Invariant measures of discrete interacting particles systems: algebraic aspects

Luis Fredes
(joint work with J.F. Marckert).

École d’été St. Flour 2018
Define a set of κ colors $E_\kappa := \{0, 1, \ldots, \kappa - 1\}$ for $\kappa \in \{\infty, 2, 3, \ldots\}$.

An **interacting particle system (IPS)** is a stochastic process $(\eta_t)_{t \in \mathbb{R}^+}$ embedded on a graph $G = (V, E)$ with configuration space in S^V. We will work with $S = E_\kappa$ and with $G = \mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$.
Define a set of \(\kappa \) colors \(E_\kappa := \{0, 1, \ldots, \kappa - 1\} \) for \(\kappa \in \{\infty, 2, 3, \ldots\} \).

An **interacting particle system (IPS)** is a stochastic process \((\eta_t)_{t \in \mathbb{R}^+}\) embedded on a graph \(G = (V, E) \) with configuration space in \(S^V \). We will work with \(S = E_\kappa \) and with \(G = \mathbb{Z}, \mathbb{Z}/n\mathbb{Z} \).
\[t + \Delta t \]

\[\Delta t \sim \exp(1) \]
Contact process

\[t + \Delta t \]

\[\Delta t \sim \exp(1) \]
Contact process

\[t + \Delta t \]

\[\Delta t \sim \exp(1) \]

\[\Delta t \sim \exp(2\lambda) \]
General case

$t + \Delta t$

\[
L \xrightarrow{\exp(T)} | \quad t
\]
General case

\[t + \Delta t \]

\[t \]

\[L \]
General case

\[t + \Delta t \]

\[\Delta t \sim \exp(T[L]) \]

\[t \]
Invariant measure of particle system

Definition

A distribution μ on E^V_κ is said to be invariant if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:

Existence?
Uniqueness?
Convergence?
Rate of convergence?
Simple representation? (Integrability)
Invariant measure of particle system

Definition

A distribution μ on E^V_κ is said to be *invariant* if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:
Definition

A distribution μ on E^V_κ is said to be invariant if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:

- Existence?
Invariant measure of particle system

Definition

A distribution μ on E^V is said to be \textit{invariant} if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:

- Existence?
- Uniqueness?
Invariant measure of particle system

Definition

A distribution μ on E^V_κ is said to be *invariant* if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:

- Existence?
- Uniqueness?
- Convergence?
Invariant measure of particle system

Definition

A distribution μ on E^V_κ is said to be **invariant** if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:

- Existence?
- Uniqueness?
- Convergence?
- Rate of convergence?
Invariant measure of particle system

Definition

A distribution μ on E^V_κ is said to be *invariant* if $\eta^t \sim \mu$ for any $t \geq 0$, when $\eta^0 \sim \mu$.

Usual questions in the topic:

- Existence?
- Uniqueness?
- Convergence?
- Rate of convergence?
- Simple representation?
Invariant measure of particle system

Definition

A distribution \(\mu \) on \(E^\nu_\kappa \) is said to be *invariant* if \(\eta^t \sim \mu \) for any \(t \geq 0 \), when \(\eta^0 \sim \mu \).

Usual questions in the topic:

- Existence?
- Uniqueness?
- Convergence?
- Rate of convergence?
- Simple representation? (Integrability)
Some things (not much) are known about I.I.D. random invariant distributions of IPS.
Some things (not much) are known about I.I.D. random invariant distributions of IPS. [Andjel ’82, Ferrari ’93, Balazs–Rassoul-Agha–Seppalainen–Sethuraman ’07, Borodin–Corwin ’11, Fajfrová–Gobron–Saada ’16...]
Some things (not much) are known about I.I.D. random invariant distributions of IPS. [Andjel ’82, Ferrari ’93, Balazs–Rassoul-Agha–Seppalainen–Sethuraman ’07, Borodin–Corwin ’11, Fajfrová–Gobron–Saada ’16...]

🤔 What about another type of distribution?
Some things (not much) are known about I.I.D. random invariant distributions of IPS. [Andjel ’82, Ferrari ’93, Balazs–Rassoul-Agha–Seppalainen–Sethuraman ’07, Borodin–Corwin ’11, Fajfrová–Gobron–Saada ’16...]

What about another type of distribution?

MARKOV!!!!!!
Consider a Markov distribution (MD) \((\rho, M)\), with Markov Kernel (MK) \(M\) of memory \(m = 1\) and \(\rho\) the invariant measure of \(M\), i.e. for any \(x \in E_{\kappa}^{[a,b]}\)

\[
P(X[a, b] = x) = \rho_{x_a} \prod_{j=a}^{b-1} M_{x_j, x_{j+1}}.
\]
Consider a Markov distribution (MD) \((\rho, M)\), with Markov Kernel (MK) \(M\) of memory \(m = 1\) and \(\rho\) the invariant measure of \(M\), i.e. for any \(x \in E^{[a,b]}_k\)

\[
\mathbb{P}(X[a, b] = x) = \rho_{x_a} \prod_{j=a}^{b-1} M_{x_j, x_{j+1}} =: \gamma(x).
\]
Denote by μ^t the measure of the process on $E^\mathbb{Z}_{\kappa}$ at time $t \geq 0$.

$t > 0$

\[X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6 \rightarrow X_7 \]

$Y \sim \mu^t = \gamma$

\[X \sim \mu^0 = \gamma \]

Evolution under T
Definition

A process \((X_k, k \in \mathbb{Z}/n\mathbb{Z})\) taking its values in \(E_{\mathbb{Z}/n\mathbb{Z}}\) is said to have a Gibbs distribution \(G(M)\) characterized by a MK \(M\), if for any \(x \in E_{\mathbb{Z}/n\mathbb{Z}}^{[0,n-1]}\),

\[
\mathbb{P}(X^{[0, n-1]} = x) = \frac{\prod_{j=0}^{n-1} M_{x_j, x_{j+1} \mod n}}{\text{Trace}(M^n)} .
\]
Definition

A process \((X_k, k \in \mathbb{Z}/n\mathbb{Z})\) taking its values in \(E_{\mathbb{Z}/n\mathbb{Z}}\) is said to have a Gibbs distribution \(G(M)\) characterized by a MK \(M\), if for any \(x \in E_{\mathbb{Z}/n\mathbb{Z}}^{[0,n-1]}\),

\[
\mathbb{P}(X[0, n-1] = x) = \frac{\prod_{j=0}^{n-1} M_{x_j, x_{j+1} \mod n}}{\text{Trace}(M^n)} =: \nu(x).
\]
Evolution under T

$t > 0$

X_{10} X_9 X_8 X_7 X_6 X_5

Y_{10} Y_9 Y_8 Y_7 Y_6 Y_5

$t = 0$

X_{10} X_9 X_8 X_7 X_6 X_5

Y_{10} Y_9 Y_8 Y_7 Y_6 Y_5

$Y \sim \mu^t = \nu$

$X \sim \mu^0 = \nu$
Theorem 1 (F- Marckert ’17)

Let E_κ be finite, $L = 2$, $m = 1$. If $M > 0$ then the following statements are equivalent for the couple (T, M):

1. (ρ, M) is invariant by T on \mathbb{Z}.
2. $G(M)$ is invariant by T on $\mathbb{Z}/n\mathbb{Z}$, for all $n \geq 3$
3. $G(M)$ is invariant by T on $\mathbb{Z}/7\mathbb{Z}$
4. A finite system of equations of degree 7 in M and linear in T.
Suppose μ^t is described with a MD. For any $x \in E_1^{[1,n]}$ we define

$$\text{Line}_{n,T}^M(x) := \frac{\partial}{\partial t} \mu_{[1,n]}^t(x)$$
Suppose μ^t is described with a MD. For any $x \in E^{[1,n]}_\kappa$ we define

$$\text{Line}^M_T(x) := \frac{\partial}{\partial t} \mu^t_{[1,n]}(x)$$

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
But you are CHEATING!!!
Suppose μ^t is described with a MD. For any $x \in E^{[1,n]}_\kappa$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu_{[1,n]}^{t}(x)$$

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E^{[1,n]}_k$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu_{[1,n]}^t(x)$$

= Mass creation rate of x

– Mass destruction rate of x

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E^{[1,n]}_\kappa$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu^t_{[1,n]}(x)$$

$$= \lim_{h \to 0} \sum_{w \in E^{\mathbb{Z}}_\kappa} \mathbb{P}(\eta^{t+h}[1,n] = x | \eta^t = w)$$

- Mass destruction rate of x

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E_{[1,n]}^{1/k}$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu^t_{[1,n]}(x)$$

$$= \lim_{h \to 0} \sum_{w \in E_r^Z} \mathbb{P}(\eta^{t+h}[1,n] = x | \eta^t = w)$$

$$- \lim_{h \to 0} \sum_{w \in E_r^Z} \mathbb{P}(\eta^{t+h} = w | \eta^t[1,n] = x)$$

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E_{\kappa}^{[1,n]}$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu_{[1,n]}^t (x)$$

$$= \lim_{h \to 0} \sum_{w \in E_{\kappa}^Z} \mathbb{P}(\eta^{t+h}[1, n] = x | \eta^t = w)$$

$$- \sum_{x \in \mathbb{Z}} \sum_{j=0}^{n} \gamma(x[-1, n+2]) \sum_{(u,v) \in E_{\kappa}^2} T_{[x_j, x_{j+1}] u, v}$$

where w^k differs from x in $w^k[k, k + 1] = (u, v)$.

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E_{1, n}^{[1, n]}$ we define

$$
\text{Line}_{n}^{M, T}(x) := \frac{\partial}{\partial t} \mu^{t}_{[1, n]}(x)
$$

$$
= \sum_{x_{-1}, x_0, x_{n+1}, x_{n+2} \in E_{\kappa}} \sum_{j=0}^{n} \sum_{(u, v) \in E_{\kappa}^2} \gamma(w^j[-1, n + 2]) T_{[u, v|x_j, x_{j+1}]}
$$

$$
- \sum_{x_{-1}, x_0, x_{n+1}, x_{n+2} \in E_{\kappa}} \sum_{j=0}^{n} \gamma(x[-1, n + 2]) \sum_{(u, v) \in E_{\kappa}^2} T_{[x_j, x_{j+1}|u, v]}
$$

where w^k differs from x in $w^k[k, k + 1] = (u, v)$.

Definition

A (ρ, M) MD under its invariant distribution is said to be AI by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E_{\kappa}^{[1,n]}$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu_{[1,n]}^t(x)$$

$$= \sum_{x=1}^{x_0, x_n+1, x_{n+2} \in E_{\kappa}} \sum_{j=0}^{n} \left(\sum_{(u,v) \in E_{\kappa}^2} \gamma(w_j([-1, n+2])) T_{[u,v|x_j,x_{j+1}]} \right)$$

$$- \gamma(x([-1, n+2])) \sum_{(u,v) \in E_{\kappa}^2} T_{[x_j,x_{j+1}|u,v]}$$

where w^k differs from x in $w^k[k, k+1] = (u, v)$.

Definition

A (ρ, M) MD under its invariant distribution is said to be Al by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E_k^{[1,n]}$ we define

$$\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu^t_{[1,n]}(x)$$

$$= \sum_{x_0, x_1, x_n, x_{n+1}, x_{n+2} \in E_k} \left(\sum_{j=0}^{n} \left(\sum_{(u,v) \in E_k^2} (\rho_{x_{j-1}} \prod_{-1 \leq k \leq n+1}^{n+1} M_{x_k,x_{k+1}}) M_{x_{j-1}, u} M_{u,v} M_{v,x_{j+2}} T[u,v|x_j,x_{j+1}] \right) \right)$$

$$- \left(\rho_{x_{-1}} \prod_{k=-1}^{n+1} M_{x_k,x_{k+1}} \right) T^{\text{out}}[x_j,x_{j+1}]$$

Definition

A (ρ, M) MD is said to be invariant by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in E_{k_{[1,n]}}$ we define

$$\text{Line}_n^{M,T}(x) := \frac{\partial}{\partial t} \mu^t_{[1,n]}(x)$$

$$= \sum_{x_{-1}, x_0, x_{n+1}, x_{n+2} \in E_{\kappa}} \sum_{j=0}^{n} \left(\rho_{x_{j-1}} \prod_{k=-1}^{n+1} M_{x_k, x_{k+1}} \right) \times$$

$$\left(\left(\sum_{(u,v) \in E_{\kappa}^2} T_{[u,v|x_j,x_{j+1}]} \frac{M_{x_{j-1}, u} M_{u, v} M_{v, x_{j+2}}}{M_{x_{j-1}, x_j} M_{x_j, x_{j+1}} M_{x_{j+1}, x_{j+2}}} \right) - T_{\text{out}[x_j,x_{j+1}]} \right)$$

Definition

A (ρ, M) MD is said to be invariant by T on the line when $\text{Line}_n \equiv 0$, for all $n \in \mathbb{N}$.
Suppose μ^t is described with a MD. For any $x \in \mathbb{E}_{\kappa}^{[1,n]}$ we define

\[
\text{Line}_{n}^{M,T}(x) := \frac{\partial}{\partial t} \mu_{[1,n]}^{t}(x)
\]

\[
= \sum_{x_{-1}, x_0, x_{n+1}, x_{n+2} \in \mathbb{E}_{\kappa}} \sum_{j=0}^{n} \left(\rho_{x_{-1}} \prod_{k=-1}^{n+1} M_{x_k, x_{k+1}} \right) \times
\]

\[
\left(\sum_{(u,v) \in \mathbb{E}_{\kappa}^2} T_{[u,v|x_j, x_{j+1}]} \frac{M_{x_{j-1}, u} M_{u, v} M_{v, x_{j+2}}}{M_{x_{j-1}, x_j} M_{x_j, x_{j+1}} M_{x_{j+1}, x_{j+2}}} \right) - T_{\text{out}}^{[x_j, x_{j+1}]} \right) \]

\[
Z_{x_{j-1}, x_j, x_{j+1}, x_{j+2}}
\]

Definition

A (ρ, M) MD is said to be invariant by T on the line when Line$_n \equiv 0$, for all $n \in \mathbb{N}$.
Definitions

Define for every $a, b, c, d \in E_{\kappa}$

$$Z_{a,b,c,d}^{M,T} := \left(\sum_{(u,v) \in E_{\kappa}^2} T_{[u,v|b,c]} \frac{M_{a,u} M_{u,v} M_{v,d}}{M_{a,b} M_{b,c} M_{c,d}} \right) - T_{[b,c]}.$$
Definition

A Gibbs measure with kernel M is said to be invariant by T on $\mathbb{Z}/n\mathbb{Z}$ when $\text{Cycle}_n \equiv 0$, where

$$\text{Cycle}_n(x) := \sum_{j=0}^{n-1} \sum_{u,v \in E_\kappa} \left(\nu(w^j) T[u,v|x_j,x_{j+1} \text{mod} \ n] - \nu(x) T^{\text{out}}[x_j,x_{j+1} \text{mod} \ n] \right)$$

where w^k differs from x in $w^k[k, k + 1 \text{mod} \ n] = (u, v)$.
Definition

A Gibbs measure with kernel \mathcal{M} is said to be invariant by T on $\mathbb{Z}/n\mathbb{Z}$ when $\text{Cycle}_n \equiv 0$, where

$$\text{Cycle}_n(x) := \nu(x) \times \sum_{j=0}^{n-1} \mathbb{Z}_{x_{j-1},x_j,x_{j+1},x_{j+2}}$$

where w^k differs from x in $w^k\left[k, k + 1 \mod n\right] = (u, v)$.
Extensions
Theorem 1 (F- Marckert)

Let E_κ be finite, $L = 2$, $m = 1$. If $M > 0$ then the following statements are equivalent:

1. (ρ, M) is invariant by T on \mathbb{Z}.
2. $G(M)$ is invariant by T on $\mathbb{Z}/n\mathbb{Z}$, for all $n \geq 3$
3. $G(M)$ is invariant by T on $\mathbb{Z}/7\mathbb{Z}$
4. A finite system of equations of degree 7 in M and linear in T.
Memory and amplitude

Theorem 1- Strongest form (F- Marckert ’17)

Let E_k be finite, $L \geq 2$, $m \in \mathbb{N}$. If $M > 0$ then the following statements are equivalent:

1. (ρ, M) is invariant by T on \mathbb{Z}.
2. $G(M)$ is invariant by T on $\mathbb{Z}/n\mathbb{Z}$, for all $n \geq m + L$
3. $G(M)$ is invariant by T on $\mathbb{Z}/h\mathbb{Z}$
4. A finite system of equations of degree h in M and linear in T.

\[h := 4m + 2L - 1 \]
Other extensions:

- Theorem 1 when $\kappa = \infty$.
Other extensions:

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d.

\[
\begin{array}{c}
11 \\
00
\end{array}
\quad \rightarrow
\begin{array}{c}
01 \\
10
\end{array}
\]
Other extensions:

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d.

$$
\begin{array}{c}
11 \\
00 \\
\end{array}
\rightarrow
\begin{array}{c}
11 \\
00 \\
01 \\
10 \\
\end{array}
\rightarrow
\begin{array}{c}
01 \\
10 \\
\end{array}
$$

We link our results with the TASEP's matrix ansatz.
Other extensions:

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d.

\[
\begin{pmatrix}
11 \\
00
\end{pmatrix}
\xrightarrow{T}
\begin{pmatrix}
11 & 01 \\
00 & 10
\end{pmatrix}
\xrightarrow{11}
\begin{pmatrix}
01 \\
10
\end{pmatrix}
\]

- We link our results with the TASEP’s matrix ansatz.
Other extensions:

- Theorem 1 when $\kappa = \infty$.
- I.I.D. invariant measures on \mathbb{Z}^d.

We link our results with the TASEP’s matrix ansatz.

Problem: MK with zero entries.
Applications
Theorem 3 (F.- Marckert ’17)

Consider $\kappa < \infty$. Consider an IRM T with amplitude L, which is not identically 0. If for infinitely many integers n the IPS with IRM T possesses an absorbing subset S_n of $E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$, with $\emptyset \subsetneq S_n \subsetneq E_{\kappa}^{\mathbb{Z}/n\mathbb{Z}}$. Then, there does not exist any MD with any memory m with full support, invariant by T on the line.
Theorem 3 (F.- Marckert ’17)

Consider \(\kappa < \infty \). Consider an IRM \(T \) with amplitude \(L \), which is not identically 0. If for infinitely many integers \(n \) the IPS with IRM \(T \) possesses an absorbing subset \(S_n \) of \(E^{\mathbb{Z}/n\mathbb{Z}}_{\kappa} \), with \(\emptyset \subsetneq S_n \subsetneq E^{\mathbb{Z}/n\mathbb{Z}}_{\kappa} \). Then, there does not exist any MD with any memory \(m \) with full support, invariant by \(T \) on the line.

Corollary

The contact process do not have a MD of any memory \(m \geq 0 \) as invariant distribution.
Summary of other applications

- The case \(\kappa = 2, \ m = 1 \) and \(L = 2 \) is totally explicitly solved.
The case $\kappa = 2$, $m = 1$ and $L = 2$ is totally explicitly solved.

For $\kappa < \infty$, $L = 2$ and $m = 1$ we have an algorithm to find the set of all possible M MK which are invariant for a given T.
Summary of other applications

- The case $\kappa = 2$, $m = 1$ and $L = 2$ is totally explicitly solved.
- For $\kappa < \infty$, $L = 2$ and $m = 1$ we have an algorithm to find the set of all possible M which are invariant for a given T.
- Examples of I.I.D. invariant measures on \mathbb{Z}^2.
Summary of other applications

- The case $\kappa = 2$, $m = 1$ and $L = 2$ is totally explicitly solved.
- For $\kappa < \infty$, $L = 2$ and $m = 1$ we have an algorithm to find the set of all possible M MK which are invariant for a given T.
- Examples of I.I.D. invariant measures on \mathbb{Z}^2.
- Zero range, voter model, etc. Also when we make mild changes on these models we have some results.
Summary of other applications

- The case $\kappa = 2$, $m = 1$ and $L = 2$ is totally explicitly solved.
- For $\kappa < \infty$, $L = 2$ and $m = 1$ we have an algorithm to find the set of all possible M MK which are invariant for a given T.
- Examples of I.I.D. invariant measures on \mathbb{Z}^2.
- Zero range, voter model, etc. Also when we make mild changes on these models we have some results.
- We find an IRM T which possesses some hidden Markov chain as invariant distributions. It is done using a projection from E_3 to E_2.
Thank you!