
Consistent estimation of the filtering and marginal smoothing
distributions in nonparametric hidden Markov models
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Abstract

In this paper, we consider the filtering and smoothing recursions in nonparametric finite state space hidden Markov
models (HMMs) when the parameters of the model are unknown and replaced by estimators. We provide an explicit
and time uniform control of the filtering and smoothing errors in total variation norm as a function of the parameter
estimation errors. We prove that the risk for the filtering and smoothing errors may be uniformly upper bounded
by the L1-risk of the estimators. It has been proved very recently that statistical inference for finite state space
nonparametric HMMs is possible. We study how the recent spectral methods developed in the parametric setting may
be extended to the nonparametric framework and we give explicit upper bounds for the L2-risk of the nonparametric
spectral estimators. In the case where the observation space is compact, this provides explicit rates for the filtering
and smoothing errors in total variation norm. The performance of the spectral method is assessed with simulated data
for both the estimation of the (nonparametric) conditional distribution of the observations and the estimation of the
marginal smoothing distributions.
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1 Introduction
Hidden Markov models are popular dynamical models applied in a variety of applications such as economics, ge-
nomics, signal processing and image analysis, ecology, environment, speech recognition, see [14] for a recent overview
of HMMs. Finite state space HMMs are stochastic processes (Xj , Yj)j≥1 such that (Xj)j≥1 is a Markov chain with fi-
nite state space X and (Yj)j≥1 are random variables with general state space Y , independent conditionally on (Xj)j≥1
and such that for all ` ≥ 1, the conditional distribution of Y` given (Xj)j≥1 depends on X` only. The state sequence
X1:n := (X1, · · · , Xn) is only partially observed through the observations Y1:n := (Y1, · · · , Yn). The parameters of
the model are the initial distribution π? of the hidden chain, the transition matrix of the hidden chain Q? and the con-
ditional distribution of Y1 given X1 = x for all possible x ∈ X which are often called emission distributions. In many
applications of finite state space HMMs (e.g. digital communication or speech recognition), it is of utmost importance
to infer the sequence of hidden states. This inference task usually involves the computation of the posterior distribution
of a set of hidden states Xk:k′ , 1 ≤ k ≤ k′ ≤ n, given the observations Y1:s, 1 ≤ s ≤ n. When the initial distribution
of the hidden chain, its transition matrix and the conditional distribution of the observations are known, computing
posterior distributions can be efficiently done using the forward-backward algorithm described in [6] and [34]. In this
paper, we focus on the estimation of the filtering distributions P(Xk = x|Y1:k) and marginal smoothing distributions
P(Xk = x|Y1:n) for all 1 ≤ k < n when the parameters of the HMM are unknown and replaced by estimators. These
approximations of the posterior distributions are for instance required to compute expectations of additive functionals
of the hidden states given the whole set of observations Y1:n which appear in popular maximum likelihood inference
procedures. In the case of large data sets, online variants of the Expectation Maximization (EM) algorithm which
update parameter estimates as new observations are received have been proposed, [7, 8, 24]. The convergence of such
online algorithms remains an open problem despite some empirical evidence highlighted in these papers. Alternatives
based on the decomposition of the observations into non overlapping blocks with convergence results easier to prove
have been proposed to overcome this difficulty, [27]. We believe that the results given in this paper could be useful to
establish convergence properties of such online procedures since they rely on the control of the smoothing error when
the posterior distributions are computed with the current estimate of the parameter. The aim of our paper is twofold.

- The paper analyzes the propagation of the parameter estimation error to the estimation of filtering and smoothing
distributions. Providing explicit bounds for filtering and smoothing distributions under modeling uncertainties (in our
case when the parameters are replaced by estimators) is an important step for real world online learning applications,
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see for instance [38] for Simultaneous Localization and Mapping problems, [4] for target tracking problems or [35]
for other applications in engineering, telecommunications... The ability to monitor and control such dynamic systems
depends on the accuracy of the estimation of the true state of the process which may be obtained using filtering or
smoothing distributions. Providing explicit bounds for filtering and smoothing errors allow to tune the algorithms to
obtain a given accuracy for the parameter estimates and the required control of the posterior distributions to optimize
state estimation. Although replacing parameters by their estimators to compute posterior distributions and infer
the hidden states is usual in applications, there are very few theoretical results to support this practice regarding the
accuracy of the estimated posterior distributions. We are only aware of [18] whose results are restricted to the filtering
distribution in a parametric setting. When the parameters of the HMM are known, the forward-backward algorithm
can be extended to general state space HMMs (or to finite state space HMMs when the cardinality of X is too large)
using computational methods such as Sequential Monte Carlo methods (SMC), see [11, 15] for a review of these
methods. In this context, the Forward Filtering Backward Smoothing [25, 23, 16] and Forward Filtering Backward
Simulation [21] algorithms have been intensively studied, with the objective of quantifying the error made when the
filtering and marginal smoothing distributions are replaced by their Monte Carlo approximations. These algorithms
and some extensions have been analyzed theoretically recently, see for instance [12, 13, 17, 32]. SMC methods may
also be used in algorithms when the parameters of the HMM are unknown to perform maximum likelihood parameter
estimation, see [24] for on-line and off-line EM and gradient ascent based algorithms. Part of our analysis of the
filtering and smoothing distributions is based on the same approach as in those papers and requires strong forgetting
properties of HMMs.

- Then, the paper extends spectral methods to a nonparametric setting and provides an explicit control of the L2-risk
of the estimators. Such estimators may then be used in the computation of posterior distributions as surrogates for
the true parameters and emission densities. The upper bounds obtained for the L2-risk of the estimators are useful
since asymptotic properties of estimators for finite state space HMMs have been mainly studied in the parametric
case while nonparametric HMMs are used in a variety of applications with no theoretical results. Many statistical
inference procedures have been proposed for nonparametric HMMs, see for instance [26] for the identification of
climate states (wet and dry), [28] for automatic speech recognition, [41] for Markov chain Monte Carlo methods
to identify mixtures of Dirichlet process with application to the analysis of genomic copy number variation. These
nonparametric methods allow the identification of HMMs without providing any insight on their consistency or rate
of convergence to establish their statistical efficiency. This is only very recently that theoretical results have been
obtained for the inference of nonparametric HMM [10, 29], see also [20] for translation mixture models or [39] for
Bayesian posterior consistency.

In latent variable models such as HMMs, spectral methods are popular since they lead to algorithms that are not
sensitive to a chosen initial estimate. Indeed, standard estimation methods for HMMs are based on the EM algo-
rithm, which possesses intrinsic limitations that are hard to circumvent such as slow convergence and convergence
to suboptimal local extrema. Extending spectral methods to nonparametric HMMs is thus very useful. In particular,
they may be used to provide a preliminary estimator as starting point in a EM algorithm. They are also used in a
refinement procedure proposed in [10]. To the best of our knowledge, the spectral method has not been extended
nor studied yet in the nonparametric framework. We start from the works of Anandkumar, Hsu, Kakade and Zhang
on spectral methods in the parametric setting. Their papers [22, 3] present an efficient algorithm for learning para-
metric HMMs or more generally finitely many linear functionals of the parameters of a HMM. Thus, it is possible
to use spectral methods to estimate the projections of the emission distributions onto nested subspaces of increasing
complexity. Our work brings a new quantitative insight on the tradeoff between sampling size and approximation
complexity for spectral estimators. We provide a nonasymptotic precise upper bound of the risk for the variance term
with respect to the number of observations and the complexity of the approximating subspace.

Section 2 provides an explicit control of the total variation filtering and smoothing errors as a function of the
parameter estimation error, see Propositions 2.1 and 2.2. Application of these preliminary results to the parametric
context are detailed in Theorem 2.3, and to the nonparametric context in Theorem 2.4 where it is proved that the uniform
rate of convergence of the filtering and smoothing errors is driven by the L1-risk of the nonparametric estimator of the
emission distributions. Section 3 describes how spectral methods can be extended to the nonparametric setting and
provides a nonasymptotic control of the variance term in Theorem 3.1. This leads to the asymptotic behavior proved
in Corollary 3.2, which may be invoked when spectral methods are used in the computation of posterior distributions,
see Corollary 3.3. Finally, the results proved in the paper are illustrated in Section 4 with numerical experiments. It is
shown in particular that when the number of observations increases, the errors on the filtering and marginal smoothing
distributions remain bounded which illustrates our theoretical results. All detailed proofs are given in the appendices.
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2 Main results

2.1 Notations and setting
In the sequel, it is assumed that the cardinality K of X is known (for ease of notation, X is set to be {1, . . . ,K}) and
that Y is a subset of RD for a positive integer D. P(X ) denotes the space of probability measures on X and write
LD the Lebesgue measure on Y . For all n ≥ 1 and all x ∈ X , the density of the conditional distribution of Yn given
Xn = x with respect to LD is written f?x . Consider the following assumptions on the hidden chain.

[H1] a) The transition matrix Q? has full rank.

b) δ? := min
1≤i,j≤K

Q?(i, j) > 0.

[H2] The initial distribution π? := (π?1 , . . . , π
?
K) is the stationary distribution.

Remark 2.1. Note that under [H1]-b) and [H2], for all k ∈ X , π?k ≥ δ? > 0.

Remark 2.2. Assumptions [H1]-a) and [H2] appear in spectral methods, see for instance [3, 22], and in identification
of HMMs, see for instance [1, 2, 19]. It is established in [20] that [H1] is sufficient to obtain identifiability of all
parameters and of the number of states K in nonparametric finite translation mixtures from the joint distribution of
two observations. In the special case where K = 2, the assumption is equivalent to require that X1 and X2 are not
independent. [1] detailed the necessity of the full-rank assumption of Q? to identify the model when the emission
densities are all distinct.

For all y ∈ Y , define c?(y) by
c?(y) := min

x∈X

∑
x′∈X

Q?(x, x
′)f?x′(y) . (1)

For all y1:n ∈ Yn, the filtering distributions φ?k(·, y1:k) and marginal smoothing distributions φ?k|n(·, y1:n) may be
computed explicitly for all 1 ≤ k ≤ n using the forward-backward algorithm of [6]. In the forward pass, the filtering
distributions φ?k are updated recursively using, for all x ∈ X ,

φ?1(x, y1) :=
π?(x)f?x(y1)∑

x′∈X π
?(x′)f?x′(y1)

and φ?k(x, y1:k) :=

∑
x′∈X Q?(x

′, x)f?x(yk)φ?k−1(x′, y1:k−1)∑
x′,x′′∈X Q?(x′, x′′)f?x′′(yk)φ?k−1(x′, y1:k−1)

. (2)

Note that for all 1 ≤ k ≤ n, φ?k(x, Y1:k) = P(Xk = x|Y1:k). In the backward pass, the marginal smoothing
distributions may be updated recursively using, for all x ∈ X ,

φ?n|n(x, y1:n) := φ?n(x, y1:n) and φ?k|n(x, y1:n) :=
∑
x′∈X

B?φ?
k(·,y1:k)

(x′, x)φ?k+1|n(x′, y1:n) , (3)

where, for all u, v ∈ X and all 1 ≤ k ≤ n,

B?φ?
k(·,y1:k)

(u, v) :=
Q?(v, u)φ?k(v, y1:k)∑
z∈X Q?(z, u)φ?k(z, y1:k)

.

Note that for all 1 ≤ k ≤ n, φ?k|n(x, Y1:n) = P(Xk = x|Y1:n).

2.2 Preliminary results
In this paper, the parameters π?, Q? and f? are unknown. Then, the recursive equations (2) and (3) may be applied
replacing π?, Q? and f? by some estimators π̂, Q̂ and f̂ to obtain approximations of the filtering and smoothing
distributions. Using forgetting properties of the hidden chain, we are able to obtain an upper bound of the filtering
errors and of the marginal smoothing errors involving only the estimation errors of π?, Q? and f?. These upper
bounds are given in Propositions 2.1 and 2.2. Their proofs are postponed to Appendix A and B. Note that the upper
bounds are given for any possible values y1:k, k ≥ 1, and may be applied to the set of observations associated with the
target filtering and smoothing distributions, regardless of the set of observations used to estimate π?, Q? and f?. Let
‖ · ‖tv be the total variation norm, ‖ · ‖2 the Euclidian norm and ‖ · ‖F the Frobenius norm. For all 1 ≤ k ≤ n, φ̂k and
φ̂k|n denote the approximations of φ?k and φ?k|n obtained by replacing π?, Q? and f? by the estimators π̂, Q̂ and f̂ in
(2) and (3).
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Proposition 2.1. Assume [H1]-b) and [H2] hold. Then, for all k ≥ 1 and all y1:k ∈ Yk,

‖φ?k(·, y1:k)− φ̂k(·, y1:k)‖tv ≤ C?
(
ρk−1? ‖π? − π̂‖2 /δ

? + ‖Q? − Q̂‖F /(δ?(1− ρ?))

+

k∑
`=1

ρk−`? c−1? (y`) max
x∈X

∣∣∣f?x(y`)− f̂x(y`)
∣∣∣) ,

where ρ? := 1− δ?/(1− δ?) and C? := 4(1− δ?)/δ?.

The control of the marginal smoothing distribution errors is given by the following result.

Proposition 2.2. Assume [H1]-b) and [H2] hold. Then, for all 1 ≤ k ≤ n and all y1:n ∈ Yn,

‖φ?k|n(·, y1:n)− φ̂k|n(·, y1:n)‖tv ≤ C?
(
ρk−1? ‖π? − π̂‖2/δ? + [1/(1− ρ?) + 1/(1− ρ̂)]‖Q? − Q̂‖F /δ?

+

n∑
`=1

(ρ̂ ∨ ρ?) |`−k|c−1? (y`) max
x∈X

∣∣∣f?x(y`)− f̂x(y`)
∣∣∣) ,

where δ̂ := minx,x′ Q̂(x, x′) and ρ̂ := 1− δ̂/(1− δ̂).

2.3 Uniform consistency of the posterior distributions
Propositions 2.1 and 2.2 are preliminary results that can be used to understand how estimation errors on the parameters
of the HMM propagate to the filtering and smoothing distributions. Assume that we are given a set of p+n observations
from the hidden Markov model driven by π?, Q? and f?. The first p observations are used to produce the estimators
π̂, Q̂ and f̂ while filtering and smoothing are performed with the last n observations. In other words, the estimators π̂,
Q̂ and f̂ are measurable functions of Y1:p and the objective is to estimate φ?k(·, Yp+1:p+k) and φ?k|n(·, Yp+k:p+n).

2.3.1 Parametric models

In the parametric case, the hidden Markov model depends on a parameter θ? which lies in a subset of Rq for a given
q ≥ 1. In this situation, θ? may be estimated by θ̂ ∈ Rq and we may write π̂ := πθ̂, Q̂ := Qθ̂ and f̂ := f θ̂. In the
following, for any sequence of real random variables (Zn)n≥0 and any sequence (an)n≥0 of positive real numbers, the
notation Zn = OP(an) means that (Zn/an)n≥0 is bounded in probability i.e. for all ε > 0 there exists M > 0 such
that for all n ≥ 0, P(|Zn|/an > M) < ε.

Theorem 2.3. Assume [H1] and [H2] hold. Assume also that for all x, x′ ∈ X , θ 7→ Qθ(x, x
′) is continuously

differentiable with a bounded derivative in the neighborhood of θ? and that for all x ∈ X and all y ∈ Y , θ 7→ fθx(y)
is continuously differentiable in the neighborhood of θ? and such that the norm of its gradient is upper bounded in this
neighborhood by a function hx such that

∫
hx(y)dLD(y) < +∞. Let θ̂ be a consistent estimator of θ?. Then for any

1 ≤ k ≤ n,
‖φ?k(·, Yp+1:p+k)− φ̂k(·, Yp+1:p+k)‖tv = OP(‖θ̂ − θ?‖2)

and
‖φ?k|n(·, Yp+1:p+n)− φ̂k|n(·, Yp+1:p+n)‖tv = OP(‖θ̂ − θ?‖2) .

The smoothness assumption in Theorem 2.3 is usual to study the asymptotic distribution of the maximum likelihood
estimator in parametric HMMs. By Theorem 2.3, tight bounds on the uniform convergence rate of ‖φ?k(·, Yp+1:p+k)−
φ̂k(·, Yp+1:p+k)‖tv and of ‖φ?k|n(·, Yp+1:p+n) − φ̂k|n(·, Yp+1:p+n)‖tv may be derived by controlling the estimation

error ‖θ̂− θ?‖. There exist several results on this error term depending on the algorithm used to obtain θ̂. For instance,
[37] provides explicit upper bounds for this error term in the case where θ̂ is a recursive maximum likelihood estimator
of θ?, under additional assumptions on the model.

Proof. First, under [H1] and [H2], the assumption on θ 7→ Qθ(x, x
′) implies that θ 7→ πθx is continuously differentiable

with a bounded derivative in the neihgborhood of θ?. Note also that supk≥1 ρ
k−1
? ≤ 1 and supk≥1 ρ̂

k−1 ≤ 1. Then,
using a Taylor expansion the first two terms of the upper bound in Propositions 2.1 and 2.2 are OP(‖θ̂ − θ?‖2). There
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just remains to control the last term for each of the upper bound in Propositions 2.1 and 2.2. Using a Taylor expansion,
Cauchy-Schwarz inequality, and Proposition 2.1, for any 1 ≤ k ≤ n,

‖φ?k(·, Yp+1:p+k)− φ̂k(·, Yp+1:p+k)‖tv ≤ OP(‖θ̂ − θ?‖2) + ‖θ̂ − θ?‖2
k∑
`=1

ρk−`? c−1? (Yp+`)
∑
x∈X

hx(Yp+`) .

As the (Yj)j≥1 are stationary with distribution having probability density
∑
x∈X π

?
xf

?
x(y) ≤ c?(y)/δ?, the random

variable
∑k
`=1 ρ

k−`
? c−1? (Yp+`)

∑
x∈X hx(Yp+`) is nonnegative and has expectation upper bounded by

1

δ?

k∑
`=1

ρk−`?

∑
x∈X

∫
hx(y)dLD(y) ≤ 1− δ?

(δ?)2

∑
x∈X

∫
hx(y)dLD(y) < +∞ .

Thus,
∑k
`=1 ρ

k−`
? c−1? (Yp+`)

∑
x∈X hx(Yp+`) = OP(1) which ends the proof of the first part of Theorem 2.3. The

result for the smoothing distributions follows the same lines since, for some ε > 0 such that ρ? + ε < 1, the event
{ρ̂ ≥ ρ? + ε} has probability tending to 0 as p tends to infinity when θ̂ is a consistent estimator of θ?.

2.3.2 Nonparametric models

We first state a general theorem providing a control of the uniform consistency of the posterior distributions depending
on the risk of the nonparametric estimators. This theorem also holds in the parametric context. However, the parametric
literature usually focuses on the properties of the estimators distribution while nonparametric results mostly study the
risk. It is known that hidden Markov model are identifiable up to permutations of the hidden states labels. Therefore,
without loss of generality, the following results are stated indicating the prospective permutation of the states. Let SK
be the set of permutations of {1, . . . ,K}. If τ is a permutation, Pτ denotes the permutation matrix associated with τ .

Theorem 2.4. Assume [H1]-b) and [H2] hold. Then for all n ≥ 1, for any permutation τp ∈ SK ,

sup
1≤k≤n

E
[
‖φ?k(·, Yp+1:p+k)− φ̂ τpk (·, Yp+1:p+k)‖tv

]
≤ C?

(δ?)2

{
E[
∥∥π? − Pτp π̂p

∥∥
2
] + E[‖Q? − PτpQ̂pP>τp‖F ] +

∑
x∈X

E[‖f?x − f̂τp(x)‖1]

}

and

sup
1≤k≤n

E
[
‖φ?k|n(·, Yp+1:p+n)− φ̂ τpk|n(·, Yp+1:p+n)‖tv

]
≤ C?

(δ?)2

{
E[
∥∥π? − Pτp π̂p

∥∥
2
] + E

[
‖Q? − PτpQ̂pP>τp‖F /δ̂

]
+
∑
x∈X

E
[
‖f?x − f̂τp(x)‖1/δ̂

]}
.

Here, φ̂ τpk and φ̂ τpk|n are the estimations of φ?k and φ?k|n based on PτpQ̂P>τp , Pτp π̂ and f̂τp(x), for all x ∈ X .

The uniform control provided by Theorem 2.4 depends explicitly on the estimation errors of all the parameters and
is a theoretical guarantee that posterior distributions may be approximated consistently in nonparametric HMMs when
parameters are unknown. This result has also practical consequences. For instance, in the case of online parameter esti-
mation procedures, new parameter estimates are computed on-the-fly as new observations are received. This parameter
estimate is computed using the approximation of the posterior distributions based on previous parameter estimates and
Theorem 2.4 is therefore a first step to analyze the convergence properties of such algorithms (and it may also be used
to tune algorithms to obtain a required accuracy on smoothed expectations approximations).

Theorem 2.4 provides a control driven by the L1-risk of the emission densities. Section 3 introduces a spectral
method to obtain, in the nonparametric context, estimators of the transition matrix, the stationary distribution and the
emission densities. The algorithm is based on projection methods which leads to controls on the L2-risk of the emission
densities. This control may be easily transformed when Y is a compact subset of RD, since in such a case there exists
C(Y) > 0 such that for any square integrable functions h1 and h2,

‖h1 − h2‖1≤ C(Y)‖h1 − h2‖2. (4)
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Note also that very recently other methods have been proposed to control the risk of estimation procedure in nonpara-
metric HMMs. In [10], the authors introduced a penalized least squares estimator and established an oracle inequality
for the L2-risk of the estimation of the law of three consecutive observations and a minimax rate of estimation for the
emission densities. In [20], a nonparametric estimator of the unknown translated density is proposed in finite translation
mixture models for which the authors proved asymptotic rates for the minimax L1-risk.

Proof. For any x ∈ X and any 1 ≤ ` ≤ n,

E
[
c−1? (Yp+`)

∣∣∣f?x(Yp+`)− f̂τp(x)(Yp+`)
∣∣∣] = E

[
E
[
c−1? (Yp+`)

∣∣∣f?x(Yp+`)− f̂τp(x)(Yp+`)
∣∣∣∣∣∣Y1:p+`−1]] ,

with
E
[
c−1? (Yp+`)

∣∣∣f?x(Yp+`)− f̂τp(x)(Yp+`)
∣∣∣∣∣∣Y1:p+`−1] =

∫ ∣∣∣f?x(z)− f̂τp(x)(z)
∣∣∣ c−1? (z)g`(z)dz ,

where g`(z) :=
∑
x`−1,x`∈X φ

?
`−1(x`−1, Yp+1:p+`−1)Q?(x`−1, x`)f

?
x`

(z). By [H1]-b) and (1), c−1? (z)g`(z) ≤ (1 −
δ?)/δ? and

E
[
c−1? (Yp+`)

∣∣∣f?x(Yp+`)− f̂x(Yp+`)
∣∣∣∣∣∣Y1:p+`−1] ≤ (1− δ?)‖f?x − f̂τp(x)‖1/δ

? .

The result for the filtering distributions is then a consequence of the upper bound of Proposition 2.1. The proof for the
smoothing distributions follows the same steps.

3 Nonparametric spectral estimation of HMMs

3.1 Description of the spectral method
This section describes a tractable approach to get nonparametric estimators of the emission densities and the transition
matrix. This procedure relies on the estimation of the projections of the emission laws onto nested subspaces of
increasing complexity. This allows to illustrate the uniform consistency result provided in the previous section. Let
(Mr)r≥1 be an increasing sequence of integers and (PMr

)r≥1 be a sequence of nested subspaces such that their union
is dense in L2(Y,LD). Let ΦMr

:= {ϕ1, . . . , ϕMr
} be an orthonormal basis of PMr

. Note that for all f ∈ L2(Y,LD),

lim
r→∞

Mr∑
m=1

〈f, ϕm〉ϕm = f in L2(Y,LD) . (5)

Note also that changing Mr may change all functions ϕr, 1 ≤ m ≤Mr in the basis ΦMr , which will not be indicated
in the notation for better clarity. We shall also drop the index r and write M instead of Mr. The following standard
examples may be considered.

- (Spline) The space of piecewise polynomials of degree less than dr based on the regular partition with pDr regular
pieces on Y . In this case, Mr = (dr + 1)DpDr .

- (Trig.) The space of real trigonometric polynomials on Y with degree less than r. In this case, Mr = (2r + 1)D.

- (Wav.) A wavelet basis ΦMr
of scale r on Y , see [31]. In this case, Mr = 2(r+1)D.

The functions f?M,1, . . . , f
?
M,K denote the projections of the emission densities on the space PM , that is, for all x ∈

X ,

f?M,x =

M∑
m=1

〈f?x , ϕm〉ϕm.

Our approach follows the strategy described in [3] to get an estimate of the emission densities. However, the
dependency on the dimension is of crucial importance in the nonparametric framework and it has not been addressed
in [3]. Hence, we present in Theorem C.3 a new quantitative version of the work [3] that accounts for the dimension
M. Moreover, the authors of [3] estimate the transition matrix Q? but they do not give any theoretical guarantees
regarding this estimator. In this paper, we introduce a slightly different estimator that is based on a surrogate π̃ (see
Step 8 of Algorithm 1) of the stationary distribution. Our estimator (see Step 9 of Algorithm 1) is then built from the
“observable” operator (rather than its left singular vectors as done in [3]). Eventually, Theorem C.2 provides theoretical
guarantees on our estimator of the transition matrix and its stationary distribution.
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Algorithm 1: Nonparametric spectral estimation of the transition matrix and the emission laws
Data: An observed chain (Y1, . . . , Yp+2) and a number of hidden states K.
Result: Spectral estimators π̂, Q̂ and (f̂M,x)x∈X .

[Step 1] For all a, b, c in {1, . . . ,M}, consider the following empirical estimators: L̂M (a) :=
∑p
s=1 ϕa(Ys)/p,

M̂M (a, b, c) :=
∑p
s=1 ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)/p, N̂M (a, b) :=

∑p
s=1 ϕa(Ys)ϕb(Ys+1)/p and

P̂M (a, c) :=
∑p
s=1 ϕa(Ys)ϕc(Ys+2)/p.

[Step 2] Let Û be the M ×K matrix of orthonormal right singular vectors of P̂M corresponding to its top K
singular values.

[Step 3] For all b ∈ {1, . . . ,M}, set B̂(b) := (Û>P̂MÛ)−1Û>M̂M (. , b, . )Û.

[Step 4] Set Θ a (K ×K) unitary matrix uniformly drawn and, for all x ∈ X , Ĉ(x) :=
∑M
b=1(ÛΘ)(b, x)B̂(b).

[Step 5] Compute R̂ a (K ×K) unit Euclidean norm columns matrix that diagonalizes the matrix Ĉ(1):

R̂−1Ĉ(1)R̂ = Diag[(Λ̂(1, 1), . . . , Λ̂(1,K))] .

[Step 6] For all x, x′ ∈ X , set Λ̂(x, x′) := (R̂−1Ĉ(x)R̂)(x′, x′) and ÔM := ÛΘΛ̂.

[Step 7] Consider the estimator (f̂M,x)x∈X defined by, for all x ∈ X , f̂M,x :=
∑M
m=1 ÔM (m,x)ϕm.

[Step 8] Set π̃ :=
(
Û>ÔM

)−1
Û>L̂M .

[Step 9] Consider the transition matrix estimator Q̂ := ΠTM

((
Û>ÔMDiag[π̃]

)−1
Û>N̂MÛ

(
Ô>MÛ

)−1)
where

ΠTM denotes the projection (with respect to the scalar product given by the Frobenius norm) onto the
convex set of transition matrices, and define π̂ as the stationary distribution of Q̂.

The computation of those estimators is particularly simple: it is based on one singular value decomposition, matrix
inversions and one diagonalization. It is proved in Theoremn C.2 and C.3 that, with overwhelming probability, all the
matrix inversions and the diagonalization can be performed safely.

For all (p× q) matrices A with p ≥ q, σ1(A) ≥ σ2(A) ≥ . . . ≥ σq(A) ≥ 0 denote the singular values of A and ‖·‖
its operator norm. WhenA is invertible, let κ(A) := σ1(A)/σq(A) be its condition number. A> is the transpose matrix
of A, A(`, `′) its (`, `′)th entry, A(. , `) its `th column and A(k, . ) its kth row. When A is a (p × p) diagonalizable
matrix, its eigenvalues are written λ1(A) ≥ λ2(A) ≥ . . . ≥ λp(A). For any 1 ≤ q ≤ +∞, ‖·‖q is the usual Lq

norm for vectors. For any row or column vector v, Diag[v] denotes the diagonal matrix with diagonal entries vi. The
following vectors, matrices and tensors are used throughout the paper:

- LM ∈ RM is the projection of the distribution of one observation on the basis ΦM : for all a ∈ {1, . . . ,M},
LM (a) := E[ϕa(Y1)] ;

- NM ∈ RM×M is the joint distribution of two consecutive observations: for all (a, b) ∈ {1, . . . ,M}2, NM (a, b) :=
E[ϕa(Y1)ϕb(Y2)] ;

- MM ∈ RM×M×M is the joint distribution of three consecutive observations: for all (a, b, c) ∈ {1, . . . ,M}3,
MM (a, b, c) := E[ϕa(Y1)ϕb(Y2)ϕc(Y3)] ;

- OM ∈ RM×K is the conditional distribution of one observation on the basis ΦM : for all (m,x) ∈ {1, . . . ,M}×X ,
OM (m,x) := E[ϕm(Y1)|X1 = x] = 〈f?x , ϕm〉 ;

- For all x ∈ X , f?M,x is the projection of the emission laws on the subspace PM : , f?M,x :=
∑M
m=1 OM (m,x)ϕm.

Write f?M := (f?M,1, . . . , f
?
M,K) ;

- PM ∈ RM×M is the joint distribution of (Y1, Y3): for all (a, c) ∈ {1, . . . ,M}2, PM (a, c) := E[ϕa(Y1)ϕc(Y3)].
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3.2 Variance of the spectral estimators
This section displays results which allow to derive the asymptotic properties of the spectral estimators. The aim of
Theorem 3.1 is to provide an explicit upper bound for the variance term with respect to both p andM . Assumption [H3],
together with [H1]-b) and [H2], is sufficient to obtain identifiability of nonparametric HMMs. More precisely, [19]
proved that if [H3], [H1]-b) and [H2] hold, the model is identifiable from the distribution of 3 consecutive observations.
[1] proved that it is enough to assume that the emission densities are all distinct to prove that the parameters may be
identified. However, [H3] is a necessary condition to apply the spectral method to obtain the nonparametric estimators
of the emission densities, see for instance Lemma C.1.

[H3] The family of emission densities F? := {f?1 , . . . , f?K} is linearly independent.

Finally, the following quantity is required to control the L2-risk of the spectral estimators. For any M , define

η23(ΦM ) := sup
y,y′∈Y3

M∑
a,b,c=1

(ϕa(y1)ϕb(y2)ϕc(y3)− ϕa(y′1)ϕb(y
′
2)ϕc(y

′
3))

2
. (6)

η3(ΦM ) is the only term of the upper bound of the L2-risk involving M .
In this section, assumption [H1] may be replaced by the following weaker assumption [H1’].

[H1’] a) The transition matrix Q? has full rank.

b) (Xn)n≥1 is irreducible and aperiodic.

Note that under [H1’] and [H2], there exists π?min > 0 such that, for all x ∈ X ,

π?x ≥ π?min . (7)

Theorem 3.1 (Spectral estimators). Assume that [H1’] and [H2]-[H3] hold. Assume also that for all x ∈ X , f?x ∈
L2(Y,LD). Then, there exist positive constants u(Q?), C(Q?,F?) and N(Q?,F?) such that for any u ≥ u(Q?),
any δ ∈ (0, 1), any M ≥ MF? , there exists a permutation τM ∈ SK such that the spectral method estimators f̂M,x,
π̂ and Q̂ (see Algorithm 1) satisfy, for any p ≥ N(Q?,F?)η3(ΦM )2u(− log δ)/δ2, with probability greater than
1− 2δ − 4e−u,

max
x∈X
‖f?M,x − f̂M,τM (x)‖2≤ C(Q?,F?)

√
− log δ

δ

η3(ΦM )
√
p

√
u ,

‖π? − PτM π̂‖2≤ C(Q?,F?)

√
− log δ

δ

η3(ΦM )
√
p

√
u ,

‖Q? − PτM Q̂P>τM ‖≤ C(Q
?,F?)

√
− log δ

δ

η3(ΦM )
√
p

√
u .

Theorem 3.1 provides a control of the L2- risk of the estimators with overwhelming probability. By Theorem 2.4,
the uniform control of the filtering and marginal smoothing distributions requires to upper bound the expectation of
these L2- risks. This may be obtained by slightly modifying Algorithm 1. Following [29], step [4] may be replaced
by sampling uniformly (Θi)1≤i≤r independent unitary matrices with r > 1 and associating with each Θi and each
x ∈ X a matrix Ĉi(x) defined as Ĉ(x) where Θ is replaced by Θi. Then step [5] provides matrices (Ri)1≤i≤r which
diagonalize (Ĉi(1))1≤i≤r with eigenvalues (Λ̂i(1, x))x∈X . Then, the new spectral estimator is defined as

f̂rM,x :=

M∑
m=1

ÔM (m,x)ϕm ,

where ÔM := ÛΘi0Λ̂i0 , with 1 ≤ i0 ≤ r maximizing:

i 7→ min
k

min
k1 6=k2

∣∣∣Λ̂i(k, k1)− Λ̂i(k, k2)
∣∣∣ .

Corollary 3.2 establishes an upper bound for the expectation of the L2- risk of this estimator.

8



de Castro et al. Consistent estimation of posterior distributions in nonparametric HMMs

Corollary 3.2. Assume that [H1’] and [H2]-[H3] hold. Assume also that for all x ∈ X , f?x ∈ L2(Y,LD) and
‖f?x‖∞ < +∞. Let α > 0. Let (rp)p≥1 and (Mp)p≥1 be sequences of integers growing to infinity and such that
η3(ΦMp

) = o(
√
p/ log p), log p = O(rp) and rp = O(log p). Then,

E
[

inf
τ∈SK

max
x∈X
‖ (−pα) ∨

(
f̂rMp,x ∧ p

α
)
− f?Mp,τ(x)

‖22
]

= O
(
η23(ΦMp

) log p/p
)
.

Here, the expectations are with respect to the observations and to the rp random unitary matrices drawn at [Step 4] of
Algorithm 1. A similar bound holds for Q̂ and π̂.

Proof. Following [30, Theorem 1] a similar control as the one of Theorem 3.1 may be obtained for f̂rMp
. In this case,

[30, Theorem 1] shows that there exist positive constants C, x0, y0, M0 and p1 such that for all x > x0, y > y0
and r ≥ 1, for all M ∈ {m ∈ M; m ≥ M0} and all p ≥ p1η

2
3(ΦM )x(y + log r)ey/r, with probability at least

1− 4e−x − 2e−y ,
inf
τ∈SK

max
x∈X
‖f?M,τ(x) − f̂

r
M,x‖22 ≤Cη23(ΦM )x(y + log r)ey/r/p . (8)

Under the assumptions of Corollary 3.2, it is possible to choose constants to apply the inequality with y = yp = α log p
and xp = O(log p/εp) where (εp)p≥1 is a sequence of positive numbers such that limp εp = 0. Define

Zp = inf
τ∈SK

max
x∈X
‖ (−pα) ∨

(
f̂rMp,x ∧ p

α
)
− f?Mp,τ(x)

‖22

and Ep the event of probability 1− 4e−xp − 2e−yp on which (8) holds for a sufficiently large p and where Lemma ??
holds (the reader may consult Remark F.1 for the appropriate version of the lemma in this framework). Then, noting
that on Ep, P(pZp1Ep ≥ xpη23(ΦMp) log p) = 0,

E
[
Zp

p

η23(ΦMp
) log p

]
≤ pαP

(
Ecp
)

+ E
[
Zp

p

η23(ΦMp
) log p

1Ep

]
,

≤ O(1) +

∫ +∞

x0

P
(
Zp

p

η23(ΦMp
) log p

1Ep
≥ x

)
dx ,

≤ O(1) +

∫ xp

x0

P
(
Zp

p

η23(ΦMp
) log p

1Ep
≥ x

)
dx ,

≤ O(1) .

The proof is similar for the other terms.

Applying Theorem 2.4 and (4) is enough to get the following corollary whose proof is omitted. The first point is an
application of Corollary 3.2 and the second is obtained following the same lines as in the proof of Corollary 3.2. For
all κ > 0, Let Πκ be the projection on {f ∈ L2(Y,LD); ‖f‖∞ < κ}.

Corollary 3.3. Assume [H1]-[H3] hold. Assume also that for all x ∈ X , f?x ∈ L2(Y,LD) and ‖f?x‖∞ < κ∞.
Let (rp)p≥1 and (Mp)p≥1 be sequences of integers growing to infinity and such that η3(ΦMp) = o(

√
p/ log p),

log p = O(rp) and rp = O(log p). For each p, define Q̂, π̂ as the estimators obtained by the spectral algorithm
given in Section 3 with this choice of Mp and for all x ∈ X , f̂Mp,x = Πκ∞(f̂

rp
Mp,x

). Then, there exists a sequence of
permutations τp ∈ SK such that

E
[
sup
k≥1
‖φ?k(·, Yp+1:p+k)− φ̂ τpk (·, Yp+1:p+k)‖tv

]
= O

(
η3(ΦMp

)
√

log p/p+
∑
x∈X
‖f?x − f?Mp,x‖2

)
and

E
[

sup
1≤k≤n

‖φ?k|n(·, Yp+1:p+n)− φ̂ τpk|n(·, Yp+1:p+n)‖tv
]

= O
(
η3(ΦMp

)
√

log p/p+
∑
x∈X
‖f?x − f?Mp,x‖2

)
.

In (Spline), (Trig.) and (Wav.), there exists a constant Cη > 0 such that η3(M) ≤ CηM
3/2, so that the uniform rate

of convergence for the posterior probabilities is O
(
Mp

3/2
√

log p/p+
∑
x∈X ‖f?x − f?Mp,x

‖2
)
.
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Figure 1: Illustration of Theorem 2.4: worst expected marginal smoothing probabilities obtained with the forward-
backward algorithm (n = 1e5) combined with the spectral method or the least squares method using the projections of
the emission laws on the histogram basis (left hand term in Theorem 2.4) as a function of the estimation error of the
hidden parameters (right hand term in Theorem 2.4), for p = 3e4, 4e4, 5e4, 6e4, 7e4 and 8e4.

4 Experimental results
This section displays several numerical experiments to assess the efficiency of our method. The K = 2 emission laws
are beta distributions with parameters (2, 5) and (4, 3). In all experiments, the transition matrix Q? is

Q? :=

(
0.4 0.6
0.8 0.2

)
and the estimation is based on the observation of a chain (Yi)

p+n
i=1 of length p + n with n varying from 1 to 100,000

and p varying from 30,000 to 80,000. We considered the histogram basis to build our approximation spaces, as defined
in (5). The near minimax adaptive procedure described in [10]—referred to as the least-squares method—gives an
estimation of Q? and of the emission laws. It is based on minimizing the empirical least squares in order to estimate
the emission laws. Using the slope heuristic [5], the selected size of the model is M̂ with M̂ = 13, 14, 17, 19, 20 and
22 for p = 3e4, 4e4, 5e4, 6e4, 7e4 and 8e4 respectively. We use these values with the spectral method as well.

The Matlab codes can be found at My CoRe cloud

This section displays four numerical results:

1. The main goal is to illustrate Theorem 2.4. Expectations of the smoothing probabilities are computed taking
the mean value over iter = 20 independent numerical experiments. Figure 1 displays the right hand side of
Theorem 2.4—the worst expected marginal smoothing probability—as a function of the right hand term—the
estimation error of the hidden parameters. It may illustrate an “at most linear” dependence between these two
terms and that their ratio is bounded for small errors on the hidden parameters.

2. Figure 2 illustrates that the worst expectation of the error on the marginal smoothing probability does not explode
when the chain length n goes to infinity. More precisely, the left hand side of Theorem 2.4 has been computed
for n = 1, . . . , 100 000 based on an estimate of the hidden parameters built from the spectral method or the least
squares method on a chain of length p varying from 30,000 to 80,000. This figure may illustrate that, for small
estimation errors on the hidden parameters—large values of p, the error on the marginal smoothing probability
is small and bounded whatever the chain length is.

3. Figure 3 presents a qualitative illustration of the adaptive estimation of the emission laws. Using a chain of
length p = 60,000, the histogram and trigonometric bases are used as approximation spaces. Once again, the
size M̂ of the approximation space has been set using the least squares method together with the slope heuristic
as in [10]. We found M̂ = 19 for the histogram basis and M̂ = 18 for the trigonometric basis. One may observe
that the least squares method gives a better estimation than the spectral method.
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Figure 2: Illustration of Theorem 2.4: worst expected marginal smoothing probabilities obtained with the forward-
backward algorithm combined with the spectral method or the least squares method using projection of the emission
laws on the histogram basis (left hand term in Theorem 2.4) as a function of n = 1, . . . , 100 000.
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Figure 3: Estimation of beta distributions with parameters (2, 5) and (4, 3). The projection basis is the histogram basis
(M̂ = 19) on the left and the trigonometric basis (M̂ = 18) on the right.
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Figure 4: Marginal smoothing probabilities obtained with the forward-backward algorithm using projection of the
emission laws on the histogram basis (top) or the trigonometric basis (bottom).

4. Using these hidden parameter estimates, the marginal smoothing probabilities are computed using the forward-
backward algorithm with a chain of length n = 60, 000. The results are presented in Figure 4.
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Conclusion and perspectives
This article focuses on the control of the estimation of the filtering and marginal smoothing distributions in nonpara-
metric hidden Markov models when the parameters are unknown. These posterior distributions are approximated using
the forward-backward algorithm where parameters are replaced by any given estimators. This is the first time an ex-
plicit control of the worst expected filtering and marginal smoothing errors is established as a function of the L1-risk of
the hidden parameters. Numerical experiments assess this result by showing in particular that, for small errors on the
hidden parameters, the error on the filtering and marginal smoothing distributions remains bounded when the number
of observations grows.

In addition, this article introduces a new estimation procedure for nonparametric HMMs based on the spectral
method and establishes upper bounds on its risk. As a byproduct of the spectral method, the algorithm does not suf-
fer from convergence to a local minimum which leads to a reliable procedure to estimate the filtering and marginal
smoothing distributions. From a computational view point, estimating the filtering and marginal smoothing requires a
robust estimator of the hidden parameters and we believe that the spectral method can be efficiently used as such. Per-
formance of this method relies heavily on the conditioning number of the empirical Gram matrix [29] of the emission
densities and, hence, it requires a sufficiently large number of observations. These robustness issues are analyzed in a
recent ongoing work, see [29] for a study of order estimation issues (i.e. selecting the number of hidden states) using
the spectral method and the empirical least squares method. Also, interesting perspectives may include how to adapt
these estimators to different regularities on the emission densities.
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Appendix

A Control of the filtering error - Proof of Proposition 2.1
Let y1:n ∈ Yn. The aim of this section is to establish that the total variation error between φ?k(·, y1:n) and its approx-
imations based on Q̂ and f̂ is bounded uniformly in time k. Before stating the main result, we introduce a standard
decomposition of the filtering error φ?k(·, y1:k) − φ̂k(·, y1:k). For all k ≥ 1, let F?k,yk be the forward kernel at time k
and F̂k,yk its approximation, defined, for all ν ∈ P(X ), as:

F?k,ykν(x) :=

∑
x′∈X Q?(x

′, x)f?x(yk)ν(x′)∑
x′,x′′∈X Q?(x′, x′′)f?x′′(yk)ν(x′)

,

and

F̂k,ykν(x) :=

∑
x′∈X Q̂(x′, x)f̂x(yk)ν(x′)∑

x′,x′′∈X Q̂(x′, x′′)f̂x′′(yk)ν(x′)
.

Clearly, for all y1:n ∈ Yn and 2 ≤ k ≤ n, φ?k(·, y1:k) = F?k,ykφ
?
k−1(·, y1:k−1) and φ̂k(·, y1:k) = F̂k,yk φ̂k−1(·, y1:k−1).

The filtering error is usually written as a sum of one step errors. For all k ≥ 2,

φ?k(·, y1:k)− φ̂k(·, y1:k) = F?k,ykφ
?
k−1(·, y1:k−1)− F̂k,yk φ̂k−1(·, y1:k−1)

=

k−1∑
`=1

∆k,`(y`:k) + F?k,yk φ̂k−1(·, y1:k−1)− F̂k,yk φ̂k−1(·, y1:k−1) , (9)

with F?1,y1 φ̂0 = φ?1(·, y1) and

∆k,`(y`:k) := F?k,yk . . .F
?
`+1,y`+1

F?`,y` φ̂`−1(·, y1:`−1)− F?k,yk . . .F
?
`+1,y`+1

φ̂`(·, y`) .

Let β?`|k[y`+1:k] and F?`|k[y`:k] be the backward functions and the forward smoothing transition matrix as defined in [9,
Chapter 3],

β?`|k[y`+1:k](x`) :=
∑
x`+1:k

Q?(x`, x`+1)f?x`+1
(y`+1) . . .Q?(xk−1, xk)f?xk

(yk) , (10)

F?`|k[y`:k](x`−1, x`) :=
β?`|k[y`+1:k](x`)Q?(x`−1, x`)f

?
x`

(y`)∑
x∈X β

?
`|k[y`+1:k](x)Q?(x`−1, x)f?x(y`)

. (11)

In the sequel, the dependency on the observations may be dropped to simplify notations. By [9, Chapter 4], for any
probability distribution ν, F?k . . .F

?
`+1ν = ν`|kF?`+1|k . . .F

?
k|k, where ν`|k ∝ β?`|kν. Therefore, the filtering error (9) is

given by:

φ?k − φ̂k =

k−1∑
`=1

(
µ?`|kF?`+1|k . . .F

?
k|k − µ̂`|kF?`+1|k . . .F

?
k|k

)
+ F?kφ̂k−1 − F̂kφ̂k−1 , (12)

where µ?`|k ∝ β
?
`|kF?` φ̂`−1 and µ̂`|k ∝ β?`|kφ̂`. By [H1]-b), the transition matrix F?k|n can be lower bounded uniformly

in its first component:

F?`|k(x, x′) ≥ δ?

1− δ?
β?`|k[y`+1:k](x′)f?x′(y`)∑
z∈X β

?
`|k[y`+1:k](z)f?z (y`)

.

By [9, Chapter 4], this allows to write,∥∥∥µ?`|kF?`+1|k . . .F
?
k|k − µ̂`|kF?`+1|k . . .F

?
k|k

∥∥∥
tv
≤ ρk−`? ‖µ?`|k − µ̂`|k‖tv . (13)

Eq. (13) is the crucial step to obtain the upper bound for the filtering error stated in Proposition 2.1. By (12) and (13),

‖φ?k − φ̂k‖tv ≤
k−1∑
`=1

ρk−`?

∥∥∥µ?`|k − µ̂`|k∥∥∥
tv

+
∥∥∥F?kφ̂k−1 − F̂kφ̂k−1

∥∥∥
tv
.
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For all 1 ≤ ` ≤ k − 1 and all bounded function h on X ,
∣∣∣µ?`|k(h)− µ̂`|k(h)

∣∣∣ ≤ T1 + T2 where

T1 :=

∣∣∣∣∣∣
∑
x∈X β

?
`|k[y`+1:k](x)h(x)

[
F?` φ̂`−1(x)− F̂`φ̂`−1(x)

]
∑
x∈X β

?
`|k[y`+1:k](x)F?` φ̂`−1(x)

∣∣∣∣∣∣ ,
T2 :=

∣∣∣∣∣
∑
x∈X β

?
`|k[y`+1:k](x)h(x)F̂`φ̂`−1(x)∑

x∈X β
?
`|k[y`+1:k](x)F̂`φ̂`−1(x)

∣∣∣∣∣ ·
∣∣∣∣∣∣
∑
x∈X β

?
`|k[y`+1:k](x)

[
F?` φ̂`−1(x)− F̂`φ̂`−1(x)

]
∑
x∈X β

?
`|k[y`+1:k](x)F?` φ̂`−1(x)

∣∣∣∣∣∣ .
Both T1 and T2 are upper bounded by the same term so that

T1 + T2 ≤ 2
‖h‖∞ · ‖β?`|k[y`+1:k]‖∞
infx∈X β?`|k[y`+1:k](x)

‖F?` φ̂`−1 − F̂`φ̂`−1‖tv .

By (10), for all x ∈ X , β?`|k[y`+1:k](x) ≤ (1−δ?)
∑
xk+1:n

f?xk+1
(yk+1) . . .Q?(xn−1, xn)f?xn

(yn) and β?`|k[y`+1:k](x) ≥
δ?
∑
xk+1:n

f?xk+1
(yk+1) . . .Q?(xn−1, xn)f?xn

(yn), showing that

T1 + T2 ≤ 2‖h‖∞
(

1− δ?

δ?

)
‖F?` φ̂`−1 − F̂`φ̂`−1‖tv .

Now, for all 2 ≤ ` ≤ k and all bounded function h on X ,
∣∣∣F?` φ̂`−1(h)− F̂`φ̂`−1(h)

∣∣∣ ≤ R1 +R2, where

R1 :=

∣∣∣∣∣∣
∑
x,x′∈X φ̂`−1(x)

[
Q?(x, x

′)f?x′(y`)− Q̂(x, x′)f̂x′(y`)
]
h(x′)∑

x,x′∈X φ̂`−1(x)Q?(x, x′)f?x′(y`)

∣∣∣∣∣∣ ,
R2 :=

∣∣∣∣∣
∑
x,x′∈X φ̂`−1(x)Q̂(x, x′)f̂x′(y`)h(x′)∑

x,x′∈X φ̂`−1(x)Q̂(x, x′)f̂x′(y`)

∣∣∣∣∣
×

∣∣∣∣∣∣
∑
x,x′∈X φ̂`−1(x)

[
Q?(x, x

′)f?x′(y`)− Q̂(x, x′)f̂x′(y`)
]

∑
x,x′∈X φ̂`−1(x)Q?(x, x′)f?x′(y`)

∣∣∣∣∣∣ .
Then,

R1 ≤

 ∑
x,x′∈X

φ̂`−1(x)Q?(x, x
′)f?x′(y`)

−1 ∑
x,x′∈X

φ̂`−1(x)
∣∣∣Q?(x, x

′)f?x′(y`)− Q̂(x, x′)f̂x′(y`)
∣∣∣h(x′) ,

≤

 ∑
x,x′∈X

φ̂`−1(x)Q?(x, x
′)f?x′(y`)

−1 ∑
x,x′∈X

φ̂`−1(x)
∣∣∣Q?(x, x

′)− Q̂(x, x′)
∣∣∣ f?x′(y`)h(x′)

+

 ∑
x,x′∈X

φ̂`−1(x)Q?(x, x
′)f?x′(y`)

−1 ∑
x,x′∈X

φ̂`−1(x)Q̂(x, x′)
∣∣∣f?x′(y`)− f̂x′(y`)∣∣∣h(x′) ,

≤ ‖h‖∞
[
‖Q? − Q̂‖F /δ? + c−1? (y`) max

x∈X

∣∣∣f?x(y`)− f̂x(y`)
∣∣∣] ,

where c? is defined in (1). The same upper bound holds for R2. In the case ` = 1,∥∥∥F?1φ̂0 − φ̂1
∥∥∥
tv
≤
∥∥∥φ?1 − φ̂1∥∥∥

tv
≤ 2

[
‖π? − π̂‖2 /δ

? + c−1? (y1) max
x∈X

∣∣∣f?x(y1)− f̂x(y1)
∣∣∣] .

Therefore, the filtering error is upper bounded as follows:

‖φ?k − φ̂k‖tv ≤ 4

(
1− δ?

δ?

) k∑
`=2

ρk−`?

[
‖Q? − Q̂‖F /δ? + c−1? (y`) max

x∈X

∣∣∣f?x(y`)− f̂x(y`)
∣∣∣]

+ 4

(
1− δ?

δ?

)
ρk−1?

[
‖π? − π̂‖2 /δ

? + c−1? (y1) max
x∈X

∣∣∣f?x(y1)− f̂x(y1)
∣∣∣] .
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B Control of the marginal smoothing error - Proof of Proposition 2.2
Let y1:n ∈ Yn. The aim of this section is to establish that the total variation error between φ?k|n(·, y1:n) and its approxi-

mations based on Q̂ and f̂ is bounded uniformly in time k. Before stating the main result, we display the decomposition
of the smoothing error φ?k|n(·, y1:n) − φ̂k|n(·, y1:n) depicted in [13] and used in [17] to obtain nonasymptotic upper
bounds for the marginal smoothing error when φ?k|n(·, y1:n) is approximated using Sequential Monte Carlo methods.
In the sequel, the dependency on the observations may be dropped to simplify notations. For any bounded function h
on Xn, φ?1:n|n(h) can be written, for any 1 ≤ ` ≤ n

φ?1:n|n(h) =
φ?1:`|`(L

?
`,n(·, h))

φ?1:`|`(L
?
`,n(·,1))

,

where 1 is the constant function which equals 1 and, for all x1:` ∈ X `,

L?`,n(x1:`, h) :=
∑

x`+1:n∈Xn−`

n∏
u=`+1

Q?(xu−1, xu)f?xu
(yu)h(x1:n) . (14)

As for the filtering error, the smoothing error can be decomposed as a telescopic sum of one step errors:

φ̂1:n|n(h)− φ?1:n|n(h) =

n∑
`=2

(
φ̂1:`|`(L

?
`,n(·, h))

φ̂1:`|`(L
?
`,n(·,1))

−
φ̂1:`−1|`−1(L?`−1,n(·, h))

φ̂1:`−1|`−1(L?`−1,n(·,1))

)

+
φ̂1(L?1,n(·, h))

φ̂1(L?1,n(·,1))
−
φ?1(L?1,n(·, h))

φ?1(L?1,n(·,1))
. (15)

This smoothing error can be written using filtering distributions only by introducing the following backward operators:

L?`,n(x`, h) :=
∑
x1:`−1

B?φ?
`−1

(x`, x`−1) . . . B?φ?
1
(x2, x1)L?`,n(x1:`, h) ,

L̂`,n(x`, h) :=
∑
x1:`−1

B̂φ̂`−1
(x`, x`−1) . . . B̂φ̂1

(x2, x1)L?`,n(x1:`, h) ,

where for all ν ∈ P(X ), Bν is the backward smoothing kernel given by

B?ν(x, x′) :=
Q?(x

′, x)ν(x′)∑
z∈X Q?(z, x)ν(z)

.

Then, for all 2 ≤ t ≤ n, the one step error at time ` is given by

δ`,n(h) :=
φ̂1:`|`(L

?
`,n(·, h))

φ̂1:`|`(L
?
`,n(·,1))

−
φ̂1:`−1|`−1(L?`−1,n(·, h))

φ̂1:`−1|`−1(L?`−1,n(·,1))
=
φ̂`(L̂`,n(·, h))

φ̂`(L̂`,n(·,1))
− φ̂`−1(L̂`−1,n(·, h))

φ̂`−1(L̂`−1,n(·,1))
. (16)

This decomposition allows to obtain the upper bound for the marginal smoothing error stated in Proposition 2.2. The
result is obtained by applying the decompositions (15) and (16) to a bounded function h on Xn which depends on xk
only: for all (x1, . . . , xn) ∈ Xn, h(x1, . . . , xn) = h(xk). The one step error given by (16) is then analyzed separately
wether k ≥ ` or k < `.

Case k ≥ `
In this case, the function L?`,n(·, h) defined in (14) depends on x` only. Therefore, L̂`,n(x`, h) = L?`,n(x`, h) =

L?`,n(x`, h). Thus, L̂`−1,n(x`−1, h) =
∑
x`∈X Q?(x`−1, x`)f

?
x`

(y`)L?`,n(x`, h) and the one step error given by (16)
becomes

δ`,n(h) =
φ̂`(L?`,n(·, h))

φ̂`(L?`,n(·,1))
−
φ̂`−1(

∑
x`∈X Q?(·, x`)f?x`

(y`)L?`,n(x`, h))

φ̂`−1(
∑
x`∈X Q?(·, x`)f?x`

(y`)L?`,n(x`,1))
.

Define the measures µ` and µ̂` on X by:

µ`(x`) :=
∑

x`−1∈X
φ̂`−1(x`−1)Q?(x`−1, x`)f

?
x`

(y`) and µ̂`(x`) :=
∑

x`−1∈X
φ̂`−1(x`−1)Q̂(x`−1, x`)f̂x`

(y`) .
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Then,

δ`,n(h) =
µ̂`(L?`,n(·, h))

µ̂`(L?`,n(·,1))
−
µ`(L?`,n(·, h))

µ`(L?`,n(·,1))
.

By [9, Lemma 4.3.23] and [H1]-b), |δ`,n(h)| ≤ ρk−`? (1 − δ?) ‖µ`/µ`(1)− µ̂`/µ̂`(1)‖tv ‖h‖∞/δ?. Following the
same steps as for the proof of Proposition 2.1 yields

‖µ`/µ`(1)− µ̂`/µ̂`(1)‖tv ≤ 2‖Q? − Q̂‖F /δ? + 2c−1? (y`) max
x∈X

∣∣∣f?x(y`)− f̂x(y`)
∣∣∣ .

The term φ̂1(L?1,n(·, h))/φ̂1(L?1,n(·,1))− φ?1(L?1,n(·, h))/φ?1(L?1,n(·,1)) is dealt with similarly.

Case k < `
In this case, L?`,n(x1:`, h) = h(xk)L?`,n(x`,1). Therefore,

L̂`,n(x`, h) =
∑
x1:`−1

B̂φ̂`−1
(x`, x`−1) . . . B̂φ̂1

(x2, x1)h(xk)L?`,n(x`,1) ,

=
∑
xk:`−1

L?`,n(x`,1)B̂φ̂`−1
(x`, x`−1) . . . B̂φ̂k

(xk+1, xk)h(xk) .

On the other hand, if ν`(x`) :=
∑
x`−1∈X φ̂`−1(x`−1)Q?(x`−1, x`)f

?
x`

(y`)L?`,n(x`,1),

φ̂`−1(L̂`−1,n(·, h)) =
∑

xk:`∈X `−k+1

ν`(x`)B̂φ̂`−1
(x`, x`−1) . . . B̂φ̂k

(xk+1, xk)h(xk) .

Define ν̂`(x`) := φ̂`(x`)L?`,n(x`,1) =
∑
x`−1∈X φ̂`−1(x`−1)Q̂(x`−1, x`)f̂x`

(y`)L?`,n(x`,1). Then, the one step error
given by (16) becomes

δ`,n(h) =
∑
xk:`−1

(
ν̂`(x`)

ν̂`(1)
− ν`(x`)

ν`(1)

)
B̂φ̂`−1

(x`, x`−1) . . . B̂φ̂k
(xk+1, xk)h(xk)

By [9, Lemma 4.3.23] and the fact that, for all (x, x′) ∈ X 2, Q̂(x, x′) ≥ δ̂,

|δ`,n(h)| ≤ ‖h‖∞ρ̂ `−k
∥∥∥∥ ν̂`(·)ν̂`(1)

− ν`(·)
ν`(1)

∥∥∥∥
tv

.

As for all x` ∈ X , L?`,n(x`,1)/‖L?`,n(·,1)‖∞ ≥ δ?/(1 − δ?), following the same steps as for the proof of Proposi-
tion 2.1 yields∥∥∥∥ ν̂`(·)ν̂`(1)

− ν`(·)
ν`(1)

∥∥∥∥
tv

≤ 2

(
1− δ?

δ?

)(
‖Q? − Q̂‖F /δ? + c−1? (y`) max

x∈X

∣∣∣f?x(y`)− f̂x(y`)
∣∣∣) .

C Nonparametric spectral estimators
Theorem 3.1 follows from the following more precise results proved in this section. The proofs of the intermediate
lemmas require assumptions [H1’] and [H2]-[H3].

Lemma C.1. There exist a constant 0 < σK,F? ≤ 1 and a positive integer MF? such that for all M ≥MF? ,

σK(OM ) ≥ σK,F? > 0 .

Proof. By [H3], the (K×K) Gram matrix defined by O>? O? := (〈f?x1
, f?x2
〉)x1,x2∈X is invertible. Let εF?,M be given

by:
εF?,M :=

∥∥O>MOM −O>? O?

∥∥ =
∥∥(〈f?M,x1

, f?M,x2
〉 − 〈f?x1

, f?x2
〉)x1,x2∈X

∥∥ . (17)

From (5), there exists MF? ≥ 1 such that for all M ≥ MF? , εF?,M ≤ 3λK(O>? O?)/4. By Weyl’s inequality
(see Theorem D.1), σ2

K(OM ) = λK(O>MOM ) ≥ λK(O>? O?)/4. If σK(O?) := λ
1/2
K (O>? O?), note that for all

M ≥MF? , σK(OM ) ≥ σK(O?)/2, which concludes the proof.
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Define the pseudo spectral gap Gps of the Markov chain (Xn)n≥1 as

Gps := max
k≥1

{
G
(
Diag[π?]−1(Q>? )kDiag[π?]Qk

?

)
/k
}
,

where G(A) denotes the spectral gap of a transition matrix A defined by

G(A) :=

{
1−max{λ : λ eigenvalue of A , λ 6= 1} if eigenvalue 1 has multiplicity 1,
0 otherwise.

Note that Gps depends only on the transition matrix Q? which is assumed to be aperiodic and irreducible with unique
stationary distribution π?. Perron-Frobenius theorem ensures that the spectral gap G(A) is well defined and such that
0 ≤ G(A) ≤ 2.

Remark C.1. If Q? is aperiodic and irreducible then Gps > 0. In this case, there exists k such that Qk
? is positive

(entrywise) and so is A := Diag[π?]−1(Q>? )kDiag[π?]Qk
? . As A is a positive transition matrix, Perron-Frobenius

theorem ensures that its spectral gap is positive.

Remark C.2. If Q? is aperiodic, irreducible and reversible then Gps = G(Q?)(2 − G(Q?)) > 0, see [33] and
references therein.

Define the mixing time Tmix of the Markov chain (Xn)n≥1 as

Tmix :=
1 + 3 log 2− log π?min

Gps
.

This mixing time has a deeper interpretation in terms of convergence towards the stationary distribution in total varia-
tion norm, see [33] for instance. For any δ ∈ (0, 1), set

C?(Q?, δ) :=
√

2/Gps + 2
√
−2Tmix log δ , (18)

which is a constant that depends only on Q? and δ.

Theorem C.2. Assume that [H1’] and [H2]-[H3] hold. Let δ, δ′ ∈ (0, 1) then, with probability greater than 1−2δ−4δ′,
there exists a permutation τ ∈ SK such that the spectral method estimators f̂M,x, π̂ and Q̂ (see Algorithm 1 for a
definition) satisfy, for any M ≥MF? ,

- for all p ≥ N1(Q?,F
?,ΦM , δ, δ

′) and all x ∈ X ,

‖f?M,x − f̂M,τ(x)‖2≤ CM (Q?,F
?, δ)C?(Q?, δ

′)η3(ΦM )/
√
p , (19)

- for all p ≥ N2(Q?,F
?,ΦM , δ, δ

′),

‖Q? − Pτ Q̂P>τ ‖≤ DM (Q?,F
?, δ)C?(Q?, δ

′)η3(ΦM )/
√
p , (20)

- for all p ≥ N3(Q?,F
?,ΦM , δ, δ

′),

‖π? − Pτ π̂‖2≤ EM (Q?,F
?, δ)C?(Q?, δ

′)η3(ΦM )/
√
p , (21)

where Pτ is the permutation matrix associated with τ , and

N1(Q?,F
?,ΦM , δ, δ

′) :=
4K

3σ2
K,F?

CM (Q?,F
?, δ)2 C?(Q?, δ

′)2η3(ΦM )2 ,

N2(Q?,F
?,ΦM , δ, δ

′) :=
4

π?2min

D′M (Q?,F
?, δ)2 C?(Q?, δ

′)2η3(ΦM )2 ,

N3(Q?,F
?,ΦM , δ, δ

′) :=
4

σ2
K(AQ?

)
DM (Q?,F

?, δ)2 C?(Q?, δ
′)2η3(ΦM )2 ,

18
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with

CM (Q?,F
?, δ) :=

2√
M

max
x∈X
‖f?x‖2

σ2
K,F?π?minσK(Q?

2)
+

[
1 +

‖g?‖2
π?minσ

2
K,F?σK(Q?

2)

1√
M

]

×

13κ2(Q?)K
1/2

π?minσK(Q?
2)

κ2F?

σ2
K,F?

+
83

δ

κ6(Q?)K
5

π?minσK(Q?
2)

κ6F? max
k∈X
‖f?k‖2

σ3
K,F?

{
1 +

(
2 log

K2

δ

)1/2
} ,

D′M (Q?,F
?, δ) :=

2

3σ2
K,F?

[
4
√
KCM (Q?,F

?, δ) max
x∈X
‖f?x‖2 +

3
√

3σK,F?

M

]
,

DM (Q?,F
?, δ) :=

8‖f?(Y1,Y3)
‖2

3σ2
K,F?π?2min

[
D′M (Q?,F

?, δ) + 4
√

3Kπ?minCM (Q?,F
?, δ) +

5π?min

‖f?(Y1,Y3)
‖2
√
M

]
,

EM (Q?,F
?, δ) :=

16‖f?(Y1,Y3)
‖2

σ2
K(AQ?)σ2

K,F?π?2min

[
D′M (Q?,F

?, δ) + 4
√

3Kπ?minCM (Q?,F
?, δ) +

5π?min

‖f?(Y1,Y3)
‖2
√
M

]
,

where κF? is given in Lemma C.4, for all (y1, y2, y3) ∈ Y3,

g? (y1, y2, y3) :=
∑

x1,x2,x3∈X
π?(x1)Q?(x1, x2)Q?(x2, x3)f?x1

(y1)f?x2
(y2)f?x3

(y3) ,

and σ2
K(AQ?

) is the K-th largest singular value of
(

IdK − (Q?)
>

1>K

)
which is positive, see (30).

Theorem C.2 is proved using the analysis of [3] to control the L2-error of the estimation based on the spectral
method described in Section 3.1. Establishing this control in the nonparametric framework requires to state explicitly
how all constants depend on the dimension M . Therefore, Theorem C.3 recasts and optimizes the results of [3] and is
proved in Appendix F. Define

γ(OM ) := min
x1 6=x2

‖OM (. , x1)−OM (. , x2)‖2 (22)

and for all A ∈ RM×M×M and all B ∈ RM×K

‖A‖∞,2:= max
‖v‖2=1

∥∥∥∥∥
M∑
b=1

vbA(. , b, . )

∥∥∥∥∥ and ‖B‖2,∞:= max
x∈X
‖B(. , x)‖2 . (23)

Theorem C.3. Let 0 < δ < 1. Assume that 3‖P̂M −PM‖≤ σK(PM ) and that

8.2K5/2(K − 1)
κ2(Q?O

>
M )

δγ(OM )σK(PM )

[
‖M̂M −MM‖∞,2+

‖MM‖∞,2‖P̂M −PM‖
σK(PM )

]
< 1 , (24)

43.4K4(K − 1)
κ4(Q?O

>
M )

δγ(OM )σK(PM )

[
‖M̂M −MM‖∞,2+

‖MM‖∞,2‖P̂M −PM‖
σK(PM )

]
≤ 1 , (25)

then, with probability greater than 1−2δ, the matrix Û>P̂MÛ is invertible, the random matrix Ĉ(1) is diagonalisable
(see Algorithm 1), and there exists a permutation τ ∈ SK such that for all x ∈ X ,

‖OM (. , x)− ÔM (. , τ(x))‖2≤
2‖P̂M −PM‖
σK(PM )

‖OM‖2,∞+

[
‖M̂M −MM‖∞,2+

‖MM‖∞,2‖P̂M −PM‖
σK(PM )

]

×
[
13K1/2κ

2(Q?O
>
M )

σK(PM )
+ 116K5

{
1 +

(
2 log(K2/δ)

)1/2} κ6(Q?O
>
M )‖OM‖2,∞

δγ(OM )σK(PM )

]
.

Preliminary lemmas
Lemma C.4. There exists a constant κF? that depends only on F? such that for all M ≥ MF? , κ(OM ) ≤ κF? where
MF? is given in Lemma C.1. For all M ≥MF? , κ(Q?O

>
M ) ≤ κF?κ(Q?).
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Proof. Note that O>? O? is nonsingular. From (5) and (17) we deduce that O>MOM tends to O>? O? as M grows to
infinity. This proves the first point. Recall that σi(AB) ≤ σ1(A)σi(B) for all i = 1, . . . ,K. Applying this identity to
A = Q?

−1 and B = Q?O
>
M yields σK(Q?)σK(OM ) ≤ σK(Q?O

>
M ). It follows that κ(Q?O

>
M ) ≤ κ(Q?)κ(OM ).

The second claim follows from the first claim.

Lemma C.5. For allM ≥MF? , γ(OM ) ≥
√

2σK,F? and ‖OM‖2,∞≤ maxx∈X ‖f?x‖2, where γ(OM ) and ‖OM‖2,∞
are defined in (22) and (23).

Proof. Observe that ‖OMv‖2≥ σK(OM )‖v‖2. With an appropriate choice of v and using Lemma C.1 this proves the
first inequality. As ΦM is an orthonormal family, ‖OM (. , x)‖2≤ ‖f?x‖2 which proves the second claim.

Lemma C.6. For all M ≥ 1,

‖MM‖∞,2:= max
‖v‖2=1

∥∥∥∥∥
M∑
b=1

vbMM (. , b, . )

∥∥∥∥∥ ≤ ‖g?‖2 ,
where ‖ · ‖∞,2 is defined in (23).

Proof. As for all x ∈ X , f?x ∈ L2(Y,LD), g? ∈ L2(Y3,LD⊗3). Denote by 〈. , . 〉L2(Y3,LD⊗3) the inner product of

L2(Y3,LD⊗3). As ϕa,b,c(y1, y2, y3) := ϕa(y1)ϕb(y2)ϕc(y3) is an orthonormal family of L2(Y3,LD⊗3),

‖MM‖∞,2 = max
‖v‖2=1

∥∥∥∥∥
M∑
b=1

vbMM (. , b, . )

∥∥∥∥∥ ≤ max
‖v‖2=1

M∑
b=1

|vb|‖MM (. , b, . )‖ ,

≤

(
M∑
b=1

‖MM (. , b, . )‖2
)1/2

≤

(
M∑
b=1

‖MM (. , b, . )‖2F

)1/2

,

=

 M∑
a,b,c=1

E [ϕa(Y1)ϕb(Y2)ϕc(Y3)]
2

1/2

=

 M∑
a,b,c=1

〈g?, ϕa,b,c〉2L2(Y3,LD⊗3)

1/2

≤ ‖g?‖2 .

using Cauchy-Schwarz inequality.

Lemma C.7. For all M ≥ 1, ‖M̂M −MM‖∞,2≤ ‖M̂M −MM‖F , where ‖ · ‖∞,2 is defined in (23).

Proof. For all M ≥ 1,

‖M̂M −MM‖∞,2 = max
‖v‖2=1

∥∥∥∥∥
M∑
b=1

vb(M̂M −MM )(. , b, . )

∥∥∥∥∥ ≤ max
‖v‖2=1

M∑
b=1

|vb|
∥∥∥(M̂M −MM )(. , b, . )

∥∥∥ ,
≤

(
M∑
b=1

∥∥∥(M̂M −MM )(. , b, . )
∥∥∥2)1/2

≤

(
M∑
b=1

∥∥∥(M̂M −MM )(. , b, . )
∥∥∥2
F

)1/2

,

=
∥∥∥M̂M −MM

∥∥∥
F
.

using Cauchy-Schwarz inequality.

Lemma C.8. Under [H1’] and [H2], for all M ≥ 1, σK(PM ) ≥ πminσ
2
K(OM )σK(Q2). If [H3] holds, then, for all

M ≥MF? ,
σK(PM ) ≥ σ2

K,F?π?minσK(Q?
2) ,

where MF? and σK,F? are defined in Lemma C.1.

Proof. By Lemma F.1 and (7),

σK(PM ) = σK(U>PMU) = σK((U>OM )Diag[π?]Q?
2(U>OM )>) ,

≥ σK(U>OM )σK(Diag[π?]Q?
2(U>OM )>) ,

= σK(OM )σK(Diag[π?]Q?
2(U>OM )>) ,

≥ σK(Diag[π?])σK(OM )σK((U>OM )>)σK(Q?
2) ,

= π?minσ
2
K(OM )σK(Q?

2) ,

which concludes the proof.
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First step: Estimation of the emission laws using a spectral method
Appendix E shows that:

P
[
‖L̂M − LM‖F≥ C?(Q?, δ

′)η1(ΦM )/
√
p
]
≤ δ′ , P

[
‖M̂M −MM‖F≥ C?(Q?, δ

′)η3(ΦM )/
√
p
]
≤ δ′ ,

P
[
‖N̂M −NM‖F≥ C?(Q?, δ

′)η2(ΦM )/
√
p
]
≤ δ′ , P

[
‖P̂M −PM‖F≥ C?(Q?, δ

′)η2(ΦM )/
√
p
]
≤ δ′ .

Using the preliminary lemmas of Section C and the elementary fact that Mη1(ΦM ) ≤
√
Mη2(ΦM ) ≤ η3(ΦM ), (24)

and (25) along with 3‖P̂M −PM‖≤ σK(PM ) are satisfied when M ≥MF? and p ≥ N0(Q?,F
?,ΦM , δ, δ

′) where:

N0(Q?,F
?,ΦM , δ, δ

′) :=
942

δ2
κ8(Q?)K

10

π?2minσ
2
K(Q?

2)

κ8F?

σ6
K,F?

(
1 +

‖g?‖2
π?minσ

2
K,F?σK(Q?

2)

1√
M

)2
C?(Q?, δ

′)2η3(ΦM )2 .

Using Theorem C.3, with probability greater than 1−2δ−4δ′, there exists a permutation τ satisfying for anyM ≥MF? ,
p ≥ N0(Q?,F

?,ΦM , δ, δ
′) and x ∈ X ,

‖OM (. , x)− ÔM (. , τ(x))‖2≤ CM (Q?,F
?, δ)C?(Q?, δ

′)η3(ΦM )/
√
p .

This proves the first part of Theorem C.2.

Second step: Preliminary estimation of the stationary density using a spectral method
For sake of readability, assume that τ is the identity permutation. Observe that:

N1(Q?,F
?,ΦM , δ, δ

′) ≥ N0(Q?,F
?,ΦM , δ, δ

′) .

Recall π̃ :=
(
Û>ÔM

)−1
Û>L̂M and π? =

(
Û>OM

)−1
Û>LM .

Lemma C.9. With probability greater than 1− 2δ − 4δ′, if p > N1(Q?,F
?,ΦM , δ, δ

′) then,

‖π̃ − π?‖2≤
2√

3σK,F?

C?(Q?, δ
′)
η1(ΦM )
√
p

+
2√

3σK,F?

√
N1(Q?,F?,ΦM , δ, δ′)

√
p−

√
N1(Q?,F?,ΦM , δ, δ′)

(
max
x∈X
‖f?x‖2 + C?(Q?, δ

′)
η1(ΦM )
√
p

)
.

Proof. Set A = Û>OM , Ã = Û>ÔM and B = Û>(OM − ÔM ). Then,

‖B‖≤ ‖OM − ÔM‖≤ ‖OM − ÔM‖F≤
√
K max

x∈X
‖OM (. , x)− ÔM (. , x)‖2 ,

which gives ‖B‖≤
√
KCM (Q?,F

?, δ)C?(Q?, δ
′)η3(ΦM )/

√
p. Similarly, by claim (iii) of Lemma F.3:

‖A−1B‖≤ ‖A−1‖‖B‖≤ σ−1K (A)‖B‖≤ 2
√
K maxx∈X ‖OM (. , x)− ÔM (. , x)‖2√

3σK(OM )
,

so that

‖A−1B‖≤ 2
√
K√

3σK,F?

CM (Q?,F
?, δ)C?(Q?, δ

′)
η3(ΦM )
√
p

.

Observe that the condition on p and M ensures that ‖A−1B‖< 1. Apply Theorem D.2 to get that:

‖(Û>OM )−1 − (Û>ÔM )−1‖≤ 2√
3σK,F?

√
N1(Q?,F?,ΦM , δ, δ′)

√
p−

√
N1(Q?,F?,ΦM , δ, δ′)

. (26)

Furthermore, using (26):

‖π̃ − π?‖2 = ‖
(
Û>ÔM

)−1
Û>L̂M −

(
Û>OM

)−1
Û>LM‖2

= ‖
(
Û>ÔM

)−1
Û>L̂M −

(
Û>OM

)−1
Û>L̂M +

(
Û>OM

)−1
Û>L̂M −

(
Û>OM

)−1
Û>LM‖2

≤ ‖(Û>OM )−1 − (Û>ÔM )−1‖‖L̂M‖2+‖A−1‖‖L̂M − LM‖2

≤ 2√
3σK,F?

(
‖L̂M − LM‖2+

√
N1(Q?,F?,ΦM , δ, δ′)

√
p−

√
N1(Q?,F?,ΦM , δ, δ′)

(‖LM‖2+‖L̂M − LM‖2)

)
.
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Write f?Y1
=
∑
x1∈X π(x1)f?k1(y1) the density of Y1. Observe that:

‖LM‖2 =

(
M∑
a=1

E [ϕa(Y1)]
2

)1/2

=

(
M∑
a=1

〈f?Y1
, ϕa〉2

)1/2

≤ ‖f?Y1
‖2≤ max

x∈X
‖f?x‖2 ,

which concludes the proof.

This results allows to state that for all p ≥ 4N1(Q?,F
?,ΦM , δ, δ

′),

‖π? − Pτ π̃‖2≤ D′M (Q?,F
?, δ)C?(Q?, δ

′)η3(ΦM )/
√
p . (27)

Third step: Estimation of the transition matrix using a spectral method

Write Q̃ :=
(
Û>ÔMDiag[π̃]

)−1
Û>N̂MÛ

(
Ô>MÛ

)−1
and note that Q̂ = ΠTM (Q̃) and Q? = ΠTM (Q?). Then, by

non-expansivity of the projection onto convex sets, ‖Q̂−Q?‖F≤ ‖Q̃−Q?‖F . Moreover,

N2(Q?,F
?,ΦM , δ, δ

′) ≥ 4N1(Q?,F
?,ΦM , δ, δ

′) ≥ N0(Q?,F
?,ΦM , δ, δ

′) .

Lemma C.10. With probability greater than 1− 2δ − 4δ′, if p ≥ N2(Q?,F
?,ΦM , δ, δ

′) then

‖Q̃−Q?‖≤
8‖f?(Y1,Y3)

‖2
3σ2

K,F?π?2min

‖π̃ − π?‖2+
2

π?min

ẼM (Q?,F
?, δ)C?(Q?, δ

′)
η3(ΦM )
√
p

,

where

ẼM (Q?,F
?, δ) :=

16√
3σ2

K,F?

[√
KCM (Q?,F

?, δ)‖f?(Y1,Y3)
‖2+

5

4
√

3M

]
.

Proof. Observe that (21) shows that ‖π̃ − π?‖2≤ π?min/2. Then, for any x ∈ X :

π̃x ≥
π?min

2
> 0 . (28)

Set V = (Û>OM )−1Û> and V̂ = (Û>ÔM )−1Û>. Note Q̃ = Diag[π̃]−1V̂N̂MV̂> and:

Q = Diag[π?]−1VNMV> .

Set E = V̂ −V and F = N̂M −NM . Using (26) yields:

‖E‖≤ 2√
3σK,F?

√
N1(Q?,F?,ΦM , δ, δ′)

√
p−

√
N1(Q?,F?,ΦM , δ, δ′)

≤ 8
√
K

3σ2
K,F?

CM (Q?,F
?, δ)C?(Q?, δ

′)
η3(ΦM )
√
p

.

By claim (iii) of Lemma F.3, ‖V‖≤ σ−1K (Û>OM ) ≤ 2/(
√

3σK,F?). Furthermore, ϕa,c(y1, y3) := ϕa(y1)ϕc(y3) is
an orthonormal family of L2(Y2,LD⊗2) and

‖NM‖F=
( M∑
a,c=1

E [ϕa(Y1)ϕc(Y3)]
2
)1/2

=
( M∑
a,c=1

〈f?(Y1,Y3)
, ϕa,c〉2L2(Y2,LD⊗2)

)1/2
≤ ‖f?(Y1,Y3)

‖2 .

Then,

‖VNMV> − V̂N̂MV̂>‖ = ‖VNMV> − (V + E)(NM + F )(V + E)>‖ ,
= ‖VNME

> + VFV> + VFE> + ENMV> + ENME
> + EFV> + EFE>‖ ,

≤ 2‖E‖‖V‖‖NM‖+2‖E‖‖V‖‖F‖+‖E‖2‖NM‖+‖V‖2‖F‖+‖E‖2‖F‖ ,
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yields

‖VNMV> − V̂N̂MV̂>‖≤
32
√
KCM (Q?,F

?, δ)C?(Q?, δ
′)‖f?(Y1,Y3)

‖2
3
√

3σ3
K,F?

[
1 +
C?(Q?, δ

′)

‖f?(Y1,Y3)
‖2
η3(ΦM )√
pM

+
2
√
KCM (Q?,F

?, δ)C?(Q?, δ
′)√

3σK,F?

η3(ΦM )
√
p

+

√
3σK,F?

4CM (Q?,F?, δ)‖f?(Y1,Y3)
‖2
√
K

1√
M

+
2
√
KCM (Q?,F

?, δ)C?(Q?, δ
′)2√

3σK,F?‖f?(Y1,Y3)
‖2

η23(ΦM )

p
√
M

]
η3(ΦM )
√
p

As p ≥ N2(Q?,F
?,ΦM , δ, δ

′) ≥ 4N1(Q?,F
?,ΦM , δ, δ

′) = 16K
3σ2

K,F?
CM (Q?,F

?, δ)2 C?(Q?, δ
′)2η3(ΦM )2,

‖VNMV> − V̂N̂MV̂>‖≤ ẼM (Q?,F
?, δ)C?(Q?, δ

′)
η3(ΦM )
√
p

. (29)

Observe that:

‖Q? − Q̃‖ = ‖(Diag[π?]−1 −Diag[π̂]−1)VNMV> + Diag[π̂]−1(VNMV> − V̂N̂MV̂>)‖

≤ ‖Diag[π?]−1 −Diag[π̂]−1‖‖V‖2‖NM‖+‖Diag[π̂]−1‖‖VNMV> − V̂N̂MV̂>‖

≤
4‖f?(Y1,Y3)

‖2
3σ2

K,F?

max
x∈X

(π?−1x − π̃−1x ) + max
x∈X

π̂−1x ẼM (Q?,F, δ)C?(Q?, δ
′)
η3(ΦM )
√
p

≤
8‖f?(Y1,Y3)

‖2
3σ2

K,F?π?2min

‖π̃ − π?‖2+
2

π?min

ẼM (Q?,F
?, δ)C?(Q?, δ

′)
η3(ΦM )
√
p

,

using (28) and (29).

Combining (27) and Lemma C.10 proves the second point of Theorem C.2.

Last step: Final estimation of the stationary distribution
By [H1’], the transition matrix Q? is irreducible and aperiodic. Perron-Frobenius theorem shows that Q? has a unique
stationary distribution π?. More precisely,

- R . π? = ker(IdK − (Q?)
>) so that (R . π?)⊥ = range(IdK −Q?),

- and 〈π?,1K〉 = 1,

where 1K = (1, . . . , 1) ∈ RK . Then, 1K /∈ range(IdK −Q?) and

Rank

(
IdK − (Q?)

>

1>K

)
= K . (30)

Set

A =

(
IdK −Q>

1>K

)
and A? =

(
IdK − (Q?)

>

1>K

)
.

Derive first an upper bound on ‖A+ − (A?)+‖ where A+ denotes the Moore-Penrose pseudo-inverse of A. Note that

A+ − (A?)+ = (A?)+(A? −A)A+ − (A?)+(IdK+1 −AA+) . (31)

The last term can be written as

(A?)+(IdK+1 −AA+) = (A?)+(A?(A?)+)(IdK+1 −AA+) = (A?)+Prange(A?)Prange(A)⊥ ,

where Prange(A?) = A?(A?)+ denotes the orthogonal projection onto range(A?) and Prange(A)⊥ = IdK+1 − AA+

denotes the orthogonal projection onto the orthogonal of range(A). Define

s(Q?) := σK(A?) . (32)
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Lemma C.11. If ‖Q−Q?‖≤ s(Q?)/2 then Rank(A) = Rank(A?) = K and

‖Prange(A?)Prange(A)⊥‖≤
2‖Q−Q?‖
s(Q?)

.

Proof. The first point follows from Weyl’s inequality, see Theorem D.1. By [40],

‖Prange(A?)⊥Prange(A)‖= ‖Prange(A)⊥Prange(A?)‖ .

Moreover, since projections P are orthogonal (Prange(A)⊥Prange(A?))
> = Prange(A?)Prange(A)⊥ . Using notation of

[40], one may notice that ‖sin θ(range(A), range(A?))‖= ‖Prange(A?)⊥Prange(A)‖. By Wedin’s theorem [40], if
σK(A) ≥ s(Q?)/2 then ‖sin θ(range(A), range(A?))‖≤ 2‖A−A?‖

σK(A?) . We conclude using Weyl’s inequality, see Theo-
rem D.1.

Triangular inequality in (31) gives

‖A+ − (A?)+‖ ≤ ‖(A?)+‖‖Q−Q?‖
(
‖A+‖+ 2

σK(A?)

)
,

≤ ‖Q−Q?‖
σK(A?)

(
‖A+ − (A?)+‖+ 3

σK(A?)

)
,

using that ‖(A?)+‖= 1/σK(A?). Deduce that if ‖Q−Q?‖≤ σK(A?)/2 then ‖A+−(A?)+‖≤ 6‖Q−Q?‖/σ2
K(A?).

From Weyl’s inequality, if ‖Q − Q?‖≤ σK(A?)/2 then σK(A) ≥ σK(A?)/2. IdK − Q> has rank K − 1 and the
eigenspace ker(IdK −Q>) has dimension 1. Thus, Q is an irreducible and aperiodic transition matrix, and π is the
unique solution to (

IdK −Q>

1>K

)
π =

(
0
1

)
.

Now ‖π − π?‖2≤ ‖A+ − (A?)+‖ and the last part of Theorem C.2 is proved.

D Matrix perturbation
This section provides some useful results in matrix perturbation theory. Proofs of the following theorems may be found
in [36] for instance.

Theorem D.1 (Weyl’s inequality). Let A,B be (p× q) matrices with p ≥ q then, for all i = 1, . . . , q,

|σi(A+B)− σi(A)|≤ σ1(B) .

Theorem D.2. Let A,B be (p× p) matrices. If A is invertible and ‖A−1B‖< 1 then Ã := A+B is invertible and

‖Ã−1 −A−1‖≤ ‖B‖‖A
−1‖2

1− ‖A−1B‖
.

Theorem D.3 (Bauer-Fike). Let A,B be (p × p) matrices and Ã := A + B. Assume that A is diagonalizable, i.e.
X−1AX = Λ, where Λ = Diag[(λ1, . . . , λp)]. Then,

svA(Ã) ≤ κ(X)‖B‖ , (33)

where svA(Ã) := max
j

min
i
|λ̃j − λi| and λ̃j denotes the eigenvalues of Ã.

Remark D.1. If the disks Di := {ξ : |ξ − λi|≤ κ(X)‖B‖} are isolated from the others, then (33) holds with the
matching distance md(A, Ã) ≤ κ(X)‖B‖ where md(A, Ã) := min

τ∈Sp
max
i
|λ̂τ(i) − λi|. Eventually, if Λ, Ã are real

valued matrices then Ã has p distinct real eigenvalues.
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E Concentration inequalities
Consider consecutive observations of the same hidden Markov chain Zs := (Ys, Ys+1, Ys+2) for 1 ≤ s ≤ p,

Lemma E.1. For any positive u, any M and any p:

P
[
‖L̂M − LM‖F ≥

√
2η1(ΦM )√
pGps

(1 + 2u
√

1 + log(8/π?min))
]
≤ exp(−u2) ,

P
[
‖M̂M −MM‖F ≥

√
2η3(ΦM )√
pGps

(1 + 2u
√

1 + log(8/π?min))
]
≤ exp(−u2) ,

P
[
‖N̂M −NM‖F ≥

√
2η2(ΦM )√
pGps

(1 + 2u
√

1 + log(8/π?min))
]
≤ exp(−u2) ,

P
[
‖P̂M −PM‖F ≥

√
2η2(ΦM )√
pGps

(1 + 2u
√

1 + log(8/π?min))
]
≤ exp(−u2) .

Proof. Set ζLM
(Z1, . . . , Zp) := ‖L̂M (Z1, . . . , Zp) − LM‖2, ζMM

(Z1, . . . , Zp) := ‖M̂M (Z1, . . . , Zp) −MM‖F ,
ζNM

(Z1, . . . , Zp) := ‖N̂M (Z1, . . . , Zp)−NM‖F and ζPM
(Z1, . . . , Zp) := ‖P̂M (Z1, . . . , Zp)−PM‖F where, for

instance, L̂M (Z1, . . . , Zp) denotes the dependence of L̂M in Z1, . . . , Zp. We begin with ζMM
, other cases are similar.

Form the difference with respect to the coordinate i:

ci := sup
zj∈Y3,z′i∈Y3

|ζMM
(z1, . . . , zi−1, zi, zi+1, . . . , zp)− ζMM

(z1, . . . , zi−1, z
′
i, zi+1, . . . , zp)| .

By the triangular inequality,

ci ≤ sup
zj∈Y3,z′i∈Y3

∥∥∥M̂M (z1, . . . , zi−1, zi, zi+1, . . . , zp)− M̂M (z1, . . . , zi−1, z
′
i, zi+1, . . . , zp)

∥∥∥
F
,

so that

ci ≤
1

p
sup

zi∈Y3,z′i∈Y3

∑
a,b,c

(
ϕa(y

(i)
1 )ϕb(y

(i)
2 )ϕc(y

(i)
3 )− ϕa(y′

(i)
1 )ϕb(y

′(i)
2 )ϕc(y

′(i)
3 )
)21/2

.

Eventually, we get that ci ≤ η3(ΦM )/p. By McDiarmid’s inequality [33], for all u > 0,

P(‖M̂M −MM‖F≥ E
[
‖M̂M −MM‖F

]
+ u) ≤ exp

(
− pu2

8Tmixη23(ΦM )

)
.

The following lemma may be deduced from [33].

Lemma E.2. For any a, b, c ∈ {1, . . . ,M},

E

[
p∑
s=1

1

p
[ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)− E [ϕa(Y1)ϕb(Y2)ϕc(Y3)]]

]2
≤ 4

pGps
E [ϕa(Y1)ϕb(Y2)ϕc(Y3)− E [ϕa(Y1)ϕb(Y2)ϕc(Y3)]]

2
.

Proof. Notice that (X1, Y1), (X2, Y2), . . . is homogenous, irreducible, aperiodic and stationary Markov chain on X ×
Y , whose stationary distribution is π̃(x, dy) := πxµx(dy). Observe that its transition kernel Q̃ satisfies, for all
x, x′ ∈ X and all y, y′ ∈ Y ,

Q̃(x, y;x′,dy′) = Q?(x, x
′)µx′(dy

′) .

The transition kernel Q̃ can be viewed as an operator Q on the Hilbert space L2(π̃) defined, for all f ∈ L2(π̃), by:

(Qf)(x, y) := EQ̃(x,y;.,.)(f) =
∑
x′∈X

Q?(x, x
′)

∫
Y
f(x′, y′)µx′(dy

′) .
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Note that Qf(x, y) does not depend on y. Set E := {f(x, y) ∈ L2(π̃) : f does not depend on y}. The L2(π̃)-self-
adjoint operator defined, for all f ∈ L2(π̃), by

(ΠEf)(x, y) :=

∫
Y
f(x, y′)µx(dy′) ,

is the orthogonal projection onto E. Since ΠEQΠE = Q, the set of nonzero eigenvalues of Q is exactly the set of
nonzero eigenvalues of the K dimensional linear operator ΠEQΠE . Eventually, note that the matrix of Q in the basis
((x, y) 7→ 1x′=x)x′∈X is Q?. Then, the pseudo spectral gap of Q is equal to Gps (the pseudo spectral gap of Q?).

Furthermore, note the same analysis can be made for (X1, X2, X3, Z1), (X2, X3, X4, Z2), . . . and its pseudo spec-
tral gap is the pseudo spectral gap of the Markov chain (X1, X2, X3), (X2, X3, X4), . . . which is Gps. Indeed, the set
of nonzero eigenvalues of the Markov chain (X1, X2, X3), (X2, X3, X4), . . . is equal to the set of nonzero eigenvalues
of the Markov chain X1, X2, . . ..

Eventually, set g(Xs, Xs+1, Xs+2, Zs) := (1/p)ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2) and apply Theorem 3.1 in [33] to con-
clude the proof.

Then,

E
[
‖M̂M −MM‖F

]
≤ E

[
‖M̂M −MM‖2F

]1/2
,

≤ E

∑
a,b,c

(
1

p

p∑
s=1

ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)− E [ϕa(Y1)ϕb(Y2)ϕc(Y3)]

)2
1/2

,

≤

∑
a,b,c

E

(
p∑
s=1

1

p
{ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)− E [ϕa(Y1)ϕb(Y2)ϕc(Y3)]}

)2
1/2

,

≤ 2√
pGps

∑
a,b,c

E [ϕa(Y1)ϕb(Y2)ϕc(Y3)− Eϕa(Y1)ϕb(Y2)ϕc(Y3)]
2

1/2

,

≤
(

2

pGps

)1/2 [
E
∑
a,b,c

(ϕa(Y1)ϕb(Y2)ϕc(Y3)− ϕa(Y ′1)ϕb(Y
′
2)ϕc(Y

′
3))2

]1/2
,

≤
(

2η23(ΦM )

pGps

)1/2

,

using Jensen’s inequality, Lemma E.2 and then 2E[U − E[U ]]2 ≤ E[U − U ′]2 where U is any real valued random
variable with finite second moment and U ′ an independent copy of U . The proof is similar for LM , NM and PM .

F Proof of Theorem C.3

Preliminaries lemmas
Lemma F.1. For all b ∈ {1, . . . ,M},

MM (. , b, . ) = OMDiag[π?]Q?Diag[OM (b, . )]Q?O
>
M .

Similarly, PM = OMDiag[π?]Q?
2O>M .

Proof. Let a, c ∈ {1, . . . ,M}2 and observe that:

(OMDiag[π?]Q?Diag[OM (b, . )]Q?O
>
M )(a, c)

=
∑

(x1,x2,x3)∈X 3

OM (a, x1)π(x1)Q?(x1, x2)OM (b, x2)Q?(x2, x3)OM (c, x3) ,

=
∑

(x1,x2,x3)∈X 3

E [ϕa(Y1)|X1 = x1]P(X1 = x1)P(X2 = x2|X1 = x1)

× E [ϕb(Y2)|X2 = x2]P(X3 = x3|X2 = x2)E [ϕc(Y3)|X3 = x3] ,

= E [ϕa(Y1)ϕb(Y2)ϕc(Y3)] .
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Similarly,

(OMDiag[π?]Q?
2O>M )(a, c) =

∑
(x1,x2,x3)∈X 3

OM (a, x1)π(x1)Q?(x1, x2)Q?(x2, x3)OM (c, x3) ,

=
∑

(x1,x2,x3)∈X 3

E [ϕa(Y1)|X1 = x1]P(X1 = x1)P(X2 = x2|X1 = x1)

× P(X3 = x3|X2 = x2)E [ϕc(Y3)|X3 = x3] ,

= E [ϕa(Y1)ϕc(Y3)] ,

which concludes the proof.

Lemma F.2. Let U be any (M ×K) matrix such that PMU has rank K. Then,

- for all b ∈ {1, . . . ,M},

B(b) := (PMU)†MM (. , b, . )U = RDiag[OM (b, . )]R−1 ,

where R−1 := Q?O
>
MU and (PMU)† := (U>P>MPMU)−1U>P>M denotes the Moore-Penrose pseudoinverse of

the matrix PMU ;

- U>PMU is invertible and, for all b ∈ {1, . . . ,M},

B(b) = (U>PMU)−1U>MM (. , b, . )U = RDiag[OM (b, . )]R−1 .

Proof. Observe that MM (. , b, . )U = OMDiag[π?]Q?Diag[OM (b, . )]R−1 = PMURDiag[OM (b, . )]R−1 as claimed.

Lemma F.3. Assume that 2‖P̂M −PM‖< σK(PM ), then:

(i)

εPM
:=

‖P̂M −PM‖
σK(PM )− ‖P̂M −PM‖

< 1 ,

(ii)

σK(P̂M ) ≥
[σK(PM )− ‖P̂M −PM‖

σK(PM )

]
σK(PM ) >

σK(PM )

2
,

(iii) σK(Û>U) ≥ (1− ε2PM
)1/2 ,

(iv) σK(Û>PMÛ) ≥ (1− ε2PM
)σK(PM ) ,

(v) for all α ∈ RK and for all v ∈ Range(PM ), ‖Ûα− v‖22≤ ‖α− Û>v‖22+ε2PM
‖v‖22,

(vi) if 3‖P̂M −PM‖≤ σK(PM ) then:

σK(Û>P̂MÛ) ≥ σK(PM )

3
,

(vii)

‖(Û>P̂MÛ)−1 − (Û>PMÛ)−1‖ ≤ ‖P̂M −PM‖
σK(PM )(1− ε2PM

)((1− ε2PM
)σK(PM )− ‖P̂M −PM‖)

,

≤ 3.2
‖P̂M −PM‖
σ2
K(PM )

.

Proof. See Lemma C.1 in [3] for the first five claims. The sixth claim follows from the fourth point and Theorem D.1.
The seventh point follows from the fourth claim and Theorem D.2.
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Control of the observable operator
Claim (iv) in Lemma F.3 and Lemma F.2 ensure that, for all b ∈ {1, . . . ,M},

B̃(b) := (Û>PMÛ)−1Û>MM (. , b, . )Û = R̃Diag[OM (b, . )]R̃−1 ,

where R−1 may be defined as

R̃−1 := Diag[(‖(Q?O
>
MÛ)−1(. , 1)‖2, . . . , ‖(Q?O

>
MÛ)−1(. ,K)‖2)]Q?O

>
MÛ .

Set Λ := Θ>Û>OM and for all x ∈ X , C̃(x) :=
∑M
b=1(ÛΘ)(b, x)B̃(b) = R̃Diag[Λ(x, . )]R̃−1. Note that R̃ has

unit Euclidean norm columns:

R̃ = (Q?O
>
MÛ)−1 Diag[(‖(Q?O>MÛ)−1(. , 1)‖2, . . . , ‖(Q?O

>
MÛ)−1(. ,K)‖2)]−1 ,

corresponding to unit Euclidean norm eigenvectors of C̃(k).

Lemma F.4. Assume that 3‖P̂M −PM‖≤ σK(PM ), then, for all b ∈ {1, . . . ,M},

‖B̂(b)− B̃(b)‖≤ 3.2
‖MM (. , b, . )‖
σK(PM )

[‖M̂M (. , b, . )−MM (. , b, . )‖
‖MM (. , b, . )‖

+
‖P̂M −PM‖
σK(PM )

]
,

and for all x ∈ X ,

‖Ĉ(x)− C̃(x)‖≤ 3.2
‖MM‖∞,2
σK(PM )

[‖M̂M −MM‖∞,2
‖MM‖∞,2

+
‖P̂M −PM‖
σK(PM )

]
.

Proof. Observe that:

‖B̂(b)− B̃(b)‖≤‖(Û>P̂MÛ)−1Û>M̂M (. , b, . )Û− (Û>P̂MÛ)−1Û>MM (. , b, . )Û‖

+ ‖(Û>PMÛ)−1Û>MM (. , b, . )Û− (Û>P̂MÛ)−1Û>MM (. , b, . )Û‖ ,

≤‖Û>(M̂M (. , b, . )−MM (. , b, . ))Û‖‖(Û>P̂MÛ)−1‖

+ ‖(Û>PMÛ)−1 − (Û>P̂MÛ)−1‖‖Û>MM (. , b, . )Û‖ ,

≤‖M̂M (. , b, . )−MM (. , b, . )‖σ−1K (Û>P̂MÛ)

+ ‖MM (. , b, . )‖‖(Û>PMÛ)−1 − (Û>P̂MÛ)−1‖ .

By claims (vi) and (vii) of Lemma F.3, 3σK(Û>P̂MÛ) ≥ σK(PM ) and ‖(Û>P̂MÛ)−1 − (Û>PMÛ)−1‖≤
3.2‖P̂M−PM‖

σ2
K(PM )

. Replacing MM (. , b, . ) by
∑M
b=1(ÛΘ)(b, k)MM (. , b, . ) yields the same result for ‖Ĉ(x) − C̃(x)‖.

Lemma F.5. Assume that 2‖P̂M −PM‖< σK(PM ), then,

(i)

κ(R̃) := ‖R̃‖‖R̃−1‖≤ κ2(Q?O
>
MÛ) ≤ κ2(Q?O

>
M )

1− ε2PM

,

(ii)

svC(1)(Ĉ(1)) ≤ κ(R̃)‖Ĉ(1)− C̃(1)‖≤ κ2(Q?O
>
M )

1− ε2PM

‖Ĉ(1)− C̃(1)‖ ,

where svC(1)(Ĉ(1)) := max
x1∈X

min
x2∈X

∣∣∣λ̂(1, x1)− λ(1, x2)
∣∣∣.

(iii) If in addition,
κ2(Q?O

>
M )

1− ε2PM

‖Ĉ(1)− C̃(1)‖< min
x,x′∈X

|Λ(1, x)− Λ(1, x′)| /2 ,

then Ĉ(1) has K distinct real eigenvalues and:

md(C(1), Ĉ(1)) ≤ κ2(Q?O
>
M )

1− ε2PM

‖Ĉ(1)− C̃(1)‖ ,

where md(C(1), Ĉ(1)) := min
τ∈SK

{
max
x∈X

∣∣∣Λ̂(1, τ(x))− Λ(1, x)
∣∣∣}.
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Proof. Observe that U is an orthonormal basis of range of OM . The first point follows from claim (iii) of Lemma F.3.
The second point is derived from Theorem D.3 and the first point. The remark following Theorem D.3 proves the last
point.

Control of the spectra
Lemma F.6. For any 0 < δ < 1,

P
[
∀x, x1 6= x2 , |Λ(x, x1)− Λ(x, x2)|≥

2δ(1− ε2PM
)1/2

√
eK5/2(K − 1)

γ(OM )
]
≥ 1− δ .

Furthermore:

P
[
‖Λ‖∞≥

1 +
√

2 log(K2/δ)√
K

‖OM‖2,∞
]
≤ δ .

Proof. Observe that:

Λ(x, x1)− Λ(x, x2) = 〈Θ(. , x), (Û>OM )(. , x1)− (Û>OM )(. , x2)〉

= 〈Θ(. , x), Û>(OM (. , x1)−OM (. , x2))〉 .

Furthermore, from (iii) in Lemma F.3, we get that:

‖Û>(OM (. , x1)−OM (. , x2))‖2≥ (1− ε2PM
)1/2‖OM (. , x1)−OM (. , x2)‖2≥ (1− ε2PM

)1/2γ(OM ) .

Similarly, note that:
‖Λ‖∞= max

x,x′
|〈Θ(. , x), Û>OM (. , x′)〉| ,

and ‖Û>OM (. , x′)‖2≤ ‖OM (. , x′)‖2≤ ‖OM‖2,∞. For sake of readability, we borrow the result of Lemma F.2 and
the argument of Lemma C.6 in [3] to conclude.

Remark F.1. In the framework of Corollary 3.2 which requires to control uniformly r samplings of the matrix Θ, we
get that for all y > 0 and for all r ≥ 1, it holds

P
[
∃ρ ∈ [r] s.t. ∀x, x1 6= x2 , |Λρ(x, x1)− Λρ(x, x2)|≥

2 exp(−y/r)(1− ε2PM
)1/2

√
eK5/2(K − 1)

γ(OM )
]
≥ 1− exp(−y) .

Furthermore:

P
[
∃ρ ∈ [r] s.t. ‖Λρ‖∞≥

1 +
√

2
√
y + log(K2/r)√
K

‖OM‖2,∞
]
≤ exp(−y) ,

where subscript Λρ denotes Λ obtained from the ρ-th independent sample of the matrix Θ.

Perturbation of simultaneously diagonalizable matrices

Lemma F.7. If 3‖P̂M −PM‖≤ σK(PM ) and:

8.2K5/2(K − 1)
κ2(QO>M )

δγ(OM )σK(PM )

[
‖M̂M −MM‖∞,2+

‖MM‖∞,2‖P̂M −PM‖
σK(PM )

]
< 1 , (34)

43.4K4(K − 1)
κ4(QO>M )

δγ(OM )σK(PM )

[
‖M̂M −MM‖∞,2+

‖MM‖∞,2‖P̂M −PM‖
σK(PM )

]
≤ 1 , (35)

and for all x, x1 6= x2,

|Λ(x, x1)− Λ(x, x2)|≥
√

3δ√
eK5/2(K − 1)

γ(OM ) ,

and:

‖Λ‖∞≤
1 +

√
2 log(K2/δ)√
K

‖OM‖2,∞ ,
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then there exists τ ∈ SK such that for all x ∈ X :

‖Λ(. , x)− Λ̂(. , τ(x))‖∞≤
[
13
κ2(QO>M )

σK(PM )
+ 116K7/2(K − 1)

{
1 +

(
2 log(K2/δ)

)1/2}
× κ6(QO>M )‖OM‖2,∞

δγ(OM )σK(PM )

]
×

[
‖M̂M −MM‖∞,2+

‖MM‖∞,2‖P̂M −PM‖
σK(PM )

]
.

Proof. Note εPM
≤ 1/2. Invoke the last part of Claim 4 of Lemma C.4 in [3] with γA ←

√
3δ

√
eK

5
2 (K−1)

γ(OM ), κ(R)←

4κ2(QO>M )
3 , ‖R̃‖22←

4κ2(QO>M )
3 , εA ← 3.2

‖MM‖∞,2

σK(PM )

[
‖M̂M−MM‖∞,2

‖MM‖∞,2
+‖P̂M−PM‖

σK(PM )

]
and λmax ←

1+
√

2 log(K2/δ)√
K

‖OM‖2,∞.
Observe that (34) agrees with ε3 < 1/2 and (35) agrees with ε4 ≤ 1/2.

Since Θ> is an isometry, observe that:

‖Û>OM (. , x)−ΘΛ̂(. , τ(x))‖2= ‖Λ(. , x)− Λ̂(. , τ(x))‖2≤
√
K‖Λ(. , x)− Λ̂(. , τ(x))‖∞ .

Claim (v) in Lemma F.3 (with α = ΘΛ̂(. , τ(x)) and v = OM (. , x)) give

‖OM (. , x)− ÔM (. , τ(x))‖2 ≤ ‖Û>OM (. , x)−ΘΛ̂(. , τ(x))‖2+
3‖P̂M −PM‖

2σK(PM )
‖OM (. , x)‖2

≤
√
K‖Λ(. , x)− Λ̂(. , τ(x))‖∞+

3‖P̂M −PM‖
2σK(PM )

‖OM (. , x)‖2.

Theorem C.3 follows from Lemma F.7.
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