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Abstract We propose a variable selection procedure in model-based clustering mul-
tilocus genotype data. Indeed, it may happen that some loci are not relevant for clus-
tering into statistically different populations. Inferring the number K of clusters and
the relevant clustering subset S of loci is regarded as a model selection problem. The
competing models are compared using penalized maximum likelihood criteria. Under
weak assumptions on the penalty function, we prove the consistency of the resulting
estimator

(
K̂n, Ŝn

)
. An associated algorithm named Mixture Model for Genotype

Data (MixMoGenD) was implemented using c + + programming language and is
available on www.math.u-psud.fr/~toussile. To avoid an exhaustive research
of the optimum model, we propose an adaptation of the Backward-Stepwise algo-
rithm, which enables a better research of the optimum model among all possible
cardinalities of S. We present numerical experiments on simulated and real datasets
that highlight the interest of our loci selection procedure.

Keywords Model-Based Clustering · Penalized maximum likelihood criteria ·
Population Genetics · Variable Selection.

Subject classification JEL C89, AMS 62H30.

1 Introduction

A long standing issue in population genetics is the identification of genetically homo-
geneous populations. To give an answer to such a question using data coming from
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individuals for which there is no prior knowledge about the population they come
from, one has to face the statistical problem of unsupervised clustering. A number
of model based-clustering methods for multilocus genotype data have been devel-
oped in recent years. We can cite among others: STRUCTURE, Bayesian Analysis of
Population Structure (BAPS), Geneland and Fastruct proposed respectively by [19,
J. K. Pritchard et al. (2000)], [8, J. Corander. et al. (2004)], [12, G. Guillot et al.
(2005)] and [10, O. François et al. (2006)]. Multi-locus genotype datasets are becom-
ing increasingly large due to the explosion of genomic projects. But, the structure of
interest may be contained in only a subset of available loci, the others being useless or
even harmful to detect a reasonable clustering structure. It then becomes necessary to
select the optimum subset of loci which cluster the population in the best way. None
of the above methods perform automatically variable selection.

In this work, we propose a loci selection procedure in model-based clustering for
multi-allelic loci data, and an associated algorithm named Mixture Model for Genetic
Data (MixMoGenD). As almost all already proposed model-based clustering methods
for multilocus genotype data, our procedure attempts to group samples into clusters
of random mating individuals so that the Hardy-Weinberg Disequilibrium (HWD)
and the Linkage Disequilibrium (LD) are minimized across the sample. Although
Hardy-Weinberg and linkage equilibria models are based on several simplifying as-
sumptions that can be unrealistic, they have still proved to be useful in describing
many population genetics attributes and serve as a simple model in the development
of more realistic models of microevolution. Recall that in clustering, classification
is not observed and there is no prior knowledge of the structure being looked for in
the analysis, and of the subset of available loci that are relevant for discrimination.
So there is no simple pre-analysis screening method available to use. Thus it makes
sense to include the loci selection procedure as a part of the clustering algorithm as
recommended in [16, C. Maugis et al.] in a Gaussian setting.

Let K denote the (unknown) number of clusters and S the (unknown) subset of
loci that are relevant for clustering. Inferring K and S is seen as a model selection
problem. More precisely, let L and P∗ (L) be respectively the number and the set of
all nonempty subsets of the available loci. A specific collection

C :=
(
M(K, S)

)
(K, S)∈N∗×P∗(L)

of models is defined such that each model M(K, S) corresponds to a particular struc-
ture situation with K clusters and a subset S of loci that are relevant for clustering.
The observations are supposed to be realizations from an unknown probability distri-
bution P0 in some of the competing models M(K, S). Consequently, inferring (K, S)
can be formulated as the choice of a model among the collection C . This choice
automatically leads to a data clustering and to a variable selection (the set of rele-
vant loci). A data-driven criterion is thus needed to select the ”best” model. There
exists a huge literature on model selection via penalized criteria, see [15, P. Massart
(2007)] and the references therein. We propose to use a penalized maximum likeli-
hood criterion. Our analysis and our algorithm do not impose a particular choice of
the penalization term. For the numerical experiments, we will use the BIC. In ad-
dition, we propose what we called a ”backward-stepwise explorer” algorithm which
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avoids an exhaustive research of the optimum model (which can be very painful in
most situations). This algorithm enables the research of the optimum model among
all possible cardinalities of S.

Although there exists a lot of works concerning the behaviour of BIC and other
penalization methods in practice, theoretical results in a mixture framework are few.
A general consistency theorem may be found in [11, E. Gassiat (2002)], applications
to mixture models are developed for example in [4, J.-M. Azais, E. Gassiat and C.
Mercadier] and [6, A. Chambaz, A. Garivier and E. Gassiat]. See also references
therein. The consistency of the BIC estimator is shown in [16, Maugis et al. ] for a
variable selection problem with Gaussian mixture models when the number of com-
ponents is known. But as far as we know, there is no consistency result for both
a variable selection and clustering problem in a discrete distribution setting. Under
weak assumptions on the penalty function, we prove that the probability to select the
true number of populations and the true set of relevant variables tends to 1 as the size
of the sample tends to infinity.

Our paper is organized as follows. In section 2, we describe the competing models
and the model selection principle we will use. We then describe the modification
of the Backward-Stepwise algorithm we propose to perform the model selection. In
section 3, we first describe how the true model may be characterized as the ”smallest”
model. We then discuss identifiability properties of latent class models in our settings
(mainly by presenting the result of E.S. Allman et al. (2008) [2]). We finally give our
main consistency result for the estimation of the model using penalized criteria such
as BIC type criteria. Section 4 is devoted to numerical experiments on both simulated
and real datasets to highlight the practical interest of our variable selection method.
In particular, the experiments show that our method performs well for unsupervised
clustering of genetically homogeneous populations in situations where measures of
population structure such as Wright’s F statistics are in a range where it is thought
that clustering is difficult. In such cases, the improvement is obviously due to the
variable selection procedure.

2 Model and methods

2.1 Framework, notation and competing models

The data set we shall deal with consists of the genotypes of a sample of n diploid
individuals at L loci that will be denoted by 1, . . . , l, . . . , L. The observations are
x1, . . . ,xn, where for each individual i, xi contains the genotypes at the L loci, that is
xi = (xl

i)l=1,...,L, where xl
i is the genotype of the ith individual at the lth locus. The

genotype xl
i consists of a (non ordered) set

{
xl

i,1, xl
i,2

}
of two (that may be equal)

alleles in the set of distinct allele states at locus l. These allele states are labeled
1, 2, . . . , Al , where Al denotes their number. When xl

i,1 = xl
i,2, individual i is said to

be homozygous at locus l. The dataset x1, . . . ,xn is assumed to be a realization of
a n-sample (that is n independent identically distributed random variables) with the
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same distribution as X =
(
X l

)
l=1,...,L, where X l =

{
X l

1, X l
2
}

, with X l
1 and X l

2 taking
their values in the set {1, . . . , l, . . . , Al} of observed alleles. Let :

– Z be the non observed random variable indicating the population the individual
comes from. We will denote zi the (unobserved) population of origin of individual
i;

– πk := P(Z = k), the probability that an individual comes from population k (the
πk’s are called the mixing proportions);

– αk,l, j := P
(
X l

1 = j|Z = k
)

= P
(
X l

2 = j| Z = k
)
, the frequency of the jth allele at

locus l in population k;
– and X, the set of all possible genotypes from the observed alleles.

Model-based clustering methods proceed by assuming that the observations from
each cluster are drawn from some parametric model and the overall population is a
finite mixture of these populations. As almost all already proposed model-based clus-
tering methods using genotype data, we wish to group the sample into clusters of ran-
dom mating individuals so that the Hardy-Weinberg (HW) and linkage disequilibria
(LD) are minimized across the sample (see [14, E. K. Latch (2006)] and the references
therein). Although Hardy-Weinberg and linkage equilibria models are based on sev-
eral simplifying assumptions that can be unrealistic, they have still proven to be useful
in describing many population genetics attributes and serve as a useful base model in
the development of more realistic models of microevolution. Thus we assume Hardy-
Weinberg and complete linkage equilibria in each cluster. Hardy-Weinberg means that
the probability to observe a genotype xl at locus l is given by

P
(

xl | Z = k, αk,l,·
)

=
(

2−1[xl
1=xl

2]
)

αk,l,xl
1
×αk,l,xl

2
, (1)

whereas complete linkage equilibria in each cluster means that within populations,
genotypes at different loci are independent random variables.

Let now S be the set of loci which are relevant for clustering. Sc is thus the set
of loci that are not relevant for clustering (S∪ Sc = {1, . . . , L}). Typically, the rea-
son why the loci of Sc are not relevant for clustering is that their alleles are equally
distributed across the clusters. This means that

(H ): for every locus l in Sc and for every allele j in {1, 2, . . . , Al}, one has

α1,l, j = α2,l, j = · · ·= αK,l, j =: βl, j. (2)

Under conditional Hardy-Weinberg equilibrium, conditional complete linkage equi-
librium, and assumption (H ), the observations are thus supposed to be independent
and identically distributed random variables with probability distribution

P(K, S) (x| θ) = P(x| K, S, θ)

=

[
K

∑
k=1

πk ∏
l∈S

P
(

xl | Z = k, αk,l, ·
)]
×∏

l∈Sc
P

(
xl | βl, ·

)
, (3)
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for x = (xl)l=1,...,L, where θ :=
(
π,

(
α·,l, ·

)
l∈S ,

(
βl, ·

)
l∈Sc

)
is a multidimensional pa-

rameter ranging in some space Θ(K, S). These parameters fulfill the following proper-
ties: {

0≤ πk ≤ 1, k = 1, . . . , K;
∑K

k=1 πk = 1.
(4)

{
0≤ αk, l, a ≤ 1, k = 1, . . . , K, l ∈ S, a = 1, . . . , Al ;
∑Al

a=1 αk, l, a = 1, k = 1, . . . , K, l = 1, . . . , L.
(5)

{
0≤ βl, a ≤ 1, l ∈ Sc, a = 1, . . . , Al ;
∑Al

a=1 βl, a = 1, l ∈ Sc.
(6)

The number K of clusters, the subset S of relevant loci for clustering, the mixing
proportions π = (πk)k=1,..., K , the allelic frequencies α =

(
αk,l, j

)
k=1,...,K; l∈S; j=1,...,Al

and β :=
(
βl, j

)
l∈Sc; j=1,..., Al

are treated as the parameters of the model, which have
to be inferred. The assignment zi of individual i to its population of origin is not ob-
served and has to be predicted. The parameters K and S will be treated in a particular
way.

For a given K and S, the parameter θ ≡ θ(K, S) is an element of the set Θ(K, S)
given by

Θ(K, S) := SK−1×
[
∏
l∈S
SAl−1

]K

×∏
l∈Sc
SAl−1, (7)

where Sr−1 =
{

p = (p1, p2, . . . , pr) ∈ [0, 1]r : ∑r
j=1 p j = 1

}
is the r−1 dimensional

simplex. We then consider the parametric model M(K, S) of probability distributions
defined by

M(K, S) =
{

P(K, S)
( · | θ(K, S)

)
; θ(K, S) ∈Θ(K, S)

}
. (8)

Each model M(K, S) corresponds to a particular structure situation with K clusters
and a clustering relevant variable subset S. Thus the choice of a model among the
collection C =

(
M(K, S)

)
(K, S)∈N∗×P∗(L) automatically leads to a data clustering (via

the estimation of the parameter θ(K, S) and the prediction of the zi’s, see below) and a
variable selection (via the estimation of S).

In the following, we will refer to the number of free parameters of a model
M(K, S) given by

D(K, S) = K−1+K ∑
l∈S

(Al−1)+ ∑
l /∈S

(Al−1) . (9)

as the dimension of the model M(K, S).



6

2.2 Model selection principle

We shall use penalized maximum likelihood as a model selection principle. Let D be
the set of all discrete probability distributions on X. Consider the empirical contrast
γn defined for every P ∈D by

γn (P) :=−1
n

n

∑
i=1

lnP(xi) .

Now, consider the collection C =
(
M(K,S)

)
(K,S)∈N∗×P∗(L) of the competing mod-

els. For every (K,S)∈N∗×P∗ (L), let P̂(K,S) := P(K, S)

(
· | θ̂MLE,(K, S)

)
be the maxi-

mum likelihood over M(K,S), that is the probability distribution that minimizes γn (P)
for P ∈M(K,S). Consider moreover some penalty functions

penn : N∗×P∗ (L) −→ R+
(K,S) 7−→ penn(K,S). (10)

The estimator
(

K̂n, Ŝn

)
is defined as a minimizer of the penalized criterion (see Mas-

sart (2007) [15] for an overview of model selection via penalization)

crit(K,S) := γn

(
P̂(K,S)

)
+ penn(K,S). (11)

We can then define the selected model M(K̂n, Ŝn) and the associated selected estima-

tor P̂(K̂n, Ŝn). The maximum likelihood estimate θ̂MLE,(K̂n, Ŝn) yields the Maximum a
Posteriori (MAP) prediction rule defined by

ẑi = arg max
k∈{1,..., K̂n}

π̂kP
(

xi| zi = k, θ̂MLE,(K̂n, Ŝn)

)
. (12)

One can notice that θ̂MLE,(K,S) =
(

γ̂MLE,(K,S), β̂MLE,(K,S)

)
, where γ = (π, α). The

maximum likelihood estimate γ̂MLE,(K,S) is computed thanks to the Expectation Max-
imization (EM) algorithm (Dempster et al. (1977) [9]) (see Appendix for the EM
equations), and the likelihood estimate β̂MLE,(K,S) is given by the observed frequen-
cies of the alleles of the loci of Sc.

As shown below in subsection 3.1, assuming that the true density P0 belongs to
one of the competing models implies that there exists a ”smallest” model M(K0, S0)
containing P0. Thus, it makes sense to consider penalties penn that are increasing
functions of the dimension D(K,S) such as the BIC type criteria. We prove below

the consistency of the estimator
(

K̂n, Ŝn

)
under weak assumptions on the penalty

functions.
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2.3 Selection procedure

The space of competing models can be very large, consisting of all combinations of
all

(
2L−1

)
non-empty subsets of the available loci with each possible number of

populations. Thus an exhaustive research of an optimum model is very painful in
most situations. A two nested-step algorithm combined with a Backward-Stepwise
algorithm is proposed in C. Maugis et al. [16] in a Gaussian framework to avoid and
exhaustive research of the optimum model. This algorithm makes use of an exclusion
and an inclusion steps. Starting from the exclusion with all the variables selected,
Backward-Stepwise algorithm enables to take into account the possible interaction
between variables. The algorithm proposed in C. Maugis et al. stops when there are
no exclusion and no inclusion in two consecutive steps.

When performing numerical experiments, we found that this Backward-Stepwise
algorithm could miss the optimum model in some cases, in particular in cases where
the optimum subset of clustering loci is small. So we propose an adaptation of this
Backward-Stepwise which forces to go down until the cardinality of S equals 1, so
that sets S with small cardinality are always explored by the algorithm (see (18) be-
low). The optimum model is then chosen between all the models explored by our
proposed algorithm named ”backward-stepwise explorer”.

In addition, if the model is identifiable up to label switching, then the number
of free parameters of the mixture part is at most equal to the cardinality of XS :={(

xl
)

l∈S : x ∈ X}
:

K−1+K∑l∈S (Al−1)≤∏
l∈S

((
2
Al

)
+Al

)
−1. (13)

Despite that this condition is not sufficient, it gives an upper bound on Kmax =
maxS K (S) of the number of populations where K (S) is the smallest integer bigger
than

∏l∈S
Al(Al+1)

2
1+∑l∈S (Al−1)

. (14)

Thus, the research of the best model can be done among the finite collection CKmax

given by
CKmax :=

(
M(K, S)

)
K=1,..., Kmax;S∈P∗(L) . (15)

The two nested-step algorithm is stated as follows.

– Step 1. For all K ∈ {1, . . . , Kmax}, we reseach

Ŝn (K) = arg min
S∈P∗(L)

crit (K, S) (16)

by exploring competing models with K clusters using our proposed backward
stepwise explorer procedure detailed hereafter.

– Step 2. We determine

K̂n = arg min
K∈{1,..., Kmax}

crit
(

K, Ŝn (K)
)

. (17)
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The selected model is then given by
(

K̂n, Ŝn

(
K̂n

))
.

At each step, the following Backward-Stepwise explorer algorithm (18) searches
for a locus in S to remove, and then assesses whether one of the current irrelevant loci
in Sc can be selected. The decision of excluding a locus from or including a locus
in the set of clustering loci is based on a penalized maximum likelihood criterion of
the form given in equation (11). The proposed candidate locus cex for exclusion from
the currently selected clustering loci S is chosen to be the one from this set without
which the model is the best among the submodels with |S| − 1 loci. The proposed
new clustering locus cin for inclusion in the currently selected clustering loci set S is
chosen to be the one from the set Sc of currently non-selected loci which shows most
evidence of multivariate clustering including the previous selected loci.
BACKWARD-STEPWISE EXPLORER()

1 S←{1, . . . , L} , Sc← /0
2 cex← 0, cin← 0
3 repeat
4 cex← argminl∈S crit (K,Sr{l})
5 if crit (K, S)− crit (K, Sr{cex})≥ 0 or cin = 0
6 then S← Sr{cex}
7 else cex← 0
8 cin← argminl∈Sc crit (K, S∪{l})
9 if crit (K, S∪{cin})− crit (K, S) < 0 and the model M(K, S∪{cin})

10 never be ”reference model”1 in an exclusion step
11 then S← S∪{cin}
12 else cin← 0
13 until |S|= 1.

(18)

3 Consistency

This section is devoted to the theoretical result of consistency of the estimator
(

K̂n, Ŝn

)

of parameter (K0, S0) defined in subsection 3.1. Identifiability of the models M(K, S)
is discussed in subsection 3.2 using a result obtained by E. S. Allman et al. (2008)
[2], and the main consistency result is given in subsection 3.3.

3.1 The ”smallest” model M(K0, S0)

Let M =
⋃

(K, S) M(K, S) be the set of all probability distributions defined by the
models M(K, S) in competition. We assume that the true probability distribution P0
of the observations that we are dealing with is an element of M . By lemma 1 stated

1 What we call ”reference model” is every model (K, S) in line 4 of Algorithm (18).
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hereafter there are more than one model M(K, S) such that P0 ∈M(K, S). But thanks
to the lemma 2 below, there exists a ”smallest” model M(K0, S0) containing the true
density P0. This ”smallest” model can be defined by (K0, S0) := (K (P0) , S (P0)),
where

K (P) = min
K



K : P ∈

⋃

S∈P∗(L)

M(K, S)



 , (19)

S (P) = min
S

{
S : P ∈

⋃

K∈N∗
M(K, S)

}
, (20)

for every P in one of the competing models M(K, S). In (20), min is in the sense of the
partial order defined by the inclusion of sets. Consequently, we will refer to M(K0, S0)
as our uniquely defined true model.

Lemma 1 For every K1, K2 in N∗ and S1, S2 in P∗ (L), if K1 ≤K2 and S1 ⊆ S2, then
M(K1, S1) ⊆M(K2, S2).

Lemma 2 For every K1, K2 in N∗ and S1, S2 in P∗ (L), one has

M(K1, S1)∩M(K2, S2) = M(K1∧K2, S1∩S2),

where K1∧K2 = min{K1, K2}.

The proofs of Lemmas 1 and 2 are given in Appendix A and B.

3.2 Identifiability of parameter γ = (π, α) in the model M(K, S)

The classical definition of an identifiable model M(K, S) of probability distributions
requires that for any two different parameter values θ and θ ′ in parameter space
Θ(K, S), the corresponding probability distributions P(K, S) ( · | θ) and P(K, S) ( · | θ ′)
be different. This is to require injectivity of the parameterization map Ψ for this
model, which is defined by Ψ (θ) = P(K, S) ( · | θ). In the context of finite mixtures,
the above map will not strictly be injective because the latent classes can be freely re-
labeled without changing the distribution underlining the observations. This is known
as ’label switching’. In such a case, the above map is always at least K!-to-one.

For a given K and S, assume that the frequencies of the genotypes in X are the
parameters of interest. In this subsection, we refer to a finite mixture model M(K, S)
as the K-class, |S|-feature model, with state space ∏l∈S {1, . . . , Gl}, and denote it
M

(
K ; (Gl)l∈S

)
, where Gl := Al(Al+1)

2 is the number of distinct genotypes from ob-
served allele states at locus l and |S| the cardinality of S. E. S. Allman et al. (2008)
[2] has proved that finite mixtures of multinomial distributions are generically iden-
tifiable. In the case of parametric setting, ’generic’ means that the set of points for
which identifiability does not hold has zero-measure. Here is the result of Elizabeth
S. et al. in our setting.
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Theorem 1 Consider model M
(
K ; (Gl)l∈S

)
where |S| ≥ 3. Assume there exists a

tripartition of the set S into three disjoint non-empty subsets S1, S2 and S3, such that

min(K, G1)+min(K, G2)+min(K, G3)≥ 2 ·K +2, (21)

where Gi := ∏l∈Si Gl .
Then the model is generically identifiable, up to label switching. Moreover, the

statement remains valid when the proportions of the groups {πk}k=1,..., K are held
fixed and positive.

This result implies that one needs a minimum of genetic variability to guarantee
the identifiability of the models in competition. For example, it will be difficult to
detect 4 subpopulations with 3 biallelic loci such as Single Nucleotide Polymorphims
(SNP).

3.3 The main result

In this section, we prove that the probability of selecting the ”smallest” model (K0, S0)
(see subsection 3.1) via a penalized maximum likelihood criterion tends to 1 as n
tends to infinity, for penalty functions of the form

penn : {1; . . . ;Kmax}×P∗ (L) −→ R+

(K,S) 7−→ penn(K,S) =
1
n

pen
(
D(K,S), n

) (22)

fulfilling the following properties:

– (P1): for every integer D, limn→∞
pen(D, n)

n = 0;
– (P2): for every (K1, S1) and (K2, S2) such that M(K1, S1) (M(K2, S2), one has

lim
n→∞

(
pen

(
D(K2, S2), n

)− pen
(
D(K1, S1), n

))
= ∞.

We need the following weak assumption:

(H) : ∀x ∈ X, P0 (x) > 0, (23)

where X is the set of distinct genotypes defined by the observed allele states, and P0
the true probability distribution of the observations. Assumption (H) is not too strong
since only observed alleles are considered. Recall that the research of the optimum
model can be done among a finite sub collection CKmax (see equation 15)

Theorem 2 Assume (H) and P0 ∈M :=
⋃

(K, S)∈{1,..., Kmax}×P∗(L) M(K, S). Let
(

K̂n, Ŝn

)
:= arg min

(K, S)∈{1,..., Kmax}×P∗(L)
crit (K, S)

with crit (K, S) := γn

(
P̂(K,S)

)
+ penn (K,S), where penn (K,S) has form (22) and

fulfills (P1) and (P2). Then

P0

[(
K̂n, Ŝn

)
= (K0, S0)

]
→

n→∞
1. (24)
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The proof is given in Appendix C.

The BIC is the most used of the asymptotic penalized maximum likelihood cri-
teria fulfilling properties (P1) and (P2). Recall that for a given model M(K, S), this
criterion can be written as follows

BIC (K, S) :=−1
n

n

∑
i=1

lnP(K, S)

(
xi| θ̂MLE,(K,S)

)
+

D(K, S) lnn
2n

, (25)

where θ̂MLE,(K,S) = argmaxθ∈Θ(K, S) ∑n
i=1 lnP(K, S) (xi| θ). Thus the following corol-

lary is a direct consequence of theorem 2.

Corollary 1 Under assumption (H), the estimator of (K0, S0) given by
(

K̂n, Ŝn

)
:=

argmin(K, S) BIC (K, S) is such that

P
[(

K̂n, Ŝn

)
= (K0, S0)

]
P0−→

n→∞
1. (26)

This theoretical result on the consistency of the BIC holds empirically (see Sub-
section 4.1).

4 Numerical experiments

Our proposed method named MixMoGenD (Mixture Model for Genotype Data) has
been implemented using C + + programming language. This section is devoted to
the numerical experiments that illustrate its behavior and highlight the benefits of
the loci selection procedure. In subsection 4.1, results of numerical experiments on
simulated datasets are reported, and in subsection 4.2, the real dataset used in N. A.
Rosenberg et al. (2001) [21, N. A. Rosenberg et al. (2001)] is considered1. Since
some of the competing models are nested, we used the BIC for both simulated and
real experiments as recommended by Y. Wang and Q. Liu (2006) [23].

Preliminary simulations were conducted to regulate certain known problems of
the EM algorithm, in particular convergence towards the maximum likelihood and the
low speed of convergence in certain cases. In fact, EM algorithm is known to converge
slowly in some situations and its solution can highly depend of its starting position
and consequently produce sub-optimal maximum likelihood estimates. To act against
this dependency of EM on its initial position, CEM (Classification EM) and SEM
(Stochastic EM) have been proposed. We opt for the strategy of short runs of EM
from random positions followed by a long run of EM from the solution maximizing
the observed loglikelihood (See C. Biernacki, G. Celeux and G. Govaert (2001) [5]).

1 This dataset is available on http://rosenberglab.bioinformatics.med.umich.edu/jewishAut.html



12

Table 1 Parameters of simulated data to show the consistency of the selection procedure. K0 = 2, S0 =
{1, 2}, π = (0.30, 0.70).

Locus Allele Pop1 Pop2 Locus Allele Pop1 Pop2
1 1 0.70 0.25 3 1 0.85 0.85

2 0.30 0.75 2 0.15 0.15
2 1 0.35 0.70 4 1 0.50 0.50

2 0.65 0.30 2 0.50 0.50

4.1 Simulation examples

4.1.1 First series

The goal in the first series of simulated datasets is to see how the increase of the size
of the sample improves the capacity of our clustering method to select the ”small-
est” model M(K0, S0). We start with n = 100 individuals, and gradually increase this
sample size to 400 by a step of 50. We assume a clustering structure with K0 = 2 pop-
ulations, L = 4 loci with 2 alleles per locus, the subset S0 of clustering variables with
cardinality |S0| = 2. For each value n of the sample size, 100 datasets are generated
using the parameters given in Table 1. As seen on Figure 1, MixMoGenD consistently
identify the true model as n→∞. Other simulated datasets with K0 = 3 clusters, L = 6
loci and cardinality of the subset set of clustering loci |S0| = 4 confirmed these re-
sults. Thus, the theoretical result on the consistency that we showed in Section 3 holds
empirically.

4.1.2 Second series

Two other series of simulations are conducted to highlight the benefit of the variable
selection procedure in our settings. First, we independently generated 100 datasets
each with 1 000 individuals typed at L = 6 loci. We choose K0 = 3 populations and
|S0| = 4 clustering loci. Simulation parameters are given in Table 2. Using all the
6 loci, the true model is selected 39 times against 61 for the model with K̂n = 2
clusters. When including the variable selection procedure, MixMoGenD selects the
true model (K0, S0) 90 times against 10 for (K, S) = (2, S0). Empirically, it appears
that the number of populations can be under estimated when considering all available
loci as relevant for clustering.

4.1.3 Third series

We assume more variability in the third series. Here, each of the simulated datasets
consists of 1 000 individuals structured into 5 subpopulations of equal proportions.
We assume L = 10 loci each with 10 alleles, and four different cardinalities for S0:
8, 6, 4 and 2. For each cardinality of S0, we simulate 30 samples such that their
Wright’s parameter FST

2 are in [0.0181, 0.0450]. It is said in population genet-

2 Wright’s F statistics (Wright 1931) are the most widely used measures of population structure).
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Fig. 1 % of selecting the true number K0 of clusters and true model (K0, S0) vs the sample size.

Table 2 Parameters of simulated data to show the benefit of the selection procedure: K0 = 3, π =
(0.20, 0.30, 0.50), S0 = {1, 2, 3, 4}. L = locus, Pop=Population

L Allele Pop1 Pop2 Pop3 L Allele Pop1 Pop2 Pop3
1 1 0.20 0.40 0.50 4 1 0.30 0.40 0.65

2 0.30 0.40 0.20 2 0.60 0.40 0.15
3 0.50 0.20 0.30 3 0.10 0.20 0.20

2 1 0.20 0.40 0.50 5 1 0.25 0.25 0.25
2 0.20 0.40 0.10 2 0.30 0.30 0.30
3 0.40 0.10 0.10 3 0.25 0.25 0.25
4 0.20 0.10 0.30 4 0.20 0.20 0.20

3 1 0.15 0.25 0.50 6 1 0.40 0.40 0.40
2 0.25 0.25 0.10 2 0.30 0.30 0.30
3 0.60 0.50 0.40 3 0.30 0.30 0.30

ics that unsupervised clustering is difficult with such a range of FST (E. K. Latch
et am. (2006) [14]). We assume the uniform distribution for the alleles of the loci
in Sc

0. These simulated datasets and their simulation parameters are available on
http://www.math.u-psud.fr/~toussile. We used Kmax = 10 for all these sim-
ulations.

On these simulated samples, MixMoGenD gives three main results (see Tables
5, 6, 7 and 8). First, the true subset of clustering loci is systematically selected for
all these simulations. Second, as expected, the variable selection procedure improves
significantly the inference on the number K of clusters and the prediction capacity



14

Table 3 Example matrix of pairwise FST : the FST between population 4 and the others are all < 0.0260.
MixMoGenD on this data set produces 4 clusters and we observed that Pop4 was uniformly distributed in
the 4 clusters.

Pop1 Pop2 Pop3 Pop4 Pop5
Pop1 0.00000000 0.04112990 0.03024947 0.02425668 0.03535726
Pop2 0.04112990 0.00000000 0.03831558 0.02255300 0.02756619
Pop3 0.03024947 0.03831558 0.00000000 0.02255183 0.03251246
Pop4 0.02425668 0.02255300 0.02255183 0.00000000 0.02509488
Pop5 0.03535726 0.02756619 0.03251246 0.02509488 0.00000000

measured by the percentage of missassigned individuals (% MA). In fact, the num-
ber of clusters can be underestimated when considering loci that are not relevant for
clustering. Third, it appears that the benefit of the selection procedure is more im-
portant with the decrease of cardinality of the subset S0. The more striking samples
are the ones with 2 clustering variables (see Table 8). When using variable selection,
the thresholds of FST for which MixMoGenD perfectly selects the true number K0
of populations are 0.0342, 0.0307, 0.0316 and 0.0248 for |S0| equal to 8, 6, 4 and
2 respectively. These thresholds are more greater when using all loci as relevant for
clustering (For example 0.0425 for |S0|= 8). In addition, for each simulated sample
for which K̂n < K0, we compute the square matrix of the pairwise FST between popu-
lations using the function Fstat of package Geneland [12] of R program. We observe
that for each cardinality of S0 we considered, there exists a threshold FSTmax of pair-
wise FST for which two subpopulations with FST < FSTmax are clustered together. This
threshold is approximately equal to 0.0270 on our simulated datasets with |S0| = 8.
The more striking example is the data 5 in Table 5 (d). The square matrix of pairwise
FST is given in Table 3. The FST between population 4 and the others are all less than
0.0260. On this dataset, MixMoGenD produces 4 clusters and we observed that Pop4
was uniformly distributed in the 4 clusters.

4.2 Real dataset example

The dataset we considered consists of 159 males from 8 populations (6 Jewish and
2 non-Jewish populations): Ashkenazi Jews from Poland (20), Druze (20), Ethiopian
Jews (19), Iraqi Jews (20), Libyan Jews (20), Moroccan Jews (20), Palestinian Arabs
(20) and Yemenite Jews (20). Individuals were genotyped for 20 unlinked microsatel-
lites spread across 14 autosomes. For this dataset, the question of interest is the rela-
tionship among these populations. See N. A. Rosenberg et al. (2001) [21] for a com-
plete description of this dataset, in which the authors used several statistical anal-
ysis. To test the correspondence of genetic clusters with culturally labeled groups,
they used the computer program STRUCTURE proposed by J. K. Pritchard et al.
(2000) [19]. As MixMoGenD, this program implements a model-based clustering
which identifies clusters of genetically similar diploid individuals from multilocus
genotypes without prior knowledge of they population affinities. However, it does
not contain a variable selection procedure which is the key point of MixMoGenD.
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Table 4 Result from MixMoGenD with Kmax = 10. (a) Using the 8 populations: K̂n = 2 clusters and
the subset of clustering loci Ŝn = {D10S1426, D10S677}. This result indicates that the Libyan Jewish
appelation labeled not only a cultural group, but also a genetic cluster. (b) The sample without the Libyan
Jewish: Kmax = 10: K̂n = 2 clusters and the subset of clustering loci Ŝn = {D1S1679}. This table suggests
gene flow between these populations, particularly between Ethiopian Jews, Moroccan Jews and Yemenite
Jews in one hand, and Ashkenazi Jews, Druze and Palestinians in the other hand.

(a) (b)
Cluster 1 Cluster 2 Cluster 1 Cluster 2

Ashkenazi 0 20 7 13
Druze 1 19 3 17
Ethiopian Jews 2 17 17 2
Iraqi Jews 3 17 9 11
Libyan Jews 19 1 - -
Moroccan Jews 0 20 14 6
Palestinians 2 18 1 19
Yemenite Jews 0 20 14 6
% 0.17 0.83 0.47 0.53

MixMoGenD revealed a cluster that almost coincided with the sample of Libyan
Jews (Table 4 (a). Of 20 Libyan Jewish individuals in the sample, 19 fell into clus-
ter 1, while only 8 other individuals also fell into this cluster. Cluster 1 is similar to
cluster 3 reported in [19] using STRUCTURE, indicating that the Lybian Jewish ap-
pelation labeled not only a cultural group, but also a genetic cluster. The additional
important information obtained by MixMoGenD is the subset of clustering loci: only
2 loci D10S1426 and D10S677 suffice to distinguish Libyan Jews from the other
populations. The other sampled individuals fell into cluster 2. Subclustering analy-
sis showed that the sample whitout Libyan Jews could be divided in 2 clusters with
the subset of clustering loci containing only one locus which is the tetranucleotide
D1S1679 (Table 4 (b). This subclustering does not clearly separate any of the 7 popu-
lations felled in cluster 2 in the previous clustering analysis, but it suggests gene flow
between these populations, particularly between Ethiopian Jews, Moroccan Jews and
Yemenite Jews in one hand, and Ashkenazi Jews, Druze and Palestinians in the other
hand.

5 Discussion

We believe that MixMoGenD will be useful for two main reasons. First, like FAS-
TRUCT, our method is based on the EM algorithm, so that both share certain quali-
ties, particularly they are faster than their counterparts based on a Bayesian approach
[10].

More importantly, the key point of our proposed method is that it is combined
with a loci selection procedure. That is the main reason for which our method will be
very useful, and it is our main contribution. The results obtained on simulated data
show how the selection procedure improves significantly the inference on the num-
ber K of subpopulations and the prediction capacity. This improvement tends to be
more important when the number of clustering variables decreases. We also found
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that even in situations where measures of population structure such as Fst are in range
where it is thought that clustering is difficult (E. K. Latch (2005) [14]), MixMoGenD
perfectly identified the subset of clustering variables. In addition, due to the explo-
sion of genomic projects, datasets are becoming increasingly large. The space of the
models in competition can then be very large. Then an exhaustive research of an op-
timum model is very painful in most situation and could not be achieved by methods
based on MCMC algorithm as mentioned in O. Francois et al. (2006) [7]. Thus meth-
ods like frequentist likelihood methods using EM algorithm will then become useful
because they require much shorter computations than the methods based on MCMC
algorithm. We also propose a modification of the Backward-Stepwise algorithm that
we named Backward-Stepwise explorer (see 18), which enables not only to avoid
an exhaustive research of the optimum model, but also the reseach of the optimum
subset of clustering loci among all possible cardinalities.

Although the theoretical result on the consistency of the BIC was verified empir-
ically, it is well known that this criterion is not uniformly the best one. We currently
work on data dependent calibration of the penalty function in order to obtain an oracle
inequality.
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le Développement” (IRD). The authors thank Professor Henri Gwet for some helpful suggestions, Dr
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a critical reading of the original version of the paper.

Table 5 Results given by MixMoGenD on 30 samples each with n = 1 000 individuals structured into
K0 = 5 populations of equal mixing proportions. We assume L = 10 loci typed and |S0| = 8 clustering
loci. The datasets are simulated so that the Fst are in [0.0306, 0.0450]. % MA and % MAs = percentage
of missassigned individuals without and with loci selection respectively; K̂n and K̂s

n = the estimates of the
number of populations without and with loci selection respectively.

Data Fst K̂n % MA K̂s
n % MAs Data Fst K̂n % MA K̂s

n % MAs

1 0.0306 3 3 16 0.0381 5 10.90 5 10.30
2 0.0318 3 3 17 0.0382 5 09.30 5 08.80
3 0.0328 3 3 18 0.0390 4 4 09.10
4 0.0331 3 3 19 0.0400 5 08.80 5 08.00
5 0.0335 3 4 20 0.0404 4 4 09.50
6 0.0337 3 3 21 0.0425 5 06.30 5 05.40
7 0.0340 4 4 22 0.0427 5 07.10 5 07.50
8 0.0342 3 5 11.80 23 0.0427 5 05.90 5 05.90
9 0.0348 3 5 12.40 24 0.0435 5 06.70 5 06.50

10 0.0362 3 5 09.10 25 0.0436 5 07.10 5 06.60
11 0.0373 4 5 08.90 26 0.0440 5 05.50 5 05.70
12 0.0373 5 08.50 5 07.60 27 0.0442 5 07.20 5 06.80
13 0.0377 5 11.40 5 10.40 28 0.0449 5 07.20 5 06.70
14 0.0377 5 10.50 5 10.20 29 0.0449 5 06.10 5 06.30
15 0.0377 5 10.30 5 10.20 30 0.0450 5 06.10 5 05.60
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Table 6 Results given by MixMoGenD on 30 samples each with n = 1 000 individuals structured into
K0 = 5 populations of equal mixing proportions. We assume L = 10 loci typed and |S0| = 6 clustering
loci. The datasets are simulated so that the Fst are in [0.0280, 0.0339]. % MA and % MAs = percentage
of missassigned individuals without and with loci selection respectively; K̂n and K̂s

n = the estimates of the
number of populations without and with loci selection respectively.

Data Fst K̂n % MA K̂s
n % MAs Data Fst K̂n % MA K̂s

n % MAs

1 0.0280 2 4 16 0.0309 2 5 13.90
2 0.0284 1 5 15.20 17 0.0310 2 5 11.70
3 0.0285 1 5 14.30 18 0.0310 3 5 12.20
4 0.0287 2 5 14.70 19 0.0311 3 5 12.00
5 0.0289 2 5 13.40 20 0.0314 2 5 12.80
6 0.0289 2 5 13.60 21 0.0319 3 5 10.60
7 0.0290 1 5 14.20 22 0.0319 4 5 11.00
8 0.0291 3 4 23 0.0321 4 5 11.30
9 0.0296 2 4 24 0.0321 4 5 11.50

10 0.0299 2 5 12.20 25 0.0325 4 5 10.50
11 0.0303 2 4 26 0.0329 4 5 10.70
12 0.0305 3 4 27 0.0330 4 5 09.80
13 0.0307 2 5 14.80 28 0.0333 3 5 12.50
14 0.0307 2 5 12.10 29 0.0337 3 5 09.70
15 0.0308 2 5 15.10 30 0.0339 4 5 09.60

Table 7 Results given by MixMoGenD on 30 samples each with n = 1 000 individuals structured into
K0 = 5 populations of equal mixing proportions. We assume L = 10 loci typed and |S0| = 4 clustering
loci. The datasets are simulated so that the Fst are in [0.0302, 0.0413]. % MA and % MAs = percentage
of missassigned individuals without and with loci selection respectively; K̂n and K̂s

n = the estimates of the
number of populations without and with loci selection respectively.

Data Fst K̂n % MA K̂s
n % MAs Data Fst K̂n % MA K̂s

n % MAs

1 0.0302 2 4 16 0.0338 3 5 10.50
2 0.0303 1 5 12.80 17 0.0345 3 5 08.60
3 0.0309 2 4 18 0.0349 3 5 08.50
4 0.0316 3 5 12.90 19 0.0354 3 5 11.90
5 0.0317 2 5 15.10 20 0.0359 3 5 10.80
6 0.0320 3 5 13.30 21 0.0388 4 5 06.40
7 0.0322 2 5 10.80 22 0.0390 4 5 06.70
8 0.0323 3 5 09.70 23 0.0391 4 5 07.40
9 0.0326 2 5 13.80 24 0.0393 4 5 07.40

10 0.0327 2 5 12.10 25 0.0394 5 07.90 5 06.00
11 0.0327 3 5 14.10 26 0.0399 4 5 07.60
12 0.0327 3 5 09.90 27 0.0402 4 5 07.30
13 0.0329 2 5 13.10 28 0.0408 4 5 07.90
14 0.0332 3 5 13.50 29 0.0412 4 5 07.10
15 0.0332 3 5 11.10 30 0.0413 5 06.40 5 07.30
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Table 8 Results given by MixMoGenD on 30 samples each with n = 1 000 individuals structured into
K0 = 5 populations of equal mixing proportions. We assume L = 10 loci typed and |S0| = 2 clustering
loci. The datasets are simulated so that the Fst are in [0.0181, 0.0266]. % MA and % MAs = percentage
of missassigned individuals without and with loci selection respectively; K̂n and K̂s

n = the estimates of the
number of populations without and with loci selection respectively.

Data Fst K̂n % MA K̂s
n % MAs Data Fst K̂n % MA K̂s

n % MAs

1 0.0181 1 4 16 0.0232 2 5 16.40
2 0.0186 1 4 17 0.0232 2 5 15.50
3 0.0193 1 4 18 0.0235 2 5 14.70
4 0.0195 1 4 19 0.0237 2 5 16.20
5 0.0195 1 4 20 0.0242 1 5 17.80
6 0.0199 1 4 21 0.0244 2 5 15.50
7 0.0199 1 4 22 0.0247 1 4
8 0.0203 1 4 23 0.0248 1 5 16.60
9 0.0205 1 4 24 0.0249 1 5 19.30

10 0.0216 1 4 25 0.0251 1 5 16.40
11 0.0222 2 5 15.30 26 0.0252 1 5 15.00
12 0.0227 1 5 17.10 27 0.0252 1 5 15.40
13 0.0229 2 5 15.80 28 0.0254 1 5 14.70
14 0.0230 2 5 14.90 29 0.0263 1 5 18.00
15 0.0230 2 5 14.60 30 0.0266 1 5 16.30
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A Proof of lemma 1

Let P∈M(K, S) and let θ = (π, α, β )∈Θ(K, S) be the parameter defining P. Assume without loss of gener-
ality that πK > 0 (If not, recall that in the context of finite mixture, the latent classes can be freely relabeled
without changing the distribution underlining the observations). Define for instance θ ′ = (π ′, α ′, β ′) ∈
Θ(K+1, S) as follows

π ′k = πk, k = 1, . . . , K−1

π ′K > 0 and π ′K+1 > 0 such that π ′K +π ′K+1 = πK

α ′(k, ·, ·) = α(k, ·, ·), k = 1, . . . , K

α ′(K+1, ·, ·) = α(K, ·, ·)

β ′ = β .

Obviously, One has P(·) = P(K+1, S) ( · | θ ′). So P is an element of model M(K+1, S).
We have just showed that M(K, S) ⊆M(K+1, S) and there remains to show that M(K, S) ⊆M(K, S′) for

every S and S′ such that S⊆ S′. In fact for such non empty subsets S and S′ of available loci, the parameter
space Θ(K, S) can be seen as a subset of Θ(K, S′) defined by the following equations:

α1,l, · = . . . = αK,l, · ∀l ∈ S′rS. (27)

B Proof of lemma 2

Let P be a probability distribution in M(K1 , S1) ∩M(K2 , S2). Then for every x in X, P(x) is given by the
following two equations.

P(x) =

[
K1

∑
k=1

π1
k ∏

l∈S1

P
(

xl | (α1
k, l, ·

))
]
×∏

l∈Sc
1

P
(

xl | (β 1
l, ·

))
, (28)

P(x) =

[
K2

∑
k=1

π2
k ∏

l∈S2

P
(

xl | (α2
k, l, ·

))
]
×∏

l∈Sc
2

P
(

xl | (β 2
l, ·

))
, (29)

where θ 1 :=
(
π1, α1, β 1) and θ 2 :=

(
π2, α2, β 2) are in Θ(K1 , S1) and Θ(K2, S2) respectively. Assume

without loss of generality that K1 ≤ K2 and denote A := S1 r (S1 ∩ S2), B := S2 r (S1 ∩ S2) and C =
LrS1∪S2, where L denotes the {1, . . . , L} of all typed loci. Using equation (28), the marginal probability
distribution of the sub-vector xS2 :=

(
xl)

l∈S2
is given by

P
(

xS2
)

=

[
K1

∑
k=1

π1
k ∏

l∈S1∩S2

P
(

xl | (α1
k, l, ·

))
]
×∏

l∈B
P

(
xl | (β 1

l, ·
))

, (30)

and using equation (29) one has

P(x) =

[
K1

∑
k=1

π1
k ∏

l∈S1∩S2

P
(

xl | (α1
k, l, ·

))
]
×∏

l∈B
P

(
xl | (β 1

l, ·
))× ∏

l∈A∪C
P

(
xl | (β 2

l, ·
))

=

[
K1

∑
k=1

π1
k ∏

l∈S1∩S2

P
(

xl | (α1
k, l, ·

))
]
× ∏

l∈A∪B∪C
P

(
xl |

(
β 3

l, ·
))

,

where β 3 is defined as follows

β 3
l = β 1

l if l ∈ B

β 3
l = β 2

l if l ∈ A∪C.

Consequently, P is an element of model M(K1∧K2 , S1∩S2).



21

C Proof of Theorem 2

For any 0 < δ < 1, define the compact set

Θ δ
(K, S) =

{
θ ∈Θ(K, S) : ∀x ∈ X, P(K, S) (x| θ)≥ δ

}
. (31)

We shall need the following proposition whose proof is given below in Appendix D.

Proposition 1 Under assumption (H), there exists a real δ > 0 such that for every (K, S), one has

− γn

(
P̂(K, S)

)
= sup

θ∈Θ δ
(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
+oP0 (1) (32)

and

sup
θ∈Θ(K, S)

EP0

[
lnP(K, S) (X | θ)

]
= sup

θ∈Θδ
(K, S)

EP0

[
lnP(K, S) (X | θ)

]
. (33)

One has the following upper bound

P0

[(
K̂n, Ŝn

)
6= (K0, S0)

]
≤ ∑

(K, S)6=(K0 , S0)
P0

[(
K̂n, Ŝn

)
= (K, S)

]
.

where the summation is for (K,S) ∈ {1, . . . , Kmax}×P∗ (L) and has a finite number of terms. It thus

suffices to prove that limn→∞ P0

[(
K̂n, Ŝn

)
= (K, S)

]
= 0 for every (K, S) 6= (K0, S0).

Let (K, S) be an element of {1, . . . , Kmax}×P∗ (L) such that (K, S) 6= (K0, S0). The probability

P0

[(
K̂n, Ŝn

)
= (K, S)

]
is bounded by

P0 [crit (K, S) < crit (K0, S0)] = P0

[
γn

(
P̂(K0 , S0)

)
− γn

(
P̂(K, S)

)
> penn (K, S)− penn (K0, S0)

]
, (34)

where γn (P) :=−1
n

∑n
i=1 lnP(xi) and P̂(K,S) is the maximum likelihood estimator (MLE) in M(K, S). Two

cases are considered: P0 ∈M(K, S) and P0 /∈M(K, S).

• Case 1: P0 ∈M(K, S), i.e there exists a parameter θ0,K,S in Θ(K, S) such that P0 = P(K, S)
(·| θ0,K,S

)
.

Denote D the set of all possible probability distributions on the set X of the genotype states. Since
M(K0 , S0) ⊆M(K, S) ⊆D , one has the following inequalities

−nγn (P0)≤−nγn

(
P̂(K0 , S0)

)
≤−nγn

(
P̂(K, S)

)
≤ sup

P∈M
(−nγn (P)) ,

so that
0≤−nγn

(
P̂(K, S)

)
+nγn

(
P̂(K0 , S0)

)
≤ sup

P∈M
(−nγn (P))+nγn (P0) .

But it is well known that 2supP∈M (−nγn (P))+ 2nγn (P0) converges in distribution to a chi-square vari-

able with |X| − 1 degrees of freedom, where |X| denote the cardinality of X. Thus −nγn

(
P̂(K, S)

)
+

nγn

(
P̂(K0 , S0)

)
is bounded in probability. But if P0 is an element of model M(K, S) and (K,S) 6= (K0,S0),

one has M(K0 , S0) (M(K, S), and it follows from (P3) that pen
(
D(K, S), n

)− pen
(
D(K0, S0), n

)
is positive

and tends to infinity as n tends to infinity. Thus

P0

[
nγn

(
P̂(K0, S0)

)
−nγn

(
P̂(K, S)

)
> pen

(
D(K, S), n

)− pen
(
D(K0 , S0), n

)]
.

tends to 0 as n tends to infinity.
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• Case 2: P0 /∈M(K, S), i.e for all θ in Θ(K, S), one has P0 6= P(K, S) (·| θ). By equation (32) of proposition
1, there exists a positive real δ such that

−γn

(
P̂(K, S) (·| θ)

)
= sup

θ∈Θδ
(K, S)

{
−γn

(
P(K, S) (·| θ)

)}
+oP0 (1) .

The set of functions F δ
(K, S) :=

{
lnP(K, S) ( · | θ) ,θ ∈Θ δ

(K, S)

}
is obviously P0-Glivenko-Cantelli, so that

−γn

(
P̂(K, S) (·| θ)

)
= sup

θ∈Θ δ
(K, S)

EP0

[
lnP(K, S) (X | θ)

]
+oP0 (1) .

On the other hand, since P0 is an element of M(K0 , K0), it is well known that

inf
θ∈Θ(K0 , S0)

EP0

[
lnP0 (X)− lnP(K0, S0) (X | θ)

]
= 0.

so that

sup
θ∈Θδ

(K0 , S0)

EP0

[
lnP(K0 , S0) (X | θ)

]
= sup

θ∈Θ(K0 , S0)

EP0

[
lnP(K0, S0) (X | θ)

]

(see equation (33) of proposition 1)

= EP0

[
lnP0 (X)

]
.

Thus

γn

(
P̂(K0 , S0)

)
− γn

(
P̂(K, S)

)
=− inf

θ∈Θδ
(K, S)

EP0

[
lnP0 (X)− lnP(K, S) (X | θ)

]
+oP0 (1) .

In addition, the function θ 7→ EP0

[
lnP0 (X)− lnP(K, S) (X | θ)

]
is continuous on the compact set

Θ δ
(K, S) and recall that in this case P0 is not in M(K, S). Consequently, one has

− inf
θ∈Θδ

(K, S)

EP0

[
lnP0 (X)− lnP(K, S) (X | θ)

]
< 0.

Also notice that by (P3), penn (K, S)− penn (K0, S0) tends to 0 as n tends to infinity. Then one has

lim
n→∞

P
[

γn

(
P̂(K0, S0)

)
− γn

(
P̂(K, S)

)
> penn (K, S)− penn (K0, S0)

]
= 0,

which is the desired result.

D Proof of proposition 1

Let nx denote the observed frequency of genotype x. It is well known that one has
nx

n
= P0 (x)+ oP0 (1),

so that

−γn

(
P(K, S) ( · | θ)

)
= ∑

x∈X

nx

n
lnP(K, S) (x| θ)

= ∑
x∈X

[
P0 (x)+oP0 (1)

]
× lnP(K, S) (x| θ) . (35)
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For every (K, S), there exists at least one real 0 < δ̃ < 1 such that Θ δ̃
(K, S) is not empty. Let δ̃ be such a real

and θ̃ an element of Θ δ̃
(K, S). By assumption (H) and using equation (35), one has the following inequality

− γn

(
P(K, S)

(
· | θ̃

))
≥ ∑

x∈X
P0 (x) ln δ̃ +oP0 (1) = ln δ̃ +oP0 (1) . (36)

Since X is a finite set, one has 0 < infx∈XP0 (x)≤ 1. Let δ be a real such that

0 < δ < min
{

δ̃
1

infx∈X P0(x) , inf
x∈X

P0 (x)
}

.

Obviously, one has δ̃
1

infx∈X P0(x) ≤ δ̃ , so that one has Θ δ̃
(K, S) ⊂Θ δ

(K, S) and then the following inequalities

sup
θ∈Θδ

(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
≥ sup

θ∈Θ δ̃
(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
, (37)

sup
θ∈Θδ

(K, S)

EP0

[
lnP(K, S) (X | θ)

]
≥ sup

θ∈Θ δ̃
(K, S)

EP0

[
lnP(K, S) (X | θ)

]
. (38)

Now if θ ∈Θ(K, S)rΘ δ
(K, S), then there exists a genotype xδ ∈ X such that P(K, S) (xδ | θ) < δ . In such a

case

− γn

(
P(K, S) ( · | θ)

)
≤ inf

X
P0 (x) lnδ +oP0 (1)

≤ inf
X

P0 (u) ln δ̃
1

infX P0(x) +oP0 (1) = ln δ̃ +oP0 (1)

≤ −γn

(
P(K, S)

(
· | θ̃

))
+oP0 (1) (39)

≤ sup
θ∈Θ δ̃

(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
+oP0 (1)

≤ sup
θ∈Θδ

(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
+oP0 (1) .

Consequently one has

sup
θ /∈Θδ

(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
≤ sup

θ∈Θ δ
(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
+oP0 (1)

so that

−γn

(
P̂(K, S) ( · | θ)

)
= sup

θ∈Θδ
(K, S)

{
−γn

(
P(K, S) ( · | θ)

)}
+oP0 (1) .

Using the same arguments, one gets

sup
θ∈Θ(K, S)

EP0

[
lnP(K, S) (·| θ)

]
= sup

θ∈Θ δ
(K, S)

EP0

[
lnP(K, S) (·| θ)

]
.

which are the disired results.
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E EM equations

Here we describe the EM equations. To assign individual i to a cluster, we compute the posterior as-
signment probabilities τik = P(zi = k| xi). Hereafter, we write γ(r) =

(
π(r), α(r)

)
for the estimate of

γ = (π, α) at iteration r of the EM algorithm. The τ(r)
ik can be describe as

τ(r)
ik =

π(r)
k ∏l∈S P

(
xl

i | zi = k, α(r)
k,l, ·

)

∑K
h=1 π(r)

h ∏l∈S P
(

xl
i | zi = h, α(r)

h,l, ·
) (40)

Then the update formulae for the parameters can be derived using the standard method of the EM algorithm

π(r+1)
k =

1
n

n

∑
i=1

τ(r)
ik (41)

and

α(r+1)
k,l, j =

∑n
i=1 τ(r)

ik

(
1[

xl
i,1= j

] +1[
xl

i,2= j
]
)

2∑n
i=1 τ(r)

ik

. (42)

EM algorithm is known to converge slowly in some situations and its solution can highly depend of
its starting position and consequently produce sub-optimal maximum likelihood estimates. To act against
this high dependency of EM on its initial position, CEM (Classification EM) and SEM (Stochastic EM)
have been proposed. We opt for the strategy of short runs of EM from random positions followed by a long
run of EM from the solution maximizing the observed loglikelihood (See C. Biernacki, G. Celeux and G.
Govaert (2001) [5]).


