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E-mail: anna.bonnet@agroparistech.fr
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Summary. Motivated by applications in neuroanatomy, we propose a novel method-
ology to estimate heritability, which corresponds to the proportion of phenotypic vari-
ance that can be explained by genetic factors. Since the phenotypic variations may
only be due to a small fraction of the available genetic information, we propose an es-
timator of heritability that can be used in sparse linear mixed models. Since the real
genetic architecture is in general unknown in practice, our method allows the user
to determine whether the genetic effects are very sparse: in that case, we propose
a variable selection approach to recover the support of these genetic effects before
estimating heritability. Otherwise, we use a classical maximum likelihood approach.
We apply our method, implemented in the R package EstHer available on the CRAN,
on neuroanatomical data from the project IMAGEN.
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1. Introduction

For many complex traits in human population, there exists a huge gap between the
genetic variance explained by population studies and the variance explained by spe-
cific variants found thanks to genome wide association studies (GWAS). This gap
has been called by Maher (2008) and Manolio et al. (2009) the “dark matter” of the
genome or the “dark matter” of heritability. Various population studies have shown
that up to 80% of the variability of neuroanatomical phenotypes such as the brain
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volume could be explained by genetic factors, see for instance Stein et al. (2012).
This result is very important since several psychiatric disorders are shown to be as-
sociated to neuroanatomical changes, for instance macrocephaly and autism Steen
et al. (2006) or reduced hippocampus and schizophrenia Amaral et al. (2008). Esti-
mating properly the impact of the genetic background on neuroanatomical changes
is a crucial challenge in order to determine afterwards if this background can either
be a risk factor or a protective factor from developing psychiatric disorders. The
GWAS studies performed for instance by Stein et al. (2012) identified genetic vari-
ants involved in the neuroanatomical diversity, which contributes to understand the
impact of genetic factors. However, in the course of these studies, it is shown that
this approach only explains a small proportion of the phenotypic variance. In order
to understand the nature of the genetic factors responsible for major variations of
the brain volume, Toro et al. (2015) used linear mixed models (LMM) to consider
the effects of all the common genetic diversity characterized by the Single Nucleotide
Polymorphisms (SNPs). This approach had been suggested by Yang et al. (2011) to
study the effects of the SNPs on the height variations. The model they considered
is a LMM defined as follows:

Y = Xβ + Zu + e , (1)

where Y = (Y1, . . . , Yn)′ is the vector of observations (phenotypes), X is a n × p
matrix of predictors, β is a p × 1 vector containing the unknown linear effects of
the predictors, Z is a n×N matrix - N being the number of SNPs - which contains
the genetic information, u and e correspond to the random effects. More precisely,
Z is a version of W with centered and normalized columns, where W is defined as
follows: Wi,j = 0 (resp. 1, resp. 2) if the genotype of the ith individual at locus j
is qq (resp. Qq, resp. QQ) where pj denotes the frequency of the allele q at locus
j. In (1), the vector e corresponds to the environment effects and the vector u
corresponds to the genetic random effect, that is the j-th component of u is the
effect of the j-th SNP on the phenotype. In the modeling of Yang et al. (2011), all
the SNPs have an effect on the considered phenotype, that is

u ∼ N
(

0, σ?u
2IdRn

)
and e ∼ N

(
0, σ?e

2IdRn

)
. (2)

The covariance matrix of Y can thus be written as:

Var(Y) = Nσ?u
2R + σ?e

2IdRn , where R =
ZZ′

N
,

and the parameter η? defined as

η? =
Nσ?u

2

Nσ?u
2 + σ?e

2 (3)

is commonly called the heritability (Yang et al. (2011),Pirinen et al. (2013)), and
corresponds to the proportion of phenotypic variance which is determined by all the
SNPs.
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Since all SNPs are not necessarily causal, it seems more realistic to extend the
previous modeling by assuming that the genetic random effects can be sparse, that
is only a proportion q of the components of u are non null:

ui
i.i.d.∼ (1− q)δ0 + qN (0, σ?u

2), for all 1 ≤ i ≤ N, (4)

where q is in (0, 1], and δ0 is the point mass at 0. Then the definition of η? has to
be adjusted as follows:

η? =
Nqσ?u

2

Nqσ?u
2 + σ?e

2 . (5)

It corresponds to the proportion of phenotypic variance which is due to a certain
number of causal SNPs which are, obviously, unknown. Let us emphasize that, in
most applications, the proportion q of causal SNPs is also unknown, and that it
may happen that the scientist has no idea how small q is.

When q = 1, that is when considering the modeling (2), most proposed ap-
proaches to estimate the heritability derive from a likelihood methodology. We can
quote for instance the REstricted Maximum Likelihood (REML) strategies, origi-
nally proposed by Patterson and Thompson (1971) and then developed in Searle
et al. (1992). Several approximations of the REML algorithm have also been pro-
posed, see for instance the software EMMA proposed by Pirinen et al. (2013) or the
software GCTA (Yang et al. (2011),Yang et al. (2010)).

We proposed in Bonnet et al. (2015) another method based on a maximum
likelihood strategy to estimate the heritability and implemented in the R package
HiLMM. We proved in Bonnet et al. (2015) the following theoretical result: though
the computation of the likelihood is based on the modeling assumption (2), the
estimator is consistent (unbiased) under the less restrictive modeling assumption
(4). We believe this consistency result remains true for the estimators produced
using the algorithms REML, EMMA, GCTA. But we also proved that, when q 6= 1,
the standard error is not the one computed by the softwares when q = 1 and
may be very large. We obtained a theoretical formula for the asymptotic variance
of the estimator (depending in particular on q) and conducted several numerical
experiments to understand how this asymptotic variance gets larger depending on
the various quantities, in particular with respect to q and the ratio n/N . We
observed that this variance indeed gets larger when q gets smaller, so that the
accuracy of the heritability estimator is slightly deteriorated when all SNPs are not
causal. Thus, a first problem is to find a method able to produce an estimator with
smaller standard error than those obtained using only likelihood strategies. Also,
since this standard error depends on q, a second problem is to produce a confidence
interval one could trust without knowing q.

The goal of this paper is to address both problems. The results we obtained
in Bonnet et al. (2015) suggest the following. If we knew the set of causal SNPs,
then, considering only this (small) subset in the genetic information matrix, we
would obtain with HiLMM an estimator having a smaller standard error than when
using all SNPs in the genetic information matrix. Thus, our new practical method
contains a variable selection step.
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Variable selection and signal detection in high dimensional linear models have
been extensively studied in the past decade and there are many papers on this
subject. Among them, we can quote Meinshausen and Bühlmann (2010) and Bein-
rucker et al. (2014) about variable selection and references therein. The case of
high dimensional mixed models has received little attention. As far as variable se-
lection methods in the random effects of LMM are concerned, we are only aware
of the work of Fan and Li (2012) and Bondell et al. (2010). Let us mention that
regarding the estimation of heritability with possible sparse effects, there is also
the bayesian approach of Guan and Stephens (2011) and Zhou et al. (2013), which
proposes an interesting estimator for the heritability but which is computationally
very demanding. Notice that, in our framework, we are not far from the situation
for which it is proved in Verzelen (2012) that the support cannot be fully recovered,
which happens when Nq log(1/q) >> n. The variable selection step we propose
takes elements from both ultrahigh dimension methods (Fan and Lv (2008), Ji
and Jin (2012), Meinshausen and Bühlmann (2010)) and classical variable selection
techniques (Tibshirani (1996)).

The second step of our method is to apply HiLMM using the selected subset
of causal SNPs produced by the first step. Finally, we propose a non parametric
bootstrap procedure to get confidence intervals with prescribed coverage. The whole
procedure requires only a few minutes of computation.

To conclude, we propose in this paper a very fast method to estimate the heri-
tability and construct a confidence interval substantially smaller than without vari-
able selection when the genetic effects are very sparse. We show indeed that this
procedure is very efficient in very sparse scenarios but we also highlight that it can
severely underestimate heritability when the number of causal genetic variants is
high. Since the real genetic architecture is in general unknown in practice, we
introduce an empirical criterion which allows the user to decide whether it is rel-
evant to apply a variable selection based approach or not. Our method has also
the advantage to return a list of SNPs possibly involved in the variations of a given
quantitative feature. This set of SNPs can further be analyzed from a biological
point of view.

The paper is organized as follows. Section 2 describes the data set which mo-
tivated our work. Section 3 provides the detailed description of the method, and
Section 4 displays the results of the numerical study. They were obtained by using
the R package EstHer that we developed and which is available from the Comprehen-
sive R Archive Network (CRAN). The simulation results illustrate the performance
of our method on simulations and show that it is very efficient from a statistical
point of view. In Section 5, we provide an empirical criterion to help the user to
decide whether it is relevant to apply a variable selection based approach or not. In
Section 6, we propose a thorough comparison of our approach with other methods
in terms of statistical and numerical performances. Finally, the results obtained on
the brain data described in Section 2 can be found in Section 7. We also provide a
discussion section at the end of the paper.
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2. Description of the data

We worked on data sets provided by the European project IMAGEN (Schumann
et al., 2010), which is a major study on mental health and risk taking behaviour
in teenagers. The research program includes questionnaires, interviews, behaviour
tests, neuroimaging of the brain and genetic analyses. We will focus here on the
genetic information collected on approximately 2000 teenagers as well as measure-
ments of the volume of several features: the intracranial brain volume (icv), the
thalamus (th), the caudate nucleus (ca), the amygdala (amy), the globus pallidus
(pa), the putamen (pu), the hippocampus (hip), the nucleus accubens (acc) and
the total brain volume (bv). Figure 1, which comes from Toro et al. (2015), is a
schematic representation of these different areas of the brain. The data set contains
n = 2087 individuals and N = 273926 SNPs, as well as a set of fixed effects, which
in our case are the age (between 12 and 17), the gender and the city of residency
(London, Nottingham, Dublin, Dresden, Berlin, Hamburg, Mannheim and Paris).

Fig. 1: Different regions of the brain (this figure is taken from Toro et al. (2015)).

In the following, our goal will thus be to provide a method to estimate the
heritability of these neuroanatomical features.

3. Description of the method

The method that we propose can be split into two main parts: the first one consists
in a variable selection approach and the second one provides an estimation of the
heritability and the associated 95% confidence interval which is computed by using
non parametric bootstrap.

At the beginning of this section we shall consider the case where there is no fixed
effects, that is

Y = Zu + e (6)
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but we explain at the end of this section how to deal with fixed effects. Let us first
describe our variable selection method which consists of three steps.

3.1. Variable selection
Inspired by the ideas of Fan and Lv (2008), we do not directly apply a Lasso type
approach since we are in an ultra-high dimension framework. Hence, we start our
variable selection stage by the SIS (Sure Independence Screening) approach, as
suggested by Fan and Lv (2008), in order to select the components of u which are
the most correlated to the response Y and then we apply a Lasso criterion which
depends on a regularization parameter λ. This regularization parameter is usually
chosen by cross validation but here we decided to use the stability selection approach
devised by Meinshausen and Bühlmann (2010) which provided better results in our
framework.

Step 1: Empirical correlation computation
The first step consists in reducing the number of relevant columns of Z by trying
to remove those associated to null components in the vector u. For this, we use
the SIS (Sure Independence Screening) approach proposed by Fan and Lv (2008)
and improved by Ji and Jin (2012) in the ultra-high dimensional framework. More
precisely, we compute for each column j of Z:

Cj =
∣∣∣∑YiZi,j

∣∣∣ ,
and we only keep the Nmax columns of Z having the largest Cj . In practice, we
choose the conservative value Nmax = n, inspired by the comments of Fan and Lv
(2008) on the choice of Nmax.

In the sequel, we denote by Zred the matrix containing these n relevant columns.
This first step is essential for our method. Indeed, on the one hand, it substantially
decreases the computational burden of our approach and on the other hand, it
reduces the size of the data and thus makes classical variable selection tools efficient.

Step 2: LASSO criterion and stability selection
In order to refine the set of columns (or components of u) selected in the first
step and to remove the remaining null components in the vector u, we apply a
Lasso criterion originally devised by Tibshirani (1996) which has been used in many
different contexts and has been thouroughly theoretically studied. It consists in
minimizing with respect to u the following criterion:

Critλ(u) = ‖Y − Zredu‖22 + λ‖u‖1 , (7)

which depends on the parameter λ and where ‖x‖22 =
∑p

i=1 x
2
i and ‖x‖1 =

∑p
i=1 |xi|

for x = (x1, . . . , xp). The choice of the regularization parameter λ is crucial since its
value may strongly affect the selected variables set. Different approaches have been
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proposed for choosing this parameter such as cross-validation which is implemented
for instance in the glmnet R package. Here we shall use the following strategy based
on the stability selection proposed by Meinshausen and Bühlmann (2010).

The vector of observations Y is randomly split into several subsamples of size
n/2. For each subsample, we apply the LASSO criterion for a fixed parameter λ
and the selected variables are stored. Then, for a given threshold, we keep in the
final set of selected variables only the variables appearing a number of times larger
than this threshold. In practice, we generated 50 subsamples of Y and we chose
the parameter λ as the smallest value of the regularization path. As explained in
Meinshausen and Bühlmann (2010), such a choice of λ ensures that some overfitting
occurs and hence that the set of selected variables is large enough to include the
true variables with high probability.

The matrix Z containing only the final set of selected columns will be denoted
by Zfinal in the following, where Nfinal denotes its number of columns.

The threshold has to be chosen carefully: keeping too many columns in Zfinal

could indeed lead to overestimating the heritability and, on the contrary, removing
too many columns of Z could lead to underestimating the heritability. In the “small
q” situations where it is relevant to use a variable selection approach a range of
thresholds in which the heritability estimation is stable will appear as suggested
by Meinshausen and Bühlmann (2010). In practice, we simulate observations Y
satisfying (6), by using the matrix Z, for different values of q and for different
values η? and we observe that this stability region for the threshold appear for
small values of q. This procedure is further illustrated in Section 4.

3.2. Heritability estimation and confidence interval
3.2.1. Heritability estimation
For estimating the heritability, we used the approach that we proposed in Bonnet
et al. (2015). It is based on a maximum likelihood strategy and was implemented
in the R package HiLMM. Let us recall how this method works.

In the case where q = 1, which corresponds to the non sparse case,

Y ∼ N
(

0, η?σ?2R + (1− η?)σ?2IdRn

)
,

with σ?2 = Nσ?2u + σ?2e and R = ZfinalZ
′
final/Nfinal, where Zfinal denotes the matrix

Z in which the columns selected in the variable selection step described in Section
3.1 are kept.

Let U be defined as follows: U′U = UU′ = IdRn and URU′ = diag(λ1, . . . , λn),
where the last quantity denotes the diagonal matrix having its diagonal entries equal
to λ1, . . . , λn. Hence, in the case where q = 1,

Ỹ = U′Y ∼ N (0,Γ)

with Γ = diag(η?σ?2λ1 + (1− η?)σ?2, . . . , η?σ?2λn + (1− η?)σ?2), (8)

where the λi’s are the eigenvalues of R.



8

We propose to define η̂ as a maximizer of the log-likelihood

Ln(η) = − log

(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)
− 1

n

n∑
i=1

log (η(λi − 1) + 1) , (9)

where the Ỹi’s are the components of the vector Ỹ = U′Y.
We now explain how to obtain accurate confidence intervals for the heritability by
using a non parametric bootstrap approach.

3.2.2. Bootstrap confidence interval
For one vector of observations Y, we derive a confidence interval for heritability by
using the following procedure:

- Step 1: We estimate η? and σ?2 by using our approach described in the previous
subsection. The corresponding estimators are denoted η̂ and σ̂.

- Step 2: We compute Ynew = Γ̂−1/2Ỹ, where Ỹ is defined in (8) and Γ̂ has the
same structure as Γ defined in (8) except that η? and σ? are replaced by their
estimators η̂ and σ̂, respectively.

- Step 3: We create K vectors (Ynew,i)1≤i≤K from Ynew by randomly choosing
each of its components among those of Ynew.

- Step 4: We then build K new vectors (Ỹsamp,i)1≤i≤K as follows: Ỹsamp,i =

Γ̂Ynew,i. For each of them we estimate the heritability. We thus obtain a
vector of heritability estimators (η̂1, ..., η̂K).

- Step 5: For obtaining a 95% bootstrap confidence interval, we order these
values of η̂k and keep the ones corresponding to the b0.975 ×Kc largest and
the b0.025×Kc smallest, where bxc denotes the integer part of x. These values
define the upper and lower bounds of the 95% bootstrap confidence interval
for the heritability η?, respectively.

A bootstrap estimator of the variance can be obtained by computing the empir-
ical variance estimator of the η̂k’s. In practice, we chose K = 80 replications.
Notice that this method should provide 95 % confidence intervals. We will verify
on synthetic data if the actual probability for the true value η? to be in the com-
puted confidence interval is indeed greater than 95%. If not, we can choose a level
α smaller than 0.05 to increase the coverage probability of our bootstrap method.
This numerical guarantee of our method is addressed in Section 4.2.2. In the se-
quel, we will call 95% bootstrap confidence interval the interval computed with our
bootstrap method with the level α = 0.05.

In Step 2 of the previous algorithm, we should be in the non sparse case q = 1
thanks to the variable selection stage. Hence, the covariance matrix of Ynew should
be close to identity.

Observe that our resampling technique is close to the one proposed by Abney
(2015) for building permutation tests in linear mixed models.
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3.3. Additional fixed effects
The method described above does not take into account the presence of fixed effects.
For dealing with such effects we propose to use the following method, which mainly
consists in projecting the observations onto the orthogonal of Im(X), the image
of X, to get rid of the fixed effects. In practice, instead of considering Y and Z
we consider Ỹ = A′Y and Z̃ = A′Z, where A is a n × (n − d) matrix (d being
the rank of the fixed effects matrix), such that AA′ = PX, A′A = IdRn−d and
PX = IdRn −X(X′X)−1X′. This procedure was for instance used by Fan and Li
(2012).

4. Numerical study

We present in this section the numerical results obtained with our approach which
is implemented in the R package EstHer.

4.1. Simulation process
Since in genetic applications, the number n of individuals is very small with respect
to the number N of SNPs, we chose n = 2000 and N = 100000 in our numerical
study. We also set σ?2u = 1, we shall consider different values for q and we shall
change the value of σ?e in order to have the following values for η?: 0.4, 0.5, 0.6 and
0.7. We generate a matrix W such that its columns Wj are independent binomial
random variables of parameters n and pj , where pj is randomly chosen in [0.1, 0.5].
We compute Z by centering and empirically normalizing the matrix W. The random
effects are generated according to Equation (4) and then we compute a vector of
observations such that Y = Zu + e.

We can make two important comments about the previous simulation process.
Firstly, we generated a matrix W with independent columns, that is we assume
that the SNPs are not correlated. Since this assumption may not be very realis-
tic in practice, we provide in Section 4.2.5 some additional simulations where the
generated matrix W has been replaced by the real matrix W coming from the IM-
AGEN project. Secondly, we did not include fixed effects but we show some results
in Section 4.2.4 when fixed effects are taken into account.

4.2. Results in very sparse scenarios
In this section, we shall focus on the performances of our method in a very sparse
scenario, that is 100 causal SNPs out of 100,000. We will describe all the results in
terms of heritability estimation, support recovery and computational times in this
particular case, then we will study other sparsity scenarios.

4.2.1. Choice of the threshold
In order to determine the threshold, we apply the procedure described in Section 3.1
and 3.2.1. Figure 2 displays the mean of the absolute value of the difference between
η? and the estimated value η̂ for different thresholds and for different values of η?
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obtained from 10 replications. We can see from this figure that in the case where
the number of causal SNPs is relatively small: 100, that is q = 10−3, our estimation
procedure provides relevant estimations of the heritability for a range of thresholds
around 0.75. Moreover, the optimal threshold leading to the smallest gap between η̂
for different values of η? is 0.76, so we will use this value in the following numerical
study. Notice that our choice for the threshold calibration depends on the purpose
of the variable selection. Indeed, if our goal was to recover the support and therefore
to control the number of false positives, we would have chosen a threshold closer to
1. Here, having false positives is not our main concern, but heritability estimation
is, that is why we calibrate the threshold to minimize the error we commit when
estimating η?. The way of choosing the threshold and its impact on the heritability
estimation will be further discussed in Sections 5 and 7.1.

|η
?
−
η̂
|

0.60 0.65 0.70 0.75 0.80 0.85 0.90

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ecart100 causaux

threshold

 

heritability

0.4
0.5
0.6
0.7
0.8

Fig. 2: Absolute difference between η? and η̂ for thresholds from 0.6 to 0.9 and
for q = 10−3 (100 causal SNPs). The results are obtained as a mean value for 10
simulations for each value of heritability and threshold.

4.2.2. Confidence intervals

We use the nonparametric bootstrap approach described in Section 3 with different
levels α from 0.02 to 0.05 in order to compute the confidence intervals associated
to the heritability estimations. For these different levels, we validate our procedure
by comparing on the one hand the bootstrap confidence intervals and the empiri-
cal confidence intervals (Table 1) and on the other hand the coverage probabilities
associated to the bootstrap approach (Table 3). The empirical confidence intervals
are computed as follows: the different estimations of η? obtained along the different
replications are ordered, the b(1 − α) ×Mc largest and the bα ×Mc smallest val-
ues correspond to the upper (resp. lower) bound of the 1− α empirical confidence
interval. Here, bxc denotes the integer part of x and M is the number of replica-
tions. From Table 1,we can see that the empirical confidence intervals are generally
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Table 1: Confidence intervals for η̂ obtained empirically and by our Bootstrap
method for different levels α from 0.02 to 0.05.

η? 0.4 0.5 0.6 0.7
Bootstrap α = 0.05 [0.355 ; 0.505] [0.420 ; 0.577] [0.506 ; 0.659] [0.600 ; 0.737]
Bootstrap α = 0.03 [0.348 ; 0.516] [0.413 ; 0.587] [0.496 ; 0.666] [0.593 ; 0.745]
Bootstrap α = 0.02 [0.335 ; 0.536] [0.400 ; 0.607] [0.480 ; 0.681] [0.579 ; 0.760]
Empirical [0.373 ; 0.497] [0.429 ; 0.568] [0.501 ; 0.642] [0.603 ; 0.730]

Table 2: Confidence intervals for η̂ obtained by our approach with bootstrap (α =
0.05), the oracle approach and the approach without selection (“without”).

η? 0.4 0.5 0.6 0.7
EstHer [0.353 ; 0.503] [0.413 ; 0.565] [0.494 ; 0.654] [0.596 ; 0.738]
Oracle [0.362 ; 0.472] [0.414 ; 0.563] [0.529 ; 0.670] [0.619 ; 0.745]
without [0.120 ; 0.880] [0.102 ; 0.812] [0.320 ; 0.938] [0.349 ; 0.932]

included in the bootstrap intervals for all levels α from 0.02 to 0.05 (all scenarios
except when η? = 0.6 and α = 0.05). We also observe that the differences between
the results with different levels are quite small, so that choosing α = 0.02 increases
slightly the length of the confidence intervals but it allows us to obtain coverage
probabilities greater that 97 % (see Table 3) for all values of η?.

4.2.3. Comparison between the methods with and without selection

Our results are compared to those obtained if we do not perform the selection before
the estimation, that is with the method implemented in HiLMM (”without”), but
also with an approach which assumes the position of the non null components to be
known (oracle). We will also compare our procedure to other existing methods that
are widely used in genetic studies. This comparison is provided in Section 6.1. The
results are displayed in Figure 3 and in Table 2. In this table, the confidence intervals
displayed for the lines ”Oracle” and ”without” are obtained by using the asymptotic
variance derived in Bonnet et al. (2015) which corresponds to the classical inverse
of the Fisher information in the case q = 1. We observe that our method without
the selection step provides similar results, that is almost no bias but a very large
variance due to the framework N � n. Our method EstHer considerably reduces
the variance compared to this method and exhibits performances close to those of
the oracle approach which, contrary to our approach, knows the position of the non
null components.

4.2.4. Additional fixed effects

We generated some synthetic data according to the process described in Section 4.1
but we added a matrix of fixed effects containing two colums. Figure 4 (a) displays
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Table 3: Coverage probability obtained by our bootstrap method, with α = 0.05,
α = 0.03 and α = 0.02, obtained from 500 replications.

η? 0.4 0.5 0.6 0.7
α = 0.05 0.90 0.96 0.93 0.87
α = 0.03 0.95 0.99 0.95 0.90
α = 0.02 0.97 0.99 0.98 0.97
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Fig. 3: Estimation of the heritability and the corresponding 95% confidence intervals
when q =10−3, and for different values of η? : (a) η? = 0.4, (b) η? = 0.5, (c)
η? = 0.6, (d) η? = 0.7. The means of the heritability estimators (displayed with
black dots), the means of the lower and upper bounds of the 95% confidence intervals
are obtained from 20 replicated data sets for the different methods: without selection
(“without”), “oracle” which knows the position of the null components and EstHer.
The horizontal gray line corresponds to the value of η?.

the corresponding results which show that the presence of fixed effects does not
alter the heritability estimation.
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4.2.5. Simulations with the matrix W of the IMAGEN data set
We conducted some additional simulations in order to see the impact of the linkage
disequilibrium, that is the possible correlations between the columns of Z. Indeed, in
the previous numerical study, we generated a matrix W with independent columns.
The matrix W that we use now to generate the observations is the one from our
genetic data set, except that we truncated it in order to have n = 2000 and N =
100000. The results of this additional study are presented in Figure 4 (b). We can
see that they are similar to those obtained previously in Figure 3, which means that
our method does not seem to be sensitive to the presence of correlation between the
columns of W.
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Fig. 4: Estimated value of the heritability with 95 % confidence intervals. The
results are displayed for several values of η?: 0.5, 0.6 and 0.7. (a) The data sets
were generated including fixed effects. (b) The matrix Z used to generate data sets
comes from the IMAGEN data. The black dots correspond to the mean of η̂ over
10 replications and the crosses are the real value of η?.

4.2.6. Computational times
The implementation that we propose in the R package EstHer is very efficient since
it only takes 45 seconds for estimating the heritability and 300 additional seconds to
compute the associated 95% confidence interval. These results have been obtained
with a computer having the following configuration: RAM 32 GB, CPU 4 × 2.3
GHz.

4.2.7. Recovering the support
When the number of causal SNPs is reasonably small, our variable selection method
is efficient to estimate the heritability and we wonder if it is reliable as well to recover
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the support of the random effects. In Figure 5, we see the proportion of support
estimated by our method when there are 100 causal SNPs: our method selects
around 130 components. We then focus on the proportion of the real support which
has been captured by our method: we see that it may change according to η?.
Indeed, the higher η?, the higher this proportion. Figure 5 then shows that EstHer
is not designed to recover the support of the random effects. However, interestingly,
even if we recover only a fraction of the support, we are able to estimate correctly
the heritability. This is partly explained by the results displayed in Figure 6 where
we can see that even in the worst case where we keep only 30% of the real non null
components, we select the most active ones.
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Fig. 5: (a) Boxplots of the length of the set of selected variables with EstHer for 40
repetitions. The real number of non null components is 100. (b) Boxplots of the
proportion of the real non null components captured in the set of selected variables.

The ability of recovering the support in linear models has been studied by Verze-
len (2012) in ultra high dimensional cases. The author shows that with a non null
probability, the support cannot be estimated under some numerical conditions on
the parameters q, N and n (namely if there are considerably more variables N than
observations n, and if the number of non null components qN is relatively high).
In this simulation study, even when we consider small values of q (for instance
q = 10−3, that is 100 causal SNPs), we are not far from to the ultra high dimen-
sional framework described in Verzelen (2012), which can explain the difficulties to
recover the full support.

4.3. Results when the number of causal SNPs is high
In subsection 4.2 we show the performance of our method in the case where the
proportion of causal SNPs q is small, that is around 10−3. In this subsection, we
focus on a more polygenic scenario, that includes the cases where thousands of SNPs
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Fig. 6: Barplots of the proportion of components found by our method as function
of the most efficient variables. For example, the first bar is the proportion of the 10
% higher components that we captured with our selection method. The histograms
are displayed for several values of η?: 0.5 (a), 0.6 (b), 0.7 (c).

or ten of thousands of SNPs are causal.

4.3.1. Results when there are SNPs with moderate and weak effects

We first focus on the statistical performance of EstHer when there are a lot of SNPs
(1000 or 10000) with small effects (for example, that explain 5% of the phenotypic
variations), and a small number (around 100) with moderate effects. We can see
from Figure 7 that, in this case, EstHer provides heritability estimates with tight
confidence intervals which contain the true value of heritability .
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Fig. 7: Results of HiLMM and EstHer when there are a few causal SNPs with
moderate effects and a lot of SNPs with small effects. The proportion of each is 100
out of 1000 (up) and 100 out of 10000 (bottom), with η? = 0.4 and 0.6.

4.3.2. Results when all SNPs have moderate effects

If all causal SNPs have moderate effects and if the number of these causal SNPs
is high, namely greater than 1000, EstHer underestimates the heritability. These
results are displayed in Figure 8. Moreover, we can see from Figure 9 that there
is no threshold choice that can provide accurate estimations of heritability for all
values of η?. This is a serious limitation to our variable selection approach: the
number of causal SNPs can be up to 10000 for many complex traits. We will see
how we can handle these very polygenic scenarios in Section 5.

5. A criterion to decide whether we should apply EstHer or HiLMM

In the previous numerical study, we distinguished two very different scenarios. First,
when the number of causal SNPs is small (Section 4.2) or when a large fraction of
heritability is explained by a small number of SNPs (Section 4.3.1), our variable
selection approach EstHer is completely relevant before estimating heritability since
it substantially reduces the length of the confidence intervals while not deteriorating
the probability of the true heritability being in this confidence interval. Second, if
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Fig. 8: Results of HiLMM and EstHer for 1000 (up) and 10000 (bottom) causal
SNPs and for η? = 0.4 and 0.6.

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
0

0.
2

0.
4

0.
6

0.
8

ecart500 causaux

thresh_vect

ec
ar

t[1
, ]

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
0

0.
2

0.
4

0.
6

0.
8

ecart10000 causaux

thresh_vect

ec
ar

t[1
, ]

0.2
0.3
0.4
0.5
0.6
0.7
0.8

1000 causal SNPs 10000 causal SNPs

Fig. 9: Absolute difference |η?− η̂| for thresholds from 0.6 to 0.9 and for 1000 (left)
and 10000 (right) causal SNPs.

there is a large number of causal SNPs, all with moderate effects, the selection
approach introduces an important bias in the heritability estimates (Section 4.3.2).
These observations are similar to those made by Zhou et al. (2013), who built an
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Table 4: Mean value of the number of overlapping confidence intervals for 16 thresh-
olds from 0.7 to 0.85.

η? 100 causal SNPs 1000 causal SNPs 10000 causal SNPs
0.4 12.2 6.6 6.9
0.5 14.9 6.6 6.3
0.6 16 7.8 7.2

hybrid estimator able to deal with both sparse and non sparse scenario, to which
we will compare our approach in Section 6.

Therefore, we propose hereafter a rule to decide whether it is better to apply our
procedure with selection, EstHer or without selection, HiLMM. We can see from
Figure 2 that when there are 100 causal SNPs, there is a large range of threshold
values which provide an accurate estimation of η?, but when there are 1000 or 10000
causal SNPs, see Figure 9), the estimations are very different even for close thresh-
olds. This observation gave us the idea of quantifying the stability of the estimations
around the threshold that we determined as the optimal one. More precisely, for
each threshold, we have an estimation of heritability with a 95% confidence interval,
and we count the number of thresholds for which the confidence intervals overlap.
Figure 10 confirms the stability around the best threshold for different values of η?

and Table 2 displays the number of ovelapping confidence intervals. We empirically
determine the following criterion: if the mean number of thresholds is greater than
10 (over 16 tested thresholds), we apply EstHer, if not, we apply HiLMM.
Besides the ability of detecting the scenarios when the variable selection improves
heritability estimation, this criterion has also the benefit of limiting the error that
we might commit when choosing a threshold in the stability selection step. It guar-
antees indeed that we perform a variable selection only when the choice of the
threshold has a small effect on heritability estimates. The results obtained by using
this criterion are displayed in Figure 11.

6. Results after applying the decision criterion and comparison to other
methods

6.1. Statistical performances
In this section we show the results obtained after applying the criterion described in
Section 5 and we compare these results to existing methods. The most commonly
used approach to estimate the heritability of complex traits is certainly GCTA (Yang
et al., 2010), which is based on a restricted maximum likelihood maximization. Our
method without selection, HiLMM, is, up to a few practical details, very close to
GCTA, and has the same numerical performances, as we can see on Figure 5 from
Bonnet et al. (2015), that is why we choose here to compare EstHer to HiLMM and
not to GCTA. We also compare these results with the software GEMMA described
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Fig. 10: Estimation of the heritability with 95% confidence intervals for η? from
0.4 to 0.6 (from left to right), and from 100, 1000 and 10000 causal SNPs from
top to bottom. Each graph shows the heritability estimations with 95% confidence
intervals computed with HiLMM (“without”) and for thresholds between 0.7 and
0.85.

in Zhou and Stephens (2012). GEMMA can fit both a non sparse linear mixed
model (GEMMA-LMM) and a sparse linear mixed model if the BSLMM option
is chosen denoted by BSLMM in the sequel. As explained in Zhou et al. (2013),
BSLMM can deal with very sparse and also with very polygenic scenarios.

We can see from the bottom part of Figure 11 that, in very polygenic scenarios
(q = 0.1, namely 10,000 causal SNPs), all the methods provide similar results: the
four estimators are indeed empirically unbiased, but with a very large variance.

In sparse scenarios (q = 10−3, namely 100 causal SNPs), we can see from the top
part of Figure 11 that EstHer provides better results than HiLMM and GEMMA-
LMM which exhibit similar statistical performances. In sparse scenarios, the vari-
ance of the BSLMM estimator is larger than the one provided by EstHer and smaller
than the one provided by GEMMA-LMM and HiLMM. However, the performances
of BSLMM could perhaps be improved by changing the MCMC parameters. Here,
for computational time reasons, we used the default parameters that is 100,000 and
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1,000,000 for the number of burn-in steps and the number of sampling, respectively.

Note that BSLMM averages the heritability estimates obtained for different prior
distributions of the random effects, namely different values of sparsity q when we
propose a binary criterion to decide if q is small enough to select variables or not.
Although we are satisfied with the results of our current method, it could be inter-
esting to inspire from BSLMM to develop a more ”continuous” criterion to associate
a non-binary weight on the estimations obtained with and without selection.
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Fig. 11: Estimations of η̂ with 95 % confidence intervals obtained using EstHer,
BSLMM, HiLMM and GEMMA-LMM with 100 causal SNPs (top) and 10,000 causal
SNPs (bottom). The results are obtained with 10 replications.

6.2. Computational times
The computational times in seconds for one estimation of the heritability with
BSLMM and the heritability estimation for 16 thresholds as well as the associated
confidence intervals with our method EstHer are displayed in Figure 12. We chose
this number of thresholds since we applied the criterion defined in Section 5. It
should be noticed that the computational times for EstHer could be reduced by
diminishing the number of thresholds. For BSLMM we used the default parameters
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for the number of burn-in steps and the number of sampling. We can see from this
figure that the gap between EstHer and BSLMM is all the more important that N
is large. Contrary to our approach, BSLMM seems to be very sensitive in terms of
computational time to the value of N .
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Fig. 12: Times (in seconds) to compute one heritability estimation with BSLMM
(crosses) and EstHer (dots) by using 16 thresholds for n = 2000 and different values
of N from 50, 000 to 200, 000.

7. Applications to genetic data

In this section, we applied our method to the neuroanatomic data coming from the
Imagen project. In this data set, n = 2087 individuals and N = 273926 SNPs. For
further details on this data set, we refer the reader to Section 2. This data has
already been studied by Toro et al. (2015) to estimate heritability: it will obviously
be a point of comparison for our analysis. Notice that they proposed to perform a
principal component analysis to take into account a potential population structure
in the data by including the first ten principal components as fixed effects. They
showed that this procedure did not influence significantly the heritability estimates
for this dataset.

7.1. Calibration of the threshold
We start by finding the threshold which is the most adapted to the IMAGEN data
set. We use the same technique as the one described in Section 4.2.1: for several
values of η? and several thresholds, we display the absolute value of η?−η̂, see Figure
13. The only difference with Section 4.2.1 is that we generated the observations by
using the matrix W coming from the IMAGEN data set. According to Figure 13,
we can find a reliable range of thresholds for estimating the heritability for all η?

from 0.4 to 0.7 when the number of causal SNPs is smaller than 100. This optimal
threshold is equal to 0.79. We shall use this value in the sequel.
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Fig. 13: Absolute value of the difference between η? and η̂ for thresholds from 0.6
to 0.9, and for different values of qN : (a) 50 causal SNPs, (b) 100 causal SNPs.
Each difference has been computed as the mean of 10 replications.

Table 5: Mean value of the number of overlapping confidence intervals for 16 thresh-
olds from 0.7 to 0.85.

Phenotype Number of thresholds
Bv 7.19
Hip 7.5
Icv 7.37
Acc 9.94
Amy 9.88
Th 7.5
Ca 7.13
Pu 7.13
Pa 10.75

7.2. Application of the decision criterion

Since we determined in the previous section that the optimal threshold is 0.79, we
apply EstHer for thresholds around this value, that is from 0.7 to 0.85. We then
count the number of overlapping confidence intervals, as explained in Section 5.
The results are displayed in Table 5. We observe from this table that the sensitivity
to the choice of the threshold varies substantially from one phenotype to another.
Hence, we choose to apply our EstHer approach to the most stable phenotypes
with respect to our criterion, namely pa, amy and acc. For the other phenotypes
we recommand to apply HiLMM or another similar approach such as GCTA or
GEMMA-LMM.
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Fig. 14: (a) Heritability estimations of bv, icv, th, pu, pa, hip, amy, acc, and ca
with 95% confidence intervals obtained using EstHer or HiLMM according to the
outcome of our decision criterion. (b) Heritability estimations of bv, icv, th, pu, pa,
hip, amy, acc and ca with 95% confidence intervals obtained using HiLMM.

7.3. Results
Figure 14 (a) shows the heritability estimation with 95 % confidence intervals for all
phenotypes, using either EstHer or HiLMM according to the outcome of our decision
criterion. Figure 14 (b) shows the results obtained by using HiLMM, namely without
any variable selection step. We compare our results with the ones obtained by Toro
et al. (2015) who estimated the heritability of the same phenotypes by using the
software GCTA. On the one hand, we can see from Figure 14 that in the cases where
EstHer is used the confidence intervals given by our methodology are substantially
smaller and included in those provided by either HiLMM or Toro et al. (2015).
On the other hand, when HiLMM is used our results are on a par with those
obtained by Toro et al. (2015). Moreover, our approach provides a list of SNPs
which may contribute to the variations of a given phenotype and which could be
further analyzed from a biological point of view in order to identify new biological
pathways.

8. Discussion

We show in this paper that the genetic architecture, that is the number of causal
genetic variants and the intensity of their effects, has a strong impact on heritability
estimation. Indeed, we compare approaches that include or not a variable selection
step before estimating heritability and we show that the optimal method depends
on the sparsity setting. More precisely, including variable selection reduces sub-
stantially the variance of the estimator when the random effects are very sparse
but introduces a bias when the trait is actually very polygenic. However, this ge-
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netic architecture is generally unknown in practice, which increases the difficulty
of choosing an appropriate method to estimate heritability. A safe choice consists
in always applying a maximum likelihood approach (GCTA, HiLMM...) which en-
sures that the heritability estimator is unbiased, but with a very large variance in
a typical scenario where the number of SNPs is very large compared to the number
of individuals. Therefore, we propose here a criterion to determine which of the two
procedures (with or without selection) is more appropriate to the observations, in
order to reduce the variance of the estimator when it is possible without introducing
a bias. Besides its efficient statistical performance, we also propose a method with
a very low computational burden, which makes its use attractive on very large data
sets coming from quantitative genetics.
The choice of the optimal estimator for heritability in a linear model has been han-
dled from a theoretical point of view in Verzelen and Gassiat (2017); it confirms
that the estimator that achieves the minimax risk is an adaptive estimator that
includes a variable selection approach only in very sparse scenarios. The theoretical
calibration of the threshold in the stability selection step is a very difficult issue but
would also be of great interest to understand the impact of genetic architecture on
heritability estimation.
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