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AMAURY FRESLON

1 INTRODUCTION

These notes were originally written as a support for a series of two lectures given in Oberwolfach
on the occasion of the workshop “Operator algebraic quantum groups” 2. The aim of these lectures
was to give a snapshot of some of the current developments around classification of families of
compact quantum groups.

One of the main focus at the moment is the classification of structures linked to partitions
of finite sets. This is an active research topic evolving rapidly, so that an exhaustive review is
unfortunately out of our scope. We have therefore made the choice of devoting the first lecture to
an overview of several recent results in the area by other authors. We would like both to isolate
some key ideas which seem important to us, as well as convince the reader that this is a broad
and lively topic. As for the second lecture, it will be devoted to our own contribution to the subject.

Before delving into partition quantum groups, let us mention some other classification prob-
lems for compact quantum groups which will not be treated hereafter. The first examples of com-
pact quantum groups were the deformations of the group SU(2) and more generally SU(N), due
to S.L. Woronowicz in [Wor87]. The construction was soon generalized by M. Rosso to arbitrary
compact Lie groups in [Ros90] and the reader may find a detailed description in [NT13, Sec 2.4].
However, S.L. Woronowicz noticed already in [Wor87] that his procedure may yield more compact
quantum groups. This requires, through Tannaka-Krein duality, the explicit construction of some
intertwiners between the fundamental representation u and u⊗N . Even for N = 3, there is no
complete classification of these potential intertwiners to this day, despite results by A. Kula in
[Kul15].

This is connected to the broader question of classifying fibre functors on given tensor cate-
gories, or even more generally classifying quantum groups having given fusion rules. The prob-
lem has been solved for SU(2) (see [Ban96]) and SO(3) (see [Mro15]) but this is a difficult problem
in general, with recent advances in particular due to S. Neshveyev and M. Yamashita in [NY16].
There, the authors classify all dimension-preserving fibre functors on the representation category
of SU(3). Nothing is known however for dimension increasing fibre functors 3.

PREREQUISITES

These lectures were aimed at experts, we therefore assume a firm knowledge in compact quantum
group theory and in particular Tannaka-Krein duality. The interested reader may refer to the
books [Tim08] and [NT13] for detailed treatments of the subject. For another reader-friendly
introduction, including the combinatorial approach to compact quantum groups, see [Web17].

2 FIRST LECTURE : TAKE IT EASY

2.1 THE SETTING

After a period of maturation in the work of T. Banica and several co-authors, compact quantum
groups related to partitions were properly formalized by T. Banica and R. Speicher in the influen-
tial paper [BS09] under the name of easy quantum groups. This was restricted to the orthogonal
case but it was clear that it could be extended to the unitary case, and this was done by M. Weber
and P. Tarrago in [TW17]. Around the same time, we introduced a more general setting, both
because the generalization was natural and because it was suited to the investigation of compact
quantum groups with free fusion semi-ring (see [Fre17, Sec 5] for details). We will therefore use
this general setting. For the sake of completeness and in order to fix notations, we will recall the
basic definitions.

A partition is given by two integers k and ` and a partition p of the set {1, . . . ,k+`}. It is
very useful to represent such partitions as diagrams, in particular for computational purposes.

2. Oberwolfach Miniworkshop 1941a, October 7−11, 2019.
3. Note that building a non-amenable Kac-type compact quantum group monoidally equivalent to SUq(3) (neces-

sarily for q+ q−1 ∈N) has been an open problem for several years now. It is interesting because this would yield a nice
example of a property (T) discrete quantum group.
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ON THE CLASSIFICATION OF PARTITION QUANTUM GROUPS

A diagram consists in an upper row of k points, a lower row of ` points and some strings con-
necting these points if and only if they belong to the same set of the partition. Let us consider
for instance the partitions p1 = {{1,8}, {2,6}, {3,4}, {5,7}} and p2 = {{1,4,5,6}, {2,3}}. Their diagram
representation is :

• • • • •

• • •

p1 =

• •

• • • •

p2 =

When manipulating partitions, the crucial notion is that of a block.

DEFINITION 2.1. Let p be a partition.

• A maximal set of points which are all connected (i.e. one of the subsets defining the partition)
is called a block of p,

• If moreover this block consists only of neighbouring points, then it is called an interval,

• If b contains both upper and lower points (i.e. the subset contains an element of {1, . . . ,k}
and an element of {k+1, . . . ,k+`}), then it is called a through-block,

• Otherwise, it is called a non-through-block.

The total number of through-blocks of the partition p is denoted by t(p).

Even though we will mention some aspects of the general case, these lectures mainly focus on
the specific family of non-crossing partitions in the following sense :

DEFINITION 2.2. Let p be a partition. A crossing in p is a tuple k1 < k2 < k3 < k4 of integers such
that :

• k1 and k3 are in the same block,

• k2 and k4 are in the same block,

• the four points are not in the same block.

If there is no crossing in p, then it is said to be a non-crossing partition. The set of non-crossing
partitions will be denoted by NC.

To generalize this setting, the idea is to further colour the points of the partitions with ele-
ments of a fixed set.

DEFINITION 2.3. A colour set is a set A together with an involution denoted by x 7→ x−1. An A -
coloured partition is a partition together with an element of A attached to each point. A coloured
partition is said to be non-crossing if the underlying uncoloured partition is non-crossing. The set
of A -coloured non-crossing partitions will be denoted by NCA .

Let p be an A -coloured partition. Reading from left to right, we can associate to the upper
row of p a word w on A and to its lower row (again reading from left to right) a word w′ on A .
For a set of partitions C , we will denote by C (w,w′) the subset of all partitions in C such that
the upper row is coloured by w and the lower row is coloured by w′ and we will denote by |w| the
length of a word w. There are several fundamental operations available on partitions called the
category operations :

• If p ∈ C (w,w′) and q ∈ C (z, z′), then p⊗ q ∈ C (w.z,w′.z′) is their horizontal concatenation,
i.e. the first |w| of the |w|+|z| upper points are connected by p to the first |w′| of the |w′|+|z′|
lower points, whereas q connects the remaining |z| upper points with the remaining |z′|
lower points.
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• If p ∈ C (w,w′) and q ∈ C (w′,w′′), then qp ∈ C (w,w′′) is their vertical concatenation, i.e. |w|
upper points are connected by p to |w′| middle points and the lines are then continued by
q to |w′′| lower points. This process may produce loops in the partition. More precisely,
consider the set L of elements in {1, . . . , |w′|} which are not connected to an upper point of p
nor to a lower point of q. The lower row of p and the upper row of q both induce a partition
of the set L. For x, y ∈ L, let us set x ∼ y if x and y belong either to the same block of
the partition induced by p or to the one induced by q. The transitive closure of ∼ is an
equivalence relation on L and the corresponding partition is called the loop partition of L,
its blocks are called loops and their number is denoted by rl(q, p). To complete the operation,
we remove all the loops. Note that we can only perform this vertical concatenation if the
words associated to the lower row of p and the upper row of q match.

• If p ∈ C (w,w′), then p∗ ∈ C (w′,w) is the partition obtained by reflecting p with respect to
an horizontal axis between the two rows (without changing the colours).

• If w = w1 . . .wn, w′ = w′
1 . . .w′

k and p ∈ C (w,w′), then rotating the extreme left point of the
lower row of p to the extreme left of the upper row and changing its colour to its inverse
yields a partition q ∈C ((w′

1)−1w1 . . .wn,w′
2 . . .w′

k). The partition q is called a rotated version
of p. One can also perform rotations on the right and from the upper to the lower row.

Let us say that for an element x ∈A , the x-identity partition is the partition | ∈C (x, x) coloured
with x on both ends. We are now ready for the definition of a category of coloured partitions, the
fundamental object of these lectures.

DEFINITION 2.4. A category of A -coloured partitions C is the data of a set of A -coloured parti-
tions C (w,w′) for all words w and w′ on A , which is stable under all the category operations and
contains the x-identity partition for all x ∈A . If C moreover contains the partition

x y

y x

for all x, y ∈A , then it is said to be symmetric.

Such a data gives rise to a compact quantum group in the same way as for easy quantum
groups. In order to give a precise statement, let us fix some notations. Let N be a given integer,
for each colour x ∈A , we consider a copy V x of CN and for a word w = w1 · · ·wn on A , we set

V w =V w1 ⊗·· ·⊗V wn .

Given representation (ux)x∈A and a word w on A , one defines in the same way the tensor product
representation uw. Moreover, if p is an A -coloured partition, we can associate to it two words on
A by reading its upper and lower row from left to right. For an A -coloured category of partitions
C , we then denote by C (w,w′) the set of its partitions with upper word w and lower word w′. With
these notations, for p ∈ C (w,w′) we can define a linear map Tp : V w → V w′

by the same formula
as for easy quantum groups, namely

Tp : ew1
i1

⊗·· ·⊗ ewn
in

7→ ∑
j1,··· , jk

δp(i, j)ew′
1

j1
⊗·· ·⊗ e

w′
k

jk
,

where δp(i, j) = 1 if and only if all strings of the partition p connect equal indices of the multi-
index i = (i1, . . . , in) in the upper row with equal indices of the multi-index j = ( j1, . . . , jk) in the
lower row. Here is now the precise existence statement, proven in [Fre17, Thm 3.2.3] :

THEOREM 2.5 Let A be a colour set, let C be a category of A -coloured partitions and let N
be an integer. Then, there exists a compact quantum group G together with unitary repre-
sentations (ux)x∈A of dimension N such that

• Any finite-dimensional representation of G is equivalent to a subrepresentation of the
tensor product uw for some word w on A ,
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ON THE CLASSIFICATION OF PARTITION QUANTUM GROUPS

• For any two words w,w′ on A ,

MorG(uw,uw′
)=Vect{Tp | p ∈C (w,w′)}.

The compact quantum group G is called the partition quantum group associated to C and N
and is denoted by GN (C ). Moreover, GN (C ) is classical if and only if C is symmetric.

Remark 2.6. One may wonder about the assumption that all the representations ux should have
the same dimension. Removing it may yield to trouble depending on the partitions in C , but in
some cases it is possible. The first appearance of this phenomenon is in the work of D. Gromada
and M. Weber [GW19b] which we will not discuss here.

Remark 2.7. One important source of examples in quantum group theory is twisting. It is in-
deed possible to twist the maps Tp to produce new examples. Some particular twistings have
been studied in detail by T. Banica, and the question of finding all possible ways of twisting this
construction is still open, see for instance [Ban19].

2.2 ORTHOGONAL EASY QUANTUM GROUPS

The first case to consider is obviously that of a colour set reduced to one point, which must be its
own inverse. This means that we are working with quantum subgroups of O+

N (see [Wan95] for
the definition), which is the reason why they are called orthogonal.

2.2.1 The non-crossing case

Let us consider the non-crossing case, which should be the simplest. Because our aim is to discuss
the general classification problem, let us start by stating a classification theorem, and then discuss
the key features of the proof. The result we will consider is due to the joint efforts of T. Banica and
R. Speicher in [BS09] and M. Weber [Web13], to which we refer for the definitions of the various
compact quantum groups involved 4.

THEOREM 2.8 (Banica–Speicher, Weber) There exist exactly seven easy orthogonal non-
crossing quantum groups : O+

N , B+
N , H+

N , S+
N , B+

N ∗Z2, B+
N ×Z2 and S+

N ×Z2.

Proof. The first thing one may try when classifying structures, is to build invariants, and hope
that they will completely capture the structure in question. In our case, there two natural invari-
ants which are easy to define for categories of partitions. The first one is the Block Size

BS(C )= {n ∈N | ∃ p ∈C with a block of size n}.

This invariant can take four different values : {2}, {1,2}, 2N and N giving the four main families
of compact quantum groups. Since it only depends on the blocks of C , we may call this a local
invariant.

One must now find a way of distinguishing, say, S+
N ×Z2 from S+

N . This can be done using the
Odd Block Number

BN(C )= {n | ∃ p ∈C with n blocks of odd size }

which can be either N or 2N. By contrast with the block size, we will call this a global invariant.
These two invariants together are not sufficient to obtain a full classification, since they can-

not distinguish B+
N ∗Z2 from B+

N ×Z2. The final step is however not done by introducing a new
invariant, but by considering the presence or absence of a peculiar partition, called the positioner
partition

• • • •
4. We will use, for simplicity, the notation ∗ instead of ∗̂ to denote the usual free product of compact quantum

groups. This means that B+
N ∗Z2 is the compact quantum group with C*-algebra C(B+

N )∗C∗(Z2).
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The presence of this partition does not translate into a numerical invariant, but rather into a
commutation property : using it and standard manipulation on partitions, we can move singletons
around without leaving the category of partitions. ■

Remark 2.9. From this one may also obtain a classification of the classical easy orthogonal com-
pact groups. Indeed, given a symmetric category of partitions C , it follows from the definitions
that C ∩NC is a category of non-crossing partitions. Conversely, given a category of non-crossing
partitions, one can add the crossing partition {{1,3}, {2,4}} and this generates a symmetric cate-
gory of partitions. These operations are not inverse to one another, since B+

N∗Z2 and B+
N×Z2 both

collapse to BN×Z2, but at least it yields all possible classical groups (see for instance [TW18, Lem
8.2]).

2.2.2 The full classification

It was already known at the time of the aforementioned works that there exist orthogonal easy
quantum groups which are neither classical nor non-crossing, the first examples being the so-
called half-liberations. These are obtained by adding the relation

abc = cba

for all triples (a,b, c) of generators, which is easily seen to be given by the following partition :

•••

• • •

M. Weber was able to show that any non-hyperoctaedral (see [Web13, Thm 3.12] for the def-
inition) easy quantum group is either classical, non-crossing, or obtained from those through
half-liberation, making a total of 13 easy quantum groups. It therefore remains to classify hype-
roctaedral quantum groups, i.e. those whose category of partitions contain the four-block but not
the double singleton.

The hyperocteadral case was then completely classified by S. Raum and M. Weber in a series
of papers (we refer the reader to [RW16] and references therein for more details). Again, the
strategy relies on the definition of some specific partition which help distinguish fundamental
properties of the associated quantum groups. This is the so-called pair positioner partition

• • •

• • •

It leads to the following dichotomy :

• If C contains the pair positioner partition then it can be decomposed as a kind of semi-direct
product of a discrete group acting on C(SN ). Once again, this can be seen as a commutation
relation : any four-block partition can be moved along the partitions in C .

• If C does not contain the pair positioner partition, then C is called an interpolating category.
One then defines a numerical invariant, the maximum of the wdepth of C , and shows that
it completely classifies the interpolating categories. In other words, there is just one extra
series H[s]

N besides non-hyperoctaedral and group-theoretical quantum groups. Note that
the maximum of the wdepth is a local invariant which can be encoded by a partition πk.

— 7 —
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Remark 2.10. There is a precise characterization in [RW15] of those compact quantum groups of
semi-direct product type which are easy. The non-easy ones exhibit an interesting “skew-easy”
structure investigated by L. Maaßen in [Maa19]. To understand their structure, L. Maaßen in-
troduces a variant of categories of partitions called skew categories of partitions. Using a suitable
adaptation of the definition of the operators Tp, she is then able to completely classify all compact
quantum groups of semi-direct product type.

2.3 UNITARY EASY QUANTUM GROUPS

It is tempting, in view of the full classification of orthogonal easy quantum groups achieved by S.
Raum and M. Weber, to hope for a similar classification in the unitary case, i.e. with the colour
set A = {◦,•} with ◦−1 = •. Things turn out, however, to be more complicated.

2.3.1 The non-crossing case

A starting idea is to try to refine the invariants BS(C ) and BN(C ) from the orthogonal case. P.
Tarrago and M. Weber did this in [TW18] by defining three new numerical invariants called the
colouring parameters 5. Let us start with a convenient definition.

DEFINITION 2.11. Let p be a partition of {1, · · · ,k}. A sub-partition q (i.e. a union of blocks of p)
is said to be full if, up to a rotation of p, it is a partition of {a, · · · ,a+b} for some 1É a É a+b É k.

DEFINITION 2.12. Let C be a category of non-crossing partitions coloured with {◦,•}. For a par-
tition p ∈ C lying on one line, let us denote by c(p) the difference between the number of white
points and the number of black points, called the colour sum of p. Then,

• The global colouring parameter of C is the minimum k(C ) of the numbers |c(p)| for all
partitions in p ∈C lying on one line,

• The first local colouring parameter of C is the minimum d◦•(C ) of the numbers c(p) for
all full sub-partitions p appearing between two connected points with different colours of a
partition in C lying on one line,

• The second local colouring parameter of C is the minimum d••(C ) of the numbers c(p) for
all full sub-partitions p appearing between two connected points with the same colour of a
partition in C lying on one line.

Using these, they were able to classify categories of non-crossing unitary easy quantum groups

THEOREM 2.13 (Tarrago-Weber) Let us say that a category of coloured partitions is globally
colourised if it is stable under inversion of colours, and locally colourised otherwise. Then,
the quadruple

(BS(C ),k(C ),d◦•(C ),d••(C ))

is a complete invariant for globally colourised categories of non-crossing partitions, as well
as for locally colourised ones.

Proof. The proof is of course extremely involved and out of our scope. Let us simply mention the
rough strategy. Given the invariants, one builds partitions “encoding” them and proves that they
must belong to C . Then, one shows that C is in fact generated by these partitions. ■

Interestingly, P. Tarrago and M. Weber showed in [TW17] that the previous combinatorial
invariant translate into operations generalizing the free complexification introduced by T. Banica
in [BB07].

DEFINITION 2.14. Let G be a compact quantum group with a fundamental representation u and
let d be an integer. The d-free complexification of G is the compact quantum group given by the
C*-subalgebra of C(G)∗C(Zd) generated by the coefficients of uz (where z denotes the fundamental

5. The names and notations here are ours and differ from those given in [TW18].
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representation of Zd) together with the restriction of the coproduct. The d-tensor complexification
is obtained similarly using C(G)⊗C(Zd). Eventually, the image of the d-free complexification in
the quotient of C(G)∗C(Zd) by the relations(

ui j zr)∗ = ui j zr

for r | d, is called the r-self-adjoint d-free complexification.

The classification of [TW18] can then be restated in the following way :

THEOREM 2.15 (Tarrago-Weber) All non-crossing partition unitary easy quantum groups
can be obtained from orthogonal easy quantum groups and free wreath products by applying
(r-self-adjoint) d-free and d-tensor complexifications.

2.3.2 Crossing pair partitions

Allowing crossings the situation becomes much more involved, even in the simplest instance
BS(C ) = {2}. Indeed, in the orthogonal case there are only three corresponding quantum groups,
namely ON , O+

N and the half-liberation O∗
N while in the unitary case the classification of all easy

quantum groups sitting in between UN and U+
N was only recently obtained by A. Mang and M.

Weber in [MW19a] and [MW19b].
To see the difficulty, simply wonder at the following question : what is the analogue of half-

liberation for non-self-adjoint generators ? Should one consider the relation

abc = cba

just for the generators ui j or also for their adjoints ? And what about the relations

ab∗c = cb∗a

or other variants ? The solution is to think about the problem from another angle. Let us get back
to numerical invariants and define the following :

DEFINITION 2.16. Let us say that a sector in a partition p ∈ P
◦,•
2 lying on one line is a full sub-

partition whose endpoints are connected. We define the sector colour number σ(C ) of C to be the
minimum of the numbers |c(p)| for all sectors p of partitions in C such that c(p) 6= 0. If there is
no such partition, we set σ(C )= 0.

A. Mang and M. Weber showed in [MW19a, Prop 8.1] that σ(C ) in a sense classifies “half” of
the easy quantum groups between UN and U+

N . To classify the other half, one needs an additional
invariant :

DEFINITION 2.17. The colour semi-group of C ⊂ P
◦,•
2 is the set D(C ) of all values of c(p), where

p is a full sub-partition of a partition in C whose endpoints belong to two blocks which cross.

As the name indicates, D(C ) is a sub-semi-group of (N,+) as proven in [MW19b, Prop 7.14].
Moreover, by [MW19a, Prop 8.1] and [MW19b, Thm 8.3], this is enough to complete the classifica-
tion :

THEOREM 2.18 (Mang-Weber) The pair (σ(C ),D(C )) is a complete invariant for categories
of partitions NC◦,•

2 ⊂C ⊂P
◦,•
2 .

Proof. Let us simply mention that, once again, the spirit of the proof is to translate the invariants
into partitions. Here, this gives rise to a large family of so-called bracket partitions with a rich
combinatorial structure. One very nice feature of these partitions is that they are rotations of
partitions giving half-liberation-type relations. In a sense, this quarter turn rotation was the key
to the classification. ■
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2.4 BEFORE THE BREAK

2.4.1 A brief summary

We have encountered a number of tools so far for proving classification theorems, and we would
like to pause a moment to look at their main features. We have somehow three types of tools :
local invariants, global invariants and specific partitions implementing “commutation relations”.
Let us work one-by-one using the translation of these invariant into relations in the compact
quantum group as explained in [TW18].

In the unitary case, global invariants consist in the global colouring property, the uncoloured
invariant BN and the global colouring number k(C ). The latter is intimately linked to the group of
one-dimensional representations of the compact quantum group. It is usually Zk(C ) or a quotient
of it.

As for local invariants, they first give through BS a splitting into four subclasses in which
we can work separately. Then, d◦•(C ) gives commutation relations : the subgroup of the group
of one-dimensional representations commuting with the fundamental representation is exactly
Zd◦•(C ). And the invariant d••(C ) gives r-self-adjointness, which is a kind of twisted commutation
relation.

We are left with the positioner partition but the previous point strongly suggests that it can
be exchanged for a local invariant. However, we do not know how to do this at the moment.

2.4.2 Hard quantum groups ?

As the term easy suggests, one reason for the definition of easy quantum groups is that they should
be more amenable to classification because we can resort to the rich combinatorics of partitions.
One may nevertheless wonder for other classes of quantum groups to classify. It turns out that
even building non-easy quantum groups is not a simple task in general and only recently were
new families of quantum groups defined and classified.

More generally, any compact quantum group SN ⊂G⊂O+
N is determined by a family of linear

combination of partitions. It is extremely difficult to find explicit linear combinations which do
not yield a genuine category of partitions in the end, as the following open problem shows :

Question. Is there a compact quantum group SN ⊂ G ⊂ S+
N for N Ê 6 ? In other words, given

all non-crossing partitions and a linear combination of crossing ones, can one always build all
partitions ?

The first progress in this direction is a very recent work of D. Gromada and M. Weber [GW19a],
which is doubly interesting. First, it describes quantum groups which are not easy but with ex-
plicit linear combinations of partitions generating their intertwiners, paving the way for a deeper
study of these objects. Second, the examples were obtained through computer assisted compu-
tations, and this suggests to further investigate the potential of computers in the study of such
combinatorial quantum groups.

3 SECOND LECTURE : THE MORE THE MERRIER

In this lecture, we will explain our personal contribution to the subject, based on the works [Fre19]
and [Fre18]. It is concerned with the classification of partition quantum groups associated to cat-
egories of non-crossing partitions coloured by a set A = {x, y} with x−1 = x and y−1 = y (and some
general results for an arbitrary colour set). This means that these quantum groups are naturally
quotients of O+

N ∗O+
N , and we will see that they form a large family with many interesting new

examples. More importantly, our method is quite different from the ones explained in the first
lecture, and we believe that it may complement them in the general classification program.

3.1 FROM PARTITIONS TO REPRESENTATION THEORY

Our strategy heavily relies upon a joint work with M. Weber [FW16] linking non-crossing par-
titions to the representation theory of the corresponding compact quantum group. We therefore
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start by briefly reviewing these results. The fundamental object is the following :

DEFINITION 3.1. A partition p is said to be projective if pp = p = p∗. The map Tp is then a scalar
multiple of a projection.

An important fact, proved in [FW16, Prop 2.18], is that for any partition r, r∗r (hence also
rr∗) is always projective. Based on this fact and the analogy with projections on Hilbert spaces,
we will say that a projective partition p is equivalent to another projective partition q if there
exists a third partition r such that

p = r∗r and q = rr∗.

In [FW16, Sec 4], given a category of coloured partitions 6, we associate to any projective
partition p ∈ C and integer N a unitary representation up of GN (C ) in such a way that the
following properties are satisfied (see [FW16, Prop 4.15, Thm 4.18 and Prop 4.22] and [Fre14,
Lem 5.1] for proofs):

1. up is irreducible for all p,

2. Any irreducible representation of GN (C ) is equivalent to up for some p,

3. up is one-dimensional if and only if t(p) = 0, where t(p) denotes the number of through-
blocks of p,

4. up ∼ uq if and only if p ∼ q.

Remark 3.2. There is also an explicit formula for the fusion rules, given in [FW16, Thm 4.27], but
we will not use it in the sequel.

3.2 THE CLASSIFICATION

3.2.1 Three constructions

To explain our strategy, let us go back to the easy orthogonal case. The local invariant BS gives
us a set of four base cases, namely

S = {O+
N ,B+

N ∗Z2,H+
N ,S+

N ×Z2}.

Then, we refine with the global invariant BN which distinguishes whether the non-trivial one-
dimensional representation given by Z2 is made trivial or not. This suggests to consider more
generally relations at the level of one-dimensional representations. Let us give it a name for
convenience :

DEFINITION 3.3. A compact quantum groupH is said to be a quotient of a compact quantum group
G by group-like relations if C(H) is a quotient of C(G) by a Hopf ∗-ideal generated by elements of
the form

x−1,

where x ∈ C(G) is a group-like element.

The key observation is that this operation leaves the class of non-crossing partition quantum
groups invariant, as shown in [Fre19, Prop 3.8] :

Proposition 3.4. If G is a non-crossing partition quantum group, then any quotient of G by group-
like relations is again a non-crossing partition quantum group.

Proof. If x is a group-like element by which we want to quotient, let us take a partition p such
that up = x. Because t(p) = 0, we can find a partition b lying on one line such that p = b∗b. Then
simply consider the category of partitions generated by that of G and b. ■

6. The original work was only done in the uncoloured case, but carries on straightforwardly to the general setting.
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This yields the first step of our strategy. Let C be a category of non-crossing coloured par-
titions, and let C ′ ⊂ C be a subcategory containing all the projective partitions of C . Then, if
p ∈ C \C ′, we can rotate it on one line to obtain a new partition p′, and consider q = p′∗p′. By
assumption q ∈C ′, and adding p to C ′ is the same as adding the relation uq = 1 to GN (C ′). Thus,
we can recover GN (C ) from GN (C ′) by adding group-like relations.

This reduces the classification to categories of partitions which are generated by their projec-
tive partitions. Instead of trying to list them, we will push the previous idea further and try to
find other constructions which preserve the class of partition quantum groups so that we could
reduce the classification to a generating set like S .

Considering again the orthogonal easy case to get some inspiration, the last ingredient in the
classification was the positioner partition and we already mentioned that it corresponds to a kind
of commutation property of the category of partitions. To make this rigorous, let us rotate it

• • • •

−→

• •

• •

This rotated version implements an equivalence

•

• •

• •

• •

•
∼

exactly meaning that the fundamental representation u| of B+
N commutes with the non-trivial one-

dimensional representation u: corresponding to Z2. Abstracting the idea yields to the following
definition :

DEFINITION 3.5. A compact quantum group H is said to be a quotient of a compact quantum
group G by commutation relations if C(H) is a quotient of C(G) by a Hopf ∗-ideal generated by
elements of the form

xvi j −vi jx

for all 1É i, j É dim(v), where x ∈ C(G) is a group-like element and v is a representation of G.

Let us highlight the difference with group-like relations. If C denotes the category of repre-
sentations of B+

N ∗Z2 and p is the positioner partition, then

〈C , p〉 = 〈
C , p∗p

〉
so that this new category of partitions is still generated by its projective partitions, even though
the partition we added to it is not projective. The reason for this is that any category of partitions
containing p∗p must contain p, hence up∗p must be the trivial representation there. As a con-
sequence, adding p does not produce a quotient by group-like relations. The important fact is of
course that, like for group-like relations, commutation relations preserve the partition structure.

Proposition 3.6. If G is a non-crossing partition compact quantum group, then any quotient of G
by commutation relations is again a non-crossing partition compact quantum group.

Proof. Given v and x, we take partitions p and q such that up ∼ v and uq = x. Writing q = b∗b
with b lying on one line, we just have to add b⊗ p⊗b∗ to obtain H. ■

We have formalized and generalized now both the global invariants (group-like relations) and
the commutation partitions (commutation relations), but this is not enough. Indeed, these con-
structions do not increase the number of colours in the colour set, so that starting with S we will
remain in the class of orthogonal easy quantum groups. To be able to build new objects, we must
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combine elements of S . The obvious way to do this is through free product constructions, and it
turns out that we can even throw in amalgamation in a broad sense.

Assume that we are given two compact quantum groups G1 and G2 together with a third
compact quantum group H and embeddings

ik : C(H) ,→ C(Gk)

intertwining the coproducts. One can then construct the amalgamated free product by quotienting
C(G1)∗C(G2) by the ∗-ideal generated by i1(C(H))− i2(C(H)) (see [Wan95] for details). But if the
(non-amalgamated) free product G1∗G2 has one-dimensional representations, then one may twist,
say, i1(C(H)) before identifying it with i2(C(H)), leading to the following notion :

DEFINITION 3.7. With the previous notations, a compact quantum group G is said to be a twisted
amalgamated free product if it is the quotient of C(G1)∗C(G2) by the Hopf ∗-ideal generated by

xi1(C(H))x−1 − i2(C(H))

for some group-like element x ∈ C(G1)∗C(G2).

An example (without twisting) will be treated in detail in Section 3.3.1. Once again, this oper-
ation can be encoded with partitions as soon as the embedding satisfy some kind of compatibility.

Proposition 3.8. Let G1 and G2 are non-crossing partition compact quantum groups and let H be
a common quantum subgroup. Assume that there is a generating set X = {v1, · · · ,vn} of irreducible
representations of H, and partitions p1, · · · pn, q1, · · ·qn such that for all 1É i É n,

i1(vi)= upi and i2(vi)= uqi .

Then, any twisted amalgamated free product (regardless of H) is a non-crossing partition compact
quantum group.

Proof. Let us first mention that to build the free product, one takes disjoint copies A1 and A2 of
the colour sets of G1 and G2 respectively, and then considers the category of partitions generated
by C

A1
1 and C

A2
2 in PA1tA2 . Consider then an irreducible representation u of H, and partitions

p1 ∈ C
A1
1 and p2 ∈ C

A2
2 representing it. They must have the same number of through-blocks,

hence we can “merge” them by gluing the upper row of p1 to the lower row of p2. If p denotes the
resulting partition, and if q = b∗b represents x, then we set pu,x = b⊗ p⊗b∗. Adding these for all
irreducible representations in X yields the desired category of partitions. ■

The surprising and, at least to us, satisfying feature of our method is that the three operations
above are somehow enough to describe all non-crossing partition quantum groups on the colour
set A .

3.2.2 Free wreath products of pairs and the classification

Our claim is that all non-crossing partition quantum groups on two self-inverse colours can be
built from the three operations. Of course, such a statement is vacuous as long as the generating
set is not given. The best one may hope is certainly to start with S . This is in fact almost true,
except that we miss one family which is a generalization of the free wreath product construction.
Let us introduce it first.

Given a discrete group Γ and a symmetric generating set S ⊂ Γ containing the neutral ele-
ment, one may consider the category CΓ,S of all non-crossing partitions coloured by Γ (with the
involution given by inversion in the group) such that in each block, the product of the elements in
the upper row equals the product of the elements in the lower row. It was proven by F. Lemeux in
[Lem15] that the corresponding quantum group is the free wreath product Γ̂ o∗ S+

N introduced by
J. Bichon in [Bic04]. The representation theory of these objects is well-known, and in particular
they have no non-trivial one-dimensional representation. There is however a rather natural way
of adding one-dimensional representations.

Let λ ∈ Γ, which can be written as λ = g1 · · · gn, on the generators in S and consider the
partition
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. . .

. . .

g1 g2 gn−1 gn

g1 g2 gk−1 gk

βλ =

.

If we apply Theorem 2.5 to the category of partitions generated by βλ and C , then we get a quo-
tient of the free wreath product with a non-trivial one-dimensional representation, namely uβλ .
Doing this for all the elements of a fixed subgroup Λ⊂ Γ produces the free wreath product of the
pair (Γ,Λ), introduced in [Fre19] and denoted by H++

N (Γ,Λ). By construction, these are partition
quantum groups and cannot be obtained by the previous operations. For instance, consider the
free wreath product

(Z2 ∗Z2) o∗ S+
N ' H+

N ∗
S+

N

H+
N .

Any subgroup Λ of the infinite dihedral group Z2 ∗Z2 gives rise to a free wreath product of pairs
which is a non-crossing partition quantum group on two self-inverse colours and whose C*-algebra
is a quotient of that of a free product. However, since there is no one-dimensional representation
in the free product to quotient by, and amalgamation would just yield another free wreath product,
this object cannot be obtained by the construction of Section 3.2.1.

In fact, free wreath products of pairs form a closed family of compact quantum groups in a
strong sense, as the following result proven in [Fre19, Prop 3.18] shows :

Proposition 3.9. Let G be a quotient of H++
N (Γ,Λ), then there exists a group Λ ⊂ Λ̃ ⊂ Γ and a

normal subgroup Λ0 ⊂ Λ̃ such that

G' H++
N (Γ/Λ0,Λ̃/Λ0).

The previous result leads to the second best statement one can make, and this one happily
holds and is the content of the article [Fre19].

THEOREM 3.10 (F.) Any non-crossing partition quantum group on two self-inverse colours
is either

• Obtained from the set S = {O+
N ,B+

N ∗Z2,H+
N ,S+

N ×Z2} using twisted amalgamation,
commutation relations and group-like relations,

• O r a free wreath product of a pair.

Sketch of proof for a special case. The proof is extremely involved and covers the entire article
[Fre19], we will therefore not explain it here. Let us nevertheless illustrate how it works in a
simple case. Consider a category of non-crossing partitions C with BS(C ) = {1,2} and containing
double singletons coloured both by x and y. The corresponding compact quantum group is a
quotient of (B+

N ∗Z2)∗ (B+
N ∗Z2) and we will denote by C0 ⊂ C the category of partitions of this

free product.
Let p ∈ C \C0 be a projective partition. A straightforward induction shows that p is a hori-

zontal concatenation of the form

p = (b∗
0 b0)⊗|⊗ (b∗

1 b1)⊗|⊗·· ·⊗ (b∗
n−1bn−1)⊗|⊗ (b∗

nbn)

An easy lemma (see [Fre19, Prop 3.5]) shows that b∗
i bi ∈ C for all 0 É i É n. Moreover, up to

decomposing again into horizontal concatenation, we may assume that bi is a sector, so that b∗
i bi

has the following form :

a

a

b

b

q

q∗
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for some partition q lying on one line. Rotating then yields

b

a

b

a

q

q∗

As a consequence, adding b∗
i bi to C0 is the same as either quotienting C(GN (C0)) by commutation

relations (if a = b) or performing a twisted amalgamation (if a 6= b). One then only has to prove
that p can be reconstructed from the partitions b∗

i bi (see for instance the proof of [Fre19, Thm
5.10]) to conclude that there exists a category of partitions C0 ⊂C1 ⊂C containing p such that it
is obtained from the initial free product by our operations. Iterating this construction, we end up
with a category of partitions

C0 ⊂ C̃ ⊂C

satisfying the following properties :

• Any projective partition of C lies in C̃ ,

• GN (C̃ ) is obtained from GN (C0) by twisted amalgamation and quotienting by commutation
relations.

Now, any additional partition in C \ C̃ gives a group-like relation, and the proof is complete. ■

The previous result can be turned, with some extra work (see Section 3.3 for a glimpse), into
a list of all possible categories of partitions. This is based on the fact that we know all quantum
subgroups of elements of S and that the groups of one-dimensional representations are always
dihedral groups, of which all the subgroups are known. That list, given in [Fre19, Thm 8.1], is
roughly one page long and not very enlightening. On the contrary, our statement suggests the
following question :

Question. Can any non-crossing partition quantum group on an arbitrary number of colours
which are all their own inverses be obtained from the set S using twisted amalgamation, com-
mutation relations and group-like relations as soon as it is not a free wreath product of a pair
?

There is a way of getting rid of the dichotomy between free wreath products of pairs and the
rest, thanks to the following definition :

DEFINITION 3.11. Let G be a compact quantum group and let H1, H2 be compact quantum groups
such that

• There are injective ∗-homomorphisms ik : C(Hk) → C(G) intertwining the coproducts for
k = 1,2,

• There is an isomorphism of compact quantum groups ϕ : C(H1)→ C(H2).

Then, the quotient of C(G) by the Hopf ∗-ideal generated by

i1 (C(H1))− i2 ◦ϕ (C(H1)) .

is a compact quantum group called a collapsing of G.

Using this, we can give a more concise classification, which has not appeared in this form yet.

Corollary 3.12. All non-crossing partition quantum groups coloured by A are obtained from
S ∗S by collapsings and group-like relations.
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Proof. It is clear that both quotient by commutation relations and twisted amalgamation are
collapsings. As for free wreath products of pairs, we start with (Z2 ∗Z2) o∗ S+

N , which is an amal-
gamated free product, hence a collapsing of H+

N ∗H+
N . Let λ ∈ Z2 ∗Z2 and assume that it can be

written as (xy)k, where x and y are the canonical generators of the free product. Rotating βλ
so that the upper row has colouring xx, we see that it implements an equivalence between the
representations uxx and uγγ, where γ = (y(xy)k−1). These two representations generate isomor-
phic quantum subgroups of the free wreath product, an explicit isomorphism sending uxx to uγγ

coefficient-wise. As a consequence, the corresponding collapsing is isomorphic to H++
N (〈λ〉,Γ). If

now λ = (xy)kx, then we get an equivalence between uxx and uγγ
−1

, with γ = (xy)k. Once again
this leads to a collapsing, hence the result. ■

Note that this is less precise than our previous statement, which gave the explicit form of the
possible collapsings in all cases.

3.2.3 To unitarity and beyond

What if we now tried this approach for the general case ? If we allow different colours to be inverse
to one another, we need at least an additional ingredient : the free complexification operations of
P. Tarrago and M. Weber explained in Section 2.3.1. This leads to the following question :

Question. Can any non-crossing partition quantum group be obtained from the set S and the free
wreath products of pairs using twisted amalgamation, commutation relations, group-like relations
and complexifications ?

Let us see what we can precisely say in the unitary case. Considering the categories of parti-
tions given by P. Tarrago and M. Weber in [TW18] we first see that in the globally colourised case,
everything is obtained by taking the tensor complexification and adding group-like relations. Of
course, one cannot add commutation relations since the group of one-dimensional representations
is already central. As for the locally colourised case, here is a series of observations :

1. In the case BS(C )= {2}, the only possibility is U+
N , which is the free complexification of O+

N .

2. The case BS(C ) = {1,2} involves the compact quantum group C+
N whose category of parti-

tions is generated by the singletons. Let us first consider the category generated by the
double white singleton. The corresponding compact quantum group is easily seen to be iso-
morphic to U+

N−1∗Z and we obtain C+
N by adding the group-like relation making the Z factor

trivial. Everything is then obtained by adding commutation relations, group-like relations
and a twisted commutation relation corresponding to the r-self-adjointness.

3. In the case BS(C ) = 2N, we already know that we have the quantum reflection groups
Hs+

N =Zs o∗ S+
N which are collapsings of

H∞+
N =Z o∗ S+

N .

Indeed, simply consider the two copies of H∞+
N generated respectively by the fundamental

representation u1 and the representation u−(s−1). One can then further take the tensor com-
plexification and quotient by group-like relations as before. Note that free complexification
is also possible but yields the same compact quantum group except for s = 2.

4. Eventually, in the case BS(C )=N, one simply starts with S+
N ×Z2 and after freely complex-

ifying it, adds commutation relations and group-like relations.

Summing up everything, we obtain the following statement :

Corollary 3.13. The set of non-crossing partition quantum groups on at most two colours coincides
with the set of compact quantum groups obtained from S ∗S using collapsing, free and tensor
complexifications by Z and group-like relations.
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3.3 WHAT ABOUT INVARIANTS ?

In this exposition, we have purposely emphasised the difference between the methods of [Fre19]
and the ones of previous similar works, based on invariants. This does not mean however that
invariants disappeared. For instance, the classification in [Fre19] starts by splitting into four
cases according to the local invariant BS, even though one may have to split again according to
the sizes of blocks with only one colour.

Furthermore, if one wants a finer understanding of specific examples, then it is necessary
to go back to the language of invariants. This is the strategy used in [Fre18] to compute the
representation theory of some non-crossing partition quantum groups and we will now explain it
to illustrate our point.

3.3.1 A global invariant

Let us start with the free product O+
N ∗O+

N and consider the common quantum subgroup PO+
N

generated by the tensor square of the fundamental representation. Performing amalgamation
yields the compact quantum group

O++
N =O+

N ∗
PO+

N

O+
N .

Note that the amalgamation cannot be twisted since O+
N has no non-trivial one-dimensional rep-

resentations. However, O++
N does have such representations. To see this, let us first denote by

x the colour corresponding to the first copy of O+
N and by y the colour corresponding to the sec-

ond one. Following the proof of Proposition 3.8, we see that the category of partitions of O++
N is

generated by

x

y

x

y

which after rotation yields

x

x

y

y

The latter partition implements a non-trivial one-dimensional representation which is easily
proven to have infinite order (see [Fre18, Lem 3.2]). By the classification theorem, all we can
build from this are the quotients by the group-like relations s` = 1 for ` ∈ N, yielding compact
quantum groups denoted by O++

N (`). This is of course equivalent to adding the partition

x y ⊗`

If one wants to compute the representation theory of O++
N (`), the description of the category

of partitions with generators is not practical, since we need to classify projective partitions up to
equivalence. It would be better to describe this category through a global invariant.

This is doable once one realizes that global invariants should not be numbers but rather
groups or semi-groups. Indeed, the block numbers form a sub-semi-group of N. Even better,
the global colouring of partitions in the unitary case, that is to say the number of white points
minus the number of black points, form a subgroup of Z and the global colouring parameter is
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just a generator of this subgroup. Indeed, given a word w on {◦,•}, we can define an element ϕ(w)
of Z by sending ◦ to 1 and • to −1. If a partition p has upper colouring w and lower colouring w′,
we then set

ϕ(p)=ϕ(w)ϕ(w′)−1.

The same idea works here, except that because x−1 = x and y−1 = y, the invariant will be a
subgroup of Z2 ∗Z2.

DEFINITION 3.14. To a word w on {x, y} we associate an element ϕ(w) ∈Z2∗Z2 by sending x to the
first generator and y to the second one. If a partition p has upper colouring w and lower colouring
w′, we then set

ϕ(p)=ϕ(w)ϕ(w′)−1.

Eventually, we define D` to be the category of all non-crossing pair partitions coloured with {x, y}
such that

ϕ(p) ∈
〈

(xy)`
〉
⊂Z2 ∗Z2.

One easily checks that D` is indeed a category of partitions and, by construction, C` ⊂D`. In
view of the classification given in Theorem 3.10, they should be equal, and this is indeed the case,
see for instance [Fre18, Cor 3.7]. The point, however, is that we do not need this global invariant
at any point in the classification.

3.3.2 Local invariants

As an example of a local invariant, we now consider free wreath products of pairs. Once again, the
numerical invariants can be seen as subgroups. This is also true for the local colouring parameters
of P. Tarrago and M. Weber, as explained in [TW17, Lem 2.14]. Here is the local invariant we need.

DEFINITION 3.15. Let C be a category of coloured non-crossing partitions. Its local subgroup
invariant is the subgroup generated by ϕ(p) for all full sub-partitions p of a partition in C .

Here we mean that this invariant is a subgroup of the free product of one copy of Z2 for each
self-inverse colour, and one copy of Z for each other pair of mutually inverse colours, with the
obvious extension of the map ϕ. The key idea is that if pλ denotes the upper block of βλ, then
ϕ(pλ)=λ, so that one may hope to recover Λ as the local subgroup invariant. This is the case and
the proof uses the following definition :

DEFINITION 3.16. Let Γ be a discrete group with a symmetric generating set S and let Λ⊂ Γ be
a subgroup. We define DΓ,Λ,S to be the set of all partitions p ∈ NCS(w,w′) such that

• ϕ(w)=ϕ(w′) as elements of Γ,

• For any full sub-partition of p with upper and lower colourings v and v′ respectively,

ϕ(v)−1ϕ(v′) ∈Λ.

Note that it is not obvious that DΓ,Λ,S is a category of partitions, because one has to prove that
the local condition is preserved under vertical concatenation. This was proven in [Fre18, Lem 4.2]
and one deduces from this the expected result (see [Fre18, Cor 4.5]).

Proposition 3.17. The compact quantum group associated to DΓ,Λ,S is the free wreath product of
the pair (Γ,Λ).
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