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Abstract
We consider stationary hidden Markov models with finite state space and nonparametric
modeling of the emission distributions. It has remained unknown until very recently that
such models are identifiable. In this paper, we propose a new penalized least-squares esti-
mator for the emission distributions which is statistically optimal and practically tractable.
We prove a non asymptotic oracle inequality for our nonparametric estimator of the emis-
sion distributions. A consequence is that this new estimator is rate minimax adaptive up
to a logarithmic term. Our methodology is based on projections of the emission distri-
butions onto nested subspaces of increasing complexity. The popular spectral estimators
are unable to achieve the optimal rate but may be used as initial points in our procedure.
Simulations are given that show the improvement obtained when applying the least-squares
minimization consecutively to the spectral estimation.
Keywords: nonparametric estimation; hidden Markov models; minimax adaptive esti-
mation; oracle inequality; penalized least-squares.

1. Introduction

1.1 Context and motivations

Finite state space hidden Markov models (HMMs for short) are widely used to model data
evolving in time and coming from heterogeneous populations. They seem to be reliable
tools to model practical situations in a variety of applications such as economics, genomics,
signal processing and image analysis, ecology, environment, speech recognition, to name
but a few. From a statistical view point, finite state space HMMs are stochastic processes
(Xj , Yj)j≥1 where (Xj)j≥1 is a Markov chain with finite state space and conditionally on
(Xj)j≥1 the Yj ’s are independent with a distribution depending only onXj . The observations
are Y1:N = (Y1, . . . , YN ) and the associated statesX1:N = (X1, . . . , XN ) are unobserved. The
parameters of the model are the initial distribution, the transition matrix of the hidden chain,
and the emission distributions of the observations, that is the probability distributions of the
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Yj ’s conditionally to Xj = x for all possible x’s. In this paper we shall consider stationary
ergodic HMMs so that the initial distribution is the stationary distribution of the (ergodic)
hidden Markov chain.

Until very recently, asymptotic performances of estimators were proved only in the para-
metric setting (that is, with finitely many unknown parameters). Though, nonparametric
methods for HMMs have been considered in applied papers, but with no theoretical guar-
antees, see for instance Couvreur and Couvreur (2000) for voice activity detection, Lambert
et al. (2003) for climate state identification, Lefèvre (2003) for automatic speech recognition,
Shang and Chan (2009) for facial expression recognition, Volant et al. (2013) for methylation
comparison of proteins, Yau et al. (2011) for copy number variants identification in DNA
analysis.

The preliminary obstacle to obtain theoretical results on general finite state space non-
parametric HMMs was to understand when such models are indeed identifiable. Marginal
distributions of finitely many observations are finite mixtures of products of the emission
distributions. It is clear that identifiability can not be obtained based on the marginal dis-
tribution of only one observation. It is needed, and it is enough, to consider the marginal
distribution of at least three consecutive observations to get identifiability, see Gassiat et al.
(2015), following Allman et al. (2009) and Hsu et al. (2012).

1.2 Contribution

The aim of our paper is to propose a new approach to estimate nonparametric HMMs with
a statistically optimal and practically tractable method. We obtain this way nonparametric
estimators of the emission distributions that achieve the minimax rate of estimation in an
adaptive setting.

Our perspective is based on estimating the projections of the emission laws onto nested
subspaces of increasing complexity. Our analysis encompasses any family of nested subspaces
of Hilbert spaces and works with a large variety of models. In this framework one could think
to use the spectral estimators as proposed by Hsu et al. (2012); Anandkumar et al. (2012)
in the parametric framework, by extending them to the nonparametric framework. But a
careful analysis of the tradeoff between sampling size and approximation complexity shows
that they do not lead to rate optimal estimators of the emission densities, see De Castro
et al. (2015) for a formal statement and proof. This can be easily understood. Indeed,
the spectral estimators of the emission densities are computed as functions of the empirical
estimator of the marginal distribution of three consecutive observations on Y3 (where Y is
the observation space), for which, roughly speaking, when Y is a subset of R, the optimal
rate is N−s/(2s+3), N being the number of observations and s the smoothness of the emission
densities. Thus the rate obtained this way for the emission densities is also N−s/(2s+3). But
since those emission densities describe one dimensional random variables on Y, one could
hope to be able to obtain the sharper rate N−s/(2s+1). This is the rate we obtain, up to a
logN term, with our new method. Let us explain how it works.

Using the HMM modeling, and using sieves for the emission densities on Y, we propose
a penalized least squares estimator in the model selection framework. We prove an oracle
inequality for the L2-risk of the estimator of the density of (Y1, Y2, Y3), see Theorem 4. Since
the complexity of the model is that given by the sieves for the emission densities, this leads,
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up to a logN term, to the adaptive minimax rate computed as for the density of only one
observation Y1 though we estimate the density of (Y1, Y2, Y3). Roughly speaking, when the
observations are one dimensional, that is when Y is a subset of R, the obtained rate for the
density of (Y1, Y2, Y3) is of order N−s/(2s+1) up to a logN term, N being the number of
observations and s the smoothness of the emission densities.

The key point is then to be able to go back to the emission densities. This is the
cornerstone of our main result. We prove in Theorem 6 that, under the assumption [HD]
defined in Section 4.2, the quadratic risk for the density of (Y1, Y2, Y3) is lower bounded
by some positive constant multiplied by the quadratic risk for the emission densities. This
technical assumption is generically satisfied in the sense that it holds for all possible emission
densities for which the L2-norms and Hilbert dot products do not lie on a particular algebraic
surface with coefficients depending on the transition matrix of the hidden chain. Moreover,
we prove that, when the number of hidden states equals two, this assumption is always
verified when the two emission densities are distinct, see Lemma 5.

Our methodology requires that we have a preliminary estimator of the transition matrix.
To get such an estimator, it is possible to use spectral methods. Thus our approach is the
following. First, get a preliminary estimator of the initial distribution and the transition
matrix of the hidden chain. Second, apply penalized least squares estimation on the density
of three consecutive observations, using HMM modeling, model selection on the emission
densities, and initial distribution and stationary matrix of the hidden chain set at the esti-
mated value. This gives emission density estimators which have minimax adaptive rate, as
our main result states, see Theorem 7. A simplified version of this theorem can be given as
follows.

Theorem 1 Assume (Yj)j≥1 is a hidden Markov model on R, with latent Markov chain
(Xj)j≥1 with K possible values and true transition matrix Q?. Denote f?k the density of Yn
given Xn = k, for k = 1, . . . ,K. Assume the true transition matrix Q? is full rank and
the true emission densities f?k , k = 1, . . . ,K are linearly independent, with smoothness s.
Assume that [HD] holds true. Then, up to label switching, for N the number of observations
large enough, the estimators Q̂, f̂k, k = 1, . . . ,K built in Section 3 and 5 satisfy

E
[
‖Q? − Q̂‖2

]
= O

( logN

N

)
,

E
[
‖f?k − f̂k‖22

]
= O

([ logN

N

] s
2s+1

)
, k = 1, . . . ,K.

Moreover, since the family of sieves we consider is that given by finite dimensional spaces
described by an orthonormal basis, we are able to use the spectral estimators of the coeffi-
cients of the densities as initial points in the least squares minimization. This is important
since, in the HMM framework, least squares minimization does not have an explicit solution
and may lead to several local minima. However, since the spectral estimates are proved to
be consistent, we may be confident that their use as initial point is enough. Simulations
indeed confirm this point.

To conclude we claim that our results support a powerful new approach to estimate, for
the first time, nonparametric HMMs with a statistically optimal and practically tractable
method.
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1.3 Related works

The papers Allman et al. (2009), Hsu et al. (2012) and Anandkumar et al. (2012) paved the
way to obtain identifiability under reasonable assumptions. In Anandkumar et al. (2012)
the authors point out a structural link between multivariate mixtures with conditionally
independent observations and finite state space HMMs. In Hsu et al. (2012) the authors
propose a spectral method to estimate all parameters for finite state space HMMs (with
finitely many observations), under the assumption that the transition matrix of the hidden
chain is non singular, and that the (finitely valued) emission distributions are linearly inde-
pendent. Extension to emission distributions on any space, under the linear independence
assumptions (and keeping the assumption of non singularity of the transition matrix), al-
lowed to prove the general identifiability result for finite state space HMMs, see Gassiat et al.
(2015), where also model selection likelihood methods and nonparametric kernel methods
are proposed to get nonparametric estimators. Let us notice also Vernet (2015) that proves
theoretical consistency of the posterior in nonparametric Bayesian methods for finite state
space HMMs with adequate assumptions. Later, Alexandrovich and Holzmann (2014) ob-
tained identifiability when the emission distributions are all distinct (not necessarily linearly
independent) and still when the transition matrix of the hidden chain is full rank. In the
nonparametric multivariate mixture model, Song et al. (2014) prove that any linear func-
tional of the emission distributions may be estimated with parametric rate of convergence in
the context of reproducing kernel Hilbert spaces. The latter uses spectral methods, not the
same but similar to the ones proposed in Hsu et al. (2012) and Anandkumar et al. (2012).

Recent papers that contain theoretical results on different kinds of nonparametric HMMs
are Gassiat and Rousseau, where the emitted distributions are translated versions of each
other, and Dumont and Le Corff in which the authors consider regression models with hidden
regressor variables that can be Markovian on a continuous state space.

1.4 Outline of the paper

In Section 2, we set the notations, the model we shall study, and the assumptions we shall
consider. We then state an identifiability lemma (see Lemma 3) that will be useful for our
estimation method. In Sections 3 and 4 we give our main results. We explain the penalized
least-squares estimation method in Section 3, and we prove in Section 4 that, when the
transition matrix is irreducible and aperiodic, when the emission distributions are linearly
independent and the penalty is adequately chosen, then, under a technical assumption, the
penalized least squares estimator is asymptotically minimax adaptive up to a logN term, see
Theorem 7 and Corollary 10. For this, we first prove an oracle inequality for the estimation
of the density of (Y1, Y2, Y3), see Theorem 4, then we prove the key result relating the risk
of the density of (Y1, Y2, Y3) to that of the emission densities, see Theorem 6. The latter
holds under a technical assumption which we prove to be always verified in case K = 2,
see Lemma 5. Finally, we need the performances of the spectral estimator of the transition
matrix and of the stationary distribution which are given in Section 5, see Theorem 11,
proved in De Castro et al. (2015). We finally present simulations in Section 6 to illustrate
our theoretical results. Those simulations show in particular the improvement obtained when
applying the least-squares minimization consecutively to the spectral estimation. Detailed
proofs are given in Section 8.
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2. Notations and assumptions

2.1 Nonparametric hidden Markov model

Let K, D be positive integers and let LD be the Lebesgue measure on RD. Denote by X
the set {1, . . . ,K} of hidden states, Y ⊂ RD the observation space, and ∆K the space of
probability measures on X identified to the (K − 1)-dimensional simplex. Let (Xn)n≥1 be
a Markov chain on X with K ×K transition matrix Q? and initial distribution π? ∈ ∆K .
Let (Yn)n≥1 be a sequence of observed random variables on Y. Assume that, conditional on
(Xn)n≥1, the observations (Yn)n≥1 are independent and, for all n ∈ N, the distribution of
Yn depends only on Xn. Denote by µ?k the conditional law of Yn conditional on {Xn = k},
and assume that µ?k has density f?k with respect to the measure LD on Y:

∀k ∈ X , dµ?k = f?kdLD .

Denote by F? := {f?1 , . . . , f?K} the set of emission densities with respect to the Lebesgue
measure. Then, for any integer n, the distribution of (Y1, . . . , Yn) has density with respect
to (LD)⊗n

K∑
k1,...,kn=1

π?(k1)Q
?(k1, k2) . . .Q

?(kn−1, kn)f?k1(y1) . . . f
?
kn(yn).

We shall denote g? the density of (Y1, Y2, Y3).
In this paper we shall address two observations schemes. We shall consider N i.i.d.

samples (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 )Ns=1 of three consecutive observations (Scenario A) or consecutive

observations of the same chain (Scenario B):

∀s ∈ {1, . . . , N}, (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 ) := (Ys, Ys+1, Ys+2) .

2.2 Projections of the population joint laws

Denote by (L2(Y,LD), ‖· ‖2) the Hilbert space of square integrable functions on Y with re-
spect to the Lebesgue measure LD equipped with the usual inner product 〈· , · 〉 on L2(Y,LD).
Assume F? ⊂ L2(Y,LD).

Let (Mr)r≥1 be an increasing sequence of integers, and let (PMr)r≥1 be a sequence
of nested subspaces with dimension Mr such that their union is dense in L2(Y,LD). Let
ΦMr := {ϕ1, . . . , ϕMr} be an orthonormal basis of PMr . Recall that for all f ∈ L2(Y,LD),

lim
r→∞

Mr∑
m=1

〈f, ϕm〉ϕm = f , (1)

in L2(Y,LD). Note that changing Mr may change all functions ϕm, 1 ≤ m ≤ Mr in the
basis ΦMr , which we shall not indicate in the notation for sake of readability. Also, we drop
the dependence on r and write M instead of Mr. Define the projection of the emission laws
onto PM by

∀k ∈ X , f?M,k :=
M∑
m=1

〈f?k , ϕm〉ϕm .

We shall write f?M := (f?M,1, . . . , f
?
M,K) and f? := (f?1 , . . . , f

?
K) throughout this paper.
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Remark 2 One can consider the following standard examples:

(Spline) The space of piecewise polynomials of degree bounded by dr based on the regular parti-
tion with pDr regular pieces on Y = [0, 1]D. It holds that Mr = (dr + 1)DpDr .

(Trig.) The space of real trigonometric polynomials on Y = [0, 1]D with degree less than r. It
holds that Mr = (2r + 1)D.

(Wav.) A wavelet basis ΦMr of scale r on Y = [0, 1]D, see Meyer (1992). In this case, it holds
that Mr = 2(r+1)D.

2.3 Assumptions

We shall use the following assumptions on the hidden chain.

[H1] The transition matrix Q? has full rank,

[H2] The Markov chain (Xn)n≥1 is irreducible and aperiodic,

[H3] The initial distribution π? = (π?1, . . . , π
?
K) is the stationary distribution.

Notice that under [H1], [H2] and [H3], one has for all k ∈ X , π?k ≥ π?min > 0. We shall use
the following assumption on the emission densities.

[H4] The family of emission densities F? := {f?1 , . . . , f?K} is linearly independent.

Those assumptions appear in spectral methods, see for instance Hsu et al. (2012); Anandku-
mar et al. (2012), and in identifiability issues, see for instance Allman et al. (2009); Gassiat
et al. (2015).

2.4 Identifiability lemma

For any f = (f1, . . . , fK) ∈ (L2(Y,LD))K and any transition matrix Q, denote by gQ,f :
Y3 → R the function given by

gQ,f (y1, y2, y3) =

K∑
k1,k2,k3=1

π(k1)Q(k1, k2)Q(k2, k3)fk1(y1)fk2(y2)fk3(y3), (2)

where π is the stationary distribution of Q. When Q = Q? and f = f?, we get gQ?,f? = g?.
When f1, . . . , fK are probability densities on Y, gQ,f is the probability distribution of three
consecutive observations of a stationary HMM. We now state a lemma that gathers all what
we need about identifiability.

For any transition matrix Q, let TQ be the set of permutations τ such that for all i and j,
Q(τ(i), τ(j)) = Q(i, j). The permutations in TQ describe how the states of the Markov chain
may be permuted without changing the distribution of the whole chain: for any τ in TQ,
(τ(Xn))n≥1 has the same distribution as (Xn)n≥1. Since the hidden chain is not observed,
if the emission distributions are permuted using τ , we get the same HMM. In other words,
if f τ = (fτ(1), . . . , fτ(K)), then gQ,f

τ
= gQ,f . Since identifiability up to permutation of the

hidden states is obtained from the marginal distribution of three consecutive observations,
we get the following lemma whose detailed proof is given in Section 8.1.

6



Estimation of nonparametric HMMs

Lemma 3 Assume that Q is a transition matrix for which [H1] and [H2] hold. Assume
that [H4] holds. Then for any h ∈ (L2(Y,LD))K ,

gQ,f
?+h = gQ,f

? ⇐⇒ ∃τ ∈ TQ such that hj = f?τ(j) − f
?
j , j = 1, . . . ,K.

In particular, if TQ reduces to the identity permutation,

gQ,f
?+h = gQ,f

? ⇐⇒ h = (0, . . . , 0).

3. The penalized least-squares estimator

In this section we shall estimate the emission densities using the so-called penalized least
squares method. Here, the least squares adjustment is made on the density g? of (Y1, Y2, Y3).
Starting from the operator Γ : t 7→ ‖t − g?‖22 − ‖g?‖22 = ‖t‖22 − 2

∫
tg? which is minimal

for the target g?, we introduce the corresponding empirical contrast γN . Namely, for any
t ∈ L2(Y3,LD⊗3), set

γN (t) = ‖t‖22 −
2

N

N∑
s=1

t (Zs) ,

with Zs := (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 ) (Scenario A) or Zs := (Ys, Ys+1, Ys+2) (Scenario B). As

N tends to infinity, γN (t) − γN (g?) converges almost surely to ‖t − g?‖22, thus the name
least squares contrast function. A natural estimator is then a function t such that γN (t)
is minimal over a judicious approximation space which is a set of functions of form gQ,f ,
Q a transition matrix and f ∈ FK , for F a subset of L2(Y,LD). We thus define a whole
collection of estimates ĝM , eachM indexing an approximation subspace (also called model).
Considering (2) we shall introduce a collection of model of functions by projection of possible
f ’s on the subspaces (PM )M . Thus, for any irreducible transition matrix Q with stationary
distribution π, we define S(Q,M) as the set of functions gQ,f such that f ∈ FK and, for
each k = 1, . . . ,K, there exists (am,k)1≤m≤M ∈ RM such that

fk =

M∑
m=1

am,kϕm.

We now assume that we have in hand an estimator Q̂ of Q?. For instance, one can use
a spectral estimator, we recall such a construction in Section 5. Then, (S(Q̂,M))M is
the collection of models we use for the least squares minimization. For any M , define
ĝM as a minimizer of γN (t) for t ∈ S(Q̂,M). Then ĝM can be written as ĝM = gQ̂,f̂M

with f̂M ∈ FK and f̂M,k =
∑M

m=1 âm,kϕm (k = 1, . . . ,K) for some (âm,k)1≤m≤M ∈ RM ,
k = 1, . . . ,K. It then remains to select the best model, that is to chooseM which minimizes
‖ĝM − g?‖22 − ‖g?‖22. This quantity is close to γN (ĝM ), but we need to take into account
the deviations of the process Γ− γN . Then we rather minimize γN (ĝM ) + pen(N,M) where
pen(N,M) is a penalty term to be specified. Our final estimator will be a penalized least
squares estimator. For this purpose we choose a penalty function pen(N,M) and we let

M̂ = arg min
M=1,...,N

{γN (ĝM ) + pen(N,M)} .
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Notice that, with N observations, we consider N subspaces as candidates for model selec-
tion. Then the estimator of g? is ĝ = ĝM̂ , and the estimator of f? is f̂ := f̂M̂ so that ĝ = gQ̂,f̂ .

The least squares estimator does not have an explicit form such as in usual nonparametric
estimation, so that one has to use numerical minimization algorithms. As initial point of the
minimization algorithm, we shall use the spectral estimator, see Section 6 for more details.
Since the spectral estimator is consistent, see De Castro et al. (2015), the algorithm does
not suffer from initialization problems.

4. Adaptive estimation of the emission distributions

4.1 Oracle inequality for the estimation of g?

We now fix a subset F of L2(Y,LD), and we shall use the following assumption:

[HF] F is a closed subset of L2(Y,LD) such that: for any f ∈ F ,
∫
fdLD = 1, ‖f‖2 ≤ CF ,2

and ‖f‖∞ ≤ CF ,∞ for some fixed positive CF ,2 and CF ,∞.

Our first main result is an oracle inequality for the estimation of g? which is stated below
and proved in Section 8.2. We denote by SK the set of permutations of {1, . . . ,K}. When
a is a vector, ‖a‖2 denotes its Euclidian norm, and when A is a matrix, ‖A‖F denotes its
Frobenius norm.

Theorem 4 Assume [H1]-[H4] and [HF]. Assume also f? ∈ FK , and for allM , f?M ∈ FK .
Then, there exists positive constants N0, ρ? and A?1 (depending on CF ,2 and CF ,∞ (Scenario
B) or on Q?, CF ,2 and CF ,∞ (Scenario A)) such that, if

pen(N,M) ≥ ρ?M logN

N

then for all x > 0, for all N ≥ N0, one has with probability 1 − (e − 1)−1e−x, for any
permutation τ ∈ SK ,

‖ĝ − g?‖22 ≤ 6 inf
M

{
‖g? − gQ?,f?M ‖22 + pen(N,M)

}
+A?1

x

N

+18C6
F ,2
(
2‖Q? − Pτ Q̂NP>τ ‖2F + ‖π? − Pτ π̂‖22

)
.

Here, Pτ is the permutation matrix associated to τ .

The important fact in this oracle inequality is that the minimal possible penalty is of
order M/N (up to logarithmic terms) and not M3/N as is usually the case when estimating
a joint density of three random variables, so that we get a minimax rate adaptive estimator
of the joint density g?.

4.2 Main result

The problem is now to deduce from Theorem 4 a result on ‖f?k − f̂k‖22, k = 1, . . . ,K. This is
the cornerstone of our work: we prove that, under a technical assumption on the parameters
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of the unknown HMM, a direct lower bound links ‖ĝ− g?‖22 to
∑K

k=1 ‖f?1 − f̂k‖22, up to some
positive constant. Let us now describe the assumption and comment on its genericity.

For any f ∈ FK , define G(f) the K × K matrix with coefficients G(f)i,j = 〈fi, fj〉,
i, j = 1, . . . ,K. Notice that under the assumption [H4], G(f?) is positive definite. Let Q
be a transition matrix verifying [H1]-[H2] and let AQ be the diagonal matrix having the
stationary distribution π of Q on the diagonal. We shall now define a quadratic form with
coefficients depending on Q and G(f). If U is a K ×K matrix such that U1K = 0,

D :=
K∑

i,j=1

{(
QTAQUG(f)UTAQQ

)
i,j

(
G(f)

)
i,j

(
QG(f)QT

)
i,j

+
(
QTAQG(f)AQQ

)
i,j

(
UG(f)UT

)
i,j

(
QG(f)QT

)
i,j

+
(
QTAQG(f)AQQ

)
i,j

(
G(f)

)
i,j

(
QUG(f)UTQT

)
i,j

}
+2
∑
i,j

{(
QTAQUG(f)AQQ

)
i,j

(
UG(f)

)
j,i

(
QG(f)QT

)
i,j

+
(
QTAQUG(f)AQQ

)
i,j

(
QUG(f)QT

)
j,i

(
G(f)

)
i,j

+
(
UG(f)

)
i,j

(
QUG(f)QT

)
j,i

(
QTAQG(f)AQQ

)
i,j

}
defines a semidefinite positive quadratic form D in the coefficients Ui,j , i = 1, . . . ,K, j =
1, . . . ,K − 1. The determinant of this quadratic form is a polynomial in the coefficients
of the matrices Q, AQ and G(f). Since the coefficients of AQ are rational functions of the
coefficients of the matrix Q, this determinant is also a rational function of the coefficients
of the matrices Q and G(f). Define H(Q, G(f)) the numerator of the determinant. Then
H(Q, G(f)) is a polynomial in the coefficients of the matrices Q and G(f). Our assumption
will be:

[HD] H(Q?, G(f?)) 6= 0.

Since H is a polynomial function of Q?i,j , i = 1, . . . ,K, j = 1, . . . ,K − 1, and 〈f?i , f?j 〉,
i, j = 1, . . . ,K, the assumption [HD] is generically satisfied. We have been able to prove
that [HD] always holds in the case K = 2. We were only able to prove this result by direct
computation, it is given in Section 8.4.

Lemma 5 Assume K = 2. Then for all Q? and f? such that [H1]-[H4] hold, one has
H(Q?, G(f?)) > 0.

Notice now that, when [HD] and [H1]-[H3] hold, it is possible to define a compact neigh-
borhood V of Q? such that, for all Q ∈ V, H(Q, G(f?)) 6= 0, [H1]-[H3] hold for Q and
TQ ⊂ TQ? .
For any h ∈

(
L2(Y,LD)

)K , define ‖h‖2Q := minτ∈TQ{
∑K

k=1 ‖hk + f?k − f?τ(k)‖
2
2}. Denote

‖h‖22 := {
∑K

k=1 ‖hk‖22}. We may now state the theorem which is the cornerstone of our
main result.
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Theorem 6 Assume [H1]-[H4] and [HD]. Let K be a closed bounded subset of
(
L2(Y,LD)

)K
such that if h ∈ K, then

∫
hidLD = 0, i = 1, . . . ,K. Let V be a compact neighborhood of Q?

such that, for all Q ∈ V, H(Q, G(f?)) 6= 0, [H1]-[H3] holds for Q and TQ ⊂ TQ?. Then
there exists a positive constant c(K,V,F?) such that

∀h ∈ K, ∀Q ∈ V, ‖gQ,f?+h − gQ,f?‖2 ≥ c(K,V,F?)‖h‖Q? .

This theorem is proved in Section 8.3.

We are now ready to prove our main result on the penalized least squares estimator of
the emission densities. The following theorem gives an oracle inequality for the estimators
of the emission distributions provided the penalty is adequately chosen. It is proved in
Section 8.5.

Theorem 7 (Adaptive estimation) Assume [H1]-[H4], [HF] and [HD]. Assume also
that for all M , f?M ∈ FK . Let V be a compact neighborhood of Q? such that, for all Q ∈ V,
H(Q, G(f?)) 6= 0 and [H1]-[H3] holds for Q. Then, there exists a positive constant A?

(depending on V, f?, CF ,2 and CF ,∞) and positive constants N0 and ρ? (depending on CF ,2
and CF ,∞ (Scenario A) or on Q?, CF ,2 and CF ,∞ (Scenario B)) such that, if

pen(N,M) ≥ ρ?M logN

N

then for all x > 0, for all N ≥ N0, for any permutation τN ∈ SK , with probability larger
than 1− (e− 1)−1e−x − P

(
PτN Q̂PTτN /∈ V

)
, there exists τ ∈ TQ? such that

K∑
k=1

‖f?τ(k) − f̂τN (k)‖22 ≤ A?
[

inf
M

{
K∑
k=1

‖f?k − f?M,k‖22 + pen(N,M)

}
+ ‖Q? − PτN Q̂P>τN ‖

2
F+‖π? − PτN π̂‖

2
2+

x

N

]
.

Remark 8 As usual in HMM or mixture model, it is only possible to estimate the model up
to label switching of the hidden states, this is the meaning of the permutation τN .

Remark 9 An important consequence of the theorem is that a right choice of the penalty
leads to a rate minimax adaptive estimator up to a logN term, see Corollary 10 below.
For this purpose, one has to choose an estimator Q̂ of Q? which is, up to label switching,
consistent with controlled rate. One possible choice is a spectral estimator.

To apply Theorem 7 one has to choose an estimator Q̂ with controlled behavior, to be
able to evaluate the probability of the event {PτN Q̂PτN ∈ V} and the rate of convergence
of PτN Q̂PτN and PτN π̂. One possibility is to use the spectral estimator described in Section
5. To get the following result (proved in Section 8.6), we propose to use the spectral esti-
mator with, for each N , the dimension MN chosen such that η3(ΦMN

) = O
(
(logN)1/4

)
, see

Section 5 for a definition of η3.

10
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Corollary 10 With this choice of Q̂, under the assumptions of Theorem 7 , there exists a
sequence of permutations τN ∈ SK such that as N tends to infinity,

E

[
K∑
k=1

‖f?k − f̂τN (k)‖22

]
= O

(
inf
M ′

{
K∑
k=1

‖f?k − f?M ′,k‖22 + pen(N,M ′)

}
+

logN

N

)
.

Thus, choosing pen(N,M) = ρM logN/N for a large ρ leads to the minimax asymptotic
rate of convergence up to a power of logN . Indeed, standard results in approximation
theory (see DeVore and Lorentz (1993) for instance) show that one can upper bound the
approximation error ‖f?k − f?M,k‖2 by O(M−

s
D ) where s > 0 denotes a regularity parameter.

Then the trade-off is obtained for M
1
D ∼ (N/ logN)

1
2s+D , which leads to the quasi-optimal

rate (N/ logN)−
s

2s+D for the nonparametric estimation when the minimal smoothness of the
emission densities is s. Notice that the algorithm automatically selects the best M leading
to this rate.

To implement the estimator, it remains to choose a value for ρ in the penalty. The
calibration of this parameter is a classical issue and could be the subject of a full paper. In
practice one can use the slope heuristic as in Baudry et al. (2012).

5. Nonparametric spectral method

This section is devoted to a short description of the nonparametric spectral method for sake
of completeness: we describe the algorithm, and give the results we need to support the use
of spectral estimators to initialize our algorithm. A detailed study of the nonparametric
spectral method is given in De Castro et al. (2015).

The following procedure (see Algorithm 1) describes a tractable approach to estimate the
transition matrix in a way that can be used for the penalized least squares estimator of the
emission densities, and also for the estimation of the projections of the emission densities
that may be used to initialize the least squares algorithm. The procedure is based on
recent developments in parametric estimation of HMMs. For each fixed M , we estimate the
projection of the emission distributions on the basis ΦM using the spectral method proposed
in Anandkumar et al. (2012). As the authors of the latter paper explain, this allows further
to estimate the transition matrix (we use a modified version of their estimator), and we set
the estimator of the stationary distribution as the stationary distribution of the estimator
of the transition matrix. The computation of those estimators is particularly simple: it
is based on one SVD, some matrix inversions and one diagonalization. One can prove,
with overwhelming probability, all matrix inversions and the diagonalization can be done
rightfully, see De Castro et al. (2015). In the following, when A is a (p × q) matrix with
p ≥ q, A> denotes the transpose matrix of A, A(k, l) its (k, l)th entry, A(. , l) its lth column
and A(k, . ) its kth line. When v is a vector of size p, we denote by Diag[v] the diagonal
matrix with diagonal entries vi and, by abuse of notation, Diag[v] = Diag[v>].

We now state a result which allows to derive the asymptotic properties of the spectral
estimators. Let us define:

η23(ΦM ) := sup
y,y′∈Y3

M∑
a,b,c=1

(ϕa(y1)ϕb(y2)ϕc(y3)− ϕa(y′1)ϕb(y′2)ϕc(y′3))2.

11



De Castro, Gassiat and Lacour

Algorithm 1: Nonparametric spectral estimation of HMMs
Data: An observed chain (Y1, . . . , YN ) and a number of hidden states K.
Result: Spectral estimators π̂, Q̂ and (f̂M,k)k∈X .

[Step 1] Consider the following empirical estimators: For any a, b, c in {1, . . . ,M},
L̂M (a) := 1

N

∑N
s=1 ϕa(Y

(s)
1 ), M̂M (a, b, c) := 1

N

∑N
s=1 ϕa(Y

(s)
1 )ϕb(Y

(s)
2 )ϕc(Y

(s)
3 ),

N̂M (a, b) := 1
N

∑N
s=1 ϕa(Y

(s)
1 )ϕb(Y

(s)
2 ), P̂M (a, c) := 1

N

∑N
s=1 ϕa(Y

(s)
1 )ϕc(Y

(s)
3 ).

[Step 2] Let Û be the M ×K matrix of orthonormal right singular vectors of P̂M

corresponding to its top K singular values.

[Step 3] Form the matrices for all b ∈ {1, . . . ,M}, B̂(b) := (Û>P̂MÛ)−1Û>M̂M (. , b, . )Û.

[Step 4] Set Θ a (K ×K) random unitary matrix uniformly drawn and form the matrices
for all k ∈ {1, . . . ,K}, Ĉ(k) :=

∑M
b=1(ÛΘ)(b, k)B̂(b).

[Step 5] Compute R̂ a (K ×K) unit Euclidean norm columns matrix that diagonalizes
the matrix Ĉ(1): R̂−1Ĉ(1)R̂ = Diag[(Λ̂(1, 1), . . . , Λ̂(1,K))].

[Step 6] Set for all k, k′ ∈ X , Λ̂(k, k′) := (R̂−1Ĉ(k)R̂)(k′, k′) and ÔM := ÛΘΛ̂.

[Step 7] Consider the emission laws estimator f̃ := (f̃M,k)k∈X defined by for all k ∈ X ,
f̂M,k :=

∑M
m=1 ÔM (m, k)ϕm.

[Step 8] Set π̃ :=
(
Û>ÔM

)−1
Û>L̂M .

[Step 9] Consider the transition matrix estimator:

Q̂ := ΠTM

((
Û>ÔMDiag[π̃]

)−1
Û>N̂MÛ

(
Ô>MÛ

)−1)
,

where ΠTM denotes the projection onto the convex set of transition matrices,
and define π̂ as the stationary distribution of Q̂.

Note that in the examples (Spline), (Trig.) and (Wav.) we have:

η3(ΦM ) ≤ CηM
3
2

where Cη > 0 is a constant. The following theorem is proved in De Castro et al. (2015).
Its statement concerns (Scenario B) (same chain sampling) and the interested reader may
consult De Castro et al. (2015) for its statement under (Scenario A).

Theorem 11 (Spectral estimators) Assume that [H1]-[H4] hold. Then, there exist pos-
itive constant numbers MF?, x(Q?), C(Q?,F?) and N(Q?,F?) such that the following holds.
For any x ≥ x(Q?), for any δ ∈ (0, 1), for any M ≥ MF?, there exists a permuta-
tion τM ∈ SK such that the spectral method estimators f̂M,k, π̂ and Q̂ satisfy: For any

12
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N ≥ N(Q?,F?)η3(ΦM )2x(− log δ)/δ2, with probability greater than 1− 2δ − 4e−x,

‖f?M,k − f̂M,τM (k)‖2 ≤ C(Q?,F?)

√
− log δ

δ

η3(ΦM )√
N

√
x ,

‖π? − PτM π̂‖2 ≤ C(Q
?,F?)

√
− log δ

δ

η3(ΦM )√
N

√
x ,

‖Q? − PτM Q̂P>τM ‖ ≤ C(Q
?,F?)

√
− log δ

δ

η3(ΦM )√
N

√
x .

6. Numerical experiments

6.1 General description

In this section we present the numerical performances of our method. We recall that the
experimenter knows nothing about the underlying hidden Markov model but the number
of hidden states K. In this set of experiments, we consider the regular histogram basis or
the trigonometric basis for estimating emission laws given by beta laws from a single chain
observation of length N = 5e4.

Our procedure is based on the computation of the empirical least squares estimators
ĝM defined as minimizers of the empirical contrast γN on the space S(Q̂,M) where Q̂ is
an estimator of the transition matrix (for instance the spectral estimation of the transition
matrix). Since the function γN is non-convex, we use a second order approach estimating
a positive definite matrix (using a covariance matrix) within an iterative procedure called
CMAES for Covariance Matrix Adaptation Evolution Strategy, see Hansen (2006). Using
this latter algorithm, we search for the minimum of γN with starting point the spectral
estimation of the emission laws.

Then, we estimate the size of the model thanks to

M̂(ρ) ∈ arg min
M=1,...,Mmax

{
γN (ĝM ) + ρ

M logN

N

}
, (3)

where the penalty term ρ has to be tuned and the maximum size of the model Mmax can be
set by the experimenter in a data-driven procedure.

Indeed, we shall apply the slope heuristic to adjust the penalty term and to chooseMmax.
As presented in Baudry et al. (2012), the minimum contrast function M 7→ γN (ĝM ) should
have a linear behavior for large values of M . The experimenter has to consider Mmax large
enough in order to observe this linear stabilization, as depicted in Figure 2. The slope of the
linear interpolation is then (ρ̂/2) logN/N (recall that the sample size N is fixed here) where
ρ̂ is the slope heuristic choice on how ρ should be tuned. Another procedure (theoretically
equivalent) consists in plotting the function ρ 7→ M̂(ρ) which is a non-increasing piecewise
constant function. The estimated ρ̂ is such that the largest drop (called “dimension jump”)
of this function occurs at point ρ̂/2. We illustrate this procedure in Figure 3 where one can
clearly point the jump and deduce the size M̂ .

To summarize, our procedure reads as follows.

1. For all M ≤ Mmax, compute the spectral estimations (Q̂, π̂) of the transition matrix
and its stationary distribution and the spectral estimation f̃ of the emission laws. This
is straightforward using the procedure described by [Step1-9] in Section 5.

13
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2. For all M ≤ Mmax, compute a minimum ĝM of the empirical contrast function γN
using “Covariance Matrix Adaptation Evolution Strategy”, see Hansen (2006). Use
the estimation f̃ of the spectral method as a starting point of CMAES.

3. Tune the penalty term using the slope heuristic procedure and select M̂ .

4. Return the emission laws of the solution of point (2) for M = M̂ .

Note that the size M of the projection space for the spectral estimator has been set as the
one chosen by the slope heuristic for the empirical least squares estimators.

All the codes of the numerical experiments are available at https://mycore.core-cloud.
net/public.php?service=files&t=44459ccb178a3240cfb8712f27a28d75. We shall indi-
cate that the slope heuristic has been done using CAPUSHE, the Matlab graphical user
interface presented in Baudry et al. (2012).

6.2 Complexity

A crucial step of our method lies in computing the empirical least squares estimators ĝM .
One may struggle to compute ĝM since the function γN is non-convex. It follows that an
acceptable procedure must start from a good approximation of ĝM . This is done by the spec-
tral method. Observe that the key leitmotiv throughout this paper is a two steps estimation
procedure that starts by the spectral estimator. This latter has rate of convergence of the
order of N−s/(2s+3) and seems to be a good candidate to initialize an iterative scheme that
will converge towards ĝM . It follows that the main consuming operations in our algorithm
are the following steps.

• The computation of the tensor M̂M of the empirical law of three consecutive observa-
tions where we use three loops of size M and one loop of size N so the complexity is
O(NM3),

• The singular value decomposition of P̂M in the spectral method (complexity: O(M3)),

• The computation of the minimum of the empirical contrast function: cost of one
evaluation of the empirical contrast function O(K3M3) = O(M3) times the number
f(M,K) of evaluations while minimizing the empirical contrast. Recall that we start
from the spectral estimator solution to get the minimum so a constant number of
evaluation is enough in practice, say stopeval =1e4 using CMAES.

We have to compute the minimal contrast value for all models of size M = 1, . . . ,Mmax

where Mmax has to be chosen so that one can apply the slope heuristic. We deduce that the
overall complexity of our algorithm is O

(
(f(Mmax,K)K3 ∨N)M4

max

)
where f(Mmax,K) is

the number of evaluations of γN while minimizing the empirical contrast. Since we use the
spectral estimator as a starting point of the minimization of the empirical contrast, we believe
that f(Mmax,K) can be considered as constant, say 1e4. Note that the upper bound Mmax

has to be large enough in order to observe a linear stabilization of M 7→ ĝM , see Baudry
et al. (2012) for instance. Moreover, recall that the trade-off between the approximation bias
and the penalty term (accounting for the standard error of the empirical law) is obtained
for M ∼ (N/ logN)

D
2s+D where s > 0 denotes the minimal smoothness parameter of the
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Figure 1: Variance comparison of the spectral and empirical least squares estimators. The
upper curve (in red) present the performance (median value of the variance over 40
iterations) of the spectral method while the lower curve (in blue) the performance
of the empirical least squares estimator. For each curve, we have plotted a shaded
box plot representing the first and third quartiles.

emission laws. In order to properly apply the slope heuristic, it is enough to consider
models with this order of magnitude, so that Mmax = O((N/ logN)

D
2s+D ). It follows that

the overall complexity of our procedure can be expressed in terms of the minimal smoothness
parameter s of the emission laws as

Complexity = O
(
N1+ 4D

2s+D
)
,

as soon as K = O(N1/3) which is a reasonable assumption. Nevertheless, this theoretical
bound is unknown for the practitioner since it involves the unknown minimal smoothness
parameter s > 0. For chains of length O(1e5), we have witnessed that one can afford a
maximal model size Mmax ≤ 50 and this allows to consider problems where typical sizes of
M ranges between 1 and 50. All numerical experiments of this paper fall in this frame.

6.3 Comparison of the variances

The quadratic loss can be expressed as a variance term and a bias term as follows

∀1 ≤ k ≤ K, ∀M ≥ 0, ‖f?k − f̂k‖22 = ‖f̂k − f?M,k‖22 + ‖f?k − f?M,k‖22

where f?M,k is the orthogonal projection of f?k on PM and f̂k is any estimator such that f̂k
belongs to PM . Note that the bias term ‖f?k − f?M,k‖2 does not depend on the estimator f̂k.
Hence, the variance term

VarianceM (f̂) := min
τ∈SK

max
1≤k≤K

‖f̂k − f?M,τ(k)‖
2
2 ,
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Figure 2: Slope heuristic to choose M : the experimenter may observe a linear stabilization
of the empirical contrast γN for estimating beta emission laws of parameters (2, 5)
and (4, 2). We have K = 2 hidden states and N = 5e4 samples along a single
chain. On the left panel we have used the trigonometric basis as approximation
space, the stabilization occurs on the points M = 30 to M = 50 and the interpo-
lation of the slope leads to M̂ = 23. On the right panel we have considered the
trigonometric basis, the stabilization occurs on the pointsM = 20 toM = 50 and
it leads to M̂ = 21.

accounts for the performances of the estimator f̂k.

As depicted in Figure 1, we have compared, for each M , the variance terms obtained
by the spectral method and the empirical least squares method over 40 iterations on chains
of length N = 5e4. We have considered K = 2 hidden states whose emission variables
are distributed with respect to beta laws of parameters (2, 5) and (4, 2). This numerical
experiment consolidates the idea that the least squares method significantly improves upon
the spectral method. Indeed, even for small values of M , one may see in Figure 1 that the
variance term is divided by a constant factor.

6.4 Histogram basis and trigonometric basis as approximation spaces

An illustrative example of our method can be given using the histogram basis (regular basis
with M bins) or the trigonometric basis. In the following experiments, we have K = 2
hidden states and emission laws given by beta laws of parameters (2, 5) and (4, 2). Recall
we observe a single chain of length N = 5e4.

We begin with the computation of the minimum contrast function M 7→ γ(ĝM ), as
depicted in Figure 2. Observe that the slope of this function unquestionably stabilizes at a
critical value refer to as ρ̂/2 in both the histogram and the trigonometric case. This leads
to an adaptive choice of M̂ = 23 for the histogram basis and M̂ = 21 for the trigonometric
basis, see Figures 2 and 3.

Furthermore, one can see on Figure 4 that our method also qualitatively improves upon
the spectral method in both the histogram and the trigonometric case.
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Figure 3: Slope heuristic to choose M : the experimenter observes the largest drop of the
function ρ 7→ M̂(ρ) at 1.1 so that ρ̂ = 2.2 and M̂ = 23. We have K = 2 hidden
states and a single chain of length N = 5e4. We have used the histogram basis as
approximation space.

6.5 Three states

Our method can be performed for K > 2 as illustrated in Figure 5. In this example K = 3,
the sample size isN = 5e4 and the emission laws are three beta distributions with parameters
(1.5, 5), (6, 6) and (7, 2). Note that the number of hidden states K does not really impact
on the complexity of the algorithm as we have seen in Section 6.2.

In this example, we were able to observe a linear stabilization of the minimum contrast
function. The slope heuristic procedure led to an adaptive choice M̂ = 25.

7. Discussion

We have proposed a penalized least squares method to estimate the emission densities of
the hidden chain when the transition matrix of the hidden chain is full rank and the emis-
sion probability distributions are linearly independent. The algorithm may be initialized
using spectral estimators. The obtained estimators are adaptive rate optimal up to a log
factor, where adaptivity is upon the family of emission densities. The results hold under an
assumption on the parameter that holds generically. We have proved that this assumption
is always verified when there are two hidden states. We did not find a general argument to
prove that the assumption always holds when K > 2, and a natural question is to ask if,
when the number of hidden states is K > 2, this assumption is also always verified.
It is proved in Alexandrovich and Holzmann (2014) that identifiability holds as soon as
f?1 , . . . , f

?
K are distinct densities. The identifiability is obtained in that case using the

marginal distribution of dimension 2K+1, that is the marginal distribution of Y1, . . . , Y2K+1.
Thus, to get consistent estimators, one needs to use the joint distribution of 2K + 1 con-
secutive observations. Though linear independence is generically satisfied, one may wonder
what happens when emission densities are not far to be linearly dependent. Simulations in
Lehéricy (2015a) show that estimation becomes harder. In those practical situations where
estimation becomes difficult, it is observed that the Gram matrix of f?1 , . . . , f?K has an eigen-
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Figure 4: Estimators of the emissions densities (beta laws of parameters (2, 5) and (4, 2))
from the observation of a single chain of length N = 5e4. On the top panels,
we have used the histogram basis (M̂ = 23). On the bottom panels, we have
considered the trigonometric basis (M̂ = 21).

value close to 0. On the theoretical side, the proof of Theorem 6 uses the linear independence
of the emission densities by using that Gram matrices are positive. An interesting problem
would be to investigate if it is possible to estimate the emission densities with the classi-
cal adaptive rate for density estimation when the emission densities are linearly dependent
(though all distinct). It is possible using model selection to get the classical rate for the
estimation of the density of 2K + 1 consecutive observations, but it does not seem obvious
to see whether this rate can be transferred to the estimators of the emission densities. This
is the subject of further work, see Lehéricy (2015b).
Another question arising from our work is whether it is possible to adapt to different smooth-
nesses of the emission densities.
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Figure 5: Estimation of three densities given by beta laws of parameters (1.5, 5), (6, 6) and
(7, 2) from a single chain of length N = 5e4. We have used the histogram basis
and we have found M̂ = 25 using the slope heuristic.

8. Proofs

8.1 Proof of lemma 3

In Hsu et al. (2012) it is proved that when [H1], [H2], [H3] hold and when the rank of
the matrix OM := (〈ϕm, f?k )1≤m≤M,1≤k≤K is K, the knowledge of the tensor MM given by
MM (a, b, c) = E(ϕa(Y1)ϕb(Y2)ϕc(Y3)) for all a, b, c in {1, . . . ,M} allows to recover OM and
Q up to relabelling of the hidden states. Thus, when [H1], [H2], [H3] and [H4] hold, the
knowledge of gQ,f? is equivalent to the knowledge of the sequence (MM )M , which allows to
recover Q and the sequence (OM )M , up to relabelling of the hidden states, which allows
to recover f? = (f?1 , . . . , f

?
K) up to relabelling of the hidden states, thanks to (1). See also

Gassiat et al. (2015).

8.2 Proof of Theorem 4

Throughout the proof N is fixed, and we write γ (instead of γN ) for the contrast function.

8.2.1 Beginning of the proof: algebraic manipulations

Let us fix some M and some permutation τ . Using the definitions of ĝM and M̂ , we can
write

γ(ĝM̂ ) + pen(N, M̂) ≤ γ(ĝM ) + pen(N,M) ≤ γ(g
Q̂,f?

M,τ−1 ) + pen(N,M) ,
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where f?M,τ−1 = (f?M,τ−1(1), . . . , f
?
M,τ−1(K)) (here we use that f?M,τ−1 ∈ FK). But we can

compute for all functions t1, t2,

γ(t1)− γ(t2) = ‖t1 − g?‖22−‖t2 − g?‖22−2ν(t1 − t2) ,

where ν is the centered empirical process

ν(t) =
1

N

N∑
s=1

t(Y
(s)
1 , Y

(s)
2 , Y

(s)
3 )−

∫
tg? .

This gives

‖ĝM̂ − g
?‖22≤ ‖g

Q̂,f?
M,τ−1 − g?‖22+2ν(ĝM̂ − g

Q̂,f?
M,τ−1 ) + pen(N,M)− pen(N, M̂) (4)

Now, we denote by BM = ‖gQ?,f?M − g?‖22 a bias term and we notice that gQ̂,f
?
M,τ−1 =

gPτ Q̂P>τ ,f?M . Then

‖gQ̂,f
?
M,τ−1 − g?‖22 ≤ 2‖gQ̂,f

?
M,τ−1 − gQ?,f?M ‖22+2‖gQ?,f?M − g?‖22

≤ 2‖gPτ Q̂P>τ ,f?M − gQ?,f?M ‖22+2BM .

But, using Schwarz inequality, ‖gQ1,f?M − gQ2,f?M ‖22 can be bounded by

M∑
m1,m2,m3=1

∣∣∣ K∑
k1,k2,k3=1

(π1(k1)Q1(k1, k2)Q1(k2, k3)− π2(k1)Q2(k1, k2)Q2(k2, k3))

〈f?k1 , ϕm1〉〈f?k2 , ϕm2〉〈f?k3 , ϕm3〉
∣∣∣2

≤

 K∑
k1,k2,k3=1

(π1(k1)Q1(k1, k2)Q1(k2, k3)− π2(k1)Q2(k1, k2)Q2(k2, k3))
2


M∑

m1,m2,m3=1

K∑
k1,k2,k3=1

∣∣∣〈f?k1 , ϕm1〉〈f?k2 , ϕm2〉〈f?k3 , ϕm3〉
∣∣∣2

≤ 3K3C6
F ,2
(
‖π1 − π2‖22+2‖Q1 −Q2‖2F

)
(5)

so that

‖gQ̂,f
?
M,τ−1 − g?‖22 ≤ 6K3C6

F ,2

(
‖Pτ π̂ − π?‖22+2‖Pτ Q̂P>τ −Q?‖2F

)
+ 2BM .

Next we set SM = ∪QS(Q,M) and

ZM = sup
t∈SM

[
|ν(t− g?)|
‖t− g?‖22+x2M

]
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for xM to be determined later. Then

ν(ĝM̂ − g
Q̂,f?

M,τ−1 ) = ν(ĝM̂ − g
?) + ν(g? − gQ̂,f

?
M,τ−1 )

≤ ZM̂ (‖ĝM̂ − g
?‖22+x2M̂ ) + ZM (‖gQ̂,f

?
M,τ−1 − g?‖22+x2M ).

Denoting by RM̂ = ‖ĝM̂ − g
?‖22 the squared risk, (4) becomes

RM̂ ≤ 6K3C6
F ,2

(
‖Pτ π̂ − π?‖22+2‖Pτ Q̂P>τ −Q?‖2F

)
+ 2BM + 2ZM̂ (RM̂ + x2

M̂
)

+2ZM

(
6K3C6

F ,2

(
‖Pτ π̂ − π?‖22+2‖Pτ Q̂P>τ −Q?‖2F

)
+ 2BM + x2M

)
+2pen(N,M)− pen(N, M̂)− pen(N,M) ,

RM̂ (1− 2ZM̂ ) ≤ (2 + 4ZM )BM + 2pen(N,M)

+(1 + 2ZM )6K3C6
F ,2

(
‖Pτ π̂ − π?‖22+2‖Pτ Q̂P>τ −Q?‖2F

)
+2 sup

M ′
(2ZM ′x

2
M ′ − pen(N,M ′)) .

To conclude it is then sufficient to establish that, with probability larger than 1−(e−1)−1e−x,
it holds

sup
M ′

ZM ′ ≤
1

4
and sup

M ′
(2ZM ′x

2
M ′ − pen(N,M ′)) ≤ A x

N
,

with A a constant depending only on Q? and f? and not on N,M, x. Thus we will have, for
any M , with probability larger than 1− (e− 1)−1e−x,

1

2
RM̂ ≤ 3BM + 2pen(N,M) + 2A

x

N

+9C6
F ,2

(
‖Pτ π̂ − π?‖22+2‖Pτ Q̂P>τ −Q?‖2F

)
which is the announced result.

The heart of the proof is then the study of ZM . We introduce uM a projection of g? on
SM and we split ZM into two terms: ZM ≤ 4ZM,1 + ZM,2 with

ZM,1 = sup
t∈SM

[
|ν(t− uM )|

‖t− uM‖22+4x2M

]
ZM,2 =

|ν(uM − g?)|
‖uM − g?‖22+x2M

Indeed uM verifies: for all t ∈ SM ,

‖uM − g?‖2≤ ‖t− g?‖2 and ‖uM − t‖2≤ 2‖t− g?‖2 .

8.2.2 Deviation inequality for ZM,2

Bernstein’s inequality (24) for HMMs (see Appendix A) gives, with probability larger than
1− e−z:

|ν(uM − g?)| ≤ 2

√
2c?‖uM − g?‖22‖g?‖∞

z

N
+ 2
√

2c?‖uM − g?‖∞
z

N
.

21



De Castro, Gassiat and Lacour

Then, using a2 + b2 ≥ 2ab, with probability larger than 1− e−z:
|ν(uM − g?)|
‖uM − g?‖22+x2M

≤ 2
√

2c?‖g?‖∞
1

2xM

√
z

N
+ 2
√

2c?
‖uM‖∞+‖g?‖∞

x2M

z

N
.

But any function t in SM can be written

t =
K∑

k1,k2,k3=1

π(k1)Q(k1, k2)Q(k2, k3)fk1 ⊗ fk2 ⊗ fk3 ,

with fk ∈ F for k = 1, . . . ,K, so that supt∈SM ‖t‖∞≤ C3
F ,∞. Then, with probability larger

than 1− e−zM−z

ZM,2 ≤
√

2c?‖g?‖∞

√
zM + z

x2MN
+ 4
√

2c?C3
F ,∞

zM + z

x2MN
. (6)

8.2.3 Deviation inequality for ZM,1

We shall first study the term supt∈Bσ |ν(t− uM )| where

Bσ = {t ∈ SM , ‖t− uM‖2≤ σ}.

Remark that, for all t ∈ S(Q,M),

‖t‖22≤
K∑

k1,k2,k3=1

π2(k1)Q
2(k1, k2)Q

2(k2, k3)
K∑

k1,k2,k3=1

C2
F ,2C

2
F ,2C

2
F ,2 ≤ K3C6

F ,2.

Then, if t ∈ Bσ, ‖t− uM‖2≤ σ ∧ 2K3/2C3
F ,2. Notice also that for all t ∈ SM , ‖t− uM‖∞≤

2C3
F ,∞. Now Proposition 13 in Appendix A (applied to a countable dense set in Bσ) gives

that for any measurable set A such that P(A) > 0,

EA( sup
t∈Bσ

|ν(t− uM )|) ≤ C?
[
E

N
+ σ

√
1

N
log

(
1

P(A)

)
+

2C3
F ,∞
N

log

(
1

P(A)

)]
,

and
E =

√
N

∫ σ

0

√
H(u) ∧Ndu+ (2C3

F ,∞ + 2K3/2C3
F ,2)H(σ) .

Here, for any integrable random variable Z, EA[Z] denotes E[Z1A]/P(A).
We shall compute E later and find σM and ϕ such that

∀σ ≥ σM E ≤ (1 + 2C3
F ,∞ + 2K3/2C3

F ,2)ϕ(σ)
√
N. (7)

(see Section 8.2.4). We then use Lemma 4.23 in Massart (2007) to write (for xM ≥ σM )

EA
(

sup
t∈SM

[
|ν(t− uM )|

‖t− uM‖22+4x2M

])
≤ C?

x2M

[
C
ϕ(2xM )√

N
+ 2xM

√
1

N
log

(
1

P(A)

)
+

2C3
F ,∞
N

log

(
1

P(A)

)]
Finally, Lemma 2.4 in Massart (2007) ensures that, with probability 1− e−zM−z:

ZM,1 = sup
t∈SM

[
|ν(t− uM )|

‖t− uM‖22+4x2M

]
≤ C?

[
C
ϕ(2xM )

x2M
√
N

+ 2

√
zM + z

x2MN
+ 2C3

F ,∞
zM + z

x2MN

]
. (8)
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8.2.4 Computation of the entropy and function ϕ

The definition of H given in Proposition 13 shows that H(δ) is bounded by the classical
bracketing entropy for L2 distance at point δ/C3

F ,∞ (where C3
F ,∞ bounds the sup norm of g?):

H(δ) ≤ H(δ/C3
F ,∞, SM ,L

2). We denote by N(u, S,L2) = eH(u,S,L2) the minimal number of
brackets of radius u to cover S. Recall that when t1 and t2 are real valued functions, the
bracket [t1, t2] is the set of real valued functions t such that t1(·) ≤ t(·) ≤ t2(·), and the
radius of the bracket is ‖t2− t1‖2. Now, observe that SM = ∪QS(Q,M) is a set of mixtures
of parametric functions. Denoting k = (k1, k2, k3), SM is included in ∑

k∈{1,...,K}3
µ(k)fk1 ⊗ fk2 ⊗ fk3 , µ ≥ 0,

∑
k∈{1,...,K}3

µ(k) = 1,

fki ∈ F ∩ Span(ϕ1, . . . , ϕM ), i = 1, 2, 3} .

Set
A = {f1 ⊗ f2 ⊗ f3, fi ∈ F ∩ Span(ϕ1, . . . , ϕM ), i = 1, 2, 3}.

Then following the proof in Appendix A of Bontemps and Toussile (2013), we can prove

N(ε, SM ,L
2) ≤

(
C1

ε

)K3−1 [
N
(ε

3
,A,L2

)]K3

. (9)

where C1 depends onK and CF ,2. Denote B = F∩Span(ϕ1, . . . , ϕM ). Let a = (am)1≤m≤M ∈
RM and b = (bm)1≤m≤M ∈ RM such that am < bm, m = 1, . . . ,M . For each m = 1, . . . ,M
and y ∈ Y, let

um(y) =

{
am if ϕm(y) ≥ 0

bm otherwise

vm(y) = am + bm − um(y).

Then, if (cm)1≤m≤M ∈ RM is such that for all m = 1, . . . ,M , am ≤ cm ≤ bm, then

U1
a,b(y) :=

M∑
m=1

um(y)ϕm(y) ≤
M∑
m=1

cmϕm(y) ≤
M∑
m=1

vm(y)ϕm(y) = U2
a,b(y).

Moreover,

‖U2
a,b − U1

a,b‖22 = ‖
M∑
m=1

|bm − am|.|ϕm|‖22

≤M‖b− a‖22
using Cauchy-Schwarz inequality. Thus, one may cover B with brackets of form [U1

a,b, U
2
a,b].

Also, for i = 1, 2,

‖U ia,b‖22 ≤ ‖
M∑

mi=1

|bm + am|.|ϕm|‖22

≤ 2M(‖a‖22 + ‖b‖22).
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If now for some ai, bi in RM , fi ∈ [U1
ai,bi

, U2
ai,bi

], i = 1, 2, 3, then

f1 ⊗ f2 ⊗ f3 ∈ [V,W ]

with
V = min{U i1

a1,b1
U i2
a2,b2

U i3
a3,b3

, i1, i2, i3 ∈ {1, 2}}

and
W = max{U i1

a1,b1
U i2
a2,b2

U i3
a3,b3

, i1, i2, i3 ∈ {1, 2}},

pointwise. Moreover, one can see that

|W − V | ≤
∣∣∣U2

a1,b1 − U
1
a1,b1

∣∣∣ max
j1,j2∈{1,2}

∣∣∣U j1a2,b2∣∣∣ . ∣∣∣U j2a3,b3∣∣∣
+
∣∣∣U2

a2,b2 − U
1
a2,b2

∣∣∣ max
j1,j2∈{1,2}

∣∣∣U j1a1,b1∣∣∣ . ∣∣∣U j2a3,b3∣∣∣
+
∣∣∣U2

a3,b3 − U
1
a3,b3

∣∣∣ max
j1,j2∈{1,2}

∣∣∣U j1a1,b1∣∣∣ . ∣∣∣U j2a2,b2∣∣∣
≤

3∑
i=1

∣∣∣U2
ai,bi − U

1
ai,bi

∣∣∣∏
j 6=i

(∣∣∣U1
aj ,bj

∣∣∣+
∣∣∣U2

aj ,bj

∣∣∣)
so that

‖W − V ‖22 ≤ 12

3∑
i=1

∥∥∥U2
ai,bi − U

1
ai,bi

∥∥∥2
2

∏
j 6=i

(∥∥∥U1
aj ,bj

∥∥∥2
2

+
∥∥∥U2

aj ,bj

∥∥∥2
2

)

≤ 48M3
3∑
i=1

‖bi − ai‖22
∏
j 6=i

(
‖aj‖22 + ‖bj‖22

)
≤ 192M3C4

F ,2

3∑
i=1

‖bi − ai‖22.

Thus one may cover A by covering the ball of radius CF ,2 in RM with hypercubes [a, b],
for which ‖a‖2, ‖b‖2 are less than CF ,2. To get a bracket with radius u, it is enough that
‖bi − ai‖22 ≤ u2/(576M3C4

F ,2), i = 1, 2, 3. We finally obtain that

N
(
u,A,L2

)
≤

(
48
√

3M3/2C3
F ,2

u

)3M

. (10)

We deduce from (9) and (10) that

N(u, SM ,L
2) ≤

(
C1

u

)K3−1
(

48
√

3M3/2C3
F ,2

u

)3MK3

,

and then

H(u, SM ,L
2) ≤ (K3 − 1) log(

C1

u
) + 3MK3 log

(
C2M

3/2

u

)
,
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with C2 depending on K and CF ,2. To conclude we use that
∫ σ
0

√
log
(
1
x

)
dx ≤ σ(

√
π +√

log
(
1
σ

)
), see Baudry et al. (2012). Finally we can write for σ ≤M3/2:

∫ σ

0

√
H(u)du ≤ C3

√
Mσ

1 +

√
log

(
M3/2

σ

) ,

where C3 depends on K, CF ,2 and CF ,∞. Set

ϕ(x) = C3

√
Mx

1 +

√
log

(
M3/2

x

)
The function ϕ is increasing on ]0,M3/2], and ϕ(x)/x is decreasing. Moreover ϕ(σ) ≥∫ σ
0

√
H(u)du and ϕ2(σ) ≥ σ2H(σ).

8.2.5 End of the proof, choice of parameters

As soon as N ≥ C2
3/M

2 := N0, we may define σM as the solution of equation ϕ(x) =
√
Nx2.

Then, for all σ ≥ σM ,

H(σ) ≤ ϕ(σ)2

σ2
≤ ϕ(σ)

σ
σ
√
N.

This yields, for all σ ≥ σM ,

E ≤ (1 + 2C3
F ,∞ + 2K3/2C3

F ,2)ϕ(σ)
√
N,

which was required in (7).
Moreover ϕ(2xM )

xM
√
N
≤ 2σM as soon as xM ≥ σM . Combining (8) and (6), we obtain, with

probability 1− e−zM−z:

ZM ≤ C??
[
σM
xM

+

√
zM + z

x2MN
+
zM + z

x2MN

]
,

where C?? depends on K, CF ,2, CF ,∞, Q?. Now let us choose xM = θ−1
√
σ2M + zM+z

N with
θ such that 2θ + θ2 ≤ (C??)−1/4. This choice entails: xM ≥ θ−1σM and x2M ≥ θ−2 zM+z

N .
Then with probability 1− e−zM−z:

ZM ≤ C??(θ + θ + θ2).

We now choose zM = M which implies
∑

M≥1 e
−zM = (e − 1)−1. Then, with probability

1− (e− 1)−1e−z,

∀M ZM ≤ C??(2θ + θ2) ≤ 1

4
,
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and for all M ,

ZMx
2
M ≤ C??

[
σMxM + xM

√
zM + z

N
+
zM + z

N

]

≤ C??θ−1

(
σM +

√
zM + z

N

)2

+ C??
zM + z

N
.

Then, with probability 1− (e− 1)−1e−z, for all M ,

ZMx
2
M − C??

(
2θ−1σ2M + (2θ−1 + 1)

M

N

)
≤ C??(2θ−1 + 1)

z

N
.

Then the result is proved as soon as

pen(N,M) ≥ 2C??
(

2θ−1σ2M + (2θ−1 + 1)
M

N

)
. (11)

It remains to get an upper bound for σM . Recall that σM is defined as the solution of

equation C3

√
Mx(1 +

√
log
(
M3

x

)
) =
√
Nx2. Then we obtain that for some C4

σM ≤ C4

√
M

N
(1 +

√
log(N)) ,

and (11) holds as soon as

pen(N,M) ≥ ρ?M log(N)

N

for some constant ρ? depending on CF ,2 and CF ,∞ (Scenario A) or on Q?, CF ,2 and CF ,∞
(Scenario B).

8.3 Proof of Theorem 6

For any h ∈ KK and Q ∈ V, denote N(Q,h) = ‖gQ,f?+h− gQ,f?‖22. What we want to prove
is that

c := c(K,V,F?)2 := inf
Q∈V,h∈KK ,‖h‖2 6=0

N(Q,h)

‖h‖22
> 0.

One can compute:

N(Q,h) =
K∑

k1,k2,k3,k′1,k
′
2,k
′
3=1

π(k1)Q(k1, k2)Q(k2, k3)π(k′1)Q(k′1, k
′
2)Q(k′2, k

′
3)(

3∏
i=1

〈f?ki + hki , f
?
k′i

+ hk′i〉+
3∏
i=1

〈f?ki , f
?
k′i
〉 −

3∏
i=1

〈f?ki + hki , f
?
k′i
〉 −

3∏
i=1

〈f?ki , f
?
k′i

+ hk′i〉

)
.

Let u = (u1, . . . , uK) be such that ui, i = 1, . . . ,K, is the orthogonal projection of hi on the
subspace of L2(Y,LD) spanned by f?1 . . . , f?K . Then

N(Q,h) = N(Q,u) +M(Q,u,h− u) (12)
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where, for any a = (a1, . . . , aK) ∈ L2(Y,LD)K ,

M(Q,u,a) =

K∑
k1,k2,k3,k′1,k

′
2,k
′
3=1

π(k1)Q(k1, k2)Q(k2, k3)π(k′1)Q(k′1, k
′
2)Q(k′2, k

′
3) 3∏

i=1

〈aki , ak′i〉+
3∑
i=1

〈aki , ak′i〉
∏
j 6=i
〈f?kj + ukj , f

?
k′j

+ uk′j 〉+
3∑
i=1

〈f?ki + uki , f
?
k′i

+ uk′i〉
∏
j 6=i
〈akj , ak′j 〉

 .

Let A = Diag[π] with π the stationary distribution of Q. ThenM(Q,u,a) may be rewritten
as:

M(Q,u,a) =
∑K

i,j=1 〈(QTAa)i, (Q
TAa)j〉〈ai, aj〉〈(Qa)i, (Qa)j〉

+〈(QTAa)i, (Q
TAa)j〉〈(f? + ui), (f

? + u)j〉〈(Q(f? + u))i, (Q(f? + u))j〉
+〈(QTA(f? + u))i, (Q

TA(f? + u))j〉〈ai, aj〉〈(Q(f? + u))i, (Q(f? + u))j〉
+〈(QTA(f? + u))i, (Q

TA(f? + u))j〉〈(f? + u)i, (f
? + u)j〉〈(Qa)i, (Qa)j〉

+〈(QTA(f? + u))i, (Q
TA(f? + u))j〉〈ai, aj〉〈(Qa)i, (Qa)j〉

+〈(QTAa)i, (Q
TAa)j〉〈(f? + u)i, (f

? + u)j〉〈(Qa)i, (Qa)j〉
+〈(QTAa)i, (Q

TAa)j〉〈ai, aj〉〈(Q(f? + u))i, (Q(f? + u))j〉.

All terms in this sum are non negative. Let us prove it for the first one, the argument for
the others is similar. Define V the K ×K matrix given by

Vi,j = 〈(QTAa)i, (Q
TAa)j〉〈(Qa)i, (Qa)j〉, i, j = 1, . . . ,K.

V is the Hadamard product of two Gram matrices which are non negative, thus V is itself
non negative by the Schur product Theorem, see Schur (1911), and

K∑
i,j=1

Vi,j〈ai, aj〉 =

∫
a(y)TV a(y)dy ≥ 0.

Thus we have that M(Q,u,a) is lower bounded by one term of the sum so that

M(Q,u,a) ≥
K∑

i,j=1

〈(QTA(f? + u))i, (Q
TA(f? + u))j〉〈ai, aj〉〈(Q(f? + u))i, (Q(f? + u))j〉.

The minimal eigenvalue of the Hadamard product of two non negative matrices is lower
bounded by the product of the minimal eignevalues of each matrix, and we get

M(Q,u,a) ≥
(

min
i=1,...,K

λi(Q
TA(f? + u))

)(
min

i=1,...,K
λi(Q(f? + u))

)
‖a‖22 (13)

where ‖a‖22 =
∑k

k=1 ‖ak‖22, and where, if h ∈ L2(Y,LD)K , λ1(h), . . . , λK(h) are the (non
negative) eigenvalues of the Gram matrix of h1, . . . , hK .
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Let now (Qn,hn)n be a sequence in V × K such that c = limn
N(Qn,hn)
‖hn‖2Q?

. Let un be the

vector of the orthogonal projections of the coordinate functions of hn on the subspace of
L2(Y,LD) spanned by f?1 . . . , f?K . Notice that

‖hn‖2Q? = ‖un‖2Q? + ‖hn − un‖22.

Let CK,2 be the upper bound of the norm of elements of K. We have, for any n ≥ 1,

‖hn‖2Q? ≤ K(CK,2 + 2CF ,2)
2

so that for any n ≥ 1,
‖un‖2Q? ≤ K(CK,2 + 2CF ,2)

2.

Since (Qn,un)n is a bounded sequence in a finite dimensional space it has a limit point
(Q,u). Now, using (12) and the non negativity of M(Qn,un,hn − un), we get on the
converging subsequence

c ≥ lim
n→+∞

N(Qn,un)

K(CK,2 + 2CF ,2)2
=

N(Q,u)

K(CK,2 + 2CF ,2)2
.

Since Q ∈ V, TQ ⊂ TQ? so that ‖u‖Q≥ ‖u‖Q? . Thus if ‖u‖Q? 6= 0, ‖u‖Q 6= 0, and using
Lemma 3, N(Q,u) 6= 0 so that c > 0 in this case.

Consider now the situation where ‖u‖Q?= 0. Since limn→+∞‖un‖Q?= 0, there exists n1
and τ ∈ TQ? such that for all n ≥ n1, one has ‖un‖2Q?=

∑K
k=1‖un,k + f?k − f?τ(k)‖

2
2, and it

is possible to exchange the states in the transition matrix using τ so that we just have to
consider the situation where ‖un‖2Q?= ‖un‖22 for large enough n.
Eigenvalues of Gram matrices of functions are continuous in the functions so that using (12)
and (13) we get

c ≥ lim
n→+∞

N(Qn,un)

‖un‖22+‖hn − un‖22

+

(
min

i=1,...,K
λi(Q

TAf?)

)(
min

i=1,...,K
λi(Qf?)

)
lim inf
n→+∞

‖hn − un‖22
‖un‖22+‖hn − un‖22

.

Under assumptions [H1] and [H4], QTAf? is a vector of linearly independent functions and
Qf? also, so that (

min
i=1,...,K

λi(Q
TAf?)

)(
min

i=1,...,K
λi(Qf?)

)
> 0.

Thus, if lim infn→+∞
‖hn−un‖22

‖un‖22+‖hn−un‖22
> 0 we obtain c > 0.

If now lim infn→+∞
‖hn−un‖22

‖un‖22+‖hn−un‖22
= 0, we have on a subsequence

c ≥ lim
n→+∞

N(Qn,un)

‖un‖22
‖un‖22

‖un‖22+‖hn − un‖22
= lim

n→+∞

N(Qn,un)

‖un‖22
(14)
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with (un)n a sequence of vectors of functions in the finite dimensional space spanned by
f?1 , . . . , f

?
K and such that for i = 1, . . . ,K,

lim
n→+∞

∫
(un)i(y)

‖un‖2
dy = 0 (15)

since for all n and all i = 1, . . . ,K,
∫ (hn−un)i+(un)i(y)

‖hn‖2 dy = 0.
Let us return to general considerations on the function N(·, ·). As it may be seen from
its formula, N(Q̃, h̃) is polynomial in the variables Q̃i,j , 〈f?i , f?j 〉, 〈h̃i, f?j 〉, 〈h̃i, h̃j〉, i, j =

1, . . . ,K. Let D(Q̃, h̃) denote the part of N(Q̃, h̃) which is homogeneous of degree 2 with
respect to the variable h̃, that is

D(Q̃, h̃) =

K∑
k1,k2,k3,k′1,k

′
2,k
′
3=1

π̃(k1)Q̃(k1, k2)Q̃(k2, k3)π̃(k′1)Q̃(k′1, k
′
2)Q̃(k′2, k

′
3) 3∑

i=1

〈h̃ki , h̃k′i〉
∏
j 6=i
〈f?kj , f

?
k′j
〉+ 2

3∑
i=1

〈f?ki , f
?
k′i
〉
∏

j 6=j′ 6=i
〈f?kj , h̃k′j 〉〈h̃kj′ , f

?
k′
j′
〉

 .(16)

One gets

N(Q̃, h̃) = D(Q̃, h̃) +O
(
‖h̃‖32

)
where the O(·) depends only on f?. Let us first notice that D(·, ·) is always non negative.
Indeed, since for all Q̃ ∈ V and all h̃ ∈ (L2(Y,LD))K one has N(Q̃, h̃) ≥ 0, it holds

∀Q̃ ∈ V, ∀h̃ ∈ (L2(Y,LD))K ,
D(Q̃, h̃)

‖h̃‖22
+O(‖h̃‖2) ≥ 0,

so that, since for all λ ∈ R, D(Q̃, λh̃) = λ2D(Q̃, h̃),

∀Q̃ ∈ V, ∀h̃ ∈ (L2(Y,LD))K , D(Q̃, h̃) ≥ 0. (17)

Then we obtain from (14)

c ≥ lim inf
n→+∞

D
(
Qn,

un

‖un‖2
)
.

Let b = (b1, . . . , bK) be a limit point of the sequence ( un
‖un‖2 )n. We then have

c ≥ D (Q,b) .

Now, using (15) we get that ∫
bkdLD = 0, k = 1, . . . ,K.
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Thus there exists a K ×K matrix U such that bT = U(f?)T and U1k = 0, and equation
(16) leads to

D(Q,b) =∑
i,j

{(
QTAUG?UTAQ

)
i,j

(G?)i,j
(
QG?QT

)
i,j

+
(
QTAG?AQ

)
i,j

(
UG?UT

)
i,j

(
QG?QT

)
i,j

+
(
QTAG?AQ

)
i,j

(G?)i,j
(
QUG?UTQT

)
i,j

}
+2
∑
i,j

{(
QTAUG?AQ

)
i,j

(UG?)j,i
(
QG?QT

)
i,j

+
(
QTAUG?AQ

)
i,j

(
QUG?QT

)
j,i

(G?)i,j + (UG?)i,j
(
QUG?QT

)
j,i

(
QTAG?AQ

)
i,j

}
.

with G? the K ×K Gram matrix such that (G?)i,j = 〈f?i , f?j 〉, i = 1, . . . ,K.
This is the quadratic form D in Ui,j , i = 1, . . . ,K, j = 1, . . . ,K − 1 defined in Section 4.2.
This quadratic form is non negative, and as soon as it is positive, we get that c > 0. But
the quadratic form D is positive as soon as its determinant is non zero, that is if and only
if H(Q, G(f?)) 6= 0.

8.4 Proof of Lemma 5

Here we specialize to the situation where K = 2. In such a case, f? = (f?1 , f
?
2 ), and

Q? =

(
1− p? p?

q? 1− q?
)

for some p?, q? in [0, 1] for which 0 < p? < 1, 0 < q? < 1, p? 6= 1− q?. Now

U =

(
α −α
β −β

)

for some real numbers α and β, and brute force computation gives D
(
Q,b

)
= D1,1α

2 +
2D1,2αβ +D2,2β

2 with, denoting p = Q(1, 2) and q = Q(2, 1):

(p+ q)2D1,1

q2
=2(1− p)2‖f?1 − f?2 ‖2‖f?1 ‖2‖(1− p)f?1 + pf?2 ‖2+‖(1− p)f?1 + pf?2 ‖4‖f?1 − f?2 ‖2

+ 4p(1− p) (〈(1− p)f?1 + pf?2 , qf
?
1 + (1− q)f?2 〉) 〈f?1 , f?2 〉‖f?1 − f?2 ‖2

+ 2p2‖f?1 − f?2 ‖2‖f?2 ‖2‖qf?1 + (1− q)f?2 ‖2

+ 2(1− p)2 (〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉)

2 ‖f?1 ‖2

+ 2p2 (〈qf?1 + (1− q)f?2 , f?1 − f?2 〉)
2 ‖f?2 ‖2

+ 4p(1− p)〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉〈f?1 , f?2 〉

+ 4(1− p)〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉〈f?1 , f?1 − f?2 〉‖(1− p)f?1 + pf?2 ‖2

+ 4p〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉〈f?2 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , qf

?
1 + (1− q)f?2 〉,
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(p+ q)2D2,2

p2
=2q2‖f?1 − f?2 ‖2‖f?1 ‖2‖(1− p)f?1 + pf?2 ‖2+‖qf?1 + (1− q)f?2 ‖4‖f?1 − f?2 ‖2

+ 4(1− q)q (〈(1− p)f?1 + pf?2 , qf
?
1 + (1− q)f?2 〉) 〈f?1 , f?2 〉‖f?1 − f?2 ‖2

+ 2(1− q)2‖f?1 − f?2 ‖2‖f?2 ‖2‖qf?1 + (1− q)f?2 ‖2

+ 2q2 (〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉)

2 ‖f?1 ‖2

+ 2(1− q)2 (〈qf?1 + (1− q)f?2 , f?1 − f?2 〉)
2 ‖f2‖2

+ 4q(1− q)〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉〈f?1 , f?2 〉

+ 4q〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈f?1 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , qf
?
1 + (1− q)f?2 〉

+ 4(1− q)〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈f?2 , f?1 − f?2 〉‖qf?1 + (1− q)f?2 ‖2 ,

and:

(p+ q)2D1,2

pq
=2(1− p)q‖f?1 − f?2 ‖2‖f?1 ‖2‖(1− p)f?1 + pf?2 ‖2

+ 2[pq + (1− p)(1− q)] (〈(1− p)f?1 + pf?2 , qf
?
1 + (1− q)f?2 〉) 〈f?1 , f?2 〉‖f?1 − f?2 ‖2

+ (〈(1− p)f?1 + pf?2 , qf
?
1 + (1− q)f?2 〉)

2 ‖f?1 − f?2 ‖2

+ 2p(1− q)‖f?1 − f?2 ‖2‖f?2 ‖2‖qf?1 + (1− q)f?2 ‖2

+ 2q(1− p) (〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉)

2 ‖f?1 ‖2

+ 2p(1− q) (〈qf?1 + (1− q)f?2 , f?1 − f?2 〉)
2 ‖f?2 ‖2

+ 2pq〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , f1 − f?2 〉〈f?1 , f?2 〉
+ 2(1− p)(1− q)〈qf?1 + (1− q)f?2 , f1 − f?2 〉〈(1− p)f?1 + pf?2 , f

?
1 − f?2 〉〈f?1 , f?2 〉

+ q〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉〈f?1 , f?1 − f?2 〉‖(1− p)f?1 + pf?2 ‖2

+ 2(1− p)〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈f?1 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , qf
?
1 + (1− q)f?2 〉

+ 2(1− q)〈(1− p)f?1 + pf?2 , f
?
1 − f?2 〉〈f?2 , f?1 − f?2 〉〈(1− p)f?1 + pf?2 , qf

?
1 + (1− q)f?2 〉

+ 2p〈qf?1 + (1− q)f?2 , f?1 − f?2 〉〈f?2 , f?1 − f?2 〉‖qf?1 + (1− q)f?2 ‖2.

We have:
H(Q, G(f?)) = D1,1D2,2 −D2

1,2.

We shall now write H(Q, G(f?)) using

n1 = ‖f?1 ‖2, n2 = ‖f?2 ‖2, a =
〈f?1 , f?2 〉
‖f?1 ‖2‖f?2 ‖2

,

for which the range is [1,∞[2×[0, 1[. Doing so, we obtain a polynomial P1 in the variables
n1, n2, a, p and q.
First observe that, by symmetry,

P1 (n1, n2, a, p, q) = P1 (n2, n1, a, q, p) ,

so that it is sufficient to prove that the polynomial P1 is positive on the domain

1 ≤ n2 ≤ n1 , (18)
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and 0 ≤ a < 1 and 0 < p 6= q < 1.
Furthermore, consider the change of variable

q = 1− p+ d

then we have a polynomial P2 in the variables n1, n2, a, p and d which factorizes with

p2(1− a2)d2n21n22(1 + d− p)2

(1 + d)4
.

Dividing by this factor, one gets a polynomial P3 which is homogeneous of degree 8 in n1
and n2, so that one may set n1 = 1 and keep b = n2 ∈]0, 1] (observe that we have used
(18) to reduce the problem to the domain n2/n1 ≤ 1) and obtain a polynomial P4 in the
variables b, a, p and d. It remains to prove that P4 is positive on D4 = {b ∈]0, 1], a ∈
[0, 1[, p ∈]0, 1[, d ∈]p− 1, 0[∪]0, p[}.
Consider now the following change of variables

b =
1

1 + x2
, a =

y2

1 + y2
, p =

z2

1 + z2
, and d =

(tz)2 − 1

(1 + t2)(1 + z2)
,

mapping (x, y, z, t) ∈ R4 onto (b, a, p, d) ∈ D5 = {b ∈]0, 1], a ∈ [0, 1[, p ∈ [0, 1[, d ∈]p− 1, p[}
which contains D4. This change of variables maps P4 onto a rational fraction with positive
denominator, namely

(1 + t2)4(1 + y2)4(1 + z2)4(1 + x2)8

So it remains to prove that its numerator P5, which is polynomial, is positive on R4. An
expression of P5 can be found in Appendix B. Observe that P5 is polynomial in x2, y2, z2

and t2 and there are only three monomials with negative coefficients. These monomials can
be expressed as sum of squares using others monomials, namely:

• −18x12t2 + 27x12 + 1979x12t4 = 18x12 + 9(x6 − x6t2)2 + 1970x12t4,

• −108x10t2 + 1970x12t4 + 495x8 = 439x8 + 56(x4 − x6t2)2 + 1914x12t4 + 4t2x10,

• and −114x8t2 + 972x4 + 1914x12t4 = 915x4 + 57(x2 − x6t2)2 + 1857x12t4.

Thus P5 is equal to 144 more a sum of squares, hence it is positive. This proves that
H(Q, G(f?)) is always positive.

8.5 Proof of Theorem 7

Let K = {h = f − f?, f ∈ FK}. Using Theorem 4 we get that for all x > 0, for all N ≥ N0,
with probability 1− (e− 1)−1e−x, one has for any permutation τN ,

‖ĝ − g?‖22 ≤ 6 inf
M

{
‖g? − gQ?,f?M ‖22 + pen(N,M)

}
+A?1

x

N
(19)

+18C6
F ,2

(
‖Q? − PτN Q̂NP>τN ‖

2
F + ‖π? − PτN π̂‖

2
2

)
.
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Notice that writing

ĝ (y1, y2, y3) =

K∑
k1,k2,k3=1

(PτN π̂)(k1)(PτN Q̂P>τN )(k1, k2)(PτN Q̂P>τN )(k2, k3)

× f̂τN (k1)(y1)f̂τN (k2)(y2)f̂τN (k3)(y3) ,

and applying Theorem 6 we get that, on the event PτN Q̂P>τN ∈ V, there exists τ ∈ TQ? such
that

K∑
k=1

‖f?τ(k) − f̂τN (k)‖22 ≤
1

c(K,V,F?)2
‖ĝ − gPτN Q̂P>τN ,f

?

‖22. (20)

Now by the triangular inequality

‖ĝ − gPτN Q̂P>τN ,f
?

‖2 ≤ ‖ĝ − g?‖2 + ‖gQ?,f? − gPτN Q̂P>τN ,f
?

‖2. (21)

Similarly to (5), we have

‖gQ?,f? − gPτN Q̂P>τN ,f
?

‖22 ≤ 3K3C6
F ,2

[
‖π? − PτN π̂‖

2
2 + 2‖Q? − PτN Q̂P>τN ‖

2
F

]
. (22)

In the same way,(
g? − gQ?,f?M

)
(y1, y2, y3) =

K∑
k1,k2,k3=1

π?(k1)Q
?(k1, k2)Q

?(k2, k3)
(
f?k1(y1)f

?
k2(y2)f

?
k3(y3)− f?M,k1(y1)f

?
M,k2(y2)f

?
M,k3(y3)

)
so that

‖g? − gQ?,f?M ‖22 ≤ 3K3C4
F ,2 max{‖f?k − f?M,k‖22, k = 1, . . . ,K}.

Thus collecting (19), (20), (21), (22) and with an appropriate choice of A? we get Theorem 7.

8.6 Proof of Corollary 10

We shall apply Theorem 11 where, for each N , we define δN such that (− log δN )/δ2N :=
(logN)1/2. Notice first that δN goes to 0 and thatMN tends to infinity asN tends to infinity,
so that for large enough N , MN ≥MF? . By denoting τN the τMN

given by Theorem 11 we
get that for all x ≥ x(Q?), for all N ≥ N(Q?,F?)x logN , with probability 1 − [4 + (e −
1)−1]e−x − 2δN ,

‖π? − PτN π̂‖2≤ C(Q
?,F?)

√
logN

N

√
x

and

‖Q? − PτN Q̂P>τN ‖≤ C(Q
?,F?)

√
logN

N

√
x .
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We first obtain that

lim sup
N→+∞

E
[

N

logN
‖Q? − PτN Q̂PTτN ‖

2

]
≤

C(Q?,F?)2
∫ +∞

0
lim sup
N→+∞

P

( √
N

C(Q?,F?)
√

logN
‖Q? − PτN Q̂PTτN ‖≥

√
x

)
dx ≤

C(Q?,F?)2x(Q?) + C(Q?,F?)2
∫ +∞

x(Q?)
[4 + (e− 1)−1]e−xdx < +∞

so that
E
[
‖Q? − PτN Q̂PTτN ‖

2
]

= O

(
logN

N

)
.

Similarly, one has E
[
‖π? − PτN π̂‖2

]
= O

(
logN
N

)
. We also obtain, by taking x = N/(logN)1/4,

that
lim sup
N→+∞

P
(
PτN Q̂PTτN /∈ V

)
= 0,

so that, using Theorem 7, we get for some τ ∈ TQ? ,

lim sup
N→+∞

P

(
N

A?

[
K∑
k=1

‖f?k − f̂τ−1◦τN (k)‖22 − inf
M

{
K∑
k=1

‖f?k − f?M,k‖22 + pen(N,M)

}
−‖Q? − PτN Q̂P>τN ‖

2
F−‖π? − PτN π̂‖

2
2+

x

N

]
≥ x

)
≤ (e− 1)−1e−x.

Thus, by integration and the previous results, Corollary 10 follows.
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Appendix A. Concentration inequalities

We first recall results that hold both for (Scenario A) (where we consider N i.i.d. samples
(Y

(s)
1 , Y

(s)
2 , Y

(s)
3 )Ns=1 of three consecutive observations) and for (Scenario B) (where we

consider consecutive observations of the same chain).
The following proposition is the classical Bernstein’s inequality for (Scenario A) and

is proved in Paulin (2013), Theorem 2.4, for (Scenario B).

Proposition 12 Let t be a real valued and measurable bounded function on Y3. Let V =
E[t2(Z1)]. There exists a positive constant c? depending only on Q? such that for all 0 ≤
λ ≤ 1/(2

√
2c?‖t‖∞) :

logE exp

[
λ

N∑
s=1

(t(Zs)− Et(Zs))

]
≤ 2Nc?V λ2

1− 2
√

2c?‖t‖∞λ
(23)

so that for all x ≥ 0,

P

(
N∑
s=1

(t(Zs)− Et(Zs)) ≥ 2
√

2Nc?V x+ 2
√

2c?‖t‖∞x

)
≤ e−x. (24)

We now state a deviation inequality, which comes from Massart (2007) Theorem 6.8 and
Corollary 6.9 for (Scenario A). For (Scenario B) the proof of the following proposition
follows mutatis mutandis from the proof of Theorem 6.8 (and then Corollary 6.9) in Massart
(2007) the early first step being equation (23). Recall that when t1 and t2 are real valued
functions, the bracket [t1, t2] is the set of real valued functions t such that t1(·) ≤ t(·) ≤ t2(·).
For any measurable set A such that P(A) > 0, and any integrable random variable Z, denote
EA[Z] = E[Z1A]/P(A).

Proposition 13 Let T be some countable class of real valued and measurable functions on
Y3. Assume that there exists some positive numbers σ and b such that for all t ∈ T , ‖t‖∞≤ b
and E[t2(Z1)] ≤ σ2.
Assume furthermore that for any positive number δ, there exists some finite set Bδ of brackets
covering F such that for any bracket [t1, t2] ∈ Bδ, ‖t1− t2‖∞≤ b and E[(t1− t2)2(Z1)] ≤ δ2.
Let eH(δ) denote the minimal cardinality of such a covering. Then, there exists a positive
constant C? depending only on Q? such that: for any measurable set A,

EA
(

sup
t∈T

N∑
s=1

(t(Zs)− Et(Zs))

)
≤ C?

[
E + σ

√
N log

(
1

P(A)

)
+ b log

(
1

P(A)

)]

and for all positive number x

P

(
sup
t∈T

N∑
s=1

(t(Zs)− Et(Zs)) ≥ C?[E + σ
√
Nx+ bx]

)
≤ exp(−x),

where
E =

√
N

∫ σ

0

√
H(u) ∧Ndu+ (b+ σ)H(σ).
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Appendix B. Expression of polynomial P5

Computer assisted computations (available at https://mycore.core-cloud.net/public.
php?service=files&t=db7b8c1a2bcbcca157dcda5ecab84374) give that:

P5 =

144 - 114 t^2 x^8 - 108 t^2 x^10 - 18 t^2 x^12 +
192 t^2 + 128 t^4 + 256 t^6 + 176 t^8 + 576 x^2 + 624 t^2 x^2 +
672 t^4 x^2 + 1776 t^6 x^2 + 1152 t^8 x^2 + 972 x^4 + 720 t^2 x^4 +
1884 t^4 x^4 + 5496 t^6 x^4 + 3360 t^8 x^4 + 900 x^6 + 264 t^2 x^6 +
3556 t^4 x^6 + 9920 t^6 x^6 + 5728 t^8 x^6 + 495 x^8 +
4551 t^4 x^8 + 11424 t^6 x^8 + 6264 t^8 x^8 + 162 x^10 +
3810 t^4 x^10 + 8592 t^6 x^10 + 4512 t^8 x^10 +
27 x^12 + 1979 t^4 x^12 + 4120 t^6 x^12 +
2096 t^8 x^12 + 576 t^4 x^14 + 1152 t^6 x^14 + 576 t^8 x^14 +
72 t^4 x^16 + 144 t^6 x^16 + 72 t^8 x^16 + 144 y^2 + 480 t^2 y^2 +
784 t^4 y^2 + 704 t^6 y^2 + 256 t^8 y^2 + 576 x^2 y^2 +
2064 t^2 x^2 y^2 + 4192 t^4 x^2 y^2 + 4496 t^6 x^2 y^2 +
1792 t^8 x^2 y^2 + 1080 x^4 y^2 + 4104 t^2 x^4 y^2 +
10760 t^4 x^4 y^2 + 13528 t^6 x^4 y^2 + 5792 t^8 x^4 y^2 +
1224 x^6 y^2 + 5016 t^2 x^6 y^2 + 17592 t^4 x^6 y^2 +
25032 t^6 x^6 y^2 + 11232 t^8 x^6 y^2 + 900 x^8 y^2 +
4224 t^2 x^8 y^2 + 19924 t^4 x^8 y^2 + 30776 t^6 x^8 y^2 +
14176 t^8 x^8 y^2 + 432 x^10 y^2 + 2520 t^2 x^10 y^2 +
15584 t^4 x^10 y^2 + 25336 t^6 x^10 y^2 + 11840 t^8 x^10 y^2 +
108 x^12 y^2 + 936 t^2 x^12 y^2 + 7916 t^4 x^12 y^2 +
13456 t^6 x^12 y^2 + 6368 t^8 x^12 y^2 + 144 t^2 x^14 y^2 +
2304 t^4 x^14 y^2 + 4176 t^6 x^14 y^2 + 2016 t^8 x^14 y^2 +
288 t^4 x^16 y^2 + 576 t^6 x^16 y^2 + 288 t^8 x^16 y^2 + 144 y^4 +
480 t^2 y^4 + 624 t^4 y^4 + 384 t^6 y^4 + 96 t^8 y^4 + 576 x^2 y^4 +
2208 t^2 x^2 y^4 + 3392 t^4 x^2 y^4 + 2464 t^6 x^2 y^4 +
704 t^8 x^2 y^4 + 1188 x^4 y^4 + 5256 t^2 x^4 y^4 +
9636 t^4 x^4 y^4 + 8256 t^6 x^4 y^4 + 2688 t^8 x^4 y^4 +
1548 x^6 y^4 + 8112 t^2 x^6 y^4 + 18076 t^4 x^6 y^4 +
18008 t^6 x^6 y^4 + 6496 t^8 x^6 y^4 + 1359 x^8 y^4 +
8598 t^2 x^8 y^4 + 23375 t^4 x^8 y^4 + 26392 t^6 x^8 y^4 +
10256 t^8 x^8 y^4 + 810 x^10 y^4 + 6156 t^2 x^10 y^4 +
20442 t^4 x^10 y^4 + 25656 t^6 x^10 y^4 + 10560 t^8 x^10 y^4 +
243 x^12 y^4 + 2574 t^2 x^12 y^4 + 11299 t^4 x^12 y^4 +
15848 t^6 x^12 y^4 + 6880 t^8 x^12 y^4 + 432 t^2 x^14 y^4 +
3456 t^4 x^14 y^4 + 5616 t^6 x^14 y^4 + 2592 t^8 x^14 y^4 +
432 t^4 x^16 y^4 + 864 t^6 x^16 y^4 + 432 t^8 x^16 y^4 +
216 x^4 y^6 + 720 t^2 x^4 y^6 + 952 t^4 x^4 y^6 + 608 t^6 x^4 y^6 +
160 t^8 x^4 y^6 + 648 x^6 y^6 + 2592 t^2 x^6 y^6 +
4168 t^4 x^6 y^6 + 3152 t^6 x^6 y^6 + 928 t^8 x^6 y^6 +
918 x^8 y^6 + 4428 t^2 x^8 y^6 + 8502 t^4 x^8 y^6 +
7392 t^6 x^8 y^6 + 2400 t^8 x^8 y^6 + 756 x^10 y^6 +
4392 t^2 x^10 y^6 + 10036 t^4 x^10 y^6 + 9920 t^6 x^10 y^6 +
3520 t^8 x^10 y^6 + 270 x^12 y^6 + 2268 t^2 x^12 y^6 +
6766 t^4 x^12 y^6 + 7808 t^6 x^12 y^6 + 3040 t^8 x^12 y^6 +
432 t^2 x^14 y^6 + 2304 t^4 x^14 y^6 + 3312 t^6 x^14 y^6 +
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1440 t^8 x^14 y^6 + 288 t^4 x^16 y^6 + 576 t^6 x^16 y^6 +
288 t^8 x^16 y^6 + 108 x^8 y^8 + 360 t^2 x^8 y^8 + 468 t^4 x^8 y^8 +
288 t^6 x^8 y^8 + 72 t^8 x^8 y^8 + 216 x^10 y^8 + 864 t^2 x^10 y^8 +
1368 t^4 x^10 y^8 + 1008 t^6 x^10 y^8 + 288 t^8 x^10 y^8 +
108 x^12 y^8 + 648 t^2 x^12 y^8 + 1404 t^4 x^12 y^8 +
1296 t^6 x^12 y^8 + 432 t^8 x^12 y^8 + 144 t^2 x^14 y^8 +
576 t^4 x^14 y^8 + 720 t^6 x^14 y^8 + 288 t^8 x^14 y^8 +
72 t^4 x^16 y^8 + 144 t^6 x^16 y^8 + 72 t^8 x^16 y^8 + 192 z^2 +
416 t^2 z^2 + 288 t^4 z^2 + 320 t^6 z^2 + 256 t^8 z^2 +
912 x^2 z^2 + 1664 t^2 x^2 z^2 + 1248 t^4 x^2 z^2 +
2304 t^6 x^2 z^2 + 1808 t^8 x^2 z^2 + 1728 x^4 z^2 +
2520 t^2 x^4 z^2 + 2776 t^4 x^4 z^2 + 7624 t^6 x^4 z^2 +
5640 t^8 x^4 z^2 + 1704 x^6 z^2 + 1736 t^2 x^6 z^2 +
4664 t^4 x^6 z^2 + 14808 t^6 x^6 z^2 + 10176 t^8 x^6 z^2 +
966 x^8 z^2 + 494 t^2 x^8 z^2 + 6098 t^4 x^8 z^2 +
18218 t^6 x^8 z^2 + 11648 t^8 x^8 z^2 + 324 x^10 z^2 +
36 t^2 x^10 z^2 + 5468 t^4 x^10 z^2 + 14444 t^6 x^10 z^2 +
8688 t^8 x^10 z^2 + 54 x^12 z^2 + 6 t^2 x^12 z^2 +
3002 t^4 x^12 z^2 + 7186 t^6 x^12 z^2 + 4136 t^8 x^12 z^2 +
896 t^4 x^14 z^2 + 2048 t^6 x^14 z^2 + 1152 t^8 x^14 z^2 +
112 t^4 x^16 z^2 + 256 t^6 x^16 z^2 + 144 t^8 x^16 z^2 +
480 y^2 z^2 + 1312 t^2 y^2 z^2 + 1888 t^4 y^2 z^2 +
1760 t^6 y^2 z^2 + 704 t^8 y^2 z^2 + 1776 x^2 y^2 z^2 +
5248 t^2 x^2 y^2 z^2 + 9504 t^4 x^2 y^2 z^2 +
10624 t^6 x^2 y^2 z^2 + 4592 t^8 x^2 y^2 z^2 + 3096 x^4 y^2 z^2 +
9904 t^2 x^4 y^2 z^2 + 23104 t^4 x^4 y^2 z^2 +
30288 t^6 x^4 y^2 z^2 + 13992 t^8 x^4 y^2 z^2 + 3144 x^6 y^2 z^2 +
11344 t^2 x^6 y^2 z^2 + 35712 t^4 x^6 y^2 z^2 +
53424 t^6 x^6 y^2 z^2 + 25912 t^8 x^6 y^2 z^2 + 2064 x^8 y^2 z^2 +
9016 t^2 x^8 y^2 z^2 + 38552 t^4 x^8 y^2 z^2 +
63192 t^6 x^8 y^2 z^2 + 31592 t^8 x^8 y^2 z^2 + 936 x^10 y^2 z^2 +
5248 t^2 x^10 y^2 z^2 + 29072 t^4 x^10 y^2 z^2 +
50464 t^6 x^10 y^2 z^2 + 25704 t^8 x^10 y^2 z^2 + 216 x^12 y^2 z^2 +
1872 t^2 x^12 y^2 z^2 + 14192 t^4 x^12 y^2 z^2 +
26056 t^6 x^12 y^2 z^2 + 13520 t^8 x^12 y^2 z^2 +
264 t^2 x^14 y^2 z^2 + 3896 t^4 x^14 y^2 z^2 +
7808 t^6 x^14 y^2 z^2 + 4176 t^8 x^14 y^2 z^2 +
448 t^4 x^16 y^2 z^2 + 1024 t^6 x^16 y^2 z^2 +
576 t^8 x^16 y^2 z^2 + 480 y^4 z^2 + 1632 t^2 y^4 z^2 +
2208 t^4 y^4 z^2 + 1440 t^6 y^4 z^2 + 384 t^8 y^4 z^2 +
1632 x^2 y^4 z^2 + 6528 t^2 x^2 y^4 z^2 + 10688 t^4 x^2 y^4 z^2 +
8320 t^6 x^2 y^4 z^2 + 2528 t^8 x^2 y^4 z^2 + 3240 x^4 y^4 z^2 +
14280 t^2 x^4 y^4 z^2 + 27448 t^4 x^4 y^4 z^2 +
25048 t^6 x^4 y^4 z^2 + 8640 t^8 x^4 y^4 z^2 + 3936 x^6 y^4 z^2 +
19992 t^2 x^6 y^4 z^2 + 46552 t^4 x^6 y^4 z^2 +
49352 t^6 x^6 y^4 z^2 + 18856 t^8 x^6 y^4 z^2 + 3198 x^8 y^4 z^2 +
19518 t^2 x^8 y^4 z^2 + 55218 t^4 x^8 y^4 z^2 +
66170 t^6 x^8 y^4 z^2 + 27272 t^8 x^8 y^4 z^2 + 1836 x^10 y^4 z^2 +
13332 t^2 x^10 y^4 z^2 + 44988 t^4 x^10 y^4 z^2 +
59580 t^6 x^10 y^4 z^2 + 26088 t^8 x^10 y^4 z^2 + 486 x^12 y^4 z^2 +
5214 t^2 x^12 y^4 z^2 + 22994 t^4 x^12 y^4 z^2 +
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34194 t^6 x^12 y^4 z^2 + 15928 t^8 x^12 y^4 z^2 +
792 t^2 x^14 y^4 z^2 + 6312 t^4 x^14 y^4 z^2 +
11136 t^6 x^14 y^4 z^2 + 5616 t^8 x^14 y^4 z^2 +
672 t^4 x^16 y^4 z^2 + 1536 t^6 x^16 y^4 z^2 +
864 t^8 x^16 y^4 z^2 + 720 x^4 y^6 z^2 + 2480 t^2 x^4 y^6 z^2 +
3472 t^4 x^4 y^6 z^2 + 2384 t^6 x^4 y^6 z^2 + 672 t^8 x^4 y^6 z^2 +
1728 x^6 y^6 z^2 + 7440 t^2 x^6 y^6 z^2 + 13072 t^4 x^6 y^6 z^2 +
10736 t^6 x^6 y^6 z^2 + 3376 t^8 x^6 y^6 z^2 + 2268 x^8 y^6 z^2 +
11484 t^2 x^8 y^6 z^2 + 23812 t^4 x^8 y^6 z^2 +
22276 t^6 x^8 y^6 z^2 + 7680 t^8 x^8 y^6 z^2 + 1800 x^10 y^6 z^2 +
10568 t^2 x^10 y^6 z^2 + 25560 t^4 x^10 y^6 z^2 +
26872 t^6 x^10 y^6 z^2 + 10080 t^8 x^10 y^6 z^2 + 540 x^12 y^6 z^2 +
4836 t^2 x^12 y^6 z^2 + 15420 t^4 x^12 y^6 z^2 +
18964 t^6 x^12 y^6 z^2 + 7840 t^8 x^12 y^6 z^2 +
792 t^2 x^14 y^6 z^2 + 4520 t^4 x^14 y^6 z^2 +
7040 t^6 x^14 y^6 z^2 + 3312 t^8 x^14 y^6 z^2 +
448 t^4 x^16 y^6 z^2 + 1024 t^6 x^16 y^6 z^2 +
576 t^8 x^16 y^6 z^2 + 360 x^8 y^8 z^2 + 1224 t^2 x^8 y^8 z^2 +
1656 t^4 x^8 y^8 z^2 + 1080 t^6 x^8 y^8 z^2 + 288 t^8 x^8 y^8 z^2 +
576 x^10 y^8 z^2 + 2448 t^2 x^10 y^8 z^2 + 4176 t^4 x^10 y^8 z^2 +
3312 t^6 x^10 y^8 z^2 + 1008 t^8 x^10 y^8 z^2 + 216 x^12 y^8 z^2 +
1488 t^2 x^12 y^8 z^2 + 3616 t^4 x^12 y^8 z^2 +
3640 t^6 x^12 y^8 z^2 + 1296 t^8 x^12 y^8 z^2 +
264 t^2 x^14 y^8 z^2 + 1208 t^4 x^14 y^8 z^2 +
1664 t^6 x^14 y^8 z^2 + 720 t^8 x^14 y^8 z^2 +
112 t^4 x^16 y^8 z^2 + 256 t^6 x^16 y^8 z^2 + 144 t^8 x^16 y^8 z^2 +
128 z^4 + 288 t^2 z^4 + 352 t^4 z^4 + 384 t^6 z^4 + 256 t^8 z^4 +
352 x^2 z^4 + 1056 t^2 x^2 z^4 + 1408 t^4 x^2 z^4 +
1952 t^6 x^2 z^4 + 1504 t^8 x^2 z^4 + 764 x^4 z^4 +
2104 t^2 x^4 z^4 + 2616 t^4 x^4 z^4 + 5016 t^6 x^4 z^4 +
4252 t^8 x^4 z^4 + 804 x^6 z^4 + 1912 t^2 x^6 z^4 +
2920 t^4 x^6 z^4 + 8536 t^6 x^6 z^4 + 7364 t^8 x^6 z^4 +
471 x^8 z^4 + 898 t^2 x^8 z^4 + 2694 t^4 x^8 z^4 +
10058 t^6 x^8 z^4 + 8335 t^8 x^8 z^4 + 162 x^10 z^4 +
252 t^2 x^10 z^4 + 2164 t^4 x^10 z^4 + 7980 t^6 x^10 z^4 +
6226 t^8 x^10 z^4 + 27 x^12 z^4 + 42 t^2 x^12 z^4 +
1182 t^4 x^12 z^4 + 4018 t^6 x^12 z^4 + 2979 t^8 x^12 z^4 +
352 t^4 x^14 z^4 + 1152 t^6 x^14 z^4 + 832 t^8 x^14 z^4 +
44 t^4 x^16 z^4 + 144 t^6 x^16 z^4 + 104 t^8 x^16 z^4 +
784 y^2 z^4 + 1888 t^2 y^2 z^4 + 2208 t^4 y^2 z^4 +
1888 t^6 y^2 z^4 + 784 t^8 y^2 z^4 + 2080 x^2 y^2 z^4 +
5600 t^2 x^2 y^2 z^4 + 8832 t^4 x^2 y^2 z^4 + 9952 t^6 x^2 y^2 z^4 +
4640 t^8 x^2 y^2 z^4 + 3368 x^4 y^2 z^4 + 9440 t^2 x^4 y^2 z^4 +
18928 t^4 x^4 y^2 z^4 + 25952 t^6 x^4 y^2 z^4 +
13224 t^8 x^4 y^2 z^4 + 2840 x^6 y^2 z^4 + 9056 t^2 x^6 y^2 z^4 +
25872 t^4 x^6 y^2 z^4 + 42464 t^6 x^6 y^2 z^4 +
23192 t^8 x^6 y^2 z^4 + 1524 x^8 y^2 z^4 + 6072 t^2 x^8 y^2 z^4 +
25016 t^4 x^8 y^2 z^4 + 46792 t^6 x^8 y^2 z^4 +
26900 t^8 x^8 y^2 z^4 + 576 x^10 y^2 z^4 + 3184 t^2 x^10 y^2 z^4 +
17216 t^4 x^10 y^2 z^4 + 35024 t^6 x^10 y^2 z^4 +
20928 t^8 x^10 y^2 z^4 + 108 x^12 y^2 z^4 + 1008 t^2 x^12 y^2 z^4 +
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7584 t^4 x^12 y^2 z^4 + 16968 t^6 x^12 y^2 z^4 +
10572 t^8 x^12 y^2 z^4 + 120 t^2 x^14 y^2 z^4 +
1816 t^4 x^14 y^2 z^4 + 4736 t^6 x^14 y^2 z^4 +
3136 t^8 x^14 y^2 z^4 + 176 t^4 x^16 y^2 z^4 +
576 t^6 x^16 y^2 z^4 + 416 t^8 x^16 y^2 z^4 + 624 y^4 z^4 +
2208 t^2 y^4 z^4 + 3168 t^4 y^4 z^4 + 2208 t^6 y^4 z^4 +
624 t^8 y^4 z^4 + 1600 x^2 y^4 z^4 + 6976 t^2 x^2 y^4 z^4 +
12672 t^4 x^2 y^4 z^4 + 10816 t^6 x^2 y^4 z^4 +
3520 t^8 x^2 y^4 z^4 + 3364 x^4 y^4 z^4 + 14456 t^2 x^4 y^4 z^4 +
29416 t^4 x^4 y^4 z^4 + 29016 t^6 x^4 y^4 z^4 +
10692 t^8 x^4 y^4 z^4 + 3452 x^6 y^4 z^4 + 17336 t^2 x^6 y^4 z^4 +
43896 t^4 x^6 y^4 z^4 + 51032 t^6 x^6 y^4 z^4 +
21020 t^8 x^6 y^4 z^4 + 2495 x^8 y^4 z^4 + 14658 t^2 x^8 y^4 z^4 +
45814 t^4 x^8 y^4 z^4 + 61162 t^6 x^8 y^4 z^4 +
27607 t^8 x^8 y^4 z^4 + 1242 x^10 y^4 z^4 + 8892 t^2 x^10 y^4 z^4 +
33252 t^4 x^10 y^4 z^4 + 49644 t^6 x^10 y^4 z^4 +
24234 t^8 x^10 y^4 z^4 + 243 x^12 y^4 z^4 + 2914 t^2 x^12 y^4 z^4 +
14758 t^4 x^12 y^4 z^4 + 25538 t^6 x^12 y^4 z^4 +
13643 t^8 x^12 y^4 z^4 + 360 t^2 x^14 y^4 z^4 +
3336 t^4 x^14 y^4 z^4 + 7296 t^6 x^14 y^4 z^4 +
4416 t^8 x^14 y^4 z^4 + 264 t^4 x^16 y^4 z^4 +
864 t^6 x^16 y^4 z^4 + 624 t^8 x^16 y^4 z^4 + 952 x^4 y^6 z^4 +
3472 t^2 x^4 y^6 z^4 + 5232 t^4 x^4 y^6 z^4 + 3856 t^6 x^4 y^6 z^4 +
1144 t^8 x^4 y^6 z^4 + 1544 x^6 y^6 z^4 + 7760 t^2 x^6 y^6 z^4 +
15696 t^4 x^6 y^6 z^4 + 14288 t^6 x^6 y^6 z^4 +
4808 t^8 x^6 y^6 z^4 + 1942 x^8 y^6 z^4 + 10532 t^2 x^8 y^6 z^4 +
24556 t^4 x^8 y^6 z^4 + 25380 t^6 x^8 y^6 z^4 +
9414 t^8 x^8 y^6 z^4 + 1332 x^10 y^6 z^4 + 8408 t^2 x^10 y^6 z^4 +
22952 t^4 x^10 y^6 z^4 + 26776 t^6 x^10 y^6 z^4 +
10900 t^8 x^10 y^6 z^4 + 270 x^12 y^6 z^4 + 2972 t^2 x^12 y^6 z^4 +
11492 t^4 x^12 y^6 z^4 + 16244 t^6 x^12 y^6 z^4 +
7486 t^8 x^12 y^6 z^4 + 360 t^2 x^14 y^6 z^4 +
2632 t^4 x^14 y^6 z^4 + 4992 t^6 x^14 y^6 z^4 +
2752 t^8 x^14 y^6 z^4 + 176 t^4 x^16 y^6 z^4 +
576 t^6 x^16 y^6 z^4 + 416 t^8 x^16 y^6 z^4 + 468 x^8 y^8 z^4 +
1656 t^2 x^8 y^8 z^4 + 2376 t^4 x^8 y^8 z^4 + 1656 t^6 x^8 y^8 z^4 +
468 t^8 x^8 y^8 z^4 + 504 x^10 y^8 z^4 + 2448 t^2 x^10 y^8 z^4 +
4752 t^4 x^10 y^8 z^4 + 4176 t^6 x^10 y^8 z^4 +
1368 t^8 x^10 y^8 z^4 + 108 x^12 y^8 z^4 + 1024 t^2 x^12 y^8 z^4 +
3136 t^4 x^12 y^8 z^4 + 3656 t^6 x^12 y^8 z^4 +
1436 t^8 x^12 y^8 z^4 + 120 t^2 x^14 y^8 z^4 +
760 t^4 x^14 y^8 z^4 + 1280 t^6 x^14 y^8 z^4 +
640 t^8 x^14 y^8 z^4 + 44 t^4 x^16 y^8 z^4 + 144 t^6 x^16 y^8 z^4 +
104 t^8 x^16 y^8 z^4 + 256 z^6 + 320 t^2 z^6 + 384 t^4 z^6 +
352 t^6 z^6 + 160 t^8 z^6 + 272 x^2 z^6 + 256 t^2 x^2 z^6 +
1120 t^4 x^2 z^6 + 1408 t^6 x^2 z^6 + 784 t^8 x^2 z^6 +
232 x^4 z^6 + 456 t^2 x^4 z^6 + 2104 t^4 x^4 z^6 +
2712 t^6 x^4 z^6 + 1856 t^8 x^4 z^6 + 96 x^6 z^6 + 472 t^2 x^6 z^6 +
2072 t^4 x^6 z^6 + 3208 t^6 x^6 z^6 + 2792 t^8 x^6 z^6 +
24 x^8 z^6 + 298 t^2 x^8 z^6 + 1178 t^4 x^8 z^6 + 2686 t^6 x^8 z^6 +
2870 t^8 x^8 z^6 + 108 t^2 x^10 z^6 + 396 t^4 x^10 z^6 +
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1668 t^6 x^10 z^6 + 2020 t^8 x^10 z^6 + 18 t^2 x^12 z^6 +
66 t^4 x^12 z^6 + 726 t^6 x^12 z^6 + 934 t^8 x^12 z^6 +
192 t^6 x^14 z^6 + 256 t^8 x^14 z^6 + 24 t^6 x^16 z^6 +
32 t^8 x^16 z^6 + 704 y^2 z^6 + 1760 t^2 y^2 z^6 +
1888 t^4 y^2 z^6 + 1312 t^6 y^2 z^6 + 480 t^8 y^2 z^6 +
1136 x^2 y^2 z^6 + 3456 t^2 x^2 y^2 z^6 + 5152 t^4 x^2 y^2 z^6 +
5248 t^6 x^2 y^2 z^6 + 2416 t^8 x^2 y^2 z^6 + 1768 x^4 y^2 z^6 +
5200 t^2 x^4 y^2 z^6 + 9152 t^4 x^4 y^2 z^6 +
11696 t^6 x^4 y^2 z^6 + 6232 t^8 x^4 y^2 z^6 + 1144 x^6 y^2 z^6 +
3760 t^2 x^6 y^2 z^6 + 9984 t^4 x^6 y^2 z^6 +
16720 t^6 x^6 y^2 z^6 + 10120 t^8 x^6 y^2 z^6 + 456 x^8 y^2 z^6 +
1752 t^2 x^8 y^2 z^6 + 7592 t^4 x^8 y^2 z^6 +
16024 t^6 x^8 y^2 z^6 + 10880 t^8 x^8 y^2 z^6 + 72 x^10 y^2 z^6 +
544 t^2 x^10 y^2 z^6 + 3952 t^4 x^10 y^2 z^6 +
10304 t^6 x^10 y^2 z^6 + 7848 t^8 x^10 y^2 z^6 +
72 t^2 x^12 y^2 z^6 + 1160 t^4 x^12 y^2 z^6 +
4192 t^6 x^12 y^2 z^6 + 3680 t^8 x^12 y^2 z^6 +
128 t^4 x^14 y^2 z^6 + 952 t^6 x^14 y^2 z^6 +
1016 t^8 x^14 y^2 z^6 + 96 t^6 x^16 y^2 z^6 + 128 t^8 x^16 y^2 z^6 +
384 y^4 z^6 + 1440 t^2 y^4 z^6 + 2208 t^4 y^4 z^6 +
1632 t^6 y^4 z^6 + 480 t^8 y^4 z^6 + 608 x^2 y^4 z^6 +
3200 t^2 x^2 y^4 z^6 + 6848 t^4 x^2 y^4 z^6 + 6528 t^6 x^2 y^4 z^6 +
2272 t^8 x^2 y^4 z^6 + 1760 x^4 y^4 z^6 + 7128 t^2 x^4 y^4 z^6 +
15128 t^4 x^4 y^4 z^6 + 16008 t^6 x^4 y^4 z^6 +
6248 t^8 x^4 y^4 z^6 + 1288 x^6 y^4 z^6 + 6856 t^2 x^6 y^4 z^6 +
19576 t^4 x^6 y^4 z^6 + 25176 t^6 x^6 y^4 z^6 +
11168 t^8 x^6 y^4 z^6 + 832 x^8 y^4 z^6 + 4730 t^2 x^8 y^4 z^6 +
17242 t^4 x^8 y^4 z^6 + 26382 t^6 x^8 y^4 z^6 +
13230 t^8 x^8 y^4 z^6 + 216 x^10 y^4 z^6 + 1980 t^2 x^10 y^4 z^6 +
10092 t^4 x^10 y^4 z^6 + 18420 t^6 x^10 y^4 z^6 +
10476 t^8 x^10 y^4 z^6 + 274 t^2 x^12 y^4 z^6 +
3186 t^4 x^12 y^4 z^6 + 7806 t^6 x^12 y^4 z^6 +
5278 t^8 x^12 y^4 z^6 + 384 t^4 x^14 y^4 z^6 +
1704 t^6 x^14 y^4 z^6 + 1512 t^8 x^14 y^4 z^6 +
144 t^6 x^16 y^4 z^6 + 192 t^8 x^16 y^4 z^6 + 608 x^4 y^6 z^6 +
2384 t^2 x^4 y^6 z^6 + 3856 t^4 x^4 y^6 z^6 + 2992 t^6 x^4 y^6 z^6 +
912 t^8 x^4 y^6 z^6 + 496 x^6 y^6 z^6 + 3568 t^2 x^6 y^6 z^6 +
8848 t^4 x^6 y^6 z^6 + 8976 t^6 x^6 y^6 z^6 + 3200 t^8 x^6 y^6 z^6 +
752 x^8 y^6 z^6 + 4356 t^2 x^8 y^6 z^6 + 11780 t^4 x^8 y^6 z^6 +
13596 t^6 x^8 y^6 z^6 + 5420 t^8 x^8 y^6 z^6 + 288 x^10 y^6 z^6 +
2552 t^2 x^10 y^6 z^6 + 8984 t^4 x^10 y^6 z^6 +
12232 t^6 x^10 y^6 z^6 + 5512 t^8 x^10 y^6 z^6 +
404 t^2 x^12 y^6 z^6 + 3156 t^4 x^12 y^6 z^6 +
5940 t^6 x^12 y^6 z^6 + 3252 t^8 x^12 y^6 z^6 +
384 t^4 x^14 y^6 z^6 + 1320 t^6 x^14 y^6 z^6 +
1000 t^8 x^14 y^6 z^6 + 96 t^6 x^16 y^6 z^6 + 128 t^8 x^16 y^6 z^6 +
288 x^8 y^8 z^6 + 1080 t^2 x^8 y^8 z^6 + 1656 t^4 x^8 y^8 z^6 +
1224 t^6 x^8 y^8 z^6 + 360 t^8 x^8 y^8 z^6 + 144 x^10 y^8 z^6 +
1008 t^2 x^10 y^8 z^6 + 2448 t^4 x^10 y^8 z^6 +
2448 t^6 x^10 y^8 z^6 + 864 t^8 x^10 y^8 z^6 +
184 t^2 x^12 y^8 z^6 + 1064 t^4 x^12 y^8 z^6 +
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1600 t^6 x^12 y^8 z^6 + 720 t^8 x^12 y^8 z^6 +
128 t^4 x^14 y^8 z^6 + 376 t^6 x^14 y^8 z^6 + 248 t^8 x^14 y^8 z^6 +
24 t^6 x^16 y^8 z^6 + 32 t^8 x^16 y^8 z^6 + 176 z^8 + 256 t^2 z^8 +
256 t^4 z^8 + 160 t^6 z^8 + 48 t^8 z^8 + 256 x^2 z^8 +
240 t^2 x^2 z^8 + 544 t^4 x^2 z^8 + 496 t^6 x^2 z^8 +
192 t^8 x^2 z^8 + 224 x^4 z^8 + 152 t^2 x^4 z^8 + 892 t^4 x^4 z^8 +
848 t^6 x^4 z^8 + 396 t^8 x^4 z^8 + 96 x^6 z^8 + 32 t^2 x^6 z^8 +
900 t^4 x^6 z^8 + 840 t^6 x^6 z^8 + 516 t^8 x^6 z^8 + 24 x^8 z^8 +
8 t^2 x^8 z^8 + 575 t^4 x^8 z^8 + 510 t^6 x^8 z^8 +
463 t^8 x^8 z^8 + 210 t^4 x^10 z^8 + 180 t^6 x^10 z^8 +
290 t^8 x^10 z^8 + 35 t^4 x^12 z^8 + 30 t^6 x^12 z^8 +
123 t^8 x^12 z^8 + 32 t^8 x^14 z^8 + 4 t^8 x^16 z^8 + 256 y^2 z^8 +
704 t^2 y^2 z^8 + 784 t^4 y^2 z^8 + 480 t^6 y^2 z^8 +
144 t^8 y^2 z^8 + 256 x^2 y^2 z^8 + 1040 t^2 x^2 y^2 z^8 +
1632 t^4 x^2 y^2 z^8 + 1424 t^6 x^2 y^2 z^8 + 576 t^8 x^2 y^2 z^8 +
416 x^4 y^2 z^8 + 1560 t^2 x^4 y^2 z^8 + 2696 t^4 x^4 y^2 z^8 +
2760 t^6 x^4 y^2 z^8 + 1336 t^8 x^4 y^2 z^8 + 224 x^6 y^2 z^8 +
1032 t^2 x^6 y^2 z^8 + 2616 t^4 x^6 y^2 z^8 + 3416 t^6 x^6 y^2 z^8 +
1992 t^8 x^6 y^2 z^8 + 96 x^8 y^2 z^8 + 472 t^2 x^8 y^2 z^8 +
1780 t^4 x^8 y^2 z^8 + 2800 t^6 x^8 y^2 z^8 + 1972 t^8 x^8 y^2 z^8 +
88 t^2 x^10 y^2 z^8 + 736 t^4 x^10 y^2 z^8 + 1432 t^6 x^10 y^2 z^8 +
1296 t^8 x^10 y^2 z^8 + 140 t^4 x^12 y^2 z^8 +
400 t^6 x^12 y^2 z^8 + 548 t^8 x^12 y^2 z^8 + 40 t^6 x^14 y^2 z^8 +
136 t^8 x^14 y^2 z^8 + 16 t^8 x^16 y^2 z^8 + 96 y^4 z^8 +
384 t^2 y^4 z^8 + 624 t^4 y^4 z^8 + 480 t^6 y^4 z^8 +
144 t^8 y^4 z^8 + 64 x^2 y^4 z^8 + 544 t^2 x^2 y^4 z^8 +
1472 t^4 x^2 y^4 z^8 + 1568 t^6 x^2 y^4 z^8 + 576 t^8 x^2 y^4 z^8 +
448 x^4 y^4 z^8 + 1696 t^2 x^4 y^4 z^8 + 3524 t^4 x^4 y^4 z^8 +
3784 t^6 x^4 y^4 z^8 + 1508 t^8 x^4 y^4 z^8 + 224 x^6 y^4 z^8 +
1400 t^2 x^6 y^4 z^8 + 4156 t^4 x^6 y^4 z^8 + 5488 t^6 x^6 y^4 z^8 +
2508 t^8 x^6 y^4 z^8 + 176 x^8 y^4 z^8 + 992 t^2 x^8 y^4 z^8 +
3367 t^4 x^8 y^4 z^8 + 5190 t^6 x^8 y^4 z^8 + 2735 t^8 x^8 y^4 z^8 +
264 t^2 x^10 y^4 z^8 + 1578 t^4 x^10 y^4 z^8 +
3084 t^6 x^10 y^4 z^8 + 1962 t^8 x^10 y^4 z^8 +
315 t^4 x^12 y^4 z^8 + 998 t^6 x^12 y^4 z^8 + 875 t^8 x^12 y^4 z^8 +
120 t^6 x^14 y^4 z^8 + 216 t^8 x^14 y^4 z^8 + 24 t^8 x^16 y^4 z^8 +
160 x^4 y^6 z^8 + 672 t^2 x^4 y^6 z^8 + 1144 t^4 x^4 y^6 z^8 +
912 t^6 x^4 y^6 z^8 + 280 t^8 x^4 y^6 z^8 + 32 x^6 y^6 z^8 +
656 t^2 x^6 y^6 z^8 + 2056 t^4 x^6 y^6 z^8 + 2272 t^6 x^6 y^6 z^8 +
840 t^8 x^6 y^6 z^8 + 160 x^8 y^6 z^8 + 880 t^2 x^8 y^6 z^8 +
2534 t^4 x^8 y^6 z^8 + 3100 t^6 x^8 y^6 z^8 + 1286 t^8 x^8 y^6 z^8 +
320 t^2 x^10 y^6 z^8 + 1556 t^4 x^10 y^6 z^8 +
2408 t^6 x^10 y^6 z^8 + 1172 t^8 x^10 y^6 z^8 +
350 t^4 x^12 y^6 z^8 + 916 t^6 x^12 y^6 z^8 + 598 t^8 x^12 y^6 z^8 +
120 t^6 x^14 y^6 z^8 + 152 t^8 x^14 y^6 z^8 + 16 t^8 x^16 y^6 z^8 +
72 x^8 y^8 z^8 + 288 t^2 x^8 y^8 z^8 + 468 t^4 x^8 y^8 z^8 +
360 t^6 x^8 y^8 z^8 + 108 t^8 x^8 y^8 z^8 + 144 t^2 x^10 y^8 z^8 +
504 t^4 x^10 y^8 z^8 + 576 t^6 x^10 y^8 z^8 + 216 t^8 x^10 y^8 z^8 +
140 t^4 x^12 y^8 z^8 + 288 t^6 x^12 y^8 z^8 + 148 t^8 x^12 y^8 z^8 +
40 t^6 x^14 y^8 z^8 + 40 t^8 x^14 y^8 z^8 + 4 t^8 x^16 y^8 z^8
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