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Abstract

Pairwise sequence alignments aim to decide whether two sequences are related or not,
and, if so, to exhibit their related domains. Recent works have pointed out that a signif-
icant amount of true homologous sequences are missed when using classical comparison
algorithms. This is the case when two homologous sequences share several little blocks of
homology, too small to lead to a significant score. On the other hand, classical alignment
algorithms, when detecting homologies, may fail to recognise all the significant biological
signals. The aim of the paper is to give a solution to these two problems. We propose a
new scoring method which tends to increase the score of an alignment when “blocks” are
detected. This so-called “Block-Scoring” algorithm, which makes use of dynamic program-
ming, is worth being used as a complementary tool to classical exact alignments methods.
We validate our approach by applying it on a large set of biological data. Finally, we give
a limit theorem for the score statistics of the algorithm.

1 Introduction.

Since the very beginning of Bioinformatics, many efforts have been done to create or to im-
prove tools of sequence comparisons. A particularly useful method for comparing sequences
is pairwise alignment. Two sequences may be decided to be homologuous when a high level of
similarity is found in their alignment. Obviously, in such cases, there is a strong presumption
that they share, at least partly, similar functions. The past works by Needelman and Wun-
sch [17], Sellers [20] and Smith & Waterman [23] have given the first milestones devoted to
this question. However, the literature about alignment is still growing and a complete review
is rather impossible. One may find introduction and relevant bibliography in Waterman [27],
Durbin et al. [10] or Clote and Backhofen [6] for example. Such an effort reveals that many
problems remain open about the use of alignment algorithms to answer biological questions.
Among the questions in progress, one may quote: the algorithmic complexity, which is of
crucial importance at a genomic scale; the choice of the tuning parameters; the underlying
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model and its meaning; the interpretation of results. In all cases it appears that the align-
ment method must fit to the biological question wich may be, for example, as different as
phylogenetic reconstructions or cellular function prediction may be: in phylogeny one has to
evaluate the evolution distance between species, as for cellular function prediction one needs
to find highly conserved domains.

In some cases, it happens that the alignment score is neither high enough nor low enough
to decide wether the compared sequences are related or not. This characterizes the so-called
twilight zone (see Rost (1999) [19]). This problem is due to multiple reasons. For exam-
ple, usual parameters (gap penalties and substitution matrices) may not be well fitted for
some particular alignments. Thus Blake and Cohen [3] propose to adjust the parameters
used in the scoring of the classical algorithms with regard to the evolutionary distance. On
the other hand, alignments in the twilight zone may be due also to other parameters. An
important one is heterogeneity of the mutation process along the sequences. Indeed, when
one observes alignments of related -even distant- sequences, one can see that mutations are
not identically distributed. Such an heterogeneity may be attributed to multiple reasons:
insertion of translocated sequences (issued from the same genome or from other genomes),
differential diverging caused by selection pressure. On biological sequences, it appears that
some regions are strongly conserved, such as islands of stability. These conserved ”blocks”
are likely involved in the active functions of the considered sequence.

Such ”blocks” are not taken into account by the classical alignment methods: the weight
of relatively short conserved regions may be overwhelmed by the one of numerous unitary
identities. Indeed, the current alignment methods are based on the assumptions that mutation
events occur homogeneously along adjacent residues. This hypothesis, which greatly simplifies
the analytical approach, is also reflecting all the paradigms of the molecular biology at the
end of the 60ties. Nevertheless, whatever the alterations affecting the history of the genome,
the observation shows that the succession order of amino-acids in proteins is the very basis of
their biochemical properties, as, in DNA sequences, the succession order of nucleotides is the
basis of the genetic message. Evolution events are thus obviously depending on this order.

The aim of the present work is to propose a solution to this particular problem. We
introduce a new alignment algorithm that enhances conserved blocks above the high noise
level. Various ideas have been recently proposed to improve block detection. One of them was
to build a method taking into account ab initio some ”block information” in the alignment.
One way to do this is to limit alignments to ungapped blocks with no mutations, called ”block-
motifs”, of the sequence. Liu et al. (1999) ([13] and references therein) developed multiple
alignment methods based on this idea. Lam et al. (2003) [14] have proposed an algorithm
dividing the whole alignment into segments where residues are independent and segments of
pair HMM. One may also use maximum likelihood methods based on evolutionary models
such as the TKF model [26]. A quite similar question is the one of ”mosaic alignments” where
two related sequences have been separated by a long third sequence unrelated to the previous
ones. The alignment score is then weaken, inducing false phylogenetic interpretations. Arslan
et al. (2001) [2] answered this question with an automatic normalization of alignments.

Our approach consists in the maximization of an alignment score, as done by Smith &
Waterman, but with a new scoring function. This new scoring function gives higher weight to
what will be called ”blocks” than to the same disseminated matches. The optimization may
be done via dynamic programing and, in most cases, it is a finite state algorithm, so that the
method may be seen as a pair HMM where the increase of the number of states allows to take
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the blocks into account.
In section 2, we present our new scoring method. Section 3 describes the dynamic program-

ming algorithm to compute the alignments and the maximum score. Section 4 is devoted to
numerical experiments. We show the advantages of our new method: on biological sequences,
it allows to detect missed homologies; on random sequences, it does not induce false homolo-
gies. In section 5, we state a limit theorem for the score statistics which constitutes the first
step in the derivation of asymptotic p-values.

2 New scoring model and block-alignment.

Let X denote the alphabet of sequences. For any pair of letters {a, b} in X × X , we denote(
a
b

)
their alignment, and s(a, b) the score of this alignment, i.e the coefficient associated with

a and b in the substitution matrix.
Now let us define the notions of block-match and block-mismatch, which are crucial for

our purpose. For any letter a, let T (a) be a real number, called the block-threshold of a.
Block-thresholds must obey to the following property: for any letters a and b, s(a, b) ≥ T (a)
if and only if s(a, b) ≥ T (b). We say that

•
(
a
b

)
is a block-match if s(a, b) ≥ T (a);

•
(
a
b

)
is a block-mismatch if s(a, b) < T (a);

• as usually,
(
a
b

)
is a gap if a =“-” or b =“-”.

A block is an alignment which only contains block-matches. A block-score function is a
function β which associates a positive real number to any block, and which is increasing in
the following sense: for any block B, for any block-match

(
a
b

)
,

β(B) ≤ β(B.

(
a

b

)
) and β(B) ≤ β(

(
a

b

)
.B).

Similarly, a block-mismatch-score function is a function µ which associates a real number
to each sequence which only contains block-mismatches.

Finally, a gap-score function is a function γ which associates a negative real to each
sequence which only contains gaps and which is also decreasing in the following sense:

γ(G) ≥ γ(G.

(
a

b

)
) and γ(G) ≥ γ(

(
a

b

)
.G)

for any sequence G which only contains gaps and for any gap
(
a
b

)
.

Now any alignment A can be decomposed as follows:

A = A0.A1.A2. . . . .Aq−1.Aq

where each of the Ai’s is either a block, or a sequence of block-mismatches, or a sequence
of gaps, and where two consecutive Ai’s are not of the same kind. Such a decomposition is
unique.
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We define the score of the alignment A as follows:

f(A) =
q∑

i=1

f(Ai) where f(Ai)


β(Ai) if Ai is a block;
µ(Ai) if Ai is a sequence of block-mismatches;
γ(Ai) if Ai is a sequence of gaps.

In the classical scoring methods, the following property holds: if
(
a
b

)
is not a gap, then, for

any alignment A, f(A.
(
a
b

)
) = f(

(
a
b

)
.A) = f(A) + s(a, b). In other words, the contribution of

any given block-match or block-mismatch of an alignment to the score is the same whatever
the rest of the alignment is. In other words, pointwise additivity of the classical scoring
methods do not take the structure of the alignment into account.

The aim of the scoring model that we propose is to give high scores to long blocks.
This allows to detect clusters of blocks more efficiently than classical methods. For this
purpose, we consider scoring functions where the length and the composition of a block
strongly participates in its score. Hence, we define

β(B) =
m∑

i=1

g(
v1v2 . . . vi

w1w2 . . . wi
; i) for any block B

(
v1 v2 . . . vm

w1 w2 . . . wm

)
where g(·; i) denotes a positive real function on (X ×X )i, i ∈ N∗. The idea here is to choose
a function g which is strictly increasing in its second variable (length of the current block).
On the other hand, the gap-score function and block-mismatch-score functions are classical:
we take γ(G) = −γo − (|G| − 1) × γe, where γo and γe denote respectively the gap-opening
penalty and the gap-extension penalty and |G| denotes the length of the sequence of gaps G.
Regarding block-mismatches, we define µ

(
a
b

)
s(a, b) and µ(M.

(
a
b

)
) = µ(M) + s(a, b) for any

sequence of block-mismatches M and any block-mismatch
(
a
b

)
.

Example 1 Take

g

(
v1v2 . . . vi

w1w2 . . . wi
; i

)
=

i∑
j=1

s(vj , wj)

for any block. This leads to

β

(
v1v2 . . . vm

w1w2 . . . wm

)
=

m∑
j=1

(m− j + 1)s(vj , wj) ,

Hence, taking for example s(a, a) = 1 for any symbol a gives β(B) = m(m+1)
2 for any block B

of length m.

Example 2 A slight modification of the general block scoring method consists in bounding
the influence of the length of the block. Given a positive integer K, define for all i ≥ K:

g

(
v1v2 . . . vi

w1w2 . . . wi
; i

)
g

(
vi−K+1vi−K+2 . . . vi

wi−K+1wi−K+2 . . . wi
;K

)
.

When applied in particular to Example 1, this leads to

g

(
v1v2 . . . vi

w1w2 . . . wi
; i

) { ∑i
j=1 s(vj , wj) if i ≤ K∑i
j=i−K+1 s(vj , wj) otherwise.
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Remark that setting K = 1 gives back the usual scoring scheme.
As usually, given two sequences vn = v1v2 · · · vn and wm = w1w2 · · ·wm, the best global

alignment A is the one that maximizes the score f(A) over all possible alignments, and the
best local alignment is the one that maximizes f over all possible alignment of subsequences
of vn and wm. Let us denote by S(vn, wm) the maximum score. We will call block-scoring our
new method, and abbreviate it to BS, leading to global BS alignments, local BS alignments,
BS (global or local) alignment scores.

3 Algorithm.

Like the usual ones, our scoring model applies to local as well as global alignments, though we
shall apply it to local alignments. The algorithm allows to compute the maximum BS score
and to retrieve the best BS alignment. In order to take into account the length of the current
block in the computation of the score, we introduce a matrix H which counts, for each pair
(vi, wj) of letters of two words v and w to be aligned, the length of the maximal block ending
with

(
vi
wj

)
. This matrix is defined as follows:

Hi,j


Hi−1,j−1 + 1 if i− 1 ≥ 1, j − 1 ≥ 1 and (vi, wj) is a block-match
1 if (i = 1 or j = 1) and (vi, wj) is a block-match
0 otherwise.

To compute recursively the local maximum score Si,j over all local alignments ending with(
vi
wj

)
, we introduce bi,j , the length of the block at the end of the local alignment leading to

Si,j . Now the recurrence for computing the local scores in the matrix of alignment is the
following:

Si,j = Max



Si−1,j−1 + s(vi, wj) if Hi,j = 0
Si−1,j − δ
Si,j−1 − δ
0 (only for local aligment)

Si−1,j−1 + g

(
vi−bi−1,j−1

. . . vi

wj−bi−1,j−1
. . . wj

; bi−1,j−1 + 1
)

if Hi,j ≥ 1

S(i− h, j − (h + 1))− δ + β
(

vi−h+1...vi
wj−h+1...vj

)
∀ h ∈ [bi,j ,Hi,j ]

S(i− (h + 1), j − h)− δ + β
(

vi−h+1...vi
wj−h+1...vj

)
∀ h ∈ [bi,j ,Hi,j ]

where

δ

{
γo in case of gap-opening
γe in case of gap-extension

The value bi,j denotes the length of the current block. To update it, set bi,j = 0 if Si,j is
obtained via the first four lines, bi,j = bi−1,j−1 + 1 if it is obtained via the fifth line, and
bi,j = h if it is obtained via the sixth or seventh line for this particular h.
Computation of the global score is performed by removing the zero in fourth line. The last
three lines of the recurrence formula are required because one has to test, when in a block, if
the block has to be continued, or if it would be better to insert a gap before its beginning, in
order to perform a longer block. This is illustrated in the following example.
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A C G T
A 4 0 3 0
C 0 4 0 3
G 3 0 4 0
T 0 3 0 4

A C T G T
A 1 0 0 1 0
C 0 2 1 0 2
G 1 0 0 2 0
T 0 2 0 0 3

(a) Substitution matrix. (b) Matrix H.

A C T G T
A 4 0 0 3 0
C 0 12 8 4 9
G 3 8 8 12 8
T 0 6 12 8

A C T G T
A 4 0 0 3 0
C 0 12 8 4 9
G 3 8 8 12 8
T 0 6 12 8 21

(c) Penultimate step (d) Optimal
of the algorithm. local alignment.

Table 1: An example of block-scoring alignment.

Example 3 Let v = ACTGT and w = ACGT two DNA words to be compared by mean of a
local alignment. The substitution matrix, a kind of transition-transversion one, is given in
Table 1(a) below. The δ = −4 as gap-penalty. Table 1(b) presents the matrix H. For any
nucleotide x, we fix the threshold T (x) to 3 (see Section 2), so transitions are authorised
in blocks. In this toy-example, the key step of the algorithm is the ultimate one, which is
illustrated in Table 1, (c) and (d). Table 1(c) shows that, up to that step, there are two optimal

local alignments:
ACTG
AC-G

and
AC-T
ACGT

which both contain the block
AC
AC

of length two, one

gap and one block of length one, thus they both have score (4) + (4 + 4) + (−4) + (4) = 12.
They are shown in bold font in the alignment matrix of Table 1(c). At first sight, the optimal
solution in the final step would consist in making longer the first alignment by matching the
two last T’s; this would give score (4)+(4+4)+(−4)+(4)+(4+4) = 20. But this is wrong, as
shown in Table 1(d). The right solution uses the sixth line of the recurrence; it leads to break
the previous alignment by moving the gap one position before and thus creating the new block
TGT
CGT

which has score (3)+(3+4)+(3+4+4) = 21, and constitues the best local alignment.

This illustrates the capability of the algorithm to prioritize long blocks in alignments.

The algorithm runs in O(|v|×|w|) memory space, which can be reduced to O(Min(|v|, |w|)×
Max(Hi,j)) if only the score has to be computed. The time complexity is O(|v| × |w| ×
Max(Hi,j)), but this is a very crude bound.

Pair HMMs. As for the Smith & Waterman alignment algorithm, BS alignment algorithm

can be viewed as the Viterbi algorithm of a pair HMM model as described for example in
Durbin et al. [10]. Indeed, any “bounded” BS scoring function as in example 2 can be repre-
sented by a finite state automaton. The associated HMM model has hidden states “Begin”,
“End”, “Insertion”, “Deletion”, “Match(1)”, . . . , “Match(K)”, where the state “Match(k)”
communicates only with “Match(k + 1)”, “End”, “Insertion”, “Deletion”, for k < K, and
with itself for k = K.
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Family Name Number of seq.
COG2813 16S RNA G1207 methylase RsmC 22
COG1187 16S rRNA uridine-516 pseudouridylate synthase 64
COG1514 2’-5’ RNA ligase 21
COG0621 2-methylthioadenine synthetase 62
COG1670 Acetyltransferases 99
COG0013 Alanyl-tRNA synthetase 47

Table 2: The six COG families on which tests were processed.

In [14], a different use of pair HMMs is proposed to align sequences with conserved blocks
and non conserved segments. The method uses a mixture of the classical pair HMM (as used
for SW) and a pair HMM where all alignments have a weigth depending only of the numbers
of letters. In other words, the underlying probability model is, for each possible alignment,
a segmentation of the alignment where the SW pair HMM alternates with a model with
independent similarity.

4 Biological validation.

4.1 Criteria for evaluating Block-scoring

Block-scoring was evaluated in its local alignment version. It was compared to the Smith
& Waterman algorithm, for the following reasons: Both are exact algorithms, i.e. they
provide the best local alignment according to their respective scoring schemes ; and Smith
& Waterman algorithm is the widely acknowledged standard for exact local alignment. In
the following, we write BS for “Block-scoring” and SW for “Smith & Waterman”. In BS
alignments, the symbol “!” denotes a block-match which is not an identity.

Our validation tests took the following criteria into account:

1. Detection of homologies. Naturally, the first criterion consisted in verifying if BS can
detect biologically relevant information in cases where SW cannot. For this purpose,
we processed and compared alignments in large sets of homologous sequences. This is
detailed in subsection 4.2

2. Searching for false positives. Since BS tends to give longer alignments and higher scores
than SW, we had to test if BS did not result in too many false positives, with regard to
SW. This was done by comparing Z-scores of SW and BS alignments on both biological
and random sequences, and also by measuring the lengthening of alignments by BS on
ad hoc random sequences. This is developed in subsection 4.3

4.2 Detection of homologies

We compared the results of SW and BS on a large set of homologous while distant sequences,
on an evolutionary point of view. We took sequences from the COG database (Cluster of
Orthologous Groups [24]), which is dedicated to families of orthologous proteins and gives
their phylogenetic relationships. We focused on the six families given in Table 2. We computed
BS and SW alignments for each couple of sequences within each of these families, using several
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Smith & Waterman:

Z-score=3,92

Block-scoring:

Z-score=5,11

Figure 1: SW and BS best local alignments of sequences BS ytzG and NMA1016 of the
COG1187 family. (PAM 250, γo=15, γe=5, K=20).

combinations of substitution matrices and gap penalties. When significant differences were
found, we tested whether the alignments given by BS where relevant by comparing them
with known motifs and profiles in the BLOCKS [11] and PROSITE [12] databases, or with a
multiple alignment of the family of sequences. When possible, confirmation was searched in
the literature.

Several combinations of values for gap-opening penalty γo and gap-extension penalty γe

were tested. We observed that BS requires high values of these parameters in order to give
relevant results. This was expected since BS gives higher scores than SW as soon that there
are blocks in an alignment. In the following, we set γo = 15 and γe = 5. PAM 250 was chosen
as substitution matrix and we set K = 20. These values seem to be rather optimal for BS in
our experiments. In the cases where BS results were better than SW ones, SW alignments
were recomputed using smaller values of γo and γe, in order to improve them.

The results are as follows. Generally, the alignments given by both algorithms lie in the
same region of the sequences. As expected, BS alignments are longer than SW ones. Two
cases have to be considered.

In the very most frequent case (about 90% of the alignments), the SW alignment is exactly
included in the BS one, but the latter goes further. This case is illustrated in Figures 1 and 2
by alignments of proteins from the family COG1187, 16S rRNA uridine-516 pseudouridy-
late synthase proteins, whose function is catalysation of pseudouridine synthesis in position
number 516 of 16S RNA during the assembly of the 30S ribosomal subunit. These proteins
contain three main domains [22]: a N-terminal one which allows the protein to bind to the
rRNA, a central one which contains the catalytic site, and a C-terminal one that corresponds
to a ferredoxin-like folding. In the 2/3 of the considered alignments, both algorithms align
the N terminal domain only. However, in several cases, BS adds significant information, as
illustrated in Figure 1: BS aligns a five amino acids block further which is precisely the core
of the binding-site of the protein [22]. In the major part of the remaining alignments, the
aligned region is the central and C terminal one, but in some cases SW aligns only one domain
whereas BS align both of them. Figure 2 presents a typical illustration of this situation: both
SW and BS align well the catalytic site (surrounded in the figure), but only BS aligns the
C-terminal motif, after a rather long sequence of gaps. Once more, the additional information
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Smith & Waterman:

Z-score=19,77

Block-scoring:

Z-score=31,84

Figure 2: SW and BS best local alignments of sequences BS ypuL and NMB1496 of the
COG1187 family. (PAM 250, γo=15, γp=5, K=20.)

given by BS is relevant.
The other case (about 10% of the alignments) groups alignments which are generally

very different, while the subsequences aligned by SW are always included in those aligned
by BS. We picked up and studied thoroughly some of these alignments in four families,
attempting to determine which one was the more relevant, biologically speaking. For this
purpose, we seeked for motifs in PROSITE and BLOCKS and performed multiple alignments
with CLUSTALW [25]. Confirmation was searched in the literature. In each case, it turned
out that BS provided the more biologically relevant alignment. And in most cases, changing
γo and γe for SW did not cause it to fit better. An example is illustrated in Figure 3. It
concerns two alanyl tRNA synthetase proteins from the COG0013 family. The two alignments
are totally different: for example, see the two motifs in grey, which are aligned by SW but lie
far away in BS. Request on PROSITE, as well as multiple alignment of the whole set of alanyl
tRNA synthetases of COG0013, show that the right alignment is given by BS. In particular,
the two motifs in grey in the BS alignment are confirmed by the multiple alignment. Shortly,
the other alignments that we have examined are the following. We just write here some
indications. The corresponding alignments and supplementary results can be read at the
following address: http://www.igmors.u-psud.fr/BioInfo/fr/align/add data.

• In the COG1187 family, SW alignments of slr0361 and NMA1016, slr0361 and TP0459,
yjbc and NMB0806 respectively, miss the important motif NKP, while BS aligns it well.
Results were confirmed with a multiple alignment of the whole family. PROSITE and
[22] show that the N-terminal domain belongs to a family of RNA-binding domains and
that the NKP motif is highly conserved in this family.

• In the COG2813 family, a similar situation occurs: for at least four alignments, BS
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Smith & Waterman:

Z-score=23,52

Block-scoring:

Z-score=25,13

Figure 3: SW and BS best local alignments of sequences AF2255 and ML0512 of the COG0013
family. (PAM 250, γo=15, γe=5, K=20.)
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aligns well the important NPP catalytic site [4], while SW does not.

• Proteins of the COG1514 family belong to the 2H phosphoesterase superfamily [15](phosphoesterase
with two conserved histidines). Proteins of this superfamily share a common active site
characterized by two conserved motifs where a histidine is present in each of them. At
least three SW alignments miss one of the conserved motif while BS aligns it well.

4.3 Searching for false positives

4.3.1 Comparison of Z-scores

Since BS gives generally longer local alignments and higher scores than SW, the possibility
of false positives had to be studied. Hence we compared Z-scores of alignments given by SW
and BS. The classical formula for the Z-score is:

Z(v, w) =
S(v, w)− E

σ

where E and σ stand, respectively, for the expected score and the standard deviation of
alignments of v with a random sequence which has the same numbers of occurrences of
residues than w. Since no formula is available for E and σ, and in order to avoid problems of
’asymmetry’ of Z-scores, we followed [7] and computed:

Z-score = min(Z ′(v, w), Z ′(w, v))

where Z ′(v, w) stands for the Z-score measured experimentally by generating n random se-
quences having the same numbers of occurrences of residues than w.

In order to search for possibly false-positives, we generated random aminoacids sequences
(with Bernoulli probabilities) of three different kinds:

• sequences where all aminoacids were equally distributed;

• sequences where some kinds of aminoacids were overrepresented, according to their
properties (e.g. hydrophobicity, polarity);

• sequences where some kinds of aminoacids were overrepresented, according to their
ability to form block-matches (high-scoring aminoacids).

We computed Z-scores of about 3000 alignments of these three kinds of sequences. Each
Z-score was computed on the basis on 500 random sequences of length 300. We set to 10 the
Z-score significance threshold, as usually. None false-positive was detected when using BS,
comparatively to SW. Moreover, in some cases the Z-score for BS was lower than for SW.

We also computed Z-scores of alignments of clearly homologous biological sequences. Ob-
viously, in all alignments both Z-scores were significant. In most cases, Z-score for BS was 5
to 50% higher than for SW.

4.3.2 Lengthening of BS alignments

In order to measure the rate of lengthening of BS alignments with respect to SW ones, we
generated random sequences as follows.

The COG2813 family contains 8 sequences for which SW and BS algorithm give exactly
the same alignments (using PAM 250 with γo=15, γe=5, and K=20.) Hence we took these 8
sequences and generated from them two kinds of sets of randoms ones:
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Figure 4: First set of random sequences generated from COG2813 proteins

Figure 5: Second set of random sequences generated from COG2813 proteins

• by adding random stretches of aminoacids (of lengths from 10 to 50) just after their
C-terminal extremities (Figure 4);

• by adding random sequences of aminoacids (of lengths from 10 to 120) between two
known relevant motifs (Figure 5);

For each length of stretch, we performed alignments of any pair of “random” proteins of the
first set. Table 3 shows the results. The lengthening due to BS grows significantly faster
comparatively to SW. Then we performed alignments between each original protein and each
sequence in the second set. We present in Table 4 the results. Up to about 20 nucleotides,
SW as well as BS align both motifs. Then BS still aligns them in a non-negligible rate far
beyond.

5 Asymptotics for the detected score.

The aim of a local alignment algorithm is twofold: find parts of the sequences that seem
to be related, and decide whether this similarity comes from true homology or is only due
to randomness. In section 4, we investigated the first point on biological examples and we
have shown how the BS algorithm can find interesting homologies between distant sequences.

stretch 10 20 30 40 50
SW 13 / 5 20 / 10 21 / 14 20 / 18 18 / 11
BS 21 / 7 27 / 15 35 / 15 32 / 21 30 / 30

Table 3: Lengthening of alignments according to the number of nucleotides added after the
C-terminal extremities. The first number of each cell denotes the number of alignments (over
64) which are lengthened, the second number denotes the average lengthening. (PAM 250,
γo=15, γe=5, K=20.)
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#residues 10 20 30 40 50 60 70 80 90 100 110 120
SW 56 56 41 18 13 2 2 0 0 0 0 0
BS 56 56 56 49 50 33 32 26 22 20 16 14

Table 4: Lengthening of alignments according to the number of nucleotides added between
the two motifs. The number in each cell denotes the number of alignments (over 56) which
contain both motifs. (PAM 250, γo=15, γe=5, K=20.)

For the second point, one has to compare numerically scores obtained for truly homologous
sequences and scores obtained when the sequences are not related. Let vn = v1v2 · · · vn and
wm = w1w2 · · ·wm be the sequences to be locally aligned, and let S(vn, wm) be their BS
alignment score. Since homologous subsequences come from higher similarity, we forecast a
higher score. Thus to decide whether the aligned sequences are related, one compares the
obtained score to a threshold tn,m: if S(vn, wm) ≤ tn,m, one decides that the sequences are not
related, and if S(vn, wm) ≥ tn,m, one decides that the sequences are related. The statistical
formulation of such a decision’s rule is a test between the hypotheses H0: ”the sequences are
independent” and H1: ”the sequences are related”. In other words, one assumes that the
words v1v2 · · · vn and w1w2 · · ·wm are the realizations of random processes V n = V1V2 · · ·Vn

and Wm = W1W2 · · ·Wm. To set the threshold tn,m, one has to know the distribution of the
(random) score S(V n,Wm) under H0, that is when the sequences V n and Wm are indepen-
dent; tn,m is then some chosen quantile of the distribution. Numerical evaluation of quantiles
by simulation may be used (or bootstrap methods) since the determination of the exact (or
asymptotic) distribution is a difficult task in general. For the Smith & Waterman alignment
score, the asymptotic distribution was known till recently only for ungapped alignments, see
Dembo et al. [8]. Asymptotic approximations for p-values in the general case have been
proposed heuristically and by simulations. A recent paper gives asymptotic approximations
for the p-values of the local alignment score of Smith & Waterman, see Siegmund and Yakir
[21], see also Chan [5], where more detailed literature on the subject of p-values evalutions
may be found.

The aim of this section is to give a preliminary asymptotic result on the behaviour of
the BS alignment score, namely the asymptotic equivalent of the expectation, in particular
situations: for blocks of maximal length K (as in example 2) and with no gaps allowed.

Assume that V = (Vi)i≥1 and W = (Wi)i≥1 are independent sequences of independent
random variables with values in X . Assume also that m = n, so that V n = V1V2 · · ·Vn and
Wm = W1W2 · · ·Wn are the words to be aligned. Define the K dimensional random vectors
Xi = (Vi, . . . , Vi+K−1) and Yi = (Wi, . . . ,Wi+K−1). Let F be some real function on XK×XK

giving a positive probability to positive values:

P (F (X1, Y1) > 0) > 0, (1)

and such that the expectation
E (F (X1, Y1)) < 0. (2)
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Define

Sn = max
l≥1, 1≤i,j≤n−l−K+2

l−1∑
k=0

F (Xi+k, Yj+k).

Notice that assumption (2) is required, as usual, to be in the so-called logarithmic scale. In
the opposite situation where (2) does not hold, Sn grows linearly with n and does not lead to
a consistent test of hypothesis of H0 against H1.
The asymptotic result is the following.

Theorem 1 Under the assumptions (1) and (2), there exists a real number γ∗ (see below)
such that almost surely

lim
n→∞

Sn

log n
= γ∗.

Application to BS alignment score. For particular choices of the function F , Theorem

1 gives the asymptotic leading term of the BS alignment score. The idea is that, knowing Xi

and Yj , one can tell the length of the block ending with Vi+K−1 and Wj+K−1 in an alignment
where Xi and Yj are aligned, in case this length is not bigger than K, or tell that this block
has length at least K. In other words, with the notations of Section 3, inf{K, Hi+K−1,j+K−1}
is a function of (Xi, Yj). It is thus possible to define

F (Xi, Yj) =

 g

(
Xi

Yj
; inf{K, Hi+K−1,j+K−1}

)
ifHi+K−1,j+K−1 ≥ 1

s(Vi+K−1,Wj+K−1) otherwise

Doing so, it appears that, taking δ = +∞ (that is allowing no gaps), Sn ≈ S(V n,Wn) for big
n. Indeed, ignoring boundary effects Sn is the score of the local BS alignment of V n and Wn

when no gaps are allowed. More precisely, for each local alignment

A(i, j, l) =
ViVi+1 . . . Vi+K+l−2

WjWj+1 . . .Wj+K+l−2

the BS score is

S(A(i, j, l)) = f(A(i, j, 0)) +
l−1∑
k=0

F (Xi+k, Yj+k),

and asymptotically the BS local alignment score is equivalent to Sn.

Sketch of proof of Theorem 1. The proof follows closely that of Dembo et al. [8], and is
detailed in [16]. The main points are the following:

• Use a large deviations result on additive functions of Markov chains to obtain that the
typical length of the alignment of maximal score is of order log n at most.

• Use the fact that the Markov chain ((Xi, Yi)) is K-dependent to be able to use the same
arguments (using the method of types) as [8] for proving the upper and the lower bound
for Sn.
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The value of the limit. Let µV be the distribution of the variables Vi, and µW be the
distribution of the variables Wi. Now, (Xi) is clearly a Markov-chain, with transition matrix
ΠX which is irreductible and has stationary distribution µX = µ⊗K

V , that is the distribution
of K independent random variables with the same distribution µV . Also, (Yi) is a Markov-
chain, with transition ΠY which is irreductible and has stationary distribution µXµ⊗K

W . Thus,
((Xi, Yi)) is also an irreductible Markov chain with transition Π(X,Y ) given by

Π(X,Y )((i, j)|(k, l)) = ΠX(i|k)ΠY (j|k),

and stationary distribution µX ⊗ µY .
Let ν be some probability measure on some finite set (Ω)2, and Π some transition matrix

on Ω. Denote by ν1 and ν2 the marginal distributions of ν. Define the Kullback-Leibler
information divergence between ν and Π by

D(ν||Π) =
∑

x,y∈X
ν(x, y) log

ν(x, y)
ν1(x)Π(y|x)

,

with log 0 = −∞, log a
0 = +∞ if a > 0, 0 log 0 = 0 and log 0

0 = 0. Define also for any ν on
(AK ×AK)2

D∗(ν) = max
{

1
2
D(ν||Π(X,Y ) ;D(ν1||ΠX) ;D(ν2||ΠY )

}
,

and
J(ν) =

Eν1(F (X, Y ))
D∗(ν)

.

Then the constant γ∗ is the maximum value of J over the distributions having the same
marginal distributions:

γ∗ = sup {J(ν) : ν1 = ν2} .

Since the distributions of X and Y are unknown, they have to be estimated empirically,
that is on the sequences, to obtain an estimate of γ∗.

Comments. Obviously, gaps have to be allowed in applications, and are allowed in the
algorithm. One could follow the ideas in Zhang [28] to obtain the asymptotic equivalent of
the expectation when gaps are allowed, and the ideas in Siegmund and Yakir [21] to evaluate
approximations of the distribution and the quantiles of the local BS alignment score.

6 Conclusion.

Our experiments show that block-scoring effectively detects relevant similar blocks in cases
where the sequences, while homologous, are too distant for the classical alignment algorithm
to be fully accurate. Moreover, block-scoring does not give raise to false-positive in comparison
with Smith & Waterman. We think that block-scoring is worth being used complementarily
to the Smith & Waterman algorithm when precise block information has to be detected.

The algorithm runs in time O(n3), but this is a very crude bound. Experimentally the
program runs much faster, particularly when sequences are distant, because Hi,j ’s are small
is this case. A theoretical study of the complexity has yet to be done.

Attention must be paid to the values of gap-opening and gap-extension penalties: they
have to be much higher for block-scoring than for Smith & Waterman; and block-scoring
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algorithm is very sensitive to variations of these values. On the other hand, since the scoring
scheme of block-scoring takes into account not only one-to-one residues substitutions but de-
pendencies within blocks, probably designing new ad hoc substitution matrices would improve
even more its results. In addition, the scoring model that we experimented here is a very
particular and “basic” case of the general scheme given in Section 2. Other more sophisticated
models are worth to be studied.

The mathematical part of the paper constitutes a first step to the analytical study of the
Z-score of block-scoring alignments, aiming to determine precise thresholds for deciding if two
sequences are related or not.

Finally, and thanks to David Abergel, the program is available on-line at the following
address: http://www.igmors.u-psud.fr/BioInfo/fr/align.
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