero 
oe�
ients, and multiplying L2 by it). Hen
e the stabiliser of QL1 in Gal is equalto the stabiliser Gal1 of L1, whi
h is equal to the Galois group GalK = Gal(Q/K) where
K is the number �eld generated by the 
oe�
ients of L1. Hen
e there exists a ∈ Q su
hthat

F = a
∏

σ∈Gal /Gal1

σL1 = a
∏

σ∈Gal /GalK

σL1 = a NK/Q ◦ L1 .Sin
e NK/Q takes rational values on K, this proves that F is a rational multiple of a normform.(4) The assumption that the polynomial F is irredu
ible over Q is essential for Theorem1. For instan
e, 
onsider F (x) = x1 · · · xn. Then the 
ardinality of F−1(k)∩Zn is nonzeroif and only if k ∈ Z, and, for every ǫ > 0, there exists κ > 0 su
h that for every k ∈ Z,
Card(F−1(k) ∩ Zn) ≤ d(k)n ≤ κ kǫ ,where d(k) denotes the number of divisors of k (see for instan
e [Apo, page 296℄).(5) Let O be an order in the ring of integers OK of a number �eld K of degree n.Generalizing the 
ase of O = OK (see Equation (1)), with α1, . . . , αn a Z-basis of O,applying Theorem 1 to the norm form F (x) = NK/Q(α1x1 + · · · + αnxn), we prove ina dynami
al way that there are 
onstants c, δ > 0 su
h that Card

(
O×\{x ∈ O : 1 ≤

|NK/Q(x)| ≤ r}
)
= c r +O(r1−δ) as r → ∞.Proof of Theorem 1. In order to apply Theorem 3, let us �rst de�ne the obje
tsappearing in its statement.Let G = SLn(C) whi
h is a (Q-split) quasi-simple simply 
onne
ted linear algebrai
group without nontrivial Q-
hara
ters. Let V = Cn, Λ = Zn (whi
h is a Z-latti
e in V(Q)invariant under G(Z)), (e1, . . . , en) the 
anoni
al basis of V and ρ : G → GL(V) themonomorphism mapping a matrix x to the linear automorphism of V whose matrix in the
anoni
al basis is x, whi
h is an irredu
ible rational representation over C. To simplifythe notation, we denote ρ(g)v = gv for every g ∈ G and v ∈ V. Let P be the stabiliserin G of the line generated by e1, whi
h is a maximal (proper) paraboli
 subgroup of Gde�ned over Q. With Ik the identity k × k matrix and s ∈ R, let U =

{(1 u
0 In−1

)
: u ∈24



M1,n−1(C)
}, as = (e s

n 0

0 e
− s

n(n−1) In−1

), and M =
{(1 0

0 m

)
: m ∈ SLn−1(C)

}. With Athe 
entraliser of M in G, we have that P = AMU is a relative Langlands de
ompositionof P over Q, and the identity 
omponent of A(R) is the one-parameter subgroup (as)s∈R.With U the Lie algebra of U(R), an immediate 
omputation gives
λ = log det(Ad a1)|U = 1 > 0 . (22)Sin
e F is homogeneous, as F takes a positive value (and equivalently), there exists

v0 ∈ Zn su
h that F (v0) > 0. We may assume that v0 is primitive up to res
aling it,and after an integral linear 
hange of variable (whi
h does not 
hange the set of integralrepresentations of a real number by F ), we may assume that v0 = e1. Note that thestabiliser of v0 in G is then pre
isely MU.We denote by L the stabiliser of F in G and by π : L → GL(V) the restri
tion of ρ to
L. By the linear independen
e over C assumption, L is a maximal algebrai
 torus de�nedover Q in G (hen
e L is redu
tive, but not semisimple). For every z ∈ C−{0}, the group La
ts simply transitively on the a�ne hypersurfa
e F−1(z). Hen
e, with vs = asv0 = e

s
n v0,the orbit

Xs = Lvs = F−1(F (vs)) = F−1(esF (v0)) (23)(sin
e F is homogeneous of degree n) is Zariski-
losed in V.Let us now 
he
k in two lemmas that the hypotheses of Theorem 3 are satis�ed bythese obje
ts.Lemma 19 The algebrai
 torus L is anisotropi
 over Q.Proof. As seen in Remark (3) above, there exist a ∈ Q − {0} and linearly independantlinear forms ℓ1, . . . , ℓn on Cn with 
oe�
ients in Q su
h that F = a
∏n

i=1 ℓi and the absoluteGalois group Gal(Q/Q) a
ts transitively on the set {ℓ1, . . . , ℓn}. Let B be the basis of Cnwhose dual basis is (ℓ1, . . . , ℓn). The algebrai
 torus L is the subgroup of the elements of
G whose matrix in the basis B is diagonal. For 1 ≤ i ≤ n, let χi be the 
hara
ter (de�nedover Q) of L whi
h asso
iates to an element of L the i-th diagonal element of its matrix in
B. Note that Gal(Q/Q) a
ts transitively on the set {χ1, . . . , χn}. Any 
hara
ter of L maybe uniquely written ∏n

i=1 χ
ki
i with k1, . . . , kn ∈ Z. Any Q-
hara
ter ∏n

i=1 χ
ki
i of L, beinginvariant under Gal(Q/Q), should have k1 = · · · = kn by transitivity, hen
e is trivial. Theresult follows, sin
e an algebrai
 torus de�ned over Q without nontrivial Q-
hara
ters isanisotropi
 over Q, that is, it 
ontains no nontrivial Q-split torus (see for instan
e [Bor3,page 121℄, though this referen
e uses a di�erent meaning of anisotropi
). �Lemma 20 The interse
tion L ∩P is �nite and LP is Zariski-open in G.Proof. Let us prove that the algebrai
 group L ∩ P is �nite. Sin
e an algebrai
 grouphas only �nitely many 
omponents, we only have to prove that its identity 
omponent

S = (L ∩ P)0 is trivial. The algebrai
 torus S is de�ned over Q, hen
e is 
ontained in amaximal torus of P de�ned over Q. By [Bor3, Theo. 19.2℄, two maximal tori of P de�nedover Q are 
onjugated over Q. Sin
e G splits over Q, this implies that L ∩ P splits over
Q. Sin
e L is anisotropi
 over Q by Lemma 19, this implies that S is trivial, and provesthe �rst 
laim. 25



Now, the homogeneous spa
eG/P is identi�ed with the 
omplex proje
tive spa
e P(Cn)by the map g 7→ Cge1. We write e1 = ∑n
i=1 ciwi where B = (wi)1≤i≤n is a diagonalisationbasis of V for the a
tion of the algebrai
 torus L, as in the proof of Lemma 19. Sin
ethe Galois group Gal(Q/Q) a
ts transitively on {w1, . . . wn} and �xes e1, it follows thatthe 
oe�
ients ci are all di�erent from 0. Hen
e L(Ce1) = {C

∑n
i=1 biwi : bi 6= 0}, whi
himplies the se
ond 
laim. �To 
on
lude the proof of Theorem 1, we relate the two 
ounting fun
tions in the state-ments of Theorem 1 and Theorem 3.For every s > 0 and p ∈ N − {0}, let A(p)

s be the set of integral points of Xs whose
oe�
ients have their greatest 
ommon divisor equal to p. Note that A(1)
s = Xs ∩ Λprimis the set of primitive integral points of Xs. With N

(p)
s = Card(L(Z)\A

(p)
s ), we have

Card(L(Z)\Xs(Z)) =
∑+∞

p=1N
(p)
s , and N

(p)
s = N

(1)
s−ln(pn), sin
e Xs−log(pn) = 1

pXs by thehomogeneity of F and Equation (23).Sin
e L a
ts simply transitively on ea
h Xs, the stabiliser Lx of every x ∈ Xs is trivial,hen
e the Siegel weight wL,π(x) is 
onstant, equal to 1
vol(L(Z)\L(R) . By Theorem 3 andEquation (22), there exist δ > 0, that we may assume to be in ]0, 1 − 1

n [, and c > 0 su
hthat, as t ≥ 0 and t→ +∞,
∑

s∈[0,t]

N (1)
s = c et +O(et(1−δ)) .For every r ≥ F (v0)+1, by setting t = log r

F (v0)
≥ 0 and by using the 
hange of variables

k = esF (v0) (see Equation (23)), we have, with Σk = F−1(k) ∩ Zn and ζ Riemann's zetafun
tion,
∑

k∈[F (v0),r]

Card(L(Z)\Σk) =
∑

s∈[0,t]

Card(L(Z)\Xs(Z)) =
∑

s∈[0,t]

+∞∑

p=1

N (p)
s

=

+∞∑

p=1

∑

s∈[0,t]

N
(1)
s−ln(pn) =

+∞∑

p=1

c p−n et +O(pn(δ−1)et(1−δ))

= c ζ(n) et +O
(
et(1−δ)

)
=
c ζ(n)

F (v0)
r +O

(
r1−δ

)
.Note that ∑k∈[min{1,F (v0)},max{1,F (v0)}]

Card(L(Z)\Σk) is �nite. The result follows. �3.2 Counting inequivalent integral points on hyperplane se
tions of a�nequadrati
 surfa
esLet n ≥ 3, let q : Cn → C with q(x) =
∑n

i=1 qijxixj for every x = (x1, . . . , xn) be anondegenerate quadrati
 form in n variables with 
oe�
ients qij in Q, and let ℓ : Cn → Cwith ℓ(x) = ∑n
i=1 ℓixi for every x = (x1, . . . , xn) be a nonzero linear form in n variableswith 
oe�
ients ℓi in Q.The aim of this se
tion is to 
ount the number of orbits of integral points on these
tions, by the hyperplanes parallel to the kernel of ℓ, of the isotropi
 
one q−1(0) of q.26



ℓ = k v0

q = 0

v0

ℓ = k

ℓ = ℓ(v0)

ℓ = 0

ℓ = 0

q = 0

For K = R or Q, re
all that q is isotropi
 (or inde�nite when K = R) over K orrepresents 0 over K if there exists x ∈ Kn−{0} su
h that q(x) = 0, and that q is anisotropi
over K otherwise. For instan
e, x2 + 2y2 − 7z2 is anisotropi
 over Q, but inde�nite over
R. By A. Meyer's 1884 result (see for instan
e [Ser, page 77℄), if n ≥ 5, then q is isotropi
over Q if and only if q is inde�nite over R.Proof of Theorem 2. In order to apply Theorem 16 (2), let us �rst de�ne the obje
tsappearing in its statement.Let G = Oq be the orthogonal group of the nondegenerate rational quadrati
 form q,whi
h is a 
onne
ted semisimple linear algebrai
 group de�ned over Q, hen
e is redu
tivewithout nontrivial Q-
hara
ters. Let V = Cn and let ρ : G → GL(V) be the monomor-phism mapping a matrix x to the linear automorphism of V whose matrix in the 
anoni
albasis is x, whi
h is an irredu
ible rational representation over C. Let Λ = Zn, whi
h is a
Z-latti
e in V(Q) invariant under G(Z). To simplify the notation, we denote ρ(g)v = gvfor every g ∈ G and v ∈ V.Sin
e q is assumed to be isotropi
 over Q, there exists v0 in Λ−{0} su
h that q(v0) = 0and we assume that ℓ(v0) ≥ 0 up to repla
ing v0 by −v0. Sin
e the restri
tion of q to thekernel of ℓ is assumed to be anisotropi
 over Q, we have ℓ(v0) > 0. Let P be the stabiliserin G of the line generated by v0, whi
h is a maximal (proper) paraboli
 subgroup of Gde�ned over Q sin
e this line is isotropi
. Let B = (e1, . . . , en) be a basis of V over Qsu
h that e1 = v0, (e1, e2) is a standard basis of a hyperboli
 plane over Q for q, whi
h isorthogonal for q to the ve
tor subspa
e V

′ generated by B′ = (e3, . . . , en). In parti
ular,the matrix of q in the basis B is Q =




0 1 0
1 0 0
0 0 Q′


 with Q′ the (rational symmetri
)matrix in the basis B′ of the restri
tion q′ of q to V
′. Denoting in the same way a ve
tor

v (resp. u) of V (resp. V′) and the 
olumn ve
tor of its 
oordinates in B (resp. B′), wehave q(v) = tvQv (resp. q′(u) = tuQ′u). With Ik the identity k × k matrix and s ∈ R,de�ne
as =



es 0 0
0 e−s 0
0 0 In−2


 , A =







a 0 0
0 a−1 0
0 0 In−2


 : a ∈ C∗



 ,27



M =








1 0 0
0 1 0
0 0 m


 : m ∈ Oq′



 and U =








1 −q′(u)/2 − tuQ′

0 1 0
0 u In−2


 : u ∈ V

′



 .It is easy to 
he
k that P = AMU is a relative Langlands de
omposition of P, that theidentity 
omponent of A(R) is the one-parameter subgroup (as)s∈R, and that the stabiliserof v0 = e1 inG is exa
tlyMU. With U the Lie algebra ofU(R), an immediate 
omputationgives (sin
e n ≥ 3)

λ = log det(Ad a1)|U = n− 2 > 0 . (24)We denote by L = {g ∈ G : ℓ ◦ g = ℓ} the stabiliser of ℓ in G, whi
h is a linearalgebrai
 group de�ned over Q. Let W be the kernel of ℓ and W
⊥ be its orthogonal for

q. Sin
e q|W is assumed to be nondegenerate, W⊥ is a line, V = W
⊥ ⊕W, and the blo
matrix of q in this de
omposition is diagonal.Let us now 
he
k in the next lemma that the hypotheses of Theorem 16 are satis�edby these obje
ts.Lemma 21 (1) The linear algebrai
 group L is redu
tive and anisotropi
 over Q.(2) For every s ∈ R, if k = esℓ(v0) and Xs = Lasv0, then Xs = {v ∈ V : q(v) =

0, ℓ(v) = k}. In parti
ular, Xs is Zariski-
losed in V.(3) The subset LP is Zariski-open in G.Proof. (1) For every g ∈ GL(V), if ℓ ◦ g = ℓ, then g preserves W. If furthermore
g ∈ G = Oq , then g preserves W

⊥. Sin
e W
⊥ is a line, there exists λ ∈ C su
h that ga
ts by x 7→ λx on W

⊥. As ℓ|W⊥ is nonzero and g preserves ℓ, we have λ = 1. Hen
e theelements of L are exa
tly the elements of GL(V) whose blo
 matrix in the de
omposition
V = W

⊥ ⊕W has the form (1 0
0 g′

) with g′ ∈ Oq|W . In parti
ular, the linear algebrai
group L, isomorphi
 overQ to the orthogonal group of the nondegenerate rational quadrati
form q|W, is semisimple hen
e redu
tive.It is well-known (see for instan
e [Bor1℄[BJ, page 270℄) that theQ-rank of the orthogonalgroup Oq′′ of a nondegenerate rational quadrati
 form q′′ is zero (or equivalently that Oq′′ isanisotropi
 over Q) if and only if q′′ does not represents 0 over Q. For instan
e, this followsfrom the fa
t that the spheri
al Tits building over Q of Oq′′ is the building of isotropi
�ags over Q. Hen
e by assumption, L is anisotropi
 over Q.(2) Note that by the de�nition of as, we have asv0 = esv0, hen
e by the linearity of
ℓ, we may assume that s = 0. Re
all that q(v0) = 0 and ℓ(v0) > 0. By the de�nition of
L, the orbit X0 = Lv0 is 
ontained in {v ∈ V : q(v) = 0, ℓ(v) = ℓ(v0)}. To prove theopposite in
lusion, write v = v′ + v′′ the de
omposition of any v ∈ V in the dire
t sum
V = W

⊥ ⊕W. If ℓ(v) = ℓ(v0) and q(v) = 0, then v′ = v′0 and q(v′′) = −q(v′) = −q(v′0),and in parti
ular q(v′′) = q(v′′0 ). By Witt's theorem, there exists g′ ∈ Oq|W su
h that
v′′ = g′v′′0 . Hen
e the linear transformation of V whi
h is the identity on W

⊥ and is equalto g′ on W, is an element of L sending v = v′ + v′′ to v0 = v′0 + v′′0 . The se
ond assertionfollows.(3) The algebrai
 group G = Oq a
ts transitively on the proje
tive variety of isotropi
lines in V, the stabiliser of the line generated by v0 being P by de�nition. As we haveseen in (2), the orbit under L of the line generated by v0 is hen
e the Zariski-open subset28



of G/P 
onsisting of the isotropi
 lines not 
ontained in W. The last 
laim of Lemma 21follows. �To 
on
lude the proof of Theorem 2, we relate the two 
ounting fun
tions in the state-ments of Theorem 2 and Theorem 16 (2). Let L = L(R)0 and Γ = G(R)0 ∩G(Z).We have ℓ(v0) > 0 by the de�nition of v0. For every r ≥ ℓ(v0) + 1, let t = ln r
ℓ(v0)

> 0.With Σk as in the statement of Theorem 2, using the 
hange of variables k = esℓ(v0) andLemma 21 (2), by the de�nition of the modi�ed Siegel weights in Equation (2), we have
∑

k∈[ℓ(v0),r]

∑

[u]∈(L(Z)∩L)\Σk

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)
=

vol
(
(L ∩ Γ)\L

) ∑

s∈[0,t]

∑

[u]∈(L(Z)∩L)\Xs∩Λprim

w′
L,ρ|L(u) . (25)By Theorem 16 (2) and Equation (24), there exist c, δ > 0 su
h that as t → +∞, thequantity (25) is equal to

c e(n−2)t +O
(
e(n−2−δ)t

)
=

c

ℓ(v0)n−2
rn−2 +O

(
rn−2−δ

)
.Note that ∑k∈[min{1,ℓ(v0)},max{1,ℓ(v0)}]

∑
[u]∈(L(Z)∩L)\Σk

vol
(
(Lu(Z)∩L)\(Lu∩L)

) is �nite.This 
on
ludes the proof of Theorem 2. �Remarks (1) If n ≥ 6, sin
e q is isotropi
 over Q and the restri
tion of q to the kernel of
ℓ is anisotropi
 over Q, then the signature of q over R is (1, n− 1) or (n− 1, 1), and L(R)is 
ompa
t (see the above pi
ture on the right); hen
e L(Z) is �nite, and our result allowsto 
ount integral points on the quadrati
 hypersurfa
e q−1(0) (see the referen
es given inthe introdu
tion for related works).(2) If n ≥ 4, then we have a result similar to Theorem 2 where we 
onsider all theintegral points and not only the primitive ones: under the other assumptions of Theorem2 and with c as above, we have, for every r ≥ 1 with r → +∞,

∑

k∈[1,r]

∑

[u]∈(L(Z)∩L)\(q−1(0)∩ℓ−1(k)∩Zn)

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)

=
c ζ(n− 2)

ℓ(v0)n−2
rn−2 +O

(
rn−2−δ

)
.The proof is similar to the one at the end of Se
tion 3.1. For every s ∈ R and p ∈ N−{0},we denote by A(p)

s the set of integral points of Xs whose greatest 
ommon divisor of their
oe�
ients is p. We note that by Lemma 21 (2), the map from A
(p)
s to A(1)

s−ln p de�ned by
x 7→ x

p is a bije
tion su
h that Lx
p
= Lx for every x ∈ A

(p)
s . Hen
e with

N (p)
s =

∑

[u]∈(L(Z)∩L)\A
(p)
s

vol
(
(Lu(Z) ∩ L)\(Lu(R) ∩ L)

)
,we have N (p)

s = N
(1)
s−ln p and

∑

[u]∈(L(Z)∩L)\(q−1(0)∩ℓ−1(k)∩Zn)

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)
=

∞∑

p=1

N (p)
s ,29



and one 
on
ludes as in the end of Se
tion 3.1.When n = 3, the same argument gives
∑

k∈[1,r]

∑

[u]∈(L(Z)∩L)\(q−1(0)∩ℓ−1(k)∩Zn)

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)
=

c

ℓ(v0)
r log r +O

(
r
)
.3.3 Counting inequivalent integral points of given norm in 
entral divi-sion algebrasLet n ≥ 2, let D be a 
entral simple algebra over Q of dimension n2, let N : D → Q be itsredu
ed norm, and let O be an order in D (that is, a �nitely generated Z-submodule of D,generating D as a Q-ve
tor spa
e, whi
h is a unitary subring). We refer for instan
e to [Rei℄and [PR, Chap. I, �1.4℄) for generalities. The aim of this se
tion is to use our main resultto dedu
e asymptoti
 
ounting results of elements of O (modulo units) of given norm.Theorem 22 If D is a division algebra over Q, then there exist c = c(D,O) > 0 and

δ = δ(D) > 0 su
h that, for every r ≥ 1 with r → +∞,
Card O×\{x ∈ O : 1 ≤ |N(x)| ≤ r} = c rn

(
1 + O

(
r−δ

))
.Proof. In order to apply Theorem 3, let us �rst de�ne the obje
ts appearing in itsstatement.Let V be the ve
tor spa
e over Q su
h that V(K) = D ⊗Q K for every 
hara
teristi
zero �eld, with the integral stru
ture su
h that Λ = V(Z) = O, whi
h is (for the extendedmultipli
ation) a 
entral simple algebra over C. Let D

1 be the group of elements of(redu
ed) norm ±1 in V.We take G = SL(V) (whi
h is 
onne
ted, simply 
onne
ted, semisimple, de�ned over
Q, hen
e redu
tive without nontrivial Q-
hara
ters) and ρ the in
lusion of G in GL(V)(whi
h is an irredu
ible rational representation). To simplify the notation, we denote
ρ(g)v = gv for every g ∈ G and v ∈ V.Let L be the algebrai
 subgroup of G whi
h is the image of D1 into G by the (left)regular representation d 7→ {v 7→ dv}. Note that the linear algebrai
 groups L and D

1 arede�ned over Q and are isomorphi
 by this representation. We have
L(Z) = D

1 ∩ O = O
× . (26)We take v0 ∈ V to be the identity element in D. The stabiliser of the line Cv0 in G is a(maximal) paraboli
 subgroup P of G de�ned over Q. We note that dim(P) = dim(D)2 −

dim(D) − 1 and dim(L) = dim(D) − 1. We have a relative Langlands de
omposition
P = AMU with MU the stabiliser of v0 in G, and we may write A(R)0 = (as)s∈R su
hthat asv0 = e

s
n v0. An easy 
omputation gives

λ = log det(Ad a1)|U = n > 0 . (27)Let us now 
he
k that the hypotheses of Theorem 3 are satis�ed by these obje
ts.We 
laim that the group L ∩ P is �nite. The a
tion of this group on v0 de�nes a
Q-
hara
ter of L ∩P. Sin
e L ≃ D

1 is anisotropi
 over Q (see for instan
e [PR, Chap. II,�2.3℄), this 
hara
ter must be trivial on (L∩P)0, and (L∩P)0v0 = v0. Sin
e StabL(v0) =30



{e}, it follows that (L ∩ P)0 = {e}, whi
h proves the 
laim. Comparing dimensions, wededu
e that LP is Zariski-open in G.For every s ∈ R, we have
Xs = Lasv0 = e

s
nLv0 = e

s
nD

1 . (28)Hen
e Xs is Zariski-
losed in V.To 
on
lude the proof of Theorem 22, we relate the two 
ounting fun
tions in thestatements of Theorem 22 and Theorem 3.Sin
e L a
ts simply transitively on the orbit of v0, the Siegel weights are 
onstant, equalto 1
vol(L(Z)\L(R)) . For every k ∈ N− {0}, denote by O(k) the subset of nonzero elements of

O whose greatest 
ommon divisor of their 
oe�
ients in a Z-basis of O is k. In parti
ular,sin
e the norm is a homogeneous polynomial of degree n and by Equation (28), we have
Xs ∩ Λprim = {x ∈ O

(1) : N(x) = es} .Note that the map x 7→ x
k is a bije
tion from O(k) to O(1). Hen
e, using Equation (26) andTheorem 3, there exist δ > 0, that we may assume to be in ]0, 1[ , and c > 0 su
h that, as

r ≥ 1 and r → +∞,
Card O×\{x ∈ O : 1 ≤ |N(x)| ≤ r} =

+∞∑

k=1

Card O×\{x ∈ O
(k) : 1 ≤ |N(x)| ≤ r}

=
+∞∑

k=1

Card O×\{x ∈ O
(1) : 1 ≤ |N(x)| ≤

r

kn
}

=

+∞∑

k=1

∑

0≤s≤log r
kn

Card
(
L(Z)\

(
Xs ∩ Λprim

))

=

+∞∑

k=1

c
( r
kn

)n(
1 + O

(( r
kn

)−δ))

= c ζ(n2) rn
(
1 + O(r−δ)

)
.This ends the proof of Theorem 22. �Referen
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