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Abstract:
Motivated by applications in genetic fields, we propose to estimate the heritability

in high-dimensional sparse linear mixed models. The heritability determines how the
variance is shared between the different random components of a linear mixed model.
The main novelty of our approach is to consider that the random effects can be sparse,
that is may contain null components, but we do not know either their proportion or
their positions. The estimator that we consider is strongly inspired by the one proposed
by Pirinen, Donnelly and Spencer (2013), and is based on a maximum likelihood ap-
proach. We also study the theoretical properties of our estimator, namely we establish
that our estimator of the heritability is

?
n-consistent when both the number of obser-

vations n and the number of random effectsN tend to infinity under mild assumptions.
We also prove that our estimator of the heritability satisfies a central limit theorem
which gives as a byproduct a confidence interval for the heritability. Some Monte-
Carlo experiments are also conducted in order to show the finite sample performances
of our estimator.

Keywords and phrases: linear mixed model, heritability, sparsity, high dimension.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Model and heritability estimator . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Heritability estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Existing methods for heritability estimation . . . . . . . . . . . . . . . . . 4
4 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Results in Model (2) when q “ 1 . . . . . . . . . . . . . . . . . . . . 9
5.3 Results in model 2 when q ă 1 . . . . . . . . . . . . . . . . . . . . . 11

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

0
imsart-ejs ver. 2014/07/30 file: paper_ejs.tex date: September 9, 2015
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1. Introduction

Linear mixed models (LMMs) have been widely used in various fields such as agricul-
ture, biology, medicine and genetics. In quantitative genetics, LMMs have been used
for estimating the heritability of traits and breeding values as explained for instance by
Lynch and Walsh (1998). In Genome Wide Association Studies (GWAS), which is the
application field that inspired our work, Yang et al. (2011) suggested the use of linear
mixed models to measure genotypes at a large number of single nucleotide polymor-
phisms (SNPs) in large samples of individuals in order to identify genetic variants that
explain variations in phenotypes.

The model that we shall study in this paper is a LMM defined as

Y “ Xβ ` Zu` e , (1)

where Y “ pY1, . . . , Ynq
1 is the vector of observations, X is a nˆ p matrix of predic-

tors, β is a pˆ 1 vector containing the unknown linear effects of the predictors, and u
and e correspond to the random effects. Moreover, in (1), Z is a nˆN random matrix
which will be further described in Section 2.

We shall assume that the random effects can be sparse, that is only a proportion q of
the components of u are non-zero:

ui
i.i.d.
„ p1´ qqδ0 ` qN p0, σ‹u

2
q , for all 1 ď i ď N and e „ N

´

0, σ‹e
2IdRn

¯

, (2)

where IdRn denotes the nˆ n identity matrix, q is in p0, 1s, and δ0 is the point mass at
0. Note that this corresponds to a more general situation than the usual assumption of
(non-sparse) Gaussian random effects which is recovered when q “ 1.

The use of linear mixed models to estimate heritability has been proposed by Yang
et al. (2011) as an alternative to the regression models usually used in GWAS. The
goal is to consider the joint effect of all SNPs on a phenotype, and the heritability
corresponds to the proportion of phenotypic variance explained by all SNPs.

In the GWAS framework, Z is thus a matrix having a number of rows equal to the
number of individuals in the experiment that is n « 1000 and a number of columns
equal to the number of SNPs taken into account in the experiment, namely N «

500, 000. This application motivated the framework that we chose where n and N
tend to infinity.

The major difference between the framework of Yang et al. (2011) and ours is that
they consider that the random effects are Gaussian while we consider a mixture model
between a point mass at 0 and a Gaussian distribution. With this modeling, we assume
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that all SNPs are not necessarily causal, that is that all SNPs do not explain a given
phenotype.

Our main goal in this paper is to propose an estimator for the heritability in this
possibly sparse framework and to establish its theoretical properties in the non standard
theoretical context where n and N tend to infinity.

In this paper, we prove that using a strategy close to the one proposed by Pirinen,
Donnelly and Spencer (2013), which has been devised in the case q “ 1, provides
consistent estimators even in the case where q ă 1. Moreover, we prove that this
estimator is

?
n-consistent in the following asymptotic framework: n Ñ 8 and N Ñ

8 such as n{N Ñ a ą 0 and satisfies under mild assumptions a central limit theorem
in both cases q “ 1 and q ă 1. It has to be noticed that the classical results that exist
in linear mixed models are established only in the case where q “ 1, n tends to infinity
and N is constant.

The paper is organized as follows. Section 2 provides a detailed description of the
model and the heritability estimator that we propose. Section 3 reviews existing meth-
ods for heritability estimation. Section 4 is dedicated to the theoretical properties of
our estimator. The numerical results are presented in Section 5. They have been ob-
tained thanks to the R package HiLMM that we have developed and which is available
from the Comprehensive R Archive Network (CRAN). In Section 6, we provide some
additional comments on our work as well as some prospects such as the estimation of
the proportion q of non null components in the random effects. Finally, the proofs are
given in Section 7.

2. Model and heritability estimator

2.1. Model

In the sequel, up to considering the projection of Y onto the orthogonal of the image
of X and for notational simplicity, we shall focus on the following model

Y “ Zu` e , (3)

where Y “ pY1, . . . , Ynq
1 is the vector of observations, u and e correspond to the

random effects, which are defined in (2). Moreover, Z is a nˆN random matrix such
that the Zi,j are normalized random variables in the following sense: they are defined
from a matrix W “ pWi,jq1ďiďn, 1ďjďN by

Zi,j “
Wi,j ´W j

sj
, i “ 1, . . . , n, j “ 1, . . . , N , (4)

where

W j “
1

n

n
ÿ

i“1

Wi,j , s
2
j “

1

n

n
ÿ

i“1

pWi,j ´W jq
2, j “ 1, . . . , N . (5)

In (4) and (5) the Wi,j’s are such that for each j in t1, . . . , Nu the pWi,jq1ďiďn are
independent and identically distributed random variables and such that the columns of
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W are independent. With this definition the columns of Z are empirically centered and
normalized.

In genetic applications, the matrix W contains all the genetic information about
all the individuals in the study. More precisely, for each j, the pWi,jq1ďiďn are i.i.d
binomial random variables with parameters 2 and pj . Wi,j “ 0 (resp. 1, resp. 2) if
the genotype of the ith individual at locus j is qq (resp. Qq, resp. QQ) where pj is the
frequency of Q allele at locus j.

In Model (1) with (4), (5), (2), one can observe that

VarpY|Zq “ Nqσ‹u
2R` σ‹e

2IdRn , where R “
ZZ1

N
and q is defined in (2) .

Inspired by Pirinen, Donnelly and Spencer (2013), Model (1) can be rewritten by using
the following parameters:

σ‹2
“ Nqσ‹u

2
` σ‹e

2 and η‹ “
Nqσ‹u

2

Nqσ‹u
2 ` σ‹e

2 . (6)

Thus,
VarpY|Zq “ η‹σ‹2R` p1´ η‹qσ‹2IdRn .

The parameter η‹ which belongs to r0, 1s is commonly called the heritability in the case
where q “ 1, see for instance Yang et al. (2010), and determines how the variance is
shared between u and e when all the components of u are non zero. We propose in (6)
to extend this definition to the case where u may contain null components and q is in
p0, 1s. The parameter q actually corresponds to the proportion of non null components
in u that is to the proportion of causal SNPs. Then, the heritability defined by η‹ in (6)
corresponds to the proportion of phenotypic variance explained by the causal variants.

2.2. Heritability estimator

In the case where q “ 1, observe that

Y|Z „ N
´

0, η‹σ‹2R` p1´ η‹qσ‹2IdRn
¯

,

where η‹ and σ‹ are defined in (6).
Let U as the orthogonal matrix (U1U “ UU1 “ IdRn ) such that URU1 “

diagpλ1, . . . , λnq is a diagonal matrix having its diagonal entries equal to λ1, . . . , λn.
Hence, in the case where q “ 1 and conditionally to Z, rY “ U1Y is a zero-mean Gaus-
sian vector having a covariance matrix equal to diagpη‹σ‹2λ1`p1´η

‹qσ‹2, . . . , η‹σ‹2λn`
p1´ η‹qσ‹2

q, where the λi’s are the eigenvalues of R.
The method proposed by Pirinen, Donnelly and Spencer (2013) consists in comput-

ing the log-likelihood

Lnpσ
2, ηq “ ´

n

2
logpσ2q´

1

2

n
ÿ

i“1

logpηpλi´1q`1q´
1

2σ2

n
ÿ

i“1

rYi
2

ηpλi ´ 1q ` 1
´
n

2
logp2πq
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and to maximize this function of two variables by iterative optimization techniques.
Since in our case we are only interested in estimating η‹, we plugged an estimator of
σ‹2 that is

σ̂2 “
1

n

n
ÿ

i“1

rYi
2

ηpλi ´ 1q ` 1

in Ln. Thus, in the case q “ 1, the maximum likelihood strategy would lead to estimate
η‹, assumed to be in r0, 1´ δs with δ ą 0, by η̂ defined as a maximizer of

Lnpηq “ ´ log

˜

1

n

n
ÿ

i“1

rY 2
i

ηpλi ´ 1q ` 1

¸

´
1

n

n
ÿ

i“1

log pηpλi ´ 1q ` 1q , (7)

where the rYi’s are the components of the vector rY “ U1Y.
We shall establish in Theorem 2, which is proved in Section ??, that this strategy

produces
?
n-consistent estimators of η‹ in both cases: q “ 1 and q ă 1 and also

that this estimator satisfies a central limit theorem which provides as a by-product
confidence intervals for η‹.

3. Existing methods for heritability estimation

Several approaches can be used for estimating the heritability in the case where q “ 1
but to the best of our knowledge, no theoretical results concerning the estimation of
the heritability or the estimation of σ‹u, σ‹e have been established in the framework
where both n and N tend to infinity. This is one of the contributions of our paper.
Among these approaches, we can quote the REML (REstricted Maximum Likelihood)
approach, originally proposed by Patterson and Thompson (1971) and described for
instance in Searle, Casella and McCulloch (1992), which consists in estimating first
σ‹u and σ‹e and then to estimate η‹ as the ratio η̂ “ Nσ̂u

2
{pNσ̂u

2
` σ̂e

2
q. However,

this type of approach is based on iterative procedures that require expensive matrix
operations. Hence, several approximations have been proposed such as the AI algo-
rithm (Gilmour, Thompson and Cullis (1995)) which is used for instance in the soft-
ware GCTA (Genome-wide Complex Trait Analysis) described in Yang et al. (2011).
Other approximations have also been proposed in the EMMA algorithm (Kang et al.
(2008)). For further details on the different approximations that could be used we re-
fer the reader to Pirinen, Donnelly and Spencer (2013). The latter paper proposes an-
other methodology for estimating the heritability which consists in rewriting Model
(1) with the parameters (6) and in using an eigenvalue decomposition of the matrix R.
Further details on their methodology are given hereafter. According to the numerical
experiments conducted in Pirinen, Donnelly and Spencer (2013) their approach has the
lowest computational burden among the available algorithms.

In the case of sparse high dimensional framework, most of the papers studied the
case of linear models. Among them, we can quote: Meinshausen and Bühlmann (2010)
and Beinrucker, Dogan and Blanchard (2014). The high dimensional linear mixed
model where u is sparse, that is the case where q ă 1, which is the most realistic
case for the applications that we have in view, has received little attention. It has been
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studied according two directions: detection and estimation. Concerning the detection
field in this framework, we are only aware of the work of Arias-Castro, Candès and Plan
(2011) in which a testing procedure for detecting a sparse vector in high dimensional
linear sparse regression model is also proposed and compared with the one proposed
by Ingster, Tsybakov and Verzelen (2010). As for the procedures dedicated to the her-
itability estimation, there exist, to the best of our knowledge, only three approaches:
the approach of Yang et al. (2010) who propose to approximate the genetic correlation
between every pairs of individuals across the set of causal SNPs by the genetic correla-
tion across the set of all SNPs, the approach of Golan and Rosset (2011) who propose
a methodology based on MCEM (Monte-Carlo expectation-maximization) developed
by Wei and Tanner (1990) and the Bayesian approaches of Guan and Stephens (2011)
and Zhou, Carbonetto and Stephens (2013). However, as far as the estimation issue in
the high dimensional linear mixed model is concerned, the authors of these papers did
not establish the theoretical properties of their estimators in the framework where both
n and N tend to infinity.

4. Theoretical results

Observe that another way of writing Model (3) with the parameters defined in (6) con-
sists in writing

Y “
1
?
N

Zt` σ‹
a

1´ η‹ε , (8)

where ε is a n ˆ 1 Gaussian vector having a covariance matrix equal to identity and
t “ pt1, . . . , tN q

1 is a random vector such that

ti “
σ‹
?
η‹

?
q

wiπi ,

where the wi’s and the πi’s are independent, w “ pw1, . . . , wN q
1 is a Gaussian vec-

tor with a covariance matrix equal to identity and the πi’s are i.i.d Bernoulli random
variables such that Ppπ1 “ 1q “ q.

The estimator η̂ is defined as a maximizer of Lnpηq for η P r0, 1 ´ δs for some
small δ ą 0, Ln being given in (7). We shall study the asymptotic properties of η̂
as n and N tend to infinity in a comparable way, that is when n{N Ñ a ą 0. To
understand the asymptotic behavior of η̂, we shall first prove its consistency, then use a
Taylor expansion of the derivative of Ln around η̂ in the usual way. The computations
as can be seen in (7) involve empirical means of functions of the eigenvalues λi of
R “ ZZ1

N . Using Theorem 1.1 of Bai and Zhou (2008), we shall prove the almost
sure convergence of such empirical quantities under a weak assumption denoted by
Assumption 1 as follows.

(A1) Let Z and W be two matrices defined by (4) and (5). Recall that for each j
in t1, . . . , Nu the pWi,jq1ďiďn are independent and identically distributed ran-
dom variables and such that the columns of W are independent (but not nec-
essarily identically distributed). Assume that the entries Wi,j of W are uni-
formly bounded, and have variance uniformly lower bounded, that is: there exist
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WM ă 8 and κ ą 0 such that 0 ď Wi,j ď WM and σ2
j “ VarpWi,jq ě κ, for

all j.

The following lemma ensures that the result of Marchenko and Pastur (1968) which
gives the empirical spectral distribution of sample covariance matrices ZZ1{N holds
even when the entries Zi,j of the matrix Z are not i.i.d. random variables but when Z
is obtained by empirical standardization of a matrix W satisfying Assumption 1.

Lemma 1. Under Assumption 1, as n,N Ñ8 such that n{N Ñ a ą 0, the empirical
spectral distribution of RN “ ZZ1{N : FRN pxq “ n´1

řn
k“1 1tλkďxu tends almost

surely to the Marchenko-Pastur distribution defined as the distribution function of µa
where, for any measurable set A,

µapAq “

" `

1´ 1
a

˘

10PA ` νapAq if a ą 1
νapAq if a ď 1

with

dνapλq “
1

2π

a

pa` ´ λqpλ´ a´q

aλ
1ra´,a`spxqdx, a˘ “ p1˘

?
aq2 . (9)

In FRN pxq, the λk’s denote the eigenvalues of RN .

Our first main result is the
?
n-consistency of the estimator η̂.

Theorem 1. Let Y “ pY1, . . . , Ynq
1 satisfy Model (8) with η‹ ą 0 and the entries

Wi,j of W satisfy Assumption 1. Then, for all q in p0, 1s, as n,N Ñ 8 such that
n{N Ñ a P p0, 1s,

?
npη̂ ´ η‹q “ OP p1q.

Such a result is a theoretical cornerstone to legitimate the use of an estimator. How-
ever, statistical inference has to be based on confidence sets. The next step is thus to
find the asymptotic distribution of

?
npη̂ ´ η‹q. Define for any η P r0, 1s and λ ě 0

gpη, λq “
λ´ 1

ηpλ´ 1q ` 1
.

Define also

γ2
n “

$

&

%

1

n

n
ÿ

i“1

gpη̂, λiq
2 ´

˜

1

n

n
ÿ

i“1

gpη̂, λiq

¸2
,

.

-

and

γ2pa, η‹q “

#

ż

gpη, λq2dµapλq ´

ˆ
ż

gpη, λqdµapλq

˙2
+

. (10)

We are now ready to state our second main result about the asymptotic distribu-
tion of

?
npη̂ ´ η‹q. For general q, the result only holds when the entries of Z, that is

the random variables Zi,j are i.i.d. standard Gaussian. Indeed, as may be seen when
computing the variances, we need to be able to find the asymptotic behavior of empiri-
cal means of functions of the eigenvalues together with the eigenvectors of the matrix
R “ ZZ1{N .
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Theorem 2. Let Y “ pY1, . . . , Ynq
1 satisfy Model (8) with η‹ ą 0 and assume that the

random variables Zi,j are i.i.d. N p0, 1q. Then for any q P p0, 1s, as n,N Ñ 8 such
that n{N Ñ a ą 0,

?
npη̂ ´ η‹q

converges in distribution to a centered Gaussian random variable with variance

τ2pa, η‹, qq “
2

γ2pa, η‹q
` 3

a2η‹2

γ4pa, η‹q

ˆ

1

q
´ 1

˙

Spa, η‹q

where
Spa, η‹q “

”

ş λpλ´1q
pη‹pλ´1q`1q2 dµapλq ´

ş

λ
pη‹pλ´1q`1qdµapλq

ş

λ´1
pη‹pλ´1q`1qdµapλq

ı2

.

In the case where q “ 1, the result holds in the general situation described in As-
sumption 1, and allows us to propose confidence sets with precise asymptotic confi-
dence level.

Theorem 3. Let Y “ pY1, . . . , Ynq
1 satisfy Model (8) with q “ 1 and with η‹ ą 0.

Assume also that the entries Wi,j of W satisfy Assumption 1 then, as n,N Ñ 8 such
that n{N Ñ a ą 0,

γn

c

n

2
pη̂ ´ η‹q

converges in distribution to N p0, 1q.

Let us now give some additional comments on the previous results. Firstly, it has
to be noticed that none of the limiting variance depends on σ‹. Secondly, Theorem
2 is proved here only in the case where the Zi,j are i.i.d. Gaussian. This is because
we used several times that the matrix of eigenvectors of ZZ1{N is independent of the
eigenvalues, and uniformly distributed on the set of orthonormal matrices. We think
that the result of Theorem 2 is also valid when the Zi,j are defined from the Wi,j

satisfying Assumption 1, as suggested by the numerical results obtained in Section
5. To prove it requires new results in an active research topic of the random matrix
theory field. We can observe in the expression of τ2pa, η‹q given in Theorem 2 that
the presence of q is counterbalanced by the presence of a2. This will be confirmed by
the results obtained in the numerical results given in Section 5. Finally, we can observe
that 2{pnγ2

nq corresponds to the usual inverse of the Fisher information associated to
η. This result is classical in the case where N is fixed and n tends to infinity but did
not exist in the framework where both n and N tend to infinity even if it was already
used in biological applied papers for deriving standard errors and confidence intervals.
Theorem 3 proves that this result still holds even in the case where both n and N tend
to infinity.

To the best of our knowledge, the effect of the presence of null components in the
random effects has never been taken into account for computing the asymptotic vari-
ance of an estimator of the heritability. This is the contribution of Theorem 2. This the-
orem shows that the asymptotic variance contains an additional term which increases
its value in the case q ă 1 with respect to the case q “ 1. It is shown in Section 3.3
how the computation of the asymptotic variance can be altered if this additional term
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is neglected. In practical situations, computing the standard error given by Theorem 2
requires the knowledge of q which is in general unknown. However, if an estimation
of q is available for any practical reasons, the result of Theorem 2 can be used for
computing confidence intervals and standard errors, see Section 6 for further details.

5. Numerical experiments

In this section, we first explain how to implement our method and then we illustrate the
theoretical results of Section 4 on finite sample size observations for both cases: q “ 1
and q ă 1. We also compare the results obtained with our approach to those obtained
by the GCTA software described in Yang et al. (2010) and Yang et al. (2011) which is
a reference in quantitative genetics.

5.1. Implementation

In order to obtain η̂, we used a Newton-Raphson approach which is based on the fol-
lowing recursion: starting from an initial value ηp0q,

ηpk`1q “ ηpkq ´
L1npη

pkqq

L2npη
pkqq

, k ě 1 ,

where L1n and L2n denote the first and second derivatives of Ln defined in (7), re-
spectively. The closed form expression of these quantities are given in (13) and (25),
respectively. In practice, this approach converges after at most 20 iterations and is not
very sensitive to the initialization, namely to the value of ηp0q. However, in particular
cases, the value of the initialization can have an influence on the estimation of η‹. This
is the case, for instance, when the real value η‹ is close to 1. In these situations, our
algorithm can provide an estimation bigger than 1 and we constrained our method to
return a value equal to 0.99. Figure 1 shows the estimations obtained on 100 replica-
tions when a “ 0.1 and η‹ “ 0.8. From this figure, we can see that the estimation of
η‹ does not depend in general on the initialization, except in some cases. Moreover,
the best choice for ηp0q is not constant from one replication to another. In order to limit
the effect of the initialization, our algorithm uses several values for ηp0q and when-
ever the estimations differ, it keeps the estimation which is the farthest away from the
boundaries.

5.2. Results in Model (2) when q “ 1

We shall first consider the performance of the estimator η̂ when q “ 1 for η‹ in
t0.3, 0.5, 0.7u, n “ 1000, σ‹u “ 0.1 and for a in t0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1u,
where a “ n{N . We generated 500 data sets according to Model (1) using these pa-
rameters and Z as defined in (4) where the Wi,j are binomial random variables with
parameters 2 and pj . In our experiments the pj’s are uniformly drawn in r0.1, 0.5s. The
corresponding boxplots of η̂ are displayed in Figure 2. We can see from this figure that
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FIG 1. Estimation of η̂ obtained in the case a “ 0.1 and η‹ “ 0.8 for different values of initialization:
ηp0q “ 0.1 (dots), ηp0q “ 0.5 (triangles) and ηp0q “ 0.9 (crosses). The plain line displays the estimations
obtained with our method to select the best initialization value and the x-axis is the replication number.
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FIG 2. Boxplots of η̂ for different values of a, for η‹ “ 0.3 (left), η‹ “ 0.5 (middle) and η‹ “ 0.7 (right).
The horizontal line corresponds to the true value of η‹. The whiskers of each boxplot correspond to the first
and third quartiles.

our approach provides unbiased estimators of η‹ and that the smaller the a the larger
the empirical variance.

In order to illustrate the central limit theorem given in Theorem 3, we first display
in Figure 3 the histograms of γnpn{2q1{2 pη̂ ´ η‹q along with the p.d.f of a standard
Gaussian random variable for η‹ “ 0.5 and different values of a. We can see that the
Gaussian p.d.f fits well the data in all the considered cases. We also display in Figure 4
the values of n´1{2

a

2γ´2
n and the empirical standard deviation of pη̂ ´ η‹q averaged

over all the experiments. As shown in Theorem 3, we also observe empirically that
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FIG 3. Histograms of γnpn{2q1{2 pη̂ ´ η‹q for η‹ “ 0.5 and a “ 0.05 (left), a “ 0.1 (middle), a “ 0.5
(right) and the p.d.f of a standard Gaussian random variable in plain line.

both quantities are very close.
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FIG 4. Values of n´1{2
b

2γ´2
n (“‚”) and the empirical standard deviation of pη̂ ´ η‹q (plain line) for

several values of η‹ (0.3 (left), 0.5 (right)).

In practice, the value of γ´1
n pn{2q´1{2 can be used for deriving confidence intervals

for η‹. As we can see from Figure 4, our approach leads to very accurate confidence
intervals for a larger than 0.1 even in finite sample size cases.

Let us now compare our results with those obtained with the software GCTA. As we
can see from Figure 5 which displays the boxplots of η̂ for different values of a when
η‹ “ 0.7, the results found by our approach and GCTA are very close. In both cases,
we observe that when a is close to 1 the estimations of η‹ are very accurate but when
a is small the standard error becomes very high.

5.3. Results in model 2 when q ă 1

This section is dedicated to the study of the performance of η̂ when q ă 1. We gener-
ated 500 data sets according to Model (1) for η‹ “ 0.7, a P t0.05, 0.1, 0.5, 1u, different

imsart-ejs ver. 2014/07/30 file: paper_ejs.tex date: September 9, 2015
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FIG 5. Boxplots of η̂ for different values of a, using our method (dark gray) and GCTA (light gray). The
whiskers of each boxplot are the first and third quartiles.

values of q and Z defined in (4) where the Wi,j are binomial random variables with
parameters 2 and pj . In our experiments the pj’s are uniformly drawn in r0.1, 0.5s.

Figure 6 displays the boxplots of η̂ for these parameters. We can see from this figure
that for small values of a, the estimators of η‹ have the same behavior for q “ 1 and
q ă 1. However, when a “ 1 or a “ 0.5, we can see from this figure that the presence
of null components strongly alter the performance of the estimator of η‹. Since in
typical GWAS experiments, a “ 0.01 or even smaller, the results of Figure 6 could
lead to conclude that considering the case q ă 1 is not necessary for such values of
the parameter a. However, as already noticed from Figure 2, the variance of η̂ is very
large for small values of a, hence considering the presence of null components and
proposing a strategy for selecting only the non null components of u could be one way
to increase a and thus to diminish the variance of η̂.

In order to illustrate the central limit theorem given in Theorem 2, we first display in
Figure 7 the histograms of τ´1

n n1{2 pη̂ ´ η‹q along with the p.d.f of a standard Gaussian
random variable for η‹ “ 0.7, two values of q: q “ 0.01 and q “ 0.1 and a “ 0.5
(top) and two values of a: a “ 0.2 and a “ 0.5 with q “ 0.5 (bottom). Here, τn is the
empirical version of τpa, η‹, qq where γ is replaced by γn and Spa, η‹q is replaced by
its empirical version with the eigenvalues of R. When a is large (a “ 0.5), we can see
that the higher q the better the Gaussian p.d.f fits the histograms.

We also display in Figure 8 the values of n´1{2τn and the empirical standard de-
viation of pη̂ ´ η‹q averaged over all the experiments for η‹ “ 0.7 and q “ 0.5. As
shown in Theorem 2, we observe empirically that both quantities are very close. We
also display in this figure the value of n´1{2τn with q “ 1 which boils down to consider
the asymptotic standard deviation found in the non sparse model. We can see from this
figure that neglecting the term depending on q leads to underestimate the asymptotic
variance of η̂ and that this difference is all the more striking that a is close to 1.
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FIG 6. Boxplots of η̂ for different values of q, with η‹ “ 0.7 and a “ 1 (top left), a “ 0.5 (top right),
a “ 0.1 (bottom left) and a “ 0.01 (bottom right). The boxplots are based on 500 replications. The
whiskers of each boxplot are the fist and third quartile.

6. Discussion

In the course of this study, we have proposed a methodology for estimating the her-
itability in high dimensional linear mixed models. This methodology has two main
features. Firstly, the theoretical performances of our estimator are established in a non
standard theoretical framework where n and N tend to infinity and where the com-
ponents of the random effect part can be equal to zero. Secondly, the computational
burden of our approach is very low which makes its use possible on real data coming
from GWAS experiments.

As a byproduct of the central limit theorem that we establish for η‹ we can derive
a confidence interval for the heritability. However, the confidence intervals depend on
q which is the proportion of non null components in u and which is general unknown.
For estimating q, several strategies can be considered. One could, for instance, use a
GWAS approach to compute the p-values of the correlation tests of each SNP with the
observations Y and then keep only the most significant ones. Such a practical approach
can be used for providing a lower bound for q. A refinement of this approach has been
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FIG 7. Histograms of τ´1
n n1{2 pη̂ ´ η‹q for a “ 0.5 and q “ 0.5 (top left), a “ 0.1 and q “ 0.1 (top

right), and for a “ 0.1 and q “ 0.01 (bottom left), a “ 0.05 and q “ 0.1 (bottom right).
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FIG 8. Values of n´1{2τn with the real value of q (q “ 0.5) (“‚”), q “ 1 (dotted line) and the empirical
standard deviation of pη̂ ´ η‹q (plain line) for η‹ “ 0.7.
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proposed by Toro et al. (2014) who observed, through numerical studies, that for a fixed
value of the heritability, the minimal p-value is all the more low that the number of
causal SNPs is small. Hence, performing a GWAS approach on a given data set allows
them to have an idea of the number of SNPs which are likely to be causal. One could
also propose another practical method based on a variable selection technique. Such an
approach has already been proposed by Fan and Li (2012) in the context of sparse linear
mixed models. However, the framework in which their theoretical results are derived
is different from the one that is considered in our paper. We are currently working on a
paper Bonnet et al. (2014) which presents a variable selection method which is adapted
to our framework and which could be used for estimating the proportion q of non null
components in the random effects.

Moreover, we did not take into account the linkage disequilibrium issue which
would require to extend our results to the case where the columns of the random matrix
are correlated. This question will be the subject of a future work.

7. Proofs

Let us write the singular value decomposition (SVD) of the nˆN matrix Z{
?
N as

1
?
N

Z “ U
´?

D 0
¯

V1

where U (already introduced in Section 1) is a nˆn orthonormal matrix, V is aNˆN
orthonormal matrix and

?
D is a nˆn diagonal matrix having its diagonal entries equal

to
?
λi, the λi’s being the eigenvalues of R “ ZZ1{N previously defined. Thus, (8)

rewrites as
rY “ U1Y “

´?
D 0

¯

V1t` σ‹
a

1´ η‹ rε , (11)

where rε “ U1ε is a n ˆ 1 centered Gaussian vector having a covariance matrix equal
to identity.

We shall use repeatedly the following lemma which is proved in Section 7.4.

Lemma 2. Let rY be defined by (11) and H be a nˆ n diagonal matrix, then

Var
´

rY1H rY|Z
¯

“ 2σ‹4 Tr
”

H2 tp1´ η‹qIdRn ` η
‹Du

2
ı

`3σ‹4η‹2

ˆ

1

q
´ 1

˙

ÿ

1ďiďN

M2
ii ,

where

M “ V

ˆ

DH 0
0 0

˙

V1 ,

and

Var
´

rY1H rY|Z
¯

ď 2σ‹4 Tr
”

H2 tp1´ η‹qIdRn ` η
‹Du

2
ı

`3σ‹4η‹2

ˆ

1

q
´ 1

˙

TrrD2H2s.

Another useful lemma will be the following.
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Lemma 3. Under Assumption 1, let h : R` Ñ R` be such that there exist α ą 0 and
C such that for all n,

E

˜

1

n

n
ÿ

i“1

hpλiq
1`α

¸

ď C.

Then
1

n

n
ÿ

i“1

hpλiq “

ż

hpλqdνapλq ` opp1q.

The proof of this lemma follows from the application of Lemma 1 to the bounded
function h1hďM , and the Markov inequality applied to the empirical mean of h1hąM .

Lemma 4. Under Assumption 1 let n,N Ñ8 be such that n{N Ñ a ą 0. Then there
exists C such that for all n,

E

«

1

n

n
ÿ

i“1

λ2
i

ff

ď C.

To prove the lemma, notice that
řn
i“1 λ

2
i “ TrrZZ1{N2s. But

E
`

Tr
“

pZZ1q2
‰˘

“
ÿ

k‰k1

ÿ

i,j

EpZi,kZj,kqEpZi,k1Zj,k1q `
ÿ

k

ÿ

i

EpZ2
i,kq

“ nNpN ´ 1q `NpN ´ 1qnpn´ 1q

ˆ

1

n´ 1

˙2

` n2N

where the values of the involved expectations may be found in the proof of Lemma 1
in Section 7.4. We thus have

E

«

1

n

n
ÿ

i“1

λ2
i

ff

ď 2`
n

N

which ends the proof.

7.1. Proof of Theorem 1

The first step is to prove the consistency of η̂. We shall first prove that Lnpηq converges
uniformly for η P r0, 1´ δs in probability to Lpηq given by

Lpηq “ ´2 log σ‹ ´ log

ż
„

η‹pλ´ 1q ` 1

ηpλ´ 1q ` 1



dµapλq ´

ż

log pηpλ´ 1q ` 1q dµapλq.

Using Lemma 2 with H with diagonal entries 1{pηpλi ´ 1q ` 1q, we get that

Var

«

1

n

n
ÿ

i“1

rY 2
i

ηpλi ´ 1q ` 1
|Z

ff

ď
σ‹4

n2

n
ÿ

i“1

«

2

ˆ

η‹pλi ´ 1q ` 1

ηpλi ´ 1q ` 1

˙2

` 3

ˆ

1

q
´ 1

˙ˆ

η‹λi
ηpλi ´ 1q ` 1

˙2
ff

ď σ‹4

ˆ

2` 3

ˆ

1

q
´ 1

˙˙

1

n2

n
ÿ

i“1

ˆ

λi ` 1

δ

˙2
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since η P r0, 1´ δs. Now, using Lemma 4 we get that

1

n2

n
ÿ

i“1

ˆ

λi ` 1

δ

˙2

“ oP p1q

which leads to

1

n

n
ÿ

i“1

rY 2
i

ηpλi ´ 1q ` 1
“ E

«

1

n

n
ÿ

i“1

rY 2
i

ηpλi ´ 1q ` 1
|Z

ff

` opp1q

“ σ‹2 1

n

n
ÿ

i“1

η‹pλi ´ 1q ` 1

ηpλi ´ 1q ` 1
` oP p1q.

Now, using Lemma 3 we easily get that 1
n

řn
i“1

η‹pλi´1q`1
ηpλi´1q`1 converges in probability

to
ş

r
η‹pλ´1q`1
ηpλ´1q`1 sdµapλq and 1

n

řn
i“1 logrpηpλi ´ 1q ` 1qs converges in probability to

ş

logpηpλ´ 1q ` 1qdµapλq so that Lnpηq “ Lpηq ` oP p1q.
In order to prove the uniform convergence of Ln to L in probability on r0, 1 ´ δs,

we shall use the following lemma which is proved in section 7.4.

Lemma 5. Assume that for any η P r0, 1´ δs, Lnpηq converges in probability to Lpηq
and that

sup
ηPr0,1´δs

ˇ

ˇL1npηq
ˇ

ˇ “ OP p1q, as n tends to infinity, (12)

then
sup

ηPr0,1´δs

|Lnpηq ´ Lpηq| “ oP p1q, as n tends to infinity.

Let us now prove that supηPr0,1´δs |L
1
npηq| “ OP p1q. Note that

L1npηq “

˜

1

n

n
ÿ

i“1

rY 2
i pλi ´ 1q

tηpλi ´ 1q ` 1u
2

¸˜

1

n

n
ÿ

i“1

rY 2
i

ηpλi ´ 1q ` 1

¸´1

´
1

n

n
ÿ

i“1

λi ´ 1

ηpλi ´ 1q ` 1
.

(13)

A study of η ÞÑ
´

1
n

řn
i“1

rY 2
i pλi´1q

tηpλi´1q`1u2

¯´

1
n

řn
i“1

rY 2
i

ηpλi´1q`1

¯´1

shows that it is de-
creasing and that it takes negative values for η P r0, 1´ δs, so that its absolute value is
maximum for η “ 1´ δ. Thus

sup
ηPr0,1´δs

ˇ

ˇL1npηq
ˇ

ˇ ď
1

δ

˜

1

n

n
ÿ

i“1

rY 2
i |λi ´ 1|

¸˜

1

n

n
ÿ

i“1

rY 2
i

¸´1

`
1

nδ

n
ÿ

i“1

|λi ´ 1|

ď
2

δ
`

1

δ

˜

1

n

n
ÿ

i“1

rY 2
i λi

¸˜

1

n

n
ÿ

i“1

rY 2
i

¸´1

`
1

nδ

n
ÿ

i“1

λi.
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By Lemma 2 with H “ Id, we get

1

n

n
ÿ

i“1

rY 2
i “ E

«

1

n

n
ÿ

i“1

rY 2
i |Z

ff

` opp1q “
σ2‹

n

n
ÿ

i“1

rη‹pλi ´ 1q ` 1qs ` opp1q

“ σ2‹

ż

pηpλ´ 1q ` 1qdµapλq ` opp1q,

where the last equality comes from Lemma 3. In the same way, we get by using Lemma
2 with H having its diagonal entries equal to λi and Lemma 3 that

1

n

n
ÿ

i“1

rY 2
i λi “ σ2‹

ż

λpηpλ´ 1q ` 1qdµapλq ` opp1q “ OP p1q.

Finally, we get from Lemma 3 that

1

n

n
ÿ

i“1

λi “

ż

λdµapλq ` opp1q “ OP p1q

which ends the proof of (12). By Lemma 5, we thus have proved that

sup
ηPr0,1´δs

|Lnpηq ´ Lpηq| “ oP p1q. (14)

Now, using Jensen’s inequality, we easily get that for all η P r0, 1s, Lpηq ď Lpη‹q,
with equality if and only if η “ η‹. This together with (14) gives

η̂ “ η‹ ` oP p1q. (15)

The next step is to prove that
?
npη̂´ η‹q “ OP p1q. Let us first note that η̂ satisfies

the following equation:

?
npη̂ ´ η‹q “ ´

?
nL1npη

‹q

L2nprηq
, rη P pη̂, η‹q . (16)

We first prove the asymptotic convergence of L2nprηq.

Lemma 6. Let Y “ pY1, . . . , Ynq
1 satisfy Model (8) with η‹ ą 0 and the entries

Wi,j of W satisfy Assumption 1. Then, for all q in p0, 1s, as n,N Ñ 8 such that
n{N Ñ a P p0, 1s, for any random variable rη such that rη P pη̂, η‹q,

L2nprηq “ ´σ
‹2γ2pa, η‹q ` oP p1q.

Lemma 6 is proved in Section 7.4.
Let us now focus on the properties of L1npη

‹q. Using the following notation

Ui “
rYi

a

η‹pλi ´ 1q ` 1
, (17)
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we see that
?
nL1npη

‹q can be rewritten as follows:
#

1
?
n

n
ÿ

i“1

˜

Ui
2
´

1

n

n
ÿ

j“1

U2
j

¸

gpη‹, λiq

+˜

1

n

n
ÿ

i“1

U2
i

¸´1

“

#

1
?
n

n
ÿ

i“1

«

`

Ui
2
´ 1

˘

`

˜

1´
1

n

n
ÿ

j“1

U2
j

¸ff

gpη‹, λiq

+˜

1

n

n
ÿ

i“1

U2
i

¸´1

“

#

1
?
n

n
ÿ

i“1

`

Ui
2
´ 1

˘

gpη‹, λiq

+˜

1

n

n
ÿ

i“1

U2
i

¸´1

´

#

1
?
n

n
ÿ

j“1

`

Uj
2
´ 1

˘

+#

1

n

n
ÿ

i“1

gpη‹, λiq

+˜

1

n

n
ÿ

i“1

U2
i

¸´1

,

where
gpη, λq “

λ´ 1

ηpλ´ 1q ` 1
.

But using Lemma 2 and Lemma 3 we get

Var

«

n´1{2
n
ÿ

j“1

pUj
2
´ 1q|Z

ff

“ OP p1q

Moreover, by Lemma 3, n´1
řn
i“1 gpη

‹, λiq converges in probability to
ş

gpη‹, λqdµapλq.
Thus,

?
nL1npη

‹q “
1
?
n

n
ÿ

i“1

`

Ui
2
´ 1

˘

ˆ

gpη‹, λiq ´

ż

gpη‹, λqdµapλq

˙

`oP p1q, as nÑ8 .

(18)
Using again Lemma 2 and Lemma 3 we obtain

?
nL1npη

‹q “ OP p1q.

This, together with Lemma 6 and (16) ends the proof of Theorem 1.

7.2. Proof of Theorem 2

Notice first that all previous results may be used, replacing Assumption 1 by the as-
sumption that the Zi,j are i.i.d. standard Gaussian. Indeed, in this case, Lemma 1 re-
duces to the original result of Marchenko and Pastur (1968), Lemma 3 only involves
Lemma 1 and truncation arguments, and the computations leading to Lemma 4 still
hold. Thus, Theorem 1 and Lemma 6 also still hold.

Let us now prove that
?
nL1npη

‹q converges in distribution to a centered Gaussian.
Define H the diagonal nˆ n matrix with diagonal entries

Hi “
1

η‹pλi ´ 1q ` 1

„

gpη‹, λiq ´

ż

gpη‹, λqdµapλq



.

imsart-ejs ver. 2014/07/30 file: paper_ejs.tex date: September 9, 2015
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Define
Ln “

1
?
n
rY1H rY.

Then using (18) and Lemma 3 we have
?
nL1npη

‹q “ Ln ´ ErLn|Zs ` oP p1q.

Now using Lemma 2 we get that setting γ2
n “ Var rLn|Zs,

γ2
n “ 2σ‹4 1

n
Tr

”

H2 pp1´ ηq‹IdRn ` η
‹Dq

2
ı

` 3σ‹4η‹2

ˆ

1

q
´ 1

˙

1

n

N
ÿ

i“1

M2
i,i

“ 2σ‹4 1

n

n
ÿ

i“1

ˆ

gpη‹, λiq ´

ż

gpη‹, λqdµapλq

˙2

` 3σ‹4η‹2

ˆ

1

q
´ 1

˙

1

n

n
ÿ

i“1

n
ÿ

k,l“1

λkλlHkHlV
2
i,kV

2
i,l.

The first term in this sum converges as n,N Ñ8 to 2σ‹4γ2pa, η‹q.
Under the assumption that the Zi,j are i.i.d. standard Gaussian, the matrix of eigen-
vectors V is Haar distributed on the orthonormal matrices, and is independent of
pλiq1ďiďn, see Bai and Silverstein (2010) chapter 10. Conditionally to the eigenval-
ues pλiq1ďiďn, we thus get that

E

«

1

n

n
ÿ

i“1

n
ÿ

k,l“1

λkλlHkHlV
2
i,kV

2
i,l|D

ff

“

˜

1

N

n
ÿ

k“1

λkHk

¸2

p1` op1qq

converges to

a2

„
ż

λpλ´ 1q

pη‹pλ´ 1q ` 1q2
dµapλq ´

ż

λ

pη‹pλ´ 1q ` 1q
dµapλq

ż

λ´ 1

pη‹pλ´ 1q ` 1q
dµapλq

2

and

Var

«

1

n

n
ÿ

i“1

n
ÿ

k,l“1

λkλlHkHlV
2
i,kV

2
i,l|D

ff

“ oP p1q

so that

γ2
n “ 2σ‹4γ2pa, η‹q ` 3σ‹4η‹2

ˆ

1

q
´ 1

˙

Spa, η‹q ` oP p1q.

Denote ∆ the diagonal N ˆ N -matrix with diagonal entries ∆i “
σ‹
?
η‹

?
q πi. Let us

now write

Ln ´ EpLn|Zq “ Ln ´ E rLn|∆,Zs ` E rLn|∆,Zs ´ E rLn|Zs .

We first have

E rLn|∆,Zs ´ E rLn|Zs “ σ‹2η‹
1
?
n

N
ÿ

i“1

ˆ

π2
i

q
´ 1

˙

Mi,i
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whose variance, conditionally to Z is

s2
n,1 “ σ‹4η‹2

ˆ

1

q
´ 1

˙

1

n

N
ÿ

i“1

M2
i,i.

In the same way as for γ2
n we get that

s2
n,1 “ σ‹4η‹2

ˆ

1

q
´ 1

˙

Spa, η‹q ` oP p1q.

Let

ξi “

ˆ

π2
i

q
´ 1

˙

Mi,i “

ˆ

π2
i

q
´ 1

˙ n
ÿ

k“1

λkpλk ´ 1q

pη‹pλk ´ 1q ` 1q2
V 2
i,k.

Since η‹ ą 0, the function λ ÞÑ λpλ´1q
pη‹pλ´1q`1q2 is bounded, and

řn
k“1 V

2
i,k ď

řN
k“1 V

2
i,k “

1. Also, the variables
´

π2
i

q ´ 1
¯

are uniformly bounded by 1{q. Thus

1

n

n
ÿ

i“1

E
“

ξ2
i 1|ξi|ěcn|Z

‰

“ 0

for large enough n. Then, by Lindeberg’s Theorem, conditionally to Z,

1

sn,1
pE rLn|∆,Zs ´ E rLn|Zsq

converges in distribution to N p0, 1q.
Let us now set

s2
n,2 “ γ2

n ´ s
2
n,1

and notice that s2
n,2 converges to

2σ‹4γ2pa, η‹q ` 2σ‹4η‹2

ˆ

1

q
´ 1

˙

Spa, η‹q.

We shall prove that, conditionally to Z and ∆, pLn ´ EpLn|∆,Zqq{sn,2 converges in
distribution to N p0, 1q, and thus also unconditionally. Write

Ln “
1
?
n

pw1 ε1q
B

ˆ

w
ε

˙

where B is the pN ` nq ˆ pN ` nq-matrix

B “

ˆ

∆ 0

0 σ‹p1´ η‹q
1
2 IdRn

˙

¨

˚

˚

˝

V

ˆ

DH 0
0 0

˙

V1 Ṽ
?
DH

H
?
DṼ1 H

˛

‹

‹

‚

ˆ

∆ 0

0 σ‹p1´ η‹q
1
2 IdRn

˙

.
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Here, Ṽ is the N ˆ n-matrix which consists of the first n columns of V. Let φ be the
characteristic function of pLn ´ EpLn|∆,Zqq{sn,2 conditionally to Z and ∆. Notice
first that if bj , j “ 1, . . . , n`N are the eigenvalues of B, we may write

Ln ´ E rLn|∆,Zs “
1
?
n

N`n
ÿ

j“1

bjpe
2
j ´ 1q.

for random variables ej i.i.d. standard Gaussian. Thus

φ ptq “
N`n
ź

j“1

«

ˆ

1´ 2i
tbj

sn,2
?
n

˙´1{2

exp

ˆ

´i
tbj

sn,2
?
n

˙

ff

and Taylor expansion leads to

log φ ptq “

N`n
ÿ

j“1

„

´
1

2
log

ˆ

1´ 2i
tbj

sn,2
?
n

˙

´ i
tbj

sn,2
?
n



“ ´t2
1

ns2
n,2

N`n
ÿ

j“1

b2j `O

«

1

n
?
ns3

n,2

N`n
ÿ

j“1

b3j

ff

.

We shall now prove that 1
ns2n,2

řN`n
j“1 b2j converges to 1{2. Tedious computations give

N`n
ÿ

j“1

b2j “ TrpB2q

“ Trp∆M∆2M∆q ` σ‹4
p1´ η‹2 TrpH2q ` 2σ‹2

p1´ η‹qTrr∆2ṼDH2Ṽ1s.

Using the distribution of V and its independence on D we get

E

«

N`n
ÿ

j“1

b2j |D

ff

“ 2σ‹4 Tr
”

H2 pp1´ ηq‹IdRn ` η
‹Dq

2
ı

`2σ‹4η‹2

ˆ

1

q
´ 1

˙

˜

1

N

n
ÿ

k“1

λkHk

¸2

p1` op1qq

so that

E

«

1

n

N`n
ÿ

j“1

b2j |D

ff

“ 2σ‹4γ2pa, η‹q ` 2σ‹4η‹2

ˆ

1

q
´ 1

˙

Spa, η‹q ` oP p1q.

Moreover, tedious computations again give

Var

«

1

n

N`n
ÿ

j“1

b2j |D

ff

“ oP p1q,
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and we obtain that
1

ns2
n,2

N`n
ÿ

j“1

b2j “
1

2
` oP p1q.

We shall now prove that 1
n
?
ns3n,2

řN`n
j“1 b3j “ oP p1q. To do so, it is enough to prove

that maxj |bj | “ oP p
?
nq. Notice that for any normed vector A “ pA1, A2q in RN`n

where A1 P RN and A2 P Rn,

max
j
|bj | ď A1BA.

Now,

A1BA “ A11p∆M∆qA1 ` 2σ‹
a

1´ η‹A11p∆Ṽ
?
DHqA2 ` σ

‹2
p1´ η‹qA12HA2.

First, since η‹ ą 0, all entries of H and D and HD are uniformly bounded and so are
all entries of ∆. We thus get A12HA2 “ Op1q and A11p∆Ṽ

?
DHqA2 “ Op1q. Then,

using the distribution of V and its independence on D we get

E
“

A11p∆M∆qA1|D
‰

“ O

˜

1

N

n
ÿ

i“1

λiHi

¸

and
Var

“

A11p∆M∆qA1|D
‰

“ oP p1q,

so that A1BA “ OP p1q. We have thus proved that maxj |bj | “ OP p1q “ oP p
?
nq.

Thus φptq converges in probability for all t to exp´ t2

2 and the convergence may be
strengthened by contradiction to an a.s. convergence, so that conditionally to Z and ∆,
pLn ´ EpLn|∆,Zqq{sn,2 converges in distribution to N p0, 1q.

Now, conditionally to Z and ∆, pLn ´ EpLn|∆, Zqq{sn,2 converges in distribu-
tion to a Gaussian random variable independent of ∆. Thus conditionally to Z, Ln ´
E rLn|∆, Zs and E rLn|∆, Zs ´ E rLn|Zs converge in distribution to independent
Gaussian variables, so that their sum converges in distribution to a centered Gaussian
with variance the sum of the variances, namely the limit of γ2

n, and Theorem 2 is
proved.

7.3. Proof of Theorem 3

Using Lemma 6 and (16) , there remains to prove that
?
nL1npη

‹q converges in distri-
bution to N p0, 2σ‹4γ2pa, η‹qq and that γ2

n converges in probability to γ2pa, η‹q.
Notice first that when q “ 1, pU1, . . . , Unq|Z is a centered Gaussian vector with a
covariance matrix equal to σ‹2 times the identity matrix. We shall prove that con-
ditionally to Z,

?
nL1npη

‹q converges in distribution to N p0, 2σ‹4γ2pa, η‹qq so that
the result still holds unconditionally. Using (18), it is only needed to prove it for
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1?
n

řn
i“1

`

Ui
2
´ 1

˘ `

gpη‹, λiq ´
ş

gpη‹, λqdµapλq
˘

. Now, conditionally to Z, the vari-
ance of

n
ÿ

i“1

`

Ui
2
´ 1

˘

ˆ

gpη‹, λiq ´

ż

gpη‹, λqdµapλq

˙

is

γ2
n “

2σ‹4

n

n
ÿ

i“1

ˆ

gpη‹, λiq ´

ż

gpη‹, λqdµapλq

˙2

.

Since η‹ ą 0, gpη‹, λq is a bounded function of λ, and using Lemma 3,

γ2
n “ 2σ‹4γ2pa, η‹qq ` oP p1q.

Also, setting ξi “
`

Ui
2
´ 1

˘ `

gpη‹, λiq ´
ş

gpη‹, λqdµapλq
˘

and C an upper bound of
|gpη‹, λq|, we get that for any c ą 0,

1

n

n
ÿ

i“1

E
“

ξ2
i 1|ξi|ěcn|Z

‰

ď 4C2σ‹4E
”

`

U1
2
´ 1

˘2
12C|U1

2´1|ěcn|Z
ı

“ 4C2σ‹4E
”

`

U1
2
´ 1

˘2
12C|U1

2´1|ěcn

ı

“ op1q,

where the first equality comes from the fact that the distribution of pU1, . . . , Unq|Z
does not depend on Z and is thus also the distribution of pU1, . . . , Unq. Then, us-
ing Lindeberg’s Theorem, conditionally to Z,

?
nL1npη

‹q converges in distribution to
N p0, 2σ‹4γ2pa, η‹qq and thus also unconditionally.
The fact that γ2

n converges in probability to γ2pa, η‹q is a straightforward consequence
of Taylor expansion, the fact that gpη‹, λq and its derivative with respect to η in the
neighborhood of η‹ are bounded functions of λ, and Slutzky’s Lemma.

7.4. Proofs of technical lemmas

7.4.1. Proof of Lemma 1

As a byproduct of Theorem 1.1, Corollary 1.1 and Remark 1.1 of Bai and Zhou (2008),
we use the following result to prove Lemma 1.

Theorem (Bai and Zhou (2008)). Let Z be a matrix of size n ˆ N which columns,
denoted by Z1, . . . , ZN , are independent and let us denote Z̄ “ 1

N

řN
k“1 Zk. Let us

also recall that R “ ZZ1{N and FR is its empirical spectral distribution defined by
FRpxq “ 1

n

řn
k“1 1tλkěxu, where λ1, . . . , λn are the eigenvalues of R. As N Ñ 8,

assume the following:

1. T “ pti,jq is a matrix such that EpZ̄i,jZm,jq “ tm,i for all j .
2. 1

Nmax
i‰m

EpZ̄i,jZm,jq2 Ñ 0 uniformly in j ď N .

3. 1
N2

ř

Λ

`

EpZ̄i,jZm,j ´ tm,iqpZi1,jZ̄m1,j ´ ti1,m1q
˘2
Ñ 0 uniformly in j ď N ,

with Λ “ tpi,m, i1,m1q : 1 ď i,m, i1,m1 ď nuztpi,m, i1,m1q : i “ i1 ‰ m “

m1 or i “ m1 ‰ i1 “ mu.
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4. n
N Ñ a P p0,`8q.

5. The norm of T is uniformly bounded and FT tends to a degenerate distribution
with mass at 1{a.

Then, with probability 1, FR converges to the Marchenko-Pastur distribution defined
in (9).

Observe that for all j “ 1, . . . , N ,

n
ÿ

i“1

Zi,j “ 0 (19)

and
n
ÿ

i“1

Z2
i,j “ n. (20)

Moreover, for each j, the random variables pZi,jq1ďiďn are exchangeable. Thus, we
deduce from (20) that for all i “ 1, . . . , n and j “ 1, . . . , N , EpZ2

i,jq “ 1. Hence, by
(19), we get that

0 “

˜

n
ÿ

i“1

Zi,j

¸2

“

n
ÿ

i“1

Z2
i,j `

ÿ

1ďi‰mďn

Zi,jZm,j ,

which, by (20), implies that for all j “ 1, . . . , N and i ‰ m “ 1, . . . , n,

EpZi,jZm,jq “ ´
n

npn´ 1q
“ ´

1

n´ 1
. (21)

Thus, the matrix T “ Tn defined in Theorem (Bai and Zhou (2008)) is equal to
T “ n{pn ´ 1qIdRn ´ Jn{pn ´ 1q , where Jn is a n ˆ n matrix having all its entries
equal to 1. Hence the eigenvalues of T are 0 with multiplicity 1 and n{pn ´ 1q with
multiplicity pn´ 1q, which gives Condition 5. of Theorem (Bai and Zhou (2008)).

Let us then check Condition 2. of Theorem (Bai and Zhou (2008)). Observe that, for
i ‰ m, ErpZi,jZm,j ´ tm,iq2s “ EpZ2

i,jZ
2
m,jq ´ t

2
m,i. By (20), for all j “ 1, . . . , N ,

n2 “

˜

n
ÿ

i“1

Z2
i,j

¸2

“

n
ÿ

i“1

Z4
i,j `

ÿ

1ďi‰mďn

Z2
i,jZ

2
m,j .

Since the pZi,jq1ďiďn are exchangeable for each j “ 1, . . . , N , we get that for all
j “ 1, . . . , N ,

n “ ErZ4
1,js ` pn´ 1qErZ2

1,jZ
2
2,js .

Thus, for all j “ 1, . . . , N , ErZ2
1,jZ

2
2,js ď n{pn´ 1q, which with the definition of the

tm,i’s gives the result.
Let us now check Condition 3. of Theorem (Bai and Zhou (2008)). Since the random

variables pZi,jq1ďiďn are exchangeable, it is enough to prove that, uniformly in k,

(i) ErZ4
1,ks “ op

?
nq,
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(ii) ErZ2
1,kZ

2
2,ks ´ 1 “ op1q,

(iii) ErZ3
1,kZ2,ks “ op1q,

(iv)
?
nErZ2

1,kZ2,kZ3,ks “ op1q,
(v) nErZ1,kZ2,kZ3,kZ4,ks “ op1q , as nÑ8.

Observe that (i) implies (ii). Using (19), by expanding 0 “ p
řn
i“1 Zi,kq

2
´

řn
i“1 Z

2
i,k

¯

and taking the expectation, we get that (i) and (iii) imply (iv). By expanding 0 “

p
řn
i“1 Zi,kq

4, which comes from (19), and by taking the expectation, (i) and (iii) imply
(v). Hence, it is enough to prove (i) and (iii) to conclude the proof of Lemma 1.

Let us first prove (i). By the definition of Z1,k given in (4), we get that for all k,
Z2

1,k ď n. Hence,

Z2
1,k ď

pW1,k ´W kq
2

2σ2
k

1ts2kě2σ2
ku
` n1ts2ką2σ2

ku
,

and, by the assumptions on the Wi,k’s and on the σk’s,

EpZ4
1,kq ď

W 2
M

2κ2
` 2n2Pps2

k ´ σ
2
k ą σ2

kq .

Theorem A of (Serfling, 1980, p. 201) implies that the second term of the previous
inequality tends to zero as n tends to infinity uniformly in k, which concludes the
proof of (i).

Let us now prove (iii). Using (19), we get Z3
1,k p

řn
i“1 Zi,kq “ 0. By expanding this

equation and taking the expectation, we obtain that EpZ4
1,kq `

řn
i“2 EpZ3

1,kZi,kq “

0. Since the pZi,kq1ďiďn are exchangeable: EpZ3
1,kZ2,kq “ ´EpZ4

1,kq{pn ´ 1q “

opn´1{2q, where the last equality comes from (i).

7.4.2. Proof of Lemma 2

Using (11) and the independence assumptions, we get

Varp rY1H rY|Zq

“ Var

„

v1V

ˆ

DH 0
0 0

˙

V1v ` 2σ‹
a

1´ η‹v1V

ˆ?
D
0

˙

Hrε` σ‹2
p1´ η‹qrε1Hrε|Z



“ Var
“

v1Mv|Z
‰

`4σ‹2
p1´η‹qVar

„

v1V

ˆ?
D
0

˙

Hrε|Z



`2σ‹4
p1´η‹q2 TrpH2q ,

(22)

where M “ V

ˆ

DH 0
0 0

˙

V1. Using the independence assumptions, we get that

4σ‹2
p1´ η‹qVar

„

v1V

ˆ?
D
0

˙

Hrε|Z



“ 4σ‹4η‹p1´ η‹qTrpBB1q

“ 4σ‹4η‹p1´ η‹qTrpDH2q , (23)
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where B “ V

ˆ?
D
0

˙

H. Moreover, Epv1Mv|Zq “ σ‹2η‹ TrpD2H2q and

E
“

pv1Mvq2|Z
‰

“
σ‹4η‹2

q2

«

2q2
ÿ

1ďi‰jďN

M2
ij ` q

2
ÿ

1ďi‰i1ďN

MiiMi1i1 ` 3q
ÿ

1ďiďN

M2
ii

ff

“ σ‹4η‹2

«

2 TrpM2q ´ 2
ÿ

1ďiďN

M2
ii ` TrpMq2 ´

ÿ

1ďiďN

M2
ii `

3

q

ÿ

1ďiďN

M2
ii

ff

“ σ‹4η‹2

«

2 TrpD2H2q ` TrpMq2 ` 3

ˆ

1

q
´ 1

˙

ÿ

1ďiďN

M2
ii

ff

.

Thus,

Var
“

v1Mv
ˇ

ˇZs “ σ‹4η‹2

«

2 TrpD2H2q ` 3

ˆ

1

q
´ 1

˙

ÿ

1ďiďN

M2
ii

ff

. (24)

The proof of the equality in Lemma 2 follows from (22), (23) and (24). The proof of
the inequality in Lemma 2 follows now from

ÿ

1ďiďN

M2
ii ď

ÿ

1ďi,jďN

M2
ij “ TrrD2H2s.

7.4.3. Proof of Lemma 5

Let ε ą 0 and let {η1 ă ¨ ¨ ¨ ă ηKpεq} be a grid of r0, 1´ δs such that |ηj ´ ηj`1| ă ε
for all j P t0, . . . ,Kεu then

sup
ηPr0,1´δs

|Lnpηq ´ Lpηq| ď sup
jPt1,...,Kεu

«

sup
η1Prηj ,ηj`1s

|Lnpη
1q ´ Lnpηjq| ` |Lnpηjq ´ Lpηjq|

` sup
η1Prηj ,ηj`1s

|Lpηjq ´ Lpη
1q|

ff

ď ε sup
ηPr0,1´δs

|L1npηq| ` sup
jPt1,...,Kεu

|Lnpηjq ´ Lpηjq| ` ωpεq,

where ωpεq is the modulus of continuity of L, which is continuous on the compact
r0, 1 ´ δs and thus uniformly continuous on this compact. Since sup

ηPr0,1´δs

|L1npηq| “

OP p1q then, for every β ą 0, there exists C such that for all n, Pp sup
ηPr0,1´δs

|L1npηq| ě

Cq ď β. Let α ą 0 and let us consider the ε-grid such that ε ď α{3C and ωpεq ď α{3,
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thus we get that

Pp sup
ηPr0,1´δs

|Lnpηq ´ Lpηq| ě αq

ď Pp sup
ηPr0,1´δs

ˇ

ˇL1npηq
ˇ

ˇ ě Cq ` Pp sup
jPt1,...,Kεu

|Lnpηjq ´ Lpηjq| ě α´ Cε´ ωpεqq

ď Pp sup
ηPr0,1´δs

ˇ

ˇL1npηq
ˇ

ˇ ě Cq ` Pp sup
jPt1,...,Kεu

|Lnpηjq ´ Lpηjq| ě
α

3
q

ď Pp sup
ηPr0,1´δs

ˇ

ˇL1npηq
ˇ

ˇ ě Cq `
Kε
ÿ

j“1

Pp|Lnpηjq ´ Lpηjq| ě
α

3
q,

which concludes the proof of Lemma 5 since each term tends to zero as n tends to
infinity.

7.4.4. Proof of Lemma 6

The second derivative of Ln is given by

L2npηq “

˜

´
2

n

n
ÿ

i“1

rY 2
i pλi ´ 1q2

tηpλi ´ 1q ` 1u
3

¸˜

1

n

n
ÿ

i“1

rY 2
i

tηpλi ´ 1q ` 1u

¸´1

`

˜

1

n

n
ÿ

i“1

rY 2
i pλi ´ 1q

tηpλi ´ 1q ` 1u
2

¸2 ˜

1

n

n
ÿ

i“1

rY 2
i

tηpλi ´ 1q ` 1u

¸´2

(25)

`
1

n

n
ÿ

i“1

pλi ´ 1q2

tηpλi ´ 1q ` 1u
2 .

In particular for η “ η‹, we have

1

n

n
ÿ

i“1

rY 2
i

tη‹pλi ´ 1q ` 1u
“ 1` oP p1q,

and using as previously Lemma 2, Lemma 3 and the fact that all functions of λ involved
in the empirical means are bounded since η‹ ą 0, we get

2

n

n
ÿ

i“1

rY 2
i pλi ´ 1q2

tηpλi ´ 1q ` 1u
3 “

2σ‹2

n

n
ÿ

i“1

pλi ´ 1q2

tηpλi ´ 1q ` 1u
2 ` oP p1q

“ 2σ‹2
ż

pλ´ 1q2

tηpλ´ 1q ` 1u
2 dµapλq ` oP p1q

and

1

n

n
ÿ

i“1

rY 2
i pλi ´ 1q

tηpλi ´ 1q ` 1u
2 “

σ‹2

n

n
ÿ

i“1

pλi ´ 1q

tηpλi ´ 1q ` 1u
` oP p1q

“ σ‹2
ż

pλ´ 1q

tηpλ´ 1q ` 1u
dµapλq ` oP p1q
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leading to
L2npηq “ ´σ

‹2γ2pa, η‹q ` oP p1q.

Using Slutzky’s Lemma and η̂ “ η‹` oP p1q, there just remains to prove that for small
enough α ą 0,

sup
|η´η‹|ďα

|L2npηq ´ L
2
npηq| “ Oppαq.

But this comes easily from

sup
|η´η‹|ďα

|L2npηq ´ L
2
npηq| ď α sup

|η´η‹|

|Lp3qn pηq|

where Lp3qn pηq is the third derivative of Lnpηq, and a similar handling of empirical
means as before. Indeed, all functions of λ involved are bounded as soon as α is such
that η‹ ě 2α.

Acknowledgments

The authors would like to thank Edouard Maurel-Segala and Maxime Février for stim-
ulating discussions on random matrix theory and Thomas Bourgeron and Roberto Toro
for having led us to study this very interesting subject and for the discussions that we
had together on genetic topics.

References
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