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Abstract This paper considers the deconvolution problem in the case
where the target signal is multidimensional and no information is known
about the noise distribution. More precisely, no assumption is made on the
noise distribution and no samples are available to estimate it: the deconvolu-
tion problem is solved based only on observations of the corrupted signal. We
establish the identifiability of the model up to translation when the signal has
a Laplace transform with an exponential growth p smaller than 2 and when
it can be decomposed into two dependent components. Then, we propose an
estimator of the probability density function of the signal which is consistent
for any unknown noise distribution with finite variance. We also prove rates
of convergence and, as the estimator depends on p which is usually unknown,
we propose a model selection procedure to obtain an adaptive estimator with
the same rate of convergence as the estimator with a known tail parameter.
This rate of convergence is known to be minimax when p = 1.

1. Introduction. Estimating the distribution of a signal corrupted by some additive
noise, referred to as solving the deconvolution problem, is a long-standing challenge in non-
parametric statistics. In such problems, the observation Y is given by

(1 Y=X+e,

where X is the signal and € is the noise. Recovering the distribution of the signal using data
contaminated by additive noise is a common problem in all fields of statistics, see [40] and
the references therein. It has been applied in a large variety of disciplines and has stimulated
a great research interest for instance in signal processing [41, 1], in image reconstruction
[33, 8] or in astronomy [46].

Although a great deal of research effort has been devoted to design efficient estimators of
the distribution of the signal and to derive optimal convergence rates, the results available in
the literature suffer from a crucial limitation: they assume that the distribution of the noise
is known. Estimators based on Fourier transforms are the most widespread in this setting as
convolution with a known error density translates into a multiplication of the Fourier trans-
form of the signal by the Fourier transform of the noise. However, this assumption may have a
significant impact on the robustness of deconvolution estimators as pointed out in [38] where
the author established that the mean integrated squared error of such an estimator can grow
to infinity when the noise distribution is misspecified.

The aim of this paper is to solve the deconvolution problem without any assumption on
the noise distribution and based only on a sample of observations Y7, ..., Y,. In particular,
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we do not assume that some samples with the same distribution as e are available as in
[28, 34]. We prove this is possible as soon as the signal X has a distribution with light
enough tails and has at least two dimensions and may be decomposed into two subsets of
random variables which satisfy some weak dependency assumption. We then propose an
estimator of the density of its distribution which is shown to be minimax adaptive for the
mean integrated squared error.

The main reason why it becomes possible to solve the deconvolution problem in this mul-
tivariate setting is the structural difference between signal and noise: the signal has dependent
components while the noise has independent components. We prove that such a hidden struc-
ture may be discovered based only on observations Y7, ..., Y,. A first step to establish the
identifiability in deconvolution without any assumption on the noise was obtained by [24]
with a dependency assumption on the signal, but under the restrictive assumption that the
signal takes a finite number of values. This identifiability result was extended recently by
[21] who proved the identifiability up to translation of the distributions of the signal and of
the noise when the hidden signal is a hidden stationary Markov chain independent of the
noise. Following these ideas, the first part of our paper establishes the identifiability up to
translation of the deconvolution model when the signal X which lies in R, d > 2, can be
decomposed into two dependent components X M) g R%, dy >1, and X @) e R dy >1,
with dy + ds = d:

y® XM e
The identifiability up to translation of the law of X € R and of € € R? based on the law of
Y when the noise is independent of the signal only requires that the Laplace transform of the
signal has an exponential growth smaller than 2 and some dependency assumption between
XM and X®@),

The second objective of this paper is to propose an estimator of the probability density
function of X which is consistent without any assumptions on the noise distribution pro-
vided it has finite variance, and to study the rate of convergence of this estimator. In the
pioneering works on deconvolution for i.i.d. data, the distribution of X is recovered by filter-
ing the received observations to compensate for the convolution using Fourier inversion and
kernel based methods, see [17, 37, 47] for some early nonparametric deconvolution meth-
ods and [10, 20] for minimax rates. On the other hand, more recent works were dedicated
to multivariate deconvolution problems such as [15] for kernel density estimators, [44] for a
Bayesian approach or [18] for a multiscale based inference. In all these works, deconvolution
is solved under two restrictive assumptions: (a) the distribution of the noise is assumed to be
known and (b) this distribution is assumed to be such that its Fourier transform is nowhere
vanishing.

An important step toward solving the deconvolution problem without such restrictions
on the noise distribution was achieved in [39] for signals in R with a probability density
function supported on a compact subset of R. In [39], the estimation procedure only requires
the Fourier transform of the noise to be known on a compact interval around 0. The procedure
relies first on recovering as usual the Fourier transform of the signal by direct inversion on
the compact interval where the noise distribution is known, and by choosing a polynomial
expansion on this compact interval. Then, the Fourier transform is extended to larger intervals
before using a Fourier inversion to provide a probability density estimator. Under standard
smoothness assumptions, [39] established an upper bound for the mean integrated squared
error which is shown to be optimal under a few additional assumptions.

In this paper, we propose an estimation procedure inspired from our identifiability proof.
We provide an identification equation on Fourier transforms which can be used to build a
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contrast function to be minimized over a class of possible estimators of the unknown Fourier
transform of the distribution of the signal. Once an estimator of the Fourier transform of the
signal in a neighborhood of 0 is available, we use polynomial expansions of this estimator
as in [39] to extend it to R% 142 pefore using a Fourier inversion to obtain an estimator of
the density. To be able to get consistency and rates of convergence, one of the main hurdles
to overcome is to relate the value of the contrast function to the error on the Fourier trans-
form. In our opinion, this is far from obvious and it is the most difficult part of our work.
Then, under common smoothness assumptions, we obtain consistency and we provide rates
of convergence for the estimator of the probability density function of X depending on the
lightness of its tail. Both the regularity and the tail lightness have an impact on the rates of
convergence. Surprisingly, while this estimation procedure does not require any prior knowl-
edge on the noise, we obtain the same rates as in [39] when the signal distribution has a
compact support: not knowing the noise distribution does not affect these rates. Also, the
lower bound proved in [39] applies in this case and the rate of convergence of our estimator
is minimax.

We then propose a model selection method to obtain an estimator that is rate adaptive to
the unknown lightness of the tail. Minimax rates of convergence in deconvolution problems
may be found in [20], [6], [7] and in [40]. In most works on deconvolution, not only the
distribution of the noise is assumed to be known (or estimated for instance as in [28] and
[34]) but the rates of convergence depend on the decay of its Fourier transform (ordinary
or super smooth). It is interesting to note that in our context where the noise is completely
unknown, the rate of convergence depends only on the signal and not on the noise.

The paper is organized as follows. Section 2.1 displays the general identifiability result
which establishes that the distributions of the signal and of the noise can be recovered from
the observations up to a translation indeterminacy. This general result allows to identify sub-
models as illustrated in Section 2.2 with several common statistical frameworks. Section 3
describes the consistent estimator, the adaptive estimation procedure, and provides conver-
gence rates. Section 4 suggests a few possibilities for future works and settings in which our
results may contribute significantly. All proofs are postponed to the appendices.

2. Identifiability results.

2.1. General theorem. The following assumption is assumed to hold throughout the pa-
per.

H1 The signal X belongs to R¢ with d > 2 and the observation model is given by (2) in
which ¢ is independent of X and e is independent of £(?).

Consider model (2) in which ¢ is independent of X and £(!) is independent of e Let
Pr ¢ be the distribution of Y when X has distribution R and for i € {1,2}, €® has dis-
tribution Q¥ with Q = Q) ® Q@ . Denote by R(1) the distribution of X(*) and by R(?
the distribution of X (?). For any p > 0 and any integer p > 1, let MY be the set of positive
measures . on RP such that there exist A, B > 0 satisfying, for all A € RP,

/ exp (AT pu(de) < Aexp (BIA)

where for a vector A in a Euclidian space, ||A|| denotes its Euclidian norm and for any matrix
C, CT is the transpose matrix of C. When R € Mﬁ, the characteristic function of R can be
extended into a multivariate analytic function denoted by

$p:Ch xC» —C

(21,29) — /exp (zleml + zz;xg) R(dz1,dxs).
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Note that no assumption other than H1 is made on the noise €, and that assumption H2 may
be understood as a dependency assumption between the components X (1) and X(? of X as
discussed below.

H2 For any zp € C, 2 — & r(z0,2) is not the null function and for any zj € C%, 2+
®R(z,20) is not the null function.

Assumption H2 means that for any z; € C%, there exists zo € C% such that (21, 22) # 0
and for any zo € C%, there exists z; € C™ such that ® (21, z2) # 0.

In the following, the assertion R = R and Q= @ up to translation means that there exists
m = (mq,mz) € R% x R% such that if X has distribution R and for i € {1,2}, ¢; has
distribution @;, then (X; — mi)ie{m} has distribution R and for i € {1,2}, €; + m; has
distribution Q;.

THEOREM 2.1. Assume that R and R are probability distributions on R? which satisfy
assumption H2. Assume also that there exists p < 2 such that R and R are in M;‘f. Then,

Pro="P RO implies that R = R and Q= @ up to translation.

One way to fix the “up to translation" indeterminacy when the noise has a first order
moment is to assume that E[e] = 0. The proof of Theorem 2.1 is postponed to Appendix C.

2.1.0.1. Comments on the assumptions of Theorem 2.1.. First of all, Theorem 2.1 involves
no assumption at all on the noise distribution. This noise can be deterministic and there is
no assumption on the set where its characteristic function vanishes. In addition, there is no
density or singularity assumption on the distribution of the hidden signal. The signal may
have an atomic or a continuous distribution, and no specific knowledge about this is required.
The only assumptions are on the tail of the signal distribution and assumption H2 which, as
discussed below, is a dependency assumption.

The assumption that R € Mg is an assumption on the tails of the distribution of X. If R
is compactly supported, then R € M%, and if a probability distribution is in MZ for some p,
then p > 1 except in case it is a Dirac mass at point 0. The assumption p < 2 means that R is
required to have tails lighter than that of Gaussian distributions. It is useful to note that R is
in M for some p if and only if R) is in M% for some p and R®) is in M for some p.

Let us now comment assumption H2. Hadamard’s factorization theorem states that entire
functions are completely determined by their set of zeros up to a multiplicative indeterminacy
which is the exponential of a polynomial with degree at most the exponential growth of the
function (here p). If R € M, for some p < 2, then a consequence of Hadamard’s factorization
theorem (arguing variable by variable) is that @ () has no complex zeros if and only if R €
M,, is a dirac mass. Since we are interested in non deterministic signals, in general ®g(-,-),
®p(-,0) and ®g(0,-) will have complex zeros. Now, if the variables XV and X(?) are
independent, then for all z; € C% and 2y € C%, &g (21, 22) = PR (21,0) PR (0, 22), so that
®r(z1,-) is identically zero as soon as z; is a complex zero of @ (-, 0). Thus, assumption H2
implies that the variables X (1) and X ) are not independent except if they are deterministic.
Moreover, if for i € {1,2}, X(® can be decomposed as X = X&) 4y, with 7; and 7,
independent variables independent of X = (X1, X)) and if for some zy, E[¢’* ] = 0 or
for some zo, E[e?*2 2] = 0, then H2 does not hold. In other words, H2 can hold only if all
the additive noise has been removed from X. Here, additive noise means a random variable
with independent components. When the components X (1) and X of the signal have each
a finite support set of cardinality 2, Assumption H2 is even equivalent to the fact that X (1)
and X @ are not independent.
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Other examples in which assumption H2 holds are provided in Section 2.2, showing that
assumption H2 is a mild assumption which may hold for a large class of multivariate signals
with dependent components.

2.2. Identification of structured submodels. This section displays examples to which
Theorem 2.1 applies, and in particular, for each model, we provide conditions which en-
sure that assumption H2 holds. This means of course that such models are identifiable. But,
since they are submodels of the general model, it also means that they may be recovered in
this larger general model. Additional examples that could be investigated are discussed in
Section 4.

2.2.1. Noisy Independent Component Analysis. Independent Component Analysis as-
sumes that Y € R? is a random vector such that there exist an unknown integer ¢ > 1, an
unknown matrix A of size d x ¢, and two independent random vectors S € R and € € R¢
such that

3) Y=AS te,

where all coordinates of the signal S are independent, centered and with variance one and
all coordinates of the noise € are independent. The statistical challenge is to estimate A and
the probability distribution of S while only Y is observed. The noise free formulation of
this problem, i.e. Y = AS, was proposed in the signal processing litterature, see for instance
[29]. The identifiability of the noise free linear independent component analysis has been
established in [14, 19] under the following (sufficient) conditions.

- The components S;, 1 < i < ¢, are not Gaussian random variables (with the possible ex-
ception of one component).

- d > g, i.e. the number of observations is greater than the number of independent compo-
nents.

- The matrix A has full rank.

A noisy extension of the ordinary ICA model which implies further identifiability issues was
considered for instance in [41]. A correct identification of the mixing matrix A can be ob-
tained by assuming that the additive noise is Gaussian and independent of the signal sources
which are non-Gaussian, see for instance [27]. In our paper, identifiability of the ICA model
with unknown additive noise is established using Theorem 2.1 under some assumptions (dis-
cussed below). In the following, for any subset I of {1,...,d} and any matrix B of size d x g,
let B denote the || X ¢ matrix whose lines are the lines of B with index in I, where |C| is
the number of element of any finite set C'.

COROLLARY 2.2. Let A and A be two matrices of size d X q. Assume that there exists a
partition IUJ = {1,...,d} such that all columns of A1, A;, Ay and A are nonzero. Assume

also that (Sj)1<j<q (resp. (§j)1<]—<q ) are independent and that there exists p < 2 such that
the distributions of all Sj (resp. S;) are in M;. Denote by Q (resp. Q) the distribution of
€ (resp. €) and by R (resp. E) the distribution of AS (resp. Zg) in (3). Then, Prp =Pg

implies that R = R and Q= @ up to translation.

Corollary 2.2 is proved in Section D. Apart from the assumption that the independent
components of the signal have distribution with light tails, the main assumption is that the
observation Y may be splitted into two known parts so that the corresponding lines of the
matrix A have a non zero entry in each column. Although this assumption is not common in
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the ICA literature, as explained in [43, Section 1.1.3], a wide range of applications require to
design source separation techniques to deal with grouped data. Identifiability of such a group
structured ICA is likely to rely on specific assumptions and we propose in Corollary 2.2 a set
of assumptions which allow to apply Theorem 2.1.

2.2.2. Repeated measurements. In deconvolution problems with repeated measurements,
the observation model is

4) YW =x® 40 and y® =x0 42

where X (1) has distribution R(Y) on R% and is independent of & = (¢(1), )T where (!
is independent of £2) and e has distribution Q, see [16] for a detailed description of such

models and all the references therein for the numerous applications. Let R be the distribution
of (XM, Xx(1)T on R241,

COROLLARY 2.3. Assume that there exists p < 2 such that RV and RO are in /\/lffl.
Then, Pp o =P 73 implies that R = R and Q= @ up to translation.

PROOF. Assumption H2 holds since ® (21, 22) = ® gy (21 + 22) forall z; € C% and 25 €
C%, and ® o) can not be identically zero since ® ) (0) = 1. We then apply Theorem 2.1.
O

Therefore, deconvolution with at least two repetitions is identifiable without any assump-
tion on the noise distribution, under the mild assumption that the distribution of the variable
of interest has light tails. The model may also contain outliers with unknown probability and
still be identifiable.

Corollary 2.3 may be compared to [31, Lemma 1], in which Y is assumed to have a non
vanishing characteristic function, which implies that the characteristic functions of X (!) and
of the noise are nowhere vanishing. Identifiability of model (4) has been proved by [35] under
the assumption that the characteristic functions of X (1) and of the noise are not vanishing
everywhere. In [16], kernel estimators where proved equivalent to those for deconvolution
with known noise distribution when X (1) has a real characteristic function and for ordinary
smooth errors and signal.

2.2.3. Errors in variable regression models. The observations of errors in variable re-
gression models are defined as

(5) YO =xO 40 and v® =gx®) 42,

where ¢ : R% — R%, X has distribution R(") on R% and is independent of & =
(5(1)75(2))T, e is independent of £(?) and e has distribution Q. Let R be the distribu-
tion of (X1, (X)) on R%+4_If the distribution of (X1, g(X 1)) is identified, then its
support is identified and the support of (X, g(X (1)) is the graph of the function g so that
g is identified on the support of the distribution of X (1),

COROLLARY 2.4. Assume that there exists p < 2 such that RV and RO are in le

and that R® and R® are in M;‘fz. Assume also that the supports of XV and g(X (1)) have
a nonempty interior and that g is one-to-one on a subset of the support of X1 with nonempty
interior. Then, Pp, o =P 55 implies that R = R and QQ = Q up to translation.



DECONVOLUTION WITH UNKNOWN NOISE 7

This identifiability relies on weaker assumptions on the errors in variable regression mod-
els than in [16] where the noise distribution is assumed to be ordinary-smooth (which implies
in particular that its Fourier transform does not vanish on the real line) and where the distri-
bution of X (! is assumed to have a probability density with respect to the Lebesgue measure
on R. In [45], the authors also assumed a nowhere vanishing Fourier transform of the noise
distribution and that the distribution of X (1) admits a probability density with respect to
the Lebesgue measure uniformly bounded and supported on an open interval. In this setting
(more restrictive on the noise and with different restrictions on the signal), the identification
result in [45] is not comparable to ours.

PROOF. The proof boils down to establishing that Assumption H2 holds to apply The-
orem 2.1. If Assumption H2 does not hold, then either there exists zy € C% such that for
all z € C%, Ele® X" +2"9(X™)) = 0, or there exists zy € C% such that for all z € C%,
E[eZTX Mtz g(X (1>)] = 0. In the last case, since the support of X 1) has a nonempty inte-
rior, this is equivalent to E[e% 9(X™)| X (1] = 0, which means that e* 9(X") = 0, which is
impossible. Thus, since the support of g(X (1)) has a nonempty interior (which is the case
for instance if g is a continuous function), H2 does not hold if and only if for some zy,
E {eZOT X ‘ g(X (1))} = 0. The error in variables regression model is then identifiable without

knowing the distribution of the noise as soon as for all 2,

©6) E [eZoTX“) g(X(l))] £0.

When g is one-to-one on a subset of the support of X () with nonempty interior, for all z, (6)
is verified and the model is identifiable. U

3. Consistent estimation and rates of convergence. In this section, we propose an es-
timator of the signal density that is adaptive in the tail parameter p and we study its rate
of convergence. We first explain in Section 3.1 the construction of the estimator for a fixed
tail parameter. We then study in Section 3.2 the consistency and the rates of convergence for
the estimators with fixed tail parameter and give an upper bound for the maximum integrated
squared error over a class of densities with fixed regularity and tail parameters. We provide in
Section 3.3 a model selection method to choose the tail parameter based only on Yi,..., Y,
and prove that the resulting estimator is rate adaptive over the previously considered classes
of regularity and tail parameters.

Notations. In the following, the unknown distribution of the signal is denoted R* and
we assume that it admits a density f* with respect to the Lebesgue measure. Likewise,
the unknown distribution of the noise is written Q*. For all h : C* x C% — C, write
R - (t1,t9) — h(t1,0) and A : (t1,t2) — h(0,t) and for all by : Ch — C, hy : C% — C,
write hy ® ho : (t1,t2) — hi(t1)ha(t2). Define, for any positive integer p and any v > 0,
BY = [~v, v]P, and write L?(BY) the set of square integrable functions on B} (possibly tak-
ing complex values) with respect to the Lebesgue measure. For all & : C® x C% — C and
v > 0, we write ||h||2,, the L2(B% x B4 )-norm of h, ||h||1,, the L}(B% x B%)-norm of h
and ||h|| 0 the L°(B% x B%)-norm of h. We also write ||h||2 the L2(R% x R92)-norm of
h, ||h|l1 the L'(R% x R%)-norm of h and ||hl|o the L°(R% x R%)-norm of k. For any
discrete set A, |A| denotes the number of elements in A. For any matrix B, || B||r denotes
the Frobenius norm of B. For all i € N, ||i[|; = 22:1 iq.




3.1. Estimation procedure. The first step of our procedure is to estimate the Fourier
transform of f*. For all v > 0 and all measurable and bounded functions ¢ : B%* x B% — C,
define
2

9
2,v

M*(¢7 V) = H <¢(I)g*)¢)g*) - (I)R*¢(1)¢(2)) @Q*,(l) ® Q)Q*,(Q)

where ®g..a) (resp. ®..2) is the Fourier transform of the (unknown) distribution Q=
of €1 (resp. Q*? of e3). This contrast function is inspired by the identifiability proof, see
equation (S.4). Indeed, following the identifiability proof, we know that for all Q*, if R*
satisfies the assumptions of Theorem 2.1, and if ¢ is a multivariate analytic function satisfying
Assumption H2, such that there exist A, B > 0 and p € (0,2) such that for all (21,22) €
R% x R, |p(iz1,i27)| < Aexp(B|(21,22)||?) and such that $(0) = 1 and for all z € R,
#(2) = ¢(—=), then for any v > 0,

(7 M,(¢;v) =0 if and only if ¢ = Dp-.

In practice, R* and Q* are unknown. Choose first some fixed arbitrary ves > 0. The estima-
tor is defined by minimizing an empirical counterpart of M, (-, Ves) over classes of analytic
functions to be chosen later. For all n > 0, define

Mo(9) = 080 )~ G0 62

2
’

27Vesl

where for all (¢1,t9) € C% x C%,

n

~ 1 T () Ty (2)
¢n(t1’t2) — E E eltl }/E +lt2 le .
(=1

For all i € N and all analytic function ¢ defined on C9, write "¢ the partial derivative of
order i of ¢: for all z € C%, §'¢(z) = 0% ... 0% ¢(x). For all £ >0 and S < oo, let
9"(0)

Sl
<
d | Skl :
[omviat| ~ ally"™
Note that for all x > 0 and S < oo, the elements of Y, g are equal to their Taylor series
expansion. As shown in the following lemma, the sets T ,; 5 and ./\/l‘li /i A€ equivalent in that

(8) T = {0 analytic; ¥z € R, §(2) = 6(~2),6(0) = 1,

Vi e N4\ {0},

the set of all characteristic functions in (g T s is the set of characteristic functions of prob-
ability measures in /\/l‘lj .. 1ts advantage over M‘li /r is the more convenient characterization
of its elements ¢ in terms of their Taylor expansion.

LEMMA 3.1. For each p > 1 and probability measure u € MY, there exists S > 0
such that X — [ exp (z'/\Tac) p(dx) is in Ty, g. Conversely, for all k > 0, there exists a

constant ¢ such that for any S > 0 and for any probability measure 1 on R® such that
A— [exp (z’)\Tx) p(dx) isin Yy 5, p satisfies for all X € RP,

[ (W) ) < (14 (SIND* ) exp (s(SINDY")
d

In particular, u € ./\/ll/ﬁ.

PROOF. The proof is postponed to Appendix E. O
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Let now # be a set of functions R? — C? such that all elements of # satisfy H2 and
which is closed in LQ(BI‘L(). For all K > 0, .S > 0, n > 1, the Fourier transform ® g of the
distribution of X is estimated by

9) gg,m € argmin M, (o).
Y, sNH

To address possible measurability issues, note that we could take gg,ﬁn as a measurable func-
tion such that Mn(gg,m) < infger, s Mn(¢) + 1/n, and all the following results would
still hold. N

Consistency of ¢y, in L2(B& x B%) for any v € (0, Vey] will follow from (7) and the
compactness of T,, s N H. An estimator of the density f* is then obtained by Fourier in-
version. The first step is to truncate the polynomial expansion of gg,@,n. For all m € N, let
Cn[X1,...,X4] be the set of multivariate polynomials in d variables with (total) degree m
and coefficients in C. In the following, if ¢ is an analytic function defined in a neighborhood
of 0in C? writtenas ¢: 2 — >, ya Ci ngl ', define its truncation on C,,,[ X1, ..., X4 as

d
(10) T :x— Z ciH:cf;.

ieN:||if;<m  a=1
Then, for some integer m,. ,, (to be chosen later), the estimator of f* is defined as follows:
—~ 1 ~
11 = —it ! (T ) t)dt,
(11) fin () (2m)d /Bil,n Bl exp(—it ' z) M Prim (t)

for some wy , > 0 (to be chosen later).

3.2. Consistency and rates of convergence. In this section, we explain how to choose
(M) r.n and (W n)w.n to obtain the rate of convergence of f,,, to f* in L2(R% x R%).
For any « € (1/2,1], define

1 logn
12 - |=—— 9"
(12) s, {&dog(logn/él)J
and
(13) Win = cwmg’n/S

for some constant ¢, < Veg A 26 exp(—(3d + 5)/2). The following assumption allows to
control the regularity of the target density f*.

H3 We say that ® . satisfies H3 for the constants 3,cg > 0 if

/ B (8) 21+ [|#]2)PdE < 5.
R41 x R92

Forall k, S >0, 8>0,cg>0,v>0,c,>0and cg > 0, consider the following notations.

* U(k,S, B, cp)is the set of functions in Y, g that can be written as ® ; for some probability
measure 12 on R? and that satisfy H3 for 3, cg.

* Q(v,cy,cq) is the class of probability measures of the form QW Q@ where Q) (resp.
Q®) is a probability measure on R% (resp. R%) such that |®om| > ¢, on [—v,v]% and
@ | > ¢, on [—v,v]%, and such that if ¢ is a random variable with distribution @, then
E[lle]?] < cq-
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THEOREM 3.2. Forall k € (1/2,1], S>0, 3> 0and cg > 0, forall v >0, ¢, > 0 and
cQ > 0,

' logn \**
lim sup sup Er+ o+ <11> ||fﬁ,n_f*‘|g < +0o0,
n—+o00  Q*eQ(v,c.,cq) oglogn

R* : Dr« E‘P(H,S7570B)QH

where H is introduced in the definition of amnr see (9).

For k = 1, the rate of convergence (logn/loglog n)_% obtained in Theorem 3.2 is mini-
max optimal, see [39] where the situation in which the characteristic function of the noise is
known on an open interval is investigated. For the general case of x € (1/2, 1] we conjecture

that the rate of convergence (logn/loglogn)™ 258 is minimax optimal. Arguments to support
the conjecture are detailed in [23, Section 4].

It is possible to obtain rates of convergence that enjoy uniformity properties in the tail
parameter . Since such uniformity will be useful to prove adaptive rates of convergence for
the adaptation procedure proposed in Section 3.3 (see Theorem 3.5), Theorem 3.2 is deduced

as a corollary of the following theorem.

THEOREM 3.3.  Forall ko € (1/2,1], S >0, 8> 0and cg >0, forall v >0, ¢, > 0 and
cQ > 0,

. logn \28 o
limsup sup sup Egr- g+ | sup e | form — 5 p | <400,
n—+00 kelke,l] Q*€Q(v,cu,cq) K’ €[ko,K] loglogn
R*: ®r+€¥(k,S,B8,c5)NH
where H is introduced in the definition of &5\,{7”, see (9).
PROOF. The proof is postponed to Section A. O

It is important to note that the procedure does not require the knowledge of v, which
leads to the rate of convergence (logn/loglogn) > # without any prior knowledge about
the distribution of the noise, since for any vy > 0, there exists v € (0, veg] and ¢, > 0 such
that |®g)| > ¢, on [—v,v]" and [®ge| > ¢, on [—v,v]%. Also, the assumption ®p. €
T+ g is not restrictive since by Lemma 3.1, f* € MZ implies ¢* € Ty, 5 for some S > 0.
The assumption kg > 1/2 is required only to apply Theorem 2.1 and corresponds to the
assumption p < 2. If the identifiability theorem held for a wider range of p, Theorem 3.3
would be valid for the corresponding range of x without any change in the proofs.

As a consequence of Theorem 3.2, the estimator is consistent without any assumption on
the noise distribution provided it has finite variance.

COROLLARY 3.4. Assume the noise has finite variance. Then as soon as Pp- €
V(k,S,B,c3) NH for some k € (1/2,1], S >0, >0 and cg > 0, the estimator f is
a consistent estimator of f* in L2(R% x R%),

The proof of Theorem 3.3 can be decomposed into the following steps.

(i) Consistency. The fist step consists in proving that there exists a constant ¢ which depends
on k, S, d and vy such that for all n > 1 and all = > 0, with probability at least 1 — 4e™%,

S [Mn(¢) — M3 Vest)| ([ \[ >
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This result is established in Lemma A.1. A key observation will be that for any v < veg
and any ¢,

M*((Z); V) < M*((Z); Vest) .

This is enough to establish that, for any v < v, all convergent subsequences of ($ﬁ,n)n>1
have limit ®g. in L2(B& x BY), provided ®z- € Y, 5. Since T, s is a compact subset
of L2(B% x B%), this implies that (. )n>1 is a consistent estimator of ® g+ in L2(B& x
Bd2), uniformly in x and R*.

(ii) Rates for the estimation of ® .. Then, for a fixed v € (0, veg], for h in a neighborhood
of 0in L?(B% x B%), the risk M, (®r- + h;v) is lower bounded as follows:

(14) M (®g- + h;v) > c||h]3, ,

where ¢ depends on d and v. This result is established in Proposition A.2 in Appendix A.2
and is obtained by decomposing M, (P + h;v) into two terms, the first one involving
the L?(B% x B%) norm of A" h(?) and the second part involving the L?(B% x B%) norm
of a linear term in h. The main challenge to prove equation (14) is to establish a lower
bound of the first term and an upper bound of the second term for % in a neighorhood of 0
in L2(B% x B%). Obtaining these two bounds requires many technicalities and they need
to be balanced sharply to establish (14). Then, we show in Proposition A.3 that there exist
constants ¢y, c and c3 which depend on kg, v, S, d and E[||Y|?] such that for all z > 1,
for all n > (1V xcy)/co, with probability at least 1 — 4e™ 7,

1/4
-~ X xr
(15) sup Hgbﬁ,n — ®p- 2,V <c (\/>\/ ) .
KE[Ko,k*] n n

(iii) Rates for the estimation of f*. Then, using assumption H3, the error term Hf,w — 13
is upper bounded based on the Fourier inversion (11) as follows

C

~ <112 ~
||fI€,TL - f H2 < CHTmm,nQSH)n - QR* (1 + w,2$7n)ﬂ :

2
2wen T

This allows to establish Theorem 3.3 by controlling the error between Tmmaﬁ,{,n and
the truncation of ¢* in C,,,_  [X1,..., X | using Legendre polynomials, and the distance

,n

between functions in T ¢ and their truncations in C,,_ [X1,..., Xq].

Comments on the practical computation of the estimator. In practice, computing the
minimum over the infinite dimensional set defined in (9) requires to introduce a truncation
parameter. In other words, instead of minimizing M,, over all elements ¢ of Y, g NH, we
would minimize it over all T}, ¢, where m is the so-called truncation parameter. This trun-
cation has no impact on the result proved in Theorem 3.3, i.e. on the rates of convergence
derived in this paper, as long as this truncation parameter is chosen sufficiently large with
respect to my, , to obtain the rates for the estimation of ® .. As observed just after equa-
tion (9), the result is an approximate minimizer of M,. In the case where this new truncation
parameter is at least greater than 2m, ,,, this allows in (15) to control the additional bias term
and to balance it with the term (\/z/n \V 2/n)"/%. Although the estimator may be adapted to
allow practical computations, this does not ensure a stable and numerically efficient result in
real life learning frameworks. Moreover, designing a set H that is closed in L2([—I/est, I/est]d)
and whose elements satisfy H2 that is in addition rich enough for Theorem 3.3 to hold for a
wide choice of R* is complex and would be a significant practical contribution. Designing an
efficient and stable implementation of the proposed algorithm is a challenge on its own and is
left for future works, as described in Section 4. The focus of this paper is to derive theoretical
properties of the deconvolution estimator without any assumption on the noise distribution.
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3.3. Adaptivity in k. In Section 3.2, we studied estimators built using the tail parameter
k. Unfortunately this tail parameter is typically unknown in practice. We now propose a data-
driven model selection procedure to choose «, and we prove that the resulting estimator has
a rate corresponding to the largest ~ such that ®z. € T, g for some S > 0.

Our strategy is based on Goldenshluger and Lepski’s methodology ([25, 26], see also [5]
for a very clear introduction). Like in all model selection problems, the core idea is to perform
a careful bias-variance tradeoff to select x. While a variance bound is readily available thanks
to Theorem 3.3, the bias is not so easily accessible. Goldenshluger and Lepski’s methodology
provides a way to compute a proxy of the bias, thus allowing selection of a proper k. The
variance bound (which can also be seen as a penalty term) is taken as

1 P
oK) = co (Og”> 7

loglogn

for all &’ € [k, 1] and for some constant ¢, > 0. While the selection procedure works as soon
as this constant ¢, is large enough, the exact threshold depends on the true parameters. This is
a usual problem of selection procedures based on penalization: the penalty is typically known
only up to a constant. Approaches such as the slope heuristics or dimension jump heuristics
have been proposed to solve this issue and proved to work in several settings, see [3] and
references therein. The proxy for the bias is defined for all ' € [k¢, 1] as

An(w) =0V sup {Ifurn— Firnllz = ou(x") }

K E€[ko,K']
Finally, the tail parameter is selected as

Fn € argmin{ A, (k") + on(K')}.
K'€[Ko,1]

When ®g. € Ty s, fz, n reaches the same rate of convergence as f, for the integrated
square risk.

THEOREM 3.5. Forall kg € (1/2,1), S >0, > 0and cg >0, forallv >0, ¢, > 0 and
cqg > 0, there exists ¢, > 0 such that if o, (k') > ¢, (logn/loglogn) =7 for all k' € [k, 1],

. logn \2* ~
limsup sup sup (g ) Eg: o [Hf%n - f*H% < 400,
n—+00 ke[ko,1] R* : ®pe €W (r,5,8,c5)nH \10glogn

Q*GQ(chlMCQ)

where H is introduced in the definition of gg,w, see (9).

The proof of Theorem 3.5 is detailed in Section F. It is a consequence of deviation upper
bounds developed to prove Theorem 3.3 showing that if $r. € T, g, with probability at least

1 —4/n, forall ' € [ko, K], Hﬁ/n — f*ll2 < on(K).

4. Conclusion and future works. Recently, in [4], the authors summarized the standard
assumptions on the noise distribution and their implications on the minimax risk of the es-
timator of the signal distribution. In particular, they pointed out that obtaining assumptions
under which standard rates of convergence can be established when the Fourier transform of
the noise can vanish have not received satisfactory solutions in the existing literature. In the
direction of weakening the assumptions on the noise, such limitation has been completely
overcome in this paper. The rate of convergence in our setting does not depend at all on the
unknown noise. In another direction, it would be interesting to find if it is possible, in the
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context of unknown noise, to recover noise dependent minimax risk by restricting the set
of possible unknown noises. One way could be to make in our methodology v = 1. go to
infinity and to study the square integrated risk with ¢, having a precise decreasing behavior.
This can not be directly obtained by the proofs in this work in which we use the fact that v is
finite to derive equation (18) which is itself a basic step to establish Proposition A.3.

There are numerous avenues for future works. We specifically chose to focus on the theo-
retical properties of the deconvolution estimator obtained from the risk function M,, without
assumption on the noise distribution, leaving mainly open the question of designing efficient
numerical solutions. Recently, in this unknown noise setting, [21] provided two algorithms
to compute nonparametric estimators of the law of the hidden process in a general state space
translation model, i.e. when the hidden signal is a Markov chain. More thorough and scalable
practical solutions remain to be developed. Although the estimator proposed in this paper en-
joys interesting theoretical properties, designing a stable and numerically efficient algorithm
remains mainly an open problem.

In a more applied perspective, the recent emergence of blind spot neural networks such as
[2] or [32] represent a breakthrough in the field of blind image denoising. In these papers, the
authors manage to improve state-of-the-art performance in signal prediction using mainly
local (spatially) dependencies on the signal and assuming that the noise components are
independent. See also [42]. Our results which in addition do not require any assumption on
the noise are likely to provide new architectures or new loss functions to extend such works.

We are particularly interested in applying our results to widespread models such as noisy
independent component analysis and nonlinear component analysis, see for instance [30].
As mentionned in [43], a wide range of applications require to design source separation
techniques to deal with grouped data and structured signals. The identifiability of such a
group structured ICA is likely to rely on specific assumptions similar to the one derived in
our paper which should provide new insights to derive numerical procedures. Additive index
models studied in [36, 48] could also benefit from this work to weaken the assumptions on
the signal and on the functions involved in the mixture defining the observation.

As underlined in Section 2.2, submodels may be identified in the larger general deconvo-
lution model studied in this paper. It could be of interest to study statistical testing of such
structured submodels, for instance using the minimax non parametric hypothesis testing the-
ory.

In another line of works referred to as topological data analysis (TDA), see [13], [12], the
aim is to provide mathematical results and methods to infer, analyze and exploit the complex
topological and geometric structures of the data. Despite fruitful developments, geometric
inference from noisy data remains mainly an open problem. Although they appear to be
concentrated around geometric shapes, real data are often corrupted by noise and outliers.
Quantifying and distinguishing topological/geometric noise, which is difficult to model or
unknown, from topological/geometric signal, to infer relevant geometric structures is a subtle
problem. Ourwork is likely to be applied to multidimensional signals supported on manifolds
and opens the way to find strategies to infer relevant topological and geometric information
about signals additively corrupted with totally unknown noise. One way to proceed is to use
the distance to measure strategy developed in [11]. It shows that it is possible to build robust
methods to estimate geometric parameters of the supports of probability distributions from
perturbed versions of it in Wasserstein’s metric. This is the subject of an ongoing research
project. In particular in [9], it is proved that distributions whose supports are closed regular
curves in R? satisfy H2.
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APPENDIX A: PROOF OF THEOREM 3.3

A.1. Uniform consistency. By definition, for all R* and all Q* such that ®r. € T, g,

M, (hrm; Vest) < My (hren) + SUp | My () — My (¢ view)|

€Y, s
< My (Pg+) + sup [My(¢) — My (@5 Vest)| 5
€Y, s
(16) < ‘Mn(CI)R*) - M*@)R*?Vest)’ =+ sup ’Mn(¢) - M*(¢§ Vest)’ .

€Y, s

Lemma A.1 provides a control on the deviation |M,,(¢) — M, (¢; vest)| for ¢ € T s.

LEMMA A.l. Forall S > 0, there exists ¢ > 0 such that for all A >0, n>1, x >0,
and probability measures R* and Q* on R? such that Eg- o-[||Y||?] < A, with probability

at least 1 — 4e™* under P« -, for all k' € [1/2,1],
/A \/E a:]
— Vi3 /=V—].
n non

In particular, for all S > 0, v € (0, V.| and A > 0, there exists a constant ¢ such that for all
k€l[l/2,1], n>1and x>0,

Sup ’Mn(¢) - M*((b; Vest)’ <c
oY, 5

R :®p+€Yy s K'€[1/2,K] n.n
Q@ :Er~ o+ [[IY[P]<A

17) sup Pr- g+ < sup M*(gg,{/,n;y) >c < z \% x)) <4e™”.

PROOF. The proof of the first inequality is postponed to Section G in the supplementary
material. The second follows from equation (16) (which requires ®. € T g, hence the
assumption ' < & since the family (Yx s)x is nonincreasing in «), and the observation that
for all v < ey,

M*(;b\fi/,n; V) < M*((gfi’,n; Vest) .
The proof is then completed by taking the supremum over ' € [1/2, k]. O

X||?] is bounded by a constant that depends only on x and S,

Since SUpg-.g . e, 5 ER[
e]|2) < A and ®g. € T, g ensures that Egr+ o[
stant A depending on S and A. Thus, we may instead use the conditions ®r- € T, g and
Eg-[|le]|?] < A in equation (17).

For any v > 0, by the proof of Theorem 2.1 and Lemma 3.1, if ®g. € T, s N H, the
only zero of the contrast function ¢ — M, (¢;v) on Y\, s N H is ¢ = P+ as soon as 1/k <
2 since all functions in H satisty H2. Moreover, the mapping (¢, Pr-, Pg+) € L>(B% x
B%)3 s M,(¢;v) is continuous and for all x >0, S >0 and A > 0, the sets T, g and
{®g : Q s.t. Egllle]|?] < A} are compact in L®(B% x B2) by Arzela—Ascoli’s theorem
(the second derivative of @ is bounded by the second moment of () and likewise for ®g, so
these sets are uniformly equicontinuous and all of their elements have value 1 at zero). Thus,
forall S,v >0, ko € (1/2,1], A>0and n >0,

inf M, (¢:0)>0.
6P e é%m,smﬁ(qb v)

|p—Prx |2, =7
Q" :Eq+[llel”I<A

assuming Eq- | Y||?] < A for some con-
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Let S > 0 and v € (0, Vey|. This equation and Lemma A.1 together with the fact that the
family (Y, s), is nonincreasing in « ensure that for all kg € (1/2, 1], there exists ¢ > 0 such
that for all k € [ko,1], A>0,7>0,n>1and z € (0, cn],

(18) sup ]P)R*,Q*< sup | ¢xrn — e
R :®pe €Yy sMH K €[Ko,K]
Q* :Eq-[[e]?]<A

2 = ?7) <de™”.

In particular, the family of estimators (qgml,n)ﬁf is L2(B% x B¢%)-consistent uniformly in
k' € [k, ko], and uniformly in the true parameters R* and Q™.

A.2. Upper bound for the estimator of the Fourier transform of the signal distribu-
tion. Recall, for all bounded and measurable functions h : B4t x B% — C, for any v > 0
and any probability measures R* and Q* on R,

2
= H (noR) @) — epn V) — 0 0R)h® — @R kR ) D) @ Bgea

2,v
In addition, for all @ € Q(v, ¢y, cq), infga [Pom| A infge [@ge| > . Using that for all
(a,b) ER, (a—b)? > a?/2—b% and | Pge.) ||oc = | P [|oo = || PR
probability measures R* and Q* on R such that Q* € Q(v, c,, cQ)s

oo = 1 yields for all

(19) M, (g +hiv) > e, M™ (h, ®peiv) /2= ey [ROR)3,,
where

i 2
(20) M (h, ¢;v) = Hh¢<1>¢<z> — ohMp® _ gD h<2>) .

Section B provides an upper bound for |h()h(?)]3 , and a lower bound for M'"(h, ®p.;v)
which allows to establish the lower bound given in Proposition A.2. When ®r. € T, g, the
functions h such that ®r. + h € T, 5 belong to the set

(21) Grs={¢p—¢" :0,0' € Tus}.

PROPOSITION A.2. Forall S,v,c, >0, there exist n,c > 0 such that for all k € [1/2,1]
and all h € G, g such that ||h||2, <,
inf M (Dp +h;v)>c|h|5, .
R* :CI’lﬁ»riETms *< Bt 7V) CH H2’V
QR*€Q(v,cy,+00)

PROOF. The proof is postponed to Section B. O

Using the above proposition for x = k¢ together with equations (17) and (18) is enough to
establish Proposition A.3.

PROPOSITION A.3. For all ko € (1/2,1], v € (0,vey] and S,c,,cq > 0, there exist
¢, ¢’ >0 such that for alln > 1, x € (0,cn] and k € [k, 1],
(22)

1/4
~ T x
inf Pgr+ o+ su ' — Ppe < -V = >1—4e™ 7.
R :®p«eY, sNH r.Q (K’E[I}o),li] H(bn " Frllzwy = <\/; n) )
Q*GQ(VchvCQ)
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A.3. Upper bound for the estimator of the density of the signal distribution. Let
k" € (0,1]. Assume H3 holds for the constants /3, cg. Then, by definition of f. ,, together
with Plancherel’s theorem,

~ 1 ~ 2
‘ Farm = 2 (472)d ]lBglw,n xBL2, | T O = Pre 2’
__ 1 oy 2 1 2
= (47r2)d Tmm/yn(ﬁnun - ‘I)R* o + (47T2)d ||(I>R* (t)”L2((Rd1 XRdz)\(Bib,nXB
1 ~ 2 1 cs
< T ’ / - @ * 3
(@r2yd |G = PRy @ w2,

2(.«}/

K’n,

gcmaX{HTmn,m(bﬁgn g3 (1 “‘W;z',n)_ﬂ} .

for some constant ¢ > 0. Let S, v > 0 be fixed in the remaining of the proof. For all ¢ > 0, let
P; be the i-th Legendre polynomial and

(23) Prm — (i +1/2)Y20712 (X /v)

the normalized i-th Legendre polynomial on [—v,v]. For all positive integer p, define the
orthonormal basis (P°™);cn» of C[X1,..., X, (seen as a subset of L%(BY)), where for all
i€ NP,

(24) ].:)?Orm()(l7 . 7Xp) = (‘Pﬁorm R ® ﬂf:)rm)(Xl’ ¢ H Pnorm

Since Ty, , aﬁ nand Ty, , @p.arein Cyy , v [X1,..., X4, there exists a sequence (a;);cna
such that a; = 0 if ||i||; > mu p, and T, , qb,{ n— T Pre =D i cne aiP}O™(X), where
P}°™ is defined in (24). By properties of the Legendre polynomials, see [39, page 11], for all
z € R, |Pi(z)| < (22| +2)" so that | Pr™ (x)] < (( (2i+1)/(2v))Y?(2|x/v| +2)". Therefore,
forall i € N,

We!'n 1 , 2i+1
[ i@ < 5 (2 +2222) "

W/ v

w!n

and by Cauchy-Schwarz inequality,

||Tmmryn$n’ n Tmﬁ/ n (I)R*

20.)/

r'\n

> e (Zraﬁ)

iENY [lilli <myer , a=1 iENd

Whe! n)an’,n+d

< (mK/ n + 1)d2 —d (2 + 2 HTmN/‘n(ZH/,n - Tmn’,nQ)R* %,V Y

W' m ) 2m s ptd

(25) <m (2 +2— ||Tm,€/'n$n’,n - Tmn/ TL@R*

Since Y\, s C T,v s when &’ < k, by Lemma H.2 and Lemma H.3 in the supplementary mate-
rial, when ® . € T, g, there exists a constant ¢ such that for all &’ € [1/2, k] and my ,, > 2d,

. —2K'm . +2d
H@R* - Tmml,nq)R* g,w,u,n, < (8"‘)/%’ n)d(swn’ n)QmN '"’mn',z s fﬂ’(swﬁ’,n)Q
(26) <c Z+§m“/ P2 g2m m;?z/m“"”JFQd exp(Qﬁ’(SwH/m)l/”/) ,

d
2,097
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Since T, s C T, s when £’ < k, by Lemma H.3 in the supplementary material, when ® p. €
T..s, forall &' € [1/2, k] and my ,, > 2d,
—2Kk'm,r ,+2d

< (Swﬁ’m)d(swﬁ',n)Qmmlmmn’,n o fﬁ'(swli',n)27

where the function f,- is defined in (S.18), so that by Lemma H.2, there exists a constant ¢
such that for all < € [1/2,1] such that ®p. € YT, g, for all &’ € [1/2, k] and m,, ,, € N*,

(27)

|®pe — T, Pre|l3

27wm’,n

|®R: — T, Pre|l3

21wn',n

d+2m,s ,+2/kK' 2 o 2K M o +2d
K'n S ' 'mn’,n

exp(2ﬁ’(5w5/7n)1/”/) ,

< cw

and likewise

’ ! —2r’ N’.n+2d
(28) ||¢/€ n mn/ n¢l€ n||2 Y < C(Sl/)Qm" wt2/K m,{/,z Mo,
and
29) PR =T, PR 5 C(Sy)2m~'~n+2/ﬁ’m;2: My nt2d
Write

U ) = el 2 S S e (24 (St ) ),

'n K’

U(v) = c(Sy) 2 a2/ 2T b2

Then, equations (25) to (29) show that for all ' € [1/2, k],

|| ms nﬁb/{ n <I>R*

2 Wkl n

Wt 2m,€/,n+d —~
<AV (@) + 4, (24270 ) (2U0) + 19w —Pr-13,) -

which is controlled by equation (22). Now, choose wy/ ,, and m, 5, as in (12) and (13), that
is
/ 1 «alogn
wﬁl7n = cwm';/’n/s and m,i/m < ﬁw s
for some ¢, € (0,1] and o > 0 (note that « = 1/4 in equation 12). Proposition A.3 shows
that for all o € (1/2,1], v € (0,ve] and S, ¢, cq, 5,5 > 0, there exist ¢, ¢’ > 0 such that
foralln > 1, z € (0,¢n] and & € [k, 1],

inf Pr- o | V&' € [Ko, ], || fr 7*2§clmax{ 2B o ~"vxn}
e R,Q< 0,8, 1T 13 i (@)
Q*GQ(chV»CQ)
>1—4e ",
where
1/4, « 1/2,«
v(x,n)zl\/:E VL

nl/4 v nl/2

Now, when a < 1/4 and (¢, logn)/loglogn < my ., < (Cy,logn)/loglogn for all x and
n for some constants ¢, > 0 and C,,, > 0 and take = = log n. It follows that there exists ng
such that for all n > ng,

HE[K/O,l] R :(PR*E\P(KvsvﬁvCB H’E[Ho,/i]

. I 4
(30)  sup inf )IP)R*Q* < sup {mi”f”fﬁn _ f*”%} < c/) >1- -~
Q*€Q(v,cu,cq)

Finally, note that m> 5an n — f*113 < (Carlogn/ loglogn)?$diam (Y, 5)? by construc-
tion, so that Theorem 3.3 follows.
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APPENDIX B: PROOF OF PROPOSITION A.2

By (19), Proposition A.2 may be proved by balancing a lower bound for M lin(h, ¢;v)
and an upper bound for ||h(Vh(3)||3 . The lower bound on M'™(h, ¢; v) is first obtained for
polynomials with known degree m.

LEMMA B.1.  Forall S,v > 0, there exists ¢ > 0 and C > 1 such that for all k € [1/2,1],
meN*, oY, sand he€G,g,

M"™(Tyh, Trngiv) = em ™ 3C~™ | T,uhlf3,
where M'™, Ty.s, Gr,s and Ty, ¢ are defined in (20), (8), (21) and (10).

PROOF. The proof is postponed to Section I in the supplementary material. U

Then, we extend this lower bound to all functions i and ¢ by controlling the difference
between h and ¢ and their truncations to degree m.

LEMMA B.2. For all S,v > 0, there exist c,c’ > 0 and C > 1 such that for all k €
[1/2,1], meN*, ¢ € Ty, gand h € G, s,
Mlin(h, b; l/) > Cm_Sd_SC_mHhH%,V o C/(SV)Qmm—an—&-Qd,

where M'"(h,¢;v), Ty.s and G, s are defined in (20), (8) and (21).
PROOF. The proof is postponed to Section J in the supplementary material. O

Finally, a careful choice of m allows to show that M'""(h,¢;v) is lower bounded by

Hhngo(l) when ||h|2,,, is small enough.

PROPOSITION B.3.  Forall S,v > 0, there exist n,«, ¢ > 0 such that for all k € [1/2,1],
¢ €Yy sandh € Gy s such that ||h||2, <7,

o
2 <loglog<1/||h 2,V>>5d+3thloglogu/nh 20)
2\ log(1/[1A]12.) 2 ’

where M'™, Yy s and G, s are defined in (20), (8) and (21).

M"™(h,¢;v) = c||h

PROOF. The proof is postponed to Section J in the supplementary material. O

The upper bound on [[2(Mh()|3  is likewise first obtained on polynomials with known
degrees m then extended to any function h by controlling the difference between h and its
truncation.

LEMMA B.4. Forall S,v > 0, there exists ¢ > 0 such that for all k € [1/2,1], m € N*
and h € G, s,

1ROR®E, < em®(|hl,, + (Sv)mm~temtid)

where G, g is defined in (21).

PROOF. The proof is postponed to Section J in the supplementary material. O
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Finally, a careful choice of m shows that this term is upper bounded by ||h||3;0(1) when

||h||2,, is small enough.

PROPOSITION B.5.  Forall S,v > 0, there exist n,c > 0 such that for all k € [1/2,1] and
h € G5 such that ||h||2, <7,

log(1/[[All2,) \*
RO 2 <C< , B
” H2,I/ loglog(l/”h 27’/) || ||2,l/
where G, s is defined in (21).
PROOF. The proof is postponed to Section J in the supplementary material. O

By Proposition B.3, Proposition B.5 and (19), for all S,v,c, > 0, there exist constants
n,,c¢,c’ > 0 such that for all k € [1/2,1], for all Q € Q(v,¢,,+00) and R* such that D . €
T,s and for all h € G, g such that ||h||2, <7,

[0
d
10g10g(1/||h 2,11)>5 3 ||h||10g10g(1/HhH27V)
2.,v

log(1/[[l]2.v)
_C,< log(1/|[h]2.,) )d”h”4 '
loglog(1/[[hllz») ) %"

M, (@ + hiv) > cllhl2, (

Therefore, assuming

€1y
«

<1oglog<1/||h||2,y>)5d+3Hh||loglog<1/||h||z,y> s o Lot )d”m%
log(1/[12.,) loglog(1/hll2) ) 12

yields

log(1/[h]|2,) )d A
M, (¢";v >C’< ’ hlla, .

(@%51) 2 oglog (1Tl ) M2
Note that (31) is implied by

a

<1oglog<1/||h||z,u>>6d+3( 1 >21oglog<1/||h||z,u>>2c’
log(1/[|hl[2,.) ]2, c’

which is true as soon as ||h||2,, < n for some 1 > 0 depending only on «, ¢ and ¢’.

SUPPLEMENTARY MATERIAL

Omitted proofs are provided in the supplementary material [22].

0.

REFERENCES

[1] ATTIAS, H. and SCHREINER, C. E. (1998). Blind source separation and deconvolution: the dynamic com-
ponent analysis algorithm. Neural computation 10 1373-1424.

[2] BATSON, J. and ROYER, L. (2019). Noise2Self: Blind Denoising by Self-Supervision. Proceedings of the
36th International Conference on Machine Learning (ICML).

[3] BAUDRY, J.-P., MAuUGIs, C. and MICHEL, B. (2012). Slope heuristics: overview and implementation.
Statistics and Computing 22 455-470.



20

[4]

(5]

(6]
(7]
(8]
(9]
(10]
[11]

[12]

[13]

(14]
[15]

[16]
(17]
(18]
[19]
(20]

(21]

(22]
(23]
[24]
[25]
[26]
(27]
(28]
[29]
(30]
(31]
(32]

(33]

BELOMESTNY, D. and GOLDENSHLUGER, A. (2019). Density deconvolution under general assumptions
on the distribution of measurement errors. arXiv:1907.11024.

BERTIN, K., LACOUR, C. and RIVOIRARD, V. (2016). Adaptive pointwise estimation of conditional density
function. In Annales de I’Institut Henri Poincaré, Probabilités et Statistiques 52 939-980. Institut
Henri Poincaré.

BUTUCEA, C. and TSYBAKOV, B. (2008). Sharp optimality in density deconvolution with dominating bias.
L. Theory of Probability and Its Applications 52 24-39.

BUTUCEA, C. and TSYBAKOV, B. (2008). Sharp optimality in density deconvolution with dominating bias.
II. Theory of Probability and Its Applications 52 237-249.

CAMPISI, P. and EGIAZARIAN, K. (2017). Blind image deconvolution: theory and applications. CRC press.

CAPITAO MINICONTI, J. (2021). Reconstruction of smooth curves from noisy measurements. Preprint.

CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer.
Statist. Assoc. 83 1184-1186. MR997599

CHAZAL, F., COHEN-STEINER, D. and MERIGOT, Q. (2011). Geometric Inference for Probability Mea-
sures. Journal on Foundations of Computational Mathematics 11.

CHAzAL, F., Fasy, B., LEccl, F., MICHEL, B., RINALDO, A., RINALDO, A. and WASSERMAN, L.
(2017). Robust topological inference: Distance to a measure and kernel distance. The Journal of Ma-
chine Learning Research 18 5845-5884.

CHAzAL, F. and MICHEL, B. (2017). An introduction to Topological Data Analysis: fundamental and
practical aspects for data scientists. arXiv preprint arXiv:1710.04019.

COMON, P. (1994). Independent component analysis: a new concept? Signal Processing 36 287-314.

COMTE, F. and LACOUR, C. (2013). Anisotropic adaptive kernel deconvolution. In Annales de I'IHP Prob-
abilités et statistiques 49 569-609.

DELAIGLE, A., HALL, P. and MEISTER, A. (2008). On deconvolution with repeated measurements. Ann.
Statist. 36 665-685. MR2396811

DEVROYE, L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17 235-239.
MR1033106

ECKLE, K., BISSANTZ, N. and DETTE, H. (2016). Multiscale inference for multivariate deconvolution.
arXiv:1611.05201.

ERIKSSON, J. and KOIVUNEN, V. (2004). Identifiability, separability, uniqueness of linear ICA models.
IEEE Signal Processing Letters 11 601-604.

FAN, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist.
19 1257-1272. MR1126324

GASSIAT, E., LE CORFF, S. and LEHERICY, L. (2020). Identifiability and Consistent Estimation of Non-
parametric Translation Hidden Markov Models with General State Space. Journal of Machine Learn-
ing Research 21 1-40.

GASSIAT, E., LE CORFF, S. and LEHERICY, L. (2020). Deconvolution with unknown noise distribution is
possible for multivariate signals - Supplement A.

GASSIAT, E., LE CORFF, S. and LEHERICY, L. (2020). Deconvolution with unknown noise distribution is
possible for multivariate signals. arXiv:2006.14226.

GASSIAT, E. and ROUSSEAU, J. (2016). Nonparametric finite translation hidden Markov models and ex-
tensions. Bernoulli 22 193-212.

GOLDENSHLUGER, A. and LEPSKI, O. (2008). Universal pointwise selection rule in multivariate function
estimation. Bernoulli 14 1150-1190.

GOLDENSHLUGER, A. and LEPSKI, O. (2013). General selection rule from a family of linear estimators.
Theory of Probability & Its Applications 57 209-226.

HYVARINEN, A., KARHUNEN, J. and OJA, E. (2002). Independent Component Analysis. John Wiley &
Sons.

JOHANNES, J. (2009). Deconvolution with unknown error distribution. The Annals of Statistics 37 2301-
2323.

JUTTEN, C. (1991). Blind separation of sources, part I: an adaptive algorithm based on neuromimetic archi-
tecture. Signal Processing 2 1-10.

KHEMAKHEM, 1., KINGMA, D. P., P10 MONTI, R. and HYVARINEN, A. (2020). Variational Autoencoders
and Nonlinear ICA: A Unifying Framework. ArXiv:1907.04809.

KOTLARSKI, 1. (1967). On characterizing the Gamma and the normal distribution. Pacific Journal of Math-
ematics 20 69-76.

KRULL, A., BucHHOLZ, T. O. and JUG, F. (2019). Noise2Void - Learning Denoising From Single Noisy
Images. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

KUNDUR, D. and HATZINAKOS, D. (1996). Blind image deconvolution. /EEE signal processing magazine
13 43-64.


http://www.ams.org/mathscinet-getitem?mr=997599
http://www.ams.org/mathscinet-getitem?mr=2396811
http://www.ams.org/mathscinet-getitem?mr=1033106
http://www.ams.org/mathscinet-getitem?mr=1126324

[34]
(35]
(36]
[37]
(38]
(39]
[40]
(41]
(42]

[43]

[44]

[45]
[46]
[47]

(48]

DECONVOLUTION WITH UNKNOWN NOISE 21

LACOUR, C. and COMTE, F. (2010). Pointwise deconvolution with unknown error distribution. Comptes
Rendus Mathematique de I’Academie des Sciences 348 323-326.

L1, T. and VUONG, Q. (1998). Nonparametric estimation of the measurement error model using multiple
indicators. J. Multivariate Anal. 65 139-165. MR1625869

LIN, W. and KULASEKERA, K. (2007). Identifiability of single-index models and additive-index models.
Biometrika 94 496-501.

Liu, M. C. and TAYLOR, R. L. (1989). A consistent nonparametric density estimator for the deconvolution
problem. Canad. J. Statist. 17 427-438. MR1047309

MEISTER, A. (2004). On the effect of misspecifying the error density in a deconvolution problem. Canadian
Journal of Statistics 32 439-449.

MEISTER, A. (2007). Deconvolving compactly supported densities. Mathematical Methods of Statistics 16
63-76.

MEISTER, A. (2009). Deconvolution problems in nonparametric statistics. Springer.

MOULINES, E., CARDOSO, J.-F. and GASSIAT, E. (1997). Maximum likelihood for blind separation and
deconvolution of noisy signals using mixture models. In IEEE International Conference on Acoustics,
Speech, and Signal Processing 5 3617-3620. IEEE.

OLLION, J., OLLION, C., GASSIAT, E., LEHERICY, L. and LE CORFF, S. (2021). Joint self-supervised
blind denoising and noise estimation. arXiv:2102.08023.

PFISTER, N., WEICHWALD, S., BUHLMANN, B. and SCHOLKOPF, B. (2019). Robustifying Independent
Component Analysis by Adjusting for Group-Wise Stationary Noise. Journal of Machine Learning
Research 20 1-50.

SARKAR, A., PATI, D., CHAKRABORTY, A., MALLICK, B. K. and CARROLL, R. J. (2018). Bayesian
semiparametric multivariate density deconvolution. Journal of the American Statistical Association
113 401-416.

SCHENNACH, S. M. and Hu, Y. (2013). Nonparametric identification and semiparametric estimation of
classical measurement error models without side information. J. Amer. Statist. Assoc. 108 177-186.

STARCK, J.-L., PANTIN, E. and MURTAGH, F. (2002). Deconvolution in astronomy: A review. Publications
of the Astronomical Society of the Pacific 114 1051.

STEFANSKI, L. and CARROLL, R. J. (1990). Deconvoluting kernel density estimators. Statistics 21 169—
184. MR1054861

YUAN, M. (2011). On the identifiability of additive index models. Statistica Sinica 21 1901-1911.


http://www.ams.org/mathscinet-getitem?mr=1625869
http://www.ams.org/mathscinet-getitem?mr=1047309
http://www.ams.org/mathscinet-getitem?mr=1054861

	Introduction
	Identifiability results
	General theorem
	Comments on the assumptions of Theorem 2.1.

	Identification of structured submodels
	Noisy Independent Component Analysis
	Repeated measurements
	Errors in variable regression models


	Consistent estimation and rates of convergence
	Estimation procedure
	Consistency and rates of convergence
	Adaptivity in kappa

	Conclusion and future works
	Proof of Theorem 3.3
	Uniform consistency
	Upper bound for the estimator of the Fourier transform of the signal distribution
	Upper bound for the estimator of the density of the signal distribution

	Proof of Proposition A.2
	Supplementary Material
	References

