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Abstract. Let C be a locally convex closed subset of a negatively curved Riemannian
manifold M . We define the skinning measure σC on the outer unit normal bundle to C in
M by pulling back the Patterson–Sullivan measures at infinity, and give a finiteness result
for σC , generalizing the work of Oh and Shah, with different methods. We prove that the
skinning measures, when finite, of the equidistant hypersurfaces to C equidistribute to the
Bowen–Margulis measure mBM on T 1 M , assuming only that mBM is finite and mixing for
the geodesic flow. Under additional assumptions on the rate of mixing, we give a control
on the rate of equidistribution.

1. Introduction
Let M be a complete connected Riemannian manifold with sectional curvature at most
−1. For any proper non-empty properly immersed locally convex closed subset C of M
and t > 0, let 6t be the (Lipschitz) submanifold of T 1 M that consists of images by the
geodesic flow at time t of the outward-pointing unit normal vectors to the boundary of C
(see §2 for precise definitions).

If M has constant curvature and finite volume and if C is an immersed totally geodesic
submanifold of finite volume, we showed in [PP1, Theorem 2.2] that the Riemannian
measure of 6t equidistributes to the Liouville measure of T 1 M (which is the Riemannian
measure of the Sasaki metric of T 1 M). This result also follows from the equidistribution
result of Eskin and McMullen [EM, Theorem 1.2] in affine symmetric spaces;
see [PP2, §4] for details.

In this paper, we generalize the above result when C is no longer required to be totally
geodesic and when M has variable curvature. Though the methods of locally homogeneous
spaces as in [EM] are then completely inapplicable, the strategy of [PP1] remains helpful.
Both the measures on T 1 M and on 6t need to be adapted to variable curvature.
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The measure on T 1 M we will consider (when M is non-elementary and its fundamental
group has finite critical exponent) is the well-known Bowen–Margulis measure mBM

(see [Rob2] for a nice presentation). It coincides with the Liouville measure (up to
a multiplicative constant) when M is locally symmetric with finite volume (see, for
instance, [PP2, §7] when M is real hyperbolic). It is, when finite and normalized,
the unique probability measure of maximal entropy for the geodesic flow on T 1 M
(see [Mar2, Bowe] when M is compact, and [OP] under the sole assumption that mBM

is finite). The Bowen–Margulis measure is finite, for instance, when M is compact, or
when M is geometrically finite and the critical exponent of its fundamental group is strictly
bigger than the critical exponents of its parabolic subgroups (as it is the case when M is
locally symmetric), by [DOP]. By [Bab, Theorem 1], the Bowen–Margulis measure, when
finite, is mixing if the length spectrum of M is not contained in a discrete subgroup of R.
By [Dal1, Dal2], this condition holds, for instance, when M is compact or two-dimensional
or locally symmetric, or if its fundamental group contains a parabolic element.

The measure on 6t we will consider is the skinning measure that we introduce in
this generality in this paper (see §3), as an appropriate pushforward to 6t of the natural
measures at infinity of the universal cover of M . It scales by eδt , where δ is the
critical exponent of M , under the geodesic flow map from 6s to 6s+t . When C is
an immersed horoball, 6t is a leaf of the strong unstable foliation of the geodesic flow
on T 1 M , and the skinning measure on 6t is simply the conditional measure of the
Bowen–Margulis measure on this leaf (see, for instance, [Mar3, Rob2]). When M is
geometrically finite with constant curvature, and when C is an immersed ball, horoball
or totally geodesic submanifold, the skinning measure on 6t has been introduced by Oh
and Shah [OS1, OS2], who coined the term, with beautiful applications to circle packings,
and coincides with the Riemannian measure up to a multiplicative constant (see [PP2, §7]
for a computation of the constant) when, furthermore, M has finite volume. When the
intersection of 6t with the non-wandering set of the geodesic flow of T 1 M is compact, the
skinning measure is finite.

When M is geometrically finite, generalizing (and giving an alternative proof of)
Theorem 6.4 in [OS2] which assumes the curvature to be constant, we give in Theorem
10 a sharp criterion for the finiteness of the skinning measure, by studying its decay in
the cusps of M . This decay is analogous to the decay of the Bowen–Margulis measure in
the cusps, which was first studied by Sullivan [Sul], who called it the fluctuating density
property (see also [SV] and [HP2, Theorem 4.1]). The criterion, as in the case of the
Bowen–Margulis measure in [DOP], is a separation property of the critical exponents.

The following theorem is a simplified version of the main result of this paper. In the
more general result, Theorem 19 in §5, we replace 6t by gt�, where � is an open set of
outward-pointing unit normal vectors to ∂C with finite non-zero skinning measure.

THEOREM 1. Let M be a non-elementary complete Riemannian manifold with pinched
negative sectional curvature. Assume that the Bowen–Margulis measure on T 1 M is finite
and mixing for the geodesic flow. Let C be a proper non-empty properly immersed locally
convex closed subset of M with finite non-zero skinning measure. Then as t tends to +∞,
the skinning measure on 6t equidistributes to the Bowen–Margulis measure on T 1 M.
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When C is an immersed ball or horoball, this result is due to Margulis when M has finite
volume (see, for example, [Mar3]), and to Babillot [Bab, Theorem 3] and Roblin [Rob2]
under the weak assumptions of Theorem 1. Many ideas of our proof go back to [Mar1].
See also [Sch, Mark, KO, Kim] for other results on the equidistribution of horospheres
and applications.

For instance, it follows from Theorem 1 that when M is a compact Riemannian manifold
with negative sectional curvature, when C is the image in M of the convex hull of the limit
set of an infinite index convex-cocompact subgroup of the covering group of a universal
cover of M , the skinning measure on 6t equidistributes to the Bowen–Margulis measure
on T 1 M . But we make no compactness assumption on C in our theorem, only requiring the
finiteness of the measures under consideration. The main tool is a general disintegration
result of the Bowen–Margulis measure over any skinning measure (see Proposition 8).

We also give (see §6) estimates on the rate of equidistribution in the previous result,
under assumptions on the rate of mixing of the geodesic flow. When M is locally
symmetric and arithmetic, the rate of mixing of the geodesic flow for sufficiently smooth
functions is exponential, by the work of Kleinbock and Margulis [KM1, Theorem 2.4.3]
and Clozel [Clo, Theorem 3.1]. When the curvature is variable, the appropriate regularity
is the Hölder one. The rate of mixing of the geodesic flow for Hölder-continuous functions
is exponential if M is compact and has dimension two by the work of Dolgopyat [Dol]
or if M is compact and locally symmetric (without the arithmetic assumption) by [Sto,
Corollary 1.5] (see also [Liv] when M is compact; the result stated there for the Liouville
measure should extend to the Bowen–Margulis measure, as has been done in [GLP,
Corollary 2.7] when the sectional curvature of M is 1

9 -pinched).

THEOREM 2. Under the hypotheses of Theorem 1, in any of the above cases when the
geodesic flow of T 1 M is mixing with exponential speed, the skinning measure σt of 6t

equidistributes to the Bowen–Margulis measure with exponential speed.

More precisely, in the Hölder case (see §6 for precise definitions), if M is compact and
if the geodesic flow on T 1 M is mixing with exponential speed for the Hölder regularity,
then there exist α ∈ ]0, 1[ and τ > 0 such that for every α-Hölder-continuous function
ψ : T 1 M→ R with α-Hölder norm ‖ψ‖α , as t tends to +∞,

1
‖σt‖

∫
6t

ψ dσt =
1

‖mBM‖

∫
T 1 M

ψ dmBM + O(e−τ t
‖ψ‖α).

In [PP3], we will use the tools introduced in this paper to study counting results of
common perpendicular arcs between locally convex subsets in variable negative curvature.

2. Geometry, dynamics and convexity in negative curvature
In this section we briefly review the required background on negatively curved Riemannian
manifolds, seen as locally CAT(−κ) spaces, using, for instance, [BH] as a general
reference, and their unit tangent bundles and geodesic flows. We introduce the geometric
fibred neighbourhoods of the outer unit normal bundle of the boundary of a convex subset
which will be used in what follows.
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2.1. Geometry and dynamics. Let M̃ be a complete simply connected Riemannian
manifold with sectional curvature bounded above by −1, and let x0 ∈ M̃ . Let 0 be a
discrete, non-elementary group of isometries of M̃ , and let us denote the quotient space of
M̃ under 0 by M = 0\M̃ . We denote by ∂∞M̃ the boundary at infinity of M̃ (with the
Hölder structure defined by the visual distance recalled below), by 30 the limit set of 0
and by C30 the convex hull in M̃ of 30. For every ε > 0, we denote by Nε A the closed
ε-neighbourhood of a subset A of M̃ , and by convention N0 A = A.

For any point ξ ∈ ∂∞M̃ , let ρξ : [0,+∞[→ M̃ be the geodesic ray with origin x0 and
point at infinity ξ . The Busemann cocycle of M̃ is the map β : M̃ × M̃ × ∂∞M̃→ R
defined by

(x, y, ξ) 7→ βξ (x, y)= lim
t→+∞

d(ρξ (t), x)− d(ρξ (t), y).

The above limit exists and is independent of x0. If y is a point in the (image of the) geodesic
ray from x to ξ , then βξ (x, y)= d(x, y). The Busemann cocycle satisfies

βγ ξ (γ x, γ y)= βξ (x, y) and βξ (x, y)+ βξ (y, z)= βξ (x, z), (1)

for all ξ ∈ ∂∞M̃ , all x, y, z ∈ M̃ and every isometry γ of M̃ . The visual distance dx0

(based at x0) on ∂∞M̃ is the distance defined by

dx0(ξ, η)= e−
1
2 (βξ (x0,y)+βη(x0,y)) (2)

for any y in the geodesic line between ξ and η if ξ 6= η, and dx0(ξ, η)= 0 if ξ = η.
The unit tangent bundle T 1 N of a complete Riemannian manifold N can be identified

with the set of locally geodesic lines ` : R→ N in N , endowed with the compact-open
topology. More precisely, we identify a locally geodesic line ` and its (unit) tangent vector
˙̀(0) at time t = 0 and, conversely, any v ∈ T 1 N is the tangent vector at time t = 0 of a
unique locally geodesic line. We will use this identification without mention in this paper.
We denote by π : T 1 N → N the base point projection, which is given by π(`)= `(0).

The geodesic flow on T 1 N is the dynamical system (gt )t∈R, where gt` (s)= `(s + t),
for all ` ∈ T 1 N and s, t ∈ R. The isometry group of M̃ acts on the space of geodesic lines
in M̃ by postcomposition, (γ, `) 7→ γ ◦ `, and this action commutes with the geodesic
flow.

When 0 acts on M̃ without fixed point, we have an identification 0\T 1 M̃ = T 1 M .
Even in the general case with torsion, we denote by T 1 M the quotient space 0\T 1 M̃ . We
use the notation (gt )t∈R also for the geodesic flow on T 1 M (induced by the geodesic flow
on T 1 M̃ by passing to the quotient).

We denote by ι : T 1 M̃→ T 1 M̃ the antipodal (flip) map v 7→ −v, and we again denote
by ι : T 1 M→ T 1 M its quotient map. We have ι ◦ gt

= g−t
◦ ι for all t ∈ R.

For every unit tangent vector v ∈ T 1 M̃ , let v− = v(−∞) and v+ = v(+∞) be the two
endpoints in the sphere at infinity of the geodesic line defined by v. Let ∂2

∞M̃ be the
subset of ∂∞M̃ × ∂∞M̃ which consists of pairs of distinct points at infinity. The Hopf
parametrization of T 1 M̃ is the identification of v ∈ T 1 M̃ with the triple (v−, v+, t) ∈
∂2
∞M̃ × R, where t is the signed (algebraic) distance of π(v) from the closest point pv,x0

to x0 on the (oriented) geodesic line defined by v. This map is a homeomorphism, the
geodesic flow acts by gs(v−, v+, t)= (v−, v+, t + s) and, for every isometry γ of M̃ ,
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the image of γ v is (γ v−, γ v+, t + tγ,v−,v+), where tγ,v−,v+ is the signed distance from
γ pv,x0 to pγ v,x0 . Furthermore, in these coordinates, the antipodal map ι is (v−, v+, t) 7→
(v+, v−,−t).

The strong stable manifold of v ∈ T 1 M̃ is

W ss(v)= {v′ ∈ T 1 M̃ : d(v(t), v′(t))→ 0 as t→+∞},

and its strong unstable manifold is

W su(v)= {v′ ∈ T 1 M̃ : d(v(t), v′(t))→ 0 as t→−∞}.

The union for t ∈ R of the images under gt of the strong stable manifold of v ∈ T 1 M̃ is the
stable manifold W s(v)=

⋃
t∈R gt W ss(v) of v, which consists of the elements v′ ∈ T 1 M̃

with v′+ = v+. Similarly, the union of the images under the geodesic flow at all times of
the strong unstable manifold of v is the unstable manifold W u(v) of v, which consists of
the elements v′ ∈ T 1 M̃ with v′− = v−.

The strong stable manifolds, stable manifolds, strong unstable manifolds and unstable
manifolds are the (smooth) leaves of (continuous) foliations, which are invariant under
the geodesic flow and the isometry group of M̃ ; they are denoted by W ss,W s,W su and
W u, respectively. These foliations are Hölder-continuous when M̃ has pinched negative
sectional curvature with bounded derivatives (see, for instance, [Bri], [PPS, §7.1]). The
maps from R×W ss(v) to W s(v) defined by (s, v′) 7→ gsv′ and from R×W su(v) to
W u(v) defined by (s, v′) 7→ gsv′ are smooth diffeomorphisms.

The images of the strong unstable and strong stable manifolds of v ∈ T 1 M̃ under
the base point projection, denoted by H−(v)= π(W su(v)) and H+(v)= π(W ss(v)), are
respectively called the unstable and stable horospheres of v, and are said to be centred at
v− and v+, respectively. The unstable horosphere of v coincides with the zero set of the
map x 7→ f−(x)= βv−(x, π(v)), and, similarly, the stable horosphere of v coincides with
the zero set of x 7→ f+(x)= βv+(x, π(v)). The corresponding sublevel sets HB−(v)=
f −1
− (]−∞, 0]) and HB+(v)= f −1

+ (]−∞, 0]) are called the horoballs bounded by H−(v)
and H+(v). Horoballs are (strictly) convex subsets of M̃ .

For every w ∈ T 1 M̃ , let dW ss(w) be the Hamenstädt distance on the strong stable leaf
of w, defined as follows (see [Ham], [HP1, Appendix], as well as [HP3, §2.2] for a
generalization when the horosphere H+(w) is replaced by the boundary of any non-empty
closed convex subset): for all v, v′ ∈W ss(w),

dW ss(w)(v, v
′)= lim

t→+∞
e

1
2 d(v(−t),v′(−t))−t .

1314 J. Parkkonen and F. Paulin



This limit exists, and the Hamenstädt distance is a distance inducing the original
topology on W ss(w). For all v, v′ ∈W ss(w) and for every isometry γ of M̃ , we have
dW ss(γw)(γ v, γ v

′)= dW ss(w)(v, v
′). By the triangle inequality, for all v, v′ ∈W ss(w),

dW ss(w)(v, v
′)≤ e

1
2 d(π(v), π(v′)). (3)

For all w ∈ T 1 M̃ , s ∈ R and v, v′ ∈W ss(w),

dW ss(gsw)(g
sv, gsv′)= e−sdW ss(w)(v, v

′). (4)

The usual distance d on T 1 M̃ is defined, for all v, v′ ∈ T 1 M̃ , by

d(v, v′)=
1
√
π

∫
R

d(v(t), v′(t))e−t2
dt.

This distance is invariant under the group of isometries of M̃ and the antipodal map. Also
note that, for all s ∈ R and v ∈ T 1 M̃ ,

d(gsv, v)= |s|. (5)

LEMMA 3. There exists c > 0 such that, for all w ∈ T 1 M̃ and v, v′ ∈W ss(w),

d(v, v′)≤ c dW ss(w)(v, v
′).

Proof. We may assume that v 6= v′. By the convexity properties of the distance in M̃ ,
the map from R to R defined by t 7→ d(v(t), v′(t)) is decreasing, with image ]0,+∞[.
Let S ∈ R be such that d(v(S), v′(S))= 1. For every t ≤ S, let p and p′ be the
closest point projections of v(S) and v′(S) on the geodesic segment [v(t), v′(t)]. We
have d(p, v(S)), d(p′, v′(S))≤ 1 by comparison. Hence, by convexity and the triangle
inequality,

d(v(t), v′(t)) ≥ d(v(t), p)+ d(p′, v′(t))

≥ d(v(t), v(S))− 1+ d(v′(t), v′(S))− 1= 2(S − t − 1).

Thus, by the definition of the Hamenstädt distance dW ss(w),

dW ss(w)(v, v
′)≥ eS−1. (6)

By the triangle inequality, if t ≤ S, then

d(v(t), v′(t))≤ d(v(t), v(S))+ d(v(S), v′(S))+ d(v′(S), v′(t))= 2(S − t)+ 1.

Since M̃ is CAT(−1), if t ≥ S, we have by comparison

d(v(t), v′(t))≤ eS−t d(v(S), v′(S))= eS−t .

Therefore, by the definition of the distance d on T 1 M̃ ,

d(v, v′)≤
∫ S

−∞

(2(S − t)+ 1)e−t2
dt +

∫
+∞

S
eS−t e−t2

dt = O(eS).

The result thus follows from equation (6). 2

2.2. Convexity. Let C be a non-empty closed convex subset of M̃ . We denote by ∂C
the boundary of C in M̃ and by ∂∞C its set of points at infinity (the set of endpoints of
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geodesic rays contained in C). Let PC : M̃ ∪ (∂∞M̃ − ∂∞C)→ C be the (continuous)
closest point map: if ξ ∈ ∂∞M̃ − ∂∞C , then PC (ξ) is defined to be the unique point in C
that minimizes the map x 7→ βξ (x, x0) from C to R. For every isometry γ of M̃ , we have
PγC ◦ γ = γ ◦ PC .

Let ∂1
+C be the subset of T 1 M̃ consisting of the geodesic lines v : R→ M̃ with v(0) ∈

∂C , v+ /∈ ∂∞C and PC (v+)= v(0). Note that π(∂1
+C)= ∂C and that for every isometry

γ of M̃ , we have ∂1
+(γC)= γ ∂1

+C . In particular, ∂1
+C is invariant under the isometries of

M̃ that preserve C . When C = HB−(v) is the unstable horoball of v ∈ T 1 M̃ , then ∂1
+C is

the strong unstable manifold W su(v) of v, and similarly, W ss(v)= ι ∂1
+HB+(v).

The restriction of PC to ∂∞M̃ − ∂∞C (which is not necessarily injective) has a natural
lift to a homeomorphism

νPC : ∂∞M̃ − ∂∞C→ ∂1
+C

such that π ◦ νPC = PC . The inverse of νPC is the endpoint map v 7→ v+ from ∂1
+C to

∂∞M̃ − ∂∞C . In particular, ∂1
+C is a topological submanifold of T 1 M̃ . For every s ≥ 0,

the geodesic flow induces a homeomorphism gs
: ∂1
+C→ ∂1

+NsC . For every isometry γ
of M̃ , we have νPγC ◦ γ = γ ◦ νPC . We refer for instance to [Wal] for the notion of C1,1

and Lipschitz manifolds. When C has non-empty interior and C1,1 boundary, then ∂1
+C is

the Lipschitz submanifold of T 1 M̃ consisting of the outward-pointing unit normal vectors
to ∂C , and the map PC itself is a homeomorphism (between ∂∞M̃ − ∂∞C and ∂C). This
holds, for instance, by [Wal], when C is the closed η-neighbourhood of any non-empty
convex subset of M̃ with η > 0.

We now define a canonical fundamental system of neighbourhoods, of dynamical origin,
of these outer unit normal bundles of boundaries of convex sets. Let

UC = {v ∈ T 1 M̃ : v+ /∈ ∂∞C}. (7)

Note that UC is an open subset of T 1 M̃ , invariant under the geodesic flow, which is empty
if and only if C = M̃ , and is dense in T 1 M̃ if the interior of ∂∞C in ∂∞M̃ is empty. We
have UγC = γUC for every isometry γ of M̃ and, in particular, UC is invariant under the
isometries of M̃ preserving C .

Define a map fC :UC → ∂1
+C , as the composition of the map from UC onto ∂∞M̃ −

∂∞C sending v to v+ and the homeomorphism νPC from ∂∞M̃ − ∂∞C to ∂1
+C . The map

fC is a fibration as the composition of such a map with the homeomorphism νPC . The
fibre of w ∈ ∂1

+C is precisely its stable leaf W s(w)= {v ∈ T 1 M̃ : v+ = w+}. In particular,
UC is the disjoint union of the leaves W s(w) for w ∈ ∂1

+C .

C
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For every isometry γ of M̃ , we have fγC ◦ γ = γ ◦ fC . We have fNt C = gt
◦ fC for

all t ≥ 0, and fC ◦ gt
= fC for all t ∈ R. In particular, the fibration fC is invariant under

the geodesic flow.
Let η, R > 0. For all w ∈ T 1 M , let

Vw,R = {v
′
∈W ss(w) : dW ss(w)(v

′, w) < R} (8)

be the open ball of radius R centred at w for the Hamenstädt distance in the strong stable
leaf of w, and

Vw,η,R = {v ∈W s(w) : ∃v′ ∈ Vw,R, ∃s ∈ ]−η, η[, gsv′ = v}

=

⋃
s∈ ]−η,η[

gs Vw,R =
⋃

s∈ ]−η,η[

Vgsw,e−s R .

The latter equality follows from the fact that, by equation (4), gs Vw,R = Vgsw,e−s R for
every s ∈ R. For every isometry γ of M̃ , we have γ Vw,R = Vγw,R and γ Vw,η,R = Vγw,η,R .
The map from ]−η, η[ ×Vw,R to Vw,η,R defined by (s, v′) 7→ gsv′ is a homeomorphism.

For every subset � of ∂1
+C , let

Vη,R(�)=
⋃
w∈�

Vw,η,R,

which is an open neighbourhood of � in T 1 M̃ if � is open in ∂1
+C . For every isometry γ

of M̃ and every t ≥ 0, we have γVη,R(�)= Vη,R(γ�) and

gtVη,R(�)= Vη,e−t R(g
t�).

C

These thickenings Vη,R(�) are non-decreasing in η and in R and their intersection as
η, R range in ]0,+∞[ is �. Furthermore,⋃

η>0
R>0

Vη,R(∂
1
+C)=UC .

The restriction of fC to Vη,R(�) is a fibration over �, with fibre of w ∈� the open subset
Vw,η,R of the stable leaf of w.

3. Patterson, Bowen–Margulis and skinning measures
Let M̃, 0, x0, M and T 1 M be as at the beginning of §2. In this section, we first review
some background material on the measures associated with negatively curved manifolds
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(for which we refer to [Rob2]). We then define the skinning measure associated to any non-
empty closed convex subset, generalizing the construction of [OS1, OS2], and we prove
some basic properties of these measures, as well as a crucial disintegration result. Given
a topological space X , we denote by Cc(X) the space of real-valued continuous functions
on X with compact support.

Let r > 0. A family (µx )x∈M̃ of non-zero finite measures on ∂∞M̃ whose support is
the limit set30 is a Patterson density of dimension r for the group 0 if it is 0-equivariant,
that is, if it satisfies

γ∗µx = µγ x (9)

for all γ ∈ 0 and x ∈ M̃ , and if the pairwise Radon–Nikodym derivatives of the measures
µx for x ∈ M̃ exist and satisfy

dµx

dµy
(ξ)= e−rβξ (x,y) (10)

for all x, y ∈ M̃ and ξ ∈ ∂∞M̃ .
The critical exponent of 0 is

δ0 = lim
n→+∞

1
n

log Card{γ ∈ 0 : d(x0, γ x0)≤ n}.

The above limit exists and is positive (see [Rob1]), and the critical exponent is independent
of the base point x0 used in its definition. We assume that δ0 is finite, which is the
case, in particular, if M has a finite lower bound on its sectional curvatures (see, for
instance, [Bowd]). We say that the group 0 is of divergence type if its Poincaré series
P0(s)=

∑
γ∈0 e−sd(x0,γ x0) diverges at s = δ0 .

Let (µx )x∈M̃ be a Patterson density of dimension δ0 for 0. The Bowen–Margulis
measure m̃BM for 0 on T 1 M̃ is defined, using the Hopf parametrization, by

dm̃BM(v) =
dµx0(v−)dµx0(v+) dt

dx0(v−, v+)
2δ0

= e−δ0(βv− (π(v),x0)+βv+ (π(v),x0))dµx0(v−)dµx0(v+) dt.

The Bowen–Margulis measure is independent of the base point x0, and its support is (in
the Hopf parametrization) (30 ×30 −1)× R, where1 is the diagonal in30 ×30. It
is invariant under the geodesic flow and the action of 0, and thus it defines a measure mBM

on T 1 M , invariant under the quotient geodesic flow. When the Bowen–Margulis measure
mBM is finite, there exists a unique (up to a multiplicative constant) Patterson density of
dimension δ0 , and the set of points in T 1 M̃ fixed by a non-trivial element of 0 has measure
0 for m̃BM; see, for instance, [Rob2, p. 19]. Denoting the total mass of a measure m by
‖m‖, the probability measure mBM/‖mBM‖ is then uniquely defined. We will often make
the assumption that mBM is finite; see the introduction for examples.

Let C be a non-empty proper closed convex subset of M̃ . We define the skinning
measure σ̃C of 0 on ∂1

+C , using the homeomorphismw 7→ w+ from ∂1
+C to ∂∞M̃ − ∂∞C ,

by

dσ̃C (w) = e−δ0βw(+∞)(π(w),x0) d(νPC )∗(µx0 |∂∞ M̃−∂∞C )(w)

= e−δ0βw+ (PC (w+),x0) dµx0(w+) . (11)

We will also consider σ̃C as a measure on T 1 M̃ with support contained in ∂1
+C .
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The skinning measure was first defined by Oh and Shah [OS2, §1.4] for the outer unit
normal bundles of spheres, horospheres and totally geodesic subspaces in real hyperbolic
spaces; see also [HP3, Lemma 4.3] for a closely related measure. The terminology
comes from McMullen’s proof of the contraction of the skinning map (capturing boundary
information for surface subgroups of 3-manifold groups) introduced by Thurston to prove
his hyperbolization theorem.

When C is a singleton {x}, we immediately have

dσ̃C (w)= dµx (w+).

Let w ∈ T 1 M̃ . When C = HB−(w) is the unstable horoball of w, the measure

µsu
w = σ̃HB−(w)

is the well-known conditional measure of the Bowen–Margulis measure on the strong
unstable leaf W su(w) of w (see, for instance, [Mar3, Rob2]). Similarly, we denote by

µss
w = ι∗(̃σHB+(w))= ι∗(µ

su
ιw)

the conditional measure of the Bowen–Margulis measure on the strong stable leaf W ss(w)

of w. These two measures are independent of the element w of a given strong unstable
leaf and given strong stable leaf, respectively. For future use, using the homeomorphism
v 7→ v− from W ss(w) to ∂∞M̃ − {w+}, we have

dµss
w(v)= e−δ0βv− (PHB+(w)(v−),x0) dµx0(v−). (12)

We also define the conditional measure of the Bowen–Margulis measure on the stable leaf
W s(w) of w, using the homeomorphism (v′, t) 7→ v = gtv′ from W ss(w)× R to W s(w),
by

dµs
w(v)= e−δ0 t dµss

w(v
′) dt. (13)

See, for instance, assertion (iii) of the next proposition for an explanation of the
factor e−δ0 t . In this paper, we will not need the similarly defined measure dµu

w(v)=

eδ0 t dµsu
w (v
′) dt on the unstable leaf W u(w) of w.

The following propositions collect some basic properties of the skinning measures.

PROPOSITION 4. Let C be a non-empty proper closed convex subset of M̃, and let σ̃C be
the skinning measure of 0 on ∂1

+C.
(i) The skinning measure σ̃C is independent of the base point x0.
(ii) For all γ ∈ 0, we have γ∗σ̃C = σ̃γC . In particular, the measure σ̃C is invariant under

the stabilizer of C in 0.
(iii) For all s ≥ 0 and w ∈ ∂1

+C,

(gs)∗ σ̃C = e−δ0s σ̃NsC .

(iv) The support of σ̃C is

{w ∈ ∂1
+C : w+ ∈30} = νPC (30 −30 ∩ ∂∞C).

In particular, σ̃C is the zero measure if and only if 30 is contained in ∂∞C.
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It follows from (ii) that, for all γ ∈ 0,

γ∗µ
su
w = µ

su
γw, γ∗µ

ss
w = µ

ss
γw, γ∗µ

s
w = µ

s
γw. (14)

It follows from (iii) and from the equality ι ◦ gt
= g−t

◦ ι that, for all t ∈ R,

(gt )∗µ
su
w = e−δ0 tµsu

gtw, (g−t )∗µ
ss
w = e−δ0 tµss

g−tw
, (gt )∗µ

s
w = eδ0 tµs

w. (15)

Proof. Assertion (i) follows from equation (10) with r = δ0 and the second part of
equation (1). Assertion (ii) follows from equation (9), the first part of equation (1), and
assertion (i).

To prove assertion (iii), we note that, since (gsw)+ = w+ and by the cocycle
property (1),

dσ̃NsC (g
sw) = e−δ0βw+ (π(g

sw),x0) dµx0(w+)= e−δ0βw+ (π(g
sw),π(w)) dσ̃C (w)

= eδ0s dσ̃C (w).

Assertion (iv) follows from the fact that the support of any Patterson measure is the limit
set of 0. 2

Given two non-empty closed convex subsets C and C ′ of M̃ , let �C,C ′ = ∂∞M̃ −
(∂∞C ∪ ∂∞C ′) and let

hC,C ′ : νPC (�C,C ′)→ νPC ′(�C,C ′)

be the restriction of νPC ′ ◦ νP−1
C to νPC (�C,C ′). It is a homeomorphism between open

subsets of ∂1
+C and ∂1

+C ′, associating to the element w in the domain the unique element
w′ in the range with w′+ = w+.

PROPOSITION 5. Let C and C ′ be non-empty proper closed convex subsets of M̃ and let
h = hC,C ′ . The measures h∗σ̃C and σ̃C ′ on νPC ′(�C,C ′) are absolutely continuous with
respect to one another, with

dh∗σ̃C

dσ̃C ′
(w′)= e−δ0βw+ (π(w),π(w

′)),

for all w ∈ νPC (�C,C ′) and w′ = h(w).

Proof. Since w′+ = w+ and by the cocycle property (1), we have

dσ̃C ′(w
′)= e

−δ0βw′
+
(PC ′ (w

′
+),x0) dµx0(w

′
+)= e−δ0βw+ (PC ′ (w

′
+),PC (w+)) dσ̃C (w).

Since w = νPC (w+) and π ◦ νPC = PC , and similarly for w′, the result follows from the
anti-symmetry of the Busemann cocycle. 2

We endow the set Convex(M̃) of non-empty closed proper convex subsets of M̃ with the
(metrizable, locally compact) topology of the Hausdorff convergence on compact subsets:
a sequence (Ci )i∈N of closed subsets of M̃ converges to a closed subset C of M̃ if and
only if, for every compact subset K in M̃ , the Hausdorff distance between (Ci ∩ K ) ∪ c K
and (C ∩ K ) ∪ c K tends to 0. Note that being convex is indeed a closed condition. We
endow the set Measure(T 1 M̃) of non-negative regular Borel measures on T 1 M̃ with the
(metrizable, locally compact) topology of the weak-star convergence: a sequence (µi )i∈N
of such measures on M̃ converges to such a measure µ on M̃ if and only if, for every

1320 J. Parkkonen and F. Paulin



compactly supported continuous function f on M̃ , the sequence (µi ( f ))i∈N converges
to µ( f ).

PROPOSITION 6. The map from Convex(M̃) to Measure(T 1 M̃) which associates to C its
skinning measure σ̃C is continuous.

In particular, as the horoballs HB+(w) and HB−(w) depend continuously onw ∈ T 1 M̃ ,
the measures µsu

w , µss
w and µs

w depend continuously on w.

Proof. Let (Ci )i∈N be a sequence in Convex(M̃) which converges to C ∈ Convex(M̃) for

the Hausdorff convergence on compact subsets of M̃ , and let us prove that σ̃Ci

∗

⇀ σ̃C .
The sequence (∂1

+Ci )i∈N of closed subsets of T 1 M̃ converges to ∂1
+C for the Hausdorff

convergence on compact subsets of T 1 M̃ . The sequence (∂∞M̃ − ∂∞Ci )i∈N of open
subsets of ∂∞M̃ converges to ∂∞M̃ − ∂∞C for the Carathéodory convergence (that is, for
the Hausdorff convergence of their complements). Hence, the sequences of maps (PCi )i∈N
and (νPCi )i∈N converge to PC and νPC respectively for the uniform convergence of maps
on compact subsets ∂∞M̃ − ∂∞C . Given two compact metric spaces X and Y and a finite
Borel measure µ on X , the pushforward map f 7→ f∗µ from the space of continuous maps
from X to Y with the uniform topology to the space of finite Borel measures on Y with
the weak-star topology is continuous. The claim follows from these observations, since
the skinning measure on C is a multiple by a map depending continuously on C of the
pushforward by a map depending continuously on C of the fixed measure µx0 . 2

The following result will be useful in §5. Recall (see equation (8)) that Vw,R is the
open ball of radius R and centre w in the strong stable leaf W ss(w) of w ∈ T 1 M̃ for the
Hamenstädt distance.

LEMMA 7. For every non-empty proper closed convex subset C in M̃, there exists R0 > 0
such that, for every R ≥ R0 and every w ∈ ∂1

+C, we have µss
w(Vw,R) > 0. If ∂∞C ∩

30 6= ∅, we may take R0 = 2.

Proof. For all w ∈ ∂1
+C and x ∈ C ∪ ∂∞C , by a standard comparison and convexity

argument in the CAT(−1)-space M̃ applied to the geodesic triangle with vertices
π(w), w+, x , the point π(w) is at distance at most 2 log((1+

√
5)/2) from the intersection

between the stable horosphere H+(w) and the geodesic ray or line between x and w+.
Hence, by equation (3), for every ξ ′ ∈ ∂∞C ,

dW ss(w)(w, ινPW ss(w)(ξ
′))≤

1+
√

5
2

.

C
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Thus, if ∂∞C ∩30 6= ∅, then we may take R0 = 2> (1+
√

5)/2, since by
Proposition 4(iv), the support of µss

w is ι νPHB+(w)(30 −30 ∩ {w
+
}).

Consider now the case ∂∞C ∩30 = ∅. For a contradiction, assume that, for all
n ∈ N, there exists wn ∈ ∂

1
+C such that µss

wn
(Vwn ,n)= 0. Assume first that (wn)n∈N has a

convergent subsequence with limit w ∈ ∂1
+C . Since the measure µss

v depends continuously
on v, for every compact subset K of W ss(w), we have µss

w(K )= 0. By Proposition 4(iv)
and by equation (12), the support of the Patterson measure µx0 , which is the limit set of 0,
is contained in {w+}. This is impossible, since 0 is non-elementary.

In the remaining case, the points π(wn) in C converge, up to extracting a subsequence,
to a point ξ in ∂∞C . By definition of the map νPC and of ∂1

+C , the points at infinity (wn)+

converge to ξ . For every η in ∂∞M̃ different from ξ , the geodesic lines from η to (wn)+

converge to the geodesic line from η to ξ .
By convexity, if n is big enough, the geodesic line ]η, (wn)+[ meets N1C , and hence

passes at distance at most 2 from π(wn). This implies (using equation (3) as above) that if
n is big enough, then there exists v ∈ Vwn ,n such that η = v−.

Since we assumed that µss
wn
(Vwn ,n)= 0 for all n ∈ N, Proposition 4(iv) implies that we

have η /∈30. Hence 30 is contained in {ξ}, a contradiction since 0 is non-elementary. 2

Let C be a non-empty closed convex subset of M̃ , and let UC be the open subset of
T 1 M̃ defined in equation (7). Note that UC has full Bowen–Margulis measure in T 1 M̃ if
the Patterson measure µx (∂∞C) of ∂∞C is equal to 0 (this being independent of x ∈ M̃),
by the quasi-product structure of m̃BM.

The following disintegration result of the Bowen–Margulis measure over the skinning
measure of C is the crucial tool for the equidistribution result in §5. When M̃ has constant
curvature and 0 is torsion-free and for special C , this result is implicit in [OS2].

PROPOSITION 8. Let C be a non-empty proper closed convex subset of M̃. The restriction
to UC of the Bowen–Margulis measure m̃BM disintegrates by the fibration fC :UC → ∂1

+C,
over the skinning measure σ̃C of C, with conditional measure eδ0βw+ (π(w),π(v)) dµs

w(v) on
the fibre f −1

C (w)=W s(w) of w ∈ ∂1
+C:

dm̃BM(v)=

∫
w∈∂1

+C
eδ0βw+ (π(w),π(v)) dµs

w(v) dσ̃C (w).

Proof. For every ϕ ∈ Cc(UC ), let Iϕ =
∫
v∈UC

ϕ(v) dm̃BM(v). By the definition of UC and
of the Bowen–Margulis measure in the Hopf parametrization, we have

Iϕ =
∫
v+∈ ∂∞ M̃−∂∞C

∫
v−∈ ∂∞ M̃−{v+}

∫
t∈R

ϕ(v)
dt dµx0(v−) dµx0(v+)

dx0(v−, v+)
2δ0

.
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For every v ∈UC , let w = fC (v)= νPC (v+) and let s ∈ R be such that v′ = g−sv

belongs to the strong stable leaf W ss(w) of w. Note that, with t the time parameter of
v in the Hopf parametrization, the number t − s depends only on v+ and v− = v′−.

C

s

Since the map from ∂1
+C to ∂∞M̃ − ∂∞C defined by w 7→ w+ and the map from

W ss(w) to ∂∞M̃ − {w+} defined by v′ 7→ v′− are homeomorphisms, we have

Iϕ =
∫
w∈ ∂1

+C

∫
v′∈W ss(w)

∫
s∈R

ϕ(gsv′)
ds dµx0(v

′
−) dµx0(w+)

dx0(v
′
−, w+)

2δ0
.

For every w ∈ ∂1
+C and v′ ∈W ss(w), we claim (explanations follow) that

dµx0(v
′
−) dµx0(w+)

dx0(v
′
−, w+)

2δ0
=

e
δ0βv′

−
(π(v′),x0))eδ0βw+ (π(w),x0)

e
−δ0(βv′

−
(x0,π(v

′))+βw+ (x0,π(v
′)))

dµss
w(v
′) dσ̃C (w)

= eδ0βw+ (π(w),π(v
′)) dµss

w(v
′) dσ̃C (w)

= dµss
w(v
′) dσ̃C (w).

The first equality holds by the definition of the measures µss
w (see equation (12)) and σ̃C

(see equation (11)), by the definition of the visual distance dx0 (see equation (2)), and since
π(v′) belongs to the geodesic line between v′− and w+ = v′+. The second equality follows
from the cocycle property (1). The third one holds since π(w) and π(v′) both belong to
the stable horosphere of w.

Hence, since βw+(π(w), π(v))= s if v = gsv′ and v′ ∈W ss(w), and by the definition
of the measure µs

w (see equation (13)), we have

Iϕ =
∫
w∈ ∂1

+C

∫
v′∈W ss(w)

∫
s∈R

ϕ(gsv′) ds dµss
w(v
′) dσ̃C (w)

=

∫
w∈ ∂1

+C

∫
v∈W s(w)

ϕ(v)eδ0βw+ (π(w),π(v)) dµs
w(v) dσ̃C (w), (16)

which proves the result. 2

We conclude this section by defining the skinning measures of equivariant families of
convex subsets.

Let I be an index set endowed with a left action (γ, i) 7→ γ i of 0. A family
D = (Di )i∈I of subsets of M̃ or T 1 M̃ indexed by I is 0-equivariant if γ Di = Dγ i for
all γ ∈ 0 and all i ∈ I . We equip the index set I with the 0-equivariant equivalence
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relation ∼ (or ∼D when we want to stress the dependence on D), defined by setting i ∼ j
if and only if there exists γ ∈ Stab0 Di such that j = γ i (or equivalently if D j = Di and
j = γ i for some γ ∈ 0). Note that 0 acts on the left on the set of equivalence classes I/∼.

An example of such a family is given by fixing a subset C of M̃ or T 1 M̃ , by setting
I = 0 with the left action by translations on the left (γ, i) 7→ γ i , and by setting Di = iC
for every i ∈ 0. In this case, we have i ∼ j if and only if i−1 j belongs to the stabilizer 0C

of C in 0, and I/∼= 0/0C . More general examples include 0-orbits of (usually finite)
collections of subsets of M̃ or T 1 M̃ with (usually finite) multiplicities.

A 0-equivariant family (Di )i∈I of closed subsets of M̃ or T 1 M̃ is said to be locally
finite if for every compact subset K in M̃ or T 1 M̃ , the quotient set {i ∈ I : Di ∩ K 6= ∅}/∼
is finite. In particular, the union of the images of the sets Di by the map M̃→ M or
T 1 M̃→ T 1 M is closed. When 0\I is finite, (Di )i∈I is locally finite if and only if, for all
i ∈ I , the canonical map from 0Di \Di to M or T 1 M is proper, where 0Di is the stabilizer
of Di in 0.

Let D = (Di )i∈I be a locally finite 0-equivariant family of non-empty proper closed
convex subsets of M̃ . Then

σ̃D =
∑

i∈I/∼

σ̃Di

is a locally finite positive Borel measure on T 1 M̃ (independent on the choice of
representatives in I/∼), called the skinning measure of D on T 1 M̃ . It is 0-invariant
by Proposition 4(ii), and its support is contained in

⋃
i∈I/∼ ∂

1
+Di . Hence σ̃D induces a

locally finite Borel positive measure σD on T 1 M = 0\T 1 M̃ , called the skinning measure
of D on T 1 M .

For every t ∈ [0,+∞[, let Dt = (Nt Di )i∈I , which is also a 0-equivariant locally finite
family of non-empty proper closed convex subsets of M̃ . Note that by Proposition 4(iii),

(gt )∗σD = e−δ0 t σDt

and, in particular,
‖σDt ‖ = eδ0 t

‖σD‖.

Note that the measure σDt is finite if and only if the measure σD is finite.
If the image in M of the support of σD is compact, then σD is finite. In particular, if

0 is geometrically finite, the skinning measure of a Margulis neighbourhood of a cusp in
0\M̃ is finite, since for any parabolic fixed point p of 0, the quotient of 30 − {p} by the
stabilizer of p in 0 is compact.

Oh and Shah [OS2, Theorem 1.5] proved, in particular, that ‖σD‖ is finite if 0\I is
finite, 0 is torsion-free, M is geometrically finite with constant curvature−1, D̃ consists of
codimension-one totally geodesic submanifolds, and δ0 > 1. See [OS2, Theorem 6.4] for a
statement without the codimension-one assumption, which we generalize in the following
section.

The next result relates the finiteness of the skinning measure of D to that of a nested
family D ′.

Remark 9. Let D = (Di )i∈I and D ′ = (D′i )i∈I be locally finite 0-equivariant families of
non-empty proper closed convex subsets of M̃ , with D′i ⊂ Di for every i ∈ I . Assume
that:
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• PD′i
(ξ) is the closest point in D′i to PDi (ξ), for every ξ ∈30 − ∂∞Di ;

• there exists c > 0 such that d(PDi (ξ), D′i )≤ c, for every i ∈ I and ξ ∈30 − ∂∞Di ;
• for every i ∈ I , we have µx0(∂∞Di − ∂∞D′i )= 0.
Then σD is finite if and only if σD ′ is finite.

It follows from this remark that for every ε ≥ 0, if D ′′ = (NεDi )i∈I , then σD ′′ is finite
if and only if σD is finite.

The first assumption is also satisfied if M̃ has constant curvature −1 and Di is totally
geodesic for all i ∈ I , since by homogeneity, for every ξ in M̃ and x 6= y in M̃ such that
6 x (ξ, y)= π/2, the value βξ (y, x) is a strictly increasing function of only d(x, y).

Proof. By the first assumption, the map θ : νPDi (30 − ∂∞Di )→ νPD′i
(30 − ∂∞D′i )

defined by w 7→ w′, where w′+ = w+ and π(w′) is the closest point on D′i to π(w), is
a homeomorphism onto its image such that

νPD′i |30−∂∞Di
= θ ◦ νPDi |30−∂∞Di

.

By the definition of the skinning measures, using this homeomorphism θ , we have, for all
w′ ∈ θ(νPDi (30 − ∂∞Di )),

dσ̃D′i
(w′)= e

−δ0βw′
+
(PD′i

(w′+),PDi (w
′
+)) dθ∗σ̃Di (w

′).

The result then follows by the second and third assumptions. 2

4. Finiteness and fluctuation of the skinning measure
We will say that a discrete group 0′ of isometries of M̃ has regular growth if there exists
c > 0 such that, for every N ∈ N,

1
c

eδ0′N ≤ Card{γ ∈ 0′ : d(x0, γ x0)≤ N } ≤ ceδ0′N .

This does not depend on x0, and the upper bound holds for all non-elementary groups 0′

(see, for instance, [Rob2, p. 11]). If the Bowen–Margulis measure mBM on T 1 M is finite,
then 0 has regular growth (in fact, Card{γ ∈ 0 : d(x0, γ x0)≤ N } ∼ ceδ0N for an explicit
c > 0; see, for instance, [Rob2]). If M̃ is a symmetric space, then any discrete parabolic
group of isometries of M̃ has regular growth. In particular, if M̃ is the real hyperbolic
space Hn

R, then by a theorem of Bieberbach, any discrete parabolic group 0′ contains a
finite index subgroup isomorphic to Zk for some k ∈ {0, . . . , n − 1} called the rank of the
fixed point of 0′, and an easy and well-known computation in hyperbolic geometry proves
that the critical exponent of 0′ is

δ0′ =
k

2
, (17)

and that 0′ has regular growth. Note that there exist complete simply connected
Riemannian manifolds with pinched negative curvature having discrete parabolic groups
of isometries which do not have regular growth; see, for instance, [DOP].

We will say that a convex subset C of M̃ is almost cone-like in cusps for a discrete
group 0′ of isometries of M̃ if for any parabolic point p′ of 0′ belonging to ∂∞C and
any horoball H ′ centred at p′, there exist r ≥ 0 and x ′0 ∈ ∂H

′ such that C ∩H ′
∩
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N2 log(1+
√

2)(C30
′) is contained in the orbit of Nr ([x ′0, p′[) under the stabilizer in

0′ of p and C . It follows from the arguments of [OS2, §4] that if M̃ has constant
sectional curvature −1, if C is a totally geodesic submanifold and if 0′ is torsion-free
and geometrically finite, then C is almost cone-like in cusps for 0′.

THEOREM 10. Let M̃ be a complete simply connected Riemannian manifold with sectional
curvature bounded above by −1. Let 0 be a geometrically finite discrete group of
isometries of M̃, of divergence type, with finite critical exponent. Let D = (Di )i∈I be a
locally finite 0-equivariant family of non-empty proper convex subsets of M̃ which are
almost cone-like in cusps for 0, with 0\I finite. Assume that for every parabolic point p
of 0 and every i ∈ I such that p ∈ ∂∞Di , if 0p and 0Di are the stabilizers in 0 of p and
Di , respectively, then 0p and 0Di ∩ 0p have regular growth and satisfy

δ0 > 2(δ0p − δ0Di ∩0p ). (18)

Then the skinning measure σD of D on T 1 M is finite.

We make some comments on this statement before giving its proof.

Remarks. (1) When M̃ is a symmetric space (in particular, when M̃ has constant sectional
curvature −1), every geometrically finite group of isometries of M̃ is of divergence type.
This is not true in general, but holds true if δ0 > δ0p for every parabolic point p of 0;
see [DOP]. As already said, δ0 is finite, for instance, if M has a finite lower bound on its
sectional curvatures.

(2) Assume in this remark that the index of 0Di ∩ 0p in 0p is finite for every parabolic
point p of 0 and every i ∈ I such that p ∈ ∂∞Di . Then δ0p = δ0Di ∩0p , and this equality

implies that condition (18) is satisfied. When M̃ has constant sectional curvature −1, the
subsets Di are totally geodesic submanifolds, and 0 is torsion-free, the finiteness of σD

follows from [OS2, Theorem 6.3].
(3) Assume in this remark that M̃ has constant sectional curvature −1 and that the

subsets Di are totally geodesic submanifolds. Let us prove that for every parabolic
point p of 0 belonging to ∂∞Di , we have δ0p − δ0Di ∩0p ≤

1
2 codim(Di ) (see also [OS2,

Lemma 6.2] when 0 is torsion-free). This will imply that condition (18) is satisfied if
δ0 > 1 and if the elements of D have codimension one.

Let k be the rank of 0p. In particular, δ0p = k/2 by equation (17). Up to taking
a finite index subgroup, and choosing appropriate coordinates, we may assume that p
is the point at infinity in the upper halfspace model of M̃ =Hn

R, that 0p is the lattice
Zk of Rk acting by translations on the first factor (and trivially on the second one) on
Rk
× Rn−k−1

= Rn−1
= ∂∞Hn

R − {p}, and that E = ∂∞Di − {p} is a linear subspace of
Rn−1. Let F = E ∩ Rk , which is a linear subspace of Rk . Since the family D is locally
finite, the image of F in the torus Rk/Zk is closed, hence it is a subtorus. Since 0 ∈ F , the
subgroup Zk

∩ F is thus a lattice in F . Therefore, by equation (17),

2(δ0p − δ0Di ∩0p )= codimRk (F)≤ codimRn−1(E)= codim(Di ).

(4) Theorem 10 is optimal, since when M̃ has constant sectional curvature −1,
the subsets Di are totally geodesic submanifolds and 0 is torsion-free, it is proved
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in [OS2, Theorem 6.4] that the validity of equation (18) (translated using equation (17)),
for all i, p as in the statement, is a necessary and sufficient condition for the skinning
measure σD to be finite.

(5) The ideas of the proof of Theorem 10 are a blend of those of the finiteness of the
Bowen–Margulis measure under a separation condition on the critical exponents in [DOP]
(see also [PPS] for the case of Gibbs measures), and those of a generalization to variable
curvature of Sullivan’s fluctuating density property in [HP2, §4].

Proof. We may assume that 0\I is a singleton. Let us fix i ∈ I . We may assume that
∂∞Di ∩30 is non-empty. Otherwise, indeed, since νPCi is a homeomorphism and 30 is
closed, the support of σ̃Di , which is the set of elements v ∈ ∂1

+Di such that v+ ∈30 (see
Proposition 4(iv)), is compact. Hence the support of σD is compact, therefore σD is finite.
Let π : T 1 M̃→ M̃ and again π : T 1 M→ M be the base point projections. Note that the
skinning measure σD is finite if and only if its pushforward measure π∗σD is finite.

In what follows, let ε = ln(1+
√

2): note that for any geodesic triangle in H2
R with two

ideal vertices and a right angle at the vertex x ∈H2
R, the distance from x to its opposite

side is exactly ε.

LEMMA 11. The support of the measure π∗σ̃Di , which is {PDi (ξ) : ξ ∈30 − ∂∞Di }, is
contained in the closed ε-neighbourhood of the convex hull C30.

Proof. Let ξ ∈30 − ∂∞Di , let ξ ′ ∈ ∂∞Di ∩30, and let x be the closest point to ξ on
Di . Then the geodesic ray from x to ξ ′, which is contained in Di by convexity, makes an
angle at least π/2 at x with the geodesic ray from x to ξ . By a standard comparison result
and the definition of ε, the point x is hence at distance at most ε from the geodesic line
between ξ and ξ ′, which is contained in C30. 2

Let Par0 be the set of parabolic fixed points of 0. Since 0 is geometrically finite (see,
for instance, [Bowd]):
• every p ∈ Par0 is bounded, that is, its stabilizer 0p in 0 acts properly with compact

quotient on 30 − {p};
• the action of 0 on Par0 has only finitely many orbits;
• there exists a 0-invariant family (Hp)p∈Par0 of pairwise disjoint closed horoballs,

with Hp centred at p, such that the quotient

M0 = 0
∖(

C30 −
⋃

p∈Par0

Hp

)

is compact. The inclusion Hp ⊂ M̃ induces an injection 0p\Hp→ 0\M̃ and we
will identify 0p\Hp with its image in 0\M̃ . In particular, Hp is precisely invariant
under 0, that is, for all γ ∈ 0 − 0p, we have γHp ∩Hp = ∅.

By Lemma 11 (and since the ε-neighbourhood of M0 is also compact), we thus only
have to prove the finiteness of π∗σD (0p\Hp) for all p ∈ Par0 . By the local finiteness of
D and the fact that parabolic fixed points are bounded, for all p ∈ Par0 , if the orbit 0p
does not meet ∂∞Di , then π∗σD (0p\Hp) is finite.
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We assume, therefore, that there exist p ∈ Par0 ∩ ∂∞Di , and we want to prove the
finiteness of π∗σD (0p\Hp). To simplify the notation, let 0p,i = 0Di ∩ 0p, δp,i = δ0p,i ,
δp = δ0p and δ = δ0 . Let x0 be a point in Di ∩ ∂Hp (which exists up to shrinking Hp).
Since p is the endpoint of a geodesic ray contained in Di and of a geodesic ray contained
in C30, and since geodesic rays with the same point at infinity become arbitrarily close,
up to shrinking Hp, we may assume that x0 ∈Nε(C30).

Choose a set of representatives 0p\\0 of the right cosets in 0p\0 such that, for all
γ ′ ∈ 0p\\0,

d(x0, γ
′x0)= min

α∈0p
d(x0, αγ

′x0).

Choose a set of representatives 0p,i\\0p of the right cosets in 0p,i\0p such that, for all
α ∈ 0p,i\\0p,

d(x0, αx0)= min
β∈0p,i

d(x0, βαx0).

Note that any γ ∈ 0 may be uniquely written γ = βαγ ′ with β ∈ 0p,i , α ∈ 0p,i\\0p and
γ ′ ∈ 0p\\0.

LEMMA 12. There exists c1 > 0 such that the following assertions hold.
(i) For all γ ′ ∈ 0p\\0, the closest point on Hp to γ ′x0 is at distance at most c1 from x0.

Furthermore, for all γ ′ ∈ 0p\\0 and α ∈ 0p, for every y in the geodesic ray [x0, p[,

d(y, αy)+ d(y, x0)+ d(x0, γ
′x0)− c1 ≤ d(y, αγ ′x0)

≤ d(y, αy)+ d(y, x0)+ d(x0, γ
′x0).

(ii) For all α ∈ 0p,i\\0p, the closest point on Di to αx0 is at distance at most c1 from
the geodesic ray [x0, p[. Furthermore, for all α ∈ 0p,i\\0p and β ∈ 0p,i ,

max{d(x0, αx0), d(x0, βx0)} − c1 ≤ d(x0, βαx0)

≤ max{d(x0, αx0), d(x0, βx0)} + c1.

Proof. (i) For all γ ∈ 0, let pγ be the closest point to γ x0 on Hp, which lies on the
geodesic ray [γ x0, p[. Hence, by our choice of x0 and by convexity, pγ is at bounded
distance from C30. Since Hp is precisely invariant and x0 ∈ ∂Hp, the point pγ belongs
to ∂Hp. For all γ ∈ 0 and α ∈ 0p, if pγ 6= α−1x0, γ x0, then the angle at pγ between
[pγ , α−1x0] and [pγ , γ x0] is at least π/2 by the convexity of Hp. Hence, by a standard
comparison argument and the definition of ε, the distance between pγ and [α−1x0, γ x0] is
at most ε. By the triangle inequality,

d(α−1x0, pγ )+ d(pγ , γ x0)− 2ε ≤ d(x0, αγ x0)≤ d(α−1x0, pγ )+ d(pγ , γ x0).

These inequalities are also true if pγ is equal to α−1x0 or to γ x0. Since pγ is at bounded
distance from C30 ∩ ∂Hp and since the action of 0p on C30 ∩ ∂Hp is cocompact,
there exists αγ ∈ 0p such that d(pγ , αγ x0) is bounded, say by c′1. Let γ ′ ∈ 0p\\0. Assume
for a contradiction that d(x0, pγ ′) > 2ε + c′1. Then, using the above centred equation with
α = 1 and γ = γ ′,

d(α−1
γ ′
γ ′x0, x0) = d(γ ′x0, αγ ′x0)≤ d(γ ′x0, pγ ′)+ d(pγ ′ , αγ ′x0)

≤ d(γ ′x0, x0)− d(x0, pγ ′)+ 2ε + c′1 < d(γ ′x0, x0),
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which contradicts the minimality property of d(γ ′x0, x0). This proves the first claim of
assertion (i) if c1 ≥ 2ε + c′1.

The first claim and the convexity of the horoball of centre p whose boundary contains y
(which implies that if y 6= x0, α

−1 y, then the angle at y between [y, x0] and [y, α−1 y] is at
least π/2) imply that the length of the piecewise geodesic [γ ′x0, x0] ∪ [x0, y] ∪ [y, α−1 y]
is almost additive, yielding the left-hand side of the second claim of assertion (i). Its right-
hand side follows by the triangle inequality.

(ii) For all α ∈ 0p, let qα be the closest point to αx0 on Di . By the convexity of Hp and
since αx0 ∈ ∂Hp, we have qα ∈Hp. By the convexity of Di and as in (i), the point qα lies
at distance at most ε of the geodesic ray [αx0, p[. Since x0 ∈Nε(C30), the point qα is
at distance at most 2ε from a point in C30. Hence, qα ∈ Di ∩Hp ∩N2ε(C30). Since
Di is almost cone-like in cusps for 0, there exists βα ∈ 0p,i such that the distance between
βαqα = qβαα and [x0, p[ is less than a constant.

x0

Di

p

Let q ′α be the closest point to qα on [x0, p[. By quasi-geodesic arguments, there exists
a constant c > 0 such that

|d(x0, βααx0)− 2d(x0, βαqα)| ≤ c,

|d(x0, αx0)− 2d(x0, βαqα)− 2d(qα, q ′α)| ≤ c.

Using a similar argument to that used in the proof of assertion (i), this proves that qα is at
distance less than a constant from [x0, p[ for every α ∈ 0p,i\\0p.

For all α ∈ 0p,i\\0p and β ∈ 0p,i , since β−1x0 ∈ Di and qα is the closest point to αx0

on Di , we have

d(β−1x0, qα)+ d(qα, αx0)− 2ε ≤ d(β−1x0, αx0)≤ d(β−1x0, qα)+ d(qα, αx0).

For every α′ ∈ 0p, let rα′ be the closest point to α′x0 on [x0, p[. Hence, by the above
argument, there exists c′ > 0 such that

|d(x0, βαx0)− d(β−1x0, rα)− d(rα, αx0)| ≤ c′.

For all y ∈ [x0, p[,

d(α′x0, rα′)+ d(rα′ , y)− 2ε ≤ d(α′x0, y)≤ d(α′x0, rα′)+ d(rα′ , y).
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p

Let H ′ be the horoball centred at p whose boundary contains rα′ and let s be the
intersection point of [α′x0, p[ with ∂H ′. Then

d(α′x0, rα′)≥ d(α′x0, s)= d(rα′ , x0),

since x0 and α′x0 are on the same horosphere centred at p.

p

s

By an easy comparison argument in the geodesic triangle with vertices rα′ , α′x0 and p,
we have d(s, rα′)≤ 1. Hence

d(α′x0, rα′)≤ d(α′x0, s)+ d(s, rα′)≤ d(x0, rα′)+ 1.

Applying this for α′ = β−1, α and y = rα, rβ−1 , x0, we have

|d(x0, βαx0)− d(β−1x0, x0)| ≤ c′ + 2+ 2ε

if rα belongs to [x0, rβ−1 ], and otherwise

|d(x0, βαx0)− d(x0, αx0)| ≤ c′ + 2+ 2ε.

This proves the result. 2

The next lemma, which uses the regular growth property of 0p and 0p,i , implies, in
particular, that the ‘relative’ critical exponent of 0p modulo 0p,i is δp − δp,i (see, for
instance, [Pau] for background on relative Poincaré series).

LEMMA 13. There exists c2 > 0 such that, for every t ∈ [0,+∞[,

1
c2

e(δp−δp,i )t ≤ Card{α ∈ 0p,i\\0p : d(x0, αx0)≤ t} ≤ c2e(δp−δp,i )t .

Proof. For all t ∈ [0,+∞[, define

f (t)= Card{α ∈ 0p : d(x0, αx0)≤ t} and g(t)= Card{β ∈ 0p,i : d(x0, βx0)≤ t}.
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Since 0p and 0p,i have regular growth, there exists a constant c > 0 such that, for all
t ∈ [0,+∞[,

1
c

eδp t
≤ f (t)≤ ceδp t and

1
c

eδp,i t
≤ g(t)≤ ceδp,i t .

Also define E = 0p,i × (0p,i\\0p) and h(t)= Card{α ∈ 0p,i\\0p : d(x0, αx0)≤ t}.
For all t ≥ c1, using Lemma 12(ii) to get the inequality, we have

f (t − c1) = Card{(β, α) ∈ E : d(x0, βαx0)≤ t − c1}

= Card{(β, α) ∈ E : d(x0, βαx0)≤ t − c1, d(x0, βx0)≤ d(x0, αx0)}

+ Card{(β, α) ∈ E : d(x0, βαx0)≤ t − c1, d(x0, βx0) > d(x0, αx0)}

≤ Card{(β, α) ∈ E : d(x0, αx0)≤ t, d(x0, βx0)≤ t}

+ Card{(β, α) ∈ E : d(x0, βx0)≤ t, t ≥ d(x0, αx0)}

= 2g(t)h(t).

This gives the lower bound in Lemma 13.
Similarly, for all t ≥ c1,

f (t + c1 + 1) ≥ Card{(β, α) ∈ E : t − c1 < d(x0, βαx0)≤ t + c1 + 1,

d(x0, βx0)≤ d(x0, αx0)}

≥ Card{(β, α) ∈ E : t < d(x0, αx0)≤ t + 1, d(x0, βx0)≤ t + 1}

= g(t + 1)(h(t + 1)− h(t)).

A geometric series summation argument gives the upper bound in Lemma 13. 2

Now let F+p,i be the set of accumulation points in ∂∞M̃ of the orbit points αγ ′x0, where
α ∈ 0p,i\\0p and γ ′ ∈ 0p\\0.

LEMMA 14. We have 30 = {p} ∪
⋃
β∈0p,i

βF+p,i .

Note that in general this union is not a disjoint union.

Proof. Every element ξ in 30 is the limit of a sequence (βiαiγ
′

i x0)i∈N where (βi )i∈N,
(αi )i∈N, (γ ′i )i∈N are sequences in respectively 0p,i , 0p,i\\0p and 0p\\0. Up to extraction,
if ξ 6= p, since the limit set of 0p is reduced to {p}, we may assume that limi→+∞ γ

′

i x0 =

ξ ′ ∈ ∂∞M̃ − {p}. Since any compact neighbourhood of ξ ′ not containing p is mapped into
any given neighbourhood of p by all except finitely many elements of 0p, if the sequence
(βiαi )i∈N in 0p takes infinitely many values, then ξ = p. Hence, up to extraction, if ξ 6= p,
the sequence (βiαi )i∈N is constant, and so is (βi )i∈N: therefore, ξ ∈ β0F

+

p,i . This proves
the result. 2

Let Fp,i = νPDi (F
+

p,i − ∂∞Di ) ∩ π
−1(Hp). The images of Fp,i under the elements

of 0p,i cover π−1(Hp) ∩ Supp σ̃Di . It follows from Lemma 12 (ii) that there exists c3 > 0
such that PDi (F

+

p,i − ∂∞Di ) ∩Hp = π(Fp,i ) is contained in the c3-neighbourhood of
the geodesic ray [x0, p[.

In order to prove the finiteness of π∗σD (0p\Hp), we thus only have to prove the
finiteness of σ̃Di (Fp,i ).
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The next lemma, which uses the assumption that 0 is of divergence type, gives a control
on the Patterson measure µy of F+p,i as y converges radially to p.

LEMMA 15. There exists c4 > 0 such that, for every y on the geodesic ray [x0, p[,

µy(F
+

p,i )≤ c4e(2(δp−δp,i )−δ)d(x0,y).

Proof. For all s ≥ 0 and y ∈ M̃ , for every subgroup 0′ of 0, let

P0′,y(s)=
∑
γ∈0′

e−sd(y,γ x0) ∈ [0,+∞],

and let Dy be the unit Dirac mass at the point y. Since 0 is of divergence type, the Patterson
measure µy is the weak-star limit as s→ δ+ of the measures

µy,s =
1

P0,x0(s)

∑
γ∈0

e−sd(y,γ x0)Dγ x0

(see, for instance, [Rob2]). By discreteness and Lemma 14, there exists a finite subset
F of 0p,i such that

⋃
β∈F βF+p,i − {p} is a neighbourhood of F+p,i − {p} in 30 − {p}.

Since 0 is of divergence type, the measure µy has no atom at p (see, for instance, [Rob2,
Corollary 1.8]). Hence there exists c > 0 such that, for every y ∈ [x0, p[,

µy(F
+

p,i )≤ c lim
s→δ+

1
P0,x0(s)

∑
α∈0p,i\\0p,γ ′∈0p\\0

e−sd(y,αγ ′x0).

Let

Q y(s)=
∑

α∈0p,i\\0p

e−sd(y,αy) and R(s)=
∑

γ ′∈0p\\0

e−sd(x0,γ
′x0).

By the lower bound in Lemma 12(i),∑
α∈0p,i\\0p,γ ′∈0p\\0

e−sd(y,αγ ′x0) ≤ esc1e−sd(y,x0)Q y(s)R(s).

Similarly, by the upper bound in Lemma 12(i), we have P0,x0(s)≥ P0p,x0(s)R(s). We will
prove below that the series Q y(δ) converges. Thus, even if P0p,x0(δ)=+∞,

µy(F
+

p,i )≤
ceδc1

P0p,x0(δ)
e−δd(y,x0)Q y(δ). (19)

By the convexity of the horoball of centre p whose boundary contains y and by
standard quasi-geodesic arguments, there exist two constants c′, c′′ > 0 such that, for every
α ∈ 0p,i\\0p, if d(y, αy) > c′, then

d(y, αy)+ 2d(y, x0)− c′′ ≤ d(x0, αx0)≤ d(y, αy)+ 2d(y, x0).

1332 J. Parkkonen and F. Paulin



If d(y, αy)≤ c′ then d(x0, αx0)≤ 2d(y, x0)+ c′, by the triangle inequality. We thus
have, using the notation t 7→ h(t) introduced in the proof of Lemma 13,

Q y(δ) =
∑

α∈0p,i\\0p
d(y,αy)≤c′

e−δd(y,αy)
+

∑
α∈0p,i\\0p
d(y,αy)>c′

e−δd(y,αy)

≤

∑
α∈0p,i\\0p

d(x0,αx0)≤2d(y,x0)+c′

1+
∑

α∈0p,i\\0p
d(x0,αx0)≥2d(y,x0)+c′−c′′

e−δd(x0,αx0)+2δd(y,x0)

≤ h(2 d(y, x0)+ c′)+ e2δd(y,x0)
∑

n≥2d(y,x0)+c′−c′′−1

h(n + 1)e−δn .

Since h(t)≤ c2e(δp−δp,i )t by Lemma 13, and by a geometric series summation argument
since δ − δp + δp,i > 0 by assumption (18), we therefore have

Q y(δ) ≤ c2e(δp−δp,i )c′e2(δp−δp,i )d(y,x0)

+ c2eδp−δp,i+2δd(y,x0)
∑

n≥2d(y,x0)+c′−c′′−1

e(δp−δp,i−δ)n

≤ c′′′e2(δp−δp,i )d(y,x0),

for some c′′′ > 0. Using equation (19), this proves Lemma 15. 2

Let ρ : [0,+∞[→ M̃ be the geodesic ray with origin x0 and point at infinity p. For
every n ∈ N, let An be the set of points ξ ∈ ∂∞M̃ − {p} such that the closest point to ξ on
the geodesic ray ρ belongs to ρ([n, n + 1]). Note that

⋃
n∈N An = ∂∞M̃ − {p}.

LEMMA 16. There exists c5 > 0 such that, for every n ∈ N,

µx0(F
+

p,i ∩ An)≤ c5e2(δp−δp,i−δ)n .

Proof. For every ξ ∈ An , since the angle at ρ(n) between [ρ(n), x0] and [ρ(n), ξ [ is
at least π/2 if n 6= 0, we have βξ (x0, ρ(n))≥ d(x0, ρ(n))− 2ε = n − 2ε. Hence, by
equation (10) and Lemma 15,

µx0(F
+

p,i ∩ An) =

∫
ξ∈F+p,i∩An

e−δβξ (x0,ρ(n))dµρ(n)(ξ)≤ e−δn+2δεµρ(n)(F
+

p,i )

≤ c4e2δεe2(δp−δp,i−δ)n . 2

After this series of lemmas, let us prove the finiteness of σ̃Di (Fp,i ), which concludes
the proof of Theorem 10.

With an = σ̃Di (Fp,i ∩ νPDi (An)), we only have to prove that the series
∑

n∈N an

converges. For every ξ ∈ (F+p,i − ∂∞Di ) ∩ An ∩ P−1
Di
(Hp), by the definition of c3, the

point PDi (ξ) lies at distance less than a constant from ρ([n, n + 1]). Hence there exists
a constant c > 0 such that βξ (PDi (ξ), x0)≥−n − c. By the definition of the skinning
measures in equation (11) and by Lemma 16, therefore,

σ̃Di (Fp,i ∩ νPDi (An)) =

∫
ξ∈(F+p,i−∂∞Di )∩An∩P−1

Di
(Hp)

e−δβξ (PDi (ξ),x0)dµx0(ξ)

≤ eδn+δcµx0(F
+

p,i ∩ An)

≤ c5eδce(2(δp−δp,i )−δ)n .
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By the assumption δ > 2(δp − δp,i ) in equation (18), a geometric series summation
argument proves that

∑
n∈N an converges. This completes the proof of Theorem 10. 2

5. Equidistribution of equidistant submanifolds
Let M̃, 0, x0, M and T 1 M be as in §2. Assume that the critical exponent δ0 of 0
is finite. Let (µx )x∈M̃ be a Patterson density of dimension δ0 , with Bowen–Margulis
measures m̃BM and mBM on T 1 M̃ and T 1 M , respectively. Let C = (Ci )i∈I be a 0-
equivariant family of proper non-empty closed convex subsets of M̃ . Let Ct = (Nt Ci )i∈I

(in particular, C0 = C ), and let σ̃Ct and σCt be the skinning measures of Ct on T 1 M̃ and
T 1 M , respectively. Let �= (�i )i∈I be a locally finite 0-equivariant family of subsets of
T 1 M̃ , where �i is a measurable subset of ∂1

+Ci with σ̃Ci (∂�i )= 0 for every i ∈ I . Let
∼=∼� be the equivalence relation on I defined at the end of §3. As we have already
defined when �= C , let

σ̃� =
∑

i∈I/∼

σ̃Ci |�i ,

which is a 0-invariant locally finite positive Borel measure on T 1 M̃ (independent of the
choice of representatives in I/∼). Hence, σ̃� induces a locally finite positive Borel
measure σ� on T 1 M . Note that gt�i ⊂ ∂

1
+Nt Ci and, as in the end of §3, for every t > 0,

‖σgt�‖ = eδ0 t
‖σ�‖. (20)

The aim of this section is to prove, under some finiteness assumptions, that the measures
σgt� on T 1 M equidistribute to the Bowen–Margulis measure on T 1 M as t→+∞. We
start by introducing the test functions approximating the support of the measures σgt�.

Assume that the number of orbits of 0 on the set of elements i ∈ I , such that the
intersection ∂∞Ci ∩30 is empty, is finite (this condition is stronger than the requirement
on C to be locally finite). Under this assumption, by Lemma 7, there exists R > 0 such
that for every i ∈ I , for every w ∈ ∂1

+Ci , we have µss
w(Vw,R) > 0, where Vw,R is the open

ball of radius R and centre w for the Hamenstädt distance in the strong stable leaf W ss(w).
We fix such an R.

For every η > 0, let hη,R : T 1 M̃→ [0,+∞] be the measurable map defined by

hη,R(w)=
1

2η µss
w(Vw,R)

.

Note that hη,R is 0-invariant by equation (14) and that hη,R ◦ g−t
= e−δ0 t hη,e−t R for every

t ∈ R: indeed, for every w ∈ T 1 M̃ , by equation (15),

hη,R(g
−tw)=

1
2η µss

g−tw
(Vg−tw,R)

=
1

2ηeδ0 tµss
w(gt Vg−tw,R)

=
e−δ0 t

2ηµss
w(Vw,e−t R)

.

For every i ∈ I , let Vη,R,i = Vη,R(�i ) be the dynamical thickening of �i defined at the
end of §2. Note that γVη,R,i = Vη,R,γ i for every γ ∈ 0 and every i ∈ I .

We denote by χA the characteristic function of a subset A. We will use the test function
φ̃η = φ̃η,R,� : T 1 M̃→ [0,+∞[ defined by (using the convention∞× 0= 0)

φ̃η(v)=
∑

i∈I/∼

hη,R ◦ fCi (v) χVη,R,i (v),
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where fCi :UCi → ∂1
+Ci is the fibration defined in §2.2. Note that Vη,R,i is contained in

UCi , and we define hη,R ◦ fCi (v) χVη,R,i (v)= 0 if v /∈ Vη,R,i .

LEMMA 17. The function φ̃η is well defined, measurable and 0-invariant. Furthermore,
for every t ∈ [0,+∞[,

φ̃η,R,� ◦ g−t
= e−δ0 t φ̃η,e−t R,gt�.

Proof. The function φ̃η is well defined, since �i =� j and Vη,R,i = Vη,R, j if i ∼ j , since
hη,R ◦ fCi (v) is finite if v ∈ Vη,R,i (by the definition of R), and since the sum defining
φ̃η(v) has only finitely many non-zero terms, by the local finiteness of the family �
(given v, the summation over I/∼ may be replaced by a summation over the finite set
{i ∈ I : v ∈ Vη,R,i }/∼).

The function φ̃η is 0-invariant since

χVη,R,i ◦ γ = χγ−1Vη,R,i = χV
η,R,γ−1i

and
hη,R ◦ fCi ◦ γ = hη,R ◦ γ ◦ fγ−1Ci

= hη,R ◦ fC
γ−1i

,

and by a change of index in the above sum.
Let t ≥ 0. The last claim follows by noting that

χVη,R(�i ) ◦ g−t
= χgtVη,R(�i ) = χVη,e−t R(g

t�i )

and

hη,R ◦ fCi ◦ g−t
= hη,R ◦ fCi = hη,R ◦ g−t

◦ gt
◦ fCi = e−δ0 t hη,e−t R ◦ fNt Ci . 2

Hence the test function φ̃η defines, by passing to the quotient, a measurable function
φη = φη,R,� : T 1 M→ [0,+∞[, such that, for every t ∈ [0,+∞[,

φη,R,� ◦ g−t
= e−δ0 tφη,e−t R,gt�. (21)

PROPOSITION 18. Assume that the Bowen–Margulis measure of T 1 M is finite. For every
η > 0, we have

∫
φη dmBM = ‖σ�‖. In particular, the function φη is integrable for the

Bowen–Margulis measure if and only if the measure σ� is finite.

Proof. Let i ∈ I and let Ki be a measurable subset of �i . By the disintegration result of
Proposition 8 (more precisely by equation (16)), and by the definitions of the function hη,R
and of the set Vη,R,i =

⋃
w∈�i

⋃
s∈ ]−η,η[ gs Vw,R , we have∫

Vη,R,i∩ f −1
Ci
(Ki )

hη,R ◦ fCi dm̃BM =

∫
w∈Ki

hη,R(w)
∫
v′∈Vw,R

∫ η

−η

ds dµss
w(v
′) dσ̃Ci (w)

= σ̃Ci (Ki ).

Let 10 be a fundamental domain for the action of 0 on T 1 M̃ , that is, 10 is the closure
of its interior, its boundary has measure zero for the Bowen–Margulis measure, the images
of 10 by the elements of 0 have pairwise disjoint interiors and cover T 1 M̃ , and any
compact subset of T 1 M̃ meets only finitely many images of 10 by elements of 0. Such a
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fundamental domain exists since the Bowen–Margulis measure of T 1 M is finite (see, for
instance, [Rob2, p. 13]). By the definition of the test function φ̃η,∫

T 1 M
φη dmBM =

∫
10

φ̃η dm̃BM =
∑

i∈I/∼

∫
Vη,R,i∩10

hη,R ◦ fCi dm̃BM.

By the definition of the measure σ�,

‖σ�‖ = σ̃�(10)=
∑

i∈I/∼

σ̃Ci (10 ∩�i ).

By an easy multiplicity argument, the result follows. 2

We can now state and prove the main result of this paper.

THEOREM 19. Let M̃ be a complete simply connected Riemannian manifold with sectional
curvature bounded above by −1. Let 0 be a discrete, non-elementary group of isometries
of M̃, with finite critical exponent. Assume that the Bowen–Margulis measure mBM of
0 on T 1 M is finite and mixing for the geodesic flow. Let C = (Ci )i∈I be a 0-equivariant
family of non-empty proper closed convex subsets of M̃. Let�= (�i )i∈I be a locally finite
0-equivariant family of measurable subsets �i ⊂ ∂

1
+Ci with σ̃Ci (∂�i )= 0. Assume that

σ� is finite and non-zero. Then, as t→+∞,

1
‖σgt�‖

σgt�

∗

⇀
1

‖mBM‖
mBM.

In particular, if C = (Ci )i∈I is a locally finite 0-equivariant family of non-empty proper
closed convex subsets of M̃ with finite non-zero skinning measure, then the skinning
measure σCt on T 1 M of Ct = (Nt Ci )i∈I equidistributes to the Bowen–Margulis measure
as t→+∞.

Proof. Given three numbers a, b, c (depending on some parameters), we write a = b ± c
if |a − b| ≤ c.

We may assume that 0\I is finite. Indeed, if J is a big enough finite subset of 0\I , if
J is the preimage of J by the canonical map I → 0\I , since the measure σ� is finite, the
contribution of the family (gt�i )i∈I−J is negligible compared to that of (gt�i )i∈J (they
grow at equal rate as t tends to +∞, by equation (20)).

Hence we may consider R > 0 as was fixed in the beginning of §5 and, for every η > 0,
the test function φη = φη,R,� as defined above.

Fix ψ ∈ Cc(T 1 M). Let us prove that

lim
t→+∞

1
‖σgt�‖

∫
T 1 M

ψ dσgt� =
1

‖mBM‖

∫
T 1 M

ψ dmBM.

Given a fundamental domain 10 for the action of 0 on T 1 M̃ as above, by a standard
argument of finite partition of unity, we may assume that there exists a map ψ̃ : T 1 M̃→ R
whose support is contained in 10 such that ψ̃ = ψ ◦ p, where p : T 1 M̃→ 0\T 1 M̃ is the
canonical projection (which is 1-Lipschitz). Fix ε > 0. Since ψ̃ is uniformly continuous,
for every η > 0 small enough, and for every t ≥ 0 big enough, for every w ∈ T 1 M̃ and
v ∈ Vw,η,e−t R , we have

ψ̃(v)= ψ̃(w)±
ε

2
. (22)
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We have, using respectively:
• equation (21) and the definition of ψ̃ for the first and second equality;
• the definition of the test function φ̃η for the third equality;
• equation (22) and the fact that the support of ψ̃ is contained in 10 for the fourth

equality;
• the invariance of the Bowen–Margulis measure under the geodesic flow, and

equation (16) as in the proof of Proposition 18 for the fifth equality;
• the definition of hη,e−t R and Proposition 18 for the sixth equality:∫

T 1 M
φη ◦ g−tψ dmBM

= e−δ0 t
∫

T 1 M
φη,e−t R,gt�ψ dmBM = e−δ0 t

∫
T 1 M̃

φ̃η,e−t R,gt�ψ̃dm̃BM

= e−δ0 t
∑

i∈I/∼

∫
Vη,e−t R(g

t�i )

hη,e−t R ◦ fNt Ci ψ̃ dm̃BM

= e−δ0 t
∑

i∈I/∼

∫
Vη,e−t R(g

t�i )

(hη,e−t Rψ̃) ◦ fNt Ci dm̃BM ±
ε

2

∫
10

φ̃η ◦ gt dm̃BM

= e−δ0 t
∑

i∈I/∼

∫
w∈gt�i

hη,e−t R(w)ψ̃(w)(2η)µ
ss
w(Vw,e−t R) dσ̃Nt Ci ±

ε

2

∫
T 1 M

φη dmBM

= e−δ0 t
∑

i∈I/∼

∫
w∈gt�i

ψ̃(w) dσ̃Nt Ci ±
ε

2
‖σ�‖

= e−δ0 t
∫
ψ dσgt� ±

ε

2
‖σ�‖.

Hence, using equation (20) for the first equality, the previous computation for the second
equality, the invariance of the Bowen–Margulis measure under the geodesic flow for the
third equality, and Proposition 18 for the last one, we have, for η > 0 small enough and
t ≥ 0 big enough,∫

ψ dσgt�

‖σgt�‖
=

∫
ψ dσgt�

eδ0 t‖σ�‖
=

∫
T 1 M φη ◦ g−tψ dmBM

‖σ�‖
±
ε

2

=

∫
T 1 M φηψ ◦ gt dmBM

‖σ�‖
±
ε

2

=

∫
T 1 M φηψ ◦ gt dmBM∫

T 1 M φη dmBM
±
ε

2
. (23)

By the mixing property of the geodesic flow on T 1 M , for t ≥ 0 big enough (while η is
fixed), ∫

T 1 M φηψ ◦ gt dmBM∫
T 1 M φη dmBM

=

∫
T 1 M ψ dmBM

‖mBM‖
±
ε

2
.

This proves the result. 2

We conclude this section by proving Theorem 1 in the introduction. The definition of a
properly immersed locally convex subset is recalled at the beginning of the proof.
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Proof of Theorem 1. Let M, C be as in the statement of Theorem 1, that is, they satisfy the
following property. Let M̃→ M be a universal covering of M , with covering group 0. Let
C̃→ C be a covering map which is a universal covering over each component of C . The
immersion from C to M lifts to an immersion f : C̃→ M̃ , which is, on each connected
component of C̃ , an embedding whose image is a closed convex subset of M̃ .

Let I = 0 × π0C̃ with the action of 0 defined by γ · (α, c)= (γ α, c) for all γ, α ∈ 0
and every component c of C̃ . Consider the family C = (Ci )i∈I , where Ci = α f (c) if
i = (α, c). Then C is a 0-equivariant family of non-empty closed convex subsets of M̃ ,
which is locally finite since C is properly immersed in M . The result then follows from
Theorem 19. 2

6. Exponential rate of equidistribution
Let M̃, 0, M, T 1 M, mBM, C , Ct and σCt be as at the beginning of §5. When the Bowen–
Margulis measure mBM is finite, we denote by mBM its normalization to a probability
measure.

In this section we show, under the finiteness assumptions of Theorem 19, that in
the known cases when the geodesic flow is exponentially mixing, the skinning measure
equidistributes to the Bowen–Margulis measure with exponential speed. To begin with,
we recall the two types of exponential mixing results that are available. In order to prove
our estimates for the rate of equidistribution using these results, we will smoothen (in
accordance with the two regularities) our test function φη defined in the previous section.

Firstly, when M is locally symmetric with finite volume, then the boundary at infinity of
M̃ , the strong unstable, unstable, stable, and strong stable foliations of T 1 M̃ are smooth.
Hence, for all ` ∈ N, talking about C `-smooth leafwise defined functions on T 1 M makes
sense. We will denote by C `

c (T
1 M) the vector space of C `-smooth functions on T 1 M

with compact support and by ‖ψ‖` the Sobolev W `,2-norm of any ψ ∈ C `
c (T

1 M). Note
that now the Bowen–Margulis measure mBM of T 1 M is the unique (up to a multiplicative
constant) locally homogeneous smooth measure on T 1 M (hence it coincides, up to a
multiplicative constant, with the Liouville measure).

Given ` ∈ N, we will say that the geodesic flow on T 1 M is exponentially mixing for the
Sobolev regularity ` (or that it has exponential decay of `-Sobolev correlations) if there
exist c, κ > 0 such that, for all φ, ψ ∈ C `

c (T
1 M) and all t ∈ R,∣∣∣∣∫

T 1 M
φ ◦ g−tψdmBM −

∫
T 1 M

φ dmBM

∫
T 1 M

ψdmBM

∣∣∣∣≤ ce−κ|t |‖ψ‖`‖φ‖`.

When 0 is an arithmetic lattice in the isometry group of M̃ , this property, for some ` ∈ N,
follows from [KM1, Theorem 2.4.5], with the help of [Clo, Theorem 3.1] to check its
spectral gap property, and of [KM2, Lemma 3.1] to deal with finite cover problems.

Secondly, when M̃ has pinched negative sectional curvature with bounded derivatives,
then the boundary at infinity of M̃ , the strong unstable, unstable, stable, and strong stable
foliations of T 1 M̃ are only Hölder-smooth (see, for instance, [Bri] when M̃ has a compact
quotient, and [PPS, Theorem 7.3]). Hence the appropriate regularity on functions on
T 1 M̃ is the Hölder one. For every α ∈ ]0, 1[, we denote by Cαc (X) the space of α-Hölder

1338 J. Parkkonen and F. Paulin



continuous real-valued functions with compact support on a metric space (X, d), endowed
with the Hölder norm

‖ f ‖α = ‖ f ‖∞ + sup
x,y∈X,x 6=y

| f (x)− f (y)|

d(x, y)α
.

Assuming the Bowen–Margulis measure mBM on T 1 M to be finite, given α ∈ ]0, 1[, we
will say that the geodesic flow on T 1 M is exponentially mixing for the Hölder regularity α
(or that it has exponential decay of α-Hölder correlations) if there exist κ, c > 0 such that,
for all φ, ψ ∈ Cαc (T

1 M) and all t ∈ R,∣∣∣∣∫
T 1 M

φ ◦ g−tψ dmBM −

∫
T 1 M

φdmBM

∫
T 1 M

ψ dmBM

∣∣∣∣≤ ce−κ|t |‖φ‖α‖ψ‖α.

This holds if M is compact and has dimension two by the work of Dolgopyat [Dol] or if
M is compact and locally symmetric by [Sto, Corollary 1.5] (see also [Liv] when M is
compact; the result stated there for the Liouville measure should extend to the Bowen–
Margulis measure).

The following result gives exponentially small error terms in the equidistribution of
the skinning measures to the Bowen–Margulis measure, in the known situations when the
geodesic flow is exponentially mixing. Here we state the result for skinning measures but,
clearly, it remains valid if σCt is replaced by σgt� as in Theorem 19.

THEOREM 20. Let M̃ be a complete simply connected Riemannian manifold with negative
sectional curvature. Let 0 be a discrete, non-elementary group of isometries of M̃. Let
C = (Ci )i∈I be a locally finite 0-equivariant family of proper non-empty closed convex
subsets of M̃, with finite non-zero skinning measure σC . Let M = 0\M̃.
(i) If M is compact and if the geodesic flow on T 1 M is mixing with exponential speed

for the Hölder regularity, then there exist α ∈ ]0, 1[ and κ ′′ > 0 such that, for all
ψ ∈ Cαc (T

1 M), as t→+∞,

1
‖σCt ‖

∫
ψ dσCt =

1
‖mBM‖

∫
ψ dmBM + O(e−κ

′′t
‖ψ‖α).

(ii) If M̃ is a symmetric space, if M has finite volume and if the geodesic flow on T 1 M is
mixing with exponential speed for the Sobolev regularity, then there exists ` ∈ N and
κ ′′ > 0 such that, for all ψ ∈ C `

c (T
1 M), as t→+∞,

1
‖σCt ‖

∫
ψ dσCt =

1
‖mBM‖

∫
ψ dmBM + O(e−κ

′′t
‖ψ‖`).

Proof. Up to rescaling, we may assume that the sectional curvature is bounded from above
by −1. The critical exponent and the Bowen–Margulis measure are finite in all cases
considered.

Let us consider claim (i). Under these assumptions, there is some α ∈ ]0, 1[ such that
the geodesic flow on T 1 M is exponentially mixing for the Hölder regularity α and such
that the strong stable foliation of T 1 M̃ is α-Hölder (see, for instance, [PPS, §7.1]).
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Fix R > 0 and, for every η > 0, let us consider the test function φη = φη,R,C as in §5.
Up to replacing Ci by N1Ci , we may assume that the boundary of Ci is C1,1-smooth, for
every i ∈ I (see §2.2).

Fix ψ ∈ Cαc (T
1 M). We may assume as above that there exists a lift ψ̃ : T 1 M̃→ R of ψ

whose support is contained in a given fundamental domain10 for the action of 0 on T 1 M̃ .
First assume that 0\I is finite. There exist η0 > 0 and t0 ≥ 0 such that, for all η ∈ ]0, η0],
t ∈ [t0,+∞[, w ∈ T 1 M̃ and v ∈ Vw,η,e−t R ,

ψ̃(v)= ψ̃(w)+ O((η + e−t )α‖ψ‖α), (24)

since d(v, w)= O(η + e−t ) by equation (5) and Lemma 3.

As in the proof of Theorem 19 using equation (24) instead of equation (22) (see
equation (23)), we have∫

ψ dσCt

‖σCt ‖
=

∫
T 1 M φηψ ◦ gt dmBM∫

T 1 M φη dmBM
+ O((η + e−t )α‖ψ‖α).

As M is compact, the Patterson densities and the Bowen–Margulis measure are doubling
measures and, using discrete convolution approximation (see, for instance, [Sem, pp.
290–292] or [KKST]), there exist κ ′ > 0 and, for every η > 0, a non-negative function
8η ∈ Cαc (T

1 M) such that:

•
∫

T 1 M 8η dmBM =
∫

T 1 M φη dmBM;
•

∫
T 1 M |8η − φη| dmBM = O(η

∫
T 1 M φη dmBM);

• ‖8η‖α = O(η−κ
′ ∫

T 1 M φη dmBM).

Hence, applying the exponential mixing of the geodesic flow, with κ > 0 as in its definition,
since

∫
T 1 M φη dmBM, which is equal to ‖σC ‖ by Proposition 18, is independent of η, we

have, for η ∈ ]0, η0] and t ∈ [t0,+∞[,∫
ψ dσCt

‖σCt ‖
=

∫
T 1 M 8ηψ ◦ gt dmBM∫

T 1 M φη dmBM
+ O(η‖ψ‖∞ + (η + e−t )α‖ψ‖α)

=

∫
T 1 M 8η dmBM∫
T 1 M φη dmBM

∫
T 1 M

ψ dmBM

+ O(e−κt
‖8η‖α‖ψ‖α + η‖ψ‖∞ + (η + e−t )α‖ψ‖α)

=

∫
T 1 M

ψ dmBM + O((e−κtη−κ
′

+ η + (η + e−t )α)‖ψ‖α).

Taking η = e−tλ for λ small enough (for instance, λ= κ/(2κ ′)), the result follows (for
instance, with κ ′′ =min{κ/2, κ/(2κ ′), α min{1, κ/(2κ ′)}}), when 0\I is finite. As the
implied constants do not depend on the family C , the result holds in general.

The proof of claim (ii) is similar. In this case, the strong stable foliation is smooth
and the Bowen–Margulis measure coincides, up to a scalar multiple, with the Liouville
measure. Thus, we can use the usual convolution approximation (see, for instance,
[Zie, §1.6]) to approximate the test function by smooth functions.
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