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Abstract
Given a nonparametric Hidden Markov Model (HMM) with two states, the question of con-
structing efficient multiple testing procedures is considered, treating the states as unknown
null and alternative hypotheses. A procedure is introduced, based on nonparametric em-
pirical Bayes ideas, that controls the False Discovery Rate (FDR) at a user-specified level.
Guarantees on power are also provided, in the form of a control of the true positive rate.
One of the key steps in the construction requires supremum-norm convergence of prelim-
inary estimators of the emission densities of the HMM. We provide the existence of such
estimators, with convergence at the optimal minimax rate, for the case of a HMM with
𝐽 ≥ 2 states, which is of independent interest.
Keywords: efficient multiple testing, hidden Markov models, false discovery rate, true
discovery rate, minimax supremum norm estimation

1. Introduction

1.1 Aim of the Paper

We consider the problem of multiple testing in a hidden Markov model (HMM) setting.
Given data (𝑋𝑖 : 𝑖 ≤ 𝑁) whose distribution is governed by an unobserved categorical
variable 𝜃 = (𝜃𝑖 : 𝑖 ≤ 𝑁) ∈ {0, 1}𝑁 drawn from a Markov chain with unknown parameters,
for each 𝑖 ≤ 𝑁 one seeks to test the null hypothesis 𝐻0,𝑖 : 𝜃𝑖 = 0 against the alternative
𝐻1,𝑖 : 𝜃𝑖 ̸= 0, where the number of tests 𝑁 is “large”.

To make the problem concrete, we highlight an example given in Sun and Cai (2009).
The index 𝑖 tracks the passage of time, and the variable 𝑋𝑖 denotes the recorded cases of
an influenza-like illness in some location. When 𝜃𝑖 = 0 one sees typical disease levels, and
when 𝜃𝑖 = 1 there is an atypical outbreak. Such outbreaks tend to cluster temporally, so
that placing a Markov structure on 𝜃 is natural. Procedures which ignore this dependence
structure cannot be optimal: high levels of recorded cases are more likely to be outliers if
recorded only very briefly than if sustained for a period, and independence-based methods
do not account for this. Here, as is typical in multiple testing settings, an optimal test is
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defined as one which maximises the True Discovery Rate (TDR) while controlling the False
Discovery Rate (FDR) at some specified level 𝑡; see Section 2.1 for definitions.

When the model parameters are known, classical decision theory arguments show that
procedures which threshold based on the probabilities of the 𝜃𝑖’s being zero conditional on
the observations 𝑋1, . . . , 𝑋𝑁 are optimal (e.g. see Lemma 22). These conditional probabili-
ties are simply posterior probabilities in the Bayesian world, and smoothing probabilities in
the latent variables vocabulary. They will (mainly) be called ℓ-values in this work. Here we
make the realistic assumption that the model parameters are unknown, hence we replace
such ‘oracle’ thresholding procedures (so called because the ℓ-values depend on the model
parameters), with procedures which plug in estimates of the parameters in the chosen mod-
elling: the ‘empirical’ Bayes method. The optimality of the empirical Bayes method in the
HMM setting with parametric modelling of the distributions of 𝑋𝑖 | 𝜃 = 𝑗, 𝑗 ∈ {0, 1} was
addressed in Sun and Cai (2009).

Here we consider instead modelling these distributions nonparametrically. Parametric
modelling of HMMs can lead poor results in case of misspecification, as discussed for example
in Yau et al. (2011). We draw attention also to the extensive simulations conducted and
discussed in Wang et al. (2019) for real valued observations, and in Su and Wang (2020) for
count data. These latter two works demonstrate empirically that the FDR and TDR are
badly impacted by parametric modelling in case of misspecification, while nonparametric
empirical Bayes methods appear to closely match the optimal behaviour of oracle ℓ-value
procedures.

The goal of this paper is to prove this last fact: that the discussed thresholding pro-
cedures still (asymptotically) maintain multiple testing optimality properties when the pa-
rameters are estimated. Note that the plug-in operation must be addressed more delicately
in the current nonparametric framework compared to the (well-specified) parametric frame-
work considered in Sun and Cai (2009). Our key theorems can be summarised as follows.

• Our first main results, Theorems 2 and 3, show theoretically that in the nonparametric
HMM setting an empirical Bayesian procedure attains the target FDR level and enjoys
TDR optimality. The proofs of these two theorems are partly based on a result in
De Castro et al. (2017), which shows how control of plug-in estimators propagates to
give control of ℓ-value errors. A key step is to have good supremum-norm estimators,
in contrast to the 𝐿2-norm estimators previously found in the literature.

• Our second main results, which are both key to obtaining the first and also of in-
dependent interest, concern supremum-norm estimation of emission densities in non-
parametric HMMs. We provide estimators, and prove in Theorems 4 and 5 that the
supremum-norm risk of these estimators achieves the parametric convergence rate
𝑁−1/2 for discrete observations (where the set of possible values 𝑋1 can take is count-
able), and the convergence rate (𝑁/ log𝑁)−𝑠/(2𝑠+1), familiar from the classical i.i.d.
density estimation setting and also proved to be optimal in the HMM context (see
Proposition 6), for Hölder densities with regularity 𝑠.

Let us remark that a further advantage of modelling the HMM densities nonparametrically
is that it ensures our results allow for fairly arbitrary distributions under the null hypothesis.
In contrast, many common multiple testing procedures – including the original Benjamini–
Hochberg procedure – assume that the null distribution is known. One can of course adjust
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such procedures to use an estimated null hypothesis, but there are so far only a few settings
in which it has been proved that this plug-in step has no negative effect on the desired
properties of the procedures. We refer to the recent work by Roquain and Verzelen (2020)
for more discussion concerning this issue.

Finally, we note that as well as enabling the plug-in results which yield control of the
FDR, estimating the emission densities in terms of the supremum norm is useful in its
own right. Indeed, practically speaking, results of this type justify that plots of density
estimators will be visually close to the original density. Such estimators can also be helpful
for identifying change points, estimating level sets, and constructing confidence bands for
uncertainty quantification.

1.2 Context

Let us place these results in the broader multiple testing and HMM contexts. See also
Section 1.3 where links to frequentist-Bayesian literature are given.

Multiple testing. The problem of identifying relevant variables among a large number
of possible candidates is ubiquitous with high dimensional data: indeed, multiple testing
methods are very popular in the analysis of genomic data, in astrostatistics, and in imaging,
to name just a few practical applications. Since the seminal work of Benjamini and Hochberg
(1995), controlling the FDR has been the goal of much of the extensive literature on the
subject.

Early works tended to assume i.i.d. data. Efron (2007b) noted that ignoring dependence
and using methods designed for FDR control with independent data could result in either
too conservative or too liberal procedures, showing that dependence must carefully being
taken into account. A number of works, including those of Benjamini and Yekutieli (2001),
Farcomeni (2007), Finner et al. (2007) and Wu (2008), have shown that under certain
assumptions on the dependence structure, some multiple testing procedures designed for
independent case (such as the step-up Benjamini–Hochberg procedure) still control the
FDR below a given target level. Such procedures, although having guaranteed FDR even
under dependence, may suffer from being too conservative. Another line of work considers
so-called knockoff methods, designed initially in the independent case in Candès et al. (2018)
and extended to the hidden Markov setting to be considered herein in Sesia et al. (2019).
Such methods again focus on controlling the FDR, saying little about the power.

The control of power in dependent data settings is less developed. Some works in this
direction include those of Xie et al. (2011) and of Heller and Rosset (2021) which consider
the ‘general two group model’, wherein the 𝜃𝑖’s are independent and identically distributed,
but for each 𝑖 the distribution of 𝑋𝑖 given 𝜃 may depend on the whole vector 𝜃 and not
only on 𝜃𝑖. In some settings, such as with genetic data, allowing for the 𝜃𝑖’s themselves to
be dependent can however be more natural, and the HMM model for 𝑋 considered here
allows for a natural local structure of 𝜃 – while still remaining tractable – by modelling it
as a Markov chain. Let us note that other structures can also lead to tractable modelling,
for example the stochastic block model considered in Rebafka et al. (2019).

Hidden Markov models. HMMs have been widely used for applications as varied as
speech modelling, computational finance and gene prediction since works of Baum, Petrie
and coauthors introduced practical algorithms and proved parametric estimation rates in a
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discrete data setting (Petrie, 1967; Baum and Petrie, 1966; Baum et al., 1970). Later works,
including those of Bickel et al. (1998) and of Douc and Matias (2001), extended these proofs
to allow parametric modelling of the emission distributions.

Recently, Gassiat et al. (2016) opened the possibility that consistency holds also when
the emission densities are modelled nonparametrically by proving identifiability under mild
conditions. Anandkumar et al. (2012) introduced in the parametric case a spectral method
which was then generalised in De Castro et al. (2016) and Lehéricy (2018) to indeed give con-
sistency at a usual rate in the nonparametric setting. These nonparametric works however
focus on 𝐿2-estimation, and do not immediately generalise to give rate-optimal supremum
norm estimation: indeed, attempting to apply a typical wavelet method of estimating indi-
vidual coefficients at a parametric rate and aggregating, one runs into an alignment issue
arising from the fact that the emission densities are identifiable only up to a permutation.
An insight of the current work is that returning to the spectral method and making sure
to simultaneously diagonalise matrices bypasses these issues; in particular we do this for a
kernel-based estimator.

Finally, note that recent works have considered HMM type settings with non-stationary
data: see Section 4.5 for some examples.

1.3 Setting

Consider a hidden Markov model (HMM), in which the observations 𝑋 = (𝑋𝑛)𝑛≤𝑁 satisfy

𝑋𝑛 | 𝜃 ∼ 𝑓𝜃𝑛 , 1 ≤ 𝑛 ≤ 𝑁,

𝜃 = (𝜃𝑛)𝑛≤𝑁 ∼ Markov(𝜋,𝑄),
(1)

and, conditional on 𝜃, the entries of 𝑋 are independent. The vector 𝜃 of ‘hidden states’ takes
values in {0, 1}𝑁 (we will later also consider the case where 𝜃 takes values in {1, . . . , 𝐽}𝑁 for
some 𝐽 ≥ 2) and Markov(𝜋,𝑄) denotes a Markov chain of initial distribution 𝜋 = (𝜋0, 𝜋1),
and 2 × 2 transition matrix 𝑄. The ‘emission densities’ 𝑓0, 𝑓1 are probability densities with
respect to some common dominating measure 𝜇 on a measurable space 𝒳 . For simplicity
we will assume that 𝜇 is either Lebesgue measure on R or counting measure on Z ⊂ R;
our results adapt straightforwardly to the 𝑑-dimensional setting, and in principle versions
should hold for more general measure spaces (see the discussion in Section 4.4). We use
𝐻 = {𝑄, 𝜋, 𝑓0, 𝑓1} to denote a generic set of parameters for the HMM. We denote by Π𝐻 the
law of (𝑋, 𝜃) in (1), and by extension also the marginal laws of 𝑋 and 𝜃. We write 𝐸𝐻 to
denote the expectation operator associated to Π𝐻 . Let us underline that the observations
consist of a single sequence 𝑋1, . . . , 𝑋𝑁 of length 𝑁 and that in particular the sequence
𝜃1, . . . , 𝜃𝑁 is not observed; moreover, all parameters comprising 𝐻 are unknown.

The goal of multiple testing is to provide a procedure 𝜙 = 𝜙(𝑋) which identifies well
for which 𝑖 we have signal (𝜃𝑖 ̸= 0). Testing errors in the multiple testing sense, to be
defined next, are measured collectively through all hypotheses 𝑖 = 1, . . . , 𝑁 simultaneously
rather than by considering a fixed single coordinate 𝑖. We will measure the performance of
𝜙 through the false discovery rate (FDR) and the true discovery rate (TDR). Defining the
false discovery proportion (FDP) at 𝜃 as

FDP𝜃(𝜙) :=
∑︀𝑁
𝑖=1 1{𝜃𝑖 = 0, 𝜙𝑖 = 1}

1 ∨
(︀∑︀𝑁

𝑖=1 𝜙𝑖
)︀ , (2)
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the FDR at 𝜃 is given by

FDR𝜃(𝜙) := 𝐸𝐻 [FDP𝜃(𝜙(𝑋)) | 𝜃]. (3)

We consider the average false discovery rate for 𝜃 generated according to the “prior” law
Π𝐻 :

FDR𝐻(𝜙) := 𝐸𝜃∼Π𝐻
FDR𝜃(𝜙) ≡ 𝐸𝐻 FDP𝜃(𝜙), (4)

and we define the ‘posterior FDR’ as the average FDP obtained when 𝜃 is drawn from its
posterior,

postFDR𝐻(𝜙) = postFDR𝐻(𝜙;𝑋) := 𝐸𝐻 [FDP𝜃(𝜙) | 𝑋]. (5)

The true discovery rate is defined as the expected proportion of signals which are detected
by a procedure:

TDR𝐻(𝜙) = 𝐸𝐻
[︁∑︀𝑁

𝑖=1 1{𝜃𝑖 = 1, 𝜙𝑖 = 1}
1 ∨ (∑︀𝑁

𝑖=1 𝜃𝑖)

]︁
. (6)

Bayesian formulation and latent variable formulation. Let 𝑃0 denote the “true” distri-
bution of the data 𝑋 arising from model (1). If, in (1), the distribution of 𝜃 is interpreted
as “prior” distribution (it is of course an “oracle prior”, as 𝜋,𝑄 are components of the
unknown “true” parameter 𝐻 = (𝜋,𝑄, 𝑓0, 𝑓1)), the distribution of 𝑋 = (𝑋𝑛)𝑛≤𝑁 in the
(oracle) Bayesian setting is simply the true distribution 𝑃0. Of course, one may also avoid
the Bayesian vocabulary and simply view model (1) as a latent variable model: under such
point of view, ℓ-values are known as smoothing probabilities and 𝜃 |𝑋 is simply a conditional
distribution. We find it convenient to nevertheless use Bayesian terminology (in contrast to
previous works such as Sun and Cai 2007, 2009). Partially this is in accordance with classi-
cal decision theory, wherein Bayesian terminology is commonly used for describing optimal
classifiers; indeed, as Storey (2003) observed, “classical classification theory seems to be a
bridge between Bayesian modeling and hypothesis testing”. It is also helpful preparation
for considering a setting where 𝜃 is fixed and non-random, as dicussed next.

Connection with frequentist analysis of Bayesian procedures. Recent years have seen
notable progress on providing frequentist validations of the use of posterior distributions
for inference, with most results concerning the estimation task, and more recently also
uncertainty quantification and confidence sets (see e.g. Ghosal and van der Vaart, 2017,
for a summary). One can consider using the HMM model (1) not because one believes 𝜃
is genuinely random with a Markov structure, but rather as a way to model some block
structure of a fixed true 𝜃, wherein neighbour coordinates of 𝑋 have a higher chance of
coming from the same distribution. The first results in this spirit in a multiple testing
setting were obtained recently for sparse sequences in Castillo and Roquain (2020), and
in Abraham et al. (2021) for the posterior-based procedure considered here, in both cases
without block structure. Investigating the Bayesian procedure studied in this paper for
structured sequences of fixed 𝜃 where the HMM modeling will then be a Bayesian prior
seems to be a interesting (but difficult) open problem.

We also note that the results we obtain below still constitute a (partial) frequentist Bayes
validation, in the following sense. Consider a standard Bayesian approach where 𝜃 is viewed
as parameter and given a Markov prior, but not the other parameters (𝑓0, 𝑓1, 𝜋,𝑄), which are
estimated separately. Then Theorems 2 and 3 below prove that if the true (frequentist) data
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generating distribution is some nonparametric HMM, then the empirical Bayes procedure
derived from the posterior on 𝜃 behaves consistently from the multiple testing viewpoint:
its FDR is controlled with optimality guarantees on the TDR. It is a less strong frequentist
analysis than under an arbitrary fixed 𝜃0, but it validates the frequentist use of the procedure
assuming that the data comes from some (fairly arbitrary) non-parametric HMM: this still
allows one to capture many typical signals with varied latent densities.

1.4 Outline of the Paper

In Section 2 we introduce our multiple testing procedure and establish its asymptotic perfor-
mance in Theorems 2 and 3. Section 3 is devoted to the estimation of the emission densities,
with asymptotic supremum norm control established in Theorems 4 and 5. We also give in
Proposition 6 a lower bound for the estimation of Hölder emission densities with regularity
𝑠 in the HMM context. Finally, Proposition 7 gives examples of conditions under which one
can overcome the ‘label switching’ issue, present in the HMM setting as for mixture models,
in order to know which estimator corresponds to the null state and which to the alternative.
This allows us to avoid the assumption, common to many multiple testing methods, that
the distribution of the data under the null is known.

In Section 4, we provide a detailed discussion of our assumptions and comparisons of
our results with the literature. We also explain the extent to which the rates of convergence
of our emission densities estimators are uniform in the parameters.

Proofs of the main theorems are given in Section 5. Intermediate results useful for
these proofs are given in Appendices A and B. Appendix C gives a proof of a minimax
lower bound. For the reader’s convenience, the notation introduced throughout the paper
is gathered in Appendix D.

2. The Empirical Bayesian Procedure

2.1 Definition

We analyse an empirical Bayesian approach to the multiple testing problem, based on
thresholding by the posterior (smoothing) probabilities, here called the ‘ℓ-values’ and also
known in the literature as the ‘local indices of significance’ (Efron et al., 2001; Efron, 2007a;
Sun and Cai, 2009):

ℓ𝑖(𝑋) ≡ ℓ𝑖,𝐻(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋). (7)
In the ‘oracle’ setting (where the parameter 𝐻 is known), it is well known that the

optimal (weighted) classification procedure is an ℓ-value thresholding procedure; that is, it
is 𝜙𝜆,𝐻 for some 𝜆, where

𝜙𝜆,𝐻(𝑋) = (1{ℓ𝑖,𝐻(𝑋) < 𝜆})𝑖≤𝑁 . (8)

It has been shown in Sun and Cai (2009) that this class of procedures (possibly with data-
driven thresholds) is also optimal in a multiple testing sense, in that a procedure making
false discoveries at a pre-specified rate and maximising a suitable notion of the multiple
testing power is necessarily an ℓ-value thresholding procedure (see also Lemma 22).

The FDR is the expectation of the posterior FDR, so that using the latter (which
is observable) to choose the threshold is a natural approach. When the parameter 𝐻 is
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unobserved, we use an estimator 𝐻̂ = (𝑄̂, 𝜋̂, 𝑓0, 𝑓1) instead (to be constructed later), and
so we are led to the procedure 𝜙𝜆̂,𝐻̂ , where

𝜆̂ = 𝜆̂(𝐻̂, 𝑡) := sup{𝜆 : postFDR𝐻̂(𝜙𝜆,𝐻̂) ≤ 𝑡}. (9)

We also note an alternative characterisation of the threshold 𝜆̂. In view of the definitions
(5) and (7), we have the following expression for the posterior FDR:

postFDR𝐻(𝜙) =
∑︀𝑁
𝑖=1 ℓ𝑖,𝐻𝜙𝑖

1 ∨ (∑︀𝑛
𝑖=1 𝜙𝑖)

. (10)

That is, the posterior FDR of a procedure 𝜙 is the average of the selected ℓ-values. Conse-
quently, the procedure 𝜙𝜆̂,𝐻̂ must threshold at one of the “empirical ℓ-values” (i.e. at some
ℓ̂𝑖 = ℓ𝑖,𝐻̂), as postFDR𝐻̂(𝜙𝜆,𝐻̂) only changes when 𝜆 crosses such a threshold. The thresh-
old 𝜆̂ can therefore equivalently be expressed, as in Sun and Cai (2009), as 𝜆̂ = ℓ̂(𝐾̂+1), with
ℓ̂(𝑖) denoting the 𝑖th order statistic1 of {ℓ𝑖,𝐻̂ : 1 ≤ 𝑖 ≤ 𝑁}, where 𝐾̂ is defined by

1
𝐾̂

𝐾̂∑︁
𝑖=1

ℓ̂(𝑖) ≤ 𝑡 <
1

𝐾̂ + 1

𝐾̂+1∑︁
𝑖=1

ℓ̂(𝑖). (11)

[By convention the left inequality automatically holds in the case 𝐾̂ = 0, and we define
ℓ̂(𝑁+1) := ∞ so that the right inequality automatically holds in the case 𝐾̂ = 𝑁 .] Note that
𝐾̂ is well defined and unique, by monotonicity of the average of nondecreasing numbers.
This monotonicity also makes clear the following dichotomy:

postFDR𝐻̂(𝜙𝜆,𝐻̂) ≤ 𝑡 ⇐⇒ 𝜆 ≤ 𝜆̂. (12)

If there are no ties, the procedure 𝜙𝜆̂,𝐻̂ necessarily rejects 𝐾̂ of the null hypotheses.
In the case of ties, it may reject fewer, and to avoid potential conservativity, we therefore
consider a slightly adjusted procedure 𝜙.

Definition 1. Define 𝜙 = 𝜙(𝑡) to be a procedure rejecting exactly 𝐾̂ of the hypotheses with
the smallest ℓ̂𝑖 values, choosing arbitrarily in case of ties, where 𝐾̂ is defined by (11). We
write 𝑆0 for the rejection set

𝑆0 = {𝑖 ≤ 𝑁 : 𝜙𝑖 = 1},

and we note that by construction we have |𝑆0| = 𝐾̂ and

{𝑖 : ℓ̂𝑖(𝑋) < 𝜆̂} ⊆ 𝑆0 ⊆ {𝑖 : ℓ̂𝑖(𝑋) ≤ 𝜆̂}.

We make the following assumptions on the parameters. The assumptions are not par-
ticularly restrictive, and are discussed in detail in Section 4.1. The procedures we construct
do not require the quantities involved in these assumptions to be known.

1. We define the order statistics so that repeats are allowed: the order statistics are defined by the fact
that {ℓ𝑖, 𝑖 ≤ 𝑁} = {ℓ(𝑗), 𝑗 ≤ 𝑁} as a multiset (∀𝑥 ∈ R, #{𝑖 : ℓ𝑖 = 𝑥} = #{𝑖 : ℓ(𝑖) = 𝑥}) and
ℓ(1) ≤ ℓ(2) ≤ · · · ≤ ℓ(𝑁).
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Assumption A. There exists 𝑥* ∈ R ∪ {±∞} such that either

𝑓1(𝑥)/𝑓0(𝑥) → ∞, as 𝑥 ↑ 𝑥*, or
𝑓1(𝑥)/𝑓0(𝑥) → ∞, as 𝑥 ↓ 𝑥*,

where we take the conventions that 1/0 = ∞, 0/0 = 0. [In the case where 𝜇 is counting
measure on Z and 𝑥* ̸∈ {±∞}, the limits are interpreted to mean that 𝑓1(𝑥*) > 0 and
𝑓0(𝑥*) = 0.]
Assumption B. There exists a constant 𝜈 > 0 such that

max
𝑗=0,1

𝐸𝑋∼𝑓𝑗
(|𝑋|𝜈) < ∞.

Assumption C. 1. The matrix 𝑄 has full rank (i.e. its two rows are distinct), and

𝛿 := min
𝑖,𝑗

𝑄𝑖,𝑗 > 0.

2. The Markov chain is stationary: the initial distribution 𝜋 = (𝜋0, 𝜋1) is the invariant
distribution for 𝑄.

Throughout we will write

𝑓𝜋(𝑥) = 𝜋0𝑓0(𝑥) + 𝜋1𝑓1(𝑥) (13)

for the marginal distribution of each 𝑋𝑖, 𝑖 ≤ 𝑁 , under Assumption C; note that necessarily
min(𝜋0, 𝜋1) ≥ 𝛿 under the assumption. We note the following illustrative examples of pairs
of densities with respect to the Lebesgue measure 𝜇 = d𝑥 which satisfy both Assumption A
and Assumption B.
Examples. i. 𝑓𝑗(𝑥) = 𝜑(𝑥 − 𝜇𝑗), where 𝜑 is the density of a standard normal random

variable and 𝜇1 ̸= 𝜇2, with 𝜈 > 0 arbitrary and 𝑥* = ±∞.

ii. 𝑓0 is the density of any normal random variable, and 𝑓1 is the density of any Cauchy
random variable (or indeed any other distribution with polynomial tails, for 𝜈 adjusted
appropriately), with 0 < 𝜈 < 1 and 𝑥* = ±∞.

iii. 𝑓0, 𝑓1 are compactly supported densities, and the support of 𝑓1 is not a subset of the
support of 𝑓0, with any 𝜈 > 0 and any 𝑥* in the support of 𝑓1 but not of 𝑓0.

iv. 𝑓0, 𝑓1 are the densities of Beta random variables, 𝑓𝑗(𝑥) = 𝑐𝑗𝑥
𝛼𝑗−1(1 − 𝑥)𝛽𝑗−1

1{𝑥 ∈
[0, 1]} for a normalising constant 𝑐𝑗 , and 𝛼0 > 𝛼1 or 𝛽0 > 𝛽1 (or both), with any 𝜈 > 0
and 𝑥* = 0 if 𝛼0 > 𝛼1 or 𝑥* = 1 if 𝛽0 > 𝛽1.

2.2 Theoretical guarantees

Our main result shows that for suitably chosen 𝐻̂ = (𝑄̂, 𝜋̂, 𝑓0, 𝑓1), the procedure 𝜙 achieves
an FDR upper bounded by the level 𝑡 chosen by the user, at least asymptotically. The
existence of estimators with suitable consistency properties is shown in the next section
under mild further assumptions. Here ‖·‖ denotes the usual Euclidean norm for vectors
(and later also the corresponding operator norm for matrices), ‖·‖𝐹 denotes the Frobenius
matrix norm ‖𝐴‖2

𝐹 = ∑︀
𝑖𝑗 𝐴

2
𝑖𝑗 , and ‖·‖∞ denotes the 𝐿∞ (supremum) norm on functions

taking values in R.
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Theorem 2. Grant Assumptions A to C. Suppose that for some 𝑢 > 1 + 𝜈−1 and some
sequence 𝜀𝑁 such that 𝜀𝑁 (log𝑁)𝑢 → 0, the estimators 𝑄̂, 𝜋̂ and 𝑓𝑗 , 𝑗 = 0, 1 satisfy

Π𝐻(max{‖𝑄̂−𝑄‖𝐹 , ‖𝜋̂ − 𝜋‖, ‖𝑓0 − 𝑓0‖∞, ‖𝑓1 − 𝑓1‖∞} > 𝜀𝑁 ) → 0, as 𝑁 → ∞. (14)
Then for 𝜙 the multiple testing procedure of Definition 1 we have

FDR𝐻(𝜙) → min(𝑡, 𝜋0).
As alluded to, the construction of 𝜙 suggests it should have close to optimal power,

and the following result shows that this is indeed true under an extra condition on the
distribution of (𝑓1/𝑓0)(𝑋1). The extra condition cannot hold if 𝜇 is the counting measure,
but is only used to prove a property of the limiting ℓ-values, so that a version of Theorem 3
may also hold in the discrete setting – see the discussion in Section 4.4. As is common in the
literature (again see Section 4.4), the precise notion of power is given by the marginal true
discovery rate (mTDR), the average proportion of true signals which a testing procedure
discovers (note that the denominator is necessarily non-zero under Assumption C):

mTDR𝐻(𝜙) = 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1, 𝜙𝑖 = 1}
𝐸𝐻#{𝑖 : 𝜃𝑖 = 1}

. (15)

The marginal FDR is defined correspondingly:

mFDR𝐻(𝜙) = 𝐸𝐻#{𝑖 : 𝜃𝑖 = 0, 𝜙𝑖 = 1}
𝐸𝐻#{𝑖 : 𝜙𝑖 = 1}

, (16)

with the convention that 0/0 = 0. These ‘marginal’ quantities are, by concentration results,
close to the original quantities TDR𝐻(𝜙), FDR𝐻(𝜙) for many procedures, including 𝜙 (as is
implied by ideas in the proof of the following result; see also the discussion in Section 4.4).
Theorem 3. In the setting of Theorem 2, additionally grant that the distribution function of
the random variable (𝑓1/𝑓0)(𝑋1) (i.e. the function 𝑡 ↦→ Π𝐻

(︀
(𝑓1/𝑓0)(𝑋1) ≤ 𝑡

)︀
) is continuous

and strictly increasing. Then the procedure 𝜙 of Theorem 2 satisfies the following as 𝑁 →
∞:

mTDR𝐻(𝜙) = sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ mFDR𝐻(𝜙)} + 𝑜(1)
= sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ 𝑡} + 𝑜(1).

The suprema are over all multiple testing procedures 𝜓 satisfying the bound on their mFDR,
including oracle procedures allowed knowledge of the parameters 𝐻.

The essence of the proof of Theorem 2 is to show that ℓ̂𝑖 ≈ ℓ𝑖 for most 𝑖 ≤ 𝑁 (see
Lemma 9, in Section 5.1) and that consequently postFDR𝐻(𝜙) is close to postFDR𝐻̂(𝜙).
The latter, thanks to our definition of 𝜆̂, is close 𝑡.

In proving Theorem 3, there is no a priori control of the power analogous to the bound
postFDR𝐻̂(𝜙) ≤ 𝑡, hence we cannot simply argue by symmetry. Instead, one shows that 𝜆̂
concentrates around some 𝜆* ∈ (0, 1]: see Lemma 10 in Section 5.1. Then, again using that
ℓ̂𝑖 ≈ ℓ𝑖, it follows that mTDR𝐻(𝜙) ≈ mTDR𝐻(𝜙𝜆*,𝐻̂) ≈ mTDR𝐻(𝜙𝜆*,𝐻) and similarly that
mFDR𝐻(𝜙) ≈ mFDR𝐻(𝜙𝜆*,𝐻) ≈ 𝑡. Known optimality results for the class (𝜙𝜆,𝐻 : 𝜆 ≥ 0)
mean that one is able to show that mTDR𝐻(𝜙𝜆*,𝐻) is the largest of procedures with mFDR
at most mFDR𝐻(𝜙𝜆*,𝐻) ≈ 𝑡 (see Lemma 22), so that the same is approximately true of
mTDR𝐻(𝜙).

See Section 5.1 for the proofs.

9



Abraham, Castillo and Gassiat

3. Supremum Norm Estimation of Emission Densities

Of course, Theorems 2 and 3 are only useful if one can estimate 𝐻 at an appropriate rate
in the specified norms, and the results of this section ensure that this is indeed possible in
a wide range of nonparametric settings. Estimation is possible not only in the two-state
setting, and since estimation results are of independent interest we assume in this section
that the data 𝑋 is drawn from model (1) for 𝑄 a 𝐽 × 𝐽 matrix and 𝜋 a distribution on
{1, . . . , 𝐽}, with the state vector 𝜃 taking values in {1, . . . , 𝐽}𝑁 , for some known 𝐽 ≥ 2.

Assumptions A and C are designed with the particular FDR context in mind. In the 𝐽-
state estimation setting we instead use the following conditions, designed to ensure a spectral
estimation method works. We will still require the moment condition Assumption B for
some results.

Assumption C’. The matrix 𝑄 is full rank, the 𝐽-state Markov chain (𝜃𝑛)𝑛∈N is irreducible
and aperiodic, and 𝜃1 follows the invariant distribution. [This is weaker than Assumption C
in general, but equivalent in the two-state setting.]

Assumption D. The density functions 𝑓1, . . . 𝑓𝐽 are linearly independent. [In the two-state
setting it suffices to assume 𝑓0 ̸= 𝑓1, which is implied by Assumption A.]

Under these assumptions, in a parametric setting a variant of a typical regularity condi-
tion suffices to show that estimation is possible at a parametric rate, so that our theorems
offer a new proof of the results of Sun and Cai (2009): see Section 4.2. Of greater interest
here, though, is that Theorem 2 also allows for a nonparametric setting. As noted already,
this is a major improvement for applications – see for instance Yau et al. (2011), Wang et al.
(2019) and Su and Wang (2020). Estimating the Markov parameters 𝑄 and 𝜋 consistently
up to a permutation at a polynomial rate has already been proved possible (see De Castro
et al., 2017, Appendix C), and we therefore focus on estimation, in the supremum norm, of
the emissions densities themselves. Note first of all that in a discrete setting estimation is
possible at a parametric rate.

Theorem 4. Assume that the dominating measure 𝜇 is the counting measure on Z. Let
𝑀𝑁 be a sequence tending to infinity, arbitrarily slowly. Under Assumptions C’ and D,
there exist estimators 𝑓1, . . . , 𝑓𝐽 and a permutation 𝜏 such that

Π𝐻(‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≥ 𝑀𝑁𝑁
−1/2) → 0.

The proof is a simplification of that of Theorem 5 (to follow) and so is sketched only:
see Appendix B.4.

For the remainder of this section we assume that the functions 𝑓1, . . . , 𝑓𝐽 are densities
with respect to the Lebesgue measure on R, 𝜇 = d𝑥. We demonstrate that consistent
estimation of these densities in the supremum norm is indeed possible at a near-minimax
rate in the nonparametric setting, under the following typical smoothness condition.

Assumption E. 𝑓1, . . . 𝑓𝐽 belong to 𝐶𝑠(R) for some 𝑠 > 0, where for 𝐶0(R) denoting all
bounded continuous functions from R to itself (equipped with the usual supremum norm
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‖·‖∞) and writing 𝑗 = ⌊𝑠⌋ for the integer part of 𝑠, 𝐶𝑠(R) denotes the usual space of
(locally) Hölder-continuous functions

𝐶𝑠(R) = {𝑓 : 𝑓 (𝑗) ∈ 𝐶𝑠−𝑗(R)}, 𝑠 ≥ 1

𝐶𝑠(R) = {𝑓 ∈ 𝐶0(R) : sup
0<|𝑥−𝑦|≤1

(︁ |𝑓(𝑥) − 𝑓(𝑦)|
|𝑥− 𝑦|𝑠

)︁
< ∞} 𝑠 ∈ (0, 1),

equipped with the usual norm

‖𝑓‖𝐶𝑠 = ‖𝑓 (⌊𝑠⌋)‖𝐶𝑠−⌊𝑠⌋ +
∑︁

0≤𝑖<⌊𝑠⌋
‖𝑓 (𝑖)‖∞, 𝑠 ≥ 1

‖𝑓‖𝐶𝑠 = ‖𝑓‖∞ + sup
0<|𝑥−𝑦|≤1

|𝑓(𝑦) − 𝑓(𝑥)|
|𝑦 − 𝑥|𝑠

, 0 < 𝑠 < 1.

The results also extend in the usual way to Besov spaces, e.g. using results from Giné
and Nickl (2016, Chapter 4).

Theorem 5. Grant Assumptions B, C’, D and E. Suppose 𝐿0 → ∞ as 𝑁 → ∞, and
𝐿

max(5,(𝐽+3)/2)
0 𝑟𝑁 → 0, where 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠). Then there exist estimators 𝑓𝑗 ,

1 ≤ 𝑗 ≤ 𝐽 (continuous so that the supremum below is measurable) and a permutation 𝜏
such that, for some 𝐶 > 0,

Π𝐻

(︁
‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≥ 𝐶𝐿5

0𝑟𝑁
)︁

→ 0. (17)

Convergence in expectation also holds: for some 𝐶 ′ > 0,

𝐸𝐻‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ 𝐶 ′𝐿5
0𝑟𝑛. (18)

The proof is given in Section 5.2. The parameter 𝐿0 has the interpretation of the
dimension of a matrix used in the contruction of the estimators and it can be chosen to
diverge arbitrarily slowly (or even, under slightly strengthened versions of the assumptions,
to take the fixed value 𝐽 – see Algorithm 1 and the remarks thereafter), so that the upper
bound is arbitrarily close to the following lower bound. Such a lower bound is familiar
from the i.i.d. setting, but does not automatically apply in the current setting. Indeed, the
mixture components in a nonparametric mixture model are not identifiable, so that our
assumptions necessarily exclude the i.i.d. subcase of a HMM. The content of the following
proposition is that these assumptions do not, however, make estimation easier than having
i.i.d. samples from each of the emission densities. We refer to Appendix C for a formal
statement and proof. Let us just mention that the idea consists of identifying a broad class
of parameters over which the upper bound results hold uniformly – some details on this can
already be found in Section 4.3 below – and proving the corresponding lower bound over
this class of parameters.

Proposition 6 (informal statement). The rate 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠) is a lower bound
for the minimax supremum-norm estimation rate for the emission densities in a 𝐽-state
nonparametric HMM.
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The algorithm solving Theorem 5 uses a ‘spectral’ method similar to those of Anand-
kumar et al. (2012) De Castro et al. (2017) and Lehéricy (2018). However, De Castro et al.
(2017) and Lehéricy (2018) expand in terms of orthonormal basis functions, and use partic-
ular properties of 𝐿2-projections which do not straightforwardly adapt to the 𝐿∞ setting.
In developing herein a spectral kernel density estimator we are forced to bypass the need for
these projection properties (note though that one could apply similar ideas to basis function
based estimators). See Algorithm 1 for a description of the estimating procedure.

Finally, note that Theorems 4 and 5 only show that one may estimate the parameters
consistently up to a permutation. While this is generally sufficient for estimation purposes,
since the labelling of the states is usually of no relevance, any multiple testing procedure
targeting FDR control necessarily treats the null and the alternative differently, so it is
essential that we can identify which of our estimators corresponds to the null state. We will
therefore also require the following condition.

Condition F. There exist estimators 𝑓1, . . . , 𝑓𝐽 in Theorem 5 (or Theorem 4) for which
the permutation 𝜏 is the identity.

It suffices that there exist {𝑓1, . . . , 𝑓𝐽 , 𝜏} as in Theorem 5 for which the permutation
𝜏 can be estimated consistently by some 𝜏 , since we can define 𝑓𝑗 = 𝑓𝜏(𝑗). We give two
illustrative assumptions, each plausible in the original two-state FDR setting, under which
Condition F holds. A version of the following proposition also holds under such assumptions
in the discrete setting using Theorem 4 in place of Theorem 5 in the proof, which can be
found at the end of Section 5.2.

Proposition 7. In the setting of Theorem 2 grant also Assumption E (and recall that
Assumption D automatically holds). Then Condition F is verified, and there exist estimators
𝑄̂, 𝜋̂, 𝑓0, 𝑓1 satisfying (14) for any rate 𝜀𝑁 slower than 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠), under
either of the following assumptions:

1. For some known 𝑥* ∈ R ∪ {+∞}, 𝑓1(𝑥)/𝑓0(𝑥) → ∞ as 𝑥 ↑ 𝑥*.

2. 𝜋0 is known to be greater than 𝜋1.

4. Discussion

4.1 Applicability of the Results

Generality of the assumptions. Assumptions A to E and Condition F are not restrictive,
so that Theorems 2, 4 and 5 hold in typical nonparametric settings (we discuss the extra
assumption of Theorem 3 in Section 4.4).

Assumption A is a signal strength assumption, without which the proofs (in particular
the proof of Lemma 14) remain valid only for large enough values of 𝑡. It is known that weak
signals are a case requiring special attention for multiple testing, discussed for example in
a different setting in Heller and Rosset (2021).

The moment condition Assumption B is used for Lemmas 12 and 31. A different proof of
Theorem 5 might bypass the need for this condition since kernel methods have been known
to work in density estimation in the absence of tail conditions.

12
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The full rank assumption on 𝑄 in Assumption C’ is necessary even for identifiability up
to a permutation in the two-state case (with nonparametric emission densities) since other-
wise the HMM reduces to an i.i.d. nonparametric mixture model, whose non-identifiability
is easily seen. For 𝐽 > 2 states it is not known whether identifiability holds without this
assumption, and full rank is assumed in all papers know to the authors concerning non-
parametric inference of HMM parameters. Irreducibility is essential to ensure all hidden
states genuinely influence the data. Aperiodicity is assumed to allow typical Markov chain
convergence and concentration results to apply, but in principle it should be possible to
avoid this assumption at the expense of requiring specially tailored proofs, since the proofs
use empirical averages as a building block.

Consistent estimation of the HMM parameters is possible upon replacing Assumption D
by the weaker assumption that the emission densities are all distinct, see Alexandrovich
et al. (2016) and Lehéricy (2018). Proving rates under this weaker assumption is much
harder and no results exist yet.

Implementing the method. Our proposed method for estimating the emission densities
can be implemented through Algorithm 1. Then, given estimators of the parameters, ef-
ficient computations of ℓ-values is easily done using the forward-backward algorithm for
HMMs. Indeed the empirical Bayes multiple testing procedure is implemented in Sun and
Cai (2009), Wang et al. (2019) and Su and Wang (2020). [These works use mixture models
with unknown number of components to estimate the emission densities, either via fully
Bayesian methods or via some model selection method.]

4.2 The Parametric Setting

Bickel et al. (1998) prove a central limit theorem for the maximum likelihood estimator of
the model parameter (which we denote, say, by ℎ) under standard regularity conditions,
so that it may be estimated at a parametric rate up to label switching. To these, adding
the condition that the parametrisation map ℎ ↦→ (𝑓1,ℎ, . . . 𝑓𝐽,ℎ) is Lipschitz continuous with
respect to the Euclidean norm and the supremum norm (at least on a neighbourhood of the
true parameter), we arrive at the following.
Proposition 8. In a parametric model satisfying mild regularity conditions, Assumptions C’
and D are enough to ensure that there exist estimators 𝑄̂, 𝜋̂, 𝑓1, . . . , 𝑓𝐽 such that for some
permutation 𝜏 and any 𝑀𝑁 → ∞,

max
(︀
‖𝑄̂−𝑄‖𝐹 , ‖𝜋̂ − 𝜋‖, ‖𝑓1 − 𝑓𝜏(1)‖∞, . . . , ‖𝑓𝐽 − 𝑓𝜏(𝐽)‖∞

)︀
< 𝑀𝑁𝑁

−1/2,

with probability tending to 1.

We note that many common parametric families, including Gaussian models, exponen-
tial models and Poisson models, satisfy a suitable regularity condition (this can be seen by
using standard formulae for exponential families to calculate the derivative of the parametri-
sation map and bounding).

Under an assumption akin to those of Proposition 7 to ensure that a version of Condi-
tion F holds, we see that Theorems 2 and 3 apply in a parametric setting. Except perhaps
for the regularity condition, our assumptions are weaker than those of Sun and Cai (2009)
(after adapting Theorem 3 slightly – see Section 4.4), so that we slightly generalise their
main results even in the parametric setting.

13
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4.3 Uniformity in the Parameters

The constants of Theorem 5 depend only on quantitative measures (as listed below) of the
degree to which Assumptions B, C’, D and E hold, so that a uniform version of (18),

sup
𝐻∈ℋ

𝐸𝐻‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ 𝐶 ′𝐿5
0𝑟𝑛,

holds if the following bounds are satisfied on the set ℋ (and similarly for (17)). The
estimators 𝑓1, . . . 𝑓𝐽 do not depend on knowledge of the bound 𝑀 < ∞, so the result is
adaptive in these quantities (though recall that the smoothness 𝑠 is assumed known – see
also the discussion of adaptation in Section 4.4).

• sup𝐻∈ℋ(max𝑗 𝐸𝑋∼𝑓𝑗
|𝑋|1/𝑀 ) ≤ 𝑀 .

• sup𝐻∈ℋ(𝜅(𝑄)) ≤ 𝑀 , where 𝜅(𝑄) = ‖𝑄‖‖𝑄−1‖, the condition number, measures how
far 𝑄 is from having less than full rank.

• inf𝐻∈ℋ 𝛾ps ≥ 𝑀−1 where 𝛾ps denotes the pseudo spectral gap of the matrix 𝑄 as
defined in Paulin (2015). This bound quantitatively measures how far the chain 𝜃 is
from being reducible or periodic, and is only used to control the mixing time of the
chain 𝜃. It can therefore be replaced by any assumption ensuring a uniform bound
on the mixing time; in particular, in the two-state case of Section 2, the chain 𝜃 is
necessarily reversible and it suffices to assume a uniform lower bound on the absolute
spectral gap 𝛾*, defined by

𝛾* =
{︃

1 − sup{|𝜆| : 𝜆 an eigenvalue of 𝑄, 𝜆 ̸= 1} the eigenvalue 1 of 𝑄 has multiplicity 1,
0 otherwise.

• inf𝐻∈ℋ min𝑗(𝜋𝑗) > 𝑀−1. This too measures how far the chain is from being reducible.

• sup𝐻∈ℋ max𝑗‖𝑓𝑗‖𝐶𝑠 ≤ 𝑀 .

• sup𝐻∈ℋ max(𝐿, 1/𝐶) ≤ 𝑀 , where (𝐶,𝐿) are the constants, depending on 𝐻, from
Lemma 24 in Appendix B. Denoting by 𝜎𝐽(𝐴) the 𝐽th largest singular value of a
matrix 𝐴, these constants control 𝜎𝐽(𝑂𝐿0) where 𝑂𝐿0 = (𝐸[ℎ𝑙(𝑋1) | 𝜃1 = 𝑗])𝑙≤𝐿0,𝑗≤𝐽
for some suitably chosen functions ℎ𝑙, 𝑙 ≤ 𝐿0. The lemma shows that ℎ1, . . . , ℎ𝐿0

can be chosen in a universal way such that max(𝐿, 1/𝐶) < ∞ whenever 𝑓1, . . . 𝑓𝐽 are
linearly independent, so these constants quantitively measure the linear independence
of these functions. In the case 𝐽 = 2, a sufficient (but not necessary) condition for
such a uniform bound to hold is that inf𝐻 |𝑃𝑋∼𝑓0(𝑋 ∈ 𝐴) − 𝑃𝑋∼𝑓1(𝑋 ∈ 𝐴)| > 0 for
some known set 𝐴: one then constructs the estimators 𝑓0, 𝑓1 using, in Algorithm 1,
𝐿0 = 2, ℎ1 = 1, ℎ2 = 1𝐴.

• inf𝐻∈ℋ 𝑐 ≥ 𝑀−1 where 𝑐 = 𝑐(𝐻) is the constant of Lemma 26 in Appendix B. The
lemma shows that this constant is positive whenever 𝑓1, . . . , 𝑓𝐽 are distinct and so it
provides a quantitative measure of the degree of distinctness of these functions. In
view of the proof, a sufficient (but not necessary) condition for such a uniform bound
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to hold is that 𝑓1, . . . 𝑓𝐽 can uniformly be separated at a point, i.e. that the set ℋ is
such that

inf
𝐻∈ℋ

sup
𝑥∈R

min
𝑗 ̸=𝑗′

|𝑓𝑗(𝑥) − 𝑓𝑗′(𝑥)| > 𝑀−1.

In what follows, we use for example 𝐶 = 𝐶(ℋ) to denote any constant which depends only
on the above bounds (i.e. on 𝑀 < ∞). We note that the set ℋ over which the upper bound
is uniform (under the sufficient conditions of the last two items, with 𝐴 = [−1, 1]) includes
the set over which the lower bound Proposition 6 is proved in Appendix C, so that the
estimation result Theorem 5 can genuinely be viewed as a minimax result.

The FDR result Theorem 2 is uniform over a large subset ℐ ⊂ ℋ. In particular, in
addition to the above constraints, one needs to add the following conditions.

• inf𝐻∈ℐ Π𝐻((𝑓1/𝑓0)(𝑋1) > 𝑢) > 0 for each 𝑢 > 0.

• Condition F holds in a uniform way for 𝐻 ∈ ℐ.

• inf𝐻∈ℐ min𝑖,𝑗 𝑄𝑖𝑗 > 0. [This is in fact implied already by the bounds on the 𝜋𝑗 and
on the pseudo-spectral gap, since for Theorem 2 we are in the two-state setting.]

We write 𝐶 = 𝐶(ℐ) to denote any constant which depends only on ℋ and these quantities.

4.4 Extensions of the Theorems

Weakening the assumption of Theorem 3. Theorem 3 remains true if we replace the assump-
tion on (𝑓1/𝑓0)(𝑋1) with the following; see Lemma 17 for a proof that this new condition
holds under the assumptions of Theorem 3.

Condition G. Viewing the sample (𝑋𝑛 : 1 ≤ 𝑛 ≤ 𝑁) as coming from a bi-infinite HMM
(𝑋𝑛 : 𝑛 ∈ Z), grant that the distribution function of

ℓ∞𝑖 (𝑋) := Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛∈Z) (19)

is continuous and strictly increasing on [0, 1].

This condition is weaker than the ‘monotone ratio condition’ assumed in Sun and Cai
(2009), since the latter implicitly assumes that the distribution function of ℓ∞𝑖 has a strictly
positive derivative. In the discrete context (that is, when the 𝑋𝑖’s take discrete values),
understanding when the distribution of the variables ℓ∞𝑖 has a density with respect to
Lebesgue measure is known to be hard, since it is mostly still an open problem for the
closely related stationary filter Φ∞

𝑖 (𝑋) := Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛≤𝑖), see Blackwell (1957),
Bárány and Kolossváry (2015) and references therein.

Of particular interest, though, is the fact that this new condition is only about the
continuity of the distribution function, not about its absolute continuity. Continuity is a
weaker property that could be easier to understand and could hold in much more generality,
so that Condition G opens up the possiblity that a version of Theorem 3 may hold even
in certain discrete settings. Indeed, simulations in Su and Wang (2020) are suggestive that
the conclusions of the theorem hold. They compare various multiple testing procedures and
provide empirical evidence that the TDR of the empirical Bayes multiple testing method
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using nonparametric modeling of HMMs roughly matches that of an oracle thresholding
procedure and is the best among the multiple testing procedures they compare.

Use of marginal FDR and TDR in Theorem 3. The proof of Theorem 3 in fact shows,
after some minor adjustments, that

TDR𝐻(𝜙) ≥ TDR𝐻(𝜙𝜆max,𝐻) − 𝑜(1),

where 𝜆max = 𝜆max(𝑡,𝐻) is chosen maximal such that FDR𝐻(𝜙𝜆max,𝐻) ≤ 𝑡, so that 𝜙 is
(asymptotically) optimal for the TDR when restricting to the class of procedures whose
TDR and FDR asymptotically coincide with their marginal equivalents. Heller and Rosset
(2021) show in a non-Markovian setting that the procedure maximising the TDR among all
procedures with controlled FDR is not in this class, but their results leave open the possiblity
that Theorem 3 remains true with the full FDR and TDR. Indeed, a main conclusion of
their work is that the class (𝜙𝜆,𝐻 : 𝜆 ≥ 0) (or rather, the equivalent of this class for their
setting) is optimal for the problem of maximing TDR with controlled FDR provided one
allows data-driven thresholds – such as 𝜆̂ – whereas the current proof of Theorem 3 uses
that for mTDR optimality with mFDR control it suffices to consider the class for non-
random thresholds. Furthermore, the difference between the FDR and TDR of the optimal
procedure and their marginal versions in the setting of Heller and Rosset (2021) manifests
itself for weak signals, so that our signal strength assumption may suffice to rule out any
such difference.

Adaptation. The estimator we construct for Theorem 5 uses knowledge of the smooth-
ness 𝑠. One can adjust the arguments of Lehéricy (2018) to show that a careful application
of Lepskii’s method allows adaptation up to a maximum smoothness 𝑠max < ∞, and in-
deed state-by-state adaptation, wherein each state is estimated at a rate adapting to its
smoothness parameter 𝑠𝑗 , rather than requiring 𝑠𝑗 = 𝑠 for all 𝑗. As usual, the rough idea
is to construct estimators 𝑓𝐿𝑗 , 𝑗 ≤ 𝐽 for each 𝐿 ≤ 𝐿max and use ‖𝑓𝐿𝑗 − 𝑓𝐿max

𝑗 ‖∞ as a proxy
for the bias, so that one can make a suitable bias-variance tradeoff. In the HMM setting,
as noted in Lehéricy (2018), one must also use 𝑓𝐿max

𝑗 to “align” the estimators 𝑓𝐿𝑗 up to a
single permutation 𝜏 rather than needing a different permutation 𝜏𝐿 for each level 𝐿; one
can show using the triangle inequality that this alignment is successful for all large enough
𝐿 ≤ 𝐿max with probability tending to 1.

General measure spaces. The proofs of Theorems 2 and 3 essentially only use the as-
sumption that 𝜇 is Lebesgue measure on R or counting measure on Z in showing Lemma 12,
so that versions of these theorems continue to hold on general (metric) measure spaces af-
ter adjusting Assumption B appropriately. Theorem 4 readily generalises to 𝜇 being any
discrete measure of known support. The proof of Theorem 5 uses kernel density estimation
techniques, and in principle it should be possible to prove a version of this result in any set-
ting where kernel-type estimators with suitable properties exist – for example, using results
from Cleanthous et al. (2020), on manifolds.

4.5 Other HMM settings

Wei et al. (2009) adapt HMM methods to more realistically model non-homogeneities of
genetic data. More generally, the methodology of empirical Bayes multiple testing could
be applied to other hidden Markov settings, such as seasonal hidden Markov models where
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nonparametric identifiability is proved in Touron (2019), or hidden Markov models with
covariates as described in Zucchini et al. (2016, Chapter 10) (see also the references therein
for applications). In such extensions, theoretical grounding would rely on a good control of
the estimators, and on the propagation of errors in the posterior probabilities when plugging
estimates of the transition probabilities and of the emission densities. Note also that the
same posterior-based procedure as described herein has been investigated through simula-
tions for hidden Markov random fields in Shu et al. (2015), showing better performances
than usual multiple testing procedures.

5. Proofs

5.1 Proofs: FDR Control and TDR Optimality

The following lemma isolates part of the proof of Theorems 2 and 3, showing that ℓ̂𝑖(𝑋)
converges to ℓ𝑖(𝑋) at a rate slightly slower than the convergence rate 𝜀𝑁 of the estimators
𝐻̂. Recalling the sketch proofs in Section 2.2, this lemma will be essential in obtaining
bounds on the FDR and TDR.

Lemma 9. In the setting of Theorem 2 define 𝜀′
𝑁 = 𝜀𝑁 (log𝑁)𝑢, and recall that by definition

𝑢 > 1 + 𝜈−1 and by assumption 𝜀′
𝑁 → 0, where 𝜈 is the parameter of Assumption B. Then

max
𝑖≤𝑁

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁 ) → 0, as 𝑁 → ∞. (20)

Consequently, there exists 𝛿𝑁 → 0 such that

Π𝐻(#{𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁} > 𝑁𝛿𝑁 ) → 0.

Proof We begin by showing that Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝑀𝜀′
𝑁 ) → 0 for each fixed 𝑖, for

some constant 𝑀 = 𝑀(ℐ). [Recall that a constant 𝑀(ℐ) depends only on certain bounds
for the parameter 𝐻 = (𝑄, 𝜋, 𝑓0, 𝑓1) as described in Section 4.3.]

Let (𝐸𝑁 )𝑁 be a sequence of events with probability tending 1 on which

max
(︁
‖𝑄̂−𝑄‖𝐹 , ‖𝜋̂ − 𝜋‖, max

𝑗∈{0,1}
‖𝑓𝑗 − 𝑓𝑗‖∞

)︁
≤ 𝜀𝑁 ,

and define

𝛿 = min
𝑖,𝑗

𝑄𝑖,𝑗 , 𝜌 = (1 − 2𝛿)/(1 − 𝛿),

𝛿 = min
𝑖,𝑗

𝑄̂𝑖,𝑗 , 𝜌 = (1 − 2𝛿)/(1 − 𝛿).

Then Proposition 2.2 of De Castro et al. (2017) yields that for some 𝐶 depending only on
a lower bound for 𝛿,

|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| ≤ 𝐶
{︁
𝜌𝑖−1‖𝜋̂ − 𝜋‖ +

[︀
(1 − 𝜌)−1 + (1 − 𝜌)−1]︀‖𝑄̂−𝑄‖𝐹+

𝑁∑︁
𝑛=1

((𝜌 ∨ 𝜌)|𝑛−𝑖|/𝑓𝜋(𝑋𝑛)) max
𝑗=0,1

|𝑓𝑗(𝑋𝑛) − 𝑓𝑗(𝑋𝑛)|
}︁
.

(21)
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[The proposition there is stated with 𝑐*(𝑥) := min𝑗=0,1
∑︀
𝑘𝑄𝑗𝑘𝑓𝑘(𝑥) in place of 𝑓𝜋(𝑥), but

we note 𝑐*(𝑥) so defined is lower bounded by 𝛿𝑓𝜋(𝑥). Also note that the authors assume
that 𝑓0, 𝑓1 are densities with respect to Lebesgue measure, but this assumption is not used
in the proof of Proposition 2.2 therein.] Recalling we assumed that 𝛿 was (strictly) positive,
we see that on 𝐸𝑁 , for 𝑁 large enough we have 𝛿 > 𝛿 = 𝛿/2, 𝜌 < 𝜌 = (1 + 𝜌)/2, and we
replace 𝜌, 𝜌 and 𝛿, 𝛿 in (21) by 𝜌 < 1 and 𝛿 > 0. On the event 𝐸𝑁 , choosing the constant
𝑀 = 𝑀(𝛿, 𝜌, 𝐶) = 𝑀(ℐ) large enough we see by a union bound that

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝑀𝜀′
𝑁 ) ≤ Π𝐻(𝐸𝑐𝑁 ) + Π𝐻

(︂
𝜀𝑁

𝑁∑︁
𝑛=1

𝜌|𝑛−𝑖|

𝑓𝜋(𝑋𝑛) > 𝜀′
𝑁

)︂
.

For 𝜅 > 0 to be chosen, define 𝑆𝜅,𝑖 = {𝑛 ≤ 𝑁 : |𝑛 − 𝑖| ≤ 𝜅 log𝑁}. We can split the terms
in 𝑆𝜅,𝑖 from those in 𝑆𝑐𝜅,𝑖 to see, for 𝐶 ′ = 2∑︀∞

𝑛=0 𝜌
𝑛 < ∞, that

∑︁
𝑛≤𝑁

𝜌|𝑛−𝑖|

𝑓𝜋(𝑋𝑛) ≤ 𝐶 ′
[︁

max
𝑛∈𝑆𝜅,𝑖

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
+ 𝜌𝜅 log𝑁 max

𝑛≤𝑁

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁]︁
,

so that again appealing to a union bound, it suffices to show

Π𝐻

(︂
max
𝑛∈𝑆𝜅,𝑖

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
>

1
2𝐶 ′ (𝜀

′
𝑁/𝜀𝑁 )

)︂
→ 0, and (22)

Π𝐻

(︂
𝜌𝜅 log𝑁 max

𝑛≤𝑁

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
>

1
2𝐶 ′ (𝜀

′
𝑁/𝜀𝑁 )

)︂
→ 0. (23)

Lemma 12 (in Appendix A.1) tells us that for any 𝑎 > 1 + 𝜈−1, with 𝜈 the constant of
Assumption B, we have Π𝐻(max𝑖≤𝑅 1/𝑓𝜋(𝑋𝑖) > 𝑅𝑎) → 0 as 𝑅 → ∞. By stationarity of
the process 𝑋, taking 𝑅 = |𝑆𝜅,𝑖| ≤ (2𝜅 log𝑁 + 1) we deduce that

Π𝐻

(︁
max
𝑛∈𝑆𝜅,𝑖

1
𝑓𝜋(𝑋𝑛) > (2𝜅 log𝑁 + 1)𝑎

)︁
→ 0.

Recalling that 𝜀′
𝑁/𝜀𝑁 > (log𝑁)𝑢, we see that (22) holds for all 𝜅 if 𝑢 > 𝑎. Next we apply

Lemma 12 with 𝑅 = 𝑁 to see

Π𝐻

(︂
max
𝑛≤𝑁

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
> 𝑁𝑎

)︂
→ 0.

Noting that 𝜌−𝜅 log𝑁 = 𝑁𝜅 log(1/𝜌) and choosing 𝜅 > 𝑎(log 1/𝜌)−1 yields (23). This concludes
the proof that for some constant 𝑀 and each 𝑖 ≤ 𝑁 , Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝑀𝜀′

𝑁 ) → 0.
To see that max𝑖 Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁 ) → 0, we note that by initially considering
𝜀′
𝑛 defined for some 𝑢′ < 𝑢 we can remove the constant 𝑀 . Thanks to stationarity of the

HMM 𝑋, we further note that

max
𝑖≤𝑁

Π𝐻

(︁
max
𝑛∈𝑆𝜅,𝑖

1
𝑓𝜋(𝑋𝑛) > (2𝜅 log𝑁 + 1)𝑎

)︁
→ 0;

then, since the other terms in the calculations above do not depend on 𝑖, we deduce (20).
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Finally, defining

𝛿𝑁 =
(︁
max
𝑖≤𝑁

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁 )
)︁1/2

,

we appeal to Markov’s inequality to see that

Π𝐻(#{𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁} > 𝑁𝛿𝑁 ) ≤ 1

𝑁𝛿𝑁

𝑁∑︁
𝑖=1

Π𝐻

(︀
|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁

)︀
≤ 𝛿−1

𝑁 max
𝑖≤𝑁

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁 ) = 𝛿𝑁 ,

which tends to zero, concluding the proof.

Proof [Proof of Theorem 2] Write 𝑡 = postFDR𝐻̂ 𝜙 and recall we write 𝑆0 for the rejection
set of 𝜙. We have, for any sequences of positive numbers 𝜀′

𝑁 and of events 𝐹𝑁 ,

|FDR𝐻(𝜙) − 𝐸𝐻𝑡| =
⃒⃒
𝐸𝑋∼Π𝐻

[postFDR𝐻(𝜙) − postFDR𝐻̂(𝜙)]
⃒⃒

≤ 𝐸𝐻

[︂∑︀𝑁
𝑖=1|ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)|1{𝑖 ∈ 𝑆0}

1 ∨ |𝑆0|

]︂

≤ 𝜀′
𝑁 + Π𝐻(𝐹 𝑐𝑁 ) + 𝐸𝐻

[︁
1𝐹𝑁

∑︀𝑁
𝑖=1 1{|ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)| > 𝜀′

𝑁}
1 ∨ |𝑆0|

]︁
,

where we have used that |ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)| ≤ 1 for all 𝑖. Lemma 13 in Appendix A.1 shows
that 𝐸𝐻 [𝑡] → min(𝑡, 𝜋0), so that it is enough to show the right side tends to zero for suitable
𝜀′
𝑁 and 𝐹𝑁 .

Lemma 14 tells us that Π𝐻(|𝑆0| > 𝑎𝑁) → 1 for some 𝑎 > 0. Combining with Lemma 9
by a union bound, we deduce that for suitably chosen 𝜀′

𝑁 → 0, 𝛿𝑁 → 0 and 𝑎 > 0, we have
Π𝐻(𝐹 𝑐𝑁 ) → 0 if we define

𝐹𝑁 =
{︀
#{𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁} ≤ 𝑁𝛿𝑁
}︀

∩
{︀
|𝑆0| > 𝑎𝑁

}︀
.

Then
𝐸𝐻

[︁
1𝐹𝑁

∑︀𝑁
𝑖=1 1{|ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)| > 𝜀′

𝑁}
1 ∨ |𝑆0|

]︁
≤ 𝑁𝛿𝑁

𝑎𝑁
→ 0,

yielding the result.

The following lemma, mentioned already in the sketch proof in Section 2.2, will help us
in proving Theorem 3.

Lemma 10. Under the assumptions of Theorem 3, define 𝜆* ∈ (𝑡, 1] implicitly by

𝐸𝐻 [ℓ∞𝑖 (𝑋) | ℓ∞𝑖 (𝑋) < 𝜆*] = min(𝑡, 𝜋0),

where ℓ∞𝑖 is as in (19) (by stationarity the conditional expectation does not depend on 𝑖).
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Such a 𝜆* exists; it satisfies, for 𝜀 > 0,

𝐸𝐻 [ℓ∞𝑖 (𝑋) | ℓ∞𝑖 (𝑋) < 𝜆* − 𝜀] < min(𝑡, 𝜋0),
𝐸𝐻 [ℓ∞𝑖 (𝑋) | ℓ∞𝑖 (𝑋) < 𝜆* + 𝜀] > 𝑡 if 𝑡 < 𝜋0;

and we have
𝜆̂ → 𝜆* in probability as 𝑁 → ∞. (24)

Proof Lemma 17 (in Appendix A.2) tells us that under the assumptions of Theorem 3,
the distribution function of ℓ∞𝑖 is continuous and strictly increasing. Lemma 18 then tells
us that the same is true of the map 𝜆 ↦→ 𝐸𝐻 [ℓ∞𝑖 | ℓ∞𝑖 < 𝜆], and that 𝐸𝐻 [ℓ∞𝑖 | ℓ∞𝑖 < 𝑡] < 𝑡.
Noting also that 𝐸𝐻 [ℓ∞𝑖 | ℓ∞𝑖 < 1] = 𝐸𝐻 [ℓ∞𝑖 ] = 𝜋0 (since ℓ∞𝑖 < 1 with probability 1), we
deduce the existence of a unique solution 𝜆* ∈ (𝑡, 1] by the intermediate value theorem.
Strict monotonicity of the conditional expectation implies the claimed inequalities when
conditioning on ℓ∞𝑖 < 𝜆* − 𝜀 and on ℓ∞𝑖 < 𝜆* + 𝜀.

For the convergence in probability, we show for 𝜀 > 0 arbitrary that with probability
tending to 1 we have postFDR𝐻̂(𝜙𝜆*−𝜀,𝐻̂) < 𝑡. We omit the almost identical proof that
for 𝑡 < 𝜋0 we have postFDR𝐻̂(𝜙𝜆*+𝜀,𝐻̂) > 𝑡. From these two bounds one deduces that
𝜆̂ ∈ (𝜆* − 𝜀, 𝜆* + 𝜀), implying (24).

By Lemma 19, there exist 𝜉𝑁 , 𝛿𝑁 → 0, such that with probability tending to 1

#{𝑖 : 1 ≤ 𝑖 ≤ 𝑁, |ℓ̂𝑖(𝑋) − ℓ∞𝑖 (𝑋)| > 𝜉𝑁} ≤ 𝑁𝛿𝑁 ,

and we observe that

postFDR𝐻̂(𝜙𝜆*−𝜀,𝐻̂) =
∑︀
ℓ̂𝑖1{ℓ̂𝑖 < 𝜆* − 𝜀}

1 ∨ (∑︀1{ℓ̂𝑖 < 𝜆* − 𝜀})

≤
∑︀
ℓ̂𝑖1{ℓ̂𝑖 < 𝜆* − 𝜀, |ℓ̂𝑖 − ℓ∞𝑖 | ≤ 𝜉𝑁}

1 ∨ (∑︀1{ℓ̂𝑖 < 𝜆* − 𝜀, |ℓ̂𝑖 − ℓ∞𝑖 | ≤ 𝜉𝑁})
+ #{𝑖 : |ℓ̂𝑖 − ℓ∞𝑖 | > 𝜉𝑁}

#{𝑖 : ℓ̂𝑖 < 𝜆* − 𝜀}

≤
∑︀
ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}

1 ∨ (∑︀1{ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉𝑁 , |ℓ̂𝑖 − ℓ∞𝑖 | ≤ 𝜉𝑁}
+ 𝜉𝑁 + #{𝑖 : |ℓ̂𝑖 − ℓ∞𝑖 | > 𝜉𝑁}

#{𝑖 : ℓ̂𝑖 < 𝜆* − 𝜀}
.

Since 𝜆* > 𝑡 (the proof of) Lemma 14 implies that for some 𝑐 > 0 and for 𝜀 > 0 small enough,
#{𝑖 : ℓ̂𝑖 < 𝜆*−𝜀} > 𝑐𝑁 with probability tending to 1. We also lower bound the denominator
in the first term of the final line by #{𝑖 : ℓ∞𝑖 < 𝜆* − 𝜀 − 𝜉𝑁} − #{𝑖 : |ℓ̂𝑖 − ℓ∞𝑖 | > 𝜉𝑁}; for
𝜀, 𝜉𝑁 , 𝑐

′ small enough note that #{𝑖 : ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉𝑁} > 𝑐′𝑁 with probability tending to
1 by ergodicity (i.e. applying Lemma 20 with 𝑔(𝑥) = 1{𝑥 < 𝜆* − 𝜀− 𝜉} for some 𝜉 > 𝜉𝑁 ),
using that Π𝐻(ℓ∞𝑖 < 𝜆* −𝜀−𝜉𝑁 ) > 0. It follows that for an event 𝐶𝑁 of probability tending
to 1, postFDR𝐻̂(𝜙𝜆*−𝜀,𝐻̂) is upper bounded by

1𝐶𝑐
𝑁

+
∑︀
ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}∑︀
1{ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉𝑁}

(︁
1 +𝑂

(︁ #{𝑖 : |ℓ̂𝑖 − ℓ∞𝑖 | > 𝜉𝑁}
#{𝑖 : ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉𝑁}

)︁)︁
+ 𝜉𝑁 + 𝛿𝑁/𝑐

≤
∑︀
ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}∑︀
1{ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉𝑁}

+ 𝑜𝑝(1).
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Again using the ergodicity result Lemma 20, we have that, for fixed 𝜉 > 0,

1
𝑁

𝑁∑︁
𝑖=1

ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉} → 𝐸𝐻 [ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉}] in probability,

1
𝑁

𝑁∑︁
𝑖=1

1{ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉} → Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉) > 0 in probability,

so that we may apply Slutsky’s lemma (e.g. van der Vaart, 1998, Lemma 2.8) to deduce
that for 𝑁 large enough∑︀𝑁

𝑖=1 ℓ
∞
𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}∑︀𝑁

𝑖=1 1{ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉𝑁}
≤
∑︀𝑁
𝑖=1 ℓ

∞
𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉}∑︀𝑁

𝑖=1 1{ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉}

≤ 𝐸𝐻 [ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉}]
Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉) + 𝑜𝑝(1).

Finally we note that

𝐸𝐻 [ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉}]
Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉) = 𝐸𝐻

[︀
ℓ∞𝑖 | ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉

]︀Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉)
Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉) .

Uniformly in 𝜉 satisfying 0 < 𝜉 < 𝜀/2, we have by monotonicity

𝐸𝐻 [ℓ∞𝑖 | ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉] ≤ 𝐸𝐻 [ℓ∞𝑖 | ℓ∞𝑖 < 𝜆* − 𝜀/2] < min(𝑡, 𝜋0).

Observe also that Π𝐻(𝜆* − 𝜀 − 𝜉 ≤ ℓ∞𝑖 < 𝜆* − 𝜀 + 𝜉) → 0 as 𝜉 → 0 by the continuity of
the distribution function of ℓ∞𝑖 , while Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉) is bounded away from zero for
𝜆* − 𝜀 − 𝜉 bounded away from zero. It follows that by choosing 𝜉 = 𝜉(𝜀) small enough we
may ensure that

𝐸𝐻 [ℓ∞𝑖 | ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉]Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀+ 𝜉)
Π𝐻(ℓ∞𝑖 < 𝜆* − 𝜀− 𝜉) < min(𝑡, 𝜋0).

We conclude, as claimed, that postFDR𝐻̂(𝜙𝜆*−𝜀,𝐻̂) < min(𝑡, 𝜋0) with probability tending
to 1.

Proof [Proof of Theorem 3] Define 𝜆* as in Lemma 10. In the case 𝜆* = 1, one shows
that 𝜙 rejects all but 𝑜𝑝(𝑁) of the hypotheses. It follows that, asymptotically, its mTDR
is close to that of the procedure which rejects all null hypotheses, which trivially has the
best mTDR of any procedure. We omit the proof details in this case and henceforth assume
that 𝜆* < 1, or equivalently (in view of Lemma 10) that 𝑡 < 𝜋0.

We compare 𝜙 to the ‘oracle’ procedure 𝜙𝜆*,𝐻 , which we will argue has optimal multiple
testing properties. For 𝜀𝑁 > 0 we may decompose

1{ℓ𝑖 < 𝜆*} ≤ 1{𝜆* − 𝜀𝑁 ≤ ℓ𝑖 < 𝜆*} + 1{ℓ̂𝑖 < 𝜆̂} + 1{𝜆̂ < 𝜆* − 𝜀𝑁/2} + 1{ℓ̂𝑖 − ℓ𝑖 > 𝜀𝑁/2}.

Lemma 10 tells us that 𝜆̂ tends to 𝜆* in probability, so that Π𝐻(𝜆̂ < 𝜆* − 𝜀𝑁/2) → 0 for 𝜀𝑁
tending to zero slowly enough, and Lemma 9 tells us that #{𝑖 : |ℓ̂𝑖 − ℓ𝑖| > 𝜀𝑁/2}/𝑁 → 0 in
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probability, again for 𝜀𝑁 tending to zero slowly enough. Lemma 19 tells us that there exist
𝜉𝑁 → 0 such that #{𝑖 : |ℓ𝑖 − ℓ∞𝑖 | > 𝜉𝑁}/𝑁 → 0 in probability, and Lemma 17 tells us that
under the conditions of Theorem 3 the distribution function of ℓ∞𝑖 is continuous, so that as
𝑁 → ∞

𝐸𝐻#{𝑖 : 𝜆* − 𝜀𝑁 ≤ ℓ𝑖 < 𝜆*}/𝑁 ≤ 𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞𝑖 | > 𝜉𝑁}/𝑁 + Π𝐻(𝜆* − 𝜀𝑁 − 𝜉𝑁 ≤ ℓ∞𝑖 < 𝜆* + 𝜉𝑁 )
→ 0.

We deduce that

𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 1, ℓ̂𝑖 < 𝜆̂}] ≥ 𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 1, ℓ𝑖 < 𝜆*}] − 𝑜(𝑁),

so that, dividing each side by 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1} = 𝑁𝜋1,

mTDR𝐻(𝜙) ≥ mTDR𝐻(𝜙𝜆*,𝐻) − 𝑜(1).

Next we consider the mFDR. A similar decomposition to those above yields that

𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 0, ℓ̂𝑖 < 𝜆̂}] ≤ 𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 0, ℓ𝑖 < 𝜆*}] + 𝑜(𝑁),
𝐸𝐻 [#{𝑖 : ℓ̂𝑖 < 𝜆̂}] ≥ 𝐸𝐻 [#{𝑖 : ℓ𝑖 < 𝜆*}] − 𝑜(𝑁).

One also has (by comparison to ℓ∞𝑖 as above, or by adapting the proof of Lemma 14) that
𝐸𝐻#{𝑖 : ℓ𝑖 < 𝜆* + 𝜀𝑁} ≥ 𝑐𝑁 for some 𝑐 > 0, so that a Taylor expansion yields

mFDR𝐻(𝜙) ≤ 𝐸𝐻#{𝑖 : 𝜃𝑖 = 0, ℓ𝑖 < 𝜆*} + 𝑜(𝑁)
𝐸𝐻#{𝑖 : ℓ𝑖 < 𝜆*} − 𝑜(𝑁) ≤ mFDR𝐻(𝜙𝜆*,𝐻) + 𝑜(1).

Define 𝑔(𝑥) = sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ 𝑥}. Trivially mTDR𝐻(𝜙) ≤ 𝑔(mFDR𝐻(𝜙)),
and hence the following chain of equalities (justified below) proves the first claim of the the-
orem:

mTDR𝐻(𝜙) ≥ mTDR𝐻(𝜙𝜆*,𝐻) − 𝑜(1)
≥ 𝑔

(︀
mFDR𝐻(𝜙𝜆*,𝐻)

)︀
− 𝑜(1)

≥ 𝑔
(︀
mFDR𝐻(𝜙) − 𝑜(1)

)︀
− 𝑜(1)

≥ 𝑔
(︀
mFDR𝐻(𝜙)

)︀
− 𝑜(1).

The first line was proved above. The second is a consequence of an optimality property
for the class (𝜙𝜆,𝐻 : 𝜆 ∈ [0, 1]) given by Lemma 22 in Appendix A.2. The third line then
follows from what was proved above, and the final line follows by a continuity-type result
for 𝑔 given by Lemma 23.

It remains to prove the second claim of the theorem. This will follow, with the same
arguments as above, from proving that mFDR𝐻(𝜙𝜆*,𝐻) ≥ 𝑡 − 𝑜(1). Observe that, using
Lemma 19 as above, one can show

𝐸𝐻 [
∑︁
𝑖≤𝑁

ℓ𝑖1{ℓ𝑖 < 𝜆*}] = 𝐸𝐻
∑︁
𝑖≤𝑁

[ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆*}] + 𝑜(𝑁)

𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ𝑖 < 𝜆*}] = 𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ∞𝑖 < 𝜆*}] + 𝑜(𝑁).
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Stationarity of the HMM implies that

𝐸𝐻 [
∑︁
𝑖≤𝑁

ℓ∞𝑖 1{ℓ∞𝑖 < 𝜆*}] = 𝑁𝐸𝐻 [ℓ∞1 | ℓ1 <∞ 𝜆*]Π𝐻(ℓ∞1 < 𝜆*),

𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ∞𝑖 < 𝜆}] = 𝑁Π𝐻(ℓ∞1 < 𝜆*),

and hence by definition of 𝜆* (recall we have assumed 𝑡 < 𝜋0)

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ∞𝑖 − 𝑡)1{ℓ∞𝑖 < 𝜆*} = 0.

Returning to the ℓ-values themselves and using also Lemma 17 to see that Π𝐻(ℓ∞1 < 𝜆*) > 0,
we deduce that

𝑁−1𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑡)1{ℓ𝑖 < 𝜆*}] → 0,

𝑁−1𝐸𝐻
∑︁
𝑖≤𝑁

1{ℓ𝑖 < 𝜆*} → Π𝐻(ℓ∞1 < 𝜆*) > 0,

and we may rearrange to see that mFDR𝐻(𝜙𝜆*,𝐻) ≥ 𝑡− 𝑜(1).

5.2 Proofs: Supremum Norm Estimation of HMM Parameters

We construct the estimators of Theorem 5 using a spectral kernel density estimation method.
As usual, this involves approximating 𝑓 by its convolution with a ‘mollifier’ 𝐾𝐿 and esti-
mating this convolution; the level 𝐿 = 𝐿𝑛 governs how close the kernel 𝐾𝐿 is to a Dirac
mass and hence the tradeoff between the bias and the variance.

Let 𝐾 be a bounded Lipschitz-continuous function, supported in [−1, 1], such that if we
define

𝐾𝐿(𝑥, 𝑦) = 2𝐿𝐾(2𝐿(𝑥− 𝑦)),

𝐾𝐿[𝑓 ](𝑥) =
∫︁
𝐾𝐿(𝑥, 𝑦)𝑓(𝑦) d𝑦,

(25)

then we have, for any 𝑓 ∈ 𝐶𝑠(R),

‖𝑓 −𝐾𝐿[𝑓 ]‖∞ ≤ 𝐶‖𝑓‖𝐶𝑠2−𝐿𝑠. (26)

Note that such a function, a ‘bounded convolution kernel of order 𝑠’, exists, see Tsybakov
(2009) (in particular, to ensure 𝐾 is Lipschitz, one builds the kernel using a Gegenbauer
basis with parameter 𝛼 > 1 as in Section 1.2.2 thereof). We also note here that for some
𝐶 = 𝐶(ℋ),

max
𝑗

‖𝐾𝐿[𝑓𝑗 ]‖∞ ≤ 2‖𝐾‖∞ max
𝑗

‖𝑓𝑗‖∞ ≤ 𝐶 (27)

since
∫︀ 1

−1|𝐾(𝑥)| d𝑥 ≤ 2‖𝐾‖∞. [Recall that a constant 𝐶 = 𝐶(ℋ) depends only on certain
bounds for the parameter 𝐻 = (𝑄, 𝜋, 𝑓1, . . . , 𝑓𝐽) as described in Section 4.3. In fact, as
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with the above, we allow such a constant to also depend on the kernel 𝐾 since this kernel
can be chosen independent of 𝐻. Similarly, we will permit such a constant 𝐶 to depend on
the choice of functions ℎ1, . . . , ℎ𝐿0 and of sets D𝑁 in Algorithm 1 below.]

To fix ideas, consider the case 𝐽 = 2, suppose 𝑠 = 1, and for simplicity of exposition
imagine that we do not require 𝐾 to be Lipschitz. Then it is straightforward to show that
𝐾(𝑥) = (1/2)1{−1 ≤ 𝑥 ≤ 1} defines a suitable kernel, satisfying (26) with 𝐶 = 1, for which
𝐾𝐿[𝑓 ](𝑥) =

∫︀ 1
−1(1/2)𝑓(𝑥 + 2−𝐿𝑧) d𝑧 is a local average of 𝑓 . For kernel density estimation

with data 𝑋𝑖
𝑖𝑖𝑑∼ 𝑓 , 𝑖 ≤ 𝑁 we would now estimate 𝐾𝐿[𝑓 ](𝑥), and hence 𝑓(𝑥) itself, by

(1/2𝑁)∑︀𝑁
𝑖=1 1{𝑥− 2−𝐿 ≤ 𝑋𝑖 ≤ 𝑥+ 2−𝐿}. Here we instead adapt the spectral method from

Anandkumar et al. (2012) and Lehéricy (2018) to perform this final estimation step.
Again to fix ideas, suppose that 𝑃𝑋∼𝑓0(𝑋 ∈ [−1, 1]) ̸= 𝑃𝑋∼𝑓1(𝑋 ∈ [−1, 1]). We may

straightforwardly estimate empirically the joint distributions, starting from stationarity, of
𝑋1, 𝑋2, 𝑋3. Since 𝑋1 and 𝑋3 are independent conditional on 𝑋2, it is convenient to focus
on the distribution of 𝑋2. Define 2 × 2 matrices 𝑀𝑥, 𝑥 ∈ R and 𝑃 as follows.

𝑀𝑥 = 𝐸𝐻

(︃
𝐾𝐿(𝑥,𝑋2) 𝐾𝐿(𝑥,𝑋2)1{𝑋3 ∈ [−1, 1]}

𝐾𝐿(𝑥,𝑋2)1{𝑋1 ∈ [−1, 1]} 𝐾𝐿(𝑥,𝑋2)1{𝑋1 ∈ [−1, 1], 𝑋3 ∈ [−1, 1]}

)︃
,

𝑃 = 𝐸𝐻

(︃
1 1{𝑋3 ∈ [−1, 1]}

1{𝑋1 ∈ [−1, 1]} 1{𝑋1 ∈ [−1, 1], 𝑋3 ∈ [−1, 1]}

)︃
.

It is clear that 𝑀𝑥, 𝑃 can be estimated by empirical averages. Since 𝑃𝑋∼𝑓0(𝑋 ∈ [−1, 1]) ̸=
𝑃𝑋∼𝑓1(𝑋 ∈ [−1, 1]) one can show that the events 𝑋1 ∈ [−1, 1], 𝑋3 ∈ [−1, 1] are not inde-
pendent, hence that 𝑃 is invertible, so that one may define the matrix 𝐵𝑥 = 𝑃−1𝑀𝑥. Ideas
found in Anandkumar et al. (2012) and Lehéricy (2018) (see also the coming lemma) then re-
veal that the 𝐵𝑥, 𝑥 ∈ R are simultaneously diagonalisable, with eigenvalues 𝐾𝐿[𝑓𝑗 ](𝑥), 𝑗 =
0, 1. The pairs of function values {𝑓0(𝑥), 𝑓1(𝑥)} can therefore be estimated by eigenvalues
of an empirical version of 𝐵𝑥 up to bias terms |𝑓𝑗(𝑥)−

∫︀ 1
−1(1/2)𝑓𝑗(𝑥+2−𝐿)| d𝑧 ≤ 2−𝐿‖𝑓𝑗‖𝐶1

which are small if 𝐿 = 𝐿𝑁 is large, and variance terms whose magnitude depends on the
errors in the empirical approximation of 𝑃,𝑀𝑥 and how those propagate to the eigenvalues;
these variance terms vanish as 𝑁 tends to infinity provided 𝐿 = 𝐿𝑁 does not grow too fast.
Finally, choosing a single matrix to simultaneously approximately diagonalise all 𝐵𝑥 allows
us to avoid any identifiability issues: if we instead diagonalised each empirical version of
𝐵𝑥 individually, we would arrive at a uncountable collection {{𝜆1(𝑥), 𝜆2(𝑥)} : 𝑥 ∈ R} of
pairs of eigenvalues which we would not necessarily know how to group into a single pair of
estimators 𝑓0, 𝑓1 consistent up to a permutation, but using a single matrix to approximately
diagonalise bypasses this issue.

The following lemma, which adapts ideas found in Anandkumar et al. (2012) and
Lehéricy (2018), proves the simultaneous diagonalisability underpinning this spectral method.
We write in a more general setting than the description above, allowing once more for 𝐽 ≥ 2.
For 𝑃 to be invertible it then becomes essential to consider multiple functions ℎ1, . . . , ℎ𝐿0 in
place of the two functions 𝑥 ↦→ 1 and 𝑥 ↦→ 1{−1 ≤ 𝑥 ≤ 1} used in the description above: in
principle 𝐿0 = 𝐽 is sufficient (see the remarks after Algorithm 1), but we allow for 𝐿0 > 𝐽 ,
which requires the introduction of a matrix 𝑉 to reduce the dimensions of 𝑀𝑥 and 𝑃 to
𝐽 × 𝐽 .
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Lemma 11. For 𝐿0 ∈ N, let ℎ1, . . . ℎ𝐿0 be arbitrary functions. Define, for data 𝑋 from the
HMM (1),

𝑀𝑥 ≡ 𝑀𝑥,𝐿0,𝐿 := (𝐸𝐻 [ℎ𝑙(𝑋1)𝐾𝐿(𝑥,𝑋2)ℎ𝑚(𝑋3)]𝑙,𝑚≤𝐿0) ∈ R𝐿0×𝐿0 , (28)
𝑃 ≡ 𝑃𝐿0 := (𝐸𝐻 [ℎ𝑙(𝑋1)ℎ𝑚(𝑋3)]𝑙,𝑚≤𝐿0) ∈ R𝐿0×𝐿0 , (29)
𝐷𝑥 ≡ 𝐷𝑥,𝐿 := diag

(︀
𝐾𝐿[𝑓𝑗 ](𝑥)𝑗≤𝐽

)︀
∈ R𝐽×𝐽 , (30)

𝑂 ≡ 𝑂𝐿0 := (𝐸𝐻 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗]𝑙≤𝐿0,𝑗≤𝐽) ∈ R𝐿0×𝐽 . (31)

Then

𝑀𝑥 = 𝑂 diag(𝜋)𝑄𝐷𝑥𝑄𝑂ᵀ, and
𝑃 = 𝑂 diag(𝜋)𝑄2𝑂ᵀ.

If 𝑉 ∈ R𝐿0×𝐽 is such that 𝑉 ᵀ𝑃𝑉 is invertible (it suffices to assume 𝑃𝑉 has rank 𝐽 , which
holds under the assumption that 𝑃 has rank 𝐽 if the columns of 𝑉 consist of orthonormal
right singular vectors of 𝑃 , or any other orthonormal basis of the column space of 𝑃 ) then
the matrix

𝐵𝑥 ≡ 𝐵𝑥,𝐿0,𝐿 := (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 (32)

satisfies
𝐵𝑥 = (𝑄𝑂ᵀ𝑉 )−1𝐷𝑥(𝑄𝑂ᵀ𝑉 ), (33)

so that the matrices (𝐵𝑥 : 𝑥 ∈ R) are diagonalisable simultaneously, with 𝐵𝑥 having eigen-
values (𝐷𝑥

𝑗 : 𝑗 ≤ 𝐽) = (𝐾𝐿[𝑓𝑗 ](𝑥) : 𝑗 ≤ 𝐽).

Proof Conditioning on (𝜃1, 𝜃2, 𝜃3), we see

𝑀𝑥
𝑙,𝑚 =

∑︁
𝑎,𝑏,𝑐

Π𝐻(𝜃1 = 𝑎, 𝜃2 = 𝑏, 𝜃3 = 𝑐)𝐸𝐻 [ℎ𝑙(𝑋1)𝐾𝐿(𝑥,𝑋2)ℎ𝑚(𝑋3) | 𝜃1 = 𝑎, 𝜃2 = 𝑏, 𝜃3 = 𝑐]

=
∑︁
𝑎,𝑏,𝑐

𝜋𝑎𝑄𝑎,𝑏𝑄𝑏,𝑐𝑂𝑙,𝑎𝑂𝑚,𝑐𝐸𝑋∼𝑓𝑏
[𝐾𝐿(𝑥,𝑋)]

= (𝑂 diag(𝜋)𝑄𝐷𝑥𝑄𝑂ᵀ)𝑙,𝑚,

and similarly we have

𝑃 = (
∑︁
𝑎,𝑏,𝑐

𝜋𝑎𝑄𝑎,𝑏𝑄𝑏,𝑐𝑂𝑙,𝑎𝑂𝑚,𝑐)𝑙,𝑚 = 𝑂 diag(𝜋)𝑄2𝑂ᵀ.

Next, note that if 𝑉 ᵀ𝑃𝑉 is invertible then so is𝑄𝑂ᵀ𝑉 (since 𝑉 ᵀ𝑃𝑉 = 𝑉 ᵀ𝑂 diag(𝜋)𝑄(𝑄𝑂ᵀ𝑉 ),
and a product 𝐴𝐵 of square matrices is invertible if and only if each of 𝐴 and 𝐵 are). The
result (33) then follows from the expressions for 𝑃 and 𝑀𝑥.
As discussed prior to the lemma, this result suggests that one estimates the eigenvalues
(𝐾𝐿[𝑓𝑗 ](𝑥) : 𝑗 ≤ 𝐽) of 𝐵𝑥 (and hence, using (26), the function values 𝑓𝑗(𝑥), 𝑗 ≤ 𝐽 them-
selves) by using empirical versions of 𝑉 , 𝑃 and 𝑀𝑥, an idea which is implemented in the
following algorithm. The algorithm requires as inputs functions ℎ1, . . . ℎ𝐿0 and sets D𝑁 with
certain properties; the existence of suitable inputs is discussed in the remarks thereafter.

25



Abraham, Castillo and Gassiat

We introduce notation for the “eigen-separation” of a diagonalisable matrix 𝐵 ∈ R𝐽×𝐽 with
eigenvalues 𝜆1, . . . , 𝜆𝐽 :

sep(𝐵) = min
𝑖 ̸=𝑗

|𝜆𝑖 − 𝜆𝑗 |. (34)

Recall that 𝜎𝐽(𝐵) denotes the 𝐽th largest singular value of 𝐵.

Algorithm 1 Kernel density estimator
input

• Data (𝑋𝑛 : 𝑛 ≤ 𝑁 + 2) drawn from the HMM (1).
• Functions ℎ1, . . . ℎ𝐿0 , uniformly bounded, such that
𝑂 = (𝐸𝐻 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗]𝑙≤𝐿0,𝑗≤𝐽) is of rank 𝐽 , with 𝜎𝐽(𝑂)
bounded away from 0 uniformly in 𝑁 , at least for 𝑁 large
enough.

• Finite sets D𝑁 ⊆ {(𝑎, 𝑢) ∈ R𝐽(𝐽−1)/2 × R𝐽(𝐽−1)/2 : ∑︀|𝑎𝑖| ≤ 1}
such that max(𝑎,𝑢)∈D𝑁

sep(𝐵𝑎,𝑢) is bounded away from 0
uniformly in 𝑁 , at least for 𝑁 large enough, where
𝐵𝑎,𝑢 = ∑︀

𝑎𝑖𝐵
𝑢𝑖 for 𝐵𝑥 as in Lemma 11 for some 𝑉 .

estimate the matrices 𝑃, (𝑀𝑥, 𝑥 ∈ R) of Lemma 11 by taking empirical
averages: for 𝐿 such that 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠), define

𝑃 = 𝑃𝐿0 = (𝑁−1∑︁
𝑛≤𝑁

ℎ𝑙(𝑋𝑛)ℎ𝑚(𝑋𝑛+2))𝑙,𝑚≤𝐿0 ,

𝑀̂𝑥 = 𝑀̂𝑥,𝐿0,𝐿 = (𝑁−1∑︁
𝑛≤𝑁

ℎ𝑙(𝑋𝑛)𝐾𝐿(𝑥,𝑋𝑛+1)ℎ𝑚(𝑋𝑛+2))𝑙,𝑚≤𝐿0 .

Let 𝑉 = 𝑉 𝐿0 ∈ R𝐿0×𝐽 be a matrix of orthonormal right singular
vectors of 𝑃 (fail if 𝑃 is of rank less than 𝐽).

set, for 𝑥 ∈ R and for 𝑎, 𝑢 ∈ R𝐽(𝐽−1)/2

𝐵̂𝑥 = 𝐵̂𝑥,𝐿0,𝐿 := (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀̂𝑥𝑉 , 𝐵̂𝑎,𝑢 :=
∑︁

𝑎𝑖𝐵̂
𝑢𝑖 .

choose 𝑅̂ of normalised columns diagonalising 𝐵̂𝑎̂,𝑢̂, where (𝑎̂, 𝑢̂) ∈ argmaxD𝑁
sep(𝐵̂𝑎,𝑢)

(fail if 𝐵̂𝑎̂,𝑢̂ is not diagonalisable).
output (𝑓𝑗 : 𝑗 ≤ 𝐽), where, defining

𝑓𝐿𝑗 (𝑥) = (𝑅̂−1𝐵̂𝑥𝑅̂)𝑗𝑗 ,

we set

𝑓𝑗(𝑥) =
{︃
𝑓𝐿𝑗 (𝑥) |𝑓𝐿𝑗 (𝑥)| ≤ 𝑁𝛼

𝑁𝛼 sign(𝑓𝐿𝑗 (𝑥)) otherwise,

for 𝛼 > 0 arbitrary. [The in-probability result (17) also holds for 𝑓𝐿𝑗 .]

Remarks. i. For notational convenience, we have considered observing 𝑁+2 data points
𝑋1, . . . , 𝑋𝑁+2 so that we can form 𝑁 triples of consecutive observations; the proofs
go through for the original 𝑁 data points by adjusting constants.
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ii. Under Assumption D, ℎ1, . . . ℎ𝐿0 can be chosen without knowledge of the parameters,
for example by letting 𝐿0 tend to infinity arbitrarily slowly and taking the ℎ𝑙 to be
indicator functions of the first 𝐿0 of a countable collection of sets generating the
Borel 𝜎-algebra (see Lemma 24, in Appendix B.1). In principle, 𝐿0 = 𝐽 is sufficient
to achieve 𝑂 of rank 𝐽 , but without further assumptions, the appropriate functions
ℎ1, . . . ℎ𝐽 will necessarily depend on the unknown parameters. In the case 𝐽 = 2, it
suffices to assume in addition to the other conditions of Theorem 5 that 𝑃𝑋∼𝑓1(𝑋 ∈
𝐴) ̸= 𝑃𝑋∼𝑓2(𝑋 ∈ 𝐴) for some known 𝐴, by taking ℎ1 = 1, ℎ2 = 1𝐴 (as in the example
given before Lemma 11, where we took 𝐴 = [−1, 1]).

iii. Lemma 11 implies that the condition on D𝑁 is independent of 𝑉 provided 𝑉 is such
that 𝑉 ᵀ𝑃𝑉 is invertible. Lemma 26, the proof of which uses only that 𝑓1, . . . , 𝑓𝐽 are
distinct, shows that the choice 𝑉 = 𝑉 is suitable with probability tending to 1 and that
D𝑁 can be chosen independent of the parameters, for example by taking a cartesian
product of increasing dyadic sets of rationals. In the case 𝐽 = 2, the description of the
algorithm simplifies, in that necessarily 𝑎̂ = 1 ∈ R1. A corresponding simplification
also works in the general 𝐽 state case if one is willing to assume that there exists
𝑥0 ∈ R for which the values 𝑓𝑗(𝑥0), 𝑗 ≤ 𝐽 are all distinct, in that one may define 𝑅̂
as diagonalising 𝐵̂𝑥̂ where 𝑥̂ maximises sep(𝐵̂𝑥) over 𝑥 in (some finite increasing sieve
in) R.

iv. Lemmas 25 and 27 prove that, with probability tending to 1, 𝑃 has rank 𝐽 and 𝐵̂𝑎̂,𝑢̂

is diagonalisable, so that the outputs 𝑓𝑗 are well-defined.

v. Note that the truncation step in defining 𝑓𝑗 is not needed for bounds in probability.
For bounds in expectation, if we have an a priori bound ‖𝑓𝑗‖∞ ≤ 𝐶𝑗 , then we may
define 𝑓𝑗 by truncating 𝑓𝑗 at ±𝐶𝑗 rather than at 𝑁𝛼. The choice to truncate at 𝑁𝛼

(with 𝛼 arbitrary) avoids poor performance in expectation which could result from
the errors being excessively large on an event of small probability. Since the bounds
in probability hold without this truncation, we think in practice not truncating at all
would be fine.

vi. Since the 𝑓𝑗 are assumed Hölder continuous, and satisfy tail bounds, one could in
fact calculate 𝑓𝑗(𝑥) only for 𝑥 in some finite set, then construct estimators 𝑓𝑗 via
interpolation, in order to ease computation.

Proof [Proof of Theorem 5] Define 𝑀𝑥, 𝑃,𝐷𝑥, 𝑂 as in Lemma 11 and construct 𝑓𝑗 , 𝑓𝐿𝑗 using
Algorithm 1. Continuity of the 𝑓𝑗 , 𝑓𝑗 follows from continuity of the map 𝑥 ↦→ 𝐵̂𝑥, which
in turn follows from that of the map 𝑥 ↦→ 𝑀̂𝑥, proved in Lemma 25. Observe also that
‖𝑓𝑗‖∞ < ∞ for all 𝑗 ≤ 𝐽 , so that for any 𝜏 , for 𝑁 large enough that ‖𝑓𝑗‖∞ ≤ 𝑁𝑎 we have

‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ ‖𝑓𝐿𝑗 − 𝑓𝜏(𝑗)‖∞,

hence for the in-probability result it suffices to prove (17) with 𝑓𝑗 = 𝑓𝐿𝑗 in place of 𝑓𝑗 .
Lemma 25 tells us that 𝑃 , 𝑀̂𝑋 estimate 𝑃,𝑀𝑥 at the rate 𝑟𝑁 and consequently both

that the choice 𝑉 = 𝑉 is suitable in (32), and that the 𝐵 so constructed is close to 𝐵̂.
Matrix perturbation arguments then yield the result.
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Precisely, for a constant 𝑐 > 0, define the event

𝒜 = {‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , ‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁 ∀𝑥 ∈ R}. (35)

This is indeed a measurable event, and for suitable 𝑐 = 𝑐(𝜅,ℋ) it has probability at least
1 −𝑁−𝜅, by Lemma 25, which also tells us that 𝑉 ᵀ𝑃𝑉 is invertible on 𝒜 and that, defining

𝐵̃𝑥 := (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 ,

we have, for some 𝐶 depending on ℋ and on the constant 𝑐 of event 𝒜,

1𝒜 sup
𝑥∈R

‖𝐵̃𝑥 − 𝐵̂𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 .

Lemma 11 tells us (on 𝒜) that 𝐵̃𝑥 = (𝑄𝑂ᵀ𝑉 )−1𝐷𝑥𝑄𝑂ᵀ𝑉 , and we write 𝑅̃ for a matrix
whose columns are those of 𝑄𝑂ᵀ𝑉 but scaled to have unit Euclidean norm, which thus
diagonalises 𝐵̃𝑥 for all 𝑥. By Lemma 32 (and the remark thereafter), we may assume
there exists a permutation 𝜏 such that ‖𝑅̂ − 𝑅̃𝜏‖ ≤ 𝐶𝐿

7/2
0 𝑟𝑁 on 𝒜, where 𝑅̃𝜏 is obtained

by permuting the columns of 𝑅̃ according to 𝜏 . Next we apply Lemma 33 with 𝒯 = R,
𝐴𝑥 = 𝐵̃𝑥, 𝐴𝑥 = 𝐵̂𝑥, 𝑅 = 𝑅̃. Noting that ‖𝑅̃−1‖ ≤ 𝐶 ′𝐿

1/2
0 and 𝜅(𝑅̃) := ‖𝑅̃‖‖𝑅̃−1‖ ≤ 𝐶 ′𝐿0

for some constant 𝐶 ′ = 𝐶 ′(ℋ) (see Lemma 35b), and that the constant 𝜆max of the lemma
is bounded by a constant depending only on ℋ (see (27)), we deduce that

sup
𝑥

max
𝑗

|𝑓𝐿𝑗 (𝑥) −𝐾𝐿[𝑓𝜏(𝑗)](𝑥)| ≤ 𝑐′𝐿0[𝐿2
0𝑟𝑁 + 𝐿

1/2
0 𝐿

7/2
0 𝑟𝑁 ] ≤ 𝑐′′𝐿5

0𝑟𝑁 ,

for some constants 𝑐′, 𝑐′′. The in-probability result (17) follows, since the choice of 𝐿 ensures
by (26) that ‖𝑓𝜏(𝑗) −𝐾𝐿[𝑓𝜏(𝑗)]‖∞ ≤ 𝐶 ′′𝑟𝑁 for some 𝐶 ′′, so that for a suitable constant 𝐶,

Π𝐻(‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ > 𝐶𝐿5
0𝑟𝑁 ) ≤ Π𝐻(𝒜𝑐) ≤ 𝑁−𝜅 → 0.

For the in-expectation result (18), observe that by truncating at ±𝑁𝛼 we have ensured
that

𝐸𝐻‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ 𝐶𝐿5
0𝑟𝑁 + 2𝑁𝛼Π𝐻(𝒜𝑐).

Choosing 𝑐 = 𝑐(𝜅,ℋ) in the definition of the event 𝒜 corresponding to some 𝜅 ≥ 𝑠/(1 +
2𝑠) + 𝛼 concludes the proof.

Proof [Proof of Proposition 7] Let 𝑓0, 𝑓1, 𝑄̂, 𝜋̂ be estimators which satisfy

Π𝐻(‖𝑓0 − 𝑓𝜏(0)‖ + ‖𝑓1 − 𝑓𝜏(1)‖ + ‖𝑄̂−𝑄𝜎,𝜎‖𝐹 + ‖𝜋̂ − 𝜋𝜎‖ > 𝐶𝜀𝑁 ) → 0 (36)

for some permutations 𝜏, 𝜎 and a constant 𝐶 > 0, with 𝑄𝜎,𝜎 defined by permuting the rows
and columns of 𝑄, and 𝜋𝜎 defined similarly. The existence of suitable 𝑓0, 𝑓1 is given by
Theorem 5, and the existence of suitable 𝑄̂, 𝜋̂ is proved by results in De Castro et al. (2017,
Appendix C) (and by arguments as in De Castro et al. 2016, Section 8.6 to accelerate the
possibly slow rate to a near-parametric rate). Moreover, the estimators of De Castro et al.
(2017) are constructed using a spectral method, so that one may in fact assume 𝜎 = 𝜏 . [One
could also “align” 𝜎 and 𝜏 by hand, by noting that by ergodicity the invariant density 𝑓𝜋
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can be estimated at the rate 𝑟𝑁 using a standard kernel density estimator, and permuting
rows and columns of 𝑄̂ and 𝜋̂ so that ∑︀ 𝜋̂𝑖𝑓𝑖 is close to this kernel density estimator; linear
independence of the 𝑓𝑖 ensures that this alignment method works.]

Next, under the assumption 𝜋0 > 𝜋1, define 𝑓𝑗 = 𝑓𝜏(𝑗), 𝑄̌ = 𝑄̂𝜏 ,𝜏 and 𝜋̌ = 𝜋̂𝜏 , where
𝜏(0) = 1 − 𝜏(1) = 1{𝜋̂1 > 𝜋̂0}. Consistency of 𝜋̂ implies that 𝜏 consistently estimates the
permutation 𝜏 = 𝜎 of (36), hence

Π𝐻(‖𝑓0 − 𝑓0‖ + ‖𝑓1 − 𝑓1‖ + ‖𝑄̌−𝑄‖𝐹 + ‖𝜋̌ − 𝜋‖) > 𝐶𝜀𝑁 )
≤ Π𝐻(𝜏 ̸= 𝜏) + Π𝐻(‖𝑓0 − 𝑓𝜏(0)‖ + ‖𝑓1 − 𝑓𝜏(1)‖ + ‖𝑄̂−𝑄𝜏,𝜏‖𝐹 + ‖𝜋̂ − 𝜋𝜏‖ > 𝐶𝜀𝑁 ) → 0.

For the other case, we want to define 𝜏(0) = 1{lim sup𝑥↑𝑥*(𝑓0/𝑓1)(𝑥) > 1} and proceed
similarly, but the compact support of 𝐾 means that 𝑓1(𝑥) = 𝑓0(𝑥) = 0 for 𝑥 > 2−𝐿 +
max𝑘𝑋𝑘, and the right side may be strictly smaller than 𝑥*. Instead, noting that necessarily
Π𝐻(𝑋1 ≤ 𝑥*) > 0 and assuming without loss of generality that 𝑥* > 0, we set 𝑋̃𝑛 =
𝑋𝑛1{𝑋𝑛 ≤ 𝑥*} and define

𝜏(0) = 1 − 𝜏(1) = 1{𝑓0(𝑀𝑁 ) > 𝑓1(𝑀𝑁 )},
𝑀𝑁 = max

𝑖≤log𝑁
(𝑋̃𝑖);

note that by construction we have 𝑓𝜏(1)(𝑀𝑁 ) ≥ 𝑓𝜏(0)(𝑀𝑁 ). We show that ‖𝑓𝜏(1) − 𝑓0‖∞ >
𝐶𝜀𝑁 on an event 𝐴𝑁 of probability tending to 1; it will follow from (36) that 𝜏 ≡ 𝜏−1 = 𝜏
on 𝐴𝑁 , and the result will follow.

The variables 𝑋̃𝑖, 𝑖 ≤ 𝑁 have a density with respect to the measure 𝜇 defined by
adding an atom at 0 to Lebesgue measure. Let 𝑢 be as in Theorem 2, so that 𝑢 > 1 + 𝜈−1

and 𝜀𝑁 (log𝑁)𝑢 → 0 for 𝜈 as in Assumption B. The proof of Lemma 12 shows that with
probability tending to 1 we have 𝑓1(𝑀𝑁 ) ≥ min𝑖≤log𝑁 (𝑓(𝑋̃𝑖)) ≥ (log𝑁)−𝑢, hence 𝑓1(𝑀𝑁 ) >
3𝐶𝜀𝑁 . We also note that 𝑀𝑁 ↑ 𝑥* almost surely, so that 𝑓1(𝑀𝑁 ) > 3𝑓0(𝑀𝑁 ) for all 𝑁
large enough.

Let 𝐴𝑁 be an event of probability tending to 1 on which

𝑓1(𝑀𝑁 ) > 3𝐶𝜀𝑁 , 𝑓1(𝑀𝑁 ) > 3𝑓0(𝑀𝑁 ), ‖𝑓0 − 𝑓𝜏(0)‖∞ ≤ 𝐶𝜀𝑁 , ‖𝑓1 − 𝑓𝜏(1)‖∞ ≤ 𝐶𝜀𝑁 ,

whose existence we have just demonstrated. On 𝐴𝑁 we have both 𝑓1(𝑀𝑁 ) ≥ 𝑓𝜏(1)(𝑀𝑁 ) −
𝐶𝜀𝑁 and 𝑓0(𝑀𝑁 ) ≥ 𝑓𝜏(0)(𝑀𝑁 ) − 𝐶𝜀𝑁 hence (for 𝑁 large enough)

𝑓𝜏(1)(𝑀𝑁 ) = max(𝑓0(𝑀𝑁 ), 𝑓1(𝑀𝑁 )) ≥ max
𝑗

(𝑓𝑗(𝑀𝑁 ) − 𝐶𝜀𝑁 ) = 𝑓1(𝑀𝑁 ) − 𝐶𝜀𝑁 > 1
3𝑓1(𝑀𝑁 ) + 𝐶𝜀𝑁

> 𝑓0(𝑀𝑁 ) + 𝐶𝜀𝑁 ,

so that ‖𝑓𝜏(1) − 𝑓0‖∞ > 𝐶𝜀𝑁 on 𝐴𝑁 as claimed.
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Appendix A. Auxiliary Results for Section 2

A.1 Lemmas for Theorem 2

Recall 𝑓𝜋 = 𝜋0𝑓0 + 𝜋1𝑓1 is the density of each 𝑋𝑖, 𝑖 ≤ 𝑁 , in the HMM model (1).
Lemma 12. Under Assumption B we have, for any 𝑎 > 1 + 𝜈−1,

Π𝐻(max
𝑖≤𝑅

1/𝑓𝜋(𝑋𝑖) > 𝑅𝑎) → 0 as 𝑅 → ∞.

Proof For 𝐴 = 𝑅𝑎, 𝐵 = 𝑅𝑏 with 𝑎, 𝑏 > 0 to be chosen, we have by a union bound and
stationarity

Π𝐻

(︁
max
𝑖≤𝑅

1
𝑓𝜋(𝑋𝑖)

> 𝐴
)︁

≤ 𝑅Π𝐻

(︀
𝑓𝜋(𝑋1) < 𝐴−1)︀

≤ 𝑅

∫︁ 𝐵

−𝐵
1
{︀
𝑓𝜋(𝑥) < 𝐴−1}︀𝑓𝜋(𝑥) d𝜇(𝑥) +𝑅Π𝐻

(︀
|𝑋1| > 𝐵

)︀
≤ 𝑅𝜇([−𝐵,𝐵])/𝐴+𝑅Π𝐻

(︀
|𝑋1| > 𝐵

)︀
.

Since 𝑓𝜋 is a mixture of the densities 𝑓0, 𝑓1, an application of Markov’s inequality yields
Π𝐻

(︀
|𝑋1| > 𝐵

)︀
≤ max

𝑗
𝑃𝑋∼𝑓𝑗

(︀
|𝑋| > 𝐵

)︀
≤ 𝐵−𝜈 max

𝑗
𝐸𝑋∼𝑓𝑗

|𝑋|𝜈 ,

which is at most a constant times 𝐵−𝜈 by the assumption. Choosing 𝑏 > 1/𝜈, we have
𝑅Π𝐻(|𝑋1| ≥ 𝐵) → 0.

Since𝐵 = 𝑅𝑏 ≥ 1 and 𝜇 is equal to either to Lebesgue or counting measure, 𝜇([−𝐵,𝐵]) ≤
2𝐵 + 1 ≤ 3𝐵. Then

𝑅𝜇([−𝐵,𝐵])/𝐴 ≤ 3𝑅1+𝑏−𝑎,

which tends to zero for 𝑎 > 1 + 𝑏, so that any 𝑎 > 1 + 𝜈−1 is permissible.

For the following two lemmas recall the definition 𝑆0 = 𝑆0(𝑡) = {𝑖 : 𝜙𝑖 = 1}, where 𝜙 is
as in Definition 1, so that 𝐾̂ = |𝑆0| is characterised by

1
𝐾̂

𝐾̂∑︁
𝑖=1

ℓ̂(𝑖) ≤ 𝑡 <
1

𝐾̂ + 1

𝐾̂+1∑︁
𝑖=1

ℓ̂(𝑖).

where, by convention, the left inequality holds if 𝐾̂ = 0, and ℓ̂(𝑁+1) = ∞ so that the right
inequality holds if 𝐾̂ = 𝑁 . Recall the definition

𝑡 := postFDR𝐻̂(𝜙) = 1
𝐾̂

𝐾̂∑︁
𝑖=1

ℓ̂(𝑖).
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Lemma 13. In the setting of Theorem 2, 𝐸𝐻𝑡 → min(𝑡, 𝜋0).

Proof Since 0 ≤ 𝑡 ≤ 1, it’s enough to show that 𝑡 → min(𝑡, 𝜋0) in probability. By
Lemma 15, we have

1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) → 𝜋0 in probability. (37)

By monotonicity of the average of increasing numbers, we have

𝑡 ≤ 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂(𝑖) = 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖,

and by construction we note also that 𝑡 ≤ 𝑡, hence 𝑡 ≤ min(𝑡, 𝜋0) + 𝑜𝑝(1).
If 𝑡 = 0 we trivially have the matching lower bound 𝑡 ≥ min(𝑡, 𝜋0) − 𝑜𝑝(1). If 𝑡 > 0, we

decompose relative to the event 𝒞 = {𝐾̂ = 𝑁}. Observe, using (37), that

𝑡1𝒞 = 1𝒞
1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖 ≥ 1𝒞𝜋0 − 𝑜𝑝(1).

By definition of 𝐾̂ we also have

𝑡1𝒞𝑐 <
1

𝐾̂ + 1

𝐾̂+1∑︁
𝑖=1

ℓ̂(𝑖)1𝒞𝑐 = 𝐾̂

𝐾̂ + 1
𝑡1𝒞𝑐 +

ℓ̂(𝐾̂+1)

𝐾̂ + 1
1𝒞𝑐 ,

hence, since ℓ̂(𝐾̂+1) ≤ 1 on 𝒞𝑐,

𝑡1𝒞𝑐 >
𝐾̂ + 1
𝐾̂

𝑡1𝒞𝑐 −
ℓ̂(𝐾̂+1)

𝐾̂
1𝒞𝑐 ≥ 𝑡1𝒞𝑐 − 1

𝐾̂
.

By Lemma 14, 𝐾̂ → ∞ in probability for any 𝑡 > 0, so that the above display implies
𝑡1𝒞𝑐 > 𝑡1𝒞𝑐 − 𝑜𝑝(1) and hence

𝑡 > 𝑡1𝒞𝑐 + 𝜋01𝒞 − 𝑜𝑝(1) ≥ min(𝑡, 𝜋0) − 𝑜𝑝(1),

proving the lower bound.

The next lemma shows that 𝜙 makes, with probability tending to 1, a number of discov-
eries of order 𝑁 . The proof goes via comparing ℓ̂𝑖 to some ℓ′𝑖, which closely approximates ℓ𝑖
and allows for the use of ergodicity arguments. Note that one could alternatively compare
to ℓ∞𝑖 as is done in the proof of Theorem 3 (see also Appendix A.2); by using ℓ′𝑖 instead we
avoid the need for Condition G when proving Theorem 2.

Recall the definition of constants 𝐶 = 𝐶(ℐ) from Section 4.3.

Lemma 14. In the setting of Theorem 2, for all 𝑡 > 0, there exists 𝑎 = 𝑎(𝑡, ℐ) > 0 such
that

Π𝐻(|𝑆0| > 𝑎𝑁) → 1.
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Proof The definition of 𝜆̂ trivially implies 𝜆̂ ≥ 𝑡, so that

{𝑖 : ℓ̂𝑖 < 𝑡} ⊆ {𝑖 : ℓ̂𝑖 < 𝜆̂} ⊆ 𝑆0.

For 𝐴 ∈ N write

ℓ′𝑖(𝑋) := Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴.

By Lemma 16, there exist 𝐴 = 𝐴(𝑡) and events 𝐺𝑁 of probability tending to 1 such that{︁
#
{︀
𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′𝑖(𝑋)| > 𝑡/2

}︀
≤ 𝑁𝛿𝑁

}︁
,

for some 𝛿𝑁 → 0. On 𝐺𝑁 , we observe that

#{𝑖 ≤ 𝑁 : ℓ̂𝑖 < 𝑡} ≥ #{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, ℓ′𝑖 < 𝑡/2} −𝑁𝛿𝑁 ,

hence it suffices to show that there exists 𝑐 > 0 such that #{𝑖 : 𝐴 < 𝑖 ≤ 𝑁−𝐴 : ℓ′𝑖 < 𝑡/2} >
𝑐𝑁 with probability tending to 1.

By ergodicity (i.e. applying Lemma 20 with 𝑔(𝑥) = 1{𝑥 < 𝑡/2}) we have for any 𝜀 > 0

Π𝐻

(︁
#
{︀
𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴 : ℓ′𝑖 < 𝑡/2

}︀
>
(︀
𝑁 − 2𝐴

)︀(︀
Π𝐻(ℓ′𝑖 < 𝑡/2) − 𝜀

)︀)︁
→ 1,

hence it suffices to show that Π𝐻(ℓ′𝑖 < 𝑡/2) ̸= 0.
Fix 𝑖 satisfying 𝐴 < 𝑖 ≤ 𝑁 −𝐴. For 𝛼, 𝛽 ∈ {0, 1}𝐴 write

𝜂𝛼,𝛽 = 𝜋𝛼1

∏︁
𝑎<𝐴

𝑄𝛼𝑎,𝛼𝑎+1𝑄𝛽𝑎,𝛽𝑎+1 .

Introducing the notation 𝜃𝑏𝑎 = (𝜃𝑎, 𝜃𝑎+1, . . . , 𝜃𝑏) ∈ R𝑏+1−𝑎, we note that

Π𝐻(𝜃𝑖+𝐴𝑖−𝐴 = (𝛼, 0, 𝛽)) = 𝜂𝛼,𝛽𝑄𝛼𝐴,0𝑄0,𝛽1 , Π𝐻(𝜃𝑖+𝐴𝑖−𝐴 = (𝛼, 1, 𝛽)) = 𝜂𝛼,𝛽𝑄𝛼𝐴,1𝑄1,𝛽1 .

Define

𝑝0 =
∑︁

𝛼,𝛽∈{0,1}𝐴

𝑄𝛼𝐴,0𝑓0(𝑋𝑖)𝑄0,𝛽1𝜂𝛼,𝛽
∏︁
𝑎≤𝐴

𝑓𝛼𝑎(𝑋𝑖−𝐴+𝑎−1)𝑓𝛽𝑎(𝑋𝑖+𝑎)

𝑝1 =
∑︁

𝛼,𝛽∈{0,1}𝐴

𝑄𝛼𝐴,1𝑓1(𝑋𝑖)𝑄1,𝛽1𝜂𝛼,𝛽
∏︁
𝑎≤𝐴

𝑓𝛼𝑎(𝑋𝑖−𝐴+𝑎−1)𝑓𝛽𝑎(𝑋𝑖+𝑎),

and observe that
ℓ′𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖+𝐴

𝑖−𝐴 ) = 𝑝0
𝑝0 + 𝑝1

.

Note that each term in the sum defining 𝑝1 is at least 𝛿2𝑓1(𝑋𝑖)/𝑓0(𝑋𝑖) times the corre-
sponding term in the sum defining 𝑝0, with 𝛿 > 0 as in Assumption C, hence

𝑝1 ≥ 𝑝0𝛿
2 𝑓1(𝑋𝑖)
𝑓0(𝑋𝑖)

, so that ℓ′𝑖(𝑋) ≤ 1
1 + 𝛿2(𝑓1(𝑋)/𝑓0(𝑋)) .

32



Multiple Testing in Nonparametric HMMs

In view of Assumption A, assume without loss of generality that there exists 𝑥* ∈ R∪{±∞}
such that 𝑓1(𝑥)/𝑓0(𝑥) → ∞ as 𝑥 ↑ 𝑥*. Then we deduce that for some 𝑢 = 𝑢(𝑡, 𝛿) > 0,

Π𝐻(ℓ′𝑖 < 𝑡/2) ≥ Π𝐻

(︁𝑓1(𝑋𝑖)
𝑓0(𝑋𝑖)

>
2 − 𝑡

𝑡𝛿2

)︁
≥ 𝜋1𝑃𝑋∼𝑓1(𝑥* − 𝑢 ≤ 𝑋 ≤ 𝑥*) > 0,

as required.

Lemma 15. In the setting of Theorem 2,

1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) → 𝜋0

in probability as 𝑁 → ∞.

Proof It is required to prove, for 𝜀 > 0 arbitrary, that

Π𝐻

(︁⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) − 𝜋0
⃒⃒⃒
> 𝜀

)︁
→ 0.

By Lemma 16, defining

ℓ′𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴,

there exists 𝐴 = 𝐴(𝜀) for which, with probability tending to 1,

#{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′𝑖(𝑋)| > 𝜀/2} ≤ 𝑁𝛿𝑁 .

On the event on which the last line holds we can decompose:⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) − 𝜋0
⃒⃒⃒

≤ 2𝐴
𝑁

+ 𝜀/2 + 𝛿𝑁 + 1
𝑁

⃒⃒⃒ 𝑁−𝐴∑︁
𝑖=𝐴+1

(ℓ′𝑖(𝑋) − 𝜋0)
⃒⃒⃒
.

Finally, by ergodicity of ℓ′𝑖(𝑋) (see Lemma 20) we have

Π𝐻

(︁ 1
𝑁

⃒⃒⃒ 𝑁−𝐴∑︁
𝑖=𝐴+1

(ℓ′𝑖(𝑋) − 𝜋0)
⃒⃒⃒
> 𝜀/4

)︁
≤ Π𝐻

(︁ 1
𝑁 − 2𝐴

⃒⃒⃒ 𝑁−𝐴∑︁
𝑖=𝐴+1

(ℓ′𝑖(𝑋) − 𝐸𝐻 [ℓ′𝑖(𝑋)])
⃒⃒⃒
> 𝜀/4

)︁
→ 0,

where we have used that

𝐸𝐻 [ℓ′𝑖(𝑋)] = 𝐸𝐻Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴) = Π𝐻(𝜃𝑖 = 0) = 𝜋0.

The result follows.

Lemma 16. For 𝐴 ∈ N, define

ℓ′𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴.

For any fixed 𝜀 > 0, there exists 𝐴 = 𝐴(𝜀) and 𝛿𝑁 → 0 such that

#{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′𝑖(𝑋)| > 𝜀} ≤ 𝑁𝛿𝑁 , with probability tending to 1.
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A similar result holds in the limit 𝐴 → ∞, see Lemma 19 below.

Proof Essentially, this is a consequence of Lemma 9 and exponential mixing – hence
forgetfulness – of the Markov chain 𝜃, the former telling us that ℓ̂𝑖 ≈ ℓ𝑖 and the latter that
ℓ𝑖 is nearly independent of 𝑋𝑗 if |𝑗 − 𝑖| is large so that ℓ′𝑖 ≈ ℓ𝑖. Precisely, Lemma 9 tells us
that there exist events 𝐺𝑁 of probability tending to 1 on which{︁

#
{︀
𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁

}︀
≤ 𝑁𝛿𝑁

}︁
,

for some 𝜀′
𝑁 → 0; in particular note 𝜀′

𝑁 < 𝜀/2 for 𝑁 large. Next, we apply Proposition
4.3.23iii of Cappé et al. (2005). Our Assumption C implies that Assumption 4.3.24 therein
holds, so by the consequent Lemma 4.3.25 one sees that the 𝜌0(𝑦) in the proposition can be
replaced by 𝜌 = (1 − 2𝛿)/(1 − 𝛿). Applying the proposition with 𝑗 = 𝑘 −𝐴 yields

|Π𝐻(𝜃𝑘 = 0 | 𝑋1, . . . , 𝑋𝑛) − Π𝐻(𝜃𝑘 = 0 | 𝑋𝑘−𝐴, . . . , 𝑋𝑛)| < 2𝜌𝐴, 𝑘 > 𝐴.

Any two-state Markov chain is reversible, hence by time-reversal we similarly obtain

|Π𝐻(𝜃𝑘 = 0 | 𝑋𝑘−𝐴, . . . , 𝑋𝑛) − Π𝐻(𝜃𝑘 = 0 | 𝑋𝑘−𝐴, . . . , 𝑋𝑘+𝐴)| < 2𝜌𝐴,

and hence
|ℓ𝑘(𝑋) − ℓ′𝑘(𝑋)| < 4𝜌𝐴, 𝐴 < 𝑘 ≤ 𝑁 −𝐴.

Choose 𝐴 = 𝐴(𝜀) so that 4𝜌𝐴 < 𝜀/2; then, on 𝐺𝑁 and for 𝑁 large, an application of the
triangle inequality yields

#{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′𝑖(𝑋)| > 𝜀} ≤ 𝑁𝛿𝑁 ,

and the result follows.

A.2 Lemmas for Theorem 3

We may concretely define ℓ∞𝑖 as the almost sure limit

ℓ∞𝑖 (𝑋) = lim
𝐾→∞

Π𝐻(𝜃𝑖 = 0 | 𝑋−𝐾 , . . . , 𝑋𝐾); (38)

this limit is well defined by a standard martingale convergence theorem.

Lemma 17. In the setting of Theorem 2, assume that the distribution function of the vari-
able 𝑓1(𝑋1)/𝑓0(𝑋1) is continuous and strictly increasing on (0,∞). Then the distribution
function of ℓ∞𝑖 (𝑋) is continuous and strictly increasing on [0, 1].

Note that atomicity of ℓ𝑖(𝑋) relates to that of 𝑓1(𝑋𝑖)/𝑓0(𝑋𝑖), rather than that of 𝑋𝑖

itself, since for example the distribution of ℓ1 is atomic when 𝑁 = 1 if Π𝐻(𝑓1(𝑋1)/𝑓0(𝑋1) =
𝑐) > 0 for some constant 𝑐. It is therefore unsurprising that the key properties of the dis-
tribution of ℓ∞𝑖 (𝑋) depend on the distribution of the ratio 𝑓1(𝑋𝑖)/𝑓0(𝑋𝑖).
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Proof Let 𝐺0 denote the distribution function of (𝑓1/𝑓0)(𝑋1) when 𝑋1 ∼ 𝑓0𝜇 and 𝐺1 the
distribution function of (𝑓1/𝑓0)(𝑋1) when 𝑋1 ∼ 𝑓1𝜇.
Define the stationary filter sequence (Φ∞

𝑖 (𝑋))𝑖∈Z by

Φ∞
𝑖 (𝑋) := Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z, 𝑛 ≤ 𝑖)). (39)

Using the usual forward-backward equations, see Baum et al. (1970), and taking almost-sure
limits one obtains the following forward equation: for each 𝑖,

Φ∞
𝑖 (𝑋) =

[(1 − 𝑝)Φ∞
𝑖−1(𝑋) + 𝑞(1 − Φ∞

𝑖−1(𝑋))]𝑓0(𝑋𝑖)
((1 − 𝑝)𝑓0(𝑋𝑖) + 𝑝𝑓1(𝑋𝑖))Φ∞

𝑖−1(𝑋) + (𝑞𝑓0(𝑋𝑖) + (1 − 𝑞)𝑓1(𝑋𝑖))(1 − Φ∞
𝑖−1(𝑋))

where 𝑝 = 𝑄01 and 𝑞 = 𝑄10, leading to

Φ∞
𝑖 (𝑋) =

(1 − 𝑝)Φ∞
𝑖−1(𝑋) + 𝑞(1 − Φ∞

𝑖−1(𝑋))
(1 − 𝑝+ 𝑝(𝑓1/𝑓0)(𝑋𝑖))Φ∞

𝑖−1(𝑋) + (𝑞 + (1 − 𝑞)(𝑓1/𝑓0)(𝑋𝑖))(1 − Φ∞
𝑖−1(𝑋)) . (40)

That is, if we define 𝐴(Φ) = (1 − 𝑝)Φ + 𝑞(1 − Φ), then

Φ∞
𝑖 (𝑋) =

𝐴(Φ∞
𝑖−1(𝑋))

𝐴(Φ∞
𝑖−1(𝑋)) + (𝑓1/𝑓0)(𝑋𝑖)(1 −𝐴(Φ∞

𝑖−1(𝑋))) . (41)

Since conditional on Φ∞
𝑖−1(𝑋), 𝑋𝑖 has distribution

[︀
𝐴(Φ∞

𝑖−1(𝑋))𝑓0(𝑥) + (1 −𝐴(Φ∞
𝑖−1(𝑋))𝑓1(𝑥)

]︀
𝜇,

we deduce that (Φ∞
𝑖 (𝑋))𝑖∈Z is a stationary Markov chain (with state space [0, 1] and) with

transition kernel 𝐾(Φ, 𝑑Φ′) given by

𝐾(Φ, 𝑑Φ′) =
∫︁
𝛿𝑔(Φ,𝑥)(𝑑Φ′) [(Φ(1 − 𝑝) + (1 − Φ)𝑞)𝑓0(𝑥) + (Φ𝑝+ (1 − Φ)(1 − 𝑞))𝑓1(𝑥)] 𝑑𝜇(𝑥)

=
∫︁
𝛿𝑔(Φ,𝑥)(𝑑Φ′) [𝐴(Φ)𝑓0(𝑥) + (1 −𝐴(Φ))𝑓1(𝑥)] 𝑑𝜇(𝑥),

where
𝑔(Φ, 𝑥) = 𝐴(Φ)

𝐴(Φ) + (𝑓1/𝑓0)(𝑥)(1 −𝐴(Φ)) .

Then, for each 𝑡 ∈ (0, 1), we have

Π𝐻

(︀
Φ∞
𝑖 (𝑋) ≤ 𝑡|Φ∞

𝑖−1(𝑋)
)︀

= Π𝐻

(︃
(𝑓1/𝑓0)(𝑋𝑖) ≥

𝐴(Φ∞
𝑖−1(𝑋))

1 −𝐴(Φ∞
𝑖−1(𝑋))(1/𝑡− 1) | Φ∞

𝑖−1(𝑋)
)︃
.

Recall that 𝜋0𝐺0 + 𝜋1𝐺1 is assumed to be continuous and strictly increasing on (0,+∞),
and that 𝜋0 > 0 and 𝜋1 > 0, so that 𝐺0 and 𝐺1 are both continuous, and on the set where
𝐺0 is not strictly increasing, 𝐺1 is strictly increasing and vice versa. We deduce that

Π𝐻

(︀
Φ∞
𝑖 (𝑋) ≤ 𝑡 | Φ∞

𝑖−1(𝑋)
)︀

= 𝐴(Φ∞
𝑖−1(𝑋))

[︃
1 −𝐺0

(︃
𝐴(Φ∞

𝑖−1(𝑋))
1 −𝐴(Φ∞

𝑖−1(𝑋))

(︂1
𝑡

− 1
)︂)︃]︃

+
(︀
1 −𝐴(Φ∞

𝑖−1(𝑋))
)︀ [︃

1 −𝐺1

(︃
𝐴(Φ∞

𝑖−1(𝑋))
1 −𝐴(Φ∞

𝑖−1(𝑋))

(︂1
𝑡

− 1
)︂)︃]︃

.
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Then Φ∞
𝑖 (𝑋) has, conditionally on Φ∞

𝑖−1(𝑋), a continuous and strictly increasing distribu-
tion function on (0, 1). The same holds for Φ∞

𝑖 (𝑋) since for all 𝑡,

Π𝐻 (Φ∞
𝑖 (𝑋) ≤ 𝑡) = 𝐸𝐻 [Π𝐻

(︀
Φ∞
𝑖 (𝑋) ≤ 𝑡 | Φ∞

𝑖−1(𝑋)
)︀
].

That is, Φ∞
𝑖 (𝑋) has (conditionally on Φ∞

𝑖−1(𝑋) and unconditionally) no atoms and support
(0, 1).

The same ideas used to derive (40) and (41) allow us to show that for all 𝑖,

ℓ∞𝑖 (𝑋) =
(1 − 𝑝)Φ∞

𝑖 (𝑋)ℓ∞𝑖+1(𝑋)
𝐴(Φ∞

𝑖 (𝑋)) +
𝑝Φ∞

𝑖 (𝑋)(1 − ℓ∞𝑖+1(𝑋))
1 −𝐴(Φ∞

𝑖 (𝑋)) . (42)

Let 𝐶(Φ) = Φ(1−Φ)
𝐴(Φ)(1−𝐴(Φ)) and notice that for any 𝑝, 𝑞 ∈ (0, 1) there exists 𝑎 = 𝑎(𝑝, 𝑞) < 1

such that for all Φ ∈ (0, 1), |1 − 𝑝− 𝑞|𝐶(Φ) ≤ 𝑎. Then an easy recursion yields

ℓ∞𝑖 (𝑋) = 𝑝Φ∞
𝑖 (𝑋)

1 −𝐴(Φ∞
𝑖 (𝑋))+

∑︁
𝑘≥1

(1−𝑝−𝑞)𝑘𝐶(Φ∞
𝑖 (𝑋))𝐶(Φ∞

𝑖+1(𝑋)) · · ·𝐶(Φ∞
𝑖+𝑘−1(𝑋))

𝑝Φ∞
𝑖+𝑘(𝑋)

1 −𝐴(Φ∞
𝑖+𝑘(𝑋)) .

Indeed, since for any Φ ∈ (0, 1), |1 − 𝑝 − 𝑞|𝐶(Φ) ≤ 𝑎(𝑝, 𝑞) < 1, the series converges almost
surely. We see that for each 𝑖, ℓ∞𝑖 (𝑋) is a function of (Φ∞

𝑘 (𝑋))𝑘≥𝑖, and we have

ℓ∞𝑖 (𝑋) = 𝑝Φ∞
𝑖 (𝑋)

1 −𝐴(Φ∞
𝑖 (𝑋)) + (1 − 𝑝− 𝑞)𝐶(Φ∞

𝑖 (𝑋))ℓ∞𝑖+1(𝑋).

It follows that for all 𝑡,

Π𝐻(ℓ∞𝑖 (𝑋) ≤ 𝑡|Φ∞
𝑖−1(𝑋))

=𝐸𝐻
[︁
Π𝐻

(︁
(1 − 𝑝− 𝑞)𝐶(Φ∞

𝑖 (𝑋))ℓ∞𝑖+1(𝑋) ≤ 𝑡− 𝑝Φ∞
𝑖 (𝑋)

1 −𝐴(Φ∞
𝑖 (𝑋)) | Φ∞

𝑖 (𝑋)
)︁

| Φ∞
𝑖−1(𝑋)

]︁
.

(43)

Define the function 𝐹ℓ by

𝐹ℓ(𝑡; Φ∞
𝑖−1(𝑋)) = Π𝐻

(︀
ℓ∞𝑖 (𝑋) ≤ 𝑡|Φ∞

𝑖−1(𝑋)
)︀

;

note that by stationarity 𝐹ℓ does not depend on 𝑖. Then by (43), if (1 − 𝑝− 𝑞) > 0, we have

𝐹ℓ(𝑡; Φ∞
𝑖−1(𝑋)) = 𝐸𝐻

[︂
𝐹ℓ

(︂ 1
(1 − 𝑝− 𝑞)𝐶(Φ∞

𝑖 (𝑋))
(︁
𝑡− 𝑝Φ∞

𝑖 (𝑋)
1 −𝐴(Φ∞

𝑖 (𝑋))
)︁
; Φ∞

𝑖 (𝑋)
)︂

| Φ∞
𝑖−1(𝑋)

]︂
;

that is, for any 𝑡 and any Φ ∈ (0, 1),

𝐹ℓ(𝑡; Φ) =
∫︁
𝐹ℓ

(︂ 1
(1 − 𝑝− 𝑞)𝐶(𝑥)

(︂
𝑡− 𝑝𝑥

1 −𝐴(𝑥)

)︂
;𝑥
)︂
𝐾(Φ, 𝑑𝑥). (44)

Similarly, if (1 − 𝑝− 𝑞) < 0, defining the function 𝐹ℓ by 𝐹ℓ(𝑡,Φ) = lim𝑠→𝑡,𝑠<𝑡 𝐹ℓ(𝑡; Φ),

𝐹ℓ(𝑡; Φ) =
∫︁ [︂

1 − 𝐹ℓ

(︂ 1
(1 − 𝑝− 𝑞)𝐶(𝑥)

(︂
𝑡− 𝑝𝑥

1 −𝐴(𝑥)

)︂
;𝑥
)︂]︂

𝐾(Φ, 𝑑𝑥). (45)
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Note that under Assumption C, (1 − 𝑝− 𝑞) ̸= 0.
Finally, the fact that Φ∞

𝑖 (𝑋) has no atoms and support (0, 1) (both conditionally on
Φ∞
𝑖−1(𝑋) and unconditionally) implies, together with equations (44) and (45), that what-

ever the sign of (1 − 𝑝− 𝑞), the function 𝑡 ↦→ 𝐸𝐻 [𝐹ℓ(𝑡; Φ∞
𝑖−1(𝑋))] is continuous and strictly

increasing, which is to say that the distribution function of ℓ∞𝑖 (𝑋) is continuous and strictly
increasing.

Lemma 18. Under the conditions of Theorem 3, writing ℓ∞𝑖 (𝑋) = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛∈Z),
the function 𝑚 defined by

𝑚(𝜆) = 𝐸𝐻 [ℓ∞𝑖 (𝑋) | ℓ∞𝑖 (𝑋) < 𝜆]

is continuous and strictly increasing on (0, 1), and 𝑚(𝜆) < 𝜆 for all 𝜆 ∈ (0, 1).

Proof For any bounded random variable 𝑈 and any 𝑎 < 𝑏 such that 𝑃 (𝑈 < 𝑎) > 0, we
have
𝐸[𝑈 | 𝑈 < 𝑏] = 𝐸[𝑈 | 𝑈 < 𝑎]𝑃 (𝑈 < 𝑎 | 𝑈 < 𝑏) + 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏]𝑃 (𝑈 ≥ 𝑎 | 𝑈 < 𝑏)

= 𝐸[𝑈 | 𝑈 < 𝑎](1 − 𝑃 (𝑈 ≥ 𝑎 | 𝑈 < 𝑏)) + 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏]𝑃 (𝑈 ≥ 𝑎 | 𝑈 < 𝑏),

hence

𝐸[𝑈 | 𝑈 < 𝑏] − 𝐸[𝑈 | 𝑈 < 𝑎] = 𝑃 (𝑎 ≤ 𝑈 < 𝑏)
𝑃 (𝑈 < 𝑏)

(︁
𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏] − 𝐸[𝑈 | 𝑈 < 𝑎]

)︁
. (46)

Note now that 𝐸[𝑈 | 𝑈 < 𝑎] < 𝑎: indeed, if

𝑉
𝑑= (𝑈 − 𝑎) | {𝑈 < 𝑎},

then 𝑉 ≤ 0 and 𝑉 is strictly negative with positive probability, hence 𝐸[𝑉 ] < 0. Taking
𝑈 = ℓ∞𝑖 yields that 𝑚(𝜆) < 𝜆 as claimed. Continuing with the proof of continuity and
monotonicity, we similarly note that 𝑎 ≤ 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏] < 𝑏. Using also that 𝑈 is
bounded, so that 𝐸[𝑈 | 𝑈 < 𝑎] ≥ −𝑐 for some 𝑐 < ∞, we deduce that

0 < 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏] − 𝐸[𝑈 | 𝑈 < 𝑎] < 𝑏+ 𝑐.

Returning to (46) we see for a general bounded random variable 𝑈 that 𝑥 ↦→ 𝐸[𝑈 | 𝑈 < 𝑥]
is strictly increasing on {𝑥 : 𝑃 (𝑈 < 𝑥) > 0} if 𝑃 (𝑎 ≤ 𝑈 < 𝑏) > 0 for all 𝑎, 𝑏, and continuous
if 𝑃 (𝑎 ≤ 𝑈 < 𝑏) → 0 as 𝑏 − 𝑎 → 0. Taking 𝑈 = ℓ∞𝑖 , we conclude by Lemma 17, which
tells us that the distribution function of ℓ∞𝑖 is continuous and strictly increasing and also
implies that Π𝐻(ℓ∞𝑖 < 𝜆) > 0 for all 𝜆 > 0.

Lemma 19. Recall the definition

ℓ∞𝑖 (𝑋) = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z)).

There exist 𝛿𝑁 , 𝜉𝑁 , 𝜉′
𝑁 → 0 such that with probability tending to 1,

#{𝑖 : 1 ≤ 𝑖 ≤ 𝑁, |ℓ𝑖(𝑋) − ℓ∞𝑖 (𝑋)| > 𝜉𝑁} ≤ 𝑁𝛿𝑁

#{𝑖 : 1 ≤ 𝑖 ≤ 𝑁, |ℓ̂𝑖(𝑋) − ℓ∞𝑖 (𝑋)| > 𝜉′
𝑁} ≤ 𝑁𝛿𝑁 .
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Proof Define ℓ′𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴𝑁
, . . . , 𝑋𝑖+𝐴𝑁

). As in Lemma 16, we may argue
using Proposition 4.3.23iii of Cappé et al. (2005) that for a suitable sequence 𝐴𝑁 → ∞
satisfying 𝐴𝑁/𝑁 → 0, that

#{𝑖 ≤ 𝑁 : |ℓ𝑖(𝑋) − ℓ′𝑖(𝑋)| > 4𝜌𝐴𝑁 } ≤ 2𝐴𝑁 .

Recalling from (38) that ℓ∞𝑖 (𝑋) is formally defined as an almost sure limit of ℓ′𝑖(𝑋) as
𝐴𝑁 → ∞, so that ℓ′𝑖 → ℓ∞𝑖 in probability also, this proves the first bound. The second
bound then follows after an appeal to Lemma 9.

Lemma 20 (Ergodic theorems). The sequences ℓ′𝑖 and ℓ∞𝑖 , defined for 𝐴 ∈ N by

ℓ′𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴,

ℓ∞𝑖 (𝑋) = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z)),

are ergodic, so that for any bounded function 𝑔,

1
𝑁

𝑁∑︁
𝑖=1

𝑔(ℓ′𝑖) → 𝐸𝜋[𝑔(ℓ′1)], a.s. (hence also in probability),

and similarly for ℓ∞𝑖 .

Proof These are standard ergodicity results for functions of Markov chains (see for exam-
ple Durrett, 2019, Chapter 6). In the case of ℓ′𝑖 one can also note that 𝑔(ℓ′𝑖(𝑋)) is a function
of the Markov chain (𝜃𝑖−𝐴, . . . , 𝜃𝑖+𝐴, 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴) to reduce to the ergodic theorem for
Markov chains themselves.

We gather some results for the mFDR, defined as in (16).

Lemma 21. a. For any multiple testing procedure 𝜓,

mFDR𝐻(𝜓) ≤ 𝑎 if and only if 𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)𝜓𝑖 ≤ 0, (47)

with equality in one implying equality in the other.

b. Define the class (𝜙𝜆,𝐻 : 𝜆 ∈ [0, 1]) as in (8). For 𝜆 ∈ [0, 1], we have

mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝜆, with equality iff 𝜆 = 0. (48)

c. The map 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻) is non-decreasing on [0, 1]. In the setting of Theorem 2,
for each 𝜆 < 𝜆′ there exists 𝑐 = 𝑐(𝜆, 𝜆′) > 0 such that for all 𝑁 large enough we have

mFDR𝐻(𝜙𝜆′,𝐻) ≥ mFDR𝐻(𝜙𝜆,𝐻) + 𝑐. (49)
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Proof Recalling the convention 0/0 = 0 for defining the mFDR, the first part holds
trivially when 𝐸𝐻

∑︀
𝜓𝑖 = 0, and from rearranging the definition when 𝐸𝐻

∑︀
𝜓𝑖 > 0 (note

that 𝐸𝐻1{𝜃𝑖 = 0} = 𝐸𝐻𝐸𝐻 [1{𝜃𝑖 = 0} | 𝑋] = 𝐸𝐻ℓ𝑖(𝑋)). Part (b) similarly is trivial for
𝜆 such that 𝜙𝜆,𝐻 = 0 with probability 1. If instead 𝜙𝜆,𝐻 is not almost surely the zero
vector, there exists 𝑘 such that with positive probability 𝜙𝑘 = 1 (and hence ℓ𝑘 < 𝜆); then
𝑈 = (ℓ𝑘 − 𝜆)𝜙𝑘 satisfies 𝑈 ≤ 0 and Π𝐻(𝑈 < 0) > 0, which together imply that 𝐸𝐻 [𝑈 ] < 0,
so that

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝜆)𝜙𝑖 < 0,

implying (48) by part (a). For part (c), writing 𝑎 = mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝜆 we have, using
part (a) to obtain the second line,

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{ℓ𝑖 < 𝜆′} = 𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{ℓ𝑖 < 𝜆}] + 𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{𝜆 ≤ ℓ𝑖 < 𝜆′}].

= 𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{𝜆 ≤ ℓ𝑖 < 𝜆′}]

≥ (𝜆− 𝑎)𝐸𝐻 [#{𝑖 ≤ 𝑁 : 𝜆 ≤ ℓ𝑖 < 𝜆′}].

This last expression is non-negative, and the fact that the map 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻) is
non-decreasing follows by part (a). For (49), we may assume without loss of generality that
𝜆 > 0, and hence that 𝜆− 𝑎 > 0. By Lemma 19 there exists a sequence 𝜉𝑁 → 0 such that
𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞𝑖 | > 𝜉𝑁}/𝑁 → 0 as 𝑁 → ∞, and we decompose

𝐸𝐻 [#{𝑖 : 𝜆 ≤ ℓ𝑖 < 𝜆′}] ≥ 𝐸𝐻#{𝑖 : 𝜆+ 𝜉𝑁 ≤ ℓ∞𝑖 < 𝜆′ − 𝜉𝑁} − 𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞𝑖 | > 𝜉𝑁}.

Lemma 17 tells us that under the assumptions of Theorem 3 the distribution function of
ℓ∞𝑖 is strictly increasing, so that for 𝑁 large enough that 𝜆+ 𝜉𝑁 < 𝜆′ − 𝜉𝑁 the first term on
the right in the latest display is of order 𝑁 and the second is of smaller order. We deduce
that, for 𝑐 = 𝑐(𝜆, 𝜆′) > 0 small enough, and for all 𝑁 large enough,

𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − (𝑎+ 𝑐))1{ℓ𝑖 < 𝜆′}] ≥ 𝑐𝑁 − 𝑐𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ𝑖 < 𝜆′}] ≥ 0,

so that mFDR𝐻(𝜙𝜆′,𝐻) ≥ 𝑎+ 𝑐, implying (49).

Lemma 22. In the setting of Theorem 2, define the class (𝜙𝜆,𝐻 : 𝜆 ∈ [0, 1]) as in (8), and
define the mTDR and mFDR as in (15) and (16). Then for each 𝜆 ∈ (0, 1) we have

mTDR𝐻(𝜙𝜆,𝐻) = sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ mFDR𝐻(𝜙𝜆,𝐻)}.

Remarks. i. A version of this result in the HMM setting originates in Sun and Cai
(2009), but to avoid a monotonicity property needed therein we instead adapt the
proof Lemma 9.2 of Rebafka et al. (2019) (see also the proof of Cai et al. 2019,
Theorem 1). The proof is valid for ℓ-value procedures in any (correctly specified)
model, not just the hidden Markov model (1).

39



Abraham, Castillo and Gassiat

ii. The result need not in general hold for 𝜆 = 0, since mFDR𝐻(𝜓) = 0 whenever
𝐸𝐻 [ℓ𝑖(𝑋)𝜓𝑖(𝑋)] = 0 for all 𝑖, so that if Π𝐻(ℓ𝑖(𝑋) = 0) > 0, the test 𝜓 defined by
𝜓𝑖(𝑋) = 1{ℓ𝑖(𝑋) = 0} has positive probability of making at least one true discovery,
so that mTDR𝐻(𝜓) > 0, while mFDR𝐻(𝜓) = 0.

iii. In general, {mFDR𝐻(𝜙𝜆,𝐻) : 𝜆 ∈ [0, 1]} is a proper subset of [0, 1], and consequently
the class 𝜙𝜆,𝐻 need not be optimal for every threshold. In particular, the supremum of
the set is generally strictly smaller than one, and – especially in discrete data settings
– there may be jump discontinuities in the function 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻). The first
of these does not cause any issues, since mTDR𝐻(𝜙1,𝐻) = 1 = sup𝜓 mTDR𝐻(𝜓)
(provided 𝜃𝑖 = 1 with positive probability, which is true in the current setting by
Assumption C), while Lemma 23 overcomes the issues raised in the second case in the
setting of Theorem 3.

Proof Fix 𝜆 ∈ (0, 1) and write 𝜙 for 𝜙𝜆,𝐻 . Lemma 21 tells us that 𝑎 = mFDR𝐻(𝜙) satisfies
𝑎 < 𝜆, and implies that if mFDR𝐻(𝜓) ≤ 𝑎 then

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)(𝜙− 𝜓) ≥ 0. (50)

We show that, for all 𝑖,

(ℓ𝑖 − 𝑎)(𝜙𝑖 − 𝜓𝑖) ≤ 𝜆− 𝑎

1 − 𝜆
(1 − ℓ𝑖)(𝜙𝑖 − 𝜓𝑖). (51)

Indeed, if 𝜙𝑖 = 1, then ℓ𝑖 < 𝜆, so that

ℓ𝑖 − 𝑎 <
1 − ℓ𝑖
1 − 𝜆

(𝜆− 𝑎),

and multiplying by 𝜙𝑖 − 𝜓𝑖 ≥ 0 yields the inequality, while if 𝜙𝑖 = 0, then ℓ𝑖 ≥ 𝜆 > 𝑎, so
that

ℓ𝑖 − 𝑎 ≥ 1 − ℓ𝑖
1 − 𝜆

(𝜆− 𝑎),

and multiplying by 𝜙𝑖 − 𝜓𝑖 ≤ 0 yields the inequality.
Now, since 𝑎 < 𝜆 < 1, so that (1 − 𝜆)/(𝜆− 𝑎) > 0, we deduce from (50) and (51) that

𝐸𝐻
∑︁
𝑖≤𝑁

(1 − ℓ𝑖)(𝜙𝑖 − 𝜓𝑖) ≥ 0.

Finally, by definition,

mTDR𝐻(𝜙) =
𝐸𝐻 [∑︀𝑖≤𝑁 (1 − ℓ𝑖)𝜙𝑖]

𝑁𝜋1
, mTDR𝐻(𝜓) =

𝐸𝐻 [∑︀𝑖≤𝑁 (1 − ℓ𝑖)𝜓𝑖]
𝑁𝜋1

,

hence mTDR𝐻(𝜙) ≥ mTDR𝐻(𝜓) as claimed.
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Lemma 23. In the setting of Theorem 3, define the map

𝑔 : 𝑥 ↦→ sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ 𝑥},

where the supremum is defined over multiple testing procedures 𝜓. Then for sequences
𝑥𝑁 , 𝑦𝑁 such that |𝑥𝑁 − 𝑦𝑁 | → 0, we have

|𝑔(𝑥𝑁 ) − 𝑔(𝑦𝑁 )| → 0 as 𝑁 → ∞.

[Note that 𝑔 depends implicitly on 𝑁 , so that this does not simply say that 𝑔 is continuous.]

Proof Prompted by Lemma 22, we focus on tests 𝜓 of the form 𝜙𝜆,𝐻 , 𝜆 ∈ [0, 1] and define,
for 𝑁 ≥ 1,

𝜆𝑁 = sup{𝜆 : mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑥𝑁},
𝜇𝑁 = sup{𝜆 : mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑦𝑁}.

One has the following dichotomies, as for the postFDR (recall (12)), implied by the fact
that the map 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻) is non-decreasing (by Lemma 21) and left continuous (by
the definition of 𝜙𝜆,𝐻):

mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑥𝑁 ⇐⇒ 𝜆 ≤ 𝜆𝑁 ,

mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑦𝑁 ⇐⇒ 𝜆 ≤ 𝜇𝑁 .
(52)

Suppose (for a contradiction) that |𝜆𝑁 − 𝜇𝑁 | ̸→ 0. Without loss of generality we may
assume that for some 𝛿 > 0 and some subsequence 𝑁𝑗 we have 𝜆𝑁𝑗 − 𝜇𝑁𝑗 > 𝛿 for all 𝑗 ∈ N.
Then 𝜆𝑁𝑗 − 𝜇̃𝑁𝑗 > 𝛿/2 for large 𝑗, and by restricting to a further subsequence if necessary
we may assume that for some 𝜆 > 𝜇 we have 𝜆𝑁𝑗 ≥ 𝜆 > 𝜇 > 𝜇𝑁𝑗 for all 𝑗. Now Lemma 21
tells us that there exists a constant = 𝑐(𝜆, 𝜇) > 0 such that for 𝑁 large enough

mFDR𝐻(𝜙𝜆,𝐻) − mFDR𝐻(𝜙𝜇,𝐻) > 𝑐.

Using (52) we deduce

𝑥𝑁𝑗 ≥ mFDR𝐻(𝜙𝜆,𝐻) > mFDR𝐻(𝜙𝜇,𝐻) + 𝑐 > 𝑦𝑁𝑗 + 𝑐,

so that 𝑥𝑁𝑗 − 𝑦𝑁𝑗 > 𝑐, contradicting that |𝑥𝑁 − 𝑦𝑁 | → 0. We deduce that necessarily
|𝜆𝑁 − 𝜇𝑁 | → 0.

Now set 𝜆̃𝑁 = min(𝜆𝑁 + 1/𝑁, 1) and 𝜇̃𝑁 = min(𝜇𝑁 + 1/𝑁, 1). Then (52), together with
Lemma 22 (and Remark iii thereafter for the cases 𝜆̃𝑁 = 1, 𝜇̃𝑁 = 1) implies that

mTDR𝐻(𝜙𝜆𝑁 ,𝐻) ≤ 𝑔(𝑥𝑁 ) ≤ mTDR𝐻(𝜙𝜆̃𝑁 ,𝐻
)

mTDR𝐻(𝜙𝜇𝑁 ,𝐻) ≤ 𝑔(𝑦𝑁 ) ≤ mTDR𝐻(𝜙𝜇̃𝑁 ,𝐻).

We prove that |mTDR𝐻(𝜙𝜆𝑁 ,𝐻) − mTDR𝐻(𝜙𝜇𝑁 ,𝐻)| → 0 as a consequence of the fact
that |𝜆𝑁−𝜇𝑁 | → 0. Since also |𝜆̃𝑁−𝜆𝑁 | → 0, |𝜇̃𝑁−𝜇𝑁 | → 0, the same proof will imply that
each of mTDR𝐻(𝜙𝜆𝑁 ,𝐻), mTDR𝐻(𝜙𝜆̃𝑁 ,𝐻

), mTDR𝐻(𝜙𝜇𝑁 ,𝐻) and mTDR𝐻(𝜙𝜇̃𝑁 ,𝐻) differ by
at most 𝑜(1), allowing us to conclude.
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Assume for notational convenience that 𝜆𝑁 ≥ 𝜇𝑁 . The denominator in the expressions
defining each of the mTDR’s is 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1} = 𝑁𝜋1, and we see that

mTDR𝐻(𝜙𝜆𝑁 ,𝐻) = mTDR𝐻(𝜙𝜇𝑁 ,𝐻) + 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1, 𝜇𝑁 ≤ ℓ𝑖 < 𝜆𝑁}
𝑁𝜋1

.

By Lemma 19 there exists a sequence 𝜉𝑁 → 0 such that 𝐸𝐻#{𝑖 : |ℓ𝑖−ℓ∞𝑖 | > 𝜉𝑁}/𝑁 → 0
as 𝑁 → ∞. Lemma 17 tells us that the distribution function of ℓ∞𝑖 is continuous – and
hence uniformly continuous – and we see that

𝑁−1𝐸𝐻#{𝑖 : 𝜃𝑖 = 1, 𝜇𝑁 ≤ ℓ𝑖 < 𝜆𝑁}
≤Π𝐻(𝜇𝑁 − 𝜉𝑁 ≤ ℓ∞1 < 𝜆𝑁 + 𝜉𝑁 ) +𝑁−1𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞𝑖 | > 𝜉𝑁} → 0,

as 𝑁 → ∞, proving the claim.

Appendix B. Auxiliary Results for the upper bounds of Section 3

B.1 Well-definedness of the Estimators

Lemma 24. In the setting of Theorem 5, there exist (ℎ𝑙)𝑙∈N (not depending on 𝐻) uniformly
supremum-norm bounded such that 𝑂𝐿0 = (𝐸𝐻 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗]𝑙≤𝐿0,𝑗≤𝐽) ∈ R𝐿0×𝐽 satisfies

𝜎𝐽(𝑂𝐿0) ≥ 𝐶,

uniformly in 𝐿0 ≥ 𝐿, for some 𝐶,𝐿 depending on the parameters 𝑓𝑗 , 𝑗 ≤ 𝐽 .

Proof For 𝐿 > 𝐿′, 𝜎𝐽(𝑂𝐿) > 𝜎𝐽(𝑂𝐿′) because 𝑂𝐿′ is a submatrix of 𝑂𝐿 (see for example
Stewart and Sun, 1990, Chapter 1, Theorem 4.4). So it suffices to show that 𝜎𝐽(𝑂𝐿) > 0
for some 𝐿.

Choose a countable family of sets 𝒜 = {𝐴1, . . .} generating the Borel 𝜎-algebra on R,
for example 𝒜 = {(−∞, 𝑞) : 𝑞 ∈ Q}, and let ℎ𝑙 = 1𝐴𝑙

. Suppose for a contradiction that
𝜎𝐽(𝑂𝐿) = 0 for all 𝐿 ∈ N, or, put another way, that the 𝐽 vectors (⟨ℎ𝑙, 𝑓𝑗⟩𝑙≤𝐿) ∈ R𝐿,
𝑗 ≤ 𝐽 are linearly dependent for all 𝐿 ∈ N, so that there exist 𝑎𝐿1 , . . . , 𝑎𝐿𝐽 ∈ [−1, 1] for which∑︀
𝑗 |𝑎𝐿𝑗 | = 1 and ∑︀𝑗 𝑎

𝐿
𝑗 ⟨ℎ𝑙, 𝑓𝑗⟩ = 0 for all 𝑙 ≤ 𝐿. By Bolzano–Weierstrass, there is a sequence

𝐿𝑛 → ∞ such that for each 𝑗 ≤ 𝐽 , 𝑎𝐿𝑛
𝑗 converges to some 𝑎∞

𝑗 , and note that necessarily
(𝑎∞
𝑗 )𝑗≤𝐽 is not the zero vector. For each 𝑙 ∈ N, we have that

⟨ℎ𝑙,
∑︁
𝑗≤𝐽

𝑎∞
𝑗 𝑓𝑗⟩ =

∑︁
𝑗≤𝐽

𝑎∞
𝑗 ⟨ℎ𝑙, 𝑓𝑗⟩ = lim

𝑛→∞

∑︁
𝑗≤𝐽

𝑎𝐿𝑛
𝑗 ⟨ℎ𝑙, 𝑓𝑗⟩ = 0.

Since span{ℎ𝑙 : 𝑙 ∈ N} corresponds to the simple functions, which are dense in 𝐿2, and
since ∑︀𝑗 𝑎

∞
𝑗 𝑓𝑗 is a continuous function, the latter is the zero function, contradicting that

the functions 𝑓𝑗 , 𝑗 ≤ 𝐽 are linearly independent.

Lemma 25. Under the assumptions of Theorem 5, define 𝑃 and (𝑀̂𝑥, 𝐵̂𝑥, 𝑥 ∈ R) as in
Algorithm 1. Then
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a. The map 𝑥 ↦→ 𝑀̂𝑥 is continuous. For any 𝜅 > 0, there exists 𝑐 = 𝑐(𝜅,ℋ) such that
the event

𝒜 = {‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , sup
𝑥∈R

‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁}

(is measurable and) has probability at least 1 −𝑁−𝜅 for 𝑁 large.

b. On 𝒜, for 𝑁 large enough 𝑃 has rank 𝐽 , and the matrices

𝐵̃𝑥 = (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 , 𝑥 ∈ R, (53)

are well defined.

c. On 𝒜, for some 𝐶 > 0 depending on both the constant 𝑐 of 𝒜 and on ℋ, we have for
𝑁 large enough

sup
𝑥∈R

max(‖𝐵̂𝑥‖, ‖𝐵̃𝑥‖) ≤ 𝐶𝐿
1/2
0 , (54)

sup
𝑥∈R

‖𝐵̃𝑥 − 𝐵̂𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 . (55)

Proof Lemma 29 and Lemma 30 together imply that for suitable 𝑐 = 𝑐(𝜅,ℋ),

Π𝐻(‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , sup
𝑥∈Q

‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁 ) ≥ 1 −𝑁−𝜅.

[In fact a union bound yields this with 2𝑁−𝜅 in place of 𝑁−𝜅, but the factor 2 can be
removed by initially considering some 𝜅′ > 𝜅.] We prove the claimed continuity of the map
𝑥 ↦→ 𝑀̂𝑥; it will follow that

{sup
𝑥∈Q

‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁} = {sup

𝑥∈R
‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2

0𝑟𝑁},

which implies measurability and the probability bound for 𝒜. This continuity results from
the assumed Lipschitz continuity of 𝐾. Indeed, if Λ is the Lipschitz constant for 𝐾, observe
that if |𝑥− 𝑦| < 𝛿 then for any 𝑛

|𝐾𝐿(𝑥,𝑋𝑛+1)−𝐾𝐿(𝑦,𝑋𝑛+1)| ≤ sup
𝑡∈R

|𝐾𝐿(𝑥, 𝑡)−𝐾𝐿(𝑦, 𝑡)| ≤ sup
|𝑢−𝑣|<2𝐿𝛿

2𝐿|𝐾(𝑢)−𝐾(𝑣)| ≤ 22𝐿Λ𝛿,

hence, for some 𝐶 = 𝐶(ℋ),

‖𝑀̂𝑥 − 𝑀̂𝑦‖ ≤ 𝐿0
𝑁1/2 max

𝑙
‖ℎ𝑙‖2

∞ max
𝑛≤𝑁

|𝐾𝐿(𝑥,𝑋𝑛+1) −𝐾𝐿(𝑦,𝑋𝑛+1)| ≤ 𝐶
𝐿022𝐿

𝑁1/2 |𝑥− 𝑦|.

Next, in view of the assumption on 𝑂 made in the algorithm, Lemma 34 implies that
𝜎𝐽(𝑃 ) is bounded away from zero for large 𝑁 and consequently by Lemma 35a, on 𝒜 and
for 𝑁 large we have that 𝑃 is of rank 𝐽 and that 𝑉 ᵀ𝑃𝑉 is invertible (recall that 𝐿5

0𝑟𝑁 → 0
by assumption, so that the condition of Lemma 35 – that ‖𝑃 − 𝑃‖ < 𝜎𝐽(𝑃 )/3 – holds
eventually). Then Lemma 11 tells us that 𝐵̃𝑥 is well defined for each 𝑥 ∈ R and can be
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expressed as (𝑄𝑂ᵀ𝑉 )−1𝐷𝑥𝑄𝑂ᵀ𝑉 . It follows, using Lemma 35b and eq. (27), that on 𝒜, for
a constant 𝑐 = 𝑐(ℋ) and any 𝑥 ∈ R we have

‖𝐵̃𝑥‖ ≤ 𝜅(𝑄𝑂ᵀ𝑉 ) max
𝑗

|𝐾𝐿[𝑓𝑗 ](𝑥)| ≤ 𝑐𝐿
1/2
0

for 𝑁 large (recall 𝜅(𝐴) := ‖𝐴‖‖𝐴−1‖ is the condition number of a matrix).
Finally, Lemma 35c tells us that on 𝒜, for 𝑁 large enough that 𝑐𝐿0𝑟𝑁 < 𝜎𝐽(𝑃 )/3,

‖𝐵̃𝑥 − 𝐵̂𝑥‖ ≤ 3.2
[︁‖𝑀̂𝑥 −𝑀𝑥‖

𝜎𝐽(𝑃 ) + ‖𝑀𝑥‖‖𝑃 − 𝑃‖
𝜎𝐽(𝑃 )2

]︁
, ∀𝑥 ∈ R.

Noting that ‖𝑀𝑥‖ ≤ 𝑐𝐿0 for some 𝑐 = 𝑐(ℋ) by Lemma 34, we deduce (55). The bound for
‖𝐵̂𝑥‖ then follows from the bound for ‖𝐵̃𝑥‖ by the triangle inequality.

Lemma 26. Recall sep(𝐵) denotes the eigen-separation of a matrix 𝐵, in that if 𝐵 has
eigenvalues 𝜆1, . . . , 𝜆𝐽 then sep(𝐵) = min𝑗 ̸=𝑗′ |𝜆𝑗−𝜆𝑗′ |. On the event 𝒜 of Lemma 25, define
𝐵𝑎,𝑢 ≡ 𝐵̃𝑎,𝑢 as in Algorithm 1 for 𝑉 = 𝑉 :

𝐵̃𝑎,𝑢 =
∑︁

𝑎𝑖𝐵̃
𝑢𝑖 , 𝐵̃𝑥 = (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 .

Define

𝒟𝑁 =
{︁ 𝑗

2𝑁 : 𝑗 ∈ Z
}︁

∩ [−𝑁,𝑁 ],

D𝑁 = {(𝑎, 𝑢) ∈ 𝒟𝐽(𝐽−1)/2
𝑁 × 𝒟𝐽(𝐽−1)/2

𝑁 :
∑︁
𝑖

|𝑎𝑖| ≤ 1}.

Then there exists a constant 𝑐 depending only on 𝑓1, . . . , 𝑓𝐽 and (strictly) positive when they
are all distinct such that, on 𝒜,

max{sep(𝐵̃𝑎,𝑢) : (𝑎, 𝑢) ∈ D𝑁} ≥ 𝑐,

for all 𝑁 large.

Remark. Recall, as remarked after Algorithm 1, that proving this result for 𝑉 = 𝑉 implies
it holds for any 𝑉 such that 𝐵𝑥 = (𝑉 ᵀ𝑃𝑉 )−1(𝑉 ᵀ𝑀𝑥𝑉 ) is well-defined.
Proof In view of Lemma 11, 𝐵̃𝑎,𝑢, being a linear combination of simultaneously diagonal-
isable matrices, is diagonalisable for any 𝑎, 𝑢, with eigenvalues

(
∑︁
𝑖

𝑎𝑖𝐾𝐿[𝑓𝑗 ](𝑢𝑖))𝑗≤𝐽 .

Recall that ‖𝐾𝐿[𝑓𝑗 ] − 𝑓𝑗‖∞ → 0 as 𝐿 = 𝐿(𝑁) → ∞ by (26). It follows by the triangle
inequality that

max
D𝑁

|
∑︁
𝑖

𝑎𝑖(𝐾𝐿[𝑓𝑗 ](𝑢𝑖) − 𝑓𝑗(𝑢𝑖))| → 0,

44



Multiple Testing in Nonparametric HMMs

hence

max
D𝑁

sep(𝐵̃𝑎,𝑢) = max
D𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖𝐾𝐿[𝑓𝑗−𝑓𝑗′ ](𝑢𝑖)
⃒⃒⃒
> 1

2 max
D𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖)−𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
, (56)

for 𝑁 large, provided this latter quantity is strictly positive.
Next, let 𝑈𝑁 denote [−𝑁,𝑁 ]𝐽(𝐽−1)/2. Observe that, since 𝑓𝑗 ∈ 𝐶𝑠(R) for each 𝑗 ≤ 𝐽 ,

(𝑎, 𝑢) ↦→ min
𝑗 ̸=𝑗′

|
∑︁
𝑖

𝑎𝑖(𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖))|

is uniformly continuous on R𝐽(𝐽−1)/2 × R𝐽(𝐽−1)/2, so that

1
2 max

(𝑎,𝑢)∈D𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
> 1

4 sup
𝑎

sup
𝑢∈𝑈𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
(57)

for 𝑁 large, provided this latter quantity is strictly positive. The supremum on the right
can be extended: while at first we must take the supremum over (𝑎 such that ∑︀|𝑎𝑖| ≤ 1
and) 𝑢 ∈ 𝑈𝑁 , the result remains true taking the supremum instead over all 𝑢 ∈ R𝐽(𝐽−1)/2,
at least for 𝑁 large, using that 𝑓𝑗(𝑢) → 0 as 𝑢 → ∞. [That is, when the right side of (57)
is strictly positive, the supremum over 𝑢 ∈ R𝐽(𝐽−1)/2 is attained on 𝑈𝑁 for 𝑁 large.] We
now prove that

sup
𝑎,𝑢

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
> 0.

Choose for each pair 𝑗 ̸= 𝑗′ some 𝑥 ∈ R such that 𝑓𝑗(𝑥) ̸= 𝑓𝑗′(𝑥), and collect these 𝑥
into the vector 𝑢. For each 𝑗 ̸= 𝑗′, writing 𝑖 for an index such that 𝑓𝑗(𝑢𝑖) ̸= 𝑓𝑗′(𝑢𝑖), the set
{𝑣 ∈ R𝐽(𝐽−1)/2 : ⟨𝑣, 𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)⟩ = 0} is a proper subspace of R𝐽(𝐽−1)/2, so the union
over these 𝐽(𝐽−1)/2 spaces is not equal to R𝐽(𝐽−1)/2 (for example it has Lebesgue measure
zero) and we may choose 𝑎 in the complement of the union. Scale invariance means that
moreover we may assume 𝑎 satisfies ∑︀𝑖|𝑎𝑖| = 1. Then |

∑︀
𝑖 𝑎𝑖(𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖))| > 0 for each

𝑗 ̸= 𝑗′, as required.
Finally, combining also with (56) and (57) we deduce that

max(sep(𝐵̃𝑎,𝑢) : (𝑎, 𝑢) ∈ D𝑁 ) > 1
4 sup
𝑎,𝑢

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖(𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖))
⃒⃒⃒
> 0,

concluding the proof.

Lemma 27. In the setting of Theorem 5, let 𝒜 be the event of Lemma 25. Define 𝐵̂𝑥 =
𝐵̂𝑥,𝐿0,𝐿 as in Algorithm 1 and 𝐵̃𝑥 = 𝐵̃𝑥,𝐿0,𝐿 as in (53). For 𝑎, 𝑢 ∈ R𝐽(𝐽−1)/2 define
𝐵̂𝑎,𝑢 = ∑︀

𝑎𝑖𝐵̂
𝑢𝑖 , 𝐵̃𝑎,𝑢 = ∑︀

𝑎𝑖𝐵̃
𝑢𝑖 . Then there exists a constant 𝑐 = 𝑐(ℋ) > 0 such that, for

𝑎̂, 𝑢̂ as in Algorithm 1, on the event 𝒜 we have

sep(𝐵̂𝑎̂,𝑢̂) > 𝑐, (58)
sep(𝐵̃𝑎̂,𝑢̂) > 𝑐, (59)

for 𝑁 large. Note that (58) implies in particular that 𝐵̂𝑎̂,𝑢̂ has 𝐽 distinct eigenvalues and
so is diagonalisable.
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Proof By Lemma 25, on 𝒜 the matrices 𝐵̂𝑥, 𝐵̃𝑥 are well-defined and satisfy for some
𝐶 = 𝐶(ℋ)

sup
𝑥

‖𝐵̃𝑥 − 𝐵̂𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 , sup

𝑥
max(‖𝐵̃𝑥‖, ‖𝐵̂𝑥‖) ≤ 𝐶𝐿

1/2
0 .

By the triangle inequality, we deduce that

‖𝐵̂𝑎,𝑢‖ ≤
∑︁

|𝑎𝑖|‖𝐵̂𝑢𝑖‖ ≤ sup
𝑥

‖𝐵̂𝑥‖ ≤ 𝐶𝐿
1/2
0 ,

and similarly ‖𝐵̃𝑎,𝑢‖ ≤ 𝐶𝐿
1/2
0 . Let (𝑎𝑁 , 𝑢𝑁 ) ∈ argmaxD𝑁

(sep(𝐵̃𝑎,𝑢)) and recall by assump-
tion that

sep(𝐵̃𝑎𝑁 ,𝑢𝑁 ) > 𝑐 uniformly in 𝑁 large enough, for some 𝑐 > 0.

[As noted in the remark after Lemma 26, choosing 𝑉 = 𝑉 in Algorithm 1, and hence
replacing 𝐵𝑥 defined therein with 𝐵̃𝑥, is valid on 𝒜.] We apply the Ostrowski–Elsner
theorem (Theorem 36) to 𝐴 = 𝐵̂𝑎,𝑢, 𝐵 = 𝐵̃𝑎,𝑢 to see for a constant 𝐶 = 𝐶(ℋ) that for any
𝑎, 𝑢 we have

min
𝜏

max
𝑗

|𝜆𝜏(𝑗)(𝐵̃𝑎,𝑢) − 𝜆𝑗(𝐵̂𝑎,𝑢)| ≤ 𝐶𝐿
(𝐽−1)/(2𝐽)
0 (𝐿2

0𝑟𝑁 )1/𝐽 ,

where 𝜆𝑗 , 𝑗 ≤ 𝐽 are maps taking matrices to their eigenvalues. This last expression tends
to zero as 𝑁 → ∞ (since by assumption 𝐿

(𝐽+3)/2
0 𝑟𝑁 → 0) and in particular it is smaller

than sep(𝐵̃𝑎𝑁 ,𝑢𝑁 )/5 for 𝑁 large.
By the triangle inequality we deduce that on 𝒜,

sep(𝐵̂𝑎𝑁 ,𝑢𝑁 ) ≥ sep(𝐵̃𝑎𝑁 ,𝑢𝑁 ) − 2 sup
𝑎,𝑢

min
𝜏

max
𝑗

|𝜆𝜏(𝑗)(𝐵̃𝑎,𝑢) − 𝜆𝑗(𝐵̂𝑎,𝑢)| ≥ (3/5) sep(𝐵̃𝑎𝑁 ,𝑢𝑁 ).

It follows by definition of 𝑎̂, 𝑢̂ that

sep(𝐵̂𝑎̂,𝑢̂) ≥ sep(𝐵̂𝑎𝑁 ,𝑢𝑁 ) ≥ (3/5) sep(𝐵̃𝑎𝑁 ,𝑢𝑁 ),

proving (58). Applying the triangle inequality again we conclude that

sep(𝐵̃𝑎̂,𝑢̂) ≥ (1/5) sep(𝐵̃𝑎𝑁 ,𝑢𝑁 ),

proving (59).

B.2 Concentration of Empirical Estimators

We note the following concentration results for Markov chains, adapted as in Proposition
13 of De Castro et al. (2016) from results of Paulin (2015), which will allow us to control the
errors of the empirical estimators 𝑃 and 𝑀̂𝑥. The pseudo-spectral gap of a chain is defined
in Paulin (2015), wherein it is noted that its reciprocal is equivalent to the mixing time.
The bracketing numbers 𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) are defined as the smallest number of pairs of
functions (𝑓, 𝑓) such that every 𝑔 ∈ 𝒯 is bracketed by one of the pairs, where (𝑓, 𝑓) brackets
𝑔 if 𝑓 ≤ 𝑔 ≤ 𝑓 pointwise.
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Lemma 28. Let 𝑌 be a stationary Markov chain taking values in 𝒴 with pseudo-spectral gap
𝛾ps > 0, with law denoted 𝑃 . Let 𝒯 be some countable class of real valued and measurable
functions on 𝒴. Assume there exist 𝜎, 𝑏 > 0 such that for all 𝑡 ∈ 𝒯 , ‖𝑡‖𝐿2(𝑃 ) ≤ 𝜎 and
‖𝑡‖∞ ≤ 𝑏. Suppose that the 𝐿2(𝑃 ) bracketing entropy

𝐻[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) := log𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀),

is upper bounded by some 𝐻̄(𝜀), achievable using brackets of 𝐿∞-diameter at most 𝑏. Then
for fixed 𝑡 ∈ 𝒯 we have

𝑃 (|
∑︁

(ℎ(𝑌𝑖) − 𝐸ℎ(𝑌1))| ≥ 𝑥) ≤ 2 exp
(︁
− 𝑥2𝛾ps

8(𝑁 + 1/𝛾ps)𝜎2 + 20𝑏𝑥
)︁
, (60)

and there exists 𝐶 > 0 depending only on a lower bound for 𝛾ps such that

𝑃
(︁
sup
𝑡∈𝒯

𝑁∑︁
𝑛=1

(𝑡(𝑌𝑛) − 𝐸𝑡) ≥ 𝐶[𝐴+ 𝜎
√
𝑁𝑥+ 𝑏𝑥]

)︁
≤ exp(−𝑥), (61)

where
𝐴 =

√
𝑁

∫︁ 𝜎

0

√︁
𝐻̄(𝑢) ∧𝑁 d𝑢+ (𝑏+ 𝜎)𝐻̄(𝜎).

Proof The first claim is proved by Paulin (2015, Theorem 3.4) (but note there is an
updated version of the paper on arXiv). For the second, observe that the proof of the same
theorem gives the following bound for the Laplace transform of 𝑆 = ∑︀(𝑡(𝑌𝑛) − 𝐸𝑡)/𝑏:

𝐸 exp(𝜆𝑆) ≤ exp
(︁2(𝑁 + 1/𝛾ps)(𝜎2/𝑏2)

𝛾ps
𝜆2
(︁
1 − 10𝜆

𝛾ps

)︁−1)︁
. (62)

One now appeals to Theorem 6.8 of Massart (2007) and the consequent Corollary 6.9. While
the theorem is stated for independent random variables, the proof uses this condition only
when applying Lemma 6.6 of the same reference, a version of which holds also in the current
setting thanks to (62).

Lemma 29. In the setting of Theorem 5 and defining 𝑃, 𝑃 as in Algorithm 1, for any 𝜅 > 0
there exists 𝐶 = 𝐶(𝜅,ℋ) such that

Π𝐻

(︁
‖𝑃 − 𝑃‖ > 𝐶𝐿0(𝑁/ log𝑁)−1/2

)︁
≤ 𝑁−𝜅.

Proof Noting that 𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑋𝑛+2, 𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2) defines a stationary Markov
chain and upper bounding the 𝐿2-norm by the supremum norm, we apply (60) to deduce
that

Π𝐻

(︁⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

ℎ𝑖𝑗(𝑌𝑛) − 𝐸𝐻 [ℎ𝑖𝑗 ]
⃒⃒⃒
> 𝐶

(︁ log𝑁
𝑁

)︁1/2)︁
≤2 exp

(︁
− 𝐶2𝛾ps𝑁 log𝑁

8(𝑁 + 1/𝛾ps)‖ℎ𝑖𝑗‖2
∞ + 20𝐶(𝑁 log𝑁)1/2‖ℎ𝑖𝑗‖∞

)︁
,
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where ℎ𝑖𝑗(𝑌𝑛) = ℎ𝑖(𝑌𝑛,1)ℎ𝑗(𝑌𝑛,3) and where 𝛾ps is the pseudo-spectral gap of the chain 𝑌𝑛.
We note that ‖ℎ𝑖𝑗‖2

∞ ≤ ‖ℎ𝑖‖2
∞‖ℎ𝑗‖2

∞ is bounded by assumption. The pseudo spectral gap
is also bounded: by Proposition 3.4 of Paulin (2015) its reciprocal is controlled up to a
constant by the mixing time of the Markov chain 𝑌𝑛, which is equal to the mixing time of
the chain (𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2)𝑛. This latter quantity is bounded since the assumption that 𝑄
is irreducible and aperiodic on a finite state space implies that 𝜃 mixes exponentially, at a
rate governed (again, in view of Paulin 2015, Proposition 3.4) by the pseudo spectral gap
of 𝑄 itself and min𝑗 𝜋𝑗 .

We deduce that for a constant 𝑐 = 𝑐(ℋ) we have

Π𝐻

(︁⃒⃒⃒ 1
𝑁

∑︁
ℎ𝑖𝑗(𝑌𝑛) − 𝐸𝐻 [ℎ𝑖𝑗 ]

⃒⃒⃒
> 𝐶

(︁ log𝑁
𝑁

)︁1/2)︁
≤ 2 exp(−𝐶2𝑐 log(𝑁)).

For any 𝜅 > 0, choosing 𝐶 = 𝐶(𝜅, 𝑐) large enough, this last probability is smaller than 𝑁−𝜅

as claimed.

Lemma 30. In the setting of Theorem 5, define 𝑀𝑥 = 𝑀𝑥,𝐿0,𝐿, 𝑀̂𝑥 = 𝑀̂𝑥,𝐿0,𝐿 as in
Algorithm 1, and recall that we chose 𝐿 such that 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠) and assumed that
𝐿5

0𝑟𝑁 → 0. For any 𝜅 > 0 there exists 𝐶 = 𝐶(𝜅,ℋ) such that

Π𝐻

(︁
sup
𝑥∈Q

‖𝑀̂𝑥 −𝑀𝑥‖ ≥ 𝐶𝐿2
0(𝑁/ log𝑁)−𝑠/(1+2𝑠)

)︁
≤ 𝑁−𝜅.

Proof As in Lemma 29 we note that the pseudo-spectral gap of the chain

𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑋𝑛+2, 𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2)

is bounded away from zero provided the same is true of min𝑗 𝜋𝑗 and the pseudo-spectral gap
of 𝑄 itself, which holds by Assumption C’ (see also Section 4.3). We apply Lemma 28 to the
family 𝒯 = {±ℎ𝑖⊗𝐾𝐿(𝑥, ·)⊗ℎ𝑗 : 𝑖, 𝑗 ≤ 𝐿0, 𝑥 ∈ Q}. Recall we assume that max(‖ℎ𝑙‖∞ : 𝑙 ≤
𝐿0) is bounded independently of 𝐿0. Lemma 31 implies, for some 𝐶 = 𝐶(ℋ), the bracketing
entropy bound

𝐻[](𝒯 , ‖·‖𝐿2(Π𝐻), 𝜀) ≤ 𝐻̄(𝜀) = 𝐶 log(𝐿02𝐿𝜀−1), 𝜀 ≤ 𝜎,

where we may take
𝑏 = 𝜎2 = 𝐶2𝐿,

with the bound on 𝜎2 following from the calculations

sup
𝑥∈Q,𝑖,𝑗≤𝐿0

‖ℎ𝑖 ⊗𝐾𝐿(𝑥, ·) ⊗ ℎ𝑗‖2
𝐿2(Π𝐻) ≤ max

𝑖≤𝐿0
‖ℎ𝑖‖4

∞‖𝑓𝜋‖∞ sup
𝑥∈Q

∫︁
𝐾𝐿(𝑥, 𝑦)2 d𝑦,∫︁

𝐾𝐿(𝑥, 𝑦)2 d𝑦 = 22𝐿
∫︁
𝐾(2𝐿(𝑥− 𝑦))2 d𝑦 = 2𝐿

∫︁
𝐾(𝑧)2 d𝑧 ≤ 2𝐿+1‖𝐾‖2

∞.

An application of Jensen’s inequality yields the standard bound∫︁ 𝑥

0

√︁
log(1/𝑢) d𝑢 ≤ 𝑥

√︁
1 + log(1/𝑥) ≤ 𝑥

(︁
1 +

√︁
log(1/𝑥)

)︁
. (63)
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Performing suitable substitutions we deduce that∫︁ 𝜎

0

√︁
log(𝐿1/4

0 2𝐿/𝑢) d𝑢 = 𝐿
1/4
0 2𝐿

∫︁ 𝜎/(2𝐿𝐿
1/4
0 )

0

√︁
log(1/𝑣)d𝑣 ≤ 𝜎

(︁
1+
√︁

log(𝐿1/4
0 2𝐿/𝜎)

)︁
≤ 𝐶

√
𝐿2𝐿,

for some constant 𝐶, since by assumption 𝐿5
0𝑟𝑁 → 0, which implies that log(𝐿0) ≤ log𝑁 ≍

𝐿. Noting that (𝑏+ 𝜎)𝐻̄(𝜎) ≤ 𝐶𝐿2𝐿 for some 𝐶, we deduce that

Π𝐻

(︁
sup
𝑡∈𝒯

𝑁∑︁
𝑛=1

(︀
𝑡(𝑌𝑛)−𝐸𝐻𝑡

)︀
≥ 𝐶[

√
𝑁2𝐿(

√
𝐿+

√︀
𝜅 log𝑁)+2𝐿(𝐿+𝜅 log𝑁)]

)︁
≤ exp(−𝜅 log𝑁).

Since 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠) we find, bounding the operator norm by the 𝐿2
0 times the

maximum of the entries, that as claimed, for some 𝐶 ′ = 𝐶 ′(𝜅) we have

Π𝐻

(︁
sup
𝑥∈Q

‖𝑀̂𝑥 −𝑀𝑥‖ ≥ 𝐶 ′𝐿2
0(𝑁/ log𝑁)−𝑠/(1+2𝑠)

)︁
≤ 𝑁−𝜅. (64)

Recall from Assumption B that 𝑓𝜋 has a bounded 𝜈th absolute moment. Recall from
Section 4.3 the definition of a constant 𝐶 = 𝐶(ℋ).

Lemma 31. Let 𝐾𝐿 be as in (25), let (ℎ𝑙 : 𝑙 ≤ 𝐿0) be as in Algorithm 1, and define
𝒯 = {ℎ𝑖⊗𝐾𝐿(𝑡, ·) ⊗ℎ𝑗 : 𝑖, 𝑗 ≤ 𝐿0, 𝑡 ∈ R}. Then there exists a constant 𝐶 = 𝐶(ℋ) > 0 such
that, with brackets whose 𝐿∞-diameter is at most 𝐶2𝐿, one achieves the following bound
for the bracketing numbers for 𝜀 ≤ 𝐶2𝐿:

𝑁[](𝒯 , ‖·‖𝐿2(Π𝐻), 𝜀) ≤ 𝐶𝐿2
0 max(22𝐿(1+1/𝜈)𝜀−(1+1/𝜈), 1). (65)

Proof The kernel 𝐾 (from which 𝐾𝐿 is constructed) is assumed to be bounded, continuous,
Lipschitz, and supported in [−1, 1], see before (25).

Let 𝒰 = {𝐾𝐿(𝑡, ·) : 𝑡 ∈ R}. Then writing ℎ = max𝑙‖ℎ𝑙‖2
∞,

𝑁[](𝒯 , ‖·‖𝐿2(Π𝐻), 4𝜀ℎ2) ≤ 𝐿2
0𝑁[](𝒰 , ‖·‖𝐿2(Π𝐻), 𝜀) (66)

since given brackets [𝑣𝑘, 𝑣𝑘], 𝑘 ≤ 𝑁𝒰 of 𝐿2(Π𝐻)-diameter at most 𝜀 for 𝒰 , we can define

𝑡𝑖𝑘𝑗 = ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗≥0 + ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗<0,

𝑡𝑖𝑘𝑗 = ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗≥0 + ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗<0

to obtain brackets [𝑡𝑖𝑘𝑗 , 𝑡𝑖𝑘𝑗 ], 𝑖, 𝑗 ≤ 𝐿0, 𝑘 ≤ 𝑁𝒰 for 𝒯 whose 𝐿2(Π𝐻)-diameter is at most
4ℎ2𝜀 and whose 𝐿∞-diameter is at most ℎ2 times that of the brackets for 𝒰 .

Under Assumption B, there exists a constant 𝐶 = 𝐶(ℋ) > 0 such that for 𝑇𝜀 =
𝐶2(2𝐿+2)/𝜈𝜀−2/𝜈 we have Π𝐻(|𝑋1| > 𝑇𝜀) ≤ (‖𝐾‖∞2𝐿+1)−2𝜀2. Observe that for any 𝑡
such that |𝑡| > 𝑇𝜀 + 1, the support of 𝐾𝐿(𝑡, ·) does not intersect [−𝑇𝜀, 𝑇𝜀]. It follows for
any such 𝑡 that 𝑣 = −‖𝐾‖∞2𝐿1[−𝑇𝜀,𝑇𝜀]𝑐 and 𝑣 = ‖𝐾‖∞2𝐿1[−𝑇𝜀,𝑇𝜀]𝑐 bracket 𝐾𝐿(𝑡, ·); the
𝐿2(Π𝐻)-diameter of this bracket is at most 𝜀 and the 𝐿∞-diameter at most 2𝐿+1‖𝐾‖∞.
Writing 𝒰𝜀 = {𝐾𝐿(𝑡, ·) : |𝑡| ≤ 𝑇𝜀 + 1}, we deduce that

𝑁[](𝒰 , ‖·‖𝐿2(Π𝐻), 𝜀) ≤ 𝑁[](𝒰𝜀, ‖·‖𝐿2(Π𝐻), 𝜀) + 1. (67)
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To bound the right side, observe that |𝐾𝐿(𝑡, 𝑥)−𝐾𝐿(𝑠, 𝑥)| ≤ 22𝐿Λ|𝑠− 𝑡| for each 𝑠, 𝑡, 𝑥 ∈ R,
where Λ denotes the Lipschitz constant of 𝐾. Since the set [−𝑇𝜀 − 1, 𝑇𝜀 + 1] is compact, we
deduce that for a constant 𝐶 = 𝐶(ℋ)

𝑁[](𝒰𝜀, ‖·‖𝐿2(Π𝐻), 𝜀) ≤ 𝐶 max
(︀
22𝐿(1+1/𝜈)𝜀−(1+2/𝜈), 1

)︀
,

see for example Theorem 2.7.11 in van der Vaart and Wellner (1996) (in view of the proof
of which the brackets can be taken to have 𝐿∞-diameter at most 𝜀 ≤ 𝐶2𝐿). Together with
(66) and (67), this yields the result.

B.3 Matrix Approximation Theory Arguments

Lemma 32. Define 𝒜 as in Lemma 25. In the setting of Theorem 5, define 𝑅̂ as in Algo-
rithm 1 for 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠), and define 𝑅̃ to have columns equal to the normalised
columns of 𝑄𝑂ᵀ𝑉 . Then, on 𝒜, 𝑅̂ is well-defined and

‖𝑅̂− 𝑅̃𝜏‖ ≤ ‖𝑅̂− 𝑅̃𝜏‖𝐹 ≤ 𝐶𝐿
7/2
0 𝑟𝑁 ,

for some 𝐶 = 𝐶(ℋ) and some permutation 𝜏 , where 𝑅̃𝜏 is obtained by permuting the
columns of 𝑅̃ according to 𝜏 .

Remark. Strictly speaking the columns of 𝑅̂, as eigenvectors of 𝐵̂𝑎̂,𝑢̂, are defined only up
to signs, and this result holds only for one set of choices of signs. However, the estimators
𝑓𝐿𝑗 (𝑥) = (𝑅̂−1𝐵̂𝑥𝑅̂)𝑗𝑗 are unaffected by the choices of signs, hence we may assume without
loss of generality that these signs are chosen appropriately for the lemma to hold.
Proof Lemma 27 tells us on 𝒜 that 𝐵̂𝑎̂,𝑢̂ is diagonalisable, so that 𝑅̂ is well defined, and
moreover that

min
(︀
sep(𝐵̂𝑎̂,𝑢̂), sep(𝐵̃𝑎̂,𝑢̂)

)︀
> 𝑐,

for some constant 𝑐 = 𝑐(ℋ) > 0. Now we apply Lemma C.3 from Anandkumar et al. (2012),
which says, as a consequence of the Bauer–Fike theorem, that if

𝜀 = 𝜅(𝑅̃) sep(𝐵̃𝑎̂,𝑢̂)−1‖𝐵̂𝑎̂,𝑢̂ − 𝐵̃𝑎̂,𝑢̂‖

is smaller than 1/2, then there exists a permutation 𝜏 such that

‖𝑅̂− 𝑅̃𝜏‖ ≤ ‖𝑅̂− 𝑅̃𝜏‖𝐹 ≤ 4𝐽1/2(𝐽 − 1)‖𝑅̃−1‖𝜀.

By construction ∑︀|𝑎̂𝑖| ≤ 1, hence by the triangle inequality and Lemma 25, on 𝒜 we have

‖𝐵̂𝑎̂,𝑢̂ − 𝐵̃𝑎̂,𝑢̂‖ ≤
∑︁
𝑖

|𝑎̂𝑖|‖𝐵̂𝑢̂𝑖 − 𝐵̃𝑢̂𝑖‖ ≤ sup
𝑥

‖𝐵̂𝑥 − 𝐵̃𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 ,

for some 𝐶 = 𝐶(ℋ). By Lemma 35b, we have 𝜅(𝑅̃) ≤ 𝐶𝐿0 and ‖𝑅̃−1‖ ≤ 𝐶𝐿
1/2
0 . We deduce

that 𝜀 → 0 on 𝒜, hence is smaller than 1/2 for large 𝑁 , and the result follows.
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One could directly use the Ostrowski–Elsner theorem (Theorem 36) to obtain a version
of Theorem 5 with a suboptimal estimation rate. We here go through the slightly circuitous
route of using Theorem 36 to prove an eigen-separation condition (i.e. Lemma 27) and
deducing Lemma 32 because we may then apply the following lemma, adapted from Lemma
C.4 of Anandkumar et al. (2012), to obtain a near-minimax rate instead.

Lemma 33. Suppose (𝐴𝑡 : 𝑡 ∈ 𝒯 ) are 𝐽 × 𝐽 matrices simultaneously diagonalised by a
matrix 𝑅 with unit norm columns:

𝑅−1𝐴𝑡𝑅 = diag(𝜆𝑡,1, . . . , 𝜆𝑡,𝐽), 𝑡 ∈ 𝒯 .

Let 𝑅̂ be a matrix such that for some permutation 𝜏 of {1, . . . , 𝐽} we have

‖𝑅̂−𝑅𝜏‖ := 𝜀𝑅 ≤ (1/2)‖𝑅−1‖−1,

where 𝑅𝜏 has is obtained by permuting the columns of 𝑅 according to 𝜏 . Assume

𝜆max := sup
𝑡

max
𝑗

|𝜆𝑡,𝑗 | < ∞.

For matrices (𝐴𝑡 : 𝑡 ∈ 𝒯 ), write

𝜀𝐴 := sup
𝑡

‖𝐴𝑡 −𝐴𝑡‖,

and define
𝜆̂𝑡,𝑗 = 𝑒ᵀ𝑗 𝑅̂

−1𝐴𝑡𝑅̂𝑒𝑗 .

Then
sup
𝑡

max
𝑗

|𝜆̂𝑡,𝑗 − 𝜆𝑡,𝜏(𝑗)| ≤ 4𝜅(𝑅)[𝜀𝐴 + 𝜆max‖𝑅−1‖𝜀𝑅].

Proof Let 𝜁ᵀ𝑗 be the 𝑗th row of 𝑅̂−1, let 𝜉𝑗 be the 𝑗th column of 𝑅̂, and define 𝜁𝑗 , 𝜉𝑗
correspondingly with respect to the matrix 𝑅𝜏 obtained by permuting the columns of 𝑅
according to 𝜏 . Then 𝜆𝑡,𝜏(𝑗) = 𝜁ᵀ𝑗𝐴𝑡𝜉𝑗 , 𝜆̂𝑡,𝑗 = 𝜁ᵀ𝑗𝐴𝑡𝜉𝑗 , and we have

|𝜆̂𝑡,𝑗 − 𝜆𝑡,𝜏(𝑗)| = |𝜁ᵀ𝑗𝐴𝑡𝜉𝑗 − 𝜁ᵀ𝑗𝐴𝑡𝜉𝑗 |

= |𝜁ᵀ𝑗𝐴𝑡(𝜉𝑗 − 𝜉𝑗) + 𝜁ᵀ𝑗 (𝐴𝑡 −𝐴𝑡)𝜉𝑗 + (𝜁ᵀ𝑗 − 𝜁ᵀ𝑗 )𝐴𝑡𝜉𝑗 |
≤ ‖𝜁ᵀ𝑗 ‖‖𝐴𝑡‖‖𝜉𝑗 − 𝜉𝑗‖ + ‖𝜁ᵀ𝑗 ‖‖𝜉𝑗‖𝜀𝐴 + ‖𝐴𝑡𝜉𝑗‖‖𝜁𝑗 − 𝜁𝑗‖

Using Lemma 37, we have that

‖𝑅̂−1 −𝑅−1
𝜏 ‖ ≤ ‖𝑅−1‖2𝜀𝑅/(1 − ‖𝑅−1‖𝜀𝑅),

and we further note the following:

• ‖𝜁ᵀ𝑗 ‖ = ‖𝑒ᵀ𝜏(𝑗)𝑅
−1‖ ≤ ‖𝑅−1‖, and ‖𝜁ᵀ𝑗 − 𝜁ᵀ𝑗 ‖ ≤ ‖𝑅̂−1 − 𝑅−1

𝜏 ‖ ≤ ‖𝑅−1‖2𝜀𝑅/(1 −
‖𝑅−1‖𝜀𝑅), so that also ‖𝜁ᵀ𝑗 ‖ ≤ ‖𝜁ᵀ𝜏(𝑗)‖ + ‖𝜁𝑗 − 𝜁𝜏(𝑗)‖ ≤ ‖𝑅−1‖/(1 − ‖𝑅−1‖𝜀𝑅) .

• ‖𝜉𝑗‖ ≤ ‖𝑅‖, and ‖𝜉𝑗 − 𝜉𝑗‖ ≤ ‖𝑅̂−𝑅𝜏‖ = 𝜀𝑅.
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• ‖𝐴𝑡‖ = ‖𝑅 diag(𝜆𝑡,·)𝑅−1‖ ≤ 𝜅(𝑅)𝜆max, and ‖𝐴𝑡‖ ≤ ‖𝐴𝑡‖ + 𝜀𝐴 ≤ 𝜅(𝑅)𝜆max + 𝜀𝐴.

• ‖𝐴𝑡𝜉𝑗‖ = |𝜆𝑡,𝜏(𝑗)|‖𝜉𝑗‖ ≤ 𝜆max‖𝑅‖.

Then, continuing the inequalities from the display, we have

|𝜆̂𝑡,𝑗 − 𝜆𝑡,𝜏(𝑗)| ≤ ‖𝑅−1‖
1 − ‖𝑅−1‖𝜀𝑅

[︁
(𝜅(𝑅)𝜆max + 𝜀𝐴)𝜀𝑅 + ‖𝑅‖𝜀𝐴

]︁
+ 𝜆max‖𝑅‖‖𝑅−1‖2 𝜀𝑅

1 − ‖𝑅−1‖𝜀𝑅

≤ 𝜅(𝑅) + ‖𝑅−1‖𝜀𝑅
1 − ‖𝑅−1‖𝜀𝑅

𝜀𝐴 + 2𝜆max𝜅(𝑅) ‖𝑅−1‖𝜀𝑅
1 − ‖𝑅−1‖𝜀𝑅

≤ (1 + 2𝜅(𝑅))𝜀𝐴 + 4𝜆max‖𝑅−1‖𝜅(𝑅)𝜀𝑅,

where for the last line we have used that ‖𝑅−1‖𝜀𝑅 ≤ 1/2 by assumption. Taking the supre-
mum over 𝑡 ∈ 𝒯 concludes the result since necessarily 1 + 2𝜅(𝑅) ≤ 3𝜅(𝑅) < 4𝜅(𝑅).

Lemma 34. Define 𝑂 = 𝑂𝐿0 , 𝑃 = 𝑃𝐿0 , (𝑀𝑥 = 𝑀𝑥,𝐿,𝐿0 : 𝑥 ∈ R) as in Lemma 11 for
functions (ℎ𝑙)𝑙≤𝐿0 satisfying a sup-norm bound uniformly in 𝐿0 and assume that 𝜎𝐽(𝑂) ≥
𝑐 > 0 uniformly in 𝐿0 ≥ 𝐿 for some 𝐿 = 𝐿(ℋ) (for example, by choosing (ℎ𝑙 : 𝑙 ≤ 𝐿0) as
in Lemma 24). Then

𝜅(𝑂) ≤ 𝐶𝐿
1/2
0 , 𝜎𝐽(𝑃 ) ≥ 𝑐′, and ‖𝑀𝑥‖ ≤ 𝐶 ′𝐿0,

for some constants 𝑐′, 𝐶, 𝐶 ′ > 0, uniformly in 𝐿0 ≥ 𝐿 and all 𝐿.

Proof Given the assumed bound on 𝜎𝐽(𝑂), to control 𝜅(𝑂) it remains to bound ‖𝑂‖, since
one has the standard expression 𝜅(𝑂) := ‖𝑂‖‖𝑂−1‖ ≡ ‖𝑂‖/𝜎𝐽(𝑂). Then it suffices to note,
using Cauchy–Schwarz and the fact that |⟨𝑓𝑗 , ℎ𝑙⟩| = |

∫︀
ℎ𝑙(𝑥)𝑓𝑗(𝑥) d𝑥| ≤ ‖ℎ𝑙‖∞, that

‖𝑂‖2 = sup
‖𝑣‖=1

∑︁
𝑗

(
∑︁
𝑙

𝑣𝑙⟨𝑓𝑗 , ℎ𝑙⟩)2 ≤ max
𝑙

‖ℎ𝑙‖2
∞𝐽𝐿0. (68)

Next, Assumption C’ implies 𝜎𝐽(𝑄) > 0 and 𝜎𝐽(diag(𝜋)) = min𝑗 𝜋𝑗 > 0. Using submul-
tiplicativity of 𝜎𝐽 (see Lemma 37) and the expression 𝑃 = 𝑂 diag(𝜋)𝑄2𝑂ᵀ (from Lemma 11),
we have

𝜎𝐽(𝑃 ) = 𝜎𝐽(𝑂 diag(𝜋)𝑄2𝑂ᵀ) ≥ 𝜎𝐽(𝑂)𝜎𝐽(diag(𝜋))𝜎𝐽(𝑄)2𝜎𝐽(𝑂ᵀ) ≥ 𝑐′(𝐻) > 0.

For 𝑀𝑥, the expression 𝑀𝑥 = 𝑂 diag(𝜋)𝑄𝐷𝑥𝑄𝑂ᵀ from Lemma 11 similarly yields

‖𝑀𝑥‖ ≤ ‖𝑂‖2‖𝑄‖2 max
𝑗

|𝐾𝐿[𝑓𝑗 ](𝑥)|.

Recalling that ‖𝐾𝐿[𝑓𝑗 ]‖∞ is bounded (see (27)) we deduce the result.

The following collects several useful results from De Castro et al. (2017) and Anandku-
mar et al. (2012).
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Lemma 35. Define 𝑂, 𝑂̂, 𝑃, 𝑃 and 𝑀𝑥, 𝑀̂𝑥, 𝐵̃𝑥, 𝐵̂𝑥, 𝑥 ∈ R as in Lemma 11, Algorithm 1,
and (53). Assume 𝜎𝐽(𝑂) ≥ 𝑐 > 0 uniformly in 𝐿0 ≥ 𝐿, so that by Lemma 34 we also have
𝜎𝐽(𝑃 ) > 0 and 𝜅(𝑂) ≤ 𝐶𝐿

1/2
0 for some 𝐶. On the event ℬ = {‖𝑃 − 𝑃‖ < 𝜎𝐽(𝑃 )/3}, for

𝐿0 ≥ 𝐿 and 𝑁 large enough we have the following.

a. 𝜎𝐽(𝑃 ) > 𝑐/2. Writing 𝑉 and 𝑉 for matrices of orthonormal right singular vectors of
𝑃 and 𝑃 respectively we have 𝜎𝐽(𝑉 ᵀ𝑉 )2 ≥ 3/4, and consequently 𝑉 ᵀ𝑃𝑉 is invertible.

b. 𝜅(𝑄𝑂ᵀ𝑉 ) ≤ 𝐶𝐿
1/2
0 , ‖𝑅̃−1‖ ≤ 𝐶 ′𝐿

1/2
0 and 𝜅(𝑅̃) ≤ 𝐶 ′′𝐿0, where 𝑅̃ is the matrix whose

columns are those of 𝑄𝑂ᵀ𝑉 but rescaled to have unit norm.

c. For any 𝑥 ∈ R,

‖𝐵̃𝑥 − 𝐵̂𝑥‖ ≤ 3.2
[︁‖𝑀̂𝑥 −𝑀𝑥‖

𝜎𝐽(𝑃 ) + ‖𝑀𝑥‖‖𝑃 − 𝑃‖
𝜎𝐽(𝑃 )2

]︁
.

Proof We throughout use various basic properties of 𝜎𝐽 , 𝜅, which are summarised in
Lemma 37 below.

a. By Lemma 34, 𝜎𝐽(𝑃 ) > 0. The result then follows from standard approximation
theory. In particular Lemma C.1 part 2 of Anandkumar et al. (2012) tells us that
𝜎𝐽(𝑃 ) > 𝜎𝐽(𝑃 )/3 > 0. That 𝜎𝐽(𝑉 ᵀ𝑉 )2 ≥ 3/4 on ℬ is given by Lemma C.1 part 3 of
the same reference and submultiplicativity of 𝜎𝐽 yields

𝜎𝐽(𝑉 ᵀ𝑃𝑉 ) = 𝜎𝐽(𝑉 ᵀ(𝑉 𝑉 ᵀ)𝑃 (𝑉 𝑉 ᵀ)𝑉 ) ≥ 𝜎𝐽(𝑉 ᵀ𝑉 )2𝜎𝐽(𝑉 ᵀ𝑃𝑉 ) ≥ (3/4)𝜎𝐽(𝑃 ) > 0,

which implies invertibility of 𝑉 ᵀ𝑃𝑉 .

b. Observe that
𝜅(𝑄𝑂ᵀ𝑉 ) = ‖𝑄𝑂ᵀ𝑉 ‖

𝜎𝐽(𝑄𝑂ᵀ𝑉 )
≤ ‖𝑄𝑂ᵀ‖
𝜎𝐽(𝑄𝑂ᵀ𝑉 )𝜎𝐽(𝑉 ᵀ𝑉 )

.

We have 𝜎𝐽(𝑄𝑂ᵀ𝑉 ) = 𝜎𝐽(𝑄𝑂ᵀ) and we deduce that 𝜅(𝑄𝑂ᵀ𝑉 ) ≤ (4/3)1/2𝜅(𝑄𝑂ᵀ) ≤
2𝜅(𝑄)𝜅(𝑂) by part a. Assumption C’ implies 𝜅(𝑄) < ∞. For 𝑅, see Lemma C.5
of Anandkumar et al. (2012), which tells us that ‖𝑅̃−1‖ ≤ 𝜅(𝑄𝑂ᵀ𝑉 ) and 𝜅(𝑅̃) ≤
𝜅(𝑄𝑂ᵀ𝑉 )2.

c. One adapts the proof of Lemma F.4 in De Castro et al. (2017), decomposing

‖𝐵̃𝑥 − 𝐵̂𝑥‖ ≤ ‖(𝑉 ᵀ𝑃𝑉 )−1‖‖𝑉 ᵀ(𝑀𝑥 − 𝑀̂𝑥)𝑉 ‖ + ‖𝑉 ᵀ𝑀𝑥𝑉 ‖‖(𝑉 ᵀ𝑃𝑉 )−1 − (𝑉 ᵀ𝑃𝑉 )−1‖,

then using Lemma 37 with 𝐴 = 𝑉 ᵀ𝐵̂𝑥𝑉 , 𝐴 = 𝑉 ᵀ𝐵̃𝑥𝑉 , noting that in part a we
showed ‖(𝑉 ᵀ𝑃𝑉 )−1‖ ≡ 𝜎𝐽(𝑉 ᵀ𝑃𝑉 )−1 ≤ (4/3)𝜎𝐽(𝑃 )−1.
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Theorem 36 (Ostrowski–Elsner, e.g. Stewart and Sun 1990, Chapter IV, Theorem 1.4).
For a matrix 𝑈 ∈ R𝐽×𝐽 , write (𝜆𝑖(𝑈) : 𝑖 ≤ 𝐽) for the eigenvalues of 𝑈 . Then for matrices
𝐴,𝐵 ∈ R𝐽×𝐽 we have

min
𝜏

max
𝑗

|𝜆𝜏(𝑗)(𝐴) − 𝜆𝑗(𝐵)| ≤ (2𝐽 − 1)(‖𝐴‖ + ‖𝐵‖)(𝐽−1)/𝐽‖𝐴−𝐵‖1/𝐽 , (69)

where the minimum is over permutations 𝜏 .

Lemma 37. Let 𝐴 and 𝐴 be matrices such that 𝐴 is invertible and ‖𝐴 − 𝐴‖ < ‖𝐴−1‖−1.
Then 𝐴 is invertible and

‖𝐴−1 −𝐴−1‖ ≤ ‖𝐴−1‖2‖𝐴−𝐴‖
1 − ‖𝐴−1‖‖𝐴−𝐴‖

.

We also have the following: 𝜅(𝐴) = 𝜅(𝐴ᵀ); 𝜎𝐽(𝐴) = 𝜎𝐽(𝐴ᵀ); 𝜎𝐽(𝐴) = 𝜎𝐽(𝐴𝑊 ᵀ) for any
matrix 𝑊 whose columns are orthonormal and whose domain is R𝐽 ; 𝜎𝐽(𝐴𝐵) ≥ 𝜎𝐽(𝐴)𝜎𝐽(𝐵),
and 𝜅(𝐴𝐵) ≤ 𝜅(𝐴)𝜅(𝐵) for matrices 𝐴,𝐵.

Proof For the first see Theorem 2.5 in Chapter III of Stewart and Sun (1990) The other
results can be found in Chapter I.4 of the same reference.

B.4 Sketch Proof of Theorem 4

The arguments used to prove Theorem 5 work also in this discrete setting, given the following
observations and slight adaptations. To ease notation we assume that 𝑓𝑗(𝑥) = 0 for all
𝑥 ≤ 0 and 𝑗 ≤ 𝐽 . We make the following definitions, which correspond to taking ℎ𝑙 = 1𝑙,
i.e. ℎ𝑙(𝑥) = 1{𝑥 = 𝑙}, and replacing 𝐾𝐿(𝑥, 𝑦) by 1{𝑥 = 𝑦}:

𝑀𝑥 = 𝑀𝑥,𝐿0 = Π𝐻(𝑋1 = 𝑙,𝑋2 = 𝑥,𝑋3 = 𝑚)𝑙,𝑚≤𝐿0 , 𝑥 ∈ N
𝑃 = 𝑃𝐿0 = Π𝐻(𝑋1 = 𝑙,𝑋3 = 𝑚)𝑙,𝑚≤𝐿0 ,

𝑂 = 𝑂𝐿0 = Π𝐻(𝑋1 = 𝑙 | 𝜃1 = 𝑗)𝑙≤𝐿0,𝑗≤𝐽 ,

𝐷𝑥 = (diag Π𝐻(𝑋2 = 𝑥 | 𝜃2 = 𝑗)𝑗≤𝐽) ≡ diag((𝑂𝑥𝑗)𝑗).

The proof of Lemma 11 is unchanged with these adjusted definitions, and we adapt the
definitions in Algorithm 1 correspondingly:

𝑀̂𝑥 =
(︁ 1
𝑁

∑︁
𝑛≤𝑁

1𝑙(𝑋𝑛)1𝑥(𝑋𝑛+1)1𝑚(𝑋𝑛+2)
)︁
𝑙,𝑚≤𝐿0

,

𝑃 =
(︁ 1
𝑁

∑︁
𝑛≤𝑁

1𝑙(𝑋𝑛)1𝑚(𝑋𝑛+2)
)︁
𝑙,𝑚≤𝐿0

,

𝐵̂𝑥 = (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀̂𝑥𝑉 ,

with 𝑉 comprising right singular vectors of 𝑃 .
Observe that the proofs of Lemmas 24 and 34 work in the current setting for the current

choice of the ℎ𝑙 [indeed, thanks to the disjoint support of ℎ𝑙, ℎ𝑚 for 𝑙 ̸= 𝑚 one can improve
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the bound in eq. (68) to ‖𝑂𝐿0‖ ≤ 𝐽 ], and similarly a version of Lemma 26 holds by choosing
D𝑁 = 𝒜𝑁 × 𝒰𝑁 for sequences of finite sets 𝒜𝑁 ⊂ R, 𝒰𝑁 ⊂ N such that ∪𝑁𝒰𝑁 = N and
∪𝑁𝒜𝑁 is dense in {𝑎 ∈ R : ∑︀𝑖|𝑎𝑖| ≤ 1}.

Next note that a version of the Glivenko–Cantelli theorem gives control over sup𝑥∈N‖𝑀̂𝑥−
𝑀𝑥‖ for our new definitions of 𝑀̂𝑥,𝑀𝑥; we give here a slightly indirect proof of this fact
by reusing the machinery of Lemma 30. Indeed, inspecting the proof of Lemma 31, one
deduces that for 𝒰 = {1{𝑡} : 𝑡 ∈ R},

𝑁[](𝒯 , ‖·‖𝐿2(Π𝐻), 𝜀) ≤ 𝐿2
0𝑁[](𝒰 , ‖·‖𝐿2(Π𝐻), 𝜀/(4ℎ2)).

Mimicking the proof of Glivenko–Cantelli, to bound the latter quantity one choose 𝑀 of
order 𝜀−2 and −∞ = 𝑡0 < 𝑡1 < · · · < 𝑡𝑀 = +∞ such that Π𝐻(𝑋1 ∈ [𝑡𝑚, 𝑡𝑚+1)) is roughly
𝜀2. Then the functions 𝑢𝑘 = 0, 𝑢𝑘 = 1[𝑡𝑘,𝑡𝑘+1) bracket 𝒰 , with 𝐿2(Π𝐻)-diameter of order 𝜀
and 𝐿∞-diameter 1, yielding for a constant 𝐶 that

𝐻[](𝒯 , ‖·‖𝐿2(Π𝐻), 𝜀) ≤ 𝐶 log(𝐿0𝜀
−1).

In view of the standard bound (see (63))∫︁ 𝑥

0

√︁
log(1/𝑢) d𝑢 ≤ 𝑥(1 +

√︁
log(1/𝑥)),

and recalling as in Lemma 29 that the chain

𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑋𝑛+2, 𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2)

has pseudo-spectral gap bounded away from zero by Assumption C’, it follows that Lemma 28,
applied with 𝑏 = 𝜎 = 1, yields

Π𝐻

(︀
sup
𝑥∈N

|𝑀̂𝑥
𝑖𝑗 −𝑀𝑥

𝑖𝑗 | > 𝐶(𝑁−1/2 +𝑁−1/2√
𝑢+𝑁−1𝑢)

)︀
≤ exp(−𝑢).

We note that ‖𝑀̂𝑥−𝑀𝑥‖ ≤ 𝐿0 max𝑖𝑗 |𝑀̂𝑥
𝑖𝑗−𝑀𝑥

𝑖𝑗 |. Combining with (the proof of) Lemma 29,
for any 𝑐𝑁 → ∞, we may choose suitable 𝐿0 → ∞ and 𝑢 → ∞ to deduce

Π𝐻(‖𝑃 − 𝑃‖ ≤ 𝑐𝑁𝑁
−1/2, sup

𝑥∈N
‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝑁𝑁

−1/2) → 1.

The rest of the proof exactly mirrors that of Theorem 5 (note that, in only seeking a rate in
probability, we avoid the need for a log factor which would appear in this proof if seeking
a rate in expectation).

Appendix C. Proof of the Lower Bound

For the lower bound for simplicity we consider in details the (in view of the multiple testing
application) most relevant case 𝐽 = 2. The case of 𝐽 ≥ 3 is broadly similar in spirit and is
briefly discussed at the end of this section.

Let S2 denote the set of all permutations of {0, 1}. Define, for 𝑠,𝑅 > 0 and for the
Hölder space 𝐶𝑠 defined in Assumption E,

𝒞𝑠(𝑅) =
{︁
𝑓 ∈ 𝐶𝑠 : 𝑓 ≥ 0,

∫︁
R
𝑓 = 1, ‖𝑓‖𝐶𝑠 ≤ 𝑅

}︁
. (70)
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Parameters. The unknown parameters are 𝐻 = (𝑄, 𝜋, f), where f = (𝑓0, 𝑓1) denotes the
vector of emission densities. Denoting by 𝑃𝑓𝑖

the distribution of density 𝑓𝑖 on R, 𝑖 = 0, 1,
the distribution of the observations 𝑋 = (𝑋1, . . . , 𝑋𝑁 ) is

Π𝐻 = Π(𝑁)
𝐻 =

∑︁
v∈{0,1}𝑁

𝑤v

𝑁⨂︁
𝑗=1

𝑃f𝑣𝑗
,

where 𝑤v denotes the probability under the Markov chain to observe the successive sequence
of states (𝑣1, . . . , 𝑣𝑁 ) ∈ {0, 1}𝑁 ; that is, 𝑤(𝑣1,...,𝑣𝑁 ) = 𝜋𝑣1𝑄𝑣1,𝑣2 · · ·𝑄𝑣𝑁−1,𝑣𝑁 .

Class ℋ𝑠𝑒𝑝 of well-separated parameters. Let ℱ𝑠𝑒𝑝 be a class of pairs f = (𝑓0, 𝑓1) that
are well-separated in the following sense, for a (small) 𝑑 > 0 to be chosen:

ℱ𝑠𝑒𝑝 =
{︁

f = (𝑓0, 𝑓1) ∈ 𝒞𝑠(𝑅)2 : |(𝑓1 − 𝑓0)(0)| ≥ 𝑑, |𝑃𝑓1([−1, 1]) − 𝑃𝑓0([−1, 1])| ≥ 𝑑
}︁
.

(71)
We define, for given 𝑄, 𝜋,

ℋ𝑠𝑒𝑝 = ℋ𝑠𝑒𝑝(𝑄, 𝜋,𝑅, 𝑑, 𝑠) = {𝐻 = (𝑄, 𝜋, f) : f ∈ ℱ𝑠𝑒𝑝} . (72)

Minimax risk. For f = (𝑓0, 𝑓1) and g = (𝑔0, 𝑔1) two pairs of real functions, denote

𝜌(f ,g) = min
𝜙∈S2

(︁
‖𝑔𝜙(0) − 𝑓0‖∞ + ‖𝑔𝜙(1) − 𝑓1‖∞

)︁
. (73)

The loss 𝜌 is a pseudo-metric, verifying the axioms of a distance except that one can have
𝜌(f ,g) = 0 for f ̸= g. We note that one could also consider the equivalent loss obtained by
replacing the sum in (73) with a maximum.

Let us consider the minimax risk

𝑅𝑛 = 𝑅𝑛(ℋ𝑠𝑒𝑝) = inf
T=(𝑇0,𝑇1)

sup
𝐻∈ℋ𝑠𝑒𝑝

𝐸𝐻 [𝜌 (T, f)] . (74)

Since 𝐸[min(𝑋,𝑌 )] ≤ min(𝐸𝑋,𝐸𝑌 ), one notes that

𝑅𝑛 ≤ inf
T=(𝑇1,𝑇2)

sup
𝐻∈𝐻𝑠𝑒𝑝

[︂
min
𝜙∈S2

(︁
𝐸𝐻‖𝑇𝜙(1) − 𝑓1‖∞ + 𝐸𝐻‖𝑇𝜙(2) − 𝑓2‖∞

)︁]︂
. (75)

In view of Section 4.3 (and constructing 𝑓0, 𝑓1 using 𝐿0 = 2, ℎ1 = 1, ℎ2 = 1l[−1,1] in
Algorithm 1), Theorem 5 provides a procedure for which the last quantity is bounded from
above by a multiple of 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(2𝑠+1). The next result provides the corresponding
minimax lower bound. Note that the lower bound in Proposition 38 is pointwise in 𝑄 and
𝜋, and thus continues to hold if 𝜋,𝑄 are allowed to vary in some set.

Proposition 38. Consider 𝐽 = 2 classes, and fix both 𝜋 = (𝜋0, 𝜋1) ∈ [0, 1]2 and 𝑄 a 2 × 2
transition matrix. Given 𝑠,𝑅 > 0, let ℋ𝑠𝑒𝑝 be as in (72) for a small enough 𝑑 = 𝑑(𝑠,𝑅),
and let 𝑅𝑛 = 𝑅𝑛(ℋ𝑠𝑒𝑝) be as in (74). Then there exists 𝐶 = 𝐶(𝑠,𝑅) > 0 such that, for 𝑁
large enough,

𝑅𝑛(ℋ𝑠𝑒𝑝) ≥ 𝐶

(︂ log𝑁
𝑁

)︂ 𝑠
2𝑠+1

.

56



Multiple Testing in Nonparametric HMMs

Proof We reduce the estimation problem to a classification problem in a standard way.
Suppose the two sets of densities {𝑓 (𝑚)

0 , 0 ≤ 𝑚 ≤ 𝑀} and {𝑓 (𝑚)
1 , 0 ≤ 𝑚 ≤ 𝑀} are such

that for some 0 < 𝑠0, 𝑠1 < 𝐶0,

min{‖𝑓 (𝑖)
1 − 𝑓

(𝑗)
0 ‖∞, 0 ≤ 𝑖, 𝑗 ≤ 𝑀} ≥ 𝐶0, (76)

min{‖𝑓 (𝑖)
0 − 𝑓

(𝑗)
0 ‖∞ : 0 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑖 ̸= 𝑗} ≥ 2𝑠0, (77)

min{‖𝑓 (𝑖)
1 − 𝑓

(𝑗)
1 ‖∞ : 0 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑖 ̸= 𝑗} ≥ 2𝑠1. (78)

It follows that the family of functions f (𝑚) = (𝑓 (𝑚)
0 , 𝑓

(𝑚)
1 ) is 2(𝑠0 + 𝑠1)-separated in terms

of 𝜌, since for 𝑚 ̸= 𝑚′,

𝜌(f (𝑚), f (𝑚′)) ≥ min
(︁
‖𝑓 (𝑚)

0 − 𝑓
(𝑚′)
0 ‖∞ + ‖𝑓 (𝑚)

1 − 𝑓
(𝑚′)
1 ‖∞, ‖𝑓 (𝑚)

1 − 𝑓
(𝑚′)
0 ‖∞ + ‖𝑓 (𝑚)

0 − 𝑓
(𝑚′)
1 ‖∞

)︁
≥ min(2(𝑠0 + 𝑠1), 2𝐶0) = 2(𝑠0 + 𝑠1) =: 2𝑆.

For a given estimator T of f ∈ {f (0), . . . , f (𝑀)}, let 𝑗*(T) be the index 𝑗 such that f (𝑗)

is the closest to T in the 𝜌 pseudo-distance. Since the family (f (𝑚), 𝑚 ∈ {0, . . . ,𝑀}) is
2𝑆-separated, we have 𝜌(T, f (𝑚)) ≥ 𝑆1l{𝑗*(T) ̸= 𝑚}. Writing 𝐻𝑚 = (𝑄, 𝜋, f (𝑚)), we have

sup
𝐻∈ℋ𝑠𝑒𝑝

𝐸𝐻 [𝜌 (T, f)] ≥ max
0≤𝑚≤𝑀

𝐸𝐻𝑚

[︁
𝜌
(︁
T, f (𝑚)

)︁]︁
≥ 𝑆 max

0≤𝑚≤𝑀
Π𝐻𝑚 [𝑗*(T) ̸= 𝑚] ≥ 𝑆𝑝𝑒,𝑀 , (79)

where 𝑝𝑒,𝑀 = inf𝜓 max0≤𝑚≤𝑀 Π𝐻𝑚 [𝜓 ̸= 𝑚], with the infimum being over all classifiers 𝜓.
Taking the infimum with respect to T in (79), one obtains 𝑅𝑛(ℋ𝑠𝑒𝑝) ≥ 𝑆𝑝𝑒,𝑀 .

Lemma 40 shows that in order to bound 𝑝𝑒,𝑀 from below it suffices to bound KL(Π𝐻𝑚 ,Π𝐻0)
from above, where KL(𝑃,𝑄) denotes the Kullback-Leibler divergence between distributions
𝑃 and 𝑄 with densities 𝑝, 𝑞,

KL(𝑃,𝑄) = 𝐸𝑃
[︁
log
(︁𝑝
𝑞

)︁]︁
. (80)

By convexity of the map (𝑥, 𝑦) → 𝑥 log(𝑥/𝑦), writing v = (𝑣𝑗) ∈ {0, 1}𝑁 , one obtains

KL(Π𝐻𝑚 ,Π𝐻0) ≤
∑︁

v∈{0,1}𝑁

𝑤v KL

⎛⎝ 𝑁⨂︁
𝑗=1

𝑃
𝑓

(𝑚)
𝑣𝑗

,
𝑁⨂︁
𝑗=1

𝑃
𝑓

(0)
𝑣𝑗

⎞⎠ .
For a given v ∈ {0, 1}𝑁 , let 𝑛𝑖(v), 𝑖 = 0, 1, denote the number of elements of v equal to 𝑖.
The tensorisation property of the KL divergence implies

KL

⎛⎝ 𝑁⨂︁
𝑗=1

𝑃
𝑓

(𝑚)
𝑣𝑗

,
𝑁⨂︁
𝑗=1

𝑃
𝑓

(0)
𝑣𝑗

⎞⎠ = 𝑛0(v) KL(𝑃
𝑓

(𝑚)
0
, 𝑃

𝑓
(0)
0

) + 𝑛1(v) KL(𝑃
𝑓

(𝑚)
1
, 𝑃

𝑓
(0)
1

),

where 𝑛0(v), 𝑛1(v) are both at most 𝑁 .
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Let us now choose functions 𝑓 (𝑚)
0 , 𝑓

(𝑚)
1 , satisfying eqs. (76) to (78) for which we have

good control over KL(𝑓 (𝑚)
𝑗 , 𝑓

(0)
𝑗 ), 𝑗 = 0, 1 and 1 ≤ 𝑚 ≤ 𝑀 . For 𝜑 the standard normal

density and 𝑔𝑚,𝐴 defined as in Lemma 39 to follow, set

𝑓
(𝑚)
0 (𝑥) = 𝑔𝑚,𝐴(𝑥), 𝑚 ≥ 1, 𝑓

(0)
0 (𝑥) = 𝑟𝜑(𝑟𝑥),

𝑓
(𝑚)
1 (𝑥) = 𝑔𝑚,𝐴(𝑥− 2/𝑟), 𝑚 ≥ 1, 𝑓

(0)
1 (𝑥) = 𝑟𝜑(𝑟(𝑥− 2/𝑟)),

where we choose
𝐴 = 𝑐0

(︂ log𝑁
𝑁

)︂ 𝑠
2𝑠+1

, 𝑀 =
⌈︁(︁ 𝑁

log𝑁
)︁ 1

2𝑠+1
⌉︁
, (81)

with 𝑟, 𝑐0 small, but fixed, positive constants. Note firstly that for 𝑟, 𝑐0 small enough (and 𝑁
large enough) each pair (𝑓 (𝑚)

0 , 𝑓
(𝑚)
1 ) is in ℱ𝑠𝑒𝑝 for given 𝑅 > 0 and a small enough constant

𝑑 > 0. Indeed, examining the definition of 𝑔𝑚,𝐴 from Lemma 39, we see for all 0 ≤ 𝑚 ≤ 𝑀
that we have

|𝑓 (𝑚)
1 (0) − 𝑓

(𝑚)
0 (0)| = 𝑟(𝜑(0) − 𝜑(2));

that 𝑃
𝑓

(𝑚)
0

[−1, 1] =
∫︀ 𝑟

−𝑟 𝜑 and 𝑃
𝑓

(𝑚)
1

[−1, 1] =
∫︀ 𝑟−2

−𝑟−2 𝜑. So, for 𝑟 < 1/2,

|𝑃
𝑓

(𝑚)
0

[−1, 1] − 𝑃
𝑓

(𝑚)
1

[−1, 1]| ≥ 2𝑟(𝜑(1/2) − 𝜑(3/2)),

so that the last two constraints in (71) are fulfilled for small enough 𝑑 = 𝑑(𝑟). We further
note by Lemma 39 that for suitably small 𝑐0, 𝑟, we have both that (77) and (78) hold for
𝑠0 = 𝑠1 = 𝐴/2, and

KL
(︂
𝑃
𝑓

(𝑚)
0
, 𝑃

𝑓
(0)
0

)︂
≤ 𝐶

𝐴2

𝑀
≤ 𝐶

𝑐2
0 log𝑁
𝑁

, KL
(︂
𝑃
𝑓

(𝑚)
1
, 𝑃

𝑓
(𝑚)
1

)︂
≤ 𝐶

𝐴2

𝑀
≤ 𝐶

𝑐2
0 log𝑁
𝑁

.

Putting the previous bounds together leads to

KL(Π𝐻𝑚 ,Π𝐻0) ≤ 𝑁 · KL
(︂
𝑃
𝑓

(𝑚)
0
, 𝑃

𝑓
(0)
0

)︂
+𝑁 · KL

(︂
𝑃
𝑓

(𝑚)
1
, 𝑃

𝑓
(0)
1

)︂
≤ 𝐶𝑐2

0 log𝑁.

In particular, one can bound from above

1
𝑀

𝑀∑︁
𝑚=1

KL(Π𝐻𝑚 ,Π𝐻0) ≤ 𝐶𝑐2
0 log𝑁 ≤ (log𝑀)/10,

provided that 𝑐0 is a small enough constant, and we deduce by Lemma 40 that 𝑝𝑒,𝑀 :=
inf𝜓 max0≤𝑚≤𝑀 Π𝐻𝑚 [𝜓 ̸= 𝑚] is greater than a positive constant. Finally, recalling (79), we
have

𝑅𝑛(ℋ𝑠𝑒𝑝) ≥ 𝑆𝑝𝑒,𝑀 ,

with 𝑆 = 2(𝑠0 + 𝑠1) = 2𝐴. The proposition follows from the choice of 𝐴 in (81).

Recall the definition (70) of 𝒞𝑠(𝑅).
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Lemma 39. Let 𝜓 be a 𝐶∞ function with support in (−1/2, 1/2) such that ‖𝜓‖∞ = 1 and∫︀
R 𝜓 = 0. Let 𝜑(·) denote the standard normal density and for 𝑚 ∈ {1, . . . ,𝑀} and some
𝐴, 𝑟 > 0 and integer 𝑀 ≥ 2, set 𝑔0(𝑥) = 𝑟𝜑(𝑟𝑥) and

𝑔𝑚,𝐴(𝑥) = 𝑟𝜑(𝑟𝑥) +𝐴𝜓(𝑀𝑥−𝑚+ 1/2).

Then for 𝑠,𝑅 > 0, the functions 𝑔0 and 𝑔𝑚,𝐴 are densities belonging to 𝒞𝑠(𝑅) provided
𝐴𝑀 𝑠 ≤ 𝑅/2 and 𝑟,𝐴 are small enough,

‖𝑔0 − 𝑔𝑚,𝐴‖∞ = ‖𝑔𝑚,𝐴 − 𝑔𝑝,𝐴‖∞ = 𝐴, (for all 𝑚 ̸= 𝑝),

and, for 𝑃𝑔 the distribution with density 𝑔 on R, and some 𝐶 = 𝐶(𝑟) > 0, any 𝑚 ∈
{1, . . . ,𝑀},

KL(𝑃𝑔𝑚,𝐴 , 𝑃𝑔0) ≤ 𝐶𝐴2/𝑀.

Proof For the statement on supremum norms, it suffices to note that the maps 𝑥 →
𝜓(𝑀𝑥 − 𝑚) have disjoint support for different 𝑚’s. For the KL bounds, one expands the
logarithm at the order 2 in a neighbourhood of 0.

Lemma 40. For a family of points (𝐻𝑚)0≤𝑚≤𝑀 in ℋ𝑠𝑒𝑝 with 𝑀 ≥ 2, let

𝑝𝑒,𝑀 = inf
𝜓

max
0≤𝑚≤𝑀

Π𝐻𝑚 [𝜓 ̸= 𝑚], (82)

where the infimum is over all possible measurable 𝜓 taking values in {1, . . . ,𝑀}. Suppose,
for 𝛼 < 1/8,

1
𝑀

𝑀∑︁
𝑚=1

KL(Π𝐻𝑚 ,Π𝐻0) ≤ 𝛼 log𝑀.

Then

𝑝𝑒,𝑀 ≥
√
𝑀

1 +
√
𝑀

(︃
1 − 2𝛼−

√︃
2𝛼

log𝑀

)︃
.

Proof This follows from combining Proposition 2.3 and (the proof of) Theorem 2.5 in
Tsybakov (2009).

Lower bound in the case of 𝐽 ≥ 3. One first updates the risk by setting, with S𝐽

denoting the set of permutations of {0, . . . , 𝐽 − 1},

𝜌(f ,g) = min
𝜙∈S𝐽

(︁
‖𝑔𝜙(1) − 𝑓1‖∞ + · · · + ‖𝑔𝜙(𝐽) − 𝑓𝐽‖∞

)︁
.

The main change concerns the definition of the class of separated functions ℱ𝑠𝑒𝑝. When
𝐽 > 2, the spectral argument used in the proof of the upper bound requires a control on
a singular value as in Lemma 24. Let us consider, as in (the proof of) Lemma 24, a fixed
collection of functions ℎ𝑙, for instance a given countable collection of functions bounded in
supremum norm and generating the Borel 𝜎-algebra (e.g. a countable number of interval
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indicators). Recall from Lemma 11 the definition of the matrix, for 𝐿 ≥ 1 an integer, for
given 𝑄 and 𝜋 and for 𝑓 = (𝑓1, . . . , 𝑓𝐽) the vector of emission densities,

𝑂𝐿 = 𝑂𝐿(𝑓) = (𝐸𝑄,𝜋,𝑓 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗])𝑙≤𝐿,𝑗≤𝐽 .

Let us further write 𝜎𝐿𝐽 (𝑓1, . . . , 𝑓𝐽) = 𝜎𝐽(𝑂𝐿(𝑓1, . . . , 𝑓𝐽)) as a shorthand for the 𝐽th largest
singular value of the matrix 𝑂𝐿. In particular, note that if the conclusion of Lemma 24
holds for some emission densities 𝑓1, . . . , 𝑓𝐽 , then 𝜎𝐿𝐽 (𝑓1, . . . , 𝑓𝐽) is bounded away from 0
for some suitable integer 𝐿 ≥ 1.

The class we consider for 𝐽 ≥ 3 is then defined as, for given 𝑠,𝑅 > 0,

ℱ𝑠𝑒𝑝 =
{︂

f = (𝑓1, . . . , 𝑓𝐽) ∈ 𝒞𝑠(𝑅)𝐽 : min
𝑖 ̸=𝑗

|(𝑓𝑖 − 𝑓𝑗)(0)| ≥ 𝑑, 𝜎𝐿𝐽 (𝑓1, . . . , 𝑓𝐽) ≥ 𝑑

}︂
, (83)

for 𝑑 > 0 a small enough constant and 𝐿 a large enough integer. One further defines, for
given 𝑄, 𝜋,

ℋ𝑠𝑒𝑝 = ℋ𝑠𝑒𝑝(𝑄, 𝜋,𝑅, 𝑠, 𝑑, 𝐿) = {𝐻 = (𝑄, 𝜋, f) : f ∈ ℱ𝑠𝑒𝑝} .

One can then state a proposition analogous to that of Proposition 38 with the obvious
modifications of the notation to correspond to 𝐽 ≥ 3 states and the updated definition of
ℱ𝑠𝑒𝑝 as in (83). For brevity we omit the statement, just noting that the corresponding
uniform upper bound result holds, as noted in Section 4.3. We now give a brief sketch of
the proof of the lower bound, the arguments being broadly similar to the case of 𝐽 = 2
states.

One defines perturbations using the same idea as for 𝐽 = 2, just adding further trans-
lated functions for new states: for 𝑗 = 1, . . . , 𝐽 and 𝑚 = 1, . . . ,𝑀 ,

𝑓
(𝑚)
𝑗 (𝑥) = 𝑔𝑚,𝐴(𝑥− 2(𝑗 − 1)/𝑟) , 𝑓

(0)
𝑗 (𝑥) = 𝑟𝜑(𝑟(𝑥− 2(𝑗 − 1)/𝑟)),

where the function 𝑔𝑚,𝐴 is still defined as in Lemma 39 and the choice of 𝐴,𝑀 is as in the
case 𝐽 = 2. The proof is then nearly identical to the one in the case 𝐽 = 2. One difference is
in checking that the functions 𝑓 (𝑚)

1 , . . . , 𝑓
(𝑚)
𝐽 for 𝑚 = 0, 1, . . . ,𝑀 are in ℱ𝑠𝑒𝑝. In order to ver-

ify that 𝜎𝐿𝐽 (𝑓 (𝑚)
1 , . . . , 𝑓

(𝑚)
𝐽 ) ≥ 𝑑 for a small 𝑑 > 0 and large enough 𝐿 ≥ 1, it suffices to note

that this holds true for 𝜎𝐿𝐽 (𝑓 (0)
1 , . . . , 𝑓

(0)
𝐽 ), which follows by applying Lemma 24, noticing that

the functions 𝑓 (0)
1 , . . . , 𝑓

(0)
𝐽 are linearly independent (as Gaussian densities with different tail

behaviours). Next it suffices to notice, by using standard matrix perturbation theory, that
for any given integer 𝐿 ≥ 1, the quantity |𝜎𝐽(𝑂𝐿(𝑓 (𝑚)

1 , . . . , 𝑓
(𝑚)
𝐽 )) − 𝜎𝐽(𝑂𝐿(𝑓 (0)

1 , . . . , 𝑓
(0)
𝐽 ))|

scales with the constant 𝐴 in the definition of the perturbations; in particular, the difference
vanishes as 𝑁 → ∞, which implies that the last condition in the definition of ℱ𝑠𝑒𝑝 is met.
The verification of the other conditions in the definition of ℱ𝑠𝑒𝑝 and the rest of the proof
are nearly identical (using the updated definition of the perturbations in the last display)
to the arguments in the case 𝐽 = 2 and are omitted.

Appendix D. Notation

We give notation assuming, as in Section 3, that there are a (known) number 𝐽 of hidden
states {1, . . . , 𝐽} (recall that 𝐽 = 2 for Section 2 and the proofs of results therein, with
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hidden states labelled 0 and 1, and the notation is adapted accordingly).
HMM parameters.

𝑋 = (𝑋𝑛)𝑛≤𝑁 (or (𝑋𝑛)𝑛≤𝑁+2 for convenience, or (𝑋𝑛)𝑛∈N for some of the proofs and lemmas) the
data, drawn from the HMM (1).

𝜃 = (𝜃𝑛)𝑛≤𝑁 the vector of hidden states, taking values in {1, . . . , 𝐽}𝑁 .

𝑄, 𝜋 the transition matrix of 𝜃 and its stationary (and initial) distribution.

𝜇 a dominating measure on the space 𝒳 = R (equipped with the usual Borel 𝜎-algebra) in which
𝑋1 takes values. Throughout we take 𝜇 to equal Lebesgue measure on R or counting measure
on Z ⊂ R.

𝑓1, . . . , 𝑓𝐽 the emission densities, i.e. 𝑓𝑗 is the density of 𝑋1 conditional on 𝜃1 = 𝑗.

𝑓𝜋 the density of 𝑋1; this is only used in the two-state case so 𝑓𝜋 = 𝜋0𝑓0 + 𝜋1𝑓1.

𝐻 = (𝑄, 𝜋, 𝑓1, . . . , 𝑓𝐽), 𝐻̂ = (𝑄̂, 𝜋̂, 𝑓1, . . . , 𝑓𝐽).

Π𝐻 , 𝐸𝐻 the law of 𝑋 for parameter 𝐻 and the associated expecation operator.

ℋ, ℐ: see Section 4.3. [Also note that 𝐶 = 𝐶(ℋ) is allowed to depend on the kernel 𝐾 and the
functions (ℎ𝑙)𝑙∈N and sets D𝑁 of Algorithm 1 since these can be chosen universally.]

𝜈, 𝑥* constants as in Assumptions A and B.

𝛿 a lower bound for min𝑖,𝑗 𝑄𝑖𝑗 .

Multiple testing.

FDP,FDR,TDR,postFDR,mFDR,mTDR, see eqs. (2) to (5), (15) and (16) (also (10) for an al-
ternative characterisation of postFDR).

ℓ𝑖 ≡ ℓ𝑖(𝑋) ≡ ℓ𝑖,𝐻(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋); ℓ̂𝑖 = ℓ𝑖,𝐻̂ ; ℓ′
𝑖 = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴) for some 𝐴;

ℓ∞
𝑖 = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛∈Z).

Φ∞
𝑖 = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z, 𝑛 ≤ 𝑖)).

𝜙𝜆,𝐻 = (1{ℓ𝑖,𝐻 < 𝜆})𝑖≤𝑁

𝜆̂ = sup{𝜆 : postFDR𝐻̂(𝜙𝜆,𝐻̂) ≤ 𝑡}. 𝜆* the solution to 𝐸[ℓ∞
𝑖 | ℓ∞

𝑖 < 𝜆*] = min(𝑡, 𝜋0).

𝜙 ≡ 𝜙(𝑡) = 𝜙𝜆̂,𝐻̂ when there are no ties in ℓ-values, or given by Definition 1 when there may be ties.

𝑆0 = {𝑖 : 𝜙𝑖 = 1}, 𝐾̂ = |𝑆0|.

𝜀𝑁 some rate of consistency of estimators in (14).

Estimation.

𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠).

ℎ1, . . . , ℎ𝐿0 , where 𝐿0 is either constant or diverges slowly to infinity; bounded functions such that
“witness” the linear independence of 𝑓1, . . . , 𝑓𝐽 (see Algorithm 1 and Lemma 24).

𝐾,𝐾𝐿, a convolution kernel, see (25).

𝑀𝑥 ≡ 𝑀𝑥,𝐿0,𝐿 = (𝐸𝐻 [ℎ𝑖(𝑋1)𝐾𝐿(𝑥,𝑋2)ℎ𝑗(𝑋3)]𝑖,𝑗≤𝐿0) ∈ R𝐿0×𝐿0 .

𝑃 ≡ 𝑃𝐿0 = (𝐸𝐻 [ℎ𝑖(𝑋1)ℎ𝑗(𝑋3)]𝑖,𝑗≤𝐿0) ∈ R𝐿0×𝐿0

𝑂 = 𝑂𝐿0 = (𝐸𝐻 [ℎ𝑖(𝑋1) | 𝜃1 = 𝑎]𝑖≤𝐿0,𝑎≤𝐽) ∈ R𝐿0×𝐽
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𝐷 = 𝐷𝑥 = diag((𝐾𝐿[𝑓𝑗 ](𝑥))𝑗≤𝐽), i.e. the diagonal matrix whose diagonal entries are 𝐷𝑗𝑗 =
𝐾𝐿[𝑓𝑗 ](𝑥).

𝑉 = 𝑉 𝐿0 ∈ R𝐿0×𝐽 a matrix such that 𝑉 ᵀ𝑃𝑉 is invertible. Specifically, we either take 𝑉 to equal
a matrix of orthonormal right singular vectors of 𝑃 (so that 𝜎𝐽(𝑉 ᵀ𝑃𝑉 ) = 𝜎𝐽(𝑃 )) or, on the
event of Lemma 25, to equal 𝑉 (defined in Algorithm 1).

𝐵𝑥 = 𝐵𝑥,𝐿0 = [𝑉 ᵀ𝑃𝑉 ]−1𝑉 ᵀ𝑀𝑥𝑉 ≡ [𝑄𝑂ᵀ𝑉 ]−1𝐷𝑥𝑄𝑂ᵀ𝑉 .

𝑀̂𝑥, 𝑃 , 𝑂̂, 𝑉 empirical versions of 𝑀𝑥, 𝑃,𝑂, 𝑉,𝐵𝑥 (see Algorithm 1, p26).

𝐵̂𝑥 = [𝑉 ᵀ𝑃𝑉 ]−1𝑉 ᵀ𝑀̂𝑥𝑉 , 𝐵̃𝑥 = [𝑉 ᵀ𝑃𝑉 ]−1𝑉 ᵀ𝑀𝑥𝑉 , 𝐵̂𝑎,𝑢 =
∑︀
𝑎𝑖𝐵̂

𝑢𝑖 and 𝐵̃𝑎,𝑢 =
∑︀
𝑎𝑖𝐵̃

𝑢𝑖 for
𝑎, 𝑢 ∈ R𝐽(𝐽−1)/2 such that

∑︀
|𝑎𝑖| ≤ 1.

sep(𝐵) = min𝑖̸=𝑗 |𝜆𝑖 −𝜆𝑗 | the “eigen-separation” of a matrix 𝐵 ∈ R𝐽×𝐽 , with eigenvalues 𝜆1, . . . , 𝜆𝐽 .

𝑎̂, 𝑢̂,D𝑁 See Algorithm 1, p26.

𝑅̂ a matrix of normalised columns diagonalising 𝐵̂𝑎̂,𝑢̂, 𝑅̃ a matrix whose columns are those of 𝑄𝑂ᵀ𝑉
but scaled to have unit Euclidean norm (which therefore diagonalises 𝐵̃𝑎,𝑢 for any 𝑎, 𝑢).

𝒜 = {‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , ‖𝑀̂𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁 ∀𝑥 ∈ R} the event of Lemma 25.

𝐶𝑠 the usual space of locally Hölder smooth functions, equipped with the usual Hölder norm ‖·‖𝐶𝑠(R)
(see Assumption E). Note that since we consider density functions, we could equivalently use
the space of globally Hölder smooth functions.

𝒞𝑠(𝑅) the subspace of 𝐶𝑠 consisting of probability density functions with Hölder norm bounded by
𝑅.

S2 the set of all permutations on {0, 1}.

𝜌(f ,g) = min𝜙∈𝜎2

(︀
‖𝑔𝜙(0) − 𝑓0‖∞ + ‖𝑔𝜙(1) − 𝑓1‖∞

)︀
, for f = (𝑓0, 𝑓1), g = (𝑔0, 𝑔1).

ℱ𝑠𝑒𝑝 =
{︀

f = (𝑓0, 𝑓1) ∈ 𝒞𝑠(𝑅) : |(𝑓1 − 𝑓0)(0)| ≥ 𝑑, |𝑃𝑓1([−1, 1]) − 𝑃𝑓0([−1, 1])| ≥ 𝑑
}︀

.

ℋ𝑠𝑒𝑝 = {𝐻 = (𝑄, 𝜋, f) : f ∈ ℱ𝑠𝑒𝑝} , for some arbitrary (fixed) 𝑄, 𝜋. [Taking the union over certain
𝑄, 𝜋, this can be viewed as a subset of ℋ defined in Section 4.3.]

Miscellaneous.

‖·‖, ‖·‖𝐹 , ‖·‖∞ the Euclidean norm on vectors or the corresponding operator norm on matrices, the
Frobenius norm on matrices, and the 𝐿∞ (supremum) norm on functions taking values in R.

𝜎𝑗(𝐴) the 𝑗th largest singular value of a matrix 𝐴.

𝜅(𝐴) = 𝜎1(𝐴)/𝜎𝐽(𝐴) = ‖𝐴‖‖𝐴−1‖ for a matrix with smaller dimension 𝐽 , the condition number of
the matrix 𝐴.

𝑜(1), 𝑜𝑝(1) The usual little-oh notation: 𝑎𝑁 = 𝑜(1) if 𝑎𝑁 → 0 as 𝑁 → ∞, 𝑎𝑁 = 𝑜𝑝(1) if 𝑎𝑁 → 0 in
probability as 𝑁 → ∞.

𝑁[], 𝐻[]: The bracketing numbers/entropy, wherein 𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) is the smallest number of pairs
of functions (𝑓, 𝑓) such that every 𝑔 ∈ 𝒯 is bracketed by one of the pairs, where (𝑓, 𝑓) brackets
𝑔 if 𝑓 ≤ 𝑔 ≤ 𝑓 pointwise, and 𝐻[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) := log𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀).

62



Multiple Testing in Nonparametric HMMs

References
K. Abraham, I. Castillo, and E. Roquain. Sharp multiple testing boundary for sparse sequences.

Arxiv eprint 2109.13601, 2021. URL https://arxiv.org/pdf/2109.13601.

G. Alexandrovich, H. Holzmann, and A. Leister. Nonparametric identification and maximum likeli-
hood estimation for hidden Markov models. Biometrika, 103(2):423–434, 2016.

A. Anandkumar, D. J. Hsu, and S. M. Kakade. A method of moments for mixture models and
hidden Markov models. In 25th Annual Conference On Learning Theory, page 33.1–33.34, 2012.

B. Bárány and I. Kolossváry. On the absolute continuity of the Blackwell measure. J. Stat. Phys.,
159(1):158–171, 2015.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov
chains. Ann. Math. Statist., 37:1554–1563, 1966.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41:164–171, 1970.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289–300, 1995.

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under
dependency. Ann. Statist., 29(4):1165–1188, 2001.

P. J. Bickel, Y. Ritov, and T. Rydén. Asymptotic normality of the maximum-likelihood estimator
for general hidden Markov models. Ann. Statist., 26(4):1614–1635, 1998.

D. Blackwell. The entropy of functions of finite-state Markov chains. In Transactions of the first
Prague conference on information theory, Statistical decision functions, random processes held
at Liblice near Prague from November 28 to 30, 1956, pages 13–20. Publishing House of the
Czechoslovak Academy of Sciences, Prague, 1957.

T. T. Cai, W. Sun, and W. Wang. Covariate-assisted ranking and screening for large-scale two-
sample inference. J. R. Stat. Soc. Ser. B. Stat. Methodol., 81(2):187–234, 2019.

E. Candès, Y. Fan, L. Janson, and J. Lv. Panning for gold: ‘model-X’ knockoffs for high dimensional
controlled variable selection. J. R. Stat. Soc. Ser. B. Stat. Methodol., 80(3):551–577, 2018.

O. Cappé, E. Moulines, and T. Rydén. Inference in hidden Markov models. Springer Series in Statis-
tics. Springer, New York, 2005. With Randal Douc’s contributions to Chapter 9 and Christian
P. Robert’s to Chapters 6, 7 and 13, with Chapter 14 by Gersende Fort, Philippe Soulier and
Moulines, and Chapter 15 by Stéphane Boucheron and Elisabeth Gassiat.

I. Castillo and E. Roquain. On spike and slab empirical Bayes multiple testing. Ann. Statist., 48
(5):2548–2574, 2020.

G. Cleanthous, A. G. Georgiadis, G. Kerkyacharian, P. Petrushev, and D. Picard. Kernel and wavelet
density estimators on manifolds and more general metric spaces. Bernoulli, 26(3):1832–1862, 2020.

Y. De Castro, E. Gassiat, and C. Lacour. Minimax adaptive estimation of nonparametric hidden
Markov models. J. Mach. Learn. Res., 17:Paper No. 111, 43, 2016.

63

https://arxiv.org/pdf/2109.13601


Abraham, Castillo and Gassiat

Y. De Castro, E. Gassiat, and S. Le Corff. Consistent estimation of the filtering and marginal
smoothing distributions in nonparametric hidden Markov models. IEEE Trans. Inform. Theory,
63(8):4758–4777, 2017.

R. Douc and C. Matias. Asymptotics of the maximum likelihood estimator for general hidden
Markov models. Bernoulli, 7(3):381–420, 2001.

R. Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019.

B. Efron. Size, power and false discovery rates. Ann. Statist., 35(4):1351–1377, 2007a.

B. Efron. Correlation and large-scale simultaneous significance testing. J. Amer. Statist. Assoc., 102
(477):93–103, 2007b.

B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes analysis of a microarray
experiment. J. Amer. Statist. Assoc., 96(456):1151–1160, 2001.

A. Farcomeni. Some results on the control of the false discovery rate under dependence. Scand. J.
Statist., 34(2):275–297, 2007.

H. Finner, T. Dickhaus, and M. Roters. Dependency and false discovery rate: asymptotics. Ann.
Statist., 35(4):1432–1455, 2007.

E. Gassiat, A. Cleynen, and S. Robin. Inference in finite state space non parametric hidden Markov
models and applications. Stat. Comput., 26(1-2):61–71, 2016.

S. Ghosal and A. van der Vaart. Fundamentals of nonparametric Bayesian inference, volume 44
of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 2017.

E. Giné and R. Nickl. Mathematical foundations of infinite-dimensional statistical models. Cambridge
Series in Statistical and Probabilistic Mathematics, [40]. Cambridge University Press, New York,
2016.

R. Heller and S. Rosset. Optimal control of false discovery criteria in the two-group model. J. R.
Stat. Soc. Ser. B. Stat. Methodol., 83(1):133–155, 2021.

L. Lehéricy. Nonasymptotic control of the MLE for misspecified nonparametric hidden Markov
models. ArXiv eprint 1807.03997, 2018. URL https://arxiv.org/pdf/1807.03997.

L. Lehéricy. State-by-state minimax adaptive estimation for nonparametric hidden Markov models.
J. Mach. Learn. Res., 19:Paper No. 39, 46, 2018.

P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Math-
ematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory
held in Saint-Flour, July 6–23, 2003, With a foreword by Jean Picard.

D. Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral methods.
Electron. J. Probab., 20:no. 79, 32, 2015.

T. Petrie. Probabilistic functions of finite-state Markov chains. Proc. Nat. Acad. Sci. U.S.A., 57:
580–581, 1967.

T. Rebafka, E. Roquain, and F. Villers. Graph inference with clustering and false discovery rate
control. ArXiv eprint 1907.10176, 2019. URL https://arxiv.org/abs/1907.10176.

64

https://arxiv.org/pdf/1807.03997
https://arxiv.org/abs/1907.10176


Multiple Testing in Nonparametric HMMs

E. Roquain and N. Verzelen. On using empirical null distributions in Benjamini–Hochberg procedure.
ArXiv eprint 1912.03109, 2020. URL https://arxiv.org/pdf/1912.03109.

M. Sesia, C. Sabatti, and E. J. Candès. Gene hunting with hidden Markov model knockoffs.
Biometrika, 106(1):1–18, 2019.

H. Shu, B. Nan, and R. Koeppe. Multiple testing for neuroimaging via hidden Markov random field.
Biometrics, 71(3):741–750, 2015.

G. W. Stewart and J. G. Sun. Matrix perturbation theory. Computer Science and Scientific Com-
puting. Academic Press, Inc., Boston, MA, 1990.

J. D. Storey. The positive false discovery rate: a Bayesian interpretation and the 𝑞-value. Ann.
Statist., 31(6):2013–2035, 2003.

W. Su and X. Wang. Hidden Markov model in multiple testing on dependent count data. J. Stat.
Comput. Simul., 90(5):889–906, 2020.

W. Sun and T. T. Cai. Oracle and adaptive compound decision rules for false discovery rate control.
J. Amer. Statist. Assoc., 102(479):901–912, 2007.

W. Sun and T. T. Cai. Large-scale multiple testing under dependence. J. R. Stat. Soc. Ser. B Stat.
Methodol., 71(2):393–424, 2009.

A. Touron. Consistency of the maximum likelihood estimator in seasonal hidden Markov models.
Stat. Comput., 29(5):1055–1075, 2019.

A. B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics. Springer,
New York, 2009. Revised and extended from the 2004 French original, Translated by Vladimir
Zaiats.

A. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, 1998.

A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer
Series in Statistics. Springer-Verlag, New York, 1996. ISBN 0-387-94640-3. doi: 10.1007/
978-1-4757-2545-2. With applications to statistics.

X. Wang, A. Shojaie, and J. Zou. Bayesian hidden Markov models for dependent large-scale multiple
testing. Comput. Statist. Data Anal., 136:123–136, 2019.

Z. Wei, W. Sun, K. Wang, and H. Hakonarson. Multiple testing in genome-wide association studies
via hidden Markov models. Bioinfo., 25(21):2802–2808, 2009.

W. B. Wu. On false discovery control under dependence. Ann. Statist., 36(1):364–380, 2008.

J. Xie, T. T. Cai, J. Maris, and H. Li. Optimal false discovery rate control for dependent data. Stat.
Interface, 4(4):417–430, 2011.

C. Yau, O. Papaspiliopoulos, G. O. Roberts, and C. Holmes. Bayesian non-parametric hidden
Markov models with applications in genomics. J. R. Stat. Soc. Ser. B Stat. Methodol., 73(1):
37–57, 2011.

W. Zucchini, I. L. MacDonald, and R. Langrock. Hidden Markov models for time series, volume
150 of Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, FL, second
edition, 2016.

65

https://arxiv.org/pdf/1912.03109

	Introduction
	Aim of the Paper
	Context
	Setting
	Outline of the Paper

	The Empirical Bayesian Procedure
	Definition
	Theoretical guarantees

	Supremum Norm Estimation of Emission Densities
	Discussion
	Applicability of the Results
	The Parametric Setting
	Uniformity in the Parameters
	Extensions of the Theorems
	Other HMM settings

	Proofs
	Proofs: FDR Control and TDR Optimality
	Proofs: Supremum Norm Estimation of HMM Parameters

	Auxiliary Results for Section 2
	Lemmas for thm:BFDRcontrol
	Lemmas for thm:BFNRoptimality

	Auxiliary Results for the upper bounds of Section 3
	Well-definedness of the Estimators
	Concentration of Empirical Estimators
	Matrix Approximation Theory Arguments
	Sketch Proof of thm:DiscreteEstimation

	Proof of the Lower Bound
	Notation

