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Abstract

Given a negatively curved geodesic metric space M , we study
the almost sure asymptotic penetration behavior of (locally) ge-
odesic lines of M into small neighborhoods of points, of closed
geodesics, and of other compact (locally) convex subsets of M .
We prove Khintchine-type and logarithm law-type results for the
spiraling of geodesic lines around these objets. As a consequence
in the tree setting, we obtain Diophantine approximation results
of elements of non-archimedian local fields by quadratic irrational
ones. 1

1. Introduction

Let M be a compact connected Riemannian manifold with negative
sectional curvature. Endow the total space of the unit tangent bundle
π : T 1M →M with the Bowen-Margulis measure µ, which is the maxi-
mal entropy probability measure for the geodesic flow (φt)t∈R on T 1M .
Let h be the topological entropy of (φt)t∈R. In this paper, we study the
almost sure asymptotic penetration behavior of (locally) geodesic lines
into various objets in M , as tubular neighborhoods of closed geodesic,
tubular neighborhoods of compact embedded totally geodesic submani-
folds, and other convex subsets. In this introduction, we fix a Lipschitz
map g : R+ → R+.

We first consider a closed geodesic C in M , and study the spiraling
of geodesics lines around C. As the geodesic flow is ergodic with respect
to µ, almost every orbit in T 1M is dense. Two geodesic lines, having at
some time their unit tangent vectors close, follow themselves closely a
long time. Hence almost every geodesic line will stay for arbitrarily long
periods of times in a given small neighborhood of C. In this paper, we
make this behaviour quantitative. For that, we prove a Khintchine-type
theorem, and a logarithm law-type corollary, for geodesic lines spiraling
around C. Fix a small enough ǫ > 0, and let NǫC be the (closed)
ǫ-neighborhood of C.
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Theorem 1.1. If
∫ +∞
1 e−h g(t) dt converges (resp. diverges), then for

µ-almost no (resp. every) v ∈ T 1M , there exist positive times (tn)n∈N

converging to +∞ such that π ◦ φt(v) belongs to NǫC for every t in
[tn, tn + g(tn)].

Define the penetration map p : T 1M × R → [0,+∞] into NǫC by
p(v, t) = 0 if π ◦ φt(v) /∈ NǫC, and otherwise p(v, t) is the maximal
length of an interval I in R containing t such that π ◦ φs(v) ∈ NǫC for
every s in I. We refer to [PP1] for (many) other ways to measure the
penetration of a geodesic line in the ǫ-neighborhood of C.

Corollary 1.2. For µ-almost every v ∈ T 1M ,

lim sup
t→+∞

p(v, t)

log t
=

1

h
.

When M has constant curvature, and after a geometric translation,
Theorem 1.1 and Corollary 1.2 follow from known results (see for in-
stance [DMPV], as well as the recent [BV], where the methods are
very different).

We also prove a Khintchine-type theorem for geodesic lines spiraling
around totally geodesic submanifolds. For the sake of simplicity in this
introduction, we only formulate it for real hyperbolic manifolds, see
Theorem 5.3 for a more general statement.

Theorem 1.3. Assume furthermore that M is a real hyperbolic n-
manifold, and let C be a closed embedded totally geodesic submanifold of
dimension k ≥ 1. Let ǫ > 0 be small enough.

If
∫ +∞
1 e−(n−k)g(t) dt converges (resp. diverges), then for µ-almost no

(resp. every) v ∈ T 1M , there exist positive times (tn)n∈N converging to
+∞ such that π ◦ φt(v) belongs to NǫC for every t in [tn, tn + g(tn)].

Besides totally geodesic submanifolds, one could also measure the
asymptotic spiraling of geodesic lines around other convex subsets, in
particular in hyperbolic 3-manifolds.

Theorem 1.4. Assume furthermore that M = Γ\H3
R

is a hyperbolic
3-manifold, and let Γ0 be a quasi-fuschian subgroup of Γ. Let δ0 be the
Hausdorff dimension of the limit set ΛΓ0 of Γ0, and let C be the image in
M of the convex hull C ΛΓ0 of ΛΓ0 in H

3
R
. Assume that γC ΛΓ0 ∩C ΛΓ0

is empty for every γ ∈ Γ − Γ0. Let ǫ > 0 be small enough.
If
∫ +∞
1 e−(2−δ0)g(t) dt converges (resp. diverges), then for µ-almost no

(resp. every) v ∈ T 1M , there exist positive times (tn)n∈N converging to
+∞ such that π ◦ φt(v) belongs to NǫC for every t in [tn, tn + g(tn)].

All these results follow from our main result, Theorem 5.3, which is
much stronger than the above ones. We do not require M to be compact.
The first two statements above remain valid when M is complete, non
elementary, with a negative upper bound on its sectional curvature, up
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to replacing h by the critical exponent δ of the fundamental group Γ

of M acting on a universal Riemannian covering M̃ of M , and under
some assumptions on Γ. Under these hypotheses on M , Theorem 1.4 is

still valid, up to replacing H
3
R

by M̃ , Γ0 by a malnormal infinite index
convex-cocompact subgroup of Γ with crititical exponent δ0, and 2− δ0
by δ − δ0. We may also replace the Bowen-Margulis measure on T 1M
by some other measures, see the comment after Lemma 2.4.

Furthermore, we do not need M̃ to be a manifold, Theorem 5.3 is
valid in general CAT(−1) spaces, for instance in hyperbolic buildings
(i.e. Tits buildings modeled on a hyperbolic reflection group), see [Bou2,
GP, HaP] for examples. Corollary 5.5 is an example of an application.
In this introduction, we quote two results in the setting of trees. The
first one will be proved in Section 5. Let E[·] be the integer part map.

Proposition 1.5. Let T be a locally finite tree, and Aut(T ) be its
locally compact group of automorphisms, such that Aut(T )\T is finite.
Let Γ be a lattice in Aut(T ) acting without inversion on T . Let Γ\GT
be the quotient by Γ of the space GT of isometric maps ℓ : R → T ,
endowed with its geodesic flow (φt)t∈R (the action of R by translations
at the source). Let µ be the Bowen-Margulis measure for the action of
(φt)t∈R on Γ\GT , and h be the Hausdorff dimension of the space of ends
of T . Let C be a cycle in the graph Γ\T with L edges.

If
∫ +∞
1 e−

h
L

g(t) dt converges (resp. diverges), then for µ-almost no
(resp. every) ℓ ∈ Γ\G T , there exist positive times (tn)n∈N converging to
+∞ such that the path t 7→ ℓ(t), starting at time tn, turns around C at
least E[g(tn)] times.

The next result (see Section 6) uses the Bruhat-Tits tree of the alge-

braic group SL2 over the local field K̂ = Fq((X
−1)) of formal Laurent

series in the variable X−1 over the finite field Fq. Let µ be a Haar

measure of K̂. Let | · |∞ be the absolute value of K̂. Recall that an

element of K̂ is irrational if it does not belong to the subfield Fq(X) of
rational fractions over Fq, and is quadratic if it is a solution of a qua-
dratic equation with coefficients in Fq(X). The group SL2(Fq[X]) acts

by homographies on the set of quadratic irrational elements of K̂, and
two of these are congruent if they are in the same orbit. For every irra-

tional quadratic element α in K̂, define h(α) = |α − α∗|−1
∞ , where α∗ is

the Galois conjugate of α, which measures the complexity of α (see Sec-
tion 6). In [HP5], we proved a 0 -1 measure result for the Diophantine

approximation of elements of K̂ by rational ones. The following result
(see Section 6) is an analogous one for the Diophantine approximation

of elements of K̂ by quadratic irrational ones.

Theorem 1.6. Let ϕ : R+ → R
∗
+ be a map with u 7→ logϕ(eu)

Lipschitz. If the integral
∫ +∞
1 ϕ(t)/t dt diverges (resp. converges), then
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for µ-almost every x ∈ K̂,

lim inf
h(β)

ϕ(h(β))
|x− β|∞ = 0 (resp. = +∞) ,

where the lower limit is taken over the quadratic irrational elements β

in K̂, in any congruence class, with h(β) → +∞.

For other number theoretic applications of the results of this paper
and of [PP1], we refer to [PP2].

We first start in Section 2 by recalling properties of the CAT(−1)-
spaces X and their spaces at infinity ∂∞X. We introduce, for every non
empty closed convex subset C of X, a nice new distance-like map dC on
∂∞X − ∂∞C. It generalizes Gromov’s distance when C is reduced to a
point (see for instance [Bou1]), or Hamenstädt’s distance when C is a
horoball (see [Ham][HP1, Appendix]).

In Section 3, we present the main technical tool of this paper, a geo-
metric avatar of the Borel-Cantelli lemma.

This tool will also be used in Appendix A, which is joint work with
C. S. Aravinda, to prove other approximation results, both of Khintchine-
type and logarithm law-type, expressing how exactly close to a given
point almost every geodesic line passes. In particular, we give in the
appendix a new proof of the following result by F. Maucourant [Mau]

Theorem 1.7 (Maucourant). Assume furthermore that M has con-
stant curvature −1 and dimension n, and let x0 ∈M . Then for Liouville-
almost every v in T 1M ,

lim sup
t→+∞

− log d(π ◦ φt(v), x0)

log t
=

1

n− 1
.

See Theorem A.3 in the appendix for a more general statement (valid
in variable negative curvature) about the approximation of given points
by almost every geodesic lines. The appendix can be read independently
of the sections 4, 5, 6.

In Section 4, we start by explaining the general situation covering all
results 1.1-1.6. We prove some new estimates on the relative geometry
of the convex hulls of subgroups of a discrete group of isometries of a
CAT(−1) metric spaceX. Among the new geometric information (possi-
bly useful for later applications), we give in Theorem 4.4 a fluctuating
density result. It explains the variation in ǫ of the mass for a conformal
density of the ǫ-neighborhood of the limit set of a convex-cocompact
subgroup. In Section 5, we then prove our main result, Theorem 5.3,
as a geometric consequence of Theorem 4.6. This last result describes
approximation properties of limit points in the sphere at infinity of X
by various invariant subsets, and could have other applications.

Khintchine-type theorems and their logarithm law-type corollaries for
the spiraling of geodesic lines around cusps were obtained by D. Sullivan
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[Sul] when M has finite volume and constant curvature (see the nice
complements by A. Haas [Haa1, Haa2] for surfaces), by D. Kleinbock
and G. Margulis [KM] if M is a finite volume locally symmetric space,
by B. Stratmann and S. L. Velani [SV] (see also for instance [DMPV,
BV]) if M is geometrically finite with constant curvature, and by the
authors [HP4] if M is geometrically finite with variable curvature. In
this paper, which requires many new geometric inputs, our intellectual
debt to D. Sullivan’s work is still important.

Acknowledgements. The second author acknowledges the support of the Uni-
versity of Georgia at Athens for fruitful visits. We also thank V. Kleptsyn
andx M. Pollicott for their comments, F. Haglund for Remark 5.4, and the
referee for many improvements in the writing of this paper.

2. On convexity properties of CAT(-1)-spaces and their
discrete subgroups

We refer for instance to [Bou1, BH] for the definitions and basic
properties of CAT(−1) metric spaces, their horospheres and their dis-
crete groups of isometries. The new result in this section is the con-
truction of the distance-like map dC for a convex subset C in subsection
2.2.

2.1. Generalities. Let X be a proper CAT(−1) geodesic metric space.
Its boundary at infinity is denoted by ∂∞X. The space of geodesic
lines ℓ : R → X in X, with the compact-open topology, is denoted by
GX. The geodesic flow on GX is the action of R by translation at
the source. For every base point x0 in X, the space GX identifies with
((∂∞X×∂∞X)−∆)×R, where ∆ is the diagonal in ∂∞X×∂∞X, by the
map which associates to a geodesic line ℓ the triple (ℓ(−∞), ℓ(+∞), t) of
the points at infinity of ℓ and the algebraic distance t on ℓ (oriented from
ℓ(−∞) to ℓ(+∞)) between ℓ(0) and the closest point of ℓ to x0. This
parametrization (called Hopf’s) differs from the one defined by another
base point x′0 only by an additive term on the third factor (invariant
under the geodesic flow). When X is a Riemannian manifold, the map
T 1X → GX which associates to v ∈ T 1X the geodesic line t 7→ π◦φt(v),
with π : T 1X → X the canonical projection, is an homeomorphism
equivariant with respect to the actions of the isometry group of X and
of the geodesic flows on T 1X and GX.

For every ξ in ∂∞X, the Buseman function at ξ is the map βξ from
X ×X to R defined by

βξ(x, y) = lim
t→+∞

d(x, ξt) − d(y, ξt) ,

for any geodesic ray t 7→ ξt ending at ξ. For every subset A of X and
every point x in X∪∂∞X, we denote by OxA the shadow of A seen from
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x, i.e. the set of points at infinity of the geodesic rays or lines starting
from x and meeting A.

The following result, needed only in Appendix A, is Proposition 3.1
of [HP2] (whose proof of the left inclusion is valid under the only as-
sumptions below).

Lemma 2.1. Let ρ be a geodesic ray in X, with x = ρ(0) and ξ =
ρ(+∞).

(1) For every c, t > 0, the ball Bdx(ξ, ce−t) for the visual distance (see
Example 1 below) dx on ∂∞X is contained in the shadow Ox

(
B(ρ(t), c)

)
.

(2) If X is a Riemannian manifold with sectional curvature −a2 ≤
K ≤ −1, where a ≥ 1, then there exists κ1, κ2, κ3 > 0 such that for every
c ∈ ] 0, κ3] and every t ≥ κ2, the shadow Ox

(
B(ρ(t), c)

)
is contained in

the ball Bdx(ξ, κ1 c
1
a e−t). �

Given a point at infinity ξ ∈ ∂∞X and a horosphere H centered
at ξ, let dξ,H , d

′
ξ,H : (∂∞X − {ξ})2 → R be the following maps. Let

η, η′ ∈ ∂∞X − {ξ}. Let t 7→ ηt and t 7→ η′t be the geodesic lines starting
from ξ, crossing through H at time t = 0, and converging to η and η′,
respectively. Define the Hamenstädt distance (see [Ham][HP1, Appen-
dix])

dξ,H(η, η′) = lim
t→+∞

e
1
2
d(ηt,η′

t)−t ,

which is a distance inducing the original topology on ∂∞X − {ξ}. The
cuspidal distance (see [HP3]) d′ξ,H is defined as follows: If η 6= η′, then

− log
(
2 d′ξ,H(η, η′)

)
is the signed distance, along the geodesic line ]ξ, η[

oriented from ξ to η, fromH to the horosphere centered at η and meeting
the geodesic line ]ξ, η′[ in exactly one point. Though not necessarily
an actual distance, d′ξ,H is equivalent to the Hamenstädt distance (see

[HP3, Rem. 2.6]).

2.2. A distance-like map at infinity relative to a convex subset.
Let C be a non empty closed convex subset of X. (Recall that a subset C
in a CAT(−1) metric space is convex if C contains the geodesic segment
between any two points in C.) We denote by ∂∞C its set of points at
infinity (the intersection with ∂∞X of the closure of C in X×∂∞X), and
by ∂C its boundary in X. For every ξ in X ∪∂∞X, we define the closest
point to ξ on the convex set C, denoted by πC(ξ), to be the following
point p in C ∪ ∂∞C: If ξ ∈ X, then p belongs to C and minimizes the
distance between x and a point of C; if ξ ∈ ∂∞X−∂∞C, then p belongs
to C and the (closed) horoball centered at ξ whose horosphere contains
p meets C exactly at p; if ξ ∈ ∂∞C, then we define p = ξ. The point
p exists, is unique, and πC : X ∪ ∂∞X → C ∪ ∂∞C is continuous, by
the properties of CAT(−1)-spaces. For every isometry γ of X, we have
πγC = γ ◦ πC ◦ γ−1. When X is a Riemannian manifold, πC is (outside
∂∞C) the orthogonal projection on C.
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Let us define a distance-like map dC on ∂∞X − ∂∞C. For every ξ, η
in ∂∞X − ∂∞C, let t 7→ ξt and t 7→ ηt be geodesic rays, starting at time
0 from the closest points to ξ and η on C, and converging to ξ and η
respectively. Define

dC(ξ, η) = lim
t→+∞

e
1
2
d(ξt,ηt)−t = lim

t→+∞
e

1
2

(
d(ξt,ηt)−d(ξt,πC(ξ))−d(ηt ,πC(η))

)
.

Note that these limits exist, and the second equality holds for all geodesic
rays t 7→ ξt and t 7→ ηt converging to ξ and η, respectively. For every
isometry γ of X, we have

dγC(γξ, γη) = dC(ξ, η) .

In particular, any isometry of X preserving C preserves dC . For every
ǫ > 0, the (closed) ǫ-neighborhood NǫC of C in X is still convex with
∂∞(NǫC) = ∂∞C, and

dNǫC(ξ, η) = eǫ dC(ξ, η) .

Examples.
(1) If C is reduced to a point x in X, then dC = dx is the usual visual

distance seen from x on ∂∞X (see for instance [Bou1]).
(2) If C is a (closed) ball of center x and radius r, then dC = er dx,

as C = Nr{x}.
(3) If C is a (closed) horoball with point at infinity ξ and boundary

horosphere H, then dC = dξ, H is the Hamenstädt distance on ∂∞X−{ξ}
as recalled above. If (Cn)n∈N is a sequence of balls converging uniformly
on compact subsets of X to an horoball C, then the maps dCn converge
uniformly on compact subsets of ∂X − {ξ} to dC .

(4) If X is a metric tree, then it is easy to prove that, for every ξ, η
in ∂∞X − ∂∞C,

(1) dC(ξ, η) =




e

1
2

d(πC(ξ), πC(η)) if πC(ξ) 6= πC(η)

e−d(πC(ξ), q) if πC(ξ) = πC(η) and
[πC(ξ), ξ[ ∩ [πC(η), η[ = [πC(ξ), q] .

In particular, in a sufficiently small neighborhood of any point ξ0 in
∂∞X−∂∞C, the map dC then coincides with the visual distance dπC(ξ0).

(5) Let X be the real hyperbolic n-space H
n
R
, and let C be a complete

totally geodesic submanifold of dimension k with 0 < k < n. Let x0 be a
point in C, and Sx0(C

⊥) be the sphere of unit tangent vectors at x0 that
are perpendicular to C, endowed with the angular distance (v, v′) 7→
∠x0(v, v

′). Note that the standard Euclidean distance on Sx0(C
⊥) is

given by (v, v′) 7→ 2 sin
∠x0(v,v′)

2 . For every ξ ∈ ∂∞X − ∂∞C, let π′C(ξ)
be the parallel transport to x0, along a geodesic line through x0 and
πC(ξ), of the unit tangent vector at πC(ξ) of the geodesic ray [πC(ξ), ξ[.
We thus get a map π′C : ∂∞X − ∂∞C → Sx0(C

⊥). In particular, the

map (πC , π
′
C) : ∂∞X − ∂∞C → C × Sx0(C

⊥) is a homeomorphism.
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Lemma 2.2. For every ξ, η in ∂∞X − ∂∞C,

dC(ξ, η) =

√

sinh 2
d
(
πC(ξ), πC(η)

)

2
+ sin 2

∠x0

(
π′C(ξ), π′C(η)

)

2
.

Proof. Let ρ = d(πC(ξ), πC(η)) and let θ = ∠x0(π
′
C(ξ), π′C(η)). We

have to prove that dC(ξ, η) = 1
2

√
eρ + e−ρ − 2 cos θ. This last formula

follows from an easy computation using the picture below. Recall that
sinh b = 1/ tanα, where b is the hyperbolic length of the arc of any half-
circle perpendicular to the horizontal plane between the angles α and π

2

in the upper halfspace model of H
3
R

(see [Bea, page 145]).

C ∩ H
3
R

ρ

θ √
e2ρ + 1 − 2eρ cos θ

ξ

πC(η)

s η

1

η′s

ξs

ηs

ξ′s

πC(ξ)

eρ
0

Take a copy of H
3
R

containing ξ, η and a geodesic line passing through
πC(ξ), πC(η). Use the upper halfspace model of H

3
R

where this geo-
desic line is a vertical line between 0 and ∞, with πC(η) above πC(ξ).
Scale such that the Euclidean distance between 0 and ξ is 1. Consider
the points η′s, ηs, ξ

′
s, ξs at Euclidean height s close to 0 on respectively

[πC(η), η[ , ]η, ξ[ close to η, [πC(ξ), ξ[ , ]η, ξ[ close to ξ, so that dC(ξ, η)
is equal to

lim
s→0

e
1
2

(
d(ξs,ηs)−d(ξ′s,πC(ξ))−d(η′

s ,πC(η))
)
.

Now just use several times the previously mentionned formula sinh b =
1/ tanα. �

In particular, if X = H
2
R
, if C is a geodesic line and if ξ, η are in the

same component of ∂∞X − ∂∞C, then

dC(ξ, η) = sinh
d(πC(ξ), πC(η))

2
.

By taking a, b, c in the same component of ∂∞X − ∂∞C such that
d(πC(a), πC(b)) = d(πC(b), πC(c)) = 1

2d(πC(a), πC(c)) are big enough,
we see that dC does not satisfy the triangle inequality, hence is not a
distance.
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After these examples, let us go back to the general situation on X,C,
and let us prove some results saying that at least on compact subsets,
the map dC behaves quite like a distance.

Lemma 2.3. (1) For every x0 in X, for every compact subset K of
∂∞X − ∂∞C, there exists a constant cK > 0 such that for every ξ, η in
K, we have

1

cK
dx0(ξ, η) ≤ dC(ξ, η) ≤ cK dx0(ξ, η) .

(2) For every ξ in ∂∞X − ∂∞C, the map η 7→ dC(ξ, η) is proper on
∂∞X − ∂∞C.
(3) For every ξ, η in ∂∞X − ∂∞C,

(3 − 2
√

2) e
1
2
d(πC(ξ),πC(η)) e−d(C, ]ξ,η[ ) ≤ dC(ξ, η) ≤ e

1
2
d(πC(ξ),πC(η)) .

(4) There exist universal constants c, c′ > 0 such that for every ξ, η in
∂∞X − ∂∞C, if dC(ξ, η) ≤ c, then C and the geodesic line ]ξ, η[ are
disjoint, and

1

c′
e−d(C, ]ξ,η[ ) ≤ dC(ξ, η) ≤ c′ e−d(C, ]ξ,η[ ) .

Note that by hyperbolicity, min{d(πC(ξ), πC(η)), d(C, ]ξ, η[ )} is, for
every ξ, η, less than a universal constant.

Proof. For every x0 in the convex subset C and ξ in ∂∞X − ∂∞C, by
the triangle inequality and the CAT(−1) inequality, we have

d(ξt, x0) ≤ d(ξt, πC(ξ)) + d(x0, πC(ξ)) ≤ d(ξt, x0) + 2 log(1 +
√

2) ,

with ξt as above. Hence for every ξ, η in ∂∞X − ∂∞C,
(2)

(3 − 2
√

2) dx0(ξ, η) ≤ dC(ξ, η) e−
1
2

(
d(x0,πC(ξ))+d(x0,πC(η))

)
≤ dx0(ξ, η) .

The first result easily follows. By taking x0 = πC(ξ) in the lower bound
of Equation (2), the second assertion also follows. The upper bound in
the third assertion follows by the definition of dC(ξ, η) and the triangular
inequality.

By the triangle inequality, dx0(ξ, η) ≥ e−d(x0, ]ξ,η[ ). Hence, by taking
x0 in Equation (2) to be the closest point of C to ]ξ, η[ if C and ]ξ, η[
are disjoint, or any point in C∩ ]ξ, η[ otherwise, and by using again the
triangle inequality, the lower bound in the third assertion follows.

The last assertion follows by standard techniques of approximation
by trees (see for example [GH, page 33]). �

In particular, the non negative symmetric map dC vanishes on and
only on the diagonal of (∂∞X − ∂∞C)2. But as mentioned above, dC is
not always a distance.

It also follows from Lemma 2.3 (1) that the uniform structure (see for
instance [Bou]) defined (restricted to compact subsets) by the family

9
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(
{(x, y) ∈ (∂∞X − ∂∞C)2 : dC(ξ, η) ≤ ǫ}

)
ǫ>0

is isomorphic (on com-

pacts subsets) to the uniform structure defined by the distance dx0 .

Remark. Though we will not need it in this paper, we prove a formula
expressing the distance-like map dC , when C = L is a geodesic line with
endpoints L−, L+, in terms of the Hamenstädt distance and the cuspidal
distance: For every ξ, η in ∂∞X − {L−, L+}, for every horosphere H
small enough centered at L−,

dC(ξ, η) =
dL−,H(ξ, η)

2
(
d′L−,H(ξ, L+)d′L−,H(η, L+)

) 1
2

.

Proof. Let Hξ (resp. Hη) be the horosphere centered at ξ (resp. η)
passing through πC(ξ) (resp. πC(η)). Let hξ (resp. hη) be the intersec-
tion point of Hξ (resp. Hη) with the geodesic line ]ξ, L−[ (resp. ]η, L−[).
Then

dC(ξ, η) = lim
t→+∞

e
1
2

(
d(ξt,ηt)−d(ξt,hξ)−d(ηt,hη)

)

= dL−,H(ξ, η) e
1
2

(
d(hξ,H)+d(hη ,H)

)
,

which proves the result. �

2.3. Patterson-Sullivan-Bowen-Margulis measures. Let Γ be a dis-
crete group of isometries of X. Its limit set is denoted by ΛΓ, and if ΛΓ
contains at least two points, then the convex hull of ΛΓ is denoted by C Γ.
Recall that ∂∞C Γ = ΛΓ. The critical exponent of Γ is the unique number
δΓ in [0,+∞] such that the Poincaré series Px0,Γ(s) =

∑
γ∈Γ e

−s d(x0,γx0)

of Γ converges for s > δΓ and diverges for s < δΓ, where x0 is any point
in X. The group Γ is called of divergence type if its Poincaré series di-
verges at s = δΓ. The group Γ is non elementary if ΛΓ contains at least
three points, and we have then δΓ > 0. Note that when X is a Riemann-
ian manifold and Γ is torsion free with compact quotient X/Γ, then the
critical exponent δΓ of Γ is the topological entropy of the geodesic flow
of X/Γ (see for instance [Man]).

If δ ∈ ]0,+∞[, a conformal (or Patterson-Sullivan) density of dimen-
sion δ for Γ is a family (µx)x∈X of finite Borel measures on ∂∞X, such
that

• ∀ γ ∈ Γ , γ∗µx = µγx,

• ∀ x, y ∈ X, ∀ ξ ∈ ∂∞X , dµx

dµy
(ξ) = e−δ βξ(x,y).

Using Hopf’s parametrization with respect to any base point x0 of X, the
(Patterson-Sullivan-)Bowen-Margulis measure associated to this family
is the measure µ̃BM on GX given by

d µ̃BM =
dµx0(ξ) dµx0(η) dt

dx0(η, ξ)
2δ

.

10
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This measure on GX is independent of x0, invariant by the action of Γ
and by the geodesic flow (and by the time reversal ℓ 7→ {t 7→ ℓ(−t)}),
hence defines a measure µBM on Γ\GX which is invariant by the quotient
geodesic flow (see for instance [Bou1, Rob]). Note that if µBM is finite,
then δ = δΓ and Γ is of divergence type (see [Rob, page 18-19]).

If Γ is of divergence type with a finite non zero critical exponent
δ, then (see for instance [Bou1]) there exists a conformal density of
dimension δ for Γ, which is unique up to a positive scalar factor, and
which is ergodic with respect to the action of Γ on ∂∞X. The Bowen-
Margulis measure associated to any such conformal family (both on GX
and on Γ\GX) will be called a Bowen-Margulis measure of Γ (it is also
uniquely defined up to a positive scalar factor). When X is a manifold
and Γ acts freely on X with compact quotient, the Bowen-Margulis
measure on the unit tangent bundle of the compact negatively curved
manifold M = Γ\X, normalized to be a probability measure, is the
maximal entropy probability measure for the geodesic flow of M (via
the canonical identification of GX and T 1X), see for instance [Kai].
When furthermore X has constant curvature, then the Bowen-Margulis
measure and the Liouville measure (when both are normalized) coincide
on M .

The following result, which is obvious by definition of the Bowen-
Margulis measure, will be used in the sections 5 and A.

Lemma 2.4. Let π+ : GX → ∂∞X be the continuous map ℓ 7→
ℓ(+∞). Let µ̃BM be the Bowen-Margulis measure on GX associated to
a conformal family (µx)x∈X for Γ. Then the preimage by π+ of a set of
measure 0 (resp. > 0) for µx (for some (equivalently for any) x in X)
has measure 0 (resp. > 0) for µ̃BM. �

Besides its invariance under Γ and the geodesic flow, and its ergodicity
on Γ\GX, this is the only property of the Bowen-Margulis measure µ̃BM

on GX that will be used in this paper. In particular, we may replace
µ̃BM by any other measure satisfying these invariance properties and this
lemma, as for instance the Knieper measure (see [Kni]).

2.4. Convex-cocompact subgroups. The group Γ is said to be con-
vex-cocompact if ΛΓ contains at least two points, and if the action of Γ
on C Γ has compact quotient. In particular, the group generated by a
hyperbolic isometry of X is convex-cocompact, with critical exponent 0.
In fact, if Γ is convex-cocompact, then its critical exponent is 0 if and
only if Γ has an index two subgroup generated by a hyperbolic isometry
of X. Note that ∂∞C Γ = ΛΓ, and that if Γ is convex-cocompact then
Γ is of divergence type (see for instance [Bou1, Rob]).

11



12 SA’AR HERSONSKY & FRÉDÉRIC PAULIN

For every f, g : N → [0,+∞[, write f ≍ g if there exists a constant
c ≥ 1 such that 1

c f ≤ g ≤ cf . For every x0 in X, if Γ is convex-
cocompact and non elementary, with critical exponent δΓ, then

Card(B(x0, n) ∩ Γx0) ≍ eδΓn

(see for instance [Rob], where others, much more general, assumptions
on Γ are given for this property to hold. This is the case for example
when the Bowen-Margulis measure µBM of Γ is finite (and the length
spectrum is non arithmetic), see [Rob, page 56]).

Lemma 2.5. Let Γ0 be a convex-cocompact subgroup with infinite
index in a discrete group of isometries Γ of X. Let δ0 and δ be the
critical exponents of Γ0 and Γ respectively. Then δ0 < δ.

Proof. This is well-known (see for instance [Fur] in a special case). �

Recall that the virtual normalizer NΓ0 of a convex-cocompact sub-
group Γ0 of Γ is the stabilizer in Γ of the limit set ΛΓ0. It contains
the normalizer of Γ0 in Γ, and it contains Γ0 with finite index (see for
instance [KS, Arz]).

Recall that a subgroup H of a group G is malnormal if, for every g in
G −H, we have gHg−1 ∩H = {1}. We will say that a subgroup H of
a group G is almost malnormal if, for every g in G −H, the subgroup
gHg−1 ∩ H is finite. Note that malnormal implies almost malnormal,
and that the converse is true if the ambient group is torsion free.

The following result is folklore, we provide a proof because we couldn’t
find a precise reference.

Proposition 2.6. Let Γ0 be a convex-cocompact subgroup of a discrete
group Γ of isometries of X, then the following assertions are equivalent.

(1) Γ0 is almost malnormal in Γ;
(2) the limit set of Γ0 is precisely invariant, i.e. for every γ ∈ Γ− Γ0,

the set ΛΓ0 ∩ γΛΓ0 is empty;
(3) C Γ0 ∩ γC Γ0 is compact for every γ ∈ Γ − Γ0;
(4) for every ǫ > 0, there exists κ = κ(ǫ) > 0 such that, for every

γ ∈ Γ − Γ0, we have diam
(
NǫC Γ0 ∩ γNǫC Γ0

)
≤ κ .

The convex hull in X of the limit set of a convex-cocompact sub-
group is non compact. Hence an almost malnormal convex-cocompact
subgroup of Γ is equal to its virtual normalizer, by (3).

Proof. As ∂∞C Γ0 = ΛΓ0 and γΛΓ0 = Λ(γΓ0γ
−1), it is clear that (4)

implies (3), which implies (2), which implies (1).
Let us prove that (1) implies (4). Let C0 = C Γ0 and ǫ > 0. Assume

by absurd that for every n in N, there exists γn in Γ − Γ0 and xn, yn

in NǫC0 ∩ γnNǫC0 with d(xn, yn) ≥ n. As Γ0\NǫC0 is compact and
the action of Γ0 is isometric, there exists R > 0 such that Γ0B(x,R)

12
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contains NǫC0 for every x in NǫC0. As γn is an isometry, we also have
that γnΓ0γ

−1
n B(y,R) contains γnNǫC0, for every y in γnNǫC0.

Up to conjugating γn by an element of Γ0, we may assume that xn

stays in a compact subset K of X, and we define K ′ = NRK, which is
compact. As Γ is discrete, the number N of elements γ in Γ, such that
γK ′ ∩K ′ is non empty, is finite.

As Γ0 is convex-cocompact (and discrete), the upper bound of the
cardinals of the finite subgroups of Γ0 is finite. Hence, as Γ0 is almost
malnormal, there exists N ′ ∈ N such that for every γ in Γ − Γ0, the
cardinal of γΓ0γ

−1 ∩ Γ0 is at most N ′ − 2.
Take n in N with n > NN ′ diam K ′. Subdivide the segment between

xn and yn in points u0 = xn, u1, . . . , uNN ′ = yn, such that d(uk, uk+1) >
diam K ′ for 0 ≤ k ≤ NN ′ − 1. As K ′ contains B(xn, R) and xn, yn

belong to the convex subset NǫC0 ∩ γnNǫC0, for 0 ≤ k ≤ NN ′, there
exist αk, βk in Γ0 such that uk ∈ αkK

′ and uk ∈ γnβkγ
−1
n K ′. Note that

αk 6= αj if k 6= j, as d(uk, uj) > diam K ′. By the definition of N , there

exists (kj)1≤j≤N ′ with α−1
kj
γnβkj

γ−1
n = α−1

k1
γnβk1γ

−1
n for 1 ≤ j ≤ N ′.

Hence γnβkj
β−1

k1
γ−1

n = αkj
α−1

k1
, for 2 ≤ j ≤ N ′. This contradicts the

fact that the cardinal of γnΓ0γ
−1
n ∩Γ0 is at most N ′−2, since the αkj

α−1
k1

for 2 ≤ j ≤ N ′ are pairwise distinct. �

Remark. The fact that the first two assertions are equivalent follows
also from the well-known equality

ΛΓ0 ∩ γΛΓ0 = Λ(Γ0 ∩ γΓ0γ
−1) ,

see for instance [SS, Coro. 3] for a proof in a special case.

3. A geometric avatar of the Borel-Cantelli lemma

The main technical tool of this paper is the following result, which is
a suitable enhancement of the Borel-Cantelli Lemma.

Theorem 3.1. Let (Z,µ) be a measured space with µ(Z) finite, and
(Bi(ǫ))i∈I, ǫ∈ ] 0,+∞[ a family of measurable subsets in Z, non-decreasing
in ǫ (for the inclusion), endowed with a map i 7→ ni from I to N such
that In = {i ∈ I : ni = n} is finite for every n. Let f1, f2, f3, f4 be
maps from N to ] 0,+∞[ and f5 a map from ] 0,+∞[ to itself. Let E be
the (measurable) set of points in Z belonging to infinitely many subsets
Bi(f3(ni)) for i in I.

[A] Assume that f3 ≤ f2 and that there exists c ≥ 1 such that, for
every n in N, i in I and ǫ ∈ ] 0, f2(ni)], one has Card In ≤ cf1(n)
and µ(Bi(ǫ)) ≤ cf4(ni)f5(ǫ). If the series

∑∞
n=0 f1(n)f4(n)f5(f3(n))

converges, then µ(E) = 0.

[B] Assume that there exists c ≥ 1 such that

(1) f3 ≤ f2,

13



14 SA’AR HERSONSKY & FRÉDÉRIC PAULIN

(2) 1
f5◦f2

≤ f4f1,

(3) there exists c′, c′′ > 1 such that for every ǫ, ǫ′ > 0, if ǫ′ ≤ c′ǫ, then
f5(ǫ

′) ≤ c′′f5(ǫ),
(4) for every n in N, one has 1

cf1(n) ≤ Card In ≤ cf1(n),
(5) for every i in I and ǫ ∈ ] 0, f2(ni)], we have

1

c
f4(ni)f5(ǫ) ≤ µ(Bi(ǫ)) ≤ cf4(ni)f5(ǫ) ,

(6) for every n in N, the subsets Bi(f2(n)) for i in In are pairwise
disjoint,

(7) for every i and j in I such that ni < nj, if the intersection of
Bj(f3(nj)) and Bi(f3(ni)) is non empty, then Bj(f2(nj)) is con-
tained in Bi(cf3(ni)).

If the series
∑∞

n=0 f1(n)f4(n)f5(f3(n)) diverges, then µ(E) > 0.

Note that (except for the convergence of the series) every hypothesis of
Case [A] is part of a hypothesis (1)-(5) of Case [B]. Hence when checking
the hypotheses when we want to apply both cases of this theorem, we
will only check the ones of Case [B].

Proof. For i in I and n in N, let Bi = Bi(f3(ni)) and An =
⋃

i∈In
Bi,

so that E =
⋂

n∈N

⋃
k≥nAk.

Under the assumptions of [A], by the subadditivity of µ, we have
the inequality µ(An) ≤ c2f1(n)f4(n)f5(f3(n)). Therefore the end of
the proof is standard: If the series

∑∞
n=0 f1(n)f4(n)f5(f3(n)) converges,

then the sequence uk =
∑∞

n=k f1(n)f4(n)f5(f3(n)) tends to 0, therefore

µ(E) = lim
n→∞

µ

( ∞⋃

k=n

Ak

)
≤ lim

n→∞
c2un = 0 .

Assume now that the assumptions of [B] hold. We first claim that

f1(n)f4(n)f5(f3(n)) ≤ c2µ(An) . (∗)
Indeed, the balls Bi for i in In are pairwise disjoint by (1) and (6), since
the subsets Bi(r) are non-decreasing in r. By the additivity of µ, by the
lower bounds in (4) and (5), the inequality (*) hence follows.

In particular,
∑
µ(An) diverges if

∑
f1(n)f4(n)f5(f3(n)) diverges.

Now, let n,m be in N with n < m. By the properties (6) and (7), for
every i in In, we have

µ (Bi(cf3(ni))) ≥ Card{j ∈ Im : Bj ∩Bi 6= ∅} min
j∈Im

µ (Bj(f2(m))) .

Hence by (5)

Card{j ∈ Im : Bj ∩Bi 6= ∅} ≤ cf4(n)f5(cf3(n))
1
c f4(m)f5(f2(m))

. (∗∗)
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Therefore

µ(An ∩Am) ≤
∑

i∈In

∑

j∈Im , Bj∩Bi 6=∅
µ(Bj)

≤ cf1(n) × cf4(n)f5(cf3(n))
1
c f4(m)f5(f2(m))

× cf4(m)f5(f3(m))

≤ c4(c′′)
log c

log c′
+1
f1(n)f4(n)f5(f3(n))f1(m)f4(m)f5(f3(m))

≤ c8(c′′)
log c

log c′
+1
µ(An)µ(Am) .

The second inequality follows from (4), (**) and (5), the third inequality
follows from (2) and an iterated application of (3), and the last one from
(*).

The following Borel-Cantelli Lemma is well-known (see for instance
[Spr]).

Theorem 3.2. Let (Z, ν) be a probability space. Let (An)n∈N be a
sequence of measurable subsets of Z such that there exists a constant
c > 0 with ν(An∩Am) ≤ c ν(An) ν(Am) for every distinct integers n,m.

Let A∞ =
⋂

n∈N

⋃
k≥nAk. Then ν(A∞) > 0 if and only if

∞∑

n=0

ν(An)

diverges. �

The assertion [B] of Theorem 3.1 then follows. �

4. Approximation of limit points

In this section, we start by describing our general framework: a nice
subgroup Γ0 of a discrete group of isometries Γ of a CAT(−1) space.
The main result of this section, Theorem 4.6, explains in a quantitative
way the approximation of the limit points of Γ by the orbits under Γ of
the limit points of Γ0. To prove it, we will check, in a series of results
of independent interests, the hypotheses (1)-(7) of Theorem 3.1, our
geometric avatar of the Borel-Cantelli Lemma.

Let X be a proper CAT(−1) geodesic metric space. Let Γ be a non
elementary discrete group of isometries of X, with finite critical expo-
nent δ. Let Γ0 be an almost malnormal convex-cocompact subgroup of
infinite index in Γ with critical exponent δ0, and let C0 = C Γ0. It is
likely that the hypothesis “convex-cocompact” could be replaced by “ge-
ometrically finite” up to some adaptations, but this would surely make
the statements and proofs much more technical, hence we prefer to work
under our hypotheses. Let πC0 : X ∪ ∂∞X → C0 ∪ ∂∞C0 be the closest
point map. By Lemma 2.5, the number δ0 belongs to [0, δ[. Moreover,
it follows from Section 2 that C0 is non compact and that Γ0 is the
stabilizer in Γ of C0.

15
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Examples. (1) Let γ0 be a hyperbolic element of Γ, let C0 be its
translation axis and let Γ0 be the stabilizer of C0 (which is virtually
infinite cyclic, and infinite cyclic when Γ is torsion free). Since Γ is
non elementary, the subgroup Γ0 has infinite index. Furthermore, if
γ ∈ Γ and γΓ0γ

−1 ∩ Γ0 is infinite, then γ conjugates some hyperbolic
element of Γ0 to another one. The image by an element γ in Γ of the
translation axis of a hyperbolic element α of Γ is the translation axis of
γαγ−1. Hence γ preserves C0, therefore belongs to Γ0. Therefore Γ0 is
an almost malnormal convex-cocompact subgroup of infinite index in Γ
with critical exponent δ0 = 0.

(2) Let M be a complete Riemannian manifold with dimension n ≥ 2
and sectional curvature at most −1, and π : X → M be a universal
Riemannian covering, with covering group Γ. Let M0 be a compact
connected embedded totally geodesic submanifold in M of dimension k
with 1 ≤ k ≤ n−1, let C0 be a connected component of the preimage of
M0 inX, and let Γ0 be the stabilizer of C0 in Γ (with good choices of base
points, Γ can be identified with the fundamental group of M , and Γ0

with the image in the fundamental group of M of the fundamental group
of M0). Then Γ0 is an almost malnormal (for instance by Proposition
2.6 (3)) convexa-cocompact subgroup of Γ. If for instance M has finite
volume, then Γ is non elementary and Γ0 has infinite index in Γ. If M
has constant sectional curvature −1, then δ = n− 1 and δ0 = k − 1.

(3) Let X = H
3
R

be the real hyperbolic space of dimension 3, and
Γ be a Kleinian group. If Γ0 is a precisely invariant quasi-fuschian
subgroup, without parabolic elements, of infinite index in Γ, then Γ0 is an
almost malnormal (by Proposition 2.6 (2)) convex-cocompact subgroup
of infinite index in Γ.

After these examples, let us proceed. Denote by R0 the set of double
cosets

R0 = Γ0\(Γ − Γ0)/Γ0 .

For every r = [γ] in R0, define

D(r) = d(C0, γC0) ∈ [0,+∞[ ,

which does not depend on the representative γ of r. The next result
says that the subset {D(r) : r ∈ R0} of [0,+∞[ is discrete, with finite
multiplicities.

Lemma 4.1. For every c ≥ 0, the set of elements r in R0 such that
D(r) ≤ c is finite.

Proof. For every c ≥ 0, assume that there exists a sequence of pairwise
distinct elements ([γi])i∈N in R0 such that D([γi]) ≤ c for every i. Fix x∗
in C0, and let D be the diameter of Γ0\C0. For every i in N, let xi in C0

and yi in γiC0 be any points such that d(xi, yi) ≤ c+1. Up to replacing
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γi by another representative of [γi], we may assume that d(xi, x∗) ≤ D
and d(yi, γix∗) ≤ D. Hence d(x∗, γix∗) ≤ 2D + c+ 1 for every i, which
contradicts the discreteness of Γ. �

Proposition 4.2. Assume that Card Γx ∩ B(x, n) ≍ eδn for some
(hence every) x in X. Then there exists N in N − {0} such that

Card {r ∈ R0 : n ≤ D(r) < n+N} ≍ eδn .

Proof. Since δ0 < δ, the proof is the same as the proof of [HP4,
Theo. 3.4], up to replacing the horoball HB0 by C0. �

Define X0 = Γ0\X, and ∂∞X0 = Γ0\(∂∞X − ΛΓ0). Since Γ0\C0

is compact, and since the closest point map is a proper continuous Γ0-
equivariant map from ∂∞X − ΛΓ0 to C0, the space ∂∞X0 is compact.
The distance-like map dC0 on ∂∞X −ΛΓ0 is invariant under Γ0, and we
denote by d0 the quotient distance-like map on ∂∞X0, i.e.

(3) d0(x, y) = inf
x∈x, y∈y

dC0(x, y) .

Let r = [γ] be an element in R0. Define Λr (which does not depend
on the representative γ of r) as the image of γΛΓ0 by the canonical
projection ∂∞X −ΛΓ0 → ∂∞X0. By Proposition 2.6 (2), it follows that
(Λr)r∈R0 is a family of pairwise disjoint compact subsets of ∂∞X0. For
every ǫ > 0, define Nr(ǫ) as the ǫ-neighborhood of Λr in ∂∞X0 for the
distance-like map d0. Note that Nr(ǫ) ⊂ Nr(ǫ

′) if ǫ < ǫ′.
Let (µx)x∈X be a conformal density of dimension δ for Γ. Fix a base

point x0 in C0. Define a map µ̃Γ0x0 : B → [0,+∞], where B is the
σ-algebra of Borel subsets of ∂∞X − ΛΓ0, by

µ̃Γ0x0 =
∑

α∈Γ0

µαx0 .

Lemma 4.3. The map µ̃Γ0x0 is a locally finite positive Borel measure
on ∂∞X −ΛΓ0, which is invariant under Γ0, and absolutely continuous
with respect to the restriction to ∂∞X − ΛΓ0 of µx for every x in X.

We denote by µΓ0x0 the finite Borel measure on the compact quotient
∂∞X0 of ∂∞X − ΛΓ0 defined by µ̃Γ0x0 .

Proof. Denote by s 7→ Px0,Γ0(s) =
∑

α∈Γ0
e−sd(αx0,x0) the Poincaré

series of Γ0 with base point x0.

u

αx0

πC0
(ξ)

C0

ξ

17
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Let ξ be in ∂∞X − ΛΓ0 and α be in Γ0. The point αx0 belongs to C0.
Hence the horosphere centered at ξ passing through πC0(ξ) meets the
geodesic ray from αx0 to ξ in a point u. As C0 is convex and πC0(ξ) is
the closed point in C0 to ξ, by an easy CAT(−1) comparison argument,

the distance d(u, πC0(ξ)) is at most 1 (and even at most log 3+
√

5
2 ). By

the triangle inequality,

βξ(αx0, πC0(ξ)) = d(αx0, u) ≥ d(αx0, πC0(ξ)) − d(u, πC0(ξ)) .

Therefore

βξ(αx0, x0) = βξ(αx0, πC0(ξ)) − βξ(x0, πC0(ξ))

≥ d(αx0, πC0(ξ)) − 1 − d(x0, πC0(ξ))

≥ d(αx0, x0) − 1 − 2d(x0, πC0(ξ)) ,

where the last inequation is again obtained by the triangle inequality.
Hence

∑

α∈Γ0

dµαx0

dµx0

(ξ) =
∑

α∈Γ0

e−δβξ(αx0,x0) ≤ e1+2d(x0,πC0
(ξ)) Px0,Γ0(δ) .

The right hand side, as δ > δ0, is a positive continous map of ξ ∈
∂∞X−ΛΓ0. Hence µ̃Γ0x0 is a locally finite Borel measure on ∂∞X−ΛΓ0.
It is clearly invariant under Γ0 by construction and the equivariance
property of (µx)x∈X . As βξ(αx0, x0) ≤ d(αx0, x0), we have, for every ξ
in ∂∞X − ΛΓ0,

(4) Px0,Γ0(δ) ≤
dµ̃Γ0x0

dµx0

(ξ) ≤ e1+2d(x0,πC0
(ξ)) Px0,Γ0(δ) ,

hence µ̃Γ0x0 and µx0 have the same measure class on ∂∞X − ΛΓ0. �

The next result, of independent interest, is a fluctuating density result
a la Sullivan, where the parabolic subgroup (as in for instance [HP4])
has been replaced by a convex-cocompact subgroup. It will be used in
this paper to check Assumption (5) in Theorem 3.1.

Theorem 4.4. There exist two constants c ≥ 1 and c′ > 0 such that,
for every r in R0 and ǫ in ] 0, c′e−D(r)],

1

c
e−δ0D(r)ǫδ−δ0 ≤ µΓ0x0(Nr(ǫ)) ≤ c e−δ0D(r)ǫδ−δ0 .

Proof. For every double coset r in R0, choose a representative γr of r
such that

d(x0, γrx0) = min
α,α′∈Γ0

d(x0, αγrα
′x0) .

Denote by Nǫ′,d′(A) the (closed) ǫ′-neighborhood of a given subset
A for a distance or a distance-like map d′. By Lemma 2.3, the subset
Nǫ,dC0

(γrΛΓ0) of ∂∞X − ∂∞C0 is compact, and its diameter for the

distance-like map dC0 tends to 0 as D(r) tends to +∞ and ǫ tends to 0.
Recall that Γ0 acts isometrically and properly with compact quotient on
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∂∞X − ∂∞C0 for the distance-like map dC0 . Hence there exists N ′ ∈ N

and c′1 > 0 such that for every ǫ in ]0, c′1], for every r in R0, we have

Card{α ∈ Γ0 : α Nǫ,dC0
(γrΛΓ0) ∩ Nǫ,dC0

(γrΛΓ0) 6= ∅} ≤ N ′ .

By the construction of µΓ0x0 , we have, for every r in R0 and ǫ in
]0, c′1],
(5)

1

N ′ µ̃Γ0x0(Nǫ,dC0
(γrΛΓ0)) ≤ µΓ0x0(Nr(ǫ)) ≤ µ̃Γ0x0(Nǫ,dC0

(γrΛΓ0)) .

As Γ0\C0 is compact and by the definition of the representatives γr,
there exists c′2 > 0 such that, for every r in R0, for every element x in
γr(C0 ∪ ∂∞C0), the closest point to x on C0 is at distance at most c′2
from x0 (see also [HP4, Lem. 3.5]).

Hence, there exists a compact subset K of ∂∞X − ∂∞C0 which con-
tains γrΛΓ0 for every r in R0. By Lemma 2.3 (2), there exists a compact
subset K ′ of ∂∞X − ∂∞C0 which contains Nǫ,dC0

(γrΛΓ0) for every ǫ in

]0, c′1] and every r in R0. Hence by Lemma 2.3 (1), there exist two
constants c±3 > 0 such that for every r in R0 and ǫ ∈ ]0, c′1],

(6) Nc−3 ǫ,dx0
(γrΛΓ0) ⊂ Nǫ,dC0

(γrΛΓ0) ⊂ Nc+3 ǫ,dx0
(γrΛΓ0) .

As K ′ and ∂∞C0 are compact and disjoint, if c′1 is small enough,
then there exists a compact subset K ′′ of ∂∞X − ∂∞C0 containing
Nc+3 ǫ,dx0

(γrΛΓ0) (and hence Nc−3 ǫ,dx0
(γrΛΓ0)) for every r in R0 and ǫ in

]0, c′1]. By the continuity of πC0 , there exists a constant c′4 > 0 such that
for every r in R0 and ǫ in ]0, c′1], the subsets πC0(Nc±3 ǫ,dC0

(γrΛΓ0)) are

contained in the ball of center x0 and radius c′4.
By the definition of the representatives γr, for every r in R0, for every

ξ ∈ γr∂∞C0, the point γrx0 is at distance at most a constant from
the geodesic between x0 and ξ (see also [HP4, Lem. 3.5]). Recall that
for every η, η′ in ∂∞X, if dx0(η, η

′) ≤ ǫ′, then the geodesic rays [x0, η[
and [x0, η

′[ remain at distance bounded by a universal constant at least

during a time − log ǫ′. Hence, if c′ ≤ c′1 is small enough and ǫ ≤ c′e−D(r),
then every geodesic ray from x0 to a point ξ in Nc±3 ǫ,dx0

(γrΛΓ0) passes

at distance less than a constant from γrx0. This has two consequences.
• First, using the change of base point formula for the visual distances,

there exist two constants c±5 > 0 such that for every ǫ ≤ c′ e−D(r),

(7) Nc+3 ǫ,dx0
(γrΛΓ0) ⊂ Nc+5 eD(r)ǫ,dγrx0

(γrΛΓ0) and

(8) Nc−5 eD(r)ǫ,dγrx0
(γrΛΓ0) ⊂ Nc−3 ǫ,dx0

(γrΛΓ0) .

• Second, for every ξ in Nc±3 ǫ,dx0
(γrΛΓ0), the number |βξ(x0, γrx0)−

d(x0, γrx0)| is bounded by a constant. Hence there exist constants c±6 >
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0 such that for every r in R0 and for every ξ in Nc±3 ǫ,dx0
(γrΛΓ0),

(9) c−6 e−δD(r) ≤ dµx0

dµγrx0

(ξ) ≤ c+6 e−δD(r) .

By the Radon-Nykodim derivative estimates in Equation (4) and the
definition of c′4, there exist constants c±7 > 0 such that for every ǫ in
]0, c′1], every r in R0, and every ξ in Nc±3 ǫ,dx0

(γrΛΓ0),

(10) c−7 ≤ dµ̃Γ0x0

dµx0

(ξ) ≤ c+7 .

By Sullivan’s shadow lemma (see for instance [Rob, Lem. 1.3]), for
every constant c′8 > 0 big enough, there exist constants c±9 > 0 such
that, for every γ in Γ,

(11) c−9 e
−δd(x0,γx0) ≤ µx0(Ox0B(γx0, c

′
8)) ≤ c+9 e

−δd(x0,γx0) .

For every t in R, define Γ0[t] = {α ∈ Γ0 : d(x0, αx0) ≤ t}. For every
ǫ′ ∈ ] 0, 1] and κ > 0, define

A+
ǫ′,κ = Γ0[− log ǫ′ + κ] − Γ0[− log ǫ′ − κ] and

A−
ǫ′,κ = Γ0[− log ǫ′ + 2κ] − Γ0[− log ǫ′ + κ] .

Let ǫ′ ∈ ] 0, 1], η ∈ ΛΓ0 and η′ ∈ ∂∞X be such that dx0(η, η
′) ≤ ǫ′. Let u

be the point of [x0, η[ at distance − log ǫ′ from x0. By the definition of dx0

and the properties of the geodesic rays in a CAT(−1) metric space, there
exists a universal constant c′′8 > 0 such that η′ belongs to Ox0B(u, c′′8).
Let c+10 > 0 be strictly bigger the (finite) diameter of Γ0\C0. Since
∂∞C0 = ΛΓ0 and by convexity, the geodesic ray [x0, η[ is contained
in C0. Hence there exists α in Γ0 such that d(u, αx0) < c+10. Let c′8
be big enough (at least c′′8 + c+10 and such that Equation (11) holds).
Then, by the triangle inequality, B(u, c′′8) is contained in B(αx0, c

′
8).

Note that again by the triangle inequality, − log ǫ′ − c+10 < d(x0, αx0) <
− log ǫ′ + c+10. Therefore, for every ǫ′ in ]0, 1], we have

(12) Nǫ′,dx0
(ΛΓ0) ⊂

⋃

α∈A+

ǫ′,c
+
10

Ox0B(αx0, c
′
8) .

As Γ0 is convex-cocompact, there exists a constant c′′′8 > 0 such that for
every α in Γ0, the segment [x0, αx0] is at distance at most c′′′8 from a
geodesic ray starting from x0 and contained in C0. Let c−10 > 0 be at
least c′′′8 + c′8. Let ǫ′ ∈ ] 0, 1], α ∈ A−

ǫ′,c−10
and η′ ∈ Ox0B(αx0, c

′
8). Let v

be a point on [x0, η
′[ at distance at most c′8 from αx0. Let η ∈ ∂∞C0 and

u ∈ [x0, η[ be such that d(u, αx0) ≤ c′′′8 , which exist by the definition of
c′′′8 . Then by the definition of dx0 and the triangle inequality, we have

dx0(η, η
′) ≤ e

1
2
(d(u,v)−d(x0,u)−d(x0,v)) ≤ ec

′
8+c′′′8 −d(x0,αx0) ≤ ǫ′ ,

20



21

since α ∈ A−
ǫ′,c−10

. Therefore, for every ǫ′ in ]0, 1], we have

(13)
⋃

α∈A−

ǫ′,c
−

10

Ox0B(αx0, c
′
8) ⊂ Nǫ′,dx0

(ΛΓ0) .

If c+10 and then c−10 are big enough, as Γ0 is convex-cocompact with
critical exponent δ0 (by for instance [Rob] if Γ0 is non elementary, and
even if δ0 = 0, since then, by the assumptions, Γ0 contains a hyperbolic
element generating a finite index (infinite cyclic) subgroup), there exist
constants c±11 > 0 such that for every ǫ′ in ]0, 1], we have

(14) Card A−
ǫ′,c−10

≥ c−11 (ǫ′)−δ0 and Card A+
ǫ′,c+10

≤ c+11 (ǫ′)−δ0 .

Let A∗
ǫ′ be a maximal subset of A−

ǫ′,c−10
such that, when α ranges over

A∗
ǫ′ , the shadows Ox0B(αx0, c

′
8) are pairwise disjoint. By maximality,

for every α in A−
ǫ′,c−10

, there exists α′ in A∗
ǫ′ such that αx0 and α′x0 are

at bounded distance. Hence there exists a constant c′12 > 0 such that
Card A∗

ǫ′ ≥ c′12 Card A−
ǫ′,c−10

.

Let us now prove the upper bound in Theorem 4.4. Let c′ > 0,
r ∈ R0 and ǫ ∈ ] 0, c′ e−D(r)]. Fix c′ small enough so that ǫ ≤ c′1 and

c±5 e
D(r)ǫ ≤ c±5 c

′ ≤ 1. We have

µΓ0x0(Nr(ǫ)) ≤ µ̃Γ0x0(Nǫ, dC0
(γrΛΓ0)) ≤ µ̃Γ0x0(Nc+3 ǫ, dx0

(γrΛΓ0))

by (5) and (6),

≤ c+7 µx0(Nc+3 ǫ, dx0
(γrΛΓ0)) by (10),

≤ c+7 c
+
6 e

−δD(r)µγrx0(Nc+5 eD(r)ǫ, dγrx0
(γrΛΓ0))

by (9) and (7),

= c+7 c
+
6 e

−δD(r)µx0(Nc+5 eD(r)ǫ, dx0
(ΛΓ0)) by invariance,

≤ c+7 c
+
6 e

−δD(r)
∑

α∈A+

c
+
5 eD(r)ǫ, c

+
10

µx0(Ox0B(αx0, c
′
8))

by (12) with ǫ′ = c+5 e
D(r)ǫ,

≤ c+7 c
+
6 e

−δD(r)c+9 e
−δ(− log(c+5 eD(r)ǫ)−c+10)c+11(c

+
5 e

D(r)ǫ)−δ0

by (11) and (14),

= c+13 e
−δ0D(r)ǫδ−δ0 ,

for some constant c+13 > 0, which proves the upper bound.
Similarly for the lower bound,
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µΓ0x0(Nr(ǫ))

≥ 1

N ′ µ̃Γ0x0(Nǫ,dC0
(γrΛΓ0)) ≥

1

N ′ µ̃Γ0x0(Nc−3 ǫ,dx0
(γrΛΓ0))

≥ c−7 c
−
6

N ′ e−δD(r)µx0(Nc−5 eD(r)ǫ,dx0
(ΛΓ0))

≥ c−7 c
−
6

N ′ e−δD(r)µx0

( ⋃

α∈A∗

c
−

5
eD(r)ǫ

Ox0B(αx0, c
′
8)
)

=
c−7 c

−
6

N ′ e−δD(r)
∑

α∈A∗

c
−

5
eD(r)ǫ

µx0(Ox0B(αx0, c
′
8))

≥ c−7 c
−
6

N ′ e−δD(r) c−9 e−δ(− log(c−5 eD(r)ǫ)+2c−10) c′12 c
−
11(c

−
5 e

D(r)ǫ)−δ0

= c−13 e
−δ0D(r)ǫδ−δ0 ,

for some constant c−13 > 0, which proves the result. �

Lemma 4.5. For every N ∈ N−{0}, there exists c′′ > 0 such that for
every n in N, for every distinct r and r′ in R0 such that D(r) and D(r′)
belong to [nN, (n+1)N [ , the subsets Nr(c

′′ e−nN ) and Nr′(c
′′ e−nN ) are

disjoint.

Proof. Let N ∈ N−{0}, and c′′ ≤ 1 be small enough, to be determined
during the proof. Assume by absurd that there exists n in N, distinct r
and r′ in R0 such thatD(r),D(r′) ∈ [nN, (n+1)N [ , and that the subsets
Nr(c

′′ e−nN ) and Nr′(c
′′ e−nN ) have non empty intersection. Then, there

exist representatives γ, γ′ of the double cosets r, r′ and points ξ, ξ′ in
γΛΓ0, γ

′ΛΓ0 respectively, and an element η in ∂∞X − ∂∞C0 which is
different from ξ, ξ′, such that dC0(ξ, η) and dC0(ξ

′, η) are at most c′′ e−nN ,
and in particular at most c”.

Since there are only finitely many r’s with D(r) less than a constant
(by Lemma 4.1), and since the subsets γΛΓ0 for γ in (Γ − Γ0)/Γ0 are
pairwise disjoint (by Proposition 2.6 (2)) closed subsets, we may assume
that D(r) and D(r′) are bigger than any given constant c′′1 > 0. In
particular, D(r) and D(r′) are positive.

By Lemma 2.3 (4), there exists a universal constant c′′2 ≥ 1 such that
if dC0(η

′, η′′) ≤ 1/c′′2 , then the geodesic line between η′ and η′′ is disjoint
from C0, and the length of the shortest segment between ]η′, η′′[ and
C0 is at most − log dC0(η

′, η′′) + c′′2 and at least − log dC0(η
′, η′′) − c′′2 .

Assume that c′′ ≤ 1/c′′2 .
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pξ pη pξ′

x

γC0 γ′C0

Let pξ, pξ′ , pη be the closest point on C0 to ξ, ξ′, η respectively. Let
[x, y] (resp. [x′, y′]; [xξ, yξ]; [xξ′ , yξ′ ]) be the shortest segment between
C0 and γC0 (resp. C0 and γ′C0; C0 and ]ξ, η[; C0 and ]ξ′, η[), with
x, x′, xξ, xξ′ in C0. Let z, z′ be the closest point to y, y′ on [pξ, ξ[, [pξ′ , ξ

′[
respectively. Let v, u, v′, u′ be the closest points to yξ, yξ, yξ′ , yξ′ on
[pξ, ξ[ , [pη, η[ , [pξ′ , ξ

′[ , [pη, η[ respectively (see the above picture). We
have d(x, y) = D(r), d(x′, y′) = D(r′).

Assume that c′′ ≤ e−c′′1−c′′2 , so that d(xξ, yξ) is at least − log(c′′)−c′′2 ≥
c′′1 . By the convexity of C0 and quasi-geodesic arguments, if c′′1 is bigger
than some universal constant, then there exists a universal constant c′′3 ≥
0 such that the distances d(z, y), d(x, pξ), d(z

′, y′), d(x′, pξ′), d(v, yξ),
d(u, yξ), d(v

′, yξ′), d(u
′, yξ′), d(pξ, xξ), d(pη, xξ), d(pη, xξ′), d(pξ′ , xξ′) are

at most c′′3 . By convexity of C0, the point xξ is the closest point to pξ

on [xξ, yξ]. Since the closest point maps do not increase distances, we
have d(pξ , z) ≤ d(x, y), and similarly d(pξ′ , z

′) ≤ d(x′, y′). Hence

d(v, z) ≥ d(v, pξ) − d(pξ, z) ≥ d(xξ , yξ) − 2c′′3 − d(x, y)

≥ (− log(c′′e−nN ) − c′′2) − 2c′′3 −N(n+ 1)

= − log c′′ −N − c′′2 − 2c′′3 .

If c′′ is small, this implies that the points pξ, z, v are in this order on
[pξ, ξ[, and, with vγ the closest point to v on [y, ξ[, that d(y, vγ) ≥
d(z, v) − c′′3 ≥ − log c′′ −N − c′′2 − 3c′′3 is big.

Up to permuting ξ and ξ′, we may assume that pη, u, u
′, η are in

this order on the geodesic ray [pη, η[. By the convexity properties of
the distance, since d(u′, v′) ≤ 2c′′3 and d(pη, pξ) ≤ 2c′′3 , we have, with
w the closest point to u on [pξ′ , ξ

′[, that d(u,w) ≤ 2c′′3 . Hence, since
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d(x′, y′) ≤ N(n+ 1) ≤ d(x, y) +N , we have

d(w, z′) ≥ d(w, pξ′) − d(pξ′ , z
′)

≥
(
− d(w, yξ) + d(yξ, xξ) − d(xξ, pξ′)

)
− d(x′, y′)

≥ d(yξ, xξ) − d(x, y) − 6c′′3 −N ≥ − log c′′ − 2N − c′′2 − 6c′′3 .

If c′′ is small, this implies that the points pξ′ , z
′, w are in this order on

[pξ′ , ξ
′[, so that the point w′ in [y′, ξ′[ , whose closest point on [z′, ξ′] is

w, exists and satisfies d(w,w′) ≤ d(y′, z′) ≤ c′′3 by convexity, and that
d(y′, w′) ≥ d(z′, w) ≥ − log c′′ − 2N − c′′2 − 6c′′3 is big.

In the geodesic quadrilateral with vertices pξ, pξ′ , v and w, we have
d(pξ, pξ′) ≤ 4c′′3 and d(v,w) ≤ 4c′′3 . Hence, by convexity, z′ is at distance
at most 4c′′3 from [pξ, v], and by the triangular inequality,

d(z, z′) ≤ |d(pξ , z) − d(pξ′ , z
′)| + 8c′′3 .

Since |d(pξ , z)−d(x, y)| ≤ 2c′′3 , |d(pξ′ , z
′)−d(x′, y′)| ≤ 2c′′3 , and |d(x, y))−

d(x′, y′)| ≤ N , we then have d(z, z′) ≤ 12c′′3 +N . Therefore

(15) d(y, y′) ≤ d(y, z) + d(z, z′) + d(z′, y′) ≤ 14c′′3 +N .

Now, the geodesic segments [y, vγ ] and [y′, w′], contained respectively
in γC0 and γ′C0, are arbitrarily long if c′′ is small enough. Moreover their
first endpoints y, y′ and last endpoints vγ , w are at bounded distance,
by Equation (15) and since d(vγ , w

′) ≤ 6c′′3 . Let ǫ = 1 and κ(ǫ) be given
by Proposition 2.6 (4). Hence by hyperbolicity, the ǫ-neighborhoods of
γC0 and γ′C0 meet in a segment of length that can be made bigger than
κ(ǫ) if c′′ is small enough. This is a contradiction to Proposition 2.6 (4).
�

A map ψ : [0,+∞[ → ]0,+∞[ is called slowly varying (see [Sul]) if it
is measurable and if there exist constants B > 0 and A ≥ 1 such that
for every x, y in R+, if |x − y| ≤ B, then ψ(y) ≤ Aψ(x). Recall (see
for instance [HP4, Sec. 5]) that this implies that ψ is locally bounded,
hence it is locally integrable; also, if logψ is Lipschitz, then ψ is slowly
varying; and for every N ∈ N − {0} and ǫ > 0, the series

∑∞
n=0 ψ(Nn)ǫ

converges if and only if the integral
∫∞
0 ψ(t)ǫdt converges.

The following statement, which could also have other applications, is
the main step towards our Khintchine-type theorem for the spiraling of
geodesic rays in Γ\X around Γ0\C0. It gives a 0 -1 measure result for
the approximation of points in the limit set of Γ by points of the orbit
under Γ of the limit set of Γ0, and seems to be the first such result when
Γ0 is non elementary.

Theorem 4.6. Let X,Γ,Γ0, δ, δ0, (µx)x∈X be as above. Assume fur-
thermore, for some (hence any) x in X, that µx is ergodic for the action
of Γ, and that Card Γx∩B(x, n) ≍ eδn. Let f : [0,+∞[ → ]0,+∞[ be a
slowly varying map.
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If the integral
∫ +∞
1 f(t)δ−δ0 dt converges (resp. diverges), then µΓ0x0-

almost no (resp. every) point of ∂∞X0 belongs to infinitely many subsets

Nr

(
f(D(r))e−D(r)

)
where r ∈ R0.

Remark. In addition to the hypotheses on X in this theorem, assume
in this remark that X is a Riemannian manifold with constant sectional
curvature −1, that Γ is convex-cocompact and that Γ0 is the stabilizer of
a geodesic line. Then up to some rewriting, this result is already known,
see for instance [DMPV] or the recent [BV]. But even in this particular
case, our techniques are very different from the ones of [DMPV, BV].

Proof. By a similar reduction as in [HP4, Lem. 5.2], we may assume
that f ≤ 1. Define g = − log f : [0,+∞[ → [0,+∞[.

We apply Theorem 3.1 with Z = ∂∞X0, µ = µΓ0x0 , I = R0, and,
for every r in R0, n ∈ N and ǫ > 0, with Br(ǫ) = Nr(ǫ), In = {r ∈
R0 : Nn ≤ D(r) < N(n + 1)} where N is as in Proposition 4.2, and

nr = E[D(r)
N ] where E denotes the integer part. Define, for every n in N

and ǫ > 0,

f1(n) = eδnN , f2(n) = c2 e
−nN , f3(n) = c2 e

−(nN+g(nN)) ,

f4(n) = cδ0−δ
2 e−δ0nN , f5(ǫ) = ǫδ−δ0 ,

where c2 is a small enough positive constant. In particular, we assume
that c2 is less than c′e−N , where c′ is the constant defined in Theorem
4.4, and less than the constant c′′ defined in Lemma 4.5. Note that

f1(n)f4(n)f5(f3(n)) = e−(δ−δ0)g(Nn) = f(Nn)δ−δ0 .

Hence, as f is slowly varying, the series
∑

n∈N
f1(n)f4(n)f5(f3(n)) con-

verges if and only if the integral
∫ +∞
1 f δ−δ0 converges.

Note that Br(ǫ) is measurable and non-decreasing in ǫ, and that In
is finite by Lemma 4.1. Assumption (1) of Theorem 3.1 is satisfied
since g is non negative. The assumptions (2) and (3) are easily verified.
Assumption (4) follows from Proposition 4.2. Assumption (5) follows
from Theorem 4.4 and the first assumption on c2. Assumption (6) is
satisfied by Lemma 4.5 and the second assumption on c2. Let us check
that Assumption (7) of Theorem 3.1 is also satisfied.

Let r, r′ ∈ R0 with n = nr < m = nr′ such that Nr(f3(n)) and
Nr′(f3(m)) meet. Hence, there exists two representatives γ, γ′ of r, r′

and two points ξ, ξ′ in γΛΓ0, γ
′ΛΓ0 respectively, as well as a point η

in ∂∞X − ΛΓ0, such that dC0(ξ, η) ≤ f3(n) and dC0(ξ
′, η) ≤ f3(m).

Let us prove that there exists a big enough constant λ > 0 such that
Nr′(f2(m)) is contained in Nr(λf3(n)).

Recall that there are only finitely many r’s with D(r) less than a
constant. As d0 (defined in Equation (3)) is bounded on ∂∞X0×∂∞X0,
the ǫ-neighborhood for d0 of any non-empty set covers ∂∞X0 if ǫ is big
enough. Hence we may assume, if λ is big enough, that D(r) and D(r′)
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are bigger than any given constant c1 > 0. In particular, D(r) and D(r′)
are positive.

Let pξ, pξ′ , pη, x, y, x
′, y′, xξ, yξ, xξ′ , yξ′ , z, z

′, v, u, v′, u′, vγ be as in the
proof of Lemma 4.5 and its picture. Let vγ′ be the closest point to v′ on
[y′, ξ′[ .

As in the proof of Lemma 4.5, if c1 is bigger than a universal constant
and if c2 is small enough, then there exists a universal constant c3 such
that the following distances d(z, y), d(x, pξ), d(z

′, y′), d(x′, pξ′), d(v, yξ),
d(u, yξ), d(v

′, yξ′), d(u
′, yξ′), d(pξ, xξ), d(pη, xξ), d(pη, xξ′), d(pξ′ , xξ′),

d(v, vγ), d(v′, vγ′) are at most c3. Furthermore, pξ, z, v, ξ are in this
order on [pξ, ξ[ and similarly pξ′ , z

′, v′, ξ′ are in this order on [pξ′ , ξ
′[ ,

and d(y, vγ), d(y′, vγ′) may be taken bigger than any given constant if
c2 is small enough.

Say that a point p is above q (resp. below q by at most some con-
stant h > 0) with respect to C0 if d(p,C0) ≥ d(q, C0) (resp. d(q, C0) ≥
d(p,C0) ≥ d(q, C0) − h). As m > n, the point y′ is above y or below
y by at most some universal constant. If the point y′ was below u by
more than some big constant, then, if c2 is small enough, some long
subsegment of [y′, vγ′ ] would have its endpoints at distance at most a
few c3’s from the endpoints of some subsegment of [y, vγ ], and as in the
end of the proof of Lemma 4.5, this would contradict Proposition 2.6
(4). Therefore the point y′ is either above, or below only by a some
constant, the point u and hence yξ. So that for every λ′′ > 0, there
exists λ′ > 0 such that the shadow (seen from pξ) of the ball of center
yξ and radius λ′ > 0 contains the shadow of the ball of center y′ and
radius λ′′ > 0. Note that if λ′′ is big enough and if c2 is small enough,
then the shadow of B(y′, λ′′) contains Nr′(f2(m)), as seen in the proof
of Lemma 4.5. But if λ is big enough, then Nr(λf3(n)) contains the
shadow of B(yξ, λ

′). Hence Assumption (7) of Theorem 3.1 follows.

Let Ef be the set of points of ∂∞X0 which belong to infinitely many

Br(f3(nr)) = Nr

(
c2 e

−NE[
D(r)

N
] f
(
NE[D(r)

N ]
))

for r in R0, and similarly let E′
f be the set of points of ∂∞X0 which

belong to infinitely many Nr

(
f(D(r)) e−D(r)

)
. As f is slowly varying,

there exists a constant c4 ≥ 1 such that E 1
c4

f ⊂ E′
f ⊂ Ec4f . Hence in

order to prove Theorem 4.6, we only have to prove that if
∫ +∞
1 f δ−δ0

converges (resp. diverges), then µΓ0x0(Ef ) = 0 (resp. µΓ0x0(
cEf ) = 0). If

this integral converges, then the result follows from Part [A] of Theorem
3.1.

In the divergence case, Part [B] of Theorem 3.1 implies that µΓ0x0(Ef )
is positive. Using the ergodicity of µx in a similar way to the end of the
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proof of Theorem 5.1 of [HP4], and the fact that µx(ΛΓ0) = 0 as δ0 < δ,
it follows that Ef has full measure. �

5. Spiraling geodesics

Let us now proceed towards our main result, Theorem 5.3, which is
a geometric version of Theorem 4.6, and its first applications. We keep
the notation X,Γ,Γ0, δ, δ0, C0, (µx)x∈X of the previous section.

Let ǫ be a positive real number and let g : [0,+∞[ → [0,+∞[ be a

map such that t 7→ f(t) = e−g(t) is slowly varying. A geodesic line ℓ
in X will be called (ǫ, g)-Liouville with respect to (Γ,Γ0) if there exist
a sequence (tn)n∈N of positive times converging to +∞ and a sequence
(γn)n∈N of elements of Γ such that ℓ(t) belongs to Nǫ(γnC0) for every t in
[tn, tn+g(tn)]. The following remark implies that up to changing g by an
additive constant (or equivalently up to changing f by a multiplicative
constant), being (ǫ, g)-Liouville does not depend on ǫ, and depends only
on the asymptotic class of ℓ. We emphasize that the subsets Nǫ(γC0)
as γ ranges over Γ are not assumed to be pairwise disjoint.

Remark 5.1. (1) Note that if ǫ′ ≥ ǫ and g′ ≤ g, then a geodesic line
which is (ǫ, g)-Liouville is (ǫ′, g′)-Liouville.

(2) Note that by the hyperbolicity properties of X, for every ǫ′ in
] 0, ǫ ], there exists a constant c(ǫ, ǫ′) ≥ 0 such that for every convex
subset C of X and every geodesic line ℓ in X, if the length h of the
intersection of ℓ and NǫC is at least c(ǫ, ǫ′), then the length of the
intersection of ℓ and Nǫ′C is at least h − c(ǫ, ǫ′) (see [PP1] for precise
estimates). In particular, if g ≥ c(ǫ, ǫ′), then a geodesic line which is
(ǫ, g)-Liouville is (ǫ′, g − c(ǫ, ǫ′))-Liouville.

(3) Recall that two geodesic lines ℓ, ℓ′ in X are asymptotic if d(ℓ(t), ℓ′)
(or equivalently d(ℓ′(t), ℓ)) is bounded (or equivalently tends to 0) as t
tends to +∞. Note that ℓ, ℓ′ are asymptotic if and only if their points
at infinity ℓ(+∞), ℓ′(+∞) are equal.

By the strict convexity of ǫ-neighborhoods of convex subsets of X, if
ℓ is an (ǫ, g)-Liouville geodesic line, and ℓ′ is a geodesic line which is
asymptotic to ℓ, then ℓ′ is (2ǫ, g)-Liouville, as well as (ǫ, g− η)-Liouville
for every constant η > 0 such that g ≥ η.

(4) Let p : X → Γ\X be the canonical projection, and endow Γ\X
with the quotient distance. If a geodesic line ℓ in X is (ǫ, g)-Liouville
with respect to (Γ,Γ0), then there exists a sequence (tn)n∈N of positive
times converging to +∞ such that p◦ℓ(t) belongs to Nǫ(p(C0)) for every
t in [tn, tn + g(tn)]. But the converse is not true in general (for instance
if Γ\X is compact and ǫ is its diameter).

The converse is true if ǫ is small enough, when p induces an injection
from Γ0\C0 into Γ\X, i.e. when γC0 ∩ C0 = ∅ for γ ∈ Γ − Γ0. Indeed,
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since Γ0 is convex-cocompact, there exists ε0 > 0 such that if ǫ ≤ ε0, we
have γNǫC0 ∩ NǫC0 = ∅ for γ ∈ Γ − Γ0. This is for instance the case
when X is a manifold, Γ acts freely on X, and Γ0\C0 is a totally geodesic
embedded submanifold (Nǫ(Γ0\C0) is then a tubular neighborhood).

When X is a manifold, Γ acts freely on X, and C0 is a geodesic line
(even when the closed geodesic α = Γ0\C0 is not simple), if g ≥ 1, and
if ǫ is small enough (in particular compared to the angles of α at the
self-intersection points), if there exists a sequence (tn)n∈N of positive
times converging to +∞ such that p ◦ ℓ(t) belongs to Nǫ(p(C0)), then ℓ
is (ǫ, g − 1)-Liouville with respect to (Γ,Γ0).

After these remarks, let π0 : X ∪ (∂∞X − ∂∞C0) → X0 ∪ ∂∞X0 be
the canonical projection. The next lemma shows the relation between
the (geometric) Liouville property of a geodesic line and the fact that
its point at infinity belongs to a limsup subset considered in Theorem
4.6.

Lemma 5.2. There exists c′′′ > 0 such that for every geodesic line ℓ
in X such that ℓ(+∞) /∈ ⋃γ∈Γ γ ∂∞C0,

(1) if ℓ is (ǫ, g)-Liouville, then the point π0(ℓ(+∞)) belongs to infinitely

many subsets Nr(c
′′′ f(D(r)) e−D(r)) for r in R0;

(2) conversely, if the point π0(ℓ(+∞)) belongs to infinitely many sub-

sets Nr(
1

c′′′ f(D(r)) e−D(r)) for r in R0, then ℓ is (ǫ, g)-Liouville.

Proof. (1) Assume that ℓ is (ǫ, g)-Liouville. Up to replacing ǫ by 2ǫ
and ℓ by an asymptotic line, as ℓ(+∞) /∈ ∂∞C0 and by Remark 5.1 (3),
we may assume that ℓ(0) is the closest point in C0 to ℓ(+∞).

ℓ(0)
C0

qn ℓ(tn)

ℓ(tn + g(tn))
γnC0

pn

xn

yn

ℓ(+∞)

Let (tn)n∈N be a sequence of positive times, converging to +∞. Let
(γn)n∈N in Γ be such that ℓ(t) ∈ Nǫ(γnC0) for every t ∈ [tn, tn + g(tn)].
As Γ acts properly on X, and as its subgroup Γ0 acts cocompactly
on C0, the family (γC0)γ∈(Γ−Γ0)/Γ0

is locally finite. Hence d(γnC0, C0)
tends to +∞ as n → +∞ (otherwise ℓ(+∞) would belong to γ ∂∞C0

for some γ ∈ Γ). In particular, up to extracting a subsequence, γn /∈ Γ0

and with rn = [γn] ∈ R0, the rn’s are pairwise distinct. Furthermore,
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we may assume that ℓ enters Nǫ(γnC0) at the time tn. Let [pn, qn]
be the shortest segment between C0 and γnC0, with pn ∈ C0, so that
D(rn) = d(pn, qn). Let xn (resp. yn) be a point of γnC0 such that
d(xn, ℓ(tn)) ≤ ǫ (resp. d

(
yn, ℓ(tn + g(tn))

)
≤ ǫ).

As we have already seen (in the proofs of Lemma 4.5 after Equa-
tion (12) and of Lemma 4.5), there exists a constant c′′′1 > 0 such that
[qn, yn] is contained in the c′′′1 -neighborhood of a geodesic ray [qn, ξn[
with ξn ∈ γn∂∞C0, and such that for n big enough, d(pn, ℓ(0)) ≤ c′′′1 .
By hyperbolicity, the distance between pn and the closest point of C0 to
ξn is at most a constant. By arguments similar to the ones in the proof
of Lemma 4.5, it is easy to prove that there exists a constant c′′′2 ≥ 0 such
that − log dC0(ξn, ℓ(+∞)) ≥ tn + g(tn) − c′′′2 and (using the fact that ℓ
enters in Nǫ(γnC0) at time tn) that |tn − d(pn, qn)| ≤ c′′′2 . As f is slowly
varying, there exists a constant c′′′ ≥ 1 such that dC0(ξn, ℓ(+∞)) ≤
c′′′f(D(rn)) e−D(rn). This proves the first assertion.

(2) Assume now that there exist a sequence (rn = [γn])n∈N of pairwise
distinct elements in R0 and ξn ∈ γn∂∞C0 such that

dC0(ξn, ℓ(+∞)) ≤ 1

c′′′
f(D(rn)) e−D(rn)

for every n, for some c′′′ ≥ 1 big enough, to be determined later on. Let
us prove that ℓ is (ǫ, g)-Liouville. Up to replacing ǫ by ǫ

2 and ℓ by an
asymptotic line, we may assume as above that ℓ(0) is the closest point
in C0 to ℓ(+∞).

By Lemma 4.1, we have that D(rn) = d(C0, γnC0) tends to +∞ as
n → +∞ (hence is positive for n big enough). As above, by hyper-
bolicity, the closest point of C0 to ξn is at distance at most a constant
from the closest point of C0 to γnC0. By hyperbolicity and the def-
inition of dC0 , there exists a constant c′′′3 ≥ 0 such that between the
times t = D(rn) and t = D(rn) + g(D(rn)) + log c′′′ − c′′′3 , the geodesic
ray ℓ is at distance at most c′′′3 from γnC0. Hence, as in Remark 5.1
(2), there exists a constant c′′′4 ≥ 0 such that both ℓ(D(rn) + c′′′4 ) and
ℓ(D(rn) + g(D(rn)) + log c′′′ − c′′′3 − c′′′4 ) are at distance at most ǫ from
γnC0. Hence if c′′′ is big enough, by setting tn = D(rn)+ c′′′4 and as f is
slowly varying, the second assertion follows. �

Theorem 5.3. Let X be a proper CAT(−1) geodesic metric space.
Let Γ be a non elementary discrete group of isometries of X, with finite
critical exponent δ, of divergence type. Let µ̃BM be its Bowen-Margulis
measure. Assume that Card Γx ∩ B(x, n) ≍ eδn, for some x ∈ X. Let
(Γi)i∈I be a family of almost malnormal convex-cocompact subgroups of
infinite index in Γ with critical exponents (δi)i∈I . Let δ+0 = supi∈I δi
and δ−0 = infi∈I δi. Let g : [0,+∞[ → [0,+∞[ be a map such that

t 7→ f(t) = e−g(t) is slowly varying, and for every i ∈ I, let ǫi > 0.
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If
∫ +∞
1 f(t)δ−δ−0 dt diverges (resp.

∫ +∞
1 f(t)δ−δ+

0 dt converges), then
µ̃BM-almost every (resp. no) element of GX is (ǫi, g)-Liouville with re-
spect to (Γ,Γi) for every (resp. some) i ∈ I.

Remark. (1) There are examples of Γ\X with X and Γ as in the
above theorem, such that the upper bound of the critical exponents of
the infinite index subgroups in Γ is equal to (resp. is strictly less than)
the critical exponent of Γ, as for instance the closed real hyperbolic
3-manifolds fibering over the circle (resp. the closed quaternionic hyper-
bolic manifolds, see for instance [Leu]).

(2) Assume in this remark that X is a Riemannian manifold, that Γ
is cocompact and torsion free, and that Γi is the stabilizer of a geodesic
line. This corresponds to the hypotheses of Theorem 1.1 (that appear
above it). Then there might be a simpler proof using symbolic coding,
as indicated to us by V. Kleptsyn, using the fact that the geodesic flow
of Γ\X is then conjugated to a suspension of a Bernoulli shift. But this
requires some serious amount of work, since some geometric features are
difficult, to say the least, to translate by the coding. In our general
situation, no such coding is possible anyway.

Proof. Note that Γ is countable and that any convex-cocompact sub-
group of Γ is finitely generated. Hence Γ contains only countably many
convex-cocompact subgroups. So that we may assume that the index
set I is countable.

Note that the divergence (resp. convergence) of the integral in the
statement is unchanged if one replaces f by a scalar multiple of it. Also
recall that µx0(γΛΓi) = 0 for every i ∈ I and γ ∈ Γ, since δi < δ (see
Lemma 2.5). As I and Γ are countable, we have µx0(

⋃
i∈I, γ∈Γ γΛΓi) = 0.

When the index set I has only one element, the result follows from
Theorem 4.6, by considering the conformal density (µx)x∈X of dimension
δ for Γ that is used in the construction (recalled in Section 2) of µ̃BM

(which is ergodic since Γ is of divergence type), and by the lemmas 5.2,
4.3, 2.4.

Using the fact that finite or countable unions of sets of measure 0
have measure 0, the result for general I follows, since

∫ +∞

1
f δ−δ−0 ≤

∫ +∞

1
f δ−δi ≤

∫ +∞

1
f δ−δ+

0 . �

Using the three examples at the beginning of Section 5 and Remark
5.1 (4), the theorems 1.1, 1.3, 1.4 in the introduction follow.

Similarly, to prove Proposition 1.5 of the introduction, we apply The-
orem 5.3 to X = T the tree in the statement of Proposition 1.5, with
I = {0} and Γ0 the stabilizer in Γ of a geodesic line in T mapping
to the cycle C in the statement of Proposition 1.5. For the map g in
Theorem 5.3, we take g/L where g is the map in Proposition 1.5 (the
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map t 7→ exp(−g(t)/L) is still slowly varying). When Γ is cocompact
and torsion-free (anyone of these two assumptions may be not satisfied),
then the symbolic dynamics argument alluded to above works easily, and
gives an alternative proof. But no such coding is easy in general, even
for lattices as simple as PSL2(Fq[X]) in PSL2

(
Fq((X))

)
, see for instance

[BP].
Many other applications are possible, we will only give the next one.

We refer to [GP] (see also [Bou2, HaP]) for the definitions and basic
properties of a hyperbolic building, which in particular, when locally
finite, is a proper CAT(−1) geodesic metric space. For instance, for every
integers p ≥ 5, q ≥ 3, let (Wp, Sp) be the hyperbolic Coxeter system
generated by the reflections on the sides of a right angled regular real
hyperbolic p-gon; Bourdon’s building Ip,q is (see for instance [Bou2]) the
unique (up to isomorphism) hyperbolic building of dimension 2, modeled
on (Wp, Sp), and whose links of vertices are bipartite graphs on q + q
vertices. It has a cocompact lattice Γp,q with presentation

〈s1, . . . , sp | ∀ i ∈ Z/pZ sq
i = 1, [si, si+1] = 1〉 ,

where s1, . . . , sp are generators of the pointwise stabilizers of the p panels
of a fundamental chamber C of Ip,q. If q is even, let Γ0 be the subgroup

(isomorphic to Wp) generated by the elements s
q
2
i for 1 ≤ i ≤ p, which

is, by the simple transitivity of the action of Γp,q on the set of chambers,
the stabilizer of a (unique) apartment AC in Ip,q containing C.

Remark 5.4. If q is even, then the subgroup Γ0 is almost malnormal
in Γp,q.

Proof. (F. Haglund) Let V be the union of the closed chambers of
Ipq meeting AC, which is invariant by Γ0. By convexity (and arguments
as in Poincaré’s theorem about reflection groups), the subgroup H of
Γ generated by the pointwise stabilizers of the edges contained in the
boundary of V has V as a (strict) fundamental domain, and is normalized
by Γ0.

Let Γ′ be the subgroup of Γ generated by H and Γ0, which is isomor-
phic to their semi-direct product. Since V is a fundamental domain for
H and since Γ0 acts transitively on the chambers of AC, for every closed
chamber C in AC, for every g in Γ, there exists h in H and γ0 in Γ0 such
that γ0hgC meets C. Since Γ is discrete and acts transitively on the
chambers, let δ1, . . . , δk be the elements in Γ such that the set of closed
chambers meeting C is {δ1C, . . . , δkC}. Since Γ acts simply transitively
on the chambers, we then have Γ ⊂ Γ′δ1 ∪ · · · ∪ Γ′δk, hence Γ′ has finite
index in Γ.

Let Γ′′ be a finite index torsion free subgroup of Γ′ (which exists for
instance since Γp,q is finitely generated and linear in characteristic 0, see
for example [Kap]).
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Let us prove that the stabilizer S = Γ′′ ∩Γ0 of AC in Γ′′ is malnormal
in Γ′′, which proves the result. Assume by absurd that there exists γ in
Γ′′−S and s in S−{e} such that γsγ−1 preserves AC. By construction,
two distinct translates of AC by elements of Γ′ are disjoint. Hence γ−1AC

and AC are disjoint, and both preserved by s. The (unique) shortest
segment between γ−1AC and AC is then fixed by s, which contradicts
the fact that Γ′′ is torsion free. �

Corollary 5.5. Let X be a locally finite thick hyperbolic building mod-
eled on a hyperbolic Coxeter system (W,S). Let Γ be a cocompact lattice
in the automorphism group of X with Bowen-Margulis measure µ. Let
A be an appartment in X whose stabilizer ΓA in Γ acts cocompactly on
A and is almost malnormal in Γ. Denote by k ≥ 1 the dimension of A
(hence of X), and by δ the Hausdorff dimension of ∂∞X (for any visual
distance). Let f ≤ 1 be a slowly varying map, and ǫ > 0.

If
∫ +∞
1 f(t)δ−k+1 dt converges (resp. diverges), then for µ-almost no

(resp. every) ℓ in GX, there exist a sequence of positive times (tn)n∈N

converging to +∞ such that ℓ(t) belongs to ΓNǫA for every time t in
[tn, tn − log f(tn)].

Proof. The apartments in a hyperbolic building are convex (for the
CAT(−1) metric), hence ΓA is convex-cocompact with critical exponent
k− 1. As X is thick, ΓA has infinite index in Γ. The result follows from
Theorem 5.3 (with I a singleton). �

Let us go back to the general situation of Theorem 5.3. The following
result is a logarithm law-type result for the spiraling of geodesic lines in
Γ\X around Γ0\C0. For every ǫ > 0 fixed, define the penetration map
p = pΓNǫC0

: GX × [0,+∞[ → [0,+∞[ in ΓNǫC0 of the geodesic lines
in X, in the following way. For (ℓ, t) ∈ GX × [0,+∞[ , if ℓ(t) does not
belong to ΓNǫC0, then let p(ℓ, t) = 0. Otherwise, let p(ℓ, t) be the upper
bound of the lengths of the intervals I in R containing t such that there
exists γ in Γ with ℓ(I) contained in γNǫC0.

Theorem 5.6. Let X be a proper CAT(−1) geodesic metric space. Let
Γ be a non elementary discrete group of isometries of X, with finite crit-
ical exponent δ, of divergence type, and let µ̃BM be the Bowen-Margulis
measure of Γ. Assume that Card Γx ∩ B(x, n) ≍ eδn, for some x ∈ X.
Let Γ0 be an almost malnormal convex-cocompact subgroup of infinite
index in Γ with critical exponent δ0.

Then for every ǫ > 0, for µ̃BM-almost every ℓ in GX, we have

lim sup
t→+∞

p(ℓ, t)

log t
=

1

δ − δ0
.

Proof. For every γ in Γ such that a geodesic line ℓ enters the ǫ-
neighborhood of γC0, let tℓ,γ be the entering time of ℓ in this neigh-
borhood.
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We apply Theorem 5.3 with gκ : t 7→ κ log(1+ t), which is a Lipschitz

map R
+ → R

+, for every κ ≥ 0. Note that the integral
∫ +∞
1 t−(δ−δ0)κ dt

diverges if and only if κ ≤ 1
δ−δ0

. If κn = 1
δ−δ0

+ 1
n for n ∈ N −{0}, then

the convergence part of Theorem 5.3 implies that for µ̃BM-almost every
ℓ in GX, for every γ in Γ such that ℓ meets γNǫC0 with tℓ,γ big enough,
we have p(ℓ, tℓ,γ) ≤ gκn(tℓ,γ). Hence

lim sup
t→+∞

p(ℓ, t)

log t
= lim sup

p(ℓ, tℓ,γ)

log(1 + tℓ,γ)
≤ κn ,

where the upper limit is taken on the γ ∈ Γ−Γ0 such that ℓmeets γNǫC0

and tℓ,γ tends to +∞. As n → +∞, we get that lim supt→+∞
p(ℓ,t)
log t ≤

1
δ−δ0

. Similarly, using the divergence part of Theorem 5.3 with the func-

tion g = gκ where κ = 1
δ−δ0

, we get that for µ̃BM-almost every ℓ in GX,

lim supt→+∞
p(ℓ,t)
log t ≥ 1

δ−δ0
. �

Corollary 1.2 in the introduction follows immediately.

6. Non-archimedean Diophantine approximation by quadratic
irrational numbers

Let us now give an application of our results to Diophantine approx-
imation in non-archimedian local fields.

Let K̂ = Fq((X
−1)) be the field of formal Laurent series in the variable

X−1 over the finite field Fq. Recall the definition of the absolute value of

an element f ∈ K̂ −{0}. Let f =
∑∞

i=n aiX
−i where n ∈ Z and an 6= 0.

Then we define ν(f) = n and |f |∞ = q−ν(f). Endow the locally compact

additive group K̂ with its (unique up to a constant factor) Haar measure
µ. Let K = Fq(X).

Let Tq be the Bruhat-Tits tree of SL2 over K̂; we refer to [Ser] for

any background on Tq. Identify as usual ∂∞Tq and K̂ ∪ {∞}, so that

the action of SL2(K̂) on Tq extends continuously by the action by ho-

mographies of SL2(K̂) on K̂ ∪ {∞}. Let x0 be the standard base point
in Tq. Note that the Hausdorff dimension of the visual distance dx0 is
log q, as Tq is a regular tree of degree q + 1.

We refer for instance to [Las, Sch] for nice surveys of the Diophantine

approximation properties of elements in K̂ by elements inK, a geometric
interpretation of which is given in [Pau]. Here, we are interested in

approximating elements of K̂ by elements in the set K2 of irrational

quadratic elements in K̂ over K. For every α in K2, let α∗ be its Galois
conjugate (the other root of its minimal polynomial), and define its
height by

h(α) = |α− α∗|∞−1 .
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We will not make precise here the (loose) relationship with the standard
height (see for instance [HS]) of an element of the projective line over
the algebraic closure of K.

Let Γ = PSL2(Fq[X]) = SL2(Fq[X])/{±id}, which is a (non-uniform)
lattice of Tq (see for instance [Ser]), hence a non-elementary discrete
group of isometries of Tq, whose critical exponent δ is equal to the
Hausdorff dimension of dx0 , that is δ = log q. See for instance [BP] for

a (well known) proof that the restrictions to ∂∞Tq − {∞} = K̂ of the
Patterson-Sullivan measures of Γ have the same measure class as the
Haar measure µ of K̃.

Proof of Theorem 1.6. Let γ0 be a hyperbolic element of Γ, C0 be
its translation axis in Tq, and Γ0 be the stabilizer of C0 in Γ, which
is convex-cocompact with critical exponent δ0 = 0. It is easy to verify
that the set of points at infinity of C0 is {α,α∗} for some α in K2; and
that any such pair is the set of endpoints of some hyperbolic element
of Γ (one can for instance use the fact that Artin’s continued fraction
expansion of an element in K2 is eventually periodic (see for example
[Las])).

Note that for every γ ∈ Γ and α ∈ K2, the element γα is still in K2,
(γα)∗ = γα∗ and γ{α,α∗} ∩ {α,α∗} 6= ∅ if and only if γ ∈ Γ0.

Denote by d∞ the Hamenstädt distance on ∂∞Tq −{∞} = K̂ defined
by the horosphere centered at ∞ and passing through x0. It is proved

in [Pau, Coro. 5.2] that d∞(ξ, ξ′) = |ξ − ξ′|
1

log q
∞ , for every ξ, ξ′ in K̂.

Lemma 6.1. For every ξ0 in K̂−{α,α∗}, there exists a neighborhood
V of ξ0 and a constant c∗ > 0 such that for every ξ, ξ′ in V ,

dC0(ξ, ξ
′) = c∗ d∞(ξ, ξ′) = c∗ |ξ − ξ′|

1
log q
∞ .

Furthermore, for every γ in Γ − Γ0 such that γα and γα∗ belong to V ,
we have

e−D([γ]) = c∗ |γα− γα∗|
1

log q
∞ .

∞

ξξ′

q0

p

ξ0

u0

x0

p0

C0

α

α∗
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Proof. Let p0 be the intersection of the geodesic line ]∞, ξ0[ in Tq with
the horosphere centered at ∞ passing through x0. Let q0 = πC0(ξ0),
and u0 ∈ X such that ]ξ0,∞[ ∩ ]ξ0, q0] = ]ξ0, u0]. In the above picture,
we assume that C0 and ]∞, ξ0[ are disjoint, and that p0 ∈ [u0,∞[. But
the following reasoning is independent of these assumptions. Let c∗ =
e−βξ0

(q0,p0). If ξ, ξ′ are close enough to ξ0, and ]ξ,∞[ ∩ ]ξ′,∞[ = [p,∞[ ,
then p0, u0 ∈ [p,∞[ , πC0(ξ) = πC0(ξ

′) = q0, βξ0(q0, p0) = d(q0, p) −
d(p0, p), d∞(ξ, ξ′) = e−d(p0,p) and dC0(ξ, ξ

′) = e−d(q0,p), hence the first
result follows.

As dC0(γα, γα
∗) = e−D([γ]) if γα, γα∗ are closed enough to ξ0 (see

Equation (1)), the second result follows from the first one. �

Let ϕ : [1,+∞[ → ]0, 1] be a map with t 7→ f(t) = ϕ(qt)
1

log q slowly
varying, and let g : t 7→ − log f(t) = − logq ϕ(qt), so that ϕ(t) =

q−g(logq t). By an easy change of variable, the integral
∫ +∞
1 ϕ(t)/t dt

diverges if and only if
∫ +∞
1 f(t)log q dt diverges.

By the above lemma and as f is slowly varying, for every compact

subset A of K̂−{α,α∗}, there exist positive constants c′∗ (small enough)
and c′′∗ (big enough) such that for every ξ in A,

• if (rn = [γn])n∈N is a sequence in R0 with D(rn) → +∞ as n →
+∞ and dC0(ξ, γnα) ≤ c′∗ f(D(rn)) e−D(rn) for every n big enough,
then h(γnα) → +∞ as n→ +∞ and, for every n big enough,

|ξ − γnα|
1

log q
∞ ≤ e−g(− log |γnα−γnα∗|

1
log q
∞ ) |γnα− γnα

∗|
1

log q
∞ ,

that is

|ξ − γnα|∞ ≤ ϕ(h(γnα))

h(γnα)
;

• conversely, if (γn)n∈N is a sequence in Γ with h(γnα) → +∞ as
n→ +∞ (in particular γn /∈ Γ0 for n big enough) and |ξ−γnα|∞ ≤
ϕ(h(γnα))

h(γnα) for every n big enough, then with rn = [γn], we have

D(rn) → +∞ as n→ +∞ and dC0(ξ, γnα) ≤ c′′∗ f(D(rn)) e−D(rn)

for every n big enough.

Hence by Theorem 4.6, if
∫ +∞
1 ϕ(t)/t dt diverges, then for µ-almost

every ξ in K̂, there exist a sequence (βn)n∈N in the congruence class of

α in K2, with h(βn) → +∞ as n→ +∞, such that |ξ−βn|∞ ≤ ϕ(h(βn))
h(βn) .

This can be written as lim inf h(β)
ϕ(h(β)) |ξ − β|∞ ≤ 1, where the lower

limit is taken over β in the congruence class of α with h(β) → +∞.
Replacing ϕ by 1

kϕ and letting k go to +∞, this proves the divergence
part of Theorem 1.6 in the introduction. The convergence part follows
similarly. �
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By taking ϕ : t 7→ t−s in Theorem 1.6 with s ≥ 0, the next result,

which in particular says that almost every element of K̂ is badly ap-

proximable by quadratic irrational elements of K̂, follows immediatly.

Corollary 6.2. For µ-almost every x in K̂, lim inf h(β)|x−β|∞ = 0,
and, for every s > 0, limh(β)1+s|x− β|∞ = +∞, where the lower limit

and limit are taken over the quadratic irrational elements β in K̂, in
any congruence class, with h(β) → +∞. �

Appendix A. Approximating points
by C. S. Aravinda, S. Hersonsky and F. Paulin

Let X be a proper CAT(−1) geodesic metric space. Let Γ be a non
elementary discrete group of isometries ofX, with finite critical exponent
δ. In this appendix, we will again apply our geometric avatar of the
Borel-Cantelli Lemma, Theorem 3.1, this time to prove a Khintchine-
type result for the approximation of a point by geodesic lines in X.

Let x0 ∈ X be a base point. For every C ≥ 0, a point ξ in ∂∞X will
be called a C-strongly conical limit point if there exist a geodesic line
ρ with ρ(+∞) = ξ and a sequence (γn)n∈N in Γ, such that (γnx0)n∈N

converges to ξ, d(γnx0, ρ) ≤ C and d(γnx0, γn+1x0) ≤ C. Note that
if ξ is a C-strongly conical limit point with respect to x0, then ξ is a
C ′-strongly conical limit point with respect to any other base point x′0
for C ′ = C + 2 d(x0, x

′
0). And if ξ is a C-strongly conical limit point for

the geodesic line ρ, then ξ is a (C + ǫ)-strongly conical limit point with
respect to any other geodesic line ρ′ asymptotic to ρ, for every ǫ > 0.

Examples.
(1) If ξ is a fixed point of a hyperbolic element γ of Γ, then ξ is a C-

strongly conical limit point with C = max{d(x0, Aγ), d(x0, γx0)}, where
Aγ is the translation axis of γ.

(2) If Γ is convex-cocompact, then there exists a constant C ≥ 0 such
that any limit point of Γ is a C-strongly conical limit point.

The following result is (a slight adaptation of) Sullivan’s well-known
shadow lemma, see for instance [Bou1, page 93].

Lemma A.1. For every conformal density (µz)z∈X of dimension δ
for Γ, for every C ≥ 0, there exists c ≥ 1 such that for every C-strongly
conical limit point ξ, for every ǫ ∈ ] 0, 1],

1

c
ǫδ ≤ µx0(Bdx0

(ξ, ǫ)) ≤ c ǫδ . �

The following result is the main tool from which Theorem A.3 will
follow.

Theorem A.2. Let X be a CAT(−1) proper geodesic metric space.
Let x, y be points in X. Let Γ be a non elementary discrete subgroup of
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isometries of X. Let (µz)z∈X be a conformal density of dimension δ for
Γ, for some δ in ]0,+∞[ . Assume that Card {γ ∈ Γ : d(x, γy) ≤ n} ≍
eδn, and that there exists C > 0 such that for all but finitely many z in
Γy, there exists a geodesic ray ρz starting from x, passing through z and
ending at a C-strongly conical limit point. Let f : [ 0,+∞[ → ] 0,+∞ [
be a slowly varying map, with f(t) converging to 0 as t → +∞. Let
Ef be the set of points in ∂∞X which belong to infinitely many balls

Bdx

(
ργy(+∞), f(d(x, γy)) e−d(x,γy)

)
for γ in Γ.

[A] If
∫∞
1 f(t)δdt converges, then µx(Ef ) = 0.

[B] If there exists c in R and a sequence (tn)n∈N in R, such that
tn → +∞ as n → +∞, such that tn+1 ≥ tn − log f(tn) − c for every n,
and such that

∑
n∈N

f(tn)δ diverges, then µx(Ef ) > 0.

Proof. We first start by defining the constants that will be used in this
proof.

By an easy geometric series argument, and since the stabilizer of y in
Γ is finite, there exist N ∈ N − {0} and c0 > 0 such that N e−N ≤ 1
and, for every t ≥ 0, if Jt = {z ∈ Γy : t ≤ d(x, z) < t+N}, then

(16)
1

c0
eδt ≤ Card Jt ≤ c0 e

δt .

Since f is slowly varying, there exists c1 ≥ 1 such that f(y) ≤ c1f(x)
if |y − x| ≤ N . Let c2 = min{N, 1

c1
} e−N , which belongs to ] 0, 1]. Note

that the constant c1, and hence c2, is unchanged if one replaces f by a
scalar multiple of it.

Let t′0 > 0 be big enough so that f(t) ≤ e−N−c for t ≥ t′0, and that
for every z in Γy such that d(x, z) ≥ t′0, the geodesic ray ρz is defined.

We now define the various objects needed to apply Theorem 3.1.
In Case [A], define t0 = t′0 and by induction tn+1 = tn +N for every

n in N. In Case [B], as tn → +∞, we may assume, up to shifting the
indices, that t0 ≥ t′0.

Recall that, for every ǫ > 0, a subset S of a metric space is called
ǫ-separated if for every s 6= s′ in S, we have d(s, s′) > ǫ. Endow the
(discrete) orbit Γy with the induced metric. For every n in N, let In be
a maximal 4N -separated subset of Jtn and I =

⋃∞
n=0 In. The subsets

Jtn for n in N, and hence the In’s, are pairwise disjoint, in Case [A] by
the definition of (tn)n∈N, and in Case [B] since by induction tn ≥ t′0 and
tn+1 ≥ tn − log f(tn) − c ≥ tn +N .

For every n in N and ǫ > 0, define

f1(n) = eδtn , f2(n) = c2 e
−tn , f3(n) = c2 f(tn) e−tn ,

f4(n) = c−δ
2 , f5(ǫ) = ǫδ .
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The series
∑

n∈N
f1(n)f4(n)f5(f3(n)) converges if and only if the series∑

n∈N
f(tn)δ converges, which in Case [A] is true if and only if the inte-

gral
∫ +∞
1 f δ converges, as f is slowly varying.

For every z in I and ǫ > 0, let Bz(ǫ) = Bdx(ρz(+∞), ǫ), which is
measurable and non-decreasing in ǫ.

Let us prove that the finite measured space (∂∞X,µx), the family
(Bz(ǫ))z∈I, ǫ>0, the finite-to-one map I → N defined by z 7→ nz = n if
z ∈ In, and the above maps f1, f2, f3, f4, f5 satisfy the assumptions of
Theorem 3.1.

Assumption (1) of Theorem 3.1 is satisfied since f(tn) ≤ 1 for every n.
Assumption (2) is satisfied by the definition of (fi)1≤i≤5. Assumption
(3) holds true with (for instance) c′ = 2, c′′ = 2δ . Assumption (5) is
satisfied by Lemma A.1, since f2 ≤ 1 and f4 is constant.

Let us prove that Assumption (4) of Theorem 3.1 holds. By the
maximality of In, for every z′ in Jtn , there exists z ∈ In such that
d(z, z′) ≤ 4N . Hence

Card In ≤ Card Jtn ≤ (Card B(y, 4N) ∩ Γy) (Card In) .

By Equation (16), we have Card In ≍ eδtn as wanted.

Let us prove that Assumption (6) of Theorem 3.1 holds. Given n in N

and distinct z, z′ in In, assume by contradiction that Bz(f2(n)) intersects
Bz′(f2(n)) non trivially. By Lemma 2.1 (1), for every γ ∈ Γ, the ball

Bdx(ργy(+∞), N e−d(x,γy)) is contained in OxB(γ y,N). As d(x, z) ≤
tn +N and c2 ≤ N e−N , we have f2(n) ≤ N e−d(x,z), and similarly for z′.
Therefore OxB(z,N) intersects OxB(z′, N) non trivially. Hence there
exists a geodesic ray ρ starting from x and passing at distance at most
N from both z and z′. Let p, p′ be the closest point of z, z′ respectively
on ρ, with (up to permuting z and z′) p′ ∈ [x, p]. As z, z′ ∈ In and since
the closest point maps do not increase distances, we have

d(z, z′) ≤ d(p, p′) + 2N = d(x, p) − d(x, p′) + 2N

≤ d(x, z) − d(x, z′) + 3N ≤ 4N .

This contradicts the fact that In is 4N -separated.

Finally, let us prove that Assumption (7) of Theorem 3.1 holds under
the hypotheses of Case [B]. For m > n, take (z, z′) in In × Im, and
assume that Bz(f3(m)) intersects Bz′(f3(n)) in at least one point ξ.
Since f3 ≤ f2, tm ≥ tn+1 and tn+1 ≥ tn − log f(tn)− c, we have f3(m) ≤
f2(m) ≤ f2(n+ 1) ≤ ec f3(n). Then, for every η in Bz′(f2(m)), we have

dx(η, ρz(+∞)) ≤ dx(η, ρz′(+∞)) + dx(ρz′(+∞), ξ) + dx(ξ, ρz(+∞))

≤ f2(m) + f3(m) + f3(n) ≤ (2ec + 1)f3(n) .

Therefore Bz′(f2(m)) is contained in Bz((2e
c + 1)f3(n)), which proves

the claim.
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Let E′
f be the subset of points of ∂∞X which, as z ranges over I,

belong to infinitely many balls Bz(f3(nz)). As 0 ≤ d(x, z) − tn ≤ N if
z ∈ In, and since c2 ≤ 1

c1
e−N , we have, for every z in In,

(17) Bz(f3(n)) ⊂ Bdx

(
ρz(+∞), f(d(x, z)) e−d(x,z)

)
⊂ Bz

(c1
c2
f3(n)

)
.

In Case [B], it follows from Theorem 3.1 that µx(E
′
f ) > 0. By the

first inclusion in Equation (17), we have µx(Ef ) > 0.

In Case [A], if g = c1
c2
f , then

∫ +∞
1 gδ also converges. Hence Theorem

3.1 implies that µx(E
′
g) = 0. It follows from the second inclusion in

Equation (17) that µx(Ef ) = 0. �

Given a complete Riemannian manifold M and a map f : [0,+∞[ →
]0,+∞[ , say that an element v in T 1M , or its associated geodesic line
ρ in M , is f -well approximating x0 (we said v is f -Liouville at x0 in
[HP1]) if there exists a sequence of times (tn)n∈N tending to +∞ such
that d(ρ(tn), x0) ≤ f(tn) for every n.

When M is a finite volume negatively curved locally symmetric space
of dimension n, F. Maucourant [Mau] proved that if f is decreasing
to 0, then for the Liouville measure (which in general strongly differs
from the maximal entropy measure), almost every (respectively almost
no) v ∈ T 1M is f -well approximating x0 if and only if

∫∞
1 f(t)n−1 dt

diverges (respectively converges). Hence in constant curvature, the fol-
lowing result is weaker than Maucourant’s theorem.

Theorem A.3. Let M be a closed manifold with sectional curvature
at most −1, let x0 be a point in M , and let µ be the maximal entropy
probability measure for the geodesic flow of M , with h its topological
entropy. Let f : [0,+∞[ → ]0,+∞[ be a non increasing and slowly
varying map.

(1) If f(t) and e−t/f(t) converge to 0 as t → +∞, if the integral∫∞
u

f(t)h

− log f(t) dt diverges (for some u big enough), then µ-almost every

geodesic line is f -well approximating x0.
(2) If the sectional curvature of M satisfies −a2 ≤ K ≤ −1, and if∫∞

1 f(t)
h
a dt converges, then µ-almost no geodesic line is f -well approx-

imating x0.

Note that in Case (1), the assumptions that f(t) and e−t/f(t) con-
verge to 0 are not very important. If f(t) is at least a positive constant,
then simply by ergodicity, µ-almost every geodesic line is f -well approx-
imating x0. And if e−t/f(t) is a least a positive constant, then the

integral
∫∞
u

fh

− log f converges for u big enough.

Proof. Let X →M be a universal covering of M , with covering group
Γ (which is non elementary), let x be a lift of x0, and take y = x. For
every z in Γy − {y}, let ρ be the geodesic ray starting from x through
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z, which ends at a (uniformly) strongly conical limit point, since M is
compact. Let (µz)z∈X be the (unique up to positive scalar multiple)
ergodic conformal density of dimension equal to the critical exponent
δ of Γ (which is equal to h, as M is compact). Since M is compact,
we have Card {γ ∈ Γ : d(x, γy) ≤ n} ≍ eδn. Hence the general
hypotheses of Theorem A.2 on X,Γ, (µz)z∈X are satisfied.

Let us prove the first assertion of Theorem A.3. Fix a slowly varying

non increasing map f∗ : [0,+∞[ → ]0, 1
e ] such that f∗(t)

f(t) tends to 0 as

t→ +∞ (so that in particular f∗ converges to 0 at +∞) and the integral∫∞
u

f∗(t)h

− log f∗(t) dt still diverges. Fix t0 ≥ 1 such that f∗(t) ≤ 1
e for t ≥ t0.

Define by induction tn+1 = tn − log f∗(tn). In particular, the sequence
(tn)n∈N converges to +∞. As f∗ is non increasing, we have

∫ tn+1

tn

f∗(t)δ

− log f∗(t)
dt ≤ f∗(tn)δ

− log f∗(tn)
(tn+1 − tn) = f∗(tn)δ .

Hence
∑

n∈N
f∗(tn)δ diverges. Therefore the hypotheses of Theorem A.2

[B] are satisfied for f∗.

Denote by S the measurable set of elements ξ in ∂∞X which belong
to infinitely many visual balls Bdx

(
ργx(+∞), f∗(d(x, γx)) e−d(x,γx)

)
as

γ ranges over Γ. By Lemma 2.1 (1), this ball is contained in the shadow
Ox

(
B(γx, f∗(d(x, γx)))

)
. For every ξ in S , let ρξ be the geodesic ray

starting from x and ending at ξ. Since f∗ is slowly varying, there exists
c1 > 0 such that f∗(t) < c1f∗(s) if |t−s| ≤ 1. As f∗(t) ≤ 1 if t ≥ t0, there
exist a sequence (sn)n∈N in [0,+∞[ converging to +∞ and a sequence
(γn)n∈N in Γ such that d(ρξ(sn), γnx) ≤ c1 f∗(sn) for every n. For every
ξ in S , let Sξ be the set of elements v in T 1M such that the point
at infinity of the geodesic line ρv, which is some lift by X → M of the
geodesic line in M associated to v, is equal to ξ. Since X is CAT(−1),
if ρ, ρ′ are asymptotic geodesic rays, then there exists c > 0 and τ ∈ R

such that d(ρ(t), ρ′(t + τ)) ≤ c e−t for every t ≥ max{0,−τ}. Since f∗
is slowly varying, for every v ∈ Sξ, there exist hence a constant c′ > 0
and sequences (s′n)n∈N in [0,+∞[ converging to +∞ and (γn)n∈N such
that

d(ρv(s
′
n), γnx) ≤ c′(f∗(s

′
n) + e−s′n) .

The right hand side is at most f(s′n) for n big enough, since f∗(t)
f(t) and

e−t/f(t) tend to 0 as t → +∞. Hence every v ∈ Sξ is f -well approxi-
mating x0, for every ξ ∈ S . By Theorem A.2 [B], the set S has positive
measure for µx. Hence the set S ′ =

⋃
ξ∈S

Sξ (which is measurable, as

the direct image by the covering map T 1X → T 1M of the preimage by
the continuous endpoint map T 1X → ∂∞X of S ) has positive measure
for µ, by Lemma 2.4. As S ′ is invariant under the geodesic flow by
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construction, and by ergodicity, it has full measure. This proves the
result.

Let us now prove the assertion (2) of Theorem A.3. As f is slowly

varying, the convergence of the integral
∫∞
1 f

δ
a implies that f converges

to 0 as t→ +∞. For every v in T 1M , let ρv be a lift by X →M of the
geodesic line in M associated to v, let ξv = ρv(+∞) and let ρ′v be the
geodesic ray from x to ξv. If v is f -well approximating x0, then there
exist a sequence (sn)n∈N in [0,+∞[ converging to +∞ and a sequence
(γn)n∈N in Γ such that d(ρv(sn), γnx) ≤ f(sn) for every n. Since f is
slowly varying and since ρ′v and ρv are asymptotic, as above, there exist
k in N − {0}, a sequence (s′n)n∈N in [0,+∞[ converging to +∞, and

a sequence (γn)n∈N in Γ, such that d(ρ′v(s
′
n), γnx) ≤ k(f(s′n) + e−s′n)

for every n. In particular, as f(t) ≤ 1 if t is big enough, if v is f -well
approximating x0, then there exists k′ in N − {0} such that ξv belongs

to infinitely many shadows Ox

(
B
(
γx, k′(f(d(x, γx)) + e−d(x,γx))

))
as γ

ranges over Γ. By Lemma 2.1 (2), this shadow is contained, except for
finitely many γ ∈ Γ, in the ball

Bγ,k′′ = Bdx

(
ργx(+∞), k′′

(
f(d(x, γx)) + e−d(x,γx)

) 1
a e−d(x,γx)

)
,

for some positive integer k′′. If u, v,w > 0, recall that (u+v)w ≤ 2w(uw+

vw). Hence since
∫∞
1 f

δ
a converges, the integral

∫∞
1

(
k′′(f(t)+e−t)

1
a

)δ
dt

also converges. The map t 7→ k′′(f(t) + e−t) is slowly varying. By
Theorem A.2 [A], the measure of the set of points in ∂∞X which belong
to infinitely many balls Bγ,k′′, as γ ranges over Γ, has measure 0 for µx.
By Lemma 2.4, and since a countable union of measure zero subsets is
a measure zero subset, the result follows. �

For every α > 0, let fα : t 7→ 1
(2+t)α , which is slowly varying, with

f(t) and e−t/f(t) converging to 0 as t → +∞. For every h > 0, the

integral
∫∞
1

fh
α

− log fα
diverges if and only if α ≤ 1

h and the integral
∫∞
1 fh

α

converges if and only if α > 1
h . By applying Theorem A.3 with M

having constant curvature −1, so that h = n− 1, with f = f 1
h
± 1

n
where

n → +∞, Theorem 1.7 of the introduction follows, in the standard
way one deduces a logarithm law-type theorem from a Khintchine-type
theorem.
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