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Abstract

In this paper, we study the distribution of integral points on parametric families
of affine homogeneous varieties. By the work of Borel and Harish-Chandra, the set
of integral points on each such variety consists of finitely many orbits of arithmetic
groups, and we establish an asymptotic formula (on average) for the number of the
orbits indexed by their Siegel weights. In particular, we deduce asymptotic formulas
for the number of inequivalent integral representations by decomposable forms and by
norm forms in division algebras, and for the weighted number of equivalence classes of
integral points on sections of quadratic surfaces. Our arguments use the exponential
mixing property of diagonal flows on homogeneous spaces. !

1 Introduction

Let L be a reductive linear algebraic group defined and anisotropic over Q, let = : L —
GL(V) be a rational linear representation of L defined over Q and let A be a Z-lattice in
V(Q) invariant under L(Z). For every v € V(Q) whose orbit X, under L is Zariski-closed
in V, Borel-Harish-Chandra’s finiteness theorem [BHC, Theo. 6.9] says that the number
of orbits of L(Z) in X, N A is finite. The aim of this paper is to study the asymptotic
behaviour of this number as v tends to co in V(Q), in appropriate averages (for instance
in order to take into account the fact that X, N A could be empty). We will count the
orbits using appropriate weights. For every u € X,(Q) with stabiliser L,, in L, define the
Siegel weight of u as

vol (Lu )

vol (L(Z) (R)) ’

using Weil’s convention for the normalisation of the measures on L, (R) (depending on the
choice of a left Haar measure on L(R) and of a L(R)-invariant measure on X,(R), see
Section 2). These weights generalise the ones occuring in Siegel’s weight formula when L is
an orthogonal group (see for instance [Sie, ERS], and [Vos, Chap. 5| for general L) and are
used in many works (see for instance [BR, Ohl|; contrarily to the last two references, we
will also need the reductive non semisimple case for our applications). We do not assume
X, (R) to be an affine symmetric space, contrarily to [DRS] and many other references.

wr, - (u) =
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In order to motivate the statement of our main result, let us give two applications using
the above setting.

The first one is an asymptotic estimate on the number of inequivalent representations
of integers by decomposable forms. Recall that a decomposable form F(xi,...,x,) is a
polynomial in n variables with coefficients in Q which is the product of d linear forms with
coefficients in Q. In particular, a norm form is a decomposable form Ngjglaroy + -+ +
anty) where aq, ..., ay, are fixed elements in a number field K of degree d and x1, ...,z
are rational variables. We will work only with d = n. The aim is not to study the existence
of integral solutions to one equation F(x) = m (see for instance [CTX], building on work of
J. Sansuc, J.-L. Colliot-Théléne, D. Harari, R. Heath-Brown, A. Skorobogatov, M. Borovoi,
C. Demarche and others for the existence of rational solutions, see for instance [Pey]), but
to consider the inequality |F'(x)| < m which goes around the existence problem. There are
many works on integral solutions to decomposable form inequalities, and in particular for
norm forms, by W. M. Schmidt, K. Gyory, J.-H. Evertse, H. P. Schlickewei, J. Thunder,
Z. Chen, M. Ru, see for instance [Sch, Gyo, Thu, Koc| and their references. But, besides
the frequent assumption that d > n, most of these references work under a hypothesis
(nondegenerate as in [Sch, Gy6| or of finite type as in [Thul|) which is not satisfied in our
situation, since the number of our solutions might be infinite. As explained in [Sch], a
natural approach is to count the solutions by families of them, in our case by orbits of
naturally acting arithmetic groups. Another approach, formulated by Linnik and Sarnak,
and especially developed in [EO, GO1, Ohl], is to use dilations of relatively compact
subsets. For the finiteness of this number of orbits, see for instance [Koc, Theo. 2.14.1,
page 63].

Theorem 1 Letn > 2, let F € Q[z1,...,x,] be a rational polynomial in n variables, which
1s 1rreducible over Q, splits as a product of n linearly independant over C linear forms with
coefficients in Q, and satisfies F~1(]0,+o00[) # 0. Let Tp = {g € SL,(Z) : Fog = F},
and for every k € Q, let Xy be the set of x € Z" such that F(x) = k. Then there exist
c=c(F) >0 and § =06(n) €10,1] such that, as r — 400,

Z Card(Tp\Xx) =cr+0 (7“5) .
ke(l,r]

With L the stabiliser of F' in SL,(C), V = C", A = Z" and 7 the inclusion of L in
GL(V), this result fits into the above program, since I'r = L(Z), the algebraic torus L
is anisotropic over Q (see Lemma 19) and acts simply transitively on the affine subva-
riety of V with equation F(z) = k if k # 0, noting that the Siegel weights wy, »(u) =
1/ vol (L(Z)\L(R)) are then constant. We will explicit ¢ in Section 3.1.

When K is a number field of degree n with ring of integers O, taking an integral basis
(@1,...,0ap) of K, and F(x1,...,2,) the particular norm form Ny g(iz1 + -+ + anzy),
we recover the well-known counting result of the number of nonzero integral ideals of O
with trivial ideal class and norm at most s (see for instance [Lan, Theorem 3, page 132]),
giving
2" (2m)"2 Richye

WK ’DK‘

{aideal in Ok : Ngjg(a) < s} = s+0(s'79), (1)

where 71 and 79 are the numbers of real and complex conjugate embeddings of K, R is
the regulator of K, hx is the ideal class number of K, wg is the number of roots of unity
of Ok, Dk is the discriminant of K and € = 1/n.
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The second application is an asymptotic estimate on the (weighted) number of inequiv-
alent integral points on hyperplane sections of affine quadratic surfaces. See for instance
[Sie, DRS, ERS, BR, EMS, GO1, Ohl, EO, GO2|, as well as the surveys [Bab, Oh2], for
counting results of integral or rational points in affine homogeneous varieties. Our result
is quite different, since we are counting whole orbits, weighted by the Siegel weights, of
integral points. Another approach to properties of sums of Siegel weights is to express
them as product of local densities, using the Siegel weight formula as in [Sie, ERS, Ohl].
But we believe that our results do not follow from this formula in any obvious way, and
offer a really new approach to the asymptotic of Siegel weights.

Theorem 2 Let n > 3, let ¢ : C* — C be a nondegenerate rational quadratic form,
which s isotropic over Q, let £ : C* — C be a nonzero rational linear form, and let
L={geSL,(C) : qog=ygq, Log=1{}. For every k € Q, let X}, be the set of primitive
x € Z" such that q(xz) = 0 and {(x) = k. Assume that the restriction of q to the kernel of £
is nondegenerate and anisotropic over Q. Then there exist ¢ = c¢(q,¢) > 0 and § = 6(q) >0
such that, as r — —+o00,

> > vol ((Ly(Z) NL(R)o)\(Ly NL(R)p)) = c 7" 2+ O (r"27%) .

kell,r]  [u]e(L(Z)NL(R)o)\Zk

This result also fits into the above program (up to a slight modification of the Siegel
weights, see Section 2), by taking V.= C", A = Z", and 7 : L — GL(V) the inclusion
map, noting that L is semisimple, and defined and anisotropic over QQ as a consequence of
the assumptions (see Section 3.2 for details, where we also explicit c).

We will prove the above two results in Section 3. As another application of our main
result, we also give there an asymptotic formula for the number of orbits under the group
of integral units of the integral points of given norm in a division algebra over Q.

A particular case of the main result of this paper is the following one.

Theorem 3 Let G be a simply connected reductive linear algebraic group defined over Q,
without nontrivial Q-characters. Let P be a mazximal parabolic subgroup of G defined over
Q, and let P = AMU be a relative Langlands decomposition of P, such that A(R)g is a
one-parameter subgroup (as)ser, with A = logdet (Ad ay)y > 0, where i is the Lie algebra
of UR). Let p: G — GL(V) be a rational representation of G defined over Q such
that there exists vy € V(Q) whose stabiliser in G is MU. Let L be a reductive algebraic
subgroup of G defined and anisotropic over Q. Assume that LP is Zariski-open in G and
that for every s € R, the orbit Xy = p(Lag)vy is Zariski-closed in V.

Let A be a Z-lattice in V(Q) invariant under G(Z), and let AP"™ be the subset of
indivisible elements of A. Assume p to be irreducible over C. Then there exist ¢,6 > 0
such that, as t tends to 400,

> > wpp (1) = ¢ N+ O

0<s<t [g;}EL(Z)\(XSmAprim)

More precisely, let G,P, A, M, U, V,L, p,vg, (as)ser be as above (p not necessarily
irreducible). Endow G(R) with a left-invariant Riemannian metric, for which the Lie
algebras of MU(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of
P(R) is contained in the Lie algebra of L(R).
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Theorem 4 There exists § > 0 such that, as t tends to +oo,

> > WL ()

Ossst [z]eL(Z)\(p(L(R)as ))voNp(G(Z))vo)

_ vol (MU(Z)\MU (R)) vol(a{\ A(R)o) M 4 OOt |
AvOl(G(Z)\G(R )

We will prove a more general version of this result in Section 2 without the maximality
condition on P, involving the more elaborate root data of P, and without the simple
connectedness assumption on G (up to a slight modification of the Siegel weights), see
Theorem 6 and Theorem 16. We are using the proof of the main result of [PP1] as a
guideline.

Another main difference with the counting results of [EMS, Ohl, EO, GO2] is that
these papers are using the dynamics of unipotent flows, as instead we are using here the
mixing property with exponential decay of correlations of diagonalisable flows, in the spirit
of [KM1] (see also [EM, BOJ).

Acknowledgment. We thank Jean-Louis Colliot-Théléne for discussions of our decomposable
form result. The second author thanks the University of Bristol for a very fruitful short stay where
this paper was conceived. The first author thanks the University Paris-Sud 11 for a month of
invited professor where this paper was completed.

2 Counting Siegel weights

Here are a few notational conventions. By linear algebraic group G’ defined over a subfield
k of C, we mean a subgroup of GLy(C) for some N € N which is a closed algebraic subset
of #(C) defined over k, and we define G'(Z) = G’ NGLy(Z). For every linear algebraic
group G’ defined over R, we denote by G'(R)g the identity component of the Lie group of
real points of G’. We denote by log the natural logarithm.

Let us first recall Weil’s normalisation of measures on homogeneous spaces. Let G’
be a unimodular real Lie group, endowed with a transitive smooth left action of G’ on a
smooth manifold X', with unimodular stabilisers. A triple (vgr,vxr, (Var )zex:) of a left
Haar measure vg on G, a left-invariant (Borel, positive, regular) measure vy, on X’ and
of a left Haar measure vg; on the stabiliser G, of every x € X', is compatible if, for every
x € X', for every f: G’ — R continuous with compact support, with f, : X’ — R the map
(well) defined by gx fheG; f(gh) dvg: (h) for every g € G, we have

[dve = Jo dvxr .
G’ X!

Weil proved (see for instance [Wei, §9]) that, for every left-invariant measure vy on X/,
then

e for every left Haar measure vg on G’, there exists a unique compatible triple
(v, v, (Ve o).

e for every o € X', for every left Haar measure vy on G,
compatible triple (v¢r, I/X/, (var )eexr) with vay, = 1o

The following remark should be well-known, though we did not found a precise refer-
ence.

2o there exists a unique



Lemma 5 If (vgr,vxs, (Var )eext) is a compatible triple, then for every £ € G" and x € X,
with i : h — (=1 the conjugation by ¢, we have

va, = (i0)vay, -

Proof. Let z € X', ¢ € G', H = G/, and H" = G}, = (H'¢"'. Using the left invariance
of vx: for the first inequality and the bi-invariance of the Haar measure on G’ for the last
one, we have, for every f : G’ — R continuous with compact support,

/g'““EX’ /”EH” F(g'") d(ig)svay (h") dvx:(g'lx)
- /glfxex’ /”EH” feg'n") d(ie)sve, (R") dvx:(g'lx)
:/g,&ex, /,EH, Fgeh 071y dvgr (B') dvx:(g'tx)
B /gxex’ /’EH’ I o ie(gh') dve, (W) dvx:(gx)
://foiz dver = G/deG’ .

The result then follows by uniqueness. O

In order to deal with non simply connected groups, we introduce a modified version of
the Siegel weights.

Let L' be a reductive linear algebraic group defined and anisotropic over Q, let 7 :
L’ — GL(V’) be a rational linear representation of L’ defined over Q, let v € V/(Q) be
such that its orbit X! under L’ is Zariski-closed in V', let v € X/ (Q) and let L!, be the
stabiliser of v in L’. We defined the modified Siegel weight of u as

_ ol ((L,(Z) N L/ (R)o)\(L}, N L'(R)o))
vol ((L’(Z) N L'(R)O)\L'(R)O) ’

(2)

using Weil’s convention for the normalisation of the measures on L] (R) (depending on the
choice of a left Haar measure on L'(R) and of a L'(R)-invariant measure on X/ (R)). Note
that the denominator of the standard Siegel weight wy, »(u) is an integral multiple (de-
pending only on L) of the denominator of the modified one, since (L'(Z)NL/(R)y)\L'(R)o
is a connected component of L'(Z)\L'(R). But the ratio of the numerator of the Siegel
weight by the numerator of the modified one may depend on w.

Let us now describe the framework of our main result. Let G be a connected reductive
linear algebraic group defined over Q. Let P be a (proper) parabolic subgroup of G
defined over Q (see for instance [BJ, §II1.1], [Spr, §5.2])). Recall that a linear algebraic
group defined over Q is Q-anisotropic if it contains no nontrivial Q-split torus.

Recall that there exist a (nontrivial) maximal Q-split torus S in G (contained in P and
unique modulo conjugation by an element of P(Q)), such that if ®¢ = ®(G, S) is the root
system of G relative to S (seen contained in the set of characters of S), if g% is the root

space of 3 € ®C, then there exist a unique set of simple roots A = Ap in ®€ and a unique
proper subset I = Ip of A, such that, with <I>(JCr the set of positive roots of ®C defined by
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A and @? the set of roots of ® that are linear combinations of elements of I, if A is the
identity component of
ﬂ ker o |

which is a Q-split subtorus of S, if U is the connected algebraic subgroup of G defined
over Q whose Lie algebra is
= P .

C C
Be¢+_¢1

then P is the semi-direct product of its unipotent radical U and of the centraliser of A in
G. Note that A is one-dimensional if P is a maximal (proper) parabolic subgroup of G
defined over Q (that is, if A — I is a singleton).

Let g be the Lie algebra of G(R). Using the multiplicative notation on the group of
characters of S, for every o € A, we define my = mqop € N by

H leimR(g%ﬁg) _ H aMe

C _gC
BeDT — ¢ acA

Let (0Y)aca—s in AR)o>! be such that log B(a”) is equal to 1 if & = 8 and to 0
otherwise. Let AY be the lattice in A(R)y generated by {aV : « € A —TI}. For every
element T = (to)aea_r1 of [0, +oo[>~, let

Ar={a € AR)y : VacA—-1, 0<log(alfa)) <ts}.

Recall that by the definition of a relative Langlands decomposition of the parabolic
subgroup P defined over Q, there exists a connected reductive algebraic subgroup M of
P defined over Q without nontrivial Q-characters such that AM is the centraliser of A in
G. In particular, AM is a Levi subgroup of P defined over Q, A centralises M and is the
largest Q-split subtorus of the centre of AM, AM normalises U, and

P=AMU.

For every Lie group G’ endowed with a left Haar measure, for every discrete subgroup
I of G', we endow I'"\G’ with the unique measure such that the canonical covering map
G’ — T"\G' locally preserves the measures.

In what follows, we will need a normalisation of the Haar measures, which behaves
appropriately when passing to some subgroups. We will start with a Riemannian metric
on G(R), take the induced Riemannian volumes on the real points of the various algebraic
subgroups of G defined over Q that will appear, which will give us the choices necessary
for using Weil’s normalisation to define the Siegel weights.

The main result of this paper is the following one.

Theorem 6 Let G be a connected reductive linear algebraic group defined over Q, without
nontrivial Q-characters. Let G = G(R)g and I' = G(Z)NG. Let P be a parabolic subgroup
of G defined over Q, and let P = AMU be a relative Langlands decomposition of P. Let
p: G — GL(V) be a rational representation of G defined over Q such that there exists
vo € V(Q) whose stabiliser in G is H = MU. Let L be a reductive algebraic subgroup of
G defined and anisotropic over Q.



Assume that LP is Zariski-open in G and that for every a € A, the orbit p(La)vy is
Zariski-closed in V. Endow G(R) with a left-invariant Riemannian metric, for which the
Lie algebras of H(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of
P(R) is contained in the Lie algebra of L(R).

Then there exists 6 > 0 such that, as T = (to)aea—1 € [0, +00[*~! and mingea_1tq

tends to 400,
Z Z wlLyﬂ\L(x) =
acAr  [z]€(L(R)oND)\(p(L(R)oa)voNp(I)vo)

vol ((H NT)\(HN G)) vol(AY \A(R)p) gMata S mingea_ 1 ta
e alIJ__ZT)(1+(X66 ) .

Proof. Let us start by fixing the notation that will be used throughout the proof of
Theorem 6, and by making more explicit the above-mentionned conventions about the
various volumes that occur in the asymptotic formula.

Consider the connected real Lie group G = G(R)j, its (closed) Lie subgroups
A=AR)y, H=HNG, L=L([R)y, M=MnNG, P=PNG, U=U(R).

We have H = MU and P = AMU = MUA, since A and U are connected. Note that L is
also connected, but H and M are not necessarily connected. We denote by

a? g’ h’ [’ m’ p? u

the Lie algebras of the real Lie groups A, G, H, L, M, P,U respectively, endowed with the
restriction of the scalar product on g defined by the Riemannian metric of G. Since L is
Q-anisotropic, so is L N P. Since the map LNP — P/H ~ A is defined over Q and A is
a Q-split torus, this implies that the identity component of L N P is contained in H. In
particular

INh=I[Np. (3)

Note that g = [+ p since LP is Zariski-open in G. We have assumed that a is orthogonal
to i and that the orthogonal p of p is contained in [. In particular, with q the orthogonal
of INh in b, we have the following orthogonal decompositions

J_J_ 1 1 1 J_J_ 1
g=p (N Dqda, h=(Nh dq, [=p @ (NDH), p=bDa. (4

The left-invariant Riemannian metric on G induces a left Haar measure wg on G, and a
left-invariant Riemannian metric on every Lie subgroup G’ of G, hence a left Haar measure

waqg!

on G’ (which is the counting measure if G’ is discrete). Note that A,G, H, L, M,U, L N H
are unimodular: indeed A,G, L, M are reductive and U is unipotent; furthermore, L " H
is the stabiliser of vy in L, the orbit of vg under L is affine and hence L N H is reductive
by |[BHC, Theo. 3.5]. But P is not unimodular.

The map A x M x U — P defined by (a,m,u) — amu is a smooth diffeomorphism
(see for instance [BJ, page 273]|). We will denote by dwadwpy the measure on P which is



the push-forward of the product measure by the diffeomorphism (a, h) + ah. Since A nor-
malises H, the measure dwdwpy is left-invariant by P, so that dwp(ah) and dw(a)dwg (h)
are proportional. Since these measures are induced by Riemannian metrics, and since a
and bh are orthogonal, we hence have

dwp(ah) = dwa(a)dwg (h) .

Since A normalises U, the group A acts on the Lie algebra 4 of U by the adjoint repre-
sentation. The roots of this linear representation of A are exactly the restrictions to A
of the elements § in @E — @?, with root spaces gg N g and a set of simple roots is the
set of restrictions of the elements of A — I to A (see for instance [BJ, Rem. III.1.14]).
Since A is connected, these roots have value in |0, 4+o00[. The map A — RA~! defined by
a +— (log(a(a)))aca—r is hence a smooth diffeomorphism. We will denote by [],ca_; dta
the measure on A which is the push-forward of the product Lebesgue measure by the
inverse of this diffeomorphism. By invariance, there exists a constant c4 > 0 such that

dwa = cap H dt, .
acA-T

By the definition of AV, we have ¢4 = Vol(AY\A).

Let I' = G(Z) N G, which is a discrete subgroup of G acting isometrically for the
Riemannian metric of G by left translations. Let Yo = T'\G and let 7 : G — Y5 = T'\G
be the canonical projection, which is equivariant under the right actions of G. Then Y
is a connected Riemannian manifold (for the unique Riemannian metric such that = is a
local isometry) endowed with the transitive right action of G by translations on the right.
To simplify the notation, for every Lie subgroup G’ of G, define

Ygl = W(G/) s

which is a injectively immersed submanifold in Yg, endowed with the Riemannian metric
induced by Y, and identified with (G’ NT')\G’ by the map induced by the inclusion of G’
in G. Note that Y7 and Yy are connected, but Yz and Yj; are not necessarily connected.
For every Lie subgroup G’ of G, let

e

be the Riemannian measure on Yg, which locally is the push-forward of the left Haar
measure wey .

Since G and the identity component of MU have no nontrivial Q-character, the Rie-
mannian manifolds Y and Yz have finite volume (see [BHC, Theo. 9.4]) and Yy is closed
in Y (see for instance [Rag, Theo. 1.13]). Since L is reductive and Q-anisotropic, the sub-
manifold Y7, is compact (see [BHC, Theo. 11.6]). Since U is unipotent, the submanifold
Yy is compact (see for instance [BHC, § 6.10]).

For every Lie subgroup G’ of G such that Y has finite measure (that is, such that
I'N G is a lattice in G’), we denote by

el

figr = 2
“ T lpe |l

the finite measure 1 normalised to be a probability measure. In particular, g, iy, I,
Ly are well defined.



For every T = (to)aea_1 and T' = (t/)aca_1 in [0, +00[A1, let
Arry={acA: VaeA—1I, ty <log(afa)) <t,}.

and P[T,T’} = UMA[T7T/}_1 = HA[T7T’] . Define YPTT’ = W(P[T,T’})a which is a subman-
ifold with boundary of Y, invariant under the rlght actlon of H, since A normalises H.
To shorten the notation, we define

Ar = A[O,T} , Pr= P[O,T] = fIAT_1 and Yp, = YP[O,T] =n(Pr) = YHA;I

as well as min 7T = mingea 1ty > 0, which measures the complexity of T" and will converge
to +00. We will need to estimate the volume of 7(Pr) for pp.

Lemma 7 For every T = (ta)aea—1 in [0, +00[*~!, we have
y emata
pp(Yp) = vol(A\A(R)o) [ual []
acA-T @

Proof. Denote by dug the Lebesgue measure on the Euclidean space gg = g% Ng. For
C C

any order on ®7 — &y, the map from Hﬁeqﬁfcb}c gs to U defined by (uﬁ)ﬁeéﬁ—@E >

II BedS — ¢ eXP Up is a smooth diffeomorphism, and there exists ¢y > 0 such that dwy is

the push-forward by this diffeomorphism of the measure ¢y [ | BEdS —aC dug.

For every a € A, if i, : g — aga™' is the conjugation by a, then for every ug € gg, we

have i,(expug) = exp((Ada)(ug)) = exp(B(a)ug). Hence

(i )elwr) = T[]  Bl@™™%wy = ] ale)™wy

Bedf —oF aEA-T

by the definition of (mq)aca and since the elements of I are trivial on A. Since A commutes
with M, we hence have (i;).(wi) = [Tpen_; (@)™ wp.
We have, since A is unimodular,

de(ha_l) = dwp(a_laha_l) = de(a_l)de(aha_l) = de(a)d((z';l)*wH)(h) )

Since I'N P =T'N H (see for instance the lines following Proposition I11.2.21 in [BJ, page
285]) and AN H = {e}, we have m(Ha) # w(Hd') if a # a/. Hence

pre) = [ [ dwa =[]
yeYy JaceAr A

= lulen T] [ emer .

acA-T

(a)™ duwa(a) / dug (5)
T e AN—1T Yo

Since my, > 0, the result follows. O

To simplify the notation, we write p(g)z = gx for every g € G and = € V, we define
v, = avg for every a € A, and we denote by L, = G, N L the stabiliser of x in L for every
z € V(R).

Since we have a left Haar measure wy, on L and wrng on L N H, Weil’s normalisation
gives a L-invariant measure on the homogeneous space L/(L N H), and hence a left Haar

9



measure on the stabilisers /(LN H){~! for every £ in L, as explained above. As announced,
the modified Siegel weights w'y, PIL (+) are defined using this Weil’s normalisation, as follows.

For every £ € L and a € A, if x = favy, since H = MU is normalised by A and is the
stabiliser of vy in G, we have

L,=LNStabgz = LN ((HY =0 LnH). (6)
Note that
L(R)yNL(Z) =LR))NG(Z) =L(R)yNGR)yNG(Z)=LNT, (7)

and similarly L(R)o N L,(Z) = L, NT for every x € Lv, N T'vg. Hence the denominator
of the modified Siegel weight w'r, ,, (%) is equal to vol ((LNT)\L) = vol(Yy), using the
measure i, on Yz, induced by the Haar measure wy, on L. Its numerator vol ((L, NT)\Ly)
is defined by using the measure on (L, NT')\L, induced by the left Haar measure on
L, ={(LN H){~! given by Weil’s normalisation.

We now proceed to the proof of Theorem 6.

Step 1. The first step of the proof is the following group theoretic lemma, which relates
the counting function of modified Siegel weights to the counting function of volumes of
orbits of LN H. We denote with square brackets the (left or right) appropriate orbit of an
element.

Lemma 8 For every a € A, there exists a bijection between finite subsets
O, ¢ (LNT)\(Lvg NTw) — (Y NYga™')/(LNH)
such that for every x € Lv, N Ty, if [y] = O4([z]), then
vol ((Ly NT)\Lz) = vol (y(LN H)) . (8)

In particular, for every T € [0, +o00[>~1, we have

2 2. vl =) 2.

a€Ar [J:]E(LQF)\(L’UGQF’U()) a€Ar [y}e(YLﬂYHQ*I)/(LﬁH)

vol (y(L N H))
VOI(YL)

Proof. Fix a € A. First note that the groups L NT" and L N H do preserve the subsets
Lv, NTwg of V(R) and Y, N Yya~! of Y respectively for their left and right action, since
A normalises H. The finiteness of the set (L NI")\(Lv, NT'vg) follows from Borel-Harish-
Chandra’s finiteness theorem as in the introduction. Also recall that H = MU is the
stabiliser of vy in G.
Define
O : [lvg] — [m(L)] .

Let us prove that this map is well defined and bijective. Let ¢,/ € L.

We have fv, € T'vg if and only if there exists v € I' such that favg = yvg, that is,
if and only if there exist v € I" and h € H such that ¢ = vha™!, that is, if and only
if 7(¢) € Y, N Yya~!'. This proves that ©, has values in (Y7 N Yya~!)/(L N H) and is
surjective.

10



Let us prove that ©, does not depend on the choice of representatives and is injective.
We have [('v,] = [fv,] if and only if there exists v € L NT such that ¢'avy = ylavy, hence
if and only if there exist v € LNT and h € H such that {a = yfah. Note that this
equation implies that aha™' € L if and only if ¥ € L. Since A normalises H, we hence
have [('v,] = [fvg] if and only if ¢/ € TY(L N H), that is if and only if [w(¢)] = [x(¢')].

To prove the second assertion, let £ € L be such that x = fv, € T'vg and let y = 7(¢), so
that ©,([z]) = [y]. The orbit of y under L N H in Yy is the image by the locally isometric
map 7 of the Riemannian submanifold /(L N H) of G. The left translation by £~! is an
isometry (hence is volume preserving) from ¢(L N H) to (L N H). By Lemma 5, the map
g+ Lgt= from LN H to ¢(L N H)¢~!, which is equal to L, by Equation (6), is measure
preserving. Therefore the map ¢ : [z] — [2(] from (L, NT)\L, to y(L N H) is a measure
preserving bijection. This proves the volume equality of Equation (8).

The last claim follows from the other ones, since the numerator of the modified Siegel
weight u/LmL(x) is vol ((Ly NT)\Lyg). O

Step 2. The second step of the proof is an equidistribution result, in the spirit of [KM1],
saying that the piece Yp, of orbit of P equidistributes in Y5 as min 7" — 4-o0.

For every smooth Riemannian manifold Z and ¢ € N, we denote by ¢ (Z) the normed
vector space of C? maps with compact support on Z, with norm || - [[4.

Proposition 9 There exist ¢ € N and £ > 0 such that for every f € ¢4(Yg) and T =
(ta)aca—1 € [0, +00[>~1, we have, as minT' tends to +oo,
1

- - fd,UP: fdﬂ +0 e*/@minT f )
,UfP(YPT) Yo, Yo G ( H Hq)

To prove the proposition, we will use the disintegration formula already seen in the
proof of Lemma 7

v, fdup = /AT < L flya™) duH(y)> <a61;[_la(a)ma>de(a) ,

This formula indicates that the proposition would follow from (an averaging of) the equidis-
tribution of the translates Yza ™!, which is established in Proposition 10 below. To state
this proposition, we need to introduce additional notation.

The linear algebraic group G decomposes as an almost direct product

G =7Z(G)G, G,

where Z(QG) is the centre of G, and Gy, . .., Gy are Q-simple connected algebraic subgroups
of G. The maximal Q-split torus S decomposes as an almost direct product

S=8S;---S;
where S; is a maximal Q-split torus in G;. We also get an almost direct product decom-

position
G=Z7(G)Gy - Gs, (9)

11



where Z(G) is the centre of G (which is equal to Z(G)g since G is connected and G
is Zariski-dense in G) and G; = G;(R)p for 1 < i < s. Since G has no nontrivial Q-
character, and since M is the centraliser of A, this gives corresponding almost direct
product decompositions of the Lie groups A = A; ... A, (this one being a direct product),
U=U...U, M = Z(GM,...Ms, H= Z(G)H; ... Hs. The set of simple roots A
decomposes as a disjoint union

A=A U---UA,

where A; is a set of simple roots of G; relatively to S;, and the positive (closed) Weyl
chamber AT in A associated to A decomposes as

A+:Ai’—‘42—7

where A;r is the positive (closed) Weyl chamber in A N G; associated to A;.
For 1 <i<sand a € A;, we define

Ei(a) = exp ( — (aénAa?EIlog a(a))) >0 (10)

if A; — I # 10, and E;(a) = 0, otherwise. For every x > 0, we also define
S
E™(a) =Y Ei(a;)"
i=1

for every a € A* with a; € A], -+ ;as € A and a = a1 - - - as.

Proposition 10 There exist ¢ € N and k > 0 such that for all f € €(Yg) and a € AT,

flya Ndigly) = | fdic+ O (E"(a) || fll) -
Yi Yo

Given a Lie subgroup D of G such that I' N D is a lattice in D, we denote by 7p
the normalised right invariant measure on (I' N D)\ D. Recall that Yp = 7(D) is a closed
submanifold of Y, and that pp is the invariant measure on Yp induced by the Riemannian
metric, with normalised measure i p.

We identify (I'N H)\H with Y using the (well defined) map h — I'h (denoting again
by h € H a representative of a coset h € (I' " H)\H). Since the groups Z(G),Hy,--- , Hs
commute, we also have the map

(TN Z(G)\Z(G) x (TN H)\H, -+ x (T 1 H)\H, = Yi

well defined by (hg,h1,...,hs) = Thohy---hs (using conventions similar to the above
one for coset representatives). Then the normalised invariant measures 7iy, fig,,- .-y,
satisfy, for all f € €.(Yg),

£ () dfigg () = / F(Th)dzy (h)
Y (PNH)\H

/ f(Fh0h1 "'hs)de(G)(hO)"'des(hs)- (]_1)
(PNZ(G))\Z(G)x-x (CNHs)\ Hs

12



We will prove Proposition 10 by using an inductive argument on the number of factors.
We start by analysing the distribution of Y7,a~! in Lemma 11 and then the distribution
of YHl.a’1 in Lemma 12.

Let D be a product of almost direct factors of G in the decomposition (9). For every
f € 6°(Yg), we define a map Zpf : Yg — C by

(Zpf)T9)= [ f(rdg) dop(a)
(TND)\D
which does not depend on the choice of the representative of I'g, by the right invariance of
vp under D. Note that &p f is continuous and invariant under the right action of D.

Lemma 11 There exist ¢ € N and k1 > 0 such that for every i € {1,...,s} with A; # {1},
for every f € €4(Yg) and a € A,

g flya™) diy, (y) = (P, )(Te) + O (Ei(a)™ ]| flve, llq) -

Proof. For 1 < i < s, we consider the unitary representation of the group G; on the
orthogonal complement of the space of G;-invariant (hence constant on Yg,) functions in
the Hilbert space L?(Ye,, g, ), whose scalar product we denote by (-, )y, (using the nor-
malised measure i, ). We note that for every f € 6.(Yg), the function f|;G_ —(Z¢, f)(Te)
belongs to this space. '

We say that a unitary representation of a connected real semisimple Lie group G’ has
the strong spectral gap property if the restriction to every noncompact simple factor of G’
is isolated from the trivial representation for the Fell topology (see for instance [Cow],
[BHV, Appendix|, [KM2, Appendix]| for equivalent definitions and examples, and compare
for instance with [Nev, KS] for variations on the terminology). We claim that the above
unitary representation of GG; has the strong spectral gap property. Indeed, if G; is simply
connected and I'; is a congruence subgroup in G;, then the strong spectral gap property on
I';\G; is a direct consequence of the property 7 proved in [Clo|, see Theorem 3.1 therein.
By [KM2, Lemma 3.1], this also implies, when G is simply connected, the strong spectral
property on I';\G; for subgroups I'; that are commensurable with congruence subgroups,
and, in particular, for arithmetic subgroups of G;. Now let p; : G; — G; be a simply
connected cover of Gy, and let G; = G4(R). Then Yg, ~ p; (TN Gi)\G;, and the strong
spectral gap property for L2 (Y, ig,) follows from the above arguments.

Applying [KM1, Theorem 2.4.3], we deduce that there exist ¢ € N and ], C > 0 such
that for every i € {1,...,s} such that 4; # {e}, for every ¢ € €4 (Yg,) and a € A,

((flye, = (Zaf)Te))ea™ 6)y < C Ei()™s || £lv,lla I6llq - (12)

where E;(a) is defined in Equation (10).

Let P, denote the parabolic subgroup in G; opposite to U;. The product map U; x
P — G is a diffeomorphism between neighbourhoods of the identities. Since Yy, = 7(U;)
is compact, if € > 0 is small enough, there exists an open e-neighbourhood €2, of the identity
in P such that the product map Yy, x Q. — Y, is a diffeomorphism onto its image Y7, (2.

2
We have (see also Lemma 14)

v Yy e YUW vp € QEa dﬁG, (yp) - dﬂUi (y)d&.)(p),
13



for a suitably normalised smooth measure w on €).. There exists o > 0 (depending on q)
such that for every € > 0 small enough, there exists a nonnegative function . € €4 (Q.)
satisfying

/Q bedw=1 and [i]l, = O() .

Define a CY function ¢, : Y, — [0, +00[ supported on Yy, Q¢ by

VyeYy, Ve Qe  de(yp) = ¢e(p) .
Then
¢ediig, =1 and |[|§cflg =O(e™7) .
Ye,
Since for all a € A;r and p € €.,
d(apa!,e) = O(e),

we obtain

(o™ 60y, = [ Slapa o) di, (0)dstr)

YU'L X Qe

= | e drg, )+ O (el flve, )

Yy,

Since g, f is Gj-invariant,

(Z6.f.00)y,, = (ZeNTO( | é-dig,) = (Pa.(Te).

Ya,

Combining these estimates with (12) (we may assume that ¢ > 1), we conclude that

g flya™) dny,(y) = (Z6,f)(Te) + O ((e + Ei(a)re7) [|flyg,llq)-

Finally, taking € = Ei(a)”/l/ (1+9) which is small if a lies outside a compact subset of AZF,
we deduce that

[ ™) iy, () = (P6.£)(Te) + O (Ea) S flyg, ).

as required. O

Lemma 12 There exist ¢ € N and ko > 0 such that for every f € €4(Ye) and a € A},
for every i € {1,...,s}, we have

- Flya™") dfigg,(y) = (P, f)(Te) + O (Ei(a)™| flyg, llq)-
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Proof. We first observe that if A; = {e}, then H; = G;, and the claim of the lemma is
obvious. Now we assume that A; # {e} in which case Lemma 11 applies.

Let N; = (I' 0N M;)\M;. The space Yy, = w(U;M;) is a bundle over N; with fibres
isomorphic to Yy, and the invariant measure fiy, on Yy, decomposes with respect to this
structure. Explicitly, for every m € M;, the integrals fYU~ f(ym) dpy, (y) for all f € €.(Ya)
define a U;-invariant probability measure on Yy, m, whichzdepends only on the coset n = [m)]
of min N; = (F N M;)\M;, and the H;-invariant probability measure on Yy, is given by
Iy, (‘[YU (ym) dpiy;, (y))doag, ([m]) for all f € €.(Ye). Hence, denoting again by n any
representatlve of a coset n in INV;, since A centralises M,

f(ya™) diig, (y / f(yna™) dfiy, (v) dvar,(n)
YHz‘ YU

- /N Y; f(ya_ n) dﬁUi(y) dﬁM’(n) ’

For m € M; and f € %.(Yg), we consider the function f,, : Yo — C defined by
y +— f(ym). We note that there exist ¢;,C’ > 0 such that for every f € ¢4(Ys), we have

1 fmlve, lla < C'e ™| flyg,llg

Hence, by Lemma 11, for every f € 4J(Yg) and m € M;, since Pg, frn = Pa,[ by
invariance under G,

g fya~'m) dhiy, (y) = (Z6,f)(Te) + O (Ei(a)™ e ™| flyg, [lq) - (13)

We fix ng € N; and for R > 0, we set
(Ni)r ={n € N; : d(ng,n) < R},

where d(-,-) denotes the distance on N; with respect to the induced Riemannian metric.
We shall use the following estimate on the volumes of the “cusp” there exists co > 0 such
that for every R > 0,

s (N — (N3) ) = O(e™2R). (14)
To prove this estimate, we may pass to an equivalent Riemannian metric and to a finite
index subgroup of I'N M;. This way, we reduce the proof to the case when M; is semisimple,
I' N M; is an nonuniform lattice in M;, and the Riemannian metric on M; is bi-invariant
under a maximal compact subgroup in M;. Then Equation (14) follows from [KM2, §5.1]
(which notes that the irreducible assumption on I' N M; is not necessary).

Equation (14) implies that

/ F(ya™"n) dfig, (4) dBas,(n) = O (2 || Flyg, o) (15)
Ni)r JYu

Given m € M; such that (I' N M;)m € (N;)g, there exists m’ € M; such that (I' N M;)m =
(T'N M;)m’ and d(e,m’) < R. Therefore, it follows from Equation (13) that

/ [ o) ) v )
= VMi((Nz‘)R)(Q”Gif)(FG) +O (Ei(a)™ e ™ (| flvg, llq)
= (Z6,/)(Te) + 0 (e~ + Ei(a)™e™ ) [| flye, llq) - (16)
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Finally, combining (15) and (16), we obtain that
[ [ st dm, ) do o)
Ni Jyy,

= (26, f)(Te) + O (7" + Ei(a)™ ™) || flvg, Ilq) -

RS B
Taking R = log E;(a) =1+, we deduce the claim of Lemma 12 with rp = J22. O
Proof of Proposition 10. For a subsemigroup D which decomposes as a product

D=D,---Dgand p <i<q, we write
DSZ:DpDZ and D>’i:Di+1"'Dq.

We show inductively on i € {0,...,s} that for every a = a;...a; € AL, (by convention
a=eifi=0)and g € G~;, we have

/Y F(ya™'g) diigr_,(y) = (P ) rg+Zo o1 1) (17)

<i

with k = kg and ¢ as in Lemma 12. Since H<p = G<o = Z(G), this is obvious for i = 0.
To get this estimate for ¢ = 1, we apply Lemma 12 to the function fy(y) = (Zc_,f)(v9)
with g € G~1. Since G commutes with G<p and G-, we have

[falve, g < Ifllq and  (Z6, Pa, f)(T9) = (Pa, f)(Tg) -

This proves Equation (17) with i = 1.
Now suppose that Equation (17) is proved at rank i. As in Equation (11), for f €
Cgc(YG)a

/ W, ) = /(mHi)\Hl. / ) i, ) ).

<it+1 <i

Hence, for every o’ =ay...a; € AL, a;11 € A;CH and g € G<;11, with a = d’a; 41, by the
right invariance of 7y, | under H;; 1 and by Equation (17), we have

flyalg)dag_,,,(y)

YH i1
N /(I‘OH WH /y f(y(a/)ilhai_"'llg) dﬁng(y) dvp,.,(h)
i+1)\Hit1 /Y,
- /(mH )\H. (Z6.f)(Thayg) v, (h) + Z O (Ej(az)"lIfllq) -
i+1)\Hit1

Applying Lemma 12 to the functions fg ry = (P, f)(yg) on Yg, we obtain

/(F o (Pac ) Chazl) v 0
NH;y1 i+1

= (P11 fg)(Te) + O (Biv1(airn)" | folve,,, lla)
= (26, 1)(Tg) + O (Bira(aiv1)" | fllq)-
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This completes the proof of Equation (17). Since

(Za., f)Te) = . fdig,

the proposition follows. O

Proof of Proposition 9. Since
[ sae= [ ([ e dunw) (] atam) duaa).
Ypp Ar Yu acA—1
it follows from Proposition 10 and from Equation (5) that

Faue =ure) | faia+0 (Il [ E@( I] al@™) dua@).

Ypr acA-T

For every i € {1,...,s} such that A; — I # (), let 8 € A; — I. For every b; € A;, we have
E;(b;) < e~ 1088,

Hence, by Lemma 7, we have, assuming that £ < mingea—7 mq (which is possible),

Ej(%)“( H a(a)m"‘> de(a) < CA( H /Ota e'Mas ds) /Otﬁ e(m,g—n)s ds

aEA-T acA-I-{B}
=0 (MP(YPT) e*””tﬁ) .

A

Therefore, since E™(a) = > 1 <;<5. a,—129 Eiai)", we have

1 — —K min
— fdup = | fdpig+O(e TN llg)s
MP(YPT) Ypp Yo

as required. O

Step 3. In this last step of the proof of Theorem 6, we will diffuse the orbits of L N H
we want to count using bump functions, and apply the equidistribution result given by
Proposition 9 in Step 2 to infer our main theorem.

Before starting this program, we rewrite the sum whose asymptotic we want to study
in a more concise way. Let T,T" € [0, +oo[*~!. By transversality (see for instance [Hir,
p. 22, Theo. 3.3|), the intersection

Z[T,T/} =Y, N YP[T,T’]
is a compact Riemannian submanifold of Y, invariant under the right action of L N H,
and for every x € Zr 7, we have T Zjp v = (T Y1) N (TIYP[T,T'])' Since [Np =1NH by
Equation (3), the Lie group L N H has open orbits in Zir)- Hence the compact subset
Zyr,pn is a finite union of orbits of LN H (see the picture below when A is 1-dimensional).
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Zirry =i vi(LNH)

-1
v YHCZT
YP[TVT,] /\/\

We will denote by W Z the Riemannian measure on Zir . Using Riemannian
volumes, we hence have

FZip o (Z[T,T’}) = Z vol (y(L N H))
W e(YLNYp,. 1))/ (ENH)

= Z Z vol (y(L N H)) .

a€A(p ) [E(YLNYra=1)/(LNH)

By Lemma 8 in Step 1, the quantity pz, T](Z[O,T])a when divided by vol(Y7), is the sum
whose asymptotic we want to study.

We first start by studying the supports of the bump functions we will define: they will
be appropriate neighbourhoods of Y7, and Zjp 7. Fix € > 0, which will be appropriately
choosen small enough later on. Consider the open ball B(0,¢) of center 0 and radius € in
the orthogonal complement q @ a of [Np in p, and let &, = exp B(0, €), which is contained
in P.

Since L is compact, if € is small enough, the right action of G on Yy induces a map Y7, x
O. — Yg, with (y, g) — yg, which is a smooth diffeomorphism onto an open neighbourhood
Y1 O, of the submanifold Y7, in Y. Similarly, if € is small enough, then for every T,T" €
[0, +00[A, the map Zir,p X Oc — Yp defined by (y, g) = yg is a smooth diffeomorphism
onto an open neighbourhood Zj7 70, of the submanifold Zppq in Yp. If n € R and
T" = () aen—1 € [0, +oo[*~1, we denote T + 1 = (£ + 10)aca_1.

Lemma 13 There exists ¢ > 0 such that if ¢ > 0 is small enough, for every T,T' €
[0, +00[A~1, then

Z[T-i—ce,T’—ce] O.CYLO:N YP[T,T'] C Z[T—cs,T’—f—cs} Ok .
Proof. We first claim that there exists ¢ > 0 such that

P[T—I—CE,T’—CE] - P[T,T’] O C P[T—ce,T’—l—c&} :

Since the product map (h,a) — ha is a diffeomorphism from H x A to P, since O is
contained in P, and since the distances are Riemannian ones, there exists ¢; > 0 such that
if € > 0 is small enough, then for every g € O, there exist h € H and a € A with g = ha
and d(a,e) < cre. Since the Riemannian distance on A is equivalent to the image by exp
of the distance on a defined by the norm |z|| = maxaea—_r|log(a(expx))|, there exists
¢y > 0 such that |log a(a)| < cad(a,e) for every a € A.

18



Let g € O, h € H and a € A be such that g = ha and d(a,e) < cje. Since A

normalises H, we have H AET,} g=H AET,} ha = H AET,}Q. Hence H AET,} g is contained
in HA!

. -1 . .

(T—c1eae T/ +creae] and contains H A[T terese T —crene] This proves the first claim.
Now, let y € Y1, g € Oc and p € Pyppy be such that yg = 7(p). Then y = 7(pg~1).

Since @, is invariant by taking inverses, pg~! belongs to P 110¢, hence by the first claim,

Y9 € Z17—ce T'4c Oc- The left inclusion is proven similarly. O

We now study the properties of the Riemannian measures on the neighbourhoods Y7, &,
and Z[T,T’} ﬁe.

Lemma 14 For every € > 0 small enough, there exist smooth measures v and v on O, such
that the product maps Y, X Oc — Yo and Zip 71 x Oc — Yp send the product measures

wr @ v oand 1Z g gy © v to the restricted measures KRGy 6. and e respectively.

s
Furthermore, 9~ (e) = 1.

Proof. Since the measure pigy, o, (respectively u P|Zp ¢.) is Riemannian, it disintegrates
with respect to the trivialisable fibration Y0 — Y[, (respectively Zir 7 0c — Zj ) with
measure on the basis py, (respectively 'MZ[T,T’])’ and conditional measures v, (respectively
vy on the fibers yO, for all y € Y, (respectively y € Zip ). By left invariance of the
measures wy, and wrny, there exist smooth measures v (respectively 7) on &, such that
the maps 0 — yO, defined by g — yg send v (respectively v) to v, (respectively 7,) for
all y € YL, (respectively y € Zj 7). This proves the first claim.

Since q + a is orthogonal to [ (respectively [N h) by Equation (4), the manifold y @, is
orthogonal to Y7, (respectively Zi 1) at every y € Y, (respectively y € Zj77). Hence any
orthonormal frame I of T, (y0.) at a given y € Zj 7 may be completed to an orthonormal
frame whose last vectors form a basis of T}, Y7,, whose first vectors form a basis of T}, Zp 1.
By desintegration, the orthogonal frame F' has the same infinitesimal volume for v and v.
The last assertion follows. O

Let us now define our bump functions. By the standard construction of bump functions
on manifolds, for every ¢ € N, there exists &' > 0 such that for every ¢ > 0 small enough,
there exists a C? map v, from O, to [0, +-oc[, with compact support, such that [ dv =1
and ||¢ell, = O(e™'). Since le—z =1+ O(e) on O, by Lemma 14, we have

/ e dv =1+ O(e) .
O

For every e > 0 small enough, define f. : Yo — [0,400[ by f(y) =0if y ¢ Y0, and
fe(yg) = ¥c(g) for every y € Yz, and g € 0. Note that f is C? with compact support,
since Y7, is compact. We have

fdi— Fo tedue _ Joeo Syev, ¥e(9) dpe(y)dv(g)  vol(vy)
ve vol(Yg) vol(Yg) vol(Yg) '

and [|fellg = O(e™).
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Since the support of f. is contained in Y7, 0., by Lemma 14, and by the right inclusion
in Lemma 13, we have, for every T € [0, +oo[>~,

fe d,U'P S / fe d,U'P
Yp, Z[—ce,T4ce)Oe

= / / Ve(9) Az oo rppeq (¥)AV(9)
gEOD. yeZ[*CC,TJﬁLf]
= VOI(Z[fce,TJrce])(l + O(E)) : (18)

Similarly, since f. > 0 and by the left inclusion in Lemma 13, we have, for every T €
[0, +oo[A71,

fodur > [ - dpp = vol(Zipe o) (1 + O(e)) - (19)
Ypp Zlce, T—ce)Oe

Finally, we apply Step 2 to our bump functions. By Proposition 9, we have the equality
#YPT) prT fedup = fYG fedig + 0O ( e—rminT ||f6\|q). Hence, by the properties of fe,

vol(Yr)up(Yey)
VOI(Yg)

fodup = (1+O(e ¥ emrminTy) | (20)

Yp,.

Let 6 = 47 > 0 and € = e 9mnT (which tends to 0 as minT tends to 4+o0c). Then

e emrminT — o(W—m)minT _ o=dminT By the equations (19) and (20), and by Lemma,
7, we have, as minT tends to 4+o0,

VOI(Z[ce,T—ce]) < < fE d:U’P) (1 + O(eiéminT))

Yoy
_ vol(Y)up(Ye,) o—dminT
= i) (1+0( )
~ Vol(AY\A) vol(Y7) vol(Yy) eMate o~ dminT
_ i I ) (140 T))

Since e = 1+ O(x) as x tends to 0, we have e M T N aearma — 1 4 O(e=0minT)
as min T tends to +o00. Since Z . is bounded, we hence have, as minT" tends to +oo,

Vv Mata
vol(Zio.1) < Vol(AY\A) vol(Yr) vol(Yr) H e

vol(Ye) ) (1 + O(eiéminT)) '

m
aceA-T a

The converse inequality is proven similarly, using Equation (18) instead of Equation (19)

. vol(Zyo, 1) [ ..
Since Y oeca,  2o{a]e(LAM)\(LvanTuo) W', p () = ﬁ as said in the beginning of

Step 3, this ends the proof of Theorem 6. O
Remark 15 Let G,P,A, M, U,L, V,p,v9 be as in the statement of Theorem 6, and

assume furthermore that G is simply connected. Then we have the following counting
results using the standard Siegel weights.
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There exists 0 > 0 such that, as T = (ta)aea_1 € [0, +00[>~1 and mingea_st, tends

to +o00,
> > W, (2) =
a€Ar  [2]€L(Z)\(p(L(R)a)vonp(I)vo)
vol (MU(Z)\MU(Z)) vol(AY \A(R)) Mate

(& ) 1+O(675minaeA_1ta) )
vol(G(Z)\G(R)) aGI;[I Mo, ( )
The proof is the same as the one of Theorem 6, with the following modifications. Since
G is simply connected, G(R) is connected (see for instance [PR, §7.2]). Hence with the
previous notation, we have G = G(R) and I' = I'(Z) (and the connectedness of G was
useful). Now take L = L(R) instead of L = L(R)g (which is still contained in G, but
would not have been if G was only taken to be G(R)y while G(R) is not connected).

Though L and Y7 may be no longer connected, the proof stays valid.

To end this section, we give two slightly different versions of Theorem 6 when P is
maximal.

Theorem 16 Let G be a connected reductive linear algebraic group defined over Q, without
nontrivial Q-characters. Let P be a mazimal (proper) parabolic subgroup of G defined over
Q, and let P = AMU be a relative Langlands decomposition of P, such that A(R)g is a
one-parameter subgroup (as)ser, with A = logdet (Ad ay)|y > 0, where U is the Lie algebra
of UR). Let p: G — GL(V) be a rational representation of G defined over Q such
that there exists vo € V(Q) whose stabiliser in G is MU. Let L be a reductive algebraic
subgroup of G defined and anisotropic over Q. Assume that LP is Zariski-open in G and
that for every s € R, the orbit Xy = p(Lag)vy is Zariski-closed in V.

(1) Endow G(R) with a left-invariant Riemannian metric, for which the Lie algebras
of MU(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of P(R) is
contained in the Lie algebra of L(R). Let G = G(R)g and I' = G(Z) N G. There exists
6 > 0 such that, ast > 0 tends to 400,

2 2 WL (2)
Oss<t  [z]e(L(R)oND)\(p(L(R)oas)voNp(T)vo)
_ vol (MU NT)\(MU N G)) vol(aZ\A(R)o) A 4 O(e9)
Avol(I'\G)

(2) Let A be a Z-lattice in V(Q) invariant under G(Z), and let AP"™ be the subset of
indivistble elements of A. Assume p to be irreducible over C. Then there exist ¢,§ > 0
such that, as t > 0 tends to 400,

Z Z whp‘L(x) =ceM 4+ 0(eP )

0<s<t [z]€(L(Z)NL(R)o)\(XsNAPrim)

Proof. (1) In this case, A—1T consists of one simple root cg. Changing the parametrisation
of the one-parameter subgroup (as)scr appearing in Theorem 16 by multiplying s by a
positive constant does not change the asymptotic formula in the statement of Theorem 16
(1). Hence we may assume that a; = (ag)", hence that the group a? generated by ay is
equal to the lattice AV. The constant \ defined in Theorem 16 is then equal to mg,. The
first part of Theorem 16 hence follows from Theorem 6.

(2) We start by proving two lemmas.
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Lemma 17 If p is irreducible, then the stabiliser of Cvg in G is P and there exists x € R
such that asvy = eX*vy for every s € R.

Proof. Let T be a maximal torus of G containing S, and let At be a set of primitive
roots of G relative to T, whose set of nonzero restrictions to S is A (see for instance [Bor3,
§21.8]. Then the unipotent subgroup U?;, whose Lie algebra is the sum of the positive root
spaces of G relative to T, is contained in MU. By the properties of the highest weights,

if p is irreducible, the space {v € V : Ufliv = v} is one-dimensional, hence equal to
Cuvg. Since A normalises MU, hence Ur'lt, it preserves Cuvg, and the result follows, by the
connectedness of A. O
Lemma 18 There exist v, ...,v in AP""™ such that AP"™ N Gug = |_|§:1 Tv;.

Proof. By [Bor3, Prop. 20.5], the natural map G(Q) — (G/P)(Q) is onto. Since Guvg ~
G/MU, this implies that every x € (Guvp)(Q) may be written as = = gpvy for some
g € G(Q) and p € P. Hence by Lemma 17,

(Guo)(Q) € C*G(Q)uo-

By [Bor2, Prop. 15.6], there exists a finite subset F' of G(Q) such that G(Q) = 'FP(Q).
Hence,
(Gvy)(Q) € C*I'Fuy.

In particular, we conclude that there exist vy,... v in AP™ such that

k
AP A G C |_| C*Tv;.
=1

Since for every v € APT™,
C*o N AP"™ = {+v},

this implies the lemma. ]

Now, since the identity component L of L(R) has finite index in L(R), there exist
ly..., 0 in L(R) such that L(R) = |_|§IZ1L€J-. Hence, since vy belongs to V(R) and
Xs C Gug, by Lemma 17 and Lemma 18, we have

X, N AP = (L(R)eX*vp) N (AP™ N Guyp) = |_| eX*Lljvg NTy; . (21)
I<i<k, 1<j<K’

If L ¢;u90NT'v; is nonempty, fix v; j € LfjvgNT'v;. In particular, there exist v € I'and £ € L
such that v; j = ££jug = ~yv;. Since v; € V(Q), we have v; ; € V(Q). Hence the stabiliser
P;; of v; ; in G is an algebraic subgroup defined over Q. Since v; ; is in the G-orbit of
v, the stabilisers of vy and of v; ; are conjugate, hence P;; is a parabolic subgroup of
G. Since two parabolic subgroups of G, which are defined over Q and conjugate in G,
are conjugated by an element of G(Q) (see for instance [Bor4, Theo. 20.9 (iii)]), there
exists ; ; € G(Q) such that P;; = amPai_J.l. Furthermore, using Lemma, 17, we have
Cuv;,j = Cay jvg. A relative Langlands decomposition of P; ; is P; j; = A; jM, ;U; ; where
Ai,j = ai,jPa;jl, Mi,j = OZZ'JMOZZJ-I, Ui,j = Oéi,jUOé;jl .
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We have A;;(R)y = (ai’j = amasai_jl)seR and the Lie algebra of U, ;(R) is ;; =
Ad o ;(41). Hence ald v;,j = eX°v; j for every s € R and
log det(Ad ai’j)‘ui’j =\,

for every 4,7 with L{jvo N Tv; # 0.
By Assertion (1) of Theorem 16 applied to the (maximal) parabolic subgroup P; ;
defined over Q, there exist ¢; j,0; ; > 0 (with ¢; ; explicit) such that, as ¢ > 0 tends to 400,

Z Z wlL,p\L@) =Cij M O(e(’\’éfvj)t) )

0<s<t  [z]e(LNT)\(Lak?v; ;NTv; ;)

Hence, using the equations (7) and (21), with 6 = min, ; ¢; ; and ¢ = Z” ¢ j, we have, as
t > 0 tends to 400,

Z Z wlva|L (z)

0<s<t  [z]€(L(Z)NL(R)o)\(XsNAPrim)

= > > > WLy (2)

<i<k <s< ,J
JEish 0SSt [e(XnD)\(Lay v i 5)

Lejvug NTo; #0

ceM 0P

This ends the proof of Assertion (2) of Theorem 16. O

Remark. Using Remark 15 instead of Theorem 6 in the above proof gives Theorem 4 and
Theorem 3 in the introduction.

3 Applications

3.1 Counting inequivalent representations of integers by norm forms

In this subsection, we fix n > 2, an algebraic closure Q of Q in C, and F € Q[z, ..., 2]
a rational polynomial in n variables, which is irreducible over Q and splits as a product of
n linearly independant linear forms with coefficients in Q. We assume that F~1(]0, 4+-o0])
is nonempty.

Remarks. (1) With the notation of Theorem 1, for every k € R, define N(k) =
Card(F F\Ek) If ¥, is not empty and if e is the least common multiple of the denominators
of the coefficients of F', then k € %Z. In particular, there are only finitely many k in any
compact interval of R such that N(k) # 0 (and moreover these numbers k are rational,
and even integral if F' has integral coefficients). In particular, the sum in the left hand
side of the asymptotic formula in Theorem 1 is a finite sum.

(2) If n = 2, Theorem 1 is well known. It is easy to see that
F(x1,29) = a(xy + axe)(x1 + @xe)

where a € Q and « is a quadratic irrational with Galois conjugate @. Theorem 1 follows
from Equation (1) when « is an algebraic integer, where K = Q(«). When the binary
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quadratic form F' is indefinite, we refer to [Coh, page 164] for an algebraic proof and to
[PP1, Coro. 1.3| for a geometric proof of the main term (and [PP2] for the error term), and
these last two papers for geometric extensions to higher dimensional hyperbolic manifolds.

(3) By for instance [Koc, Theo. 2.3.3, page 38|, any polynomial F' as in the beginning
of this subsection is a rational multiple of a norm form. Let us give a quick proof for
completeness.

The absolute Galois group Gal = Gal(Q/Q) naturally acts on the Q-vector space
Q[z1, ... xn). Let Ly,..., Ly € Q[z1,...,3,] be linear forms such that F =[], L;. By
the uniqueness property of irreducible decompositions, the group Gal preserves the set of
lines {QL1,...,QL,}. If this action is not transitive, and {QLyg,,...,QLy,, } is an orbit,
then the nonzero polynomial [[", Ly, has its coefficients that are invariant by Gal up to
multiplication by an element of Q. Dividing [T~ Lg, by one of its nonzero coefficients, we
hence get an element of Q[z1,...,x,] (with degree different from 0 and n) which divides
F'. This contradicts the irreducibility of F' over Q.

We may assume that one of the coefficients of Ly is 1 (up to dividing L; by one of its
nonzero coefficients, and multiplying L by it). Hence the stabiliser of QL; in Gal is equal
to the stabiliser Gal; of Ly, which is equal to the Galois group Galy = Gal(Q/K) where
K is the number field generated by the coefficients of L;. Hence there exists a € Q such
that

F=a H oli=a H UleaNK/QoLl.
oe€Gal / Galy oe€Gal / Galg

Since N /g takes rational values on K, this proves that F' is a rational multiple of a norm
form.

(4) The assumption that the polynomial F is irreducible over Q is essential for Theorem
1. For instance, consider F'(x) = z1 --- . Then the cardinality of F~1(k)NZ" is nonzero
if and only if k € Z, and, for every e > 0, there exists k > 0 such that for every k € Z,

Card(F~ (k)N Z™) < d(k)" < k k°,
where d(k) denotes the number of divisors of k (see for instance [Apo, page 296]).

(5) Let @ be an order in the ring of integers Ok of a number field K of degree n.
Generalizing the case of & = Ok (see Equation (1)), with ai,...,qa, a Z-basis of O,
applying Theorem 1 to the norm form F(z) = Ng,g(c1z1 + -+ + anzy), we prove in
a dynamical way that there are constants ¢,§ > 0 such that Card(6*\{z € ¢ : 1 <
Nk jg(x)] <r}) =cr+ O(r'=%) as r — oo.

Proof of Theorem 1. In order to apply Theorem 3, let us first define the objects
appearing in its statement.

Let G = SL,(C) which is a (Q-split) quasi-simple simply connected linear algebraic
group without nontrivial Q-characters. Let V.= C", A = Z" (which is a Z-lattice in V(Q)
invariant under G(Z)), (e1,...,e,) the canonical basis of V and p : G — GL(V) the
monomorphism mapping a matrix z to the linear automorphism of V whose matrix in the
canonical basis is x, which is an irreducible rational representation over C. To simplify
the notation, we denote p(g)v = gv for every g € G and v € V. Let P be the stabiliser
in G of the line generated by e, which is a maximal (proper) parabolic subgroup of G

defined over Q. With [ the identity k& x k matrix and s € R, let U = {(é Iu ) T €
n—1
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///1,n_1(@)},a8:<60" 6_#_01)[ _1>,andM:{<(1) 7‘;) - m € SL,(C)}. With A

the centraliser of M in G, we have that P = AMU is a relative Langlands decomposition
of P over Q, and the identity component of A(R) is the one-parameter subgroup (as)scr.
With U the Lie algebra of U(R), an immediate computation gives

A =logdet(Aday)y=1>0. (22)

Since F' is homogeneous, as F' takes a positive value (and equivalently), there exists
vg € Z" such that F(vg) > 0. We may assume that vy is primitive up to rescaling it,
and after an integral linear change of variable (which does not change the set of integral
representations of a real number by F'), we may assume that vg = e;. Note that the
stabiliser of vg in G is then precisely MU.

We denote by L the stabiliser of F'in G and by 7 : L — GL(V) the restriction of p to
L. By the linear independence over C assumption, L is a maximal algebraic torus defined
over Q in G (hence L is reductive, but not semisimple). For every z € C— {0}, the group L
acts simply transitively on the affine hypersurface F~1(z). Hence, with vy = asvy = en g,
the orbit

X, = Lvy = FY(F(vs)) = F~ 1 (e*F(v)) (23)

(since F'is homogeneous of degree n) is Zariski-closed in V.

Let us now check in two lemmas that the hypotheses of Theorem 3 are satisfied by
these objects.

Lemma 19 The algebraic torus L is anisotropic over Q.

Proof. As seen in Remark (3) above, there exist a € Q — {0} and linearly independant
linear forms ¢4, .. ., £, on C" with coefficients in Q such that F' = a H?Zl Z; and the absolute
Galois group Gal(Q/Q) acts transitively on the set {/1,...,¢,}. Let % be the basis of C"
whose dual basis is ({1, ..., ¥,). The algebraic torus L is the subgroup of the elements of
G whose matrix in the basis 4 is diagonal. For 1 < i < n, let x; be the character (defined
over Q) of L which associates to an element of L the i-th diagonal element of its matrix in
%. Note that Gal(Q/Q) acts transitively on the set {x1,...,Xn}. Any character of L may
be uniquely written [, Xfi with ki,...,k, € Z. Any Q-character [[;", Xfi of L, being
invariant under Gal(Q/Q), should have k; = - -- = k,, by transitivity, hence is trivial. The
result follows, since an algebraic torus defined over Q without nontrivial Q-characters is
anisotropic over Q, that is, it contains no nontrivial Q-split torus (see for instance [Bor3,
page 121], though this reference uses a different meaning of anisotropic). O

Lemma 20 The intersection LNP is finite and LP 1is Zariski-open in G.

Proof. Let us prove that the algebraic group L N P is finite. Since an algebraic group
has only finitely many components, we only have to prove that its identity component
S = (LN P)p is trivial. The algebraic torus S is defined over Q, hence is contained in a
maximal torus of P defined over Q. By [Bor3, Theo. 19.2], two maximal tori of P defined
over Q are conjugated over Q. Since G splits over Q, this implies that L N P splits over
Q. Since L is anisotropic over Q by Lemma 19, this implies that S is trivial, and proves
the first claim.
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Now, the homogeneous space G /P is identified with the complex projective space P(C")
by the map g — Cge;. We write e; = > " | ¢;w; where & = (w;)1<i<n is a diagonalisation
basis of V for the action of the algebraic torus L, as in the proof of Lemma 19. Since
the Galois group Gal(Q/Q) acts transitively on {ws,...w,} and fixes ey, it follows that
the coefficients ¢; are all different from 0. Hence L(Ce;) = {C) " | bjw; : b; # 0}, which
implies the second claim. O

To conclude the proof of Theorem 1, we relate the two counting functions in the state-
ments of Theorem 1 and Theorem 3.

For every s > 0 and p € N — {0}, let Aé”) be the set of integral points of X, whose
coefficients have their greatest common divisor equal to p. Note that Agl) = X, N ApPrim
is the set of primitive integral points of X,. With NP = Card(L(Z)\Agp)), we have
Card(L(2)\X,(Z)) = 3325 N, and NI = N since X jggpm) = 2X, by the
homogeneity of F' and Equation (23).

Since L acts simply transitively on each Xg, the stabiliser L, of every x € Xj is trivial,
hence the Siegel weight wry, »(z) is constant, equal to m By Theorem 3 and
Equation (22), there exist 6 > 0, that we may assume to be in |0,1 — ﬁ[, and ¢ > 0 such
that, as ¢ > 0 and t — +o0,

Z Ngl) =ce + O(et(lf‘s)) )

s€[0,t]

For every r > F(vg)+1, by setting ¢t = log F( ") > 0 and by using the change of variables

k = e*F(uv) (see Equation (23)), we have, with ¥ = F~1(k) N Z" and ¢ Riemann’s zeta
function,

Z Card(L(Z)\Xk) = Z Card(L Z ZN

kE[F (vo),r] se[o t] s€l0,t] p=1
+oo
(1 —n n(5— _
_Z Z Ns )ln(p ZCp el +0(p (6-1) ot(1 5))
p=1s5€[0,t] p=1
¢(n)

=c((n)e'+0 (et(l_‘s)) =

r+ 0O (rl_‘s) .
Note that Zke[min{l,F(vo)},maX{LF(vo)}} Card(L(Z)\Ek) is finite. The result follows. ]

3.2 Counting inequivalent integral points on hyperplane sections of affine
quadratic surfaces

Let n > 3, let ¢ : C" — C with ¢(z) = Y I | gijziz; for every x = (z1,...,2,) be a
nondegenerate quadratic form in n variables with coefficients ¢;; in Q, and let £ : C" — C
with £(x) = >, l;z; for every @ = (x1,...,2,) be a nonzero linear form in n variables
with coefficients ¢; in Q.

The aim of this section is to count the number of orbits of integral points on the
sections, by the hyperplanes parallel to the kernel of ¢, of the isotropic cone ¢~1(0) of q.
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For K = R or Q, recall that ¢ is isotropic (or indefinite when K = R) over K or
represents 0 over K if there exists # € K" —{0} such that ¢(x) = 0, and that ¢ is anisotropic
over K otherwise. For instance, 22 + 2y% — 72z? is anisotropic over Q, but indefinite over
R. By A. Meyer’s 1884 result (see for instance [Ser, page 77]), if n > 5, then ¢ is isotropic
over Q if and only if ¢ is indefinite over R.

Proof of Theorem 2. 1In order to apply Theorem 16 (2), let us first define the objects
appearing in its statement.

Let G = O, be the orthogonal group of the nondegenerate rational quadratic form g,
which is a connected semisimple linear algebraic group defined over @, hence is reductive
without nontrivial Q-characters. Let V = C" and let p : G — GL(V) be the monomor-
phism mapping a matrix x to the linear automorphism of V whose matrix in the canonical
basis is x, which is an irreducible rational representation over C. Let A = Z", which is a
Z-lattice in V(Q) invariant under G(Z). To simplify the notation, we denote p(g)v = gv
for every g € G and v € V.

Since ¢ is assumed to be isotropic over Q, there exists vg in A —{0} such that ¢(vg) =0
and we assume that £(vg) > 0 up to replacing vy by —vg. Since the restriction of ¢ to the
kernel of £ is assumed to be anisotropic over QQ, we have ¢(vg) > 0. Let P be the stabiliser
in G of the line generated by vy, which is a maximal (proper) parabolic subgroup of G
defined over Q since this line is isotropic. Let % = (e1,...,e,) be a basis of V over Q
such that e; = vg, (e1,e2) is a standard basis of a hyperbolic plane over Q for g, which is
orthogonal for ¢ to the vector subspace V' generated by %’ = (es,...,e,). In particular,

01 0
the matrix of ¢ in the basis Zis @ = |1 0 0 | with @' the (rational symmetric)
00 @
matrix in the basis %’ of the restriction ¢’ of ¢ to V’. Denoting in the same way a vector
v (resp. u) of V (resp. V') and the column vector of its coordinates in Z (resp. #’), we
have q(v) = "wQu (resp. ¢'(u) = 'u@'u). With I} the identity k¥ x k matrix and s € R,
define

e 0 0 a O 0
as=10 e* 0 ., A= 0 a' 0 caeC*y |
0 0 In—2 0 0 In—2



100 1 —¢(w)/2 —tuQ
M= 01 0| :meOy and U= 0 1 0 cuev
00 m 0 U I, o

It is easy to check that P = AMU is a relative Langlands decomposition of P, that the
identity component of A(R) is the one-parameter subgroup (as)scr, and that the stabiliser
of vg = e in G is exactly MU. With i the Lie algebra of U(R), an immediate computation
gives (since n > 3)

A =logdet(Aday)y=n—-2>0. (24)

We denote by L = {g € G : o g = ¢} the stabiliser of ¢ in G, which is a linear
algebraic group defined over Q. Let W be the kernel of ¢ and W+ be its orthogonal for
q- Since gw is assumed to be nondegenerate, W is a line, V= W+ & W, and the bloc
matrix of ¢ in this decomposition is diagonal.

Let us now check in the next lemma that the hypotheses of Theorem 16 are satisfied
by these objects.

Lemma 21 (1) The linear algebraic group L is reductive and anisotropic over Q.

(2) For every s € R, if k = e*l(vy) and X5 = Lasvg, then X; = {v € V : q(v) =
0,4(v) = k}. In particular, X is Zariski-closed in V.

(3) The subset LP is Zariski-open in G.

Proof. (1) For every g € GL(V), if £ o g = ¢, then g preserves W. If furthermore
g € G = Oy, then g preserves W, Since W+ is a line, there exists A € C such that g
acts by x — Az on W, As w1 is nonzero and g preserves £, we have A = 1. Hence the
elements of L are exactly the elements of GL(V) whose bloc matrix in the decomposition

V = W & W has the form (é ;,) with ¢’ € O In particular, the linear algebraic

aqw-
group L, isomorphic over Q to the orthogonal group of the nondegenerate rational quadratic
form gw, is semisimple hence reductive.

It is well-known (see for instance [Bor1][BJ, page 270]) that the Q-rank of the orthogonal
group Oy of a nondegenerate rational quadratic form ¢” is zero (or equivalently that Oy is
anisotropic over Q) if and only if ¢” does not represents 0 over Q. For instance, this follows
from the fact that the spherical Tits building over Q of O, is the building of isotropic
flags over Q. Hence by assumption, L is anisotropic over Q.

(2) Note that by the definition of as, we have asvg = e®vg, hence by the linearity of
¢, we may assume that s = 0. Recall that ¢(vg) = 0 and ¢(vg) > 0. By the definition of
L, the orbit Xy = Luy is contained in {v € V : ¢(v) = 0, £(v) = ¢(vy)}. To prove the
opposite inclusion, write v = v’ + v” the decomposition of any v € V in the direct sum
V = WL@W. If {(v) = £(vg) and g(v) = 0, then v/ = v} and ¢(v") = —q(v') = —q(v}),
and in particular q(v”) = q(vg). By Witt’s theorem, there exists ¢’ € Oy, such that
v = g'vlj. Hence the linear transformation of V which is the identity on W+ and is equal
to ¢ on W, is an element of L sending v = v' +v” to vy = v{, + v{j. The second assertion
follows.

(3) The algebraic group G = O, acts transitively on the projective variety of isotropic
lines in V, the stabiliser of the line generated by vy being P by definition. As we have
seen in (2), the orbit under L of the line generated by vy is hence the Zariski-open subset
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of G/P consisting of the isotropic lines not contained in W. The last claim of Lemma 21
follows. O

To conclude the proof of Theorem 2, we relate the two counting functions in the state-
ments of Theorem 2 and Theorem 16 (2). Let L = L(R)g and I' = G(R)g N G(Z).

We have £(vg) > 0 by the definition of vg. For every r > £(vg) + 1, let ¢t = In 7wy > O-
With ¥ as in the statement of Theorem 2, using the change of variables k = e*/(vg) and

Lemma 21 (2), by the definition of the modified Siegel weights in Equation (2), we have

) > vol (Lu(Z) N L\(L, N L)) =

ke[l(vo),r] [u]e(L(Z)NL)\Xk

vol (LNT)©\L) ) > WL (1) - (25)

s€[0,t] [u]€(L(Z)NL)\XsNAPrim

By Theorem 16 (2) and Equation (24), there exist ¢, > 0 such that as ¢ — o0, the
quantity (25) is equal to

" e(n72)t +0 (e(n7275)t) _ g(voc)n72 2 +0 (Tn7275) )
Note that 3= ciming1,e(v0)}max(1,6w0)}] 2ofule@@nongy, Vol (Lu(Z) N L)\(Ly N L)) is finite.
This concludes the proof of Theorem 2. O

Remarks (1) If n > 6, since ¢ is isotropic over Q and the restriction of ¢ to the kernel of
¢ is anisotropic over Q, then the signature of ¢ over Ris (1,n — 1) or (n — 1,1), and L(R)
is compact (see the above picture on the right); hence L(Z) is finite, and our result allows
to count integral points on the quadratic hypersurface ¢~1(0) (see the references given in
the introduction for related works).

(2) If n > 4, then we have a result similar to Theorem 2 where we consider all the
integral points and not only the primitive ones: under the other assumptions of Theorem
2 and with ¢ as above, we have, for every r > 1 with r» — o0,

> > vol ((Lu(2) N L)\(Ly N L))
kellr]  [ELE@INI\ (@ ()N (k)nzn)
c C(’I’L B 2) n—2 n—2—9
0(vo)"2 e+ 0 (T ) :

The proof is similar to the one at the end of Section 3.1. For every s € R and p € N— {0},
we denote by Agp ) the set of integral points of X whose greatest common divisor of their
coefficients is p. We note that by Lemma 21 (2), the map from A&p) to Agl_)lnp defined by

T % is a bijection such that L% = L, for every x € Aé”’. Hence with
NP =y vl (Lu(Z) N L\(Lu(R) N 1))
[We@@)nL)\AP
we have Ns(p) = Ns(i)lnp and

> vol ((Ly(Z) N L)\(L, N L)) = i@@ 7

[ule(@(Z)NL)\(g~ (0)ne=1 (k)NZ™) p=1
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and one concludes as in the end of Section 3.1.
When n = 3, the same argument gives

Z Z vol (Lu(Z) N D)\(L, N L)) =

ke(lr]  [u]e(L(Z)NL)\(¢g~ 1 (0)ne—1(k)NZ™)

c
o) rlogr+O(r) .

3.3 Counting inequivalent integral points of given norm in central divi-
sion algebras

Let n > 2, let D be a central simple algebra over Q of dimension n?, let N : D — Q be its
reduced norm, and let & be an order in D (that is, a finitely generated Z-submodule of D,
generating D as a Q-vector space, which is a unitary subring). We refer for instance to [Rei]
and [PR, Chap. I, §1.4]) for generalities. The aim of this section is to use our main result
to deduce asymptotic counting results of elements of &' (modulo units) of given norm.

Theorem 22 If D is a division algebra over Q, then there exist ¢ = ¢(D,0) > 0 and
d =0(D) > 0 such that, for every r > 1 with r — +o0,

Card ﬁX\{(L' el : 1< ’N((L‘)’ < 71} — CT”(l—i—O(r*‘;)) .

Proof. In order to apply Theorem 3, let us first define the objects appearing in its
statement.

Let 'V be the vector space over Q such that V(K) = D ®g K for every characteristic
zero field, with the integral structure such that A = V(Z) = &, which is (for the extended
multiplication) a central simple algebra over C. Let D' be the group of elements of
(reduced) norm +1 in V.

We take G = SL(V) (which is connected, simply connected, semisimple, defined over
@, hence reductive without nontrivial Q-characters) and p the inclusion of G in GL(V)
(which is an irreducible rational representation). To simplify the notation, we denote
p(g)v = gv for every g € G and v € V.

Let L be the algebraic subgroup of G which is the image of D! into G by the (left)
regular representation d — {v — dv}. Note that the linear algebraic groups L and D' are
defined over Q and are isomorphic by this representation. We have

L(Z)=D'no =0*. (26)

We take vy € V to be the identity element in D. The stabiliser of the line Cvg in G is a
(maximal) parabolic subgroup P of G defined over Q. We note that dim(P) = dim(D)? —
dim(D) — 1 and dim(L) = dim(D) — 1. We have a relative Langlands decomposition
P = AMU with MU the stabiliser of vy in G, and we may write A(R)y = (as)ser such
that asvg = e%vo. An easy computation gives

A = logdet(Aday)y=n>0. (27)
Let us now check that the hypotheses of Theorem 3 are satisfied by these objects.
We claim that the group L N P is finite. The action of this group on vy defines a

Q-character of LN P. Since L ~ D! is anisotropic over Q (see for instance [PR, Chap. II,
§2.3]), this character must be trivial on (LNP)g, and (LNP)gvg = vg. Since Staby,(vg) =
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{e}, it follows that (L N P)y = {e}, which proves the claim. Comparing dimensions, we
deduce that LP is Zariski-open in G.
For every s € R, we have

X, = Lagvg = enLyy = en D' . (28)
Hence X, is Zariski-closed in V.

To conclude the proof of Theorem 22, we relate the two counting functions in the
statements of Theorem 22 and Theorem 3.

Since L acts simply transitively on the orbit of vg, the Siegel weights are constant, equal

to m. For every k € N — {0}, denote by &) the subset of nonzero elements of

whose greatest common divisor of their coefficients in a Z-basis of ¢ is k. In particular,

since the norm is a homogeneous polynomial of degree n and by Equation (28), we have
X, NAP™ = {2 0 . N(z) =€} .

Note that the map x + ¥ is a bijection from 0®) to 6V Hence, using Equation (26) and
Theorem 3, there exist § > 0, that we may assume to be in |0, 1[, and ¢ > 0 such that, as
r>1and r — +o0,

+o0
Card gx\{z € 0 : 1 <|N(z)| <r} = ZCard oz € o®) . 1< |N(z)| <r}
k=1
+o0 r
=Y Card g\ {z € 0 : 1< |N(z)| < )
k=1

“+oo
=Y Y Card (L@)\(X, N AP
k=1

Ogsglogk%
= r r\—5
=Y ¢ (Z)"(1+0(H)
k=1
= ¢ ((n?) (1 + O(r_‘s)) .

This ends the proof of Theorem 22. O
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