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Abstract

In this paper, we prove an analog of Cartan’s theorem, saying that the chain-
preserving transformations of the boundary of the quaternionic hyperbolic spaces are
projective transformations. We give a counting and equidistribution result for the
orbits of arithmetic chains in the quaternionic Heisenberg group. E|

1 Introduction

The sphere at infinity 05, X of a negatively curved symmetric space X carries many rich
structures, from the geometric, analytic and arithmetic points of view. When the sec-
tional curvature is not constant, the possibilities are particularly rich, for instance with
the Carnot-Carathéodory, sub-Riemannian or (hyper) CR structures (see for instance
[Mos, [Grol, [Gol, Biq, [KaN]), leading to strong rigidity properties, as Pansu’s rigidity the-
orem for quasi-isometries [Pan|. Arithmetic subgroups of the isometry group of X endow
the sphere at infinity of X with arithmetic structures, and problems of equidistribution of
rational points or subvarieties in 0y, X, as well as in other homogeneous manifolds, have
been intensively studied (see for instance [Dukl [GoM, [BeOl [EMV], BeQ), [Kim| [BPP| [PP4]
and many others).

In this paper, we study the quaternionic hyperbolic spaces X, whose extreme rigidity
is exemplified by the Margulis-Gromov-Schoen theorem in |GS]|, proving, contrarily to the
real or complex case, the arithmeticity of lattices in the isometry group of X. As announced
in [PP4], we prove a von Staudt-Cartan type of rigidity result for the family of all 3-sphere
chains in the sphere at infinity of X, and, analogously to the complex hyperbolic case
treated in [PP2|, an effective equidistribution result for the arithmetic chains in orbits of
arithmetic groups built using maximal orders in rational quaternion algebras.

More precisely, let H be Hamilton’s quaternion algebra over R, with x +— T its con-
jugation, n : x — 27T its reduced norm, tr : * — x + T its reduced trace. Let ¢ be the
quaternionic Hermitian form on the right vector space H? over H defined by

q(z0, 21, 22) = —tr(Zp 2z2) +n(21) ,

and PUj, its projective unitary group. It is the isometry group of the quaternionic hyper-
bolic plane H]%I, realised as the negative cone of ¢ in the right projective plane P?(H), and
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normalised to have maximal sectional curvature —1. See Section [2| for a more complete
description.

The boundary at infinity 0,H% of HZ is the isotropic cone of ¢ in PZ(H), and the
intersections with &OOHIQHI of the quaternionic projective lines meeting H]%I are called chains.
We study them, giving their elementary properties and complete geometric descriptions in
Section |3 Our first result is similar to Cartan’s theorem (see [Carl [Gol|) in the complex
hyperbolic case. See Theorem for a version in any dimension.

Theorem 1.1 A chain-preserving transformation from the boundary at infinity of the
quaternionic hyperbolic plane to itself is a projective unitary transformation.

The boundary at infinity GOOH]%I of HIQHI, with the point o0 = [1 : 0 : 0] removed, identifies
by the map (wo,w) — [wp : w : 1] with the quaternionic Heisenberg group

Heis7 = {(wo,w) e H x H : tr wy =n(w)},

with group law
(wo, w) (wo, w') = (wo + wj + W', w + ') . (1)

We endow the metabelian simply connected real Lie group Heis; with its Cygan dis-
tance dcyg, which is the unique left-invariant distance such that dcyg((wo,w),(0,0)) =

(4 n(wo))i. The chains C' contained in Heis; are ellipsoids, and have a natural center
cen(C) and radius (see Section [3)).

Let A be a definite (A®gR = H) quaternion algebra over Q, with discriminant D 4. Let
O be a maximal order in A. We refer for instance to [Vig] for background on quaternion
algebras and orders. The group PU, (&) of elements of PU, represented by matrices with
coefficients in & is a (necessarily arithmetic) lattice in PU,. A chain Cj is said to be
arithmetic over O if the orbit of some point of Cj under the stabiliser of Cy in PU,(0) is
dense in Cy. The stabiliser PUy (&) of [1: 0 : 0] in PU, (&) preserves the diameters of
the chains for dgyg. The following result (see Theorem for an explicit and more general
version) is an asymptotic counting result of the arithmetic chains in an orbit under the
arithmetic group PU,(€) when their Cygan diameter tends to 0.

Theorem 1.2 Let Cy be an arithmetic chain in é’ocH]%I. There exists a constant k > 0 and
an explicit constant ¢ > 0 such that, as € — 0, the number of chains modulo PU4(0)y in
the PU,(0)-orbit of Co, with Cygan diameter at least €, is equal to c e 10(1 + O(€)).

An arithmetic chain Cy bounds in H%H a homothetic copy of the real hyperbolic space
of dimension 4. We denote by Covol(Cp) the volume of the quotient of this real hyperbolic
space, normalised to have sectional curvature —1, by the stabiliser PU,(&)¢, of Cp in
PU,(0), and by mg the order of the pointwise stabiliser of this real hyperbolic space in
PU,(0). We endow the real Lie group Heis; with its Haar measure Haarpeis, normalised
in such a way that the total mass of the induced measure on the quotient of Heis; by its

(uniform) lattice Heis; N (0 x €) is DTE‘ (see for instance [PP4l Lem. 8.4] for an explanation
of this normalisation). Let m4 = 72 if Dy is even, and my = 1 otherwise. Finally, we
denote by A, the unit Dirac mass at any point . The following result proves that the cen-
ters of the arithmetic chains in an orbit under the arithmetic group PU,(&) equidistribute

in the quaternionic Heisenberg group.



Theorem 1.3 For the weak-star convergence of measures on Heisy, we have

mom 70 [Lyp,(p— D(p* +1)(p* - 1) (10 Z

*
25515 224 Covol(Co) Acon(gCy) — HaaTkeis; -

l9] € PU4(€)/PUq(0)cy
€ < diamg, (9Co) <

We refer to Section [ for a version with congruences and error terms, and a more
developped study of explicit examples of arithmetic chains.
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2 Quaternionic hyperbolic spaces and Heisenberg groups

In this section, we briefly recall some background on the quaternionic hyperbolic spaces
and quaternionic Heisenberg groups, as mostly contained in [PP4, §2 and §6], see also
[KPL [Phi| (with different choices of quaternionic Hermitian form and normalisation of the
curvature).

Let H be Hamilton’s quaternion algebra over R, with x — T its conjugation, n : x — xT
its reduced norm, tr : x — x + T its reduced trace and Im : z — %(w — ) its imaginary
part map. We denote by (1,14, 7, k) the canonical basis of H as a real vector space, so that

ro+ 1t + o)+ w3k =290—211—227] —x3k. Let

ImH={zeH : trz =0} =Ri+Rj+REk

be the R-subspace of purely imaginary quaternions of H. For all w

w' = (w},...,wy) in the right vector space HY over H, we denote by

w
their standard quaternionic Hermitian product, and we define n(w) = w -
We endow H”Y with the standard Euclidean structure (w,w’) — % tr(w

We fix n € N— {0, 1}. On the right vector space H x H"~! x H over H with coordinates
(20, 2, zn), let ¢ be the nondegenerate quaternionic Hermitian form

q(20, 2, 2n) = —tr(Zp 2n) + n(2) (2)
of Witt signature (1,7n), and let ® : H"*! x H"*! — H, defined by
®: ((20, 2, 2n), (20,2, 2)) > —Z02), — Zn 2+ 2 2, (3)

be the associated quaternionic sesquilinear form.
The Siegel domain model of the quaternionic hyperbolic n-space Hf is

{(wo,w) e H x H"™" : tr wo —n(w) > 0},

endowed with the Riemannian metric

9 1
B (tr wo —n(w))

5 (n(dwo — dw - w) + (tr wo —n(w)) n(dw) ).



Its boundary at infinity is
OoHp = {(wo,w) eHxH" ! : tr wy — n(w) = 0} U {00} .

A quaternionic geodesic line in Hyj is the image by an isometry of Hyj of the intersection of
Hj; with the quaternionic line Hx {0}. With our normalisation of the metric, a quaternionic
geodesic line is a totally geodesic submanifold of real dimension 4 and constant sectional
curvature —4.

The closed horoballs in Hfj centred at o0 € doHp are the subsets

5 = {(wo,w) € Hy : trwy —n(w) = s}, (4)

and the horospheres centred at co are their boundaries 0.7, where s ranges in ]0, +00] .
Note that, for every s € ]0, 1], we have
1
A0, 0H5) = === (5)
The Siegel domain Hpj embeds in the right quaternionic projective n-space Py'(H) by
the map (using homogeneous coordinates)

(wo, w) — [wp : w:1].

By this map, we identify Hy with its image, which when endowed with the isometric
Riemannian metric, is called the projective model of Hyj. Note that this image is the
negative cone of the quaternionic Hermitian form ¢ defined in Equation : we have
HP = {[20: 2 : 2] € PP(H) : g¢(20,2, 2,) < 0}. This embedding extends continuously
to the boundary at infinity, by mapping the point (wg, w) € doHfy — {0} to [wg : w : 1]
and oo to [1 : 0 : 0], so that the image of dxHfj is the isotropic cone of q: we have
O Hy = {[20: 2 : 2,] € PP(H) : q(20,2,2,) = 0}. A projective point [z : z : 2] € P(H)
is positive if q(zo, z, zp) > 0.
For every N € N, let Iy be the identity NV x N matrix. Let

0 0 -1
J=10 IL,—1 0
-1 0 0

The conjugate-transpose matrix of a quaternionic matrix X = (2, p)1<p<r, 1<p'<s € Ar,s(H)
is X* = (x;p’ =Ty p )1<pss, 1sp'<r € Msyp(H). Let

Uy ={9€GLy1(H) : gog=¢q} ={9€ GLp1(H) : ¢*Jg=J}

be the unitary group of q. Its left linear action on H"*! induces a projective action on
P?(H) with kernel its center, which is reduced to {£I,+1}. The projective unitary group

PU, = Uy {£Int1}

of g acts faithfully on P}'(H), preserving Hj;, and its restriction to Hfj is the full isometry
group of Hj.

A matrix
a v* b
X=[a M B|eGLym),
c 0% d
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with a,b,c¢,d € H, o, 3,7,6 € H* ! (identified with their column matrices in .1 1(H))
and M € Myp—1,n—1(H), belongs to Uy, if and only if

-

ca—a*a+ac =0
db—pB*8+bd =0
=0y + M*M —~6* =1,1
da—B*a+be =1
da—M*a+~vc =0
ob—M*B+~vd =0.

With Sp(n — 1) = {g € GLp+1(H) : ¢g*g = I,,—1}, an easy computation shows that the
block upper triangular subgroup of U, is

pur C* %(?(C)—’_U)M CEHn_l weImH
By = 8 [g ;UHC’U ' UeSp(n—1),peSp(l),r>0 (°

Its image PB, = B, /{£1I,41} in PU, is equal to the stabiliser of co in PU,,.

The quaternionic Heisenberg group Heisy,, 1 of dimension 4n — 1 is the real Lie group
structure on H" ! x Im H with law

(Cu) (¢ u) =+ u+v +2Im - (')

and inverses (¢,u)™! = (—=(,—u). It identifies with the punctured boundary at infinity
o HJ; — {0} by the map (¢, u) — (wo,w) where

n(¢) +u

(wg, w) = <T, C) hence (¢,u) = (w, 2Im wy), (7)

and with a subgroup of PB, < PU,, preserving every horoball JZ; for s > 0, by the map
1 C* n(Q)+u

(CGu)—=£0 I, Z . Equation ([7)) allows to recover the definition of Heis; given
0 O 1
in the Introduction, for which the inverses are (wg,w) ™! = (—wg + n(w), —w).

For every (¢, u) € Heisg,—1, the map (¢, u’) — (¢, u)({’, ') is the Heisenberg translation
by (¢,u). For every ¢ € H* ! the Heisenberg translation by (¢,0) is called a horizontal
(Heisenberg) translation. For every u € Im H, the Heisenberg translation by (0, u) is called
a vertical (Heisenberg) translation. The canonical map II, : Heisg,—1 — H"! defined by
(¢, u) — ( is a real Lie group morphism, called the vertical projection, whose kernel is the
center of Heiss,—;. For every U € Sp(n — 1), the map (¢, u) — (U(,u) is the Heisenberg
rotation by U. For every A > 0, the map hy : ({,u) — (A(, \2u) is the Heisenberg dilation
by A.

The Cygan distance dcyg on Heisy,—1 is the unique left-invariant distance on the real
Lie group Heisy,—1 such that

1/4

deyg((C, ), (0,0) = (n(¢)* +n(u)) ", (8)



or equivalently dcyg((wo,w),(0,0)) = (4n(w0))i by Equation (7). We introduce (see
[PP1l, [PP2| in the complex case) the modified Cygan distance d’éyg, as the unique left-
invariant map from Heisy, 1 xHeisg,—1 to [0, +0o[ such that

(n(¢)* + n(u)"?

7o ((Cu), (0,0)) = ,
o ((a(C)2 + n(u)/2 +n(C) )"

(9)

or equivalently by Equation

2 n(w0)1/2
(2n(wo)'/? +n(w))/2”

Though not actually a distance, the map d’éyg is symmetric and satisfies

dtsyy (w0, w), (0,0)) =

1 u
E dCyg < dcyg < dCyg .

For every nonempty bounded subset F of Heisy,—1, we define the diameter of E for this
almost distance as

diamd/éyg (E) = xSLlSE dyg(2,y) -

Note that the Cygan distance and the modified Cygan distance are invariant under Heisen-
berg translations and rotations, and that for every A > 0, the Heisenberg dilation h) is a
homothety of ratio A for both distances.

Lemma 2.1 For every geodesic line |z,y[ in Hy, disjoint from the horoball 74, the dis-
tance in Hy between S and |z, y[ is equal to

AA. Jr.y) = —n (5 dle(o.0)

Proof. By the invariance under Heisenberg translations of .77, of the distance in Hf; and
of the modified Cygan distance, we may assume that x = (wp,w) € doHpy — {00, (0,0)}
and y = (0,0) € 0,Hf — {o0}. By [PP4], Lem. 6.4], the geodesic line from (wg,w) to (0,0)
is, up to translation at the source, the map

Ywo,w > (wﬂ(l + ethO)_17 w(l + 62tw0)_1 ) :
The point yu,,w(t) belongs to the horosphere J7 ), where, since tr wy = n(w),
2 €2 n(wp)
2, \—1 2, \—1
s(t) = tr(wo(l + e“wp) ™) —n(w(l + e*wp) ™) = (LT Py’

Let 7 = n(wp)"? be the norm of the vector wy and @ the angle between the vectors 1 and
wo in the Euclidean space H. Then the map

2 e2ty2

t s(t) =
= s(t) ettr? 4+ 2re?t cosh + 1

reaches it maximum at e?! = % Since tr wy = n(w), the value of this maximum is

2n(wp)'/? 2n(wo) 1, ,
max — = _ = ’ 7 0’ 0 .
s 2 + tr(won(wg)~Y2)  2n(w)Y? +n(w) 2 Cyg((wo, ), (0,0))
The result then follows from Equation ({5)). —



3 Chains

In this section, we define the quaternionic Cartan chains and give their elementary geo-
metric properties, see also [Shi|. In the complex case, the notion of chain is attributed to
von Staudt by [Car|. The exposition follows the one of [Gol| in the complex case. We fix
me{l,...,n—1}.

3.1 A vocabulary of chains

An m-chain C in 0 Hp is the intersection with d,Hyj of a quaternionic projective space
L¢ of dimension m meeting Hpj. Note that C' determines Lo and conversely. A chain
is a 1-chain, and a hyperchain is an (n — 1)-chain. An m-chain is vertical if it contains
0 = [1:0:0], and finite otherwise.

If P=z0:2:2,] €PP(H), let

Pt = {[z() 122l e PI(H) : @((zo,z,zn), (26,2’,2;)) = O}

be the orthogonal quaternionic projective subspace of P. The map P — P!, from the
set of positive projective points to the set of quaternionic projective hyperplanes in P (H)
meeting Hfy, is a PUg-equivariant bijection. Therefore, the map

P Cp = Pt n o, HE

is a PUg-equivariant bijection from the set of positive projective points to the set of hyper-
chains. The point P is called the polar point of the hyperchain Cp, or of the quaternionic
projective hyperplane P+, If P = [z : 2 : 2,], we have

n(w) —

Cp N (0oHE — {00}) = {[wo : w: 1] : —(? —Imwo)zn +W-2—20=0}. (10
This hyperchain Cp is hence vertical if and only if z,, = 0, in which case Cp (0o Hp—{0})
is the preimage by the vertical projection II, : Heisy,_1 — H" ! of the quaternionic affine
hyperplane of H* ! with equation Z - w = % in the unknown w. Similarly a vertical chain
is the preimage of a point of H"~! by the vertical projection II,,.

When C = Cp is a finite hyperchain, that is, when z, # 0, then C' is a codimension 4
ellipsoid in the Euclidean space H"~! x ImH, whose vertical projection is the Euclidean
sphere in H"~! with real codimension 1 and equation n(w)—tr(w- (22, !)) +tr(z02,!) = 0
in the unknown w, with center zz, ' and radius
q(20, 2, z0)"*

R =
¢ n(z,) 12

This radius R¢ of the Euclidean sphere I1,,(C') is called the radius of the finite hyperchain
C. The map II,|¢ from C to I1,(C) is a homeomorphism. When z = 0 and 292, ! € R, the
hyperchain C' = Cp is contained in the horizontal subspace {(¢,u) € H* ! x ImH : u = 0}
of Heisy,,—1, by Equation (7).

Similarly, a finite chain is a 3-dimensional ellipsoid in the Euclidean space H® ! x Im H,
whose vertical projection is a Euclidean 3-sphere in H"~'. In particular, any chain is
homeomorphic to the 3-sphere S3.



3.2 Transitivity properties of PU, on chains

Through any two distinct projective points belonging to d,Hjj passes one and only one
quaternionic projective line, and this projective line meets Hyj. Hence through two distinct
points of 0, Hfj passes one and only one chain. By Witt’s theorem, the group PU, acts
transitively on the set of quaternionic projective spaces L of dimension m meeting Hf,,
hence it acts transitively on the set of m-chains.

Note that two m-chains having the same vertical projection differ by a vertical Heisen-
berg translation, that the group generated by Heisenberg translations and rotations acts
transitively on the set of vertical m-chains, and that PB, (that contains the Heisenberg
dilations, rotations and translations) acts transitively on the set of finite m-chains.

The next result gives the topological structure of a family of chains, called a fan in the
complex hyperbolic case (see for instance |[Gol, page 131]).

Proposition 3.1 The union F' of all chains containing a given point P € 0,Hf and
passing through an m-chain C of 0xHf; not containing P is homeomorphic to the topo-
logical quotient space (S* x S¥™~1)/~ where ~ is the equivalence relation generated by
(zg,2) ~ (z0,y) for all x,y € S* 1, where xq is any fived point in S3.

Proof. By the transitivity properties of PU,, we may assume that P = c. Hence C' is
a finite chain, and by the transitivity properties of the Heisenberg translations, we may
assume that C' is a Euclidean sphere of dimension 4m — 1 contained in the horizontal space
{(¢,u) e H" ! x ImH : u = 0}. Thus F = Ucwec ;1 (¢, u) is clearly homeomorphic to
the above quotient of S3 x §4m—1, ]

3.3 Reflexions on chains

The chains are fixed point sets at infinity of natural isometries of Hj, that we now describe.
If L is a proper quaternionic projective subspace of PJ'(H) meeting H, there exists a
unique involution ¢z, in PU, with fixed point set L, called the reflexzion on L. Note that the
set of fixed points of ¢z, in 0 Hfy is the m-chain L n dxHp;, where m is the quaternionic
dimension of L, assuming that m # 0.
For instance, C' = {[zo t21 et 2Zp) € OpHE 2 = 0,000, 2p01 = O} U {0} is a
vertical m-chain, called the standard vertical m-chain and the reflexion ¢, is the map

[z0:2z1: tzn]—l0 21 Zme1 i —Zm it —Zn—1: Zn]-

The vertical m-chains are the images of the standard vertical m-chain by the Heisenberg
translations and Heisenberg rotations: they are the

(E x Im H) u {oo}

where E is a quaternionic affine subspace of H" ! with dimension m — 1 (hence a point
when m = 1).

Lemma 3.2 Let L and L be quaternionic projective subspaces of Py (H) meeting Hyy such
that ome is not contained in the other, whose sum of dimensions is n. The following
assertions are equivalent.

(1) The reflexions v, and 1y, commute.



(2) The reflexion vy, preserves L'.
(8) The reflexion vy, preserves L.
(4) We have (11, 0 t1s)? = id.
e totally geodesic subspaces L N an N wntersect perpendicularly in the
5) Th lly geodesic sub LnH} and L' nHE i dicularly in th
Riemannian manifold Hj.
e subspace L N 18 a fiber of the orthogonal projection on L' N m .
6) Th b LHE b h h l ectt L' n Hf; in HY
e subspace L' N 15 a fiber of the orthogonal projection on L N m .
7) Th b L' nHf i b h h ) jectt L n Hy i H

Proof. The proof is similar to the one of [Goll, Lem. 4.3.1] in the complex hyperbolic case.
Note that L n Hp;, being the set of fixed points of the isometry ¢, of the negatively curved
Riemannian manifold HY, is indeed totally geodesic.

Two involutions commute if and only if their composition is an involution or the iden-
tity, hence Assertions (1) and (4) are equivalent. Since the centralizer of a projective
transformation preserves its fixed point set, Assertion (1) implies Assertions (2) and (3).
If Assertion (2) is satisfied, then ¢z 0000, ! = L, (L) = L, 80 that Assertion (1) is satis-
fied. Similarly, Assertion (3) implies Assertion (1). Finally, the totally geodesic subspaces
L' nHf, and L n Hf in HY

e cither have disjoint closures in Hyj U do H,

e or are disjoint and have closures meeting in 0, Hf,

e or meet in Hp.

In the first two cases, the composition ¢, 0¢y, has infinite order, and in the last case, vy, 0¢p/
can be an involution if and only if L' n Hf} and L n Hf; are perpendicular. ]

An m-chain C and an (n — m)-chain C” are orthogonal if neither of the corresponding
quaternionic projective subspaces Lo and Lo contains the other and if they satisfy one of
the equivalent assertions of Lemma [3.2] For instance, the hyperchains orthogonal to the
standard vertical chain ({0} x Im H) u {oo} are exactly the Euclidean spheres centered at
(0,u0) in the horizontal subspace {(¢,u) € H* 1 x ImH : u = ug} of Heisy,_1, for some g
in Im HL.

3.4 Description of the center and radius of chains

We now define and study the centers of chains, whose equidistribution we will prove in
Section [l

The center of an m-chain C'is cen(C) = t,,(00). In particular, cen(C') = oo if and only
if C' is vertical. For every element v € PB, (which fixes o), the reflexion on the m-chain
7C'is yiroy !, so that the center of vC is

cen(yC) = ycen(C). (11)

When Py = [—% : 0 : 1], the hyperchain Cp, with polar point Py is, by Equation

(L0), the sphere centered at (0,0) with radius 1 in the horizontal codimension 3 Euclidean
subspace {(¢,u) € H" ! x ImH : u = 0} in Heisy,_1. The reflexion on L = Lcy, is the

0 0 1/2
involutive map ¢, : (wo,w) — (Fwy ', 2 wwy '), induced by = [0 I,-1 0 | e PU,.
2 0 0

Thus, cen(Cp,) = tr.(o0) = (0,0).



Let P = [zo: 2z : z,] be a positive projective point with z, # 0. An easy computation
shows that the Heisenberg translation v by

n

[2?1((21) —Im(z0z, ') : —2z, L 1]

12, . . .
maps P to [—%2 :0: 1] where R = R¢,, = 4(z02:20) 7 g the radius of the finite hyperchain

n(zp)1/2

Cp, and the Heisenberg dilation
hp : (wo,w) — (R*wq, Rw)

maps Py to [—%2 : 0 : 1]. Hence the center of the finite hyperchain Cp with polar point P
is, by Equation , equal to

cen(Cp) = 771hR cen(Cp,) = ’)’71(0,0) = [QIIH(ZOHZEZL; n(z) : zznfl : 1] ,

or cen(Cp) = (22, ,2Im(z9 2, ")) in the (¢, u)-coordinates of Heiss,—1 by Equation (7).
Thus, by Equation (10, if C' is a finite hyperchain in Heiss,_1 with center (o, uo) and
radius rg, then

C ={(¢u) eH" ! xImH : n(¢ — () =r¢ and uw=ug+2Im({¢)}-

In particular, a finite hyperchain is uniquely determined by its center and its radius, and
the hyperchains contained in the horizontal Euclidean space {({,u) € H* ' xIm H : u = 0}
are exactly the Euclidean spheres centered at (0,0).

3.5 A von Staudt-Cartan rigidity theorem

The following theorem shows that the chain-preserving transformations of the boundary of
the quaternionic hyperbolic spaces are projective transformations. This is a quaternionic
version of the result of Cartan in the complex case (see for instance [Gol, Theo. 4.3.12|),
close to von Staudt’s fundamental theorem of real projective geometry.

Theorem 3.3 A bijection f from 0Hy to itself, mapping chains to chains, is (the re-
striction to OH of ) an element of PU,.

Proof. Up to composing by an element of PU,, we may assume that f fixes o = [1:0:0].
Hence f preserves the set of vertical chains, which are the ones containing co. The set of
vertical chains identifies with the horizontal space H" ! of the quaternionic Heisenberg
group by the vertical projection II,, which sends a vertical chain C to the unique point
of H"~! whose preimage by II, is C. Hence f induces a bijection f from H"~! to itself,
which sends the vertical projections of the finite chains to the vertical projections of the
finite chains.

The vertical projections of the finite chains are exactly all the Euclidean 3-spheres in
H"~'. Given two distinct points z,y in H" !, the complement of the union of all the
Euclidean 3-spheres containing x and y is the real affine line containing x and y, with «
and y removed. Hence f is a bijection of H" ! sending real affine lines to real affine lines.
By the fundamental theorem of real affine geometry, this map is an affine transformation

10



of H* 1. Since the affine transformations of H” ! are vertical projections of elements of
the stabiliser PB, of o0 in PU,, up to composing f by an element of PB,, we may assume
that f is the identity map of H”~!, and also that f(0) = 0.

Let € 0,Hf; — {00}, and let us prove that f(z) = z. First assume that II,(z) # 0.
Then the unique chain C, passing through 0 and z is a finite chain, and the vertical
projections of C, and f(C,) coincide, since f = id. By the uniqueness of a chain with
given vertical projection up to a vertical translation, since f(0) = 0, we have f(C;) = C,.
But if f(z) # z, then since f(z) and z have the same vertical projections, the chains C,
and f(Cy) through 0 would be different. Hence f(z) = z. This is in particular true for
any given x = xg # 0 in the horizontal space H"~! x {0}. Replacing 0 by such an zg in
the above argument allows to prove that f(z) = = when IL,(z) = 0. I

A similar proof shows that an injective map f from 0,,Hf to itself, such that any three
points belong to a same chain if and only if their images by f belong to a same chain, is
the restriction of an element of PU,.

3.6 Relation with the hyper CR structure

In this subsection, we give a characterisation of the chains in terms of the natural hyper
CR structure on 0Hy. We refer for example to [Bes| and [KaN] for background on
hyperkéhler manifolds and hyper CR manifolds, respectively.

We endow the manifold P} (H) with its natural hyperkahler structure, and we denote by
(I, J,K) the corresponding triple of almost complex structures. The boundary at infinity
W = 0.Hjj is a smooth real hypersurface in the real manifold P}'(H) of real dimension
dn, and E = TW n ITW n JTW n KTW is a real codimension 3 subbundle of the
real tangent bundle TP} (H) |y, invariant under PU,, defining a hyper CR structure on
W. When z is the point (0,0) in the (¢, u)-coordinates of Heiss,—1 = 0o Hfy — {00}, then,
identifying H" ! x Im H with its real tangent space at x, the fiber E, of E over x is the
horizontal subspace {(¢,u) € H* ! x Im H : u = 0}.

A calibration of E is a 1-form w on W with values in Im H such that £ = kerw. Its
Levi form is dw. For instance, in the (¢, u)-coordinates of Heisy, 1,

w=du—2Im ({-dC)

is a calibration of £ (when restricted to 0,Hp — {00}). An easy computation shows that
this calibration is invariant under Heisenberg translations and rotations: For every such
transformation 7, we have v*w = w. The fact that w is indeed a calibration follows by
invariance since kerdu = {(¢,u) € H" ! x Im H : u = 0}. This calibration w is scaled by
the Heisenberg dilations as follows : for every A > 0, we have (hy)*w = A2 w.

In the following result, we denote by v = vy + vy j + vz k the standard coordinate
in Im H, and by dv the tautological (Im H)-valued 1-form on Im H, so that for every
x € Im H, the map dv, : T, Im H = Im H — Im H is the identity map. We denote by
w1, ws, ws the standard coordinates of the calibration w, so that

w=wii+wrj+wsk.

Given a chain C in 0HY, let 1 = puc be the (Borel positive) measure on Heisg,—1 with
support C N Heisy,_1 associated with the volume form wy A wo A w3 on C. For instance, if
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C ={(¢u) e "1 x Im H : ¢ = 0} U {00} is the standard vertical chain, then w|c = dulc,
so that pc is the (infinite) measure

pe = duy dug dug

whose restriction to the Euclidean space C' — {0} = {0} x Im H is the standard Lebesgue
measure.

Given a nonzero measure p with compact support on a finite dimensional real affine
space V', the barycenter (or centroid) of p is the point bar(u) of V' defined by

bar(u) = M(IV) Lev x du(z) .

For instance, when p is supported on a finite set S, then bar(u) is the usual affine barycenter

of the weighted family of points {(s, M;E({;]S) )} eg

We denote the open ball of center 0 and radius 7 in the Euclidean space Im H by B(r).
Recall that the radius of a finite chain C' is denoted by Rc¢.

Proposition 3.4 Let C be a chain in doHyy and ce C.
(1) If C is a finite chain, then the center of the chain C is equal to the barycenter of the
measure o :

cen(C) = bar(uc) .

(2) If C is a vertical chain, there is a diffeomorphism T = 7¢ : Im H — C' — {00} such
that 7*w = dv, unique up to postcomposition by a vertical Heisenberg translation.
For every Heisenberg translation or rotation vy, we have 7,c = vy o 7¢.

(3) If C is a finite chain, there exists a smooth diffeomorphism T = ¢ from B(2mR%)
to C — {c}, admitting a continuous extension to 0B(2nR%) sending this sphere to c,
such that 7*w = dv. This mapping is unique up to postcomposition by a Heisenberg
rotation preserving C and ¢, and 27rR20 1s the unique radius for which such a mapping
exists.

For every Heisenberg translation or rotation vy, we have Tyc e = 7 © TCc-

Proof. (1) Note that Heisy, 1 = H""! x Im H has a natural structure of a real affine
space, and that the elements of PB, act by affine transformations on Heiss,—1. This
can be seen for instance by saying that Heisy,—1, identified with the boundary of the
projective model of Hyj minus {00}, is a PBg-invariant affine subspace of the affine chart
of the quaternionic projective space defined by the quaternionic projective hyperplane
{[#0 : z : 25] € PX(H) : 2z, = 0}, and that the quaternionic projective transformations
preserving this hyperplane (affine transformations on the associated affine chart. Another
way is to check, by an easy computation, that the Heisenberg translations, rotations and
dilations preserve the barycenters in the real affine space H* ! x Im H : For instance, for
all (Co,uo), (¢, u), (', u') € Heisg,—1 and ¢ € [0, 1], we have

(Co,uo) - (t(Cou) + (L = )(¢ ) =t (Co,u0) - (G, w) + (1 =) (Co, uo) - (¢ 00') -

In particular, the barycenters of measures p with compact support on Heisy,,—1 are equiv-
ariant under the Heisenberg translations, rotations and dilations : For every such trans-
formation =y, we have

bar(v,p) = ybar(u) . (12)
12



In order to prove Assertion (1), by Equations and , and by the transitivity
properties of the Heisenberg translations and dilations on chains, we may assume that
= 2 and that C is a Euclidean sphere with center (0,0) and radius 1 in the horizontal
subspace {(¢,u) € H* ! x H : u = 0}. Since the Im H-valued 1-form w|c is invariant
under the Heisenberg rotations, the volume form w; A wo A w3 on C is invariant under
the Heisenberg rotations. Since the only measure on C' invariant under the Heisenberg
rotations is, up to a scalar multiple, the Lebesgue measure on the Euclidean sphere C, the
measure o is a multiple of the Lebesgue measure on C. This can also be proved by a
direct computation: On the Euclidean sphere C, with ( = (o + (17 + (3 j + (3 k, we have
4 —
W] AWy Aws = —82(—1)’@;(1{0 Ao ndG Ao ndly .
i=0
Since the barycenter of this measure is exactly the origin (0,0), which is the center of the
finite chain C, this proves Assertion (1).

(2) First assume that C is the standard vertical chain
Co={(Cu)eH" ! x ImH: (=0} U {0} .

Let 7 = 7¢,, : v — (0,v). Then 7 is a diffcomorphism from Im H onto Cy, — {0}, such
that 7*(du — 2Im(( d¢)) = dv. For every vertical Heisenberg translation -y, the map yo 7
is also a diffeomorphism from Im H onto Cy — {o0}, and since w is invariant under the
Heisenberg translations, we also have (y o 7)*w = dv.

If o : Im H — Cy — {00} is another diffeomorphism such that o*w = dv, then for every
v e Im H, we have o/(v) — 7/(v) € TCy N kerw = {0}, thus the maps o and 7 differ by an
element of the vector subspace Cy,. Therefore there exists a vertical Heisenberg translation
~ such that o =y o .

Now, if C' is another vertical chain, there exists a composition v of Heisenberg trans-
lations and rotations such that C' = yCy. Defining 7¢ = v o 7¢,, gives a diffeomorphism
from Im H onto C' — {00} such that 7¢*w = dv, by the invariance of w under the Heisenberg
translations and rotations. This proves Assertion (2).

(3) First assume that C is the Euclidean 3-sphere
{(Cu)eH" ' x ImH : n(¢;) =R* and u=C=--- =1 =0},

and that ¢ = (¢c = (—R,0,...,0),u. = 0). Note that R is the radius of the finite chain
C. By the properties of the exponential map of the Lie group of unit quaternions, whose
tangent space at the identity element 1 is Im H, the smooth map

T=Tcc:v— (( = (Re_”/(2R2),O,...,O),u= 0)

from Im H to C is a diffeomorphism from B(27wR?) onto C' — {c}. It extends continuously
(and even smoothly) to the sphere 0B(27R?), mapping this sphere to c. Considering ¢ as
a function of v, we have d¢ = (—ﬁ e_“/(2R2)dv, 0,...,0). Hence, since v and dv are purely
imaginary quaternions, we have

1

*w=—2Im({-d¢) = -2 Im((Re_E/(QR%) ( ~ SR e_”/(QRQ)dv)) =dv .

The uniqueness of 7 up to postcomposition by a Heisenberg rotation preserving C' and c,
and the extension to the other chains, follow as previously from the fact that the chains
are transverse to the quaternionic contact structure on Heisy,,—1 and by invariance of the
calibration w under the Heisenberg translations and rotations. Il
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4 Counting and equidistribution of arithmetic chains
in hyperspherical geometry

In this section, we prove (generalised versions of) Theorems and of the introduction.
We start by recalling a general statement, coming from a special case of the main results
of [PP3], that has been made explicit in [PP4].

Let I' be a lattice in PUy. Let D~ and D" be nonempty proper closed convex subsets of
Hfj, with stabilisers I'p- and I'p+ in T' respectively, such that the families (YD ™) err
and (’yD+)7ep/FD+ are locally finite in Hfy. For all v,~" in T, the convex sets yD~ and /D"

have a common perpendicular if and only if their closures YD~ and v/D* in Hp U doHp
do not intersect. We denote by ., ./ this common perpendicular, starting from yD™ at
time ¢t = 0, and by /(a., ) its length. The multiplicity of o, is

1

m 5 = s
7T Card(\p-y !t Ay Ty’ )

which equals 1 for all 7,7 € T when I' acts freely on T'HY (for instance when I is
torsion-free). For all s > 0 and z € D7, let

ms(z) = Z Me,y

vel/T p+ iD= AyDT =, ae, (0)=x, £(ae, 4)<s

be the multiplicity of x as the origin of common perpendiculars with length at most s from
D~ to the elements of the I'-orbit of DT,
For every s > 0, let

WD*,D*(S) = Z My

(1, 9)EMN(@/T p—)x(L/T 1)) : 7D~ Ny D¥ =g, £, s)<s

where I" acts diagonally on I' xI'.. When I has no torsion, A7~ p+(s) is the number (with
multiplicities coming from the fact that I'p+\D¥ is not assumed to be embedded in I'\H})
of the common perpendiculars of length at most s between the images of D~ and D% in
M\H.

The following statement is a special case of [PP4, Thm. 8.1]. We denote by A, the
unit Dirac mass at a point x.

Theorem 4.1 Let D~ be a horoball in Hy; centred at a parabolic fizved point of I' and let
D* be a quaternionic geodesic line in HYYy such that T p+\DT has finite volume. Let m™
be the order of the pointwise stabiliser of DT in T' and let

2(n—1)(2n —1) Vol(Tp-\D~) Vol(T'p+\D™)
m2mt Vol(T\H})

c(D~,D") =

There exists k > 0 such that, as s — 400,

Np- p+(s) = c(D~,D%) eldn+2)s (1 + O(e_“s)) )
Furthermore, the origins of the common perpendiculars from D~ to the images of DT under
the elements of I' equidistribute in 0D~ to the induced Riemannian measure: as § — +00,

2(2n+1) Vol(I'p-\D™)
c¢(D—,D%)

s S (2) Ay A volgp- . [ (13)
x€0D—
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For smooth functions 1 with compact support on ¢D~, there is an error term in the
equidistribution claim of Theorem [£.I] when the measures on both sides are evaluated on
1, of the form O(e™"* ||¢[|y) where k > 0 and |9, is the Sobolev norm of ¢ for some ¢ € N.

From now on, we assume that n = 2. Let A, D4, m4 and & be as in the Introduction.
We denote by | 6| the order of the unit group of &, equal to 24 if Dy = 2, to 12 if Dy = 3,
or else to 2, 4 or 6. See for instance [Vig]. As usual, by Hp|DA7 we mean a product where
p ranges over the prime positive numbers dividing D 4.

For every chain C in GOOH]%I, let Lc be the quaternionic projective line in P?(H) such
that C = Lo n 0OOH]%1, and let Do = Lo n H?HI be the associated quaternionic geodesic
line. For every finite index subgroup G of the arithmetic lattice PU, (&), we denote by G¢
the stabiliser of C' in G, by G, the stabiliser of o0 in G, and by Covolg(C') the volume of
the orbifold G¢\D¢ for the Riemannian metric of constant sectional curvature —1 on the
real hyperbolic 4-space D¢c. Recall that a chain C' is arithmetic over & if and only if the
stabiliser in PUy(&) (or equivalently in G) of the quaternionic geodesic line D¢ has finite
covolume on D¢.

Theorem 4.2 Let Cy be an arithmetic chain over a mazimal order O in a definite quater-
nion algebra over Q. Let G be a finite index subgroup of PUy(O). Then there exists a
constant k > 0 such that, as € > 0 tends to 0, the number ¢, c(€) of chains modulo G
in the G-orbit of Cy with dcyg-diameter at least € is equal to

35 2% 3% D% Covolg(Co) [PUy(0) e : Goo]
7 mey,c ma |0 [Lp,(p—1D®* +1)(p* — 1) [PUy(0) : G]

6_10(1 + O(e“)) ,

where mc, ¢ is the order of the pointwise stabiliser of D¢, in G.

Recall that the center cen(C) of a finite chain C is the image of co = [1: 0 : 0] under
the reflexion on Lo. The following result is an equidistribution result in the quaternionic
Heisenberg group of the centers of the arithmetic chains in a given orbit under (a finite

index subgroup of) PUy(0).

Theorem 4.3 Let Co, G and mc,,c be as in Theorem[{.4 As e >0 tends to 0, we have

mCO,G ma 7T6 ]._[p|DA (p - 1)(p2 + 1)(p3 - 1) [PU(I(ﬁ) : G] 610
35 224 36 Covolg(Ch)

*
Z Acen(C) - HaarHeiS7 .
CeG-Cy
diamg, (C) = €

As in Theorem there exist k > 0 and £ € N such that for every smooth function )
with compact support on Heis;, there is an error term in this equidistribution result when
the measures on both sides are evaluated on 1, of the form O(s™" ||¢|;) where 1], is the
Sobolev norm of .

We begin by a technical result used in the proofs of the above theorems, which does
not require the assumption n = 2. Recall that d’(’jyg is the modified Cygan distance defined
in Section 21

Lemma 4.4 For every m-chain C' in Hfj, we have diamg ,(C) = V2 diamd/é (C).
yeg
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Proof. If C is a vertical m-chain, then both diameters are +00. We hence assume that
C' is finite. Since the Heisenberg translations and rotations preserve dcye and dcyg, and
by the transitivity properties of the Heisenberg translations and rotations on the set of
m-chains (see Section , we may assume that C' is a Euclidean sphere centered at (0, 0)
with dimension 4m — 1, contained in the horizontal plane H"~! x {0} of Heisgy—1. Since
the Heisenberg dilations (¢, u) — (A, A2u) with A > 0 are homotheties of ratio A for dcyg
and d/éyg, we may assume that the radius of C' is equal to 1.

For every (¢,0) € C, we thus have dcyg((¢,0),(0,0)) = 1 by Equation , hence
diamg  (C) < 2 by the triangle inequality. Since

deyg((€,0),(=¢,0)) = deyg((¢,0) - (¢€,0),(0,0)) = deyg((2¢,0), (0,0)) =

we have diamg,,  (C) = 2.

Using the transitivity properties of Sp(n — 1) on the unit sphere C' of the Euclidean
space H" ! in the same way as in the proof of [PP2, Lem. 8] in the complex hyperbolic
case, we may assume that n = 3, and that

diamg» (C) = sup ’(gyg((l,0,0), (ucos ¢,sin ¢,0)) .
e ueH, ¢e[0,7] : n(u)=1

By a computation similar to the one in [PP2, Lem. 8], using Equation (9) and the fact
that 4n(Im u) = 4 — (tru)? for any unit quaternion u, we have

Cyg((l 0,0), (ucos ¢, sin ¢, O))2
Cyg((0 0,0), (—1,0,0) - (ucos ¢, sin ¢, 0))
((0,0,0), (ucos ¢ — 1,sin ¢, —2 cos ¢ Im u))2
(2 —cos¢ tru)? +4cos? ¢ n(Imu)

((2—cos¢ tru)? +4cos? ¢ n(Imu))% + (2 —cos¢ tru)
2

1 2—trucos¢
(1+cos? p—cos & tru)% 2(1+cos? p—cos ¢ tru)

Cyg

As 14cos? p—cos ¢ tru < 2—cos ¢ tru < 4, we have df ((1,0,0), (ucos ¢, sin ¢, O))2 < 2.
Furthermore, the equality holds when © = 1 and ¢ = 7. This proves the result. O

Proof of Theorem and Theorem The diameter of a chain for the Cygan
distance is invariant under the stabiliser in PU, of the horosphere 077, hence is invariant
under Go. The counting function ¢, ¢ is thus well defined.

Note that 77 is a horoball centered at the fixed point of a parabolic element in PU4 (&)
(take the vertical Heisenberg translation by (0,2u) for any nonzero u € & n ImH ). We
will apply Theorem 4.1{ with I' = G, with D™ = 7], which is hence a horoball centered at
the fixed point of a parabohc element in G, and with DT = D¢, which is the quaternionic
geodesic line in H]%] with boundary at infinity equal to Cy. In particular m* = m¢, q.

Let us compute the constant ¢(D~, D') appearing in the statement of Theorem
We have Vol(G\HZ) = [PU,(0) : G] Vol(PU,(¢)\H), where, by [PP4, Thm. 1.4],

7™ my

VOI(PUL(O)\B) = 7551 35

[Te-De*+1)0*-1),

p|Da
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and by [PP4, Lem. 8.4],

D% [PUL(0) s : G

VO](FDf\D_) = [PUq(ﬁ)oo : Goo] VOI(PUq(ﬁ)Jﬁ\%) = 160 | O X ’2

(14)
By definition, we have
Vol(T'p+\D") = 16 Covolg(Ch),

since the sectional curvature of DV is constant —4 and D7 has real dimension 4. We hence
have

(D, D) 35213 36 D2 Covolg(Ch) [PU4(0) e : Goo] (15)
c , = .
w0 meo,c ma|O*P [y p,(p—1)(P* +1)(p* — 1) [PUy(0) : G]

Let g € G be such that the quaternionic geodesic line gD* is disjoint from 7] (which
is the case except for g in finitely many double classes in G \G/Gp+). Let 64 be the
common perpendicular from 4 to gD*. Its length £(d,) is the minimum of the distances
from 7 to a geodesic line between two points of 0o, (9D ') = gCy. Hence, by Lemmas
and [£:4] we have

Cye(T5Y)
08.) = ' d - _ In _Cyer 7
)=, cmin A, Jeyl) == max =7
__, Yamgy (9C0) . diamae, (9C0) (16)
V2 2

Respectively by the definition of the counting function ¢, ¢ in the statement of The-
orem since the stabiliser of Cy in G is equal to G Do, = Gp+, by Equation , by
Theorem and by Equation , we have, as € > 0 tends to 0,

Vo, G (€)
= Card Gx\{Ce G-Cp : diamg, (C) > €}

= Card{[g] € Gu\G/Gp,, : diamgg, (9Co) = €}
= Card{[g] € G5 \G/Gp,, : U(3;) < —In g} +0(1)
= Ao pr(~Ing) +0(1) = (D™, D¥) e (14 O D))

B 35223 36 D2 Covolg(Co) [PUg(6)w : Goo]
78 mey,c ma |0 1], p,(0—D@* + 1) - 1) [PU,(0) : G]

This proves Theorem [£.2] Let us now prove Theorem [£.3]

e (14 0(eM) .

We apply the equidistribution result in Equation of the origins or(dy) of the com-
mon perpendiculars d, from D~ = 4 to the images gD* for g € G. As s — +00, we
hence have, using Equations and ,

mcy,cmat® [Lp, @ —1)@*+1)(p° - 1) [PUy(0) : G] 105
35 217 36 Covolg (Ch)

2 Aor((ig) AN VOI&;;//I . (17)
[9€G/G . : £(59)<s
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Let f: 0,HZ — {00} = Heis; — 0.9 be the orthogonal projection map, which is the
homeomorphism (wp, w) — (wy + 5, w). The pushforward of the Haar measure Haarges,
by f is

f+ Haarpeis, = 8volaz , (18)

see for example the end of the proof of Theorem 8.3 in [PP4].

Note that, for every chain C, if r¢ is the reflexion on the quaternionic projective line
containing C, then the geodesic line from o to cen(C) = r¢(00), being invariant under
rc, is orthogonal to the quaternionic geodesic line with boundary at infinity C. Hence for
every g € G, we have

f(or(6,)) = cen(gCp) .
Let us use in Equation the change of variables s = —In § and the continuity of
the pushforward of measures by f~!. By Equations and , as € > 0 tends to 0, we
obtain that the measures
mey,cmat® [1yp, (0 —1)®* +1)(p* — 1) [PU4(0) : G] 10
35 224 36 Covolg(C)

2 Acen(gCo)

[9] € G/Gp+
diamg,, (9Co) = €

weak-star converge to the Haar measure Haargeis,. This proves Theorem O

Example.  Let Cop = {[wo : 0 : 1] € P2(H) : trwy = 0} be the standard vertical
chain in 0, H%, which is the intersection of 0,HZ with the quaternionic projective line
LC() = {[ZO VA 22] € P?(H) 21 = 0}

a Yv* b
An element + | o« M | of PU, preserving the quaternionic geodesic line L, N H]%I
c 0* d

satisfies cwg+ 3 = 0 for all wy € H with trwg > 0. Thus, « = 8 = 0, and Equations @ (or
rather the similar equations obtained by the formula X X* = I,,;; instead of X*X = I,, ;1)
imply that v = § = 0. Using again Equations @, we see that the stabiliser of L¢, consists

a 0 b
of the elements | 0 M 0 | such that tr(ca) = tr(db) =0, cb+ad=1and M € O*.
c 0 d
Thus,
2
7r
1 = —1)(p* +1
Covolpy, (#)(Co) 1080 H(p )(p© +1)

plDa
by [BH, Thm. 2.5|.
The pointwise stabiliser of Cy in PUy (&) consists of the diagonal elements with a =
d==£1and M € 0, giving m¢, pu, (o) = |0
Theorems and [£.3] then give

189 220 D?

— —10 1 K
Vo, puy)(€) ™ ma |0% [1,p,* —1) P+ 0E)

and

4 X 3
mtma |0 [1yp,(° —1)
189 2}72‘1 5 e'? Z Acem(C) = Haargeis, -
CePU4(0)-Cy : diaLdeyg C=e
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