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Abstract:

Motivated by applications in genetic fields, we propose to estimate the heritability

in high-dimensional sparse linear mixed models. The heritability determines how the
variance is shared between the different random components of a linear mixed model.
The main novelty of our approach is to consider that the random effects can be sparse,
that is may contain null components, but we do not know either their proportion or
their positions. The estimator that we consider is strongly inspired by the one proposed
by Pirinen, Donnelly and Spencer (2013), and is based on a maximum likelihood ap-
proach. We also study the theoretical properties of our estimator, namely we establish
that our estimator of the heritability is 4/7-consistent when both the number of obser-
vations n and the number of random effects IV tend to infinity under mild assumptions.
We also prove that our estimator of the heritability satisfies a central limit theorem
which gives as a byproduct a confidence interval for the heritability. Some Monte-
Carlo experiments are also conducted in order to show the finite sample performances
of our estimator.
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1. Introduction

Linear mixed models (LMMs) have been widely used in various fields such as agricul-
ture, biology, medicine and genetics. In quantitative genetics, LMMs have been used
for estimating the heritability of traits and breeding values as explained for instance by
Lynch and Walsh (1998). In Genome Wide Association Studies (GWAS), which is the
application field that inspired our work, Yang et al. (2011) suggested the use of linear
mixed models to measure genotypes at a large number of single nucleotide polymor-
phisms (SNPs) in large samples of individuals in order to identify genetic variants that
explain variations in phenotypes.
The model that we shall study in this paper is a LMM defined as

Y =XB+Zu+e, €))

where Y = (Y7,...,Y,,) is the vector of observations, X is a n x p matrix of predic-
tors, 3 is a p x 1 vector containing the unknown linear effects of the predictors, and u
and e correspond to the random effects. Moreover, in (1), Z is a n x [N random matrix
which will be further described in Section 2.

We shall assume that the random effects can be sparse, that is only a proportion ¢ of

the components of u are non-zero:

wp "5 (1= )0 + gN(0,07%) Lforall 1 <i < Nande ~ A’ (0, agzlan) @)
where Idg~ denotes the n x n identity matrix, ¢ is in (0, 1], and dy is the point mass at
0. Note that this corresponds to a more general situation than the usual assumption of
(non-sparse) Gaussian random effects which is recovered when ¢ = 1.

The use of linear mixed models to estimate heritability has been proposed by Yang
et al. (2011) as an alternative to the regression models usually used in GWAS. The
goal is to consider the joint effect of all SNPs on a phenotype, and the heritability
corresponds to the proportion of phenotypic variance explained by all SNPs.

In the GWAS framework, Z is thus a matrix having a number of rows equal to the
number of individuals in the experiment that is n ~ 1000 and a number of columns
equal to the number of SNPs taken into account in the experiment, namely N =~
500, 000. This application motivated the framework that we chose where n and NV
tend to infinity.

The major difference between the framework of Yang et al. (2011) and ours is that
they consider that the random effects are Gaussian while we consider a mixture model
between a point mass at 0 and a Gaussian distribution. With this modeling, we assume
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that all SNPs are not necessarily causal, that is that all SNPs do not explain a given
phenotype.

Our main goal in this paper is to propose an estimator for the heritability in this
possibly sparse framework and to establish its theoretical properties in the non standard
theoretical context where n and NV tend to infinity.

In this paper, we prove that using a strategy close to the one proposed by Pirinen,
Donnelly and Spencer (2013), which has been devised in the case ¢ = 1, provides
consistent estimators even in the case where ¢ < 1. Moreover, we prove that this
estimator is /n-consistent in the following asymptotic framework: n — oo and N —
oo such as n/N — a > 0 and satisfies under mild assumptions a central limit theorem
in both cases ¢ = 1 and ¢ < 1. It has to be noticed that the classical results that exist
in linear mixed models are established only in the case where ¢ = 1, n tends to infinity
and N is constant.

The paper is organized as follows. Section 2 provides a detailed description of the
model and the heritability estimator that we propose. Section 3 reviews existing meth-
ods for heritability estimation. Section 4 is dedicated to the theoretical properties of
our estimator. The numerical results are presented in Section 5. They have been ob-
tained thanks to the R package HILMM that we have developed and which is available
from the Comprehensive R Archive Network (CRAN). In Section 6, we provide some
additional comments on our work as well as some prospects such as the estimation of
the proportion ¢ of non null components in the random effects. Finally, the proofs are
given in Section 7.

2. Model and heritability estimator
2.1. Model

In the sequel, up to considering the projection of Y onto the orthogonal of the image
of X and for notational simplicity, we shall focus on the following model

Y=Zu+te, 3

where Y = (Y1,...,Y,) is the vector of observations, u and e correspond to the
random effects, which are defined in (2). Moreover, Z is a n x N random matrix such
that the Z; ; are normalized random variables in the following sense: they are defined
from a matrix W = (Wi,j)lsién, 1<j<N by

Zij=—2_—"J i=1,....nj=1,...,N, )

where

S|

WJZEZWi,j, $3=— > (Wi, =W;)?* j=1,....N. 5)
i=1 i=1

In (4) and (5) the W; ;’s are such that for each j in {1,..., N} the (W; ;)1<i<n are
independent and identically distributed random variables and such that the columns of
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‘W are independent. With this definition the columns of Z are empirically centered and
normalized.

In genetic applications, the matrix W contains all the genetic information about
all the individuals in the study. More precisely, for each j, the (W; ;)1<i<n are i.id
binomial random variables with parameters 2 and p;. W; ; = 0 (resp. 1, resp. 2) if
the genotype of the ith individual at locus j is qq (resp. Qq, resp. QQ) where p; is the
frequency of Q allele at locus j.

In Model (1) with (4), (5), (2), one can observe that

/

77
Var(Y|Z) = Nqo:*R. + 07 1dg» , where R =

and ¢ is defined in (2) .

Inspired by Pirinen, Donnelly and Spencer (2013), Model (1) can be rewritten by using
the following parameters:

Ngo??
*2 *2 *2 * qo,,
0" =Nqo“ + o0.” and = —5. 6
10w T 0 TN = Neor? + 072 ©
Thus,

Var(Y|Z) = n*0**R + (1 — n*)o**1dgn .

The parameter 7* which belongs to [0, 1] is commonly called the heritability in the case
where ¢ = 1, see for instance Yang et al. (2010), and determines how the variance is
shared between u and e when all the components of u are non zero. We propose in (6)
to extend this definition to the case where u may contain null components and ¢ is in
(0, 1]. The parameter q actually corresponds to the proportion of non null components
in u that is to the proportion of causal SNPs. Then, the heritability defined by n* in (6)
corresponds to the proportion of phenotypic variance explained by the causal variants.

2.2. Heritability estimator
In the case where ¢ = 1, observe that
Y|Z~ N (07 7o R+ (1 — 77*)0*21an,) ,

where 1* and o* are defined in (6).
Let U as the orthogonal matrix (U'U = UU’ = Idg~) such that URU’ =

diag(A1, ..., \,) is a diagonal matrix having its diagonal entries equal to Ay, ..., A,.
Hence, in the case where ¢ = 1 and conditionally to Z,Y = U’Y is a zero-mean Gaus-
sian vector having a covariance matrix equal to diag(n*o*2 A1 +(1—n*)o*?, ..., n*0** X+

(1 —n*)o*?), where the \;’s are the eigenvalues of R..
The method proposed by Pirinen, Donnelly and Spencer (2013) consists in comput-
ing the log-likelihood

La(0®n) = —21o (H)—lilo ( (/\4—1)+1)—ii _w
m I T Ty RN Ty £, ORI 20% &N — 1) + 1

K2

—g log(2m)
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and to maximize this function of two variables by iterative optimization techniques.
Since in our case we are only interested in estimating n*, we plugged an estimator of

o*? that is
n ~ 2

1 Y
A277 7
U_ni;n()\i—l)—kl

in L,,. Thus, in the case ¢ = 1, the maximum likelihood strategy would lead to estimate
n*, assumed to be in [0, 1 — §] with § > 0, by 7 defined as a maximizer of

1 n 172 1 n
Ly, =—1 - — | - = 1 N—1)+1 s 7
(n) = —log n;n(&—l)ntl n;Og("(’ )+, (D)
where the ffi’s are the components of the vector Y = U'Y.

We shall establish in Theorem 2, which is proved in Section ??, that this strategy
produces 4/n-consistent estimators of 1* in both cases: ¢ = 1 and ¢ < 1 and also
that this estimator satisfies a central limit theorem which provides as a by-product
confidence intervals for n*.

3. Existing methods for heritability estimation

Several approaches can be used for estimating the heritability in the case where ¢ = 1
but to the best of our knowledge, no theoretical results concerning the estimation of
the heritability or the estimation of o},, o have been established in the framework
where both n and NV tend to infinity. This is one of the contributions of our paper.
Among these approaches, we can quote the REML (REstricted Maximum Likelihood)
approach, originally proposed by Patterson and Thompson (1971) and described for
instance in Searle, Casella and McCulloch (1992), which consists in estimating first
o* and ¢ and then to estimate 7* as the ratio ) = N¢&,,2/(Nd,> + ¢.%). However,
this type of approach is based on iterative procedures that require expensive matrix
operations. Hence, several approximations have been proposed such as the Al algo-
rithm (Gilmour, Thompson and Cullis (1995)) which is used for instance in the soft-
ware GCTA (Genome-wide Complex Trait Analysis) described in Yang et al. (2011).
Other approximations have also been proposed in the EMMA algorithm (Kang et al.
(2008)). For further details on the different approximations that could be used we re-
fer the reader to Pirinen, Donnelly and Spencer (2013). The latter paper proposes an-
other methodology for estimating the heritability which consists in rewriting Model
(1) with the parameters (6) and in using an eigenvalue decomposition of the matrix R.
Further details on their methodology are given hereafter. According to the numerical
experiments conducted in Pirinen, Donnelly and Spencer (2013) their approach has the
lowest computational burden among the available algorithms.

In the case of sparse high dimensional framework, most of the papers studied the
case of linear models. Among them, we can quote: Meinshausen and Biithlmann (2010)
and Beinrucker, Dogan and Blanchard (2014). The high dimensional linear mixed
model where u is sparse, that is the case where ¢ < 1, which is the most realistic
case for the applications that we have in view, has received little attention. It has been
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studied according two directions: detection and estimation. Concerning the detection
field in this framework, we are only aware of the work of Arias-Castro, Candes and Plan
(2011) in which a testing procedure for detecting a sparse vector in high dimensional
linear sparse regression model is also proposed and compared with the one proposed
by Ingster, Tsybakov and Verzelen (2010). As for the procedures dedicated to the her-
itability estimation, there exist, to the best of our knowledge, only three approaches:
the approach of Yang et al. (2010) who propose to approximate the genetic correlation
between every pairs of individuals across the set of causal SNPs by the genetic correla-
tion across the set of all SNPs, the approach of Golan and Rosset (2011) who propose
a methodology based on MCEM (Monte-Carlo expectation-maximization) developed
by Wei and Tanner (1990) and the Bayesian approaches of Guan and Stephens (2011)
and Zhou, Carbonetto and Stephens (2013). However, as far as the estimation issue in
the high dimensional linear mixed model is concerned, the authors of these papers did
not establish the theoretical properties of their estimators in the framework where both
n and NN tend to infinity.

4. Theoretical results

Observe that another way of writing Model (3) with the parameters defined in (6) con-
sists in writing

1
Y = —Zt +0*/1—7re, 8
~ o 7 (3

where € is a n x 1 Gaussian vector having a covariance matrix equal to identity and

t = (t1,...,tx) is arandom vector such that
o*/n*
ty = WiT
NG
where the w;’s and the 7;’s are independent, w = (wy,...,wy)" is a Gaussian vec-

tor with a covariance matrix equal to identity and the 7;’s are i.i.d Bernoulli random
variables such that P(m; = 1) = q.

The estimator 7 is defined as a maximizer of L, (n) for € [0,1 — J] for some
small § > 0, L,, being given in (7). We shall study the asymptotic properties of 7
as n and N tend to infinity in a comparable way, that is when n/N — a > 0. To
understand the asymptotic behavior of 7, we shall first prove its consistency, then use a
Taylor expansion of the derivative of L,, around 7 in the usual way. The computations
as can be seen in (7) involve empirical means of functions of the eigenvalues \; of
R = ZTZ, Using Theorem 1.1 of Bai and Zhou (2008), we shall prove the almost
sure convergence of such empirical quantities under a weak assumption denoted by
Assumption 1 as follows.

(A1) Let Z and W be two matrices defined by (4) and (5). Recall that for each j
in {1,..., N} the (W; ;)1<i<n are independent and identically distributed ran-
dom variables and such that the columns of W are independent (but not nec-
essarily identically distributed). Assume that the entries W; ; of W are uni-
formly bounded, and have variance uniformly lower bounded, that is: there exist
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Wi < o0 and k > 0 such that 0 < W; ; < W)y and 032. = Var(W; ;) = &, for
all 5.

The following lemma ensures that the result of Marchenko and Pastur (1968) which
gives the empirical spectral distribution of sample covariance matrices ZZ'/N holds
even when the entries Z; ; of the matrix Z are not i.i.d. random variables but when Z
is obtained by empirical standardization of a matrix W satisfying Assumption 1.

Lemma 1. Under Assumption 1, as n, N — o0 such thatn/N — a > 0, the empirical
spectral distribution of Ry = ZZ//N: FE~(z) = n=1 37| L\, <a) tends almost
surely to the Marchenko-Pastur distribution defined as the distribution function of i,
where, for any measurable set A,

(1= %) Loea +va(A) ifa>1
ua(A)_{ua(A) ' ifa<l

with

1 e =N —a)

T o a\

drg(N) 1 o (@)dz, ay = (1£+a)?. (9

In FBN (), the \y.’s denote the eigenvalues of Ry.
Our first main result is the y/n-consistency of the estimator 7).
Theorem 1. Let Y = (Y1,...,Y,) satisfy Model (8) with n* > 0 and the entries
Wi ; of W satisfy Assumption 1. Then, for all q in (0,1], as n, N — o0 such that
n/N — a€ (0,1],
V(i —n*) = Op(1).

Such a result is a theoretical cornerstone to legitimate the use of an estimator. How-
ever, statistical inference has to be based on confidence sets. The next step is thus to
find the asymptotic distribution of 4/n(7) — n*). Define for any n € [0, 1] and A = 0

A—1
g(n,A) = SO =D
Define also )
=4 gl n)? - (i > g(M))
i=1 i=1
and ,
(a7 = { | st 0 - ( | g(n,»dua(x)) } )

We are now ready to state our second main result about the asymptotic distribu-
tion of v/n(7) — n*). For general g, the result only holds when the entries of Z, that is
the random variables Z; ; are i.i.d. standard Gaussian. Indeed, as may be seen when
computing the variances, we need to be able to find the asymptotic behavior of empiri-
cal means of functions of the eigenvalues together with the eigenvectors of the matrix
R =7ZZ'/N.
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Theorem 2. LetY = (Y1,...,Y,) satisfy Model (8) with n* > 0 and assume that the
random variables Z; j are i.i.d. N'(0,1). Then for any q € (0,1], as n, N — o0 such

thatn/N — a > 0,
V(i —n")

converges in distribution to a centered Gaussian random variable with variance

2 a’n*? 1
7-2 CL,’/]*,q = +3 (—1)Sa,n*
(19 = ey e ) (@)

where
MAD - dpg (A A dpa (A a0
S(a, ") [S(nu e da(N) = § Gt eV § Gratyzy dital )]

In the case where ¢ = 1, the result holds in the general situation described in As-
sumption 1, and allows us to propose confidence sets with precise asymptotic confi-
dence level.

Theorem 3. Let Y = (Y1,...,Y,) satisfy Model (8) with ¢ = 1 and with n* > 0.
Assume also that the entries W; ; of W satisfy Assumption I then, as n, N — o0 such
that n/N — a > 0,

converges in distribution to N'(0, 1).

Let us now give some additional comments on the previous results. Firstly, it has
to be noticed that none of the limiting variance depends on o*. Secondly, Theorem
2 is proved here only in the case where the Z; ; are i.i.d. Gaussian. This is because
we used several times that the matrix of eigenvectors of ZZ’/N is independent of the
eigenvalues, and uniformly distributed on the set of orthonormal matrices. We think
that the result of Theorem 2 is also valid when the Z; ; are defined from the W; ;
satisfying Assumption 1, as suggested by the numerical results obtained in Section
5. To prove it requires new results in an active research topic of the random matrix
theory field. We can observe in the expression of 72(a,n*) given in Theorem 2 that
the presence of ¢ is counterbalanced by the presence of a?. This will be confirmed by
the results obtained in the numerical results given in Section 5. Finally, we can observe
that 2/(n~y2) corresponds to the usual inverse of the Fisher information associated to
7. This result is classical in the case where N is fixed and n tends to infinity but did
not exist in the framework where both n and N tend to infinity even if it was already
used in biological applied papers for deriving standard errors and confidence intervals.
Theorem 3 proves that this result still holds even in the case where both n and N tend
to infinity.

To the best of our knowledge, the effect of the presence of null components in the
random effects has never been taken into account for computing the asymptotic vari-
ance of an estimator of the heritability. This is the contribution of Theorem 2. This the-
orem shows that the asymptotic variance contains an additional term which increases
its value in the case ¢ < 1 with respect to the case ¢ = 1. It is shown in Section 3.3
how the computation of the asymptotic variance can be altered if this additional term
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is neglected. In practical situations, computing the standard error given by Theorem 2
requires the knowledge of ¢ which is in general unknown. However, if an estimation
of ¢ is available for any practical reasons, the result of Theorem 2 can be used for
computing confidence intervals and standard errors, see Section 6 for further details.

5. Numerical experiments

In this section, we first explain how to implement our method and then we illustrate the
theoretical results of Section 4 on finite sample size observations for both cases: ¢ = 1
and ¢ < 1. We also compare the results obtained with our approach to those obtained
by the GCTA software described in Yang et al. (2010) and Yang et al. (2011) which is
a reference in quantitative genetics.

5.1. Implementation

In order to obtain 7}, we used a Newton-Raphson approach which is based on the fol-
lowing recursion: starting from an initial value (%),

k
pF ) = pk) — 7%(77;;) k=1,
Ly (n®))

where L!, and L” denote the first and second derivatives of L,, defined in (7), re-
spectively. The closed form expression of these quantities are given in (13) and (25),
respectively. In practice, this approach converges after at most 20 iterations and is not
very sensitive to the initialization, namely to the value of 1(°). However, in particular
cases, the value of the initialization can have an influence on the estimation of n*. This
is the case, for instance, when the real value n* is close to 1. In these situations, our
algorithm can provide an estimation bigger than 1 and we constrained our method to
return a value equal to 0.99. Figure 1 shows the estimations obtained on 100 replica-
tions when ¢ = 0.1 and * = 0.8. From this figure, we can see that the estimation of
n* does not depend in general on the initialization, except in some cases. Moreover,
the best choice for (%) is not constant from one replication to another. In order to limit
the effect of the initialization, our algorithm uses several values for 77(0) and when-
ever the estimations differ, it keeps the estimation which is the farthest away from the
boundaries.

5.2. Results in Model (2) when q = 1

We shall first consider the performance of the estimator 7 when ¢ = 1 for n* in
{0.3,0.5,0.7}, n = 1000, o = 0.1 and for a in {0.01,0.02,0.05,0.1,0.2,0.5,1},
where a = n/N. We generated 500 data sets according to Model (1) using these pa-
rameters and Z as defined in (4) where the W; ; are binomial random variables with
parameters 2 and p;. In our experiments the p;’s are uniformly drawn in [0.1, 0.5]. The
corresponding boxplots of 7) are displayed in Figure 2. We can see from this figure that
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1.0

X As N P .. 2

0.8 0.9
1
————

FIG 1. Estimation of 1) obtained in the case a = 0.1 and n* = 0.8 for different values of initialization:
n(©) = 0.1 (dots), n(O) = 0.5 (triangles) and n(O) = 0.9 (crosses). The plain line displays the estimations
obtained with our method to select the best initialization value and the x-axis is the replication number.

001 002 005 01 02 05 1 001 002 005 01 02 05 1 001 002 005 o1 02 05 1

FIG 2. Boxplots of 1) for different values of a, for n* = 0.3 (left), n* = 0.5 (middle) and n* = 0.7 (right).
The horizontal line corresponds to the true value of n*. The whiskers of each boxplot correspond to the first
and third quartiles.

our approach provides unbiased estimators of 7* and that the smaller the a the larger
the empirical variance.

In order to illustrate the central limit theorem given in Theorem 3, we first display
in Figure 3 the histograms of 7, (n/2)"/? (i — n*) along with the p.d.f of a standard
Gaussian random variable for n* = 0.5 and different values of a. We can see that the
Gaussian p.d.f fits well the data in all the considered cases. We also display in Figure 4
the values of n~/24/2v, 2 and the empirical standard deviation of (7 — n*) averaged
over all the experiments. As shown in Theorem 3, we also observe empirically that
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(right) and the p.d.f of a standard Gaussian random variable in plain line.

both quantities are very close.
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= 0.1 (middle), a = 0.5
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FIG 4. Values of n_l/Q\/27;2 (“e”) and the empirical standard deviation of (f) — n*) (plain line) for
several values of n* (0.3 (left), 0.5 (right)).

In practice, the value of 7, ! (n,/2) /2 can be used for deriving confidence intervals

for n*. As we can see from Figure 4, our approach leads to very accurate confidence
intervals for a larger than 0.1 even in finite sample size cases.

Let us now compare our results with those obtained with the software GCTA. As we
can see from Figure 5 which displays the boxplots of 7 for different values of ¢ when
n* = 0.7, the results found by our approach and GCTA are very close. In both cases,
we observe that when a is close to 1 the estimations of n* are very accurate but when
a is small the standard error becomes very high.

5.3. Results in model 2 when q < 1

This section is dedicated to the study of the performance of ) when ¢ < 1. We gener-
ated 500 data sets according to Model (1) for n* = 0.7, a € {0.05,0.1, 0.5, 1}, different
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FIG 5. Boxplots of 7 for different values of a, using our method (dark gray) and GCTA (light gray). The
whiskers of each boxplot are the first and third quartiles.

values of ¢ and Z defined in (4) where the W; ; are binomial random variables with
parameters 2 and p;. In our experiments the p;’s are uniformly drawn in [0.1, 0.5].

Figure 6 displays the boxplots of 7) for these parameters. We can see from this figure
that for small values of a, the estimators of n* have the same behavior for ¢ = 1 and
q < 1. However, when @ = 1 or a = 0.5, we can see from this figure that the presence
of null components strongly alter the performance of the estimator of n*. Since in
typical GWAS experiments, & = 0.01 or even smaller, the results of Figure 6 could
lead to conclude that considering the case ¢ < 1 is not necessary for such values of
the parameter a. However, as already noticed from Figure 2, the variance of 7 is very
large for small values of a, hence considering the presence of null components and
proposing a strategy for selecting only the non null components of u could be one way
to increase a and thus to diminish the variance of 7).

In order to illustrate the central limit theorem given in Theorem 2, we first display in
Figure 7 the histograms of 7,, 'n'/2 (1) — 1*) along with the p.d.f of a standard Gaussian
random variable for n* = 0.7, two values of ¢: ¢ = 0.01 and ¢ = 0.1 and a = 0.5
(top) and two values of a: @ = 0.2 and @ = 0.5 with ¢ = 0.5 (bottom). Here, 7, is the
empirical version of 7(a, n*, g) where ~ is replaced by ,, and S(a, n*) is replaced by
its empirical version with the eigenvalues of R. When a is large (a = 0.5), we can see
that the higher ¢ the better the Gaussian p.d.f fits the histograms.

We also display in Figure 8 the values of n~'/27,, and the empirical standard de-
viation of (7j — n*) averaged over all the experiments for n* = 0.7 and ¢ = 0.5. As
shown in Theorem 2, we observe empirically that both quantities are very close. We
also display in this figure the value of n~/27,, with ¢ = 1 which boils down to consider
the asymptotic standard deviation found in the non sparse model. We can see from this
figure that neglecting the term depending on ¢ leads to underestimate the asymptotic
variance of 7} and that this difference is all the more striking that a is close to 1.
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FIG 6. Boxplots of 1) for different values of q, with n* = 0.7 and a = 1 (top left), a = 0.5 (top right),
= 0.1 (bottom left) and a = 0.01 (bottom right). The boxplots are based on 500 replications. The
whiskers of each boxplot are the fist and third quartile.

6. Discussion

In the course of this study, we have proposed a methodology for estimating the her-
itability in high dimensional linear mixed models. This methodology has two main
features. Firstly, the theoretical performances of our estimator are established in a non
standard theoretical framework where n and N tend to infinity and where the com-
ponents of the random effect part can be equal to zero. Secondly, the computational
burden of our approach is very low which makes its use possible on real data coming
from GWAS experiments.

As a byproduct of the central limit theorem that we establish for n* we can derive
a confidence interval for the heritability. However, the confidence intervals depend on
q which is the proportion of non null components in u and which is general unknown.
For estimating ¢, several strategies can be considered. One could, for instance, use a
GWAS approach to compute the p-values of the correlation tests of each SNP with the
observations Y and then keep only the most significant ones. Such a practical approach
can be used for providing a lower bound for g. A refinement of this approach has been
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FIG 8. Values ofn_l/Q‘rn with the real value of q (¢ = 0.5) (“e”), ¢ = 1 (dotted line) and the empirical
standard deviati