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Abstract

We propose a truncation model for the abundance distribution in species richness esti-
mation. This model is inherently semiparametric and incorporates an unknown truncation
threshold between rare and abundant observations. Using the conditional likelihood, we de-
rive a class of estimators for the parameters in this model by stepwise maximization. The
species richness estimator is given by the integer maximizing the binomial likelihood, given all
other parameters in the model. Under regularity conditions, we show that our estimators of
the model parameters are asymptotically efficient. We recover Chaoâs lower bound estimator
of species richness when the parametric part of the model is single-component Poisson. Thus
our class of estimators strictly generalized the latter. We illustrate the performance of the
proposed method in a simulation study, and compare it favorably to other widely-used esti-
mators. We also give an application to estimating the number of distinct vocabulary words in
French playwright MoliÃ¨re’s Tartuffe.

1 Introduction
We consider the “species richness” problem, also known as the problem of estimating the number
of species, which arises when a sample of individuals is taken from a population with N classes
or species. The usual data set is a series of observed counts X+

1 , . . . , X
+
D , with D ≤ N being the

total number of distinct species observed in the sample and N is the parameter to be estimated.
Estimating N using such abundance data is an old problem that has been tackled in several ways,
both by parametric models, including Bayesian models (Bunge & Barger (2008), Barger & Bunge
(2008)), and by nonparametric models (Wang (2010)). Due to their flexibility to account for
heterogeneity, the nonparametric approaches are those predominantly considered in the last two
decades. This setting contains among others the Chao-type estimators developed by Chao and
collaborators (see for example Chao & Lee (1992), Chao & Bunge (2002), Chao & Jost (2012)),
and the likelihood-based nonparametric estimators of which one can cite Norris & Pollock (1996,
1998)

Many of these methods, although theoretically founded on a single model, perform the com-
mon practice of truncating the data into abundant and rare species. One then assumes that the
number of abundant species is adequately represented by the number of distinct such species,
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whereas the same number leads to an underestimate for the rare species and thus necessitates a
correction. Such truncation is generally justified on the basis of avoiding instability. This, how-
ever, forces even initially nonparametric models to become effectively parametric, while losing
the original hypothesis and the accompanying theoretical guarantees. This motivated us to study
this heuristic in a more rigorous light. In particular, we make the following contributions:

• We give an explicit semiparametric model to represent this truncation practice, where the
abundant species are represented by an arbitrary abundance distribution whose support is
offset away from the rare range. We partially motivate this as arising from the commonly
used Poisson mixtures as being inappropriate for modeling more abundant species.

• We show that the practice of pure truncation as described above is justified only when the
abundant and rare species have abundance distributions whose supports are disjoint. In
this case truncation leads to an efficient estimation of the number of species.

• In general, although pure truncation is not efficient, accounting for the support overlap
leads to a hybrid truncation that is a semiparametric procedure which is efficient. We show
this by using standard single-parameter families to derive a local minimax bound and a
matching (asymptotically) efficient estimator. Coincidentally, we show that this framework
recovers several previously suggested estimators as special cases.

• When the abundance threshold is not known, neither pure truncation nor the hybrid ap-
proach can be used directly. For this reason, the proper offset should be obtained from data.
We present a model selection approach to resolve this problem. Our experiments show that
this approach adapts to the true unknown offset, in the sense that the resulting estimator
achieves (almost) the same asymptotic performance as when knowing the offset.

• We illustrate this estimator on both synthetic and real data, showing that our more refined
analysis leads to practical improvement.

In Section 2, after a brief introduction to the problem, we present our semiparametric trunca-
tion model and the proposed likelihood method. We then prove that our method recovers previous
estimators in particular situations, see Propositions 1 and 2. We end the section by proposing
a model selection method to choose the truncation parameter. Section 3 is devoted to the semi-
parametric asymptotic analysis of the estimators, see Theorems 1 and 2. The behaviour on finite
samples is investigated through a simulation study in Section 4, and we obtained effectively good
results when applying our estimator to observational richness of text-data. We discuss our results
in Section 5. All the proofs of theoretical results are detailed in the Appendix.

2 Model and Estimator

2.1 Problem Statement

Assume that N species exist in nature and that each is represented by X1, · · · , XN individuals
in a sample. We call Xi the abundance of species i in the sample. A classical statistical model of
the abundances is to assume that they are independent random variables identically distributed
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according to a distribution fν(x) for x ∈ N and where ν is an index within a class of abundance
distributions. One of the more common choices of abundance distribution classes are Poisson
mixtures indexed by a mixing distribution ν on R+:

fν(x) =
∫
λxe−λ

x! dν(λ), for x ∈ N. (1)

Of course, we do not get to access non-observed species, i.e. species for which Xi = 0. If we
let D denote the number of distinct observed species, i.e. D =

∑N
i=1 1{Xi > 0}, and if we re-index

and relabel those species as X+
1 , · · · , X

+
D , then it is easy to show that these observed abundances

are independent and identically distributed according to the zero-truncated distribution:

f+
ν (x) = fν(x)

1− fν(0) , for x ∈ N+. (2)

The central problem of this paper is that of estimating the number of species N with a
functional N̂(X+

1 , · · · , X
+
D) of the abundances of the observed species. In other words, N̂ needs

to complement the number of observed species D with an estimate of the number of non-observed
species.

As outlined in the introduction, a long line of research has addressed this problem. But we
focus here in particular on a sequence of influential papers (Chao & Lee (1992), Chao & Yang
(1993)), the methodology of which continues to be used in more recent papers such as Chao
& Bunge (2002) and Wang & Lindsay (2005). In theory, these results are within the current
framework but, in practice, the estimation is done as follows. The data is divided into rare and
abundant components according to an abundance threshold τ . Although their estimators are
derived and analyzed under the general model, the theoretical estimators are fed with only those
abundances such that X+

i ≤ τ , to yield an estimator of the number of rare species N̂rare. For the
abundant species, they use the trivial estimator:

N̂abundant =
D∑
i=1

1{X+
i > τ}.

The estimate for the total number of species is then simply the sum of both:

N̂ = N̂rare + N̂abundant.

What is the justification behind such truncation? This paper strives to answer this question
and to give a more principled model of this common practice, thus leading to a more transparent
methodology.

2.2 Truncation Model

To motivate the reason behind truncation, note that the justification often given in this line of
work (Chao & Lee (1992), Chao & Yang (1993), Chao & Bunge (2002), Wang & Lindsay (2005))
is that including the abundant species into the estimator may cause instabilities. In coverage
based estimators (i.e. Chao’ÂÂs CV-based estimators) that account for heterogeneity of species
abundance, the instability is due to the estimation of the coefficient of variation of abundances.
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Indeed it is clear that including more abundant species gives larger estimates of the coefficient
of variation. But when using the abundance sampling model, we can also interpret observed
instability as this model, and in particular the Poisson mixture model, not being a good model
for abundant species. In this section, we first give some informal insight as to why this may be
the case. We then proceed to present an explicit model to handle this rare-abundant dichotomy.

The abundance model can be traced back to a simple sampling model where individuals are
drawn independently and identically (with replacement) from a population, where the frequency
of species i is pi. If m such individuals are drawn, let Y1, · · · , Ym denote their species. In this
model, the abundance of species i has therefore a binomial distribution of parameters m and pi:

Xi =
m∑
j=1

1{Yj = i} ∼ binomial(m, pi). (3)

If the species are not labeled a priori, which corresponds to a random permutation among
the N species, then the distribution of a particular abundance becomes a mixture of binomial
distributions, with mixture weights at (m, pi)i=1,··· ,N . Note that these abundances are not inde-
pendent as in the abundance model, but are rather exchangeable. Notwithstanding this fact, we
can see that the abundance model of Equation (1) effectively replaces this binomial mixture with
a Poisson mixture, which cannot be accurate for abundant species. Indeed, a Poisson distribution
with a large mean places much more mass near 0 compared to a corresponding binomial. More
precisely, if the model substitutes a binomial mixture with a Poisson mixture, then when an esti-
mator places a mixing mass at a higher abundance, it contributes more to fν(0) than a binomial
would. This is then interpreted as evidence of more unseen species than the reality, and thus N
is overestimated. This is indeed what is observed with such estimators: with larger values of the
truncation τ , the estimate of N tends to increase (see for example the last three columns of Table
2, page 949, and the last two columns of Table 13, page 956, in Wang & Lindsay (2005)). That
said, simply truncating the data is not a theoretically sound approach since the resulting sam-
ples no longer follow the hypothesized model. For example Poisson distributions place a positive
mass, even if small, beyond any threshold. There is therefore a need to rigorously model rare
species, say with mixtures of Poisson distributions, while capturing the possibility that there may
be abundant species that have much less influence on our inference about the rare species.

In this paper, we propose the following semiparametric alternative. Let τ ∈ N+ and let Fτ be
the family of discrete distributions supported on {τ+1, τ+2, ...}. We assume that abundant species
follow a non parametric distribution F ∈ Fτ , that rare species follow a parametric distribution
Rθ (e.g. we may think of a finite mixture of Poisson distributions) with θ ∈ Θ, where Θ is an
appropriate subset of Rk for some k ∈ N+, and that the proportion of rare species is q, so that
abundances follow a distribution f that belongs to a model Pτ :

Pτ =
{
f(q,θ,F )(x) = qRθ(x) + (1− q)F (x), θ ∈ Θ, F ∈ Fτ , q ∈ (0, 1)

}
. (4)

Using Equation (2) and the fact that the nonparametric component vanishes at x = 0, this
model induces the zero-truncated version as follows:

P+
τ =

{
f+

(q,θ,F )(x) =
f(q,θ,F )(x)
1− qRθ(0) , f(q,θ,F ) ∈ Pτ

}
. (5)
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We leave the choice of Rθ open, except for certain identifiability and smoothness assumptions
that we later spell out in detail. Thus Rθ is not necessarily a Poisson mixture. The choice of
a parametric model for Rθ is justified by the fact that even originally nonparametric models
are effectively reduced to parametric classes under the constraint of identifiability from a small
(truncated) support.

It is now clear that our model in Equation (5) makes explicit the notion that rare and abundant
species may coexist. This allows us to bypass heuristics and suggest estimators with provable
performance guarantees. In particular, we may harness the basic theory of semiparametric models
to establish the efficiency of likelihood-based estimators, and suggest potential model selection
mechanism for the choice of τ . Furthermore, as we make no further assumptions beyond adopting
a parametric form for the rare component and dislocating the support of the abundant species
away from zero, we have a model that can go beyond a simple justification of truncation. For
example, one may think of F as a nonparametric corruption to the data, rather than a legitimate
measurement of abundant species, and our analysis and methodology still goes through unaffected.

2.3 Estimator of the Number of Species

The estimator that we propose for N falls under the category of maximum likelihood (MLE)-type
M-estimators. In this section we derive and define the estimator, and in the next section we study
some of its asymptotic properties.

The distribution of the abundances is a multinomial distribution, for which the empirical
counts of the abundances are sufficient statistics for computing likelihoods. Let nx =

∑D
i=1 1{X+

i =
x}, x ≥ 1, and notice that D =

∑
x≥1 nx and n0 = N −D. Notice also that since N is unknown,

it appears as a parameter when writing the likelihood. Thus the combined likelihood of N and
the rest of the model parameters given the samples can be written as follows:

L(N, f |(nx)x≥1) = N !
(N −D)!

∏
x≥1 nx!f(0)N−D

∏
x≥1

f(x)nx . (6)

One could also consider that, since the species for which the abundance is 0 are not observed,
the likelihood is that of a multinomial distribution within the D observed species, that is using
the zero-truncated model. After substituting f+(x) by its expression in P+

τ , this likelihood writes

L+(q, θ, F |(nx)x≥1) = D!∏
x≥1 nx!

∏
x≥1

[
qRθ(x) + (1− q)F (x)

1− qRθ(0)

]
︸ ︷︷ ︸

f+(x)

nx

. (7)

Now, it is interesting to note that the likelihood L may be decomposed into the product of
two terms, L+ and another term denoted Lb such that, after substituting f(x) by its expression
in Pτ , Lb is given by

Lb(N |D, q, θ) = N !
D!(N −D)! [qRθ(0)]N−D [1− qRθ(0)]D . (8)

The term Lb has a binomial form and may be interpreted as the likelihood of N given the rest
of the model parameters and the number of distinct samples D. The term L+ is the likelihood
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of the rest of the model parameters, given the samples. This suggests two methods to undertake
the maximum likelihood estimation from L. Note that some of the earliest works to suggest such
a decomposition were Sanathanan (1972, 1977) (see also Mao & Lindsay (2003, 2007) for a more
recent treatment).

The first method is to maximize directly the likelihood L over all of (N, q, θ, F ). The esti-
mator of N obtained from this method is typically called the unconditional maximum likelihood
estimator. For example, some nonparametric models with unconditional estimation methods are
proposed in Norris & Pollock (1996), Böhning & Schün (2005). The second method to obtain a
maximum likelihood estimator of N is to first maximize the likelihood L+ from the zero-truncated
model P+

τ to derive the estimators of q, θ and F, and then to maximize the binomial likelihood
Lb in the parameter N given that q and θ are known. This method is known as the condi-
tional maximum likelihood method for estimating N . It should be noted that both conditional
and unconditional methods are asymptotically equivalent in a parametric model (see Sanathanan
(1972, 1977)). This results is very important here because our model Pτ becomes fully para-
metric when one replace the nonparametric component F by a parameterized distribution as its
pseudo-estimator given at equation (10). Furthermore, the same procedure as described below
for conditional maximum likelihood method leeds to the same pseudo-estimator of F for uncondi-
tional method. The asymptotic equivalence of the two methods then follows in our semiparametric
framework.

We consider here only the conditional maximum likelihood method because it is numerically
easier to undertake than the unconditional maximum likelihood. As we shall prove below, the
estimators of the parameters θ and q obtained by maximizing L+ are asymptotically efficient in
the semiparametric framework we propose in this work. This result may be seen as a theoretical
guarantee to our method. Before we proceed with the estimation of θ, q, and F , note that
maximizing the binomial likelihood Lb in Equation (8) gives us the form of our estimator:

N̂(q, θ) = D

1− qRθ(0) . (9)

The final expression for the estimator therefore consists in estimating θ by θ̂ and q by q̂, in
a manner that we shortly outline, and then substituting in Equation (9) to obtain N̂ = N̂(q̂, θ̂).
Of course, N is an integer parameter, and we could then take the integer part of the resulting
estimate. That said, in what follows we allow ourselves to accept non-integer estimates.

We now proceed to estimate the parameters. We observe first that since F plays no role in
the expression for N̂ , we can treat it as a nuisance parameter. The next observation is that to
maximize L+, we can successively fix some parameters while we maximize over others. Because
F is mostly a nuisance parameter, we maximize the likelihood L+ when q and θ are fixed without
further constraining F to be a proper distribution. This approach gives us, at each support point
x, the following pseudo-estimator, as a function of θ and q:

F̂ (q, θ)(x) = [1− q
∑τ
k=0Rθ(k)]

(1− q)(D −Dτ ) nx −
q

1− qRθ(x), (10)

where Dτ =
∑τ
x=1 nx denotes the number of species with abundance no greater than τ .

The reason we call F̂ (q, θ) a pseudo-estimator is that it may put negative mass at some of its
support points as it is not constrained to be nonnegative. This occurs for example at the non-
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observed support points of F , that is for a support point x such that nx = 0. Despite this fact,
the estimators for θ and q that follow from this choice of F̂ are not sensitive to its impropriety.

Replacing F by its pseudo-estimator in the expression for L+ leads to an objective function
for q and θ which may now be maximized in q. This leads to an MLE-type estimator of q, still
as a function of θ:

q̂(θ) = 1
Rθ(0) + D

Dτ

∑τ
k=1Rθ(k)

. (11)

Note that q is always non-negative. However, for particular values of θ, D, and Dτ , it could be
larger than 1. If this occurs in practice, we simply constrain it to 1 to obtain a valid probability.
The consistency result in the next section shows that this is not a concern, asymptotically.

The last step is to find a proper estimator of θ. Consider the following simplifying notation.
For a fixed τ , let Sτθ denote the truncated version of the density Rθ defined as

Sτθ (x) = Rθ(x)∑τ
k=1Rθ(k) for 1 ≤ x ≤ τ. (12)

By replacing F and q by their estimators in the conditional likelihood L+, we can show that we
obtain (up to factors that do not depend on θ) the following truncated likelihood:

τ∏
x=1
{Sτθ (x)}nx . (13)

The estimator θ̂ is then simply a maximizer of Equation (13). We can thus see that θ̂ is an
MLE of the truncated density Sτθ , based on the first τ abundance counts. This completes our
estimator construction. Indeed, to estimate N , we first compute θ̂ directly from the samples by
maximizing Equation (13), we then calculate q̂(θ̂) using Equation (11), and lastly we substitute
both to obtain N̂(q̂(θ̂), θ̂) using Equation (9).

We conclude by noting that all the derivations we performed were based on the premise that
a value of τ was given. As q̂ and θ̂ depend on τ , in what follows either we make this explicit by
writing q̂τ and θ̂τ respectively or keep it implicit when the notation gets encumbered. Similarly
we write N̂τ . We also sometimes use the notation q̂(θ̂) instead of q̂ to make it explicit that the
estimator of q depends on θ̂.

2.4 Relationship to Other Estimators

Despite the fact that θ is estimated by truncating the model to the abundance values between 1
and τ , our estimator differs from the traditional truncation with conditional MLE-type estimators
often described in the literature, as overviewed in the introduction. To be precise, assume the
same parametric rare-species model is used for Rθ, and recall that in these classical estimators
the data is truncated and the conditional MLE is solved using the zero-truncated version of Rθ
to obtain θ̂, and then the rare-species count is estimated by:

N̂rare = Dτ

1−R
θ̂
(0) .
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The abundant species are then assumed to be represented exactly by what is seen:

N̂abundant = D −Dτ .

The combined estimator is therefore:

N̂classical = N̂rare + N̂abundant

= Dτ

1−R
θ̂
(0) + (D −Dτ ).

The following proposition identifies the condition under which our estimator is equivalent to
this classical estimator.

Proposition 1 If all Rθs are supported on {0, . . . , τ}, then the two estimators N̂τ and N̂classical
are equal.

Proposition 1 means that if the parametric part Rθ and the nuisance parameter in the model
P+
τ are supported on disjoint sets, then one can split the data set into rare-species data (Xi ≤ τ)

and abundant-species data (Xi > τ). In this context, inference on rare species is not affected
by the estimation of the nuisance parameter F and thus throwing away high-abundance data is
justified. On the other hand when Rθ does extend over all integers, then one should not ignore
any part of the data, and instead one should perform a hybrid truncation, as suggested by Nτ in
order to obtain efficient estimators.

Thus far we have considered the general context for any eligible distribution Rθ. Some par-
ticular cases enable us to make simple and concrete connections between N̂τ and other popular
estimators that come close to falling within our framework. In particular, Chao, in Chao (1984),
suggests the following popular estimator

N̂Chao = D + n2
1/2n2.

The following proposition shows that our estimator N̂τ , for τ = 2 and Rθ corresponding to a
pure Poisson distribution, is equal to Chao’s N̂Chao. As such, we can interpret our estimator as a
generalization of Chao’s, where τ is no longer restricted to 2 and where Rθ may be more general
than a pure Poisson distribution.

Proposition 2 Assume that τ = 2 and Rθ(x) = θxe−θ/x ! for all x ≥ 0. Then N̂τ = N̂Chao.

It is worth noting that Zelterman in Zelterman (1988) explicitly considers the pure Poisson
model with access only to the first two counts n1 6= 0 and n2, and suggested θ̂Zelterman = 2n2/n1
as an estimator for θ, showing certain robustness properties under heterogeneity in the true model
(see Zelterman (1988) for more details). It is indeed straightforward to verify that for τ = 2 and
a pure Poisson model for Rθ, we have that our estimator maximizing the truncated likelihood of
Equation (13) corresponds to that of Zelterman: θ̂τ = θ̂Zelterman.

An effective proof of Proposition 2 is given in the work of Böhning et al in Böhning et al.
(2013) within an alternative framework: using the conditional expectation of f0. In the Appendix,
we propose a simpler proof that is more in line with our framework, by plugging-in θ̂Zelterman,
which as noted is the correct conditional ML estimate, into our expression for N̂τ .
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We end by noting that if the abundant species are not taken into account, we would have the
estimator of N given by N̂Zelterman = D/[1− exp(−θ̂Zelterman)]. This estimator is in the spirit of
pure-truncation, and would clearly deviate from N̂τ (the denominator has no q factor). Since we
establish the latter to be consistent within our model, then it follows that the former is not (see
also Böhning & van der Heijden (2009) for a more quantitative comparison between Chao’s and
Zelterman’s estimators of N .)

2.5 Choice of τ via Model Selection

To end the discussion of our estimator of N , we stress once again that N̂τ depends on the integer
truncation parameter τ , which delimits the zone of influence of the abundant species through the
support of the nuisance parameter F . When τ is not known, we need a procedure to estimate
this parameter. This is effectively a model selection problem, which we now address using the
Goldenshluger-Lepski (G-L) method as inspiration. The G-L method was introduced in Golden-
shluger & Lepski (2011) in the context of bandwidth selection for kernel density estimation. In
the current paper we use it heuristically, without formal proofs. Experimental evidence, however,
suggests that the method is very effective.

The principle of the method is as follows. As our estimator is of the form N̂ = D/(1− P̂ (0)),
we focus on the problem of estimating P (0) = qRθ(0). Let us drop the (0) argument from the
notation, to make the exposition clearer. Assume that we have a known upper bound τmax on the
largest value τ could take, and let τmin be the least τ that enables the necessary identifiability
assumptions. If we relax the requirement that F is positive on its support, we have successively
smaller nested models as τ varies from τmin to τmax. Each of these models has a corresponding
version of our estimator, that we denote by P̂τ . The (squared) bias of each model is biasτ =
(E[P̂τ ] − P )2. The variance of each model is varτ = E[(P̂τ − E[P̂τ ])2]. The mean squared error
risk decomposes as usual into the sum of bias and variance, riskτ = E[(P̂τ − P )2] = biasτ + varτ .
Now observe the following:

• For τ ≤ τ0, the consistency result of Theorem 1 tells us we are asymptotically unbiased.

• For τ = τ0 Theorem 2 shows that we are efficient and therefore asymptotically we have the
least variance.

• For τ < τ0, the estimator becomes inefficient and the variance may be higher. Intuitively,
this is because less of the data is used to estimate θ when the truncation is stricter.

• For τ > τ0, Theorem 1 tells us that we may have a non-vanishing bias. However, the
variance itself may be lower simply because more F -corrupted data is used to converge to
an incorrect value of θ.

The inevitable bias-variance tradeoff thus manifests itself in this framework, and the best
compromise in terms of risk will be achieved at the correct model class τ0. If accurate proxies
b̂iasτ and v̂arτ are available, then we may empirically select a model τ̂ near τ0, by minimizing

τ̂ = arg min
τ

(
b̂iasτ + v̂arτ

)
. (14)
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The bootstrap method is one effective way for estimating varτ . In its simplest version, boot-
strap consists in resampling D points from the data and computing an estimator P̃τ from the
resampled data. Then this is repeated a number of times, say j = 1, · · · ,M , and the variance is
estimated as:

v̂arτ = 1
M

M∑
j=1

(P̃τ,j − P̂τ )2. (15)

While the resampling process of the bootstrap is good at quantifying the relative (to P̂τ )
variability of the resampled estimators, it offers no absolute reference point, crucial for estimating
the bias. Luckily, as we have argued, the larger model classes have small bias and can themselves
be used as a reference point. The Goldenshluger-Lepski method suggests the following method
to obtain a bias proxy:

b̂iasτ = max
τ ′≤τ

[
(P̂τ ′ − P̂τ )2 − v̂arτ ′

]
+
, (16)

where [·]+ stand for the non-negative part. The justification and behavior for this bias proxy needs
to be rigorously established, as is done for kernel width selection in Goldenshluger & Lepski (2011).
For our heuristic use, we provide simply the intuition behind it. This formula can be interpreted
by noticing that the maximum of (E[P̂τ ′ ]−E[P̂τ ])2 over τ ′ ≤ τ is indeed approximately the bias
since, as we described, the smaller models are (asymptotically) unbiased. But because we only
have access to (P̂τ ′ − P̂τ )2 instead of (E[P̂τ ′ ]−E[P̂τ ])2, and since the smaller models have higher
variance, we place a conservative confidence bound on the τ ′ end using v̂arτ ′ in order not to
overestimate the bias.

Equations (14) (the selection of τ̂), (15) (the bootstrap variance proxy), and (16) (the bias
proxy) completely specify a heuristic model selection procedure for estimating the integer trun-
cation parameter τ .

3 Analysis of the Estimator

3.1 The semiparametric framework

We now analyze the convergence and optimality of our estimator in the context of efficient estima-
tion, when the model contains nuisance parameters. We do so particularly in order to handle the
nonparametric component F within our semiparametric model. In the absence of such nuisance
parameters, efficiency may be defined in terms of attaining the Cramér-Rao bound. In regular
parametric models, the Cramer-Rao bound is the variance of the score function, itself (often)
defined as the derivative of the log-likelihood, and efficient estimators are at first order empirical
means of the score function. The nuisance parameters, however, can lead to unavoidable loss in
the accuracy of any estimator. The notion of efficiency can then be extended by assessing new
lower bounds to the variance of the parameters of interest. We provide the details in Section A.4
below, and describe here what is useful to state our results.

One can define a set Ṗ+
F of score functions relatively to the nonparametric part of the model,

built using one dimensional submodels (see Section A.4 for details). Then, if ˙̀(q,θ) is the usual
score function (given by the partial derivative and gradient with respect to q and θ respectively
of the log-likelihood in the full model), the efficient score function related to (q, θ) is then defined
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component-wise as ˜̀(q,θ) = ˙̀(q,θ)−ΠF
˙̀(q,θ), where ΠF is the orthogonal projection onto the closure

of the linear space spanned by Ṗ+
F . The efficient score functions play the same role for efficient

estimators (if they exist) as the ordinary score functions for the maximum likelihood estimators
in a parametric model with no nuisance parameter. Namely, they lead to the best asymptotic
variance for any estimator. The corresponding efficient Fisher information Ĩ(q,θ) is a matrix whose
components are the variances and covariances of the various components of the vector of efficient
score functions.

As such, this leads to what we shall give as formal definition of the properties of consistency
and efficiency:

Definition 1 As N →∞, an estimator sequence TD = (q̂, θ̂) is:

• Consistent, if TD → (q, θ) in probability.

• Efficient (asymptotically), if

√
D (TD − (q, θ)) = 1√

D

D∑
i=1

Ĩ−1
(q,θ)

˜̀
(q,θ)(X+

i ) + oP (1).

Note that the typical asymptotics for estimator sequences rely on increasing sample size. The
sample size in our problem is D, as the samples consist of the positive (observed) abundances
X+

1 , · · · , X
+
D . Thus, the sample size is a random quantity. Despite this, it is clear that as N →∞,

we also have that D → ∞ in probability, and we therefore think of the two asymptotic notions
interchangeably.

One of the challenges is that in many models the efficient score is not amenable to be used in
the same way as the ordinary score because the orthogonal projection ΠF might not be available
in closed form. In Proposition 3 (stated and proved in Section A.4), we show that such a closed
form can be obtained in our model, and give the expressions that ensue for the efficient score
functions for estimating the parameters θ and q in the model P+

τ .

3.2 Consistency and Efficiency

In what follows, when the true model lies within the hypothesized class (Pτ )τ≥1, we refer to the
true parameters by θ0, q0, and F0, and to the true truncation by τ0. We first list some regularity
assumptions that we have recourse to throughout.

Assumptions

1. [Compactness] Θ is a compact subset of Rk.

2. [Identifiability] The parameter θ is identifiable from the truncated density Sτθ , as defined by
Equation (12).

3. [Continuity] For all x in {1, . . . , τ}, θ 7→ Rθ(x) is a continuous function of θ, and Rθ(x) ≥
δ > 0 for all θ in Θ and x ≤ θ0.
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Let us now move to the main results of this section, the consistency and efficiency of q̂τ and
θ̂τ whenever τ ≤ τ0, and some further properties that give more insight into these estimators. We
begin with the consistency result stated below as Theorem 1.

Theorem 1 Under Assumptions 1-3, as N tends to infinity, the following results hold:

(i) If τ ≤ τ0, then θ̂τ and q̂τ converge in probability to θ0 and q0 respectively.

(ii) If τ > τ0, then θ̂τ converges in probability to the set of maximizers ofM τ (θ) =
∑τ
x=1 f

+(x) logSτθ (x).

The results in Theorem 1 are remarkable since they ensure the consistency of θ̂τ and q̂τ for
a fixed τ , as long as it is smaller than or equal to its true value τ0 and identifiability holds. If,
however, one chooses τ greater than τ0, then the proposed estimators may not be consistent.
(This leads to the challenge of choosing τ via model selection when τ0 is unknown, as described
in Section 2.5). We now complement this consistency result with efficiency properties.

Theorem 2 Consider Assumptions 1-3, and assume further that θ 7→ Rθ(x) is C2 for all x ∈ N,
that θ0 is an interior point of Θ, and that the efficient Fisher information is non-singular at
(q0, θ0). Then, (q̂τ0 , θ̂τ0) is asymptotically efficient at (q0, θ0).

Remark 1 The estimators q̂τ and θ̂τ have the following properties:

(i) q̂τ depends on the observations xi no greater than τ and on the number of those xi that are
greater than τ.

(ii) θ̂τ depends only on the observations xi no greater than τ.

These follow either from direct inspection or from the proof of Lemma 2 in the Appendix. In
particular, θ̂ solves the efficient score equation (17) which depends only on abundances xi no
greater than τ. Now, from equation (42), for a given estimator θ̂ of θ, the estimator q̂(θ̂) depends
on the xi greater than τ only through their cardinal D −Dτ and the property follows.

Theorem 2, asserts the efficiency of θ̂τ and q̂τ , and through them of the corresponding estimator
of the total number of species N̂τ . Remark 1 also sheds light on the fact that the latter depends
only on: (1) the threshold τ, (2) the number of observed species D and (3) on the abundances of
rare species (those that are not greater than τ). In other words, as in the case of pure truncation,
the abundant species contribute only through their cardinality. That said, N̂τ distinguishes itself
by using this cardinality to estimate how to weigh appropriately the respective contributions of
both the rare and abundant species, using the parameter q. Notice that the fact that q is positive
is crucial to be able to carry out inference with this model.

4 Simulations and Experiments
To illustrate the impact of truncation on our ability to estimate the number of species, we give
some numerical simulations and experiments. To make our theoretical work concrete and results
easily reproducible, we consider simple parametric families. In particular we look at a single
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Poisson distribution and a Gamma-Poisson mixture, which gives rise to the negative binomial
distribution. In Section 4.1, we perform synthetic experiments for both, and use this to illustrate
the heuristic method of selecting the best truncation. In Section 4.2, we consider real data in
the form of literary texts, and confine ourselves to the negative binomial model. In order to be
able to compare to a known ground truth, we adapt our number of species framework to the very
related observational richness problem, and show that the choice of truncation has a significant
impact on estimation accuracy.

4.1 Number of Species Simulations

4.1.1 Algorithms to compute θ̂τ

As we take Rθ to be a parametric family, many of the EM-style MLE algorithms for parameter
estimation in such frameworks can be adapted to zero- to τ -truncated versions of the distributions.
This is all that’s needed since, for a fixed value of τ, computing θ̂τ amounts to maximizing (13),
which is equivalent to solving

τ∑
x=1

Ṙθ(x)
Rθ(x)nx −Dτ

∑τ
k=1 Ṙθ(k)∑τ
k=1Rθ(k) = 0. (17)

For example, when Rθ is a Poisson distribution, it is not difficult to check that (17) becomes
exactly

X̄τ

θ
=
∑τ
k=0Rθ(k − 1)∑τ
k=1Rθ(k) , with X̄τ = 1

Dτ

τ∑
x=1

xnx (18)

leading to the fixed point equation θ = X̄τ Pθ(τ)−exp(−θ)
Pθ(τ−1) in which Pθ stands for the cumulative dis-

tribution function of the Poisson model with parameter θ. This is equivalent to moment-matching
and the solution θ̂τ could be found numerically by performing a bisection search, for example.
Similar parameter searches can be performed for the truncated negative binomial distribution
that we consider in this section. In a more complex model where Rθ is a finite mixture of Poisson
distributions, that is when Rθ(x) =

∑J
j=1 πjRθj (x) for all x ≥ 0, we can derive an EM algorithm

for the truncated MLE similarly to the classical Poisson mixture. We do not elaborate this fur-
ther, except to mention that each EM iteration entails the solution of fixed point equations, as in
(18), for each Poisson component.

Design To investigate the performance of the new estimator and compare it to other existing
estimators, we conducted a set of experiments with synthetic data.

In the first set of these experiments, we take the abundances of rare species to be distributed
according to a single Poisson distribution with parameter θ and the nuisance distribution (of
abundant species) is the uniform distribution on τ∗, . . . , τmax. The resulting distribution has
density qRθ(x)+(1−q)U(x) with 0 < q < 1 and U the aforementioned uniform distribution. Now,
for any fixed N ∈ {200, 1000, 5000, 10000}, we generate a sample of size N from the Bernoulli
model with parameter q ∈ {0.4, 0.6, 0.8}, then generate the corresponding counts observations
according to the Poisson or uniform model. The parameters τ∗ and τmax are fixed equal 10 and
40 respectively whereas θ ranges over {0.6, 1, 1.5}. The observed zero-truncated counts are used
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to compute our new estimator N̂τ̂ and some other existing estimators with which N̂τ̂ will be
compared.

To show that the results extend to other parametric families, we perform a second set of
experiments, where we take the abundance of rare species to be distributed according to a Gamma-
Poisson mixture, which leads naturally to the negative binomial distribution. In particular, in
this case θ is two-dimensional, consisting of real parameters r > 0 and s > 0, and in Equation
(1) the distribution νθ is the Gamma distribution with parameter θ = (r, s). This results in Rθ
being the negative binomial distribution with parameters r and p = 1/(1 +s). We fix p = 0.8 and
take r to vary over the range {0.5, 1, 2}. Larger values of N are needed to learn this model even
in the absence of nonparametric noise. We consider the range of N ∈ {10000, 20000, 50000}, and
we generate a sample of size N from the Bernoulli model with parameter q ∈ {0.4, 0.6, 0.8}, then
generate the corresponding counts observations according to the negative binomial or uniform
model. That is, the observational model is as before, qRθ(x) + (1− q)U(x).

Risk approximation using G-L method We use the simulations as an opportunity to illus-
trate the G-L method and show the quality of the risk estimation by the proposed proxy in the
selection rule. As displayed in Figure 1, the proxy b̂iasτ + v̂arτ provides a good approximation
of the true risk when v̂arτ is estimated by a bootstrap procedure as in Equation (15). Note that
in this numerical example we calculate the risk, bias proxy, and variance proxy for N instead of
P (0). The approximation is remarkably accurate especially in the region where the estimator N̂τ

is asymptotically unbiased (that is for τ ≤ τ∗). Its remains satisfactory, but not overly so, for
some τ greater than τ∗. This indicates that the bootstrap procedure is a good choice to estimate
v̂arτ . Note that Figure 1 corresponds to the results of simulations of the single Poisson model
with parameters q = 0.6, θ = 1, and N = 1000. We obtain similar results for all other parameter
choices.

Performances of N̂τ̂ We focus on the performance of N̂τ̂ by calculating its Monte-Carlo mean
(denoted “Mean” in the tables of results) and the renormalized standard error (SeN ) based on
1000 samples. We also investigate the bootstrap-based confidence interval for N by providing the
estimated non-coverage probabilities

Inf = 1
1000

1000∑
j=1

1[N<N(j)
inf ]

and

Sup = 1
1000

1000∑
j=1

1[N>N(j)
sup],

where I(j) = [N (j)
inf , N

(j)
sup] is the bootstrap-based confidence interval using the estimated model

from the jth Monte-Carlo sample. For the single Poisson model, the results are summarized in
Table 1. It is clear that the renormalized Se decreases when θ grows and increases as q becomes
larger. As the small values of θ characterize small abundances and as a high value of q means
that there is a large number of rare species in community (according to the simulated model),
the observed variation of Se suggests that a high number of rare species will be estimated with
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Figure 1: Estimated risk of the estimator of N as a function of τ (Lines X, in black) and its proxy
b̂iasτ + v̂arτ (dotdash ∗, in red) from the G-L method
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larger variance. We can also notice that Se decreases with N in all simulated configurations
showing the accuracy of the method when N becomes larger. As the large values of N describe
the asymptotic regime of the estimators θ̂τ and q̂τ , we believe that the observed accuracy is
related to the asymptotic efficiency of those estimators which improves the variance and then
the mean square error (MSE) of N̂τ̂ as will be seen later. Table 2 summarizes the results for
the Gamma-Poisson mixture model, with very comparable observations. Note that both sets of
experiments show that we cannot rely on bootstrap confidence intervals as true intervals for the
estimator. While the bootstrap is adequate in estimating the variability of the estimator, it does
not accurately convey its location. It exhibits a clear skew to smaller values, which could be
explained by the fact that resampling from the base distribution reduces the number of distinct
observations. Therefore more principled methods are needed to go beyond point estimates in
species richness estimation. One such avenue is through the use of concentration inequalities,
Ben Hamou et al. (2017).

Table 1: Performance of N̂τ̂ for single Poisson distributions. Inf and Sup are given in percentage
(%).

θ = 0.6 θ = 1 θ = 1.5
q N Mean Se

N
Inf (%) Sup (%) Mean Se

N
Inf Sup Mean Se

N
Inf Sup

0.4 200 192 0.116 1.5 26.3 200 0.058 2.5 7.2 199 0.036 2.2 11.7
1000 1005 0.043 2.9 3.5 1001 0.024 3.6 4.6 1000 0.014 3.1 4.2
5000 5003 0.018 3.0 3.4 4999 0.011 3.0 6.6 5001 0.006 3.3 3.7

10000 10002 0.013 3.5 4.4 10002 0.007 3.3 4.3 10002 0.005 3.4 4.6

0.6 200 199 0.133 1.8 11.7 199 0.073 3.1 9.1 198 0.042 2.0 12.7
1000 1003 0.055 3.3 5.0 1001 0.030 3.9 4.1 1000 0.017 2.9 2.7
5000 5003 0.023 4.1 3.5 5001 0.013 3.5 2.8 5000 0.008 2.7 4.3

10000 10009 0.017 4.3 3.7 10005 0.009 4.0 3.9 9999 0.006 3.3 4.0

0.8 200 192 0.160 2.5 15.5 195 0.079 1.5 13.3 196 0.048 1.1 17.0
1000 1005 0.063 4.2 5.0 1002 0.034 3.7 4.7 999 0.021 3.5 6.5
5000 5017 0.027 5.2 3.6 5000 0.015 3.9 4.0 4997 0.009 3.1 4.1

10000 10001 0.019 2.9 4.6 9999 0.011 3.3 4.6 9998 0.006 3.2 4.4

Comparison with other estimators We end the simulations by comparing the proposed
estimator of the number of species to other existing one in literature. We focus entirely on the
single Poisson model, which represents the ground truth assumption of many of theses estimators.
We consider Chao’s estimator N̂Ch0 defined as lower bound forN and proposed in Chao (1984), the
coverage based estimator (N̂CL) proposed in Chao & Lee (1992) by Chao and Lee, the estimator
N̂CB of N using the expected proportion of duplicate species in the sample (by Chao and Bunge
in Chao & Bunge (2002)), the nonparametric MLE N̂WL0 of N using a penalized likelihood (by
Wang and Lindsay in Wang & Lindsay (2005)) and N̂LB : an extension of Chao’s estimator
proposed by Lanutheang and Böhning in Lanumteang & Böhning (2011). The criteria used for
this comparison (Mean, rMAE: relative Mean Absolute Error and rMSE: relative Mean Square
Error) are computed and presented in Table 3. The six estimators display a good performance in
all simulated configurations and N̂τ̂ seems to better estimate N than all other methods. This is
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Table 2: Performance of N̂τ̂ for Gamma-Poisson mixtures (p = 0.8). Inf and Sup are given in
percentage (%).

r = 0.5 r = 1 r = 2
q N Mean Se

N
Inf Sup Mean Se

N
Inf Sup Mean Se

N
Inf Sup

0.4 10, 000 9, 854 0.038 1.3 10.4 9, 955 0.012 2.2 14.6 9, 998 0.003 2.9 9.0
20, 000 19, 413 0.020 0.0 24.0 19, 867 0.008 1.1 25.0 19, 981 0.002 1.3 15.5
50, 000 48, 359 0.013 0.0 64.0 49, 561 0.005 0.0 50.0 49, 933 0.001 0.0 39.0

0.6 10, 000 9, 618 0.042 0.4 25.0 9, 883 0.015 0.8 16.3 9, 986 0.003 1.3 13.3
20, 000 19, 222 0.035 0.4 35.4 19, 823 0.011 1.1 27.0 19, 964 0.002 1.3 27.9
50, 000 47, 792 0.018 0.0 71.0 49, 319 0.005 0.0 72.0 49, 885 0.002 0.4 53.2

0.8 10, 000 9, 561 0.053 0.7 23.1 9, 843 0.016 0.3 27.0 9, 973 0.004 0.7 23.3
20, 000 18, 770 0.031 0.0 49.0 19, 623 0.011 0.1 50.7 19, 968 0.003 3.2 21.4
50, 000 46, 812 0.019 0.0 86.0 49, 128 0.006 0.0 76.0 49, 816 0.002 0.0 80.0

quantified in Table 3, by the remarkably small value of rMSE as compared to the others. This
shows that, despite our results being about the asymptotic efficiency of θ̂τ and q̂τ , we can expect
finite-sample improvements for the estimator N̂τ̂ , when N is moderately large. Also note that all
six estimators become less reliable for very small value of θ or large value of q explaining thus the
common difficulty for these approaches to better approximate N in the case of a large number
of rares species, which touches upon the inherent problems of unidentifiability Mao & Lindsay
(2007).

4.2 Observational richness in text data

Rather than estimating the absolute number of species, an important extension of the species
richness problem is concerned with estimating the number of distinct species to be observed in a
sample larger than the current sample of individuals. Indeed, the abundance data X+

1 , · · · , X
+
D

are ostensibly obtained by performing a sampling of individuals. If the said sample is enlarged,
then how do the new abundances relate to the original ones? In the words of Fisher et al. (1943),
in a pure Poisson abundance model: “Obviously, [the parameter λ] will be proportional to the size
of the sample taken [...]”. This is most easily seen in the individual sampling model of Equation
(3): when the binomial size parameter is changed from m to m′ = γm, the parameters of the
corresponding Poisson mixture are changed from λ = mpj to λ′ = m′pj = γλ.

Generally in a Poisson mixture model, therefore, a γ factor increase in the sample size is
equivalent to a γ dilation of the mixture distribution. Let Eγ [D] denote the expected number of
distinct symbols in the enlarged sample, and thus E1[D] = E[D] = N(1 − qRθ(0)). The obser-
vational richness estimation problem can thus be concretely stated as the problem of estimating
Eγ [D], based on X+

1 , · · · , X
+
D .

One application of the observational richness problem is to forecast the vocabulary of an
author, from a portion of their text. This was popularized in the work of Efron & Thisted (1976),
who applied this methodology to the complete works of William Shakespeare. The problem goes
back to the work of Good & Toulmin (1956), who approached it from an empirical Bayesian
perspective, without any specific parametrization. The earlier work of Fisher et al. (1943) also
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Table 3: Comparison of N̂τ̂ with five other estimators of N using 1000 monte-carlo samples.
N̂Ch0 : Chao’s estimator as lower bound on N in Chao (1984); N̂CL : The coverage based esti-
mator of N by Chao and Lee in Chao & Lee (1992); N̂CB : Estimator of N using the expected
proportion of duplicate species in the sample (by Chao and Bunge in Chao & Bunge (2002));
N̂WL0 Nonparametric MLE of N using a penalized likelihood (by Wang and Lindsay in Wang
& Lindsay (2005)) and N̂LB is an extension of Chao’s estimator proposed by Lanutheang and
Böhning in Lanumteang & Böhning (2011).

θ = 0.6 θ = 1 θ = 1.5
q Est Mean rMAE rMSE Mean rMAE rMSE Mean rMAE rMSE

0.4 N̂
τ̂

1005 0.034 0.185 1001 0.019 0.058 1000 0.011 0.019
N̂Ch0 1010 0.045 0.341 1002 0.026 0.108 1001 0.016 0.041
N̂CL 1015 0.040 0.286 1007 0.023 0.084 1004 0.013 0.029
N̂CB 1054 0.132 23.651 1004 0.035 0.227 1002 0.018 0.051
N̂WL0 1041 0.058 0.731 1024 0.035 0.292 1017 0.023 0.146
N̂LB 1026 0.092 1.717 1022 0.046 0.482 1014 0.028 0.162

0.6 N̂
τ̂

1003 0.043 0.298 1001 0.024 0.088 1000 0.014 0.029
N̂Ch0 1007 0.056 0.522 1003 0.031 0.160 1002 0.020 0.065
N̂CL 1015 0.051 0.434 1008 0.027 0.125 1005 0.017 0.045
N̂CB 1037 0.119 3.956 1005 0.043 0.315 1002 0.022 0.080
N̂WL0 1044 0.072 1.122 1034 0.047 0.510 1025 0.032 0.288
N̂LB 1045 0.113 2.789 1031 0.057 0.704 1018 0.034 0.250

0.8 N̂
τ̂

1005 0.051 0.401 1002 0.027 0.118 999 0.017 0.045
N̂Ch0 1009 0.062 0.621 1006 0.037 0.218 1003 0.023 0.088
N̂CL 1020 0.058 0.553 1011 0.032 0.169 1006 0.020 0.065
N̂CB 1038 0.128 3.719 1007 0.051 0.433 1003 0.026 0.111
N̂WL0 1062 0.088 1.550 1046 0.060 0.835 1031 0.040 0.405
N̂LB 1059 0.126 3.452 1041 0.069 1.054 1019 0.038 0.294

implicitly addressed the same problem.
Here, we restrict ourselves to the context of a parametric Poisson mixture abundance model

for Rθ, that is as in Equation (1), with ν = νθ appropriately parametrized by θ. We require the
family of such densities νθ to be closed under dilation, which means that for all θ and γ > 0,
there exists a density νθγ equal to the dilation of νθ by a factor γ, that is there exists a parameter
θγ such that, for all measurable subsets A, νθγ (A) = νθ(A/γ). Furthermore, we assume that for
fixed γ, the transformation θ 7→ θγ is continuous in the sense that if a sequence θi → θ then the
sequence θγi → θγ . Note that for discrete mixtures, the scaling simply shifts the supports by γ,
and for continuous mixtures it expands and scales the density by γ, and the requirement in either
case is for the resulting density to remain an element of the parametric family.

As we focus primarily on text data, the Gamma-Poisson mixture family is very well-suited.
Recall that in this case θ is two-dimensional, consisting of real parameters r > 0 and s > 0, and
νθ is the Gamma distribution with parameter θ = (r, s). Then, the distribution fνθ is the negative
binomial distribution with parameters r and p = 1/(1 + s). To dilate the Gamma distribution, it
is easy to see that one simply scales s′ = γs. This corresponds to a transformation of the negative
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Figure 2: Estimating the vocabulary growth in Molière’s Tartuffe play

binomial parameter p′ = 1/(1 + γ(1− p)/p).
This paper’s framework applies to this problem as follows. If the rare abundances are well

modeled by a Gamma-Poisson mixture while the abundant ones are not, then our framework
allows us to efficiently learn the parameters q and θ. By continuity, for fixed γ we also have an
efficient estimator of θγ . Since N is assumed to stay constant, we then have

N = E[D]
1− qRθ(0) = Eγ [D]

1− qRθγ (0) .

We could therefore use our estimates q̂τ and θ̂τ to evaluate θ̂γτ and thus to estimate Eγ [D] as
follows:

Êγ [D]τ =
1− q̂τRθ̂γτ (0)
1− q̂τRθ̂τ (0)D.

The data we look at is French playwright Molière’s Tartuffe play, which we gradually observe
a portion of and try to estimate the number of distinct vocabulary words. Thus, the scale γ is
the ratio of the total text size to the size of the observed text, varying from 0 to 100%. For this
problem, we illustrate Êγ [D]τ for various choices of τ and also the Goldenshluger-Lepski selected
τ̂ in Figure 2. Note how quickly the result becomes an accurate estimate of the vocabulary.
But most importantly, note how sub-optimal choices of the truncation can adversely affect the
performance of the estimator.

5 Conclusion
In this paper, we revisited the species richness estimation problem and studied a commonly
followed practice of truncating the data into rare and abundant species. We proposed a semipara-
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metric framework to model such a truncation as a parametric component well-suited to model rare
species and a nonparametric nuisance component to cover the abundant species in an agnostic
manner. We showed that asymptotic efficiency in this framework requires handling the trunca-
tion more delicately. This is in particular true if the rare species model has a significant overlap
with the abundant species. Finally, we proposed a heuristic method to learn a good truncation
threshold from data.

Several possible avenues of investigation may be proposed. We already mentioned the im-
portance of going beyond point estimates. One would also like to relax some assumptions about
rare or/and abundant species. Concerning rare species, the parametric assumption is not fully
satisfying and it would be interesting to know whether semiparametric efficiency can be obtained
in a larger context, or if our estimator has some robustness properties. Concerning abundant
species, it is not clear whether the assumption that they are truly located entirely away from zero
is needed. In particular, it is important to handle the situation when such a dichotomy arises from
an underlying binomial mixture model. Some recent approaches to species richness have success-
fully used Chebyshev polynomials as a fitting model, see for example Orlitsky et al. (2016), and
one would like to understand the relationship between such fits and mixtures of Poissons. Finally,
one would hope that a truncation threshold that automatically conforms to the underlying model
could make the most of the available data and thus give a fundamental theoretical edge, perhaps
in the form of adaptive rates.

A Proofs

A.1 Proof of Proposition 1

For any fixed τ, the classical conditional MLE satisfies

N̂classical = D +
DτRθ̂τ

(0)
1−R

θ̂τ
(0) .

Let us consider now the new conditional MLE proposed in this work:

N̂τ = D

1− q̂τRθ̂τ (0)

= D +
Dq̂τRθ̂τ

(0)
1− q̂τRθ̂τ (0) .

But using equation (11), we have

q̂τRθ̂τ
(0)

1− q̂τRθ̂τ (0) =
DτRθ̂τ

(0)
D
∑τ
k=1Rθ̂τ

(k)

from which we get

N̂τ = D +
DτRθ̂τ

(0)∑τ
k=1Rθ̂τ

(k) . (19)
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Now, if Rθ is supported on {0, . . . , τ}, then
∑τ
k=1Rθ̂τ

(k) equals 1−R
θ̂τ

(0) in the last expression
which finally gives N̂τ = N̂classical. �

A.2 Proof of Proposition 2

For τ equals 2 and Rθ corresponding to the Poisson distribution with parameter θ, it is not
difficult to see that θ̂τ = θ̂Zelterman = 2n2/n1. Then,

N̂τ = D +
DτRθ̂τ

(0)∑τ
k=1Rθ̂τ

(k)

= D + Dτ

θ̂τ + θ̂2
τ/2

and using the fact that Dτ = n1 + n2, we get N̂τ = D + n2
1/2n2. �

A.3 Proof of Theorem 1

We first prove (i), and fix τ ≤ τ0. We use the fact that θ̂ is the maximum likelihood estimator
in the model with density Sτθ . Recall that

∑τ
x=1

nx
Dτ

= 1. Note that maximizing the likelihood of
equation (13) amounts to maximizing in θ the criterion LD(θ) =

∑τ
x=1

nx
Dτ

logSτθ (x) which as N
tends to infinity converges almost surely to L(θ) =

∑τ
x=1 S

τ
θ0

(x) logSτθ (x) when τ ≤ τ0. Moreover,
we have

|LD(θ)− L(θ)| ≤
τ∑
x=1

∣∣∣∣ nxDτ
− Sτθ0(x)

∣∣∣∣ | logSτθ (x)|.

On the right hand side of this inequality, nx
Dτ
−Sτθ0

(x) converges almost surely, thus in probability,
to zero. Also, | logSτθ (x)| is bounded since Rθ(x) ≥ δ > 0, for all θ ∈ Θ and all x ≤ τ. We
conclude that

sup
θ∈Θ
|LD(θ)− L(θ)| → 0 in probability.

It is easy to see that

L(θ)− L(θ0) =
τ∑
x=1

Sτθ0(x) log Sτθ (x)
Sτθ0

(x)

attains uniquely its maximum (equals zero) at θ0 since the true model Sτθ0
is identifiable, as

assumed. We then obtain
sup

θ:d(θ,θ0)≥ε
L(θ) < L(θ0), (20)

where d(θ, θ0) is the euclidean distance between θ and θ0. As θ̂ maximizes LD, we have LD(θ̂) ≥
LD(θ0)−oP(1). This, together with the condition in equation (20) and the above convergence in
probability, entails that θ̂ converges in probability to θ0 as N tends to infinity. This result holds
from Theorem 5.7 in van der Vaart (1998).
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To end part (i) of the theorem, recall that from Equation (11):

q̂(θ̂) = 1
R
θ̂
(0) + D

Dτ

∑τ
k=1Rθ̂(k)

.

We then observe from the law of large numbers that as N tends to infinity, D
Dτ

= D/N
Dτ/N

converges

almost surely to 1−q0Rθ0 (0)
q0
∑τ

k=1 Rθ0 (k) when τ ≤ τ0. Recall that we assume Rθ to be continuous in θ for

each x. Thus using the continuous map theorem and the convergence in probability of θ̂ to θ0, we
find that R

θ̂
(0) and

∑τ
k=1Rθ̂(k) converge in probability to Rθ0(0) and

∑τ
k=1Rθ0(k) respectively

when τ ≤ τ0. We finally obtain the convergence in probability of q̂(θ̂) to

q̂(θ0) = 1

Rθ0(0) +
{

1−q0Rθ0 (0)
q0
∑τ

k=1 Rθ0 (k)

}∑τ
k=1Rθ0(k)

= q0,

using once again the continuous map theorem. This ends the proof of part (i) of Theorem 1.
Similar arguments to what we have given here can be used to prove part (ii) of the Theorem,

namely that if τ > τ0, then θ̂ converges in probability to the set of maximizers of M τ (θ) =∑τ
x=1 f

+(x) logSτθ (x), in the sense that the probability of falling in an ε-dilation of this set tends
to 1 as N →∞. �

A.4 Efficient score functions and efficient Fisher information

We now build up some notation. Denote by supp(F ) the support of F , that is the set of integers
x such that F (x) > 0. In particular, supp(F ) contains only integers x such that x > τ . Let G
denote the set of measurable functions G defined on supp(F ) by

G =

G : supp(F ) 7→ R :
∑

x∈supp(F )
F (x)G(x) = 0 and

∑
x∈supp(F )

F (x)G2(x) <∞

 . (21)

For a given G in G, a real number a and a vector b of dimension k let us define qt = q + at,
θt = θ + bt and Ft = F (1 + tG). This parametrization of F, q and θ defines a path (a one-
dimensional sub-model) f+

t = f+
(qt,θt,Ft) in the model P+. To simplify the notation, we let f+

stand for f+
(q,θ,F ) and f for f(q,θ,F ). Recall the definition of score functions.

Definition 2 A differentiable path is a map t 7→ f+
t from a neighborhood [0, ε) of 0 to P+ with

f+
0 = f+ such that, for some measurable real valued function g, one has

∑
x≥1


√
f+
t (x)−

√
f+(x)

t
− 1

2g(x) ·
√
f+(x)

2

→ 0 as t→ 0. (22)

The one-dimensional sub-model
{
f+
t , t ∈ [0, ε)

}
is then said to be differentiable in quadratic mean

at f+ with score function g.
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A more useful way to determine the score function of a model such as
{
f+
t , t ∈ [0, ε)

}
is to

take the derivative with respect to t of the log-likelihood at t = 0, that is

g = d
dt

∣∣∣∣∣
t=0

log f+
t . (23)

We will use a dot-notation to indicate differentiation with respect to a parameter. Recall first
the parametric score function ˙̀

q and the parametric vector score function ˙̀
θ which are the partial

derivative and gradient with respect to q and θ respectively of the log-likelihood in the full model
P+. We have respectively

˙̀
q = Rθ − F

f
+ Rθ(0)

1− qRθ(0) and ˙̀
θ = qṘθ

f
+ qṘθ(0)

1− qRθ(0) , (24)

with Ṙθ the gradient function of the density Rθ.
In the model defined in Equation (5), a straightforward calculation shows that the score

function g of the one-dimensional sub-model is such that

g = a ˙̀
q + 〈b, ˙̀

θ〉+ (1− q)FG
f

where a and b are the scaling scalar and k-dimensional vector of the parametrizations qt and θt
respectively, and where 〈·, ·〉 denotes the usual inner product.

Now, we recall briefly the notions of tangent set and efficient score function for the model
considered here. The maximal tangent set to the model P+ at f+ is the set of all score functions
of a one-dimensional sub-model. We denote it Ṗ+, and in our case it is given by

Ṗ+ =
{
g = a ˙̀

q + 〈b, ˙̀
θ〉+ (1− q)FG

f
; (a, b) ∈ Rk+1, and G ∈ G

}
. (25)

Consider again the path t 7→ f+
(q,θ,Ft) related to the model P+, but now with the parameters q

and θ fixed. Then the tangent set at f+ for the nonparametric part of the model in (5) is denoted
and given by

Ṗ+
F =

{
h = (1− q)FG

f
, G ∈ G

}
. (26)

The efficient score function related to a given component α of the parameter vector (q, θ1, · · · , θk)
is then defined component-wise as ˜̀α = ˙̀

α −ΠF
˙̀
α, where ΠF is the orthogonal projection onto

the closure of the linear space spanned by Ṗ+
F .

The expressions of the efficient score functions are given in the following proposition, the
coefficients of the efficient Fisher information matrix are displayed in the proof of this proposition.

Proposition 3 The efficient score functions for estimating the parameters q and θ are given for
x ≥ 1 by ˜̀

q(x) = 1
q

1{x ≤ τ} −
∑τ
k=0Rθ(k)

1− q
∑τ
k=0Rθ(k)1{x > τ}+ Rθ(0)

1− qRθ(0) (27)
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and ˜̀
θ(x) = Ṙθ(x)

Rθ(x)1{x ≤ τ} − q
∑τ
k=0 Ṙθ(k)

1− q
∑τ
k=0Rθ(k)1{x > τ}+ qṘθ(0)

1− qRθ(0) (28)

respectively. The efficient Fisher information Ĩ is a matrix of order (k+1) with coefficients given
by equations (33)-(35).

Proof Let lin(Ṗ+
F ) denote the closure of the linear space spanned by Ṗ+

F in L2(f+). To reduce
clutter, let ˙̀ refer to a particular component ˙̀

α. We first give a closed form expression of the
orthogonal projection ΠF

˙̀.
First observe that for every score function ˙̀ in the model P+, the projection ΠF

˙̀ is an element
of the subspace lin(Ṗ+

F ) so that it must be a linear combination (or a limit thereof) of elements
of the form (1−q)FG

f , G ∈ G. Since the latter all vanish on the set {1, . . . , τ}, so does ΠF
˙̀.

Next, let h̃ be any L2(f+)-integrable function that is orthogonal to the space lin(Ṗ+
F ):∑

x>τ

h̃(x)f+(x) = 0 and
∑
x>τ

h̃2(x)f+(x) <∞.

In particular, note that such an h̃ is orthogonal to elements of Ṗ+
F itself. These, once again,

have the form (1−q)FG0
f for some G0 ∈ G. By design, let us choose G0 such that G0(x1) = F (x2)

and G0(x2) = −F (x1) for x1, x2 in the support of F and G0(x) = 0 elsewhere. It is easy to
verify that such a choice does indeed lie within G. On the other hand, the orthogonality of h̃ and
(1−q)FG0

f in L2(f+) implies that:

∑
x≥1

F (x)G0(x)
f(x) h̃(x)f+(x) = 0,

or equivalently ∑
x≥1

F (x)G0(x)h̃(x) = F (x1)F (x2)
(
h̃(x1)− h̃(x2)

)
= 0.

As F (x) is strictly positive over its support, this implies that h̃(x1)− h̃(x2) = 0. Thus all such
h̃ must be constant on the support of F .

Now let us specialize h̃ to the components of the efficient score function, by writing them as˜̀= ˙̀−ΠF
˙̀. Since we have thus determined that ΠF

˙̀ vanishes on x ≤ τ and ˜̀ is constant over
x > τ , we have therefore established:

(ΠF
˙̀)(x) =

{
0 if 1 ≤ x ≤ τ,
˙̀(x)− c( ˙̀) if x > τ,

(29)

where c( ˙̀) is a constant depending on ˙̀. To obtain the expression of c( ˙̀), we can once again use
the fact that ΠF

˙̀ is a linear combination of (1− q)FG/f , G ∈ G, or a limit thereof, in addition
to the fact that

∑
x>τ F (x)G(x) = 0 for all such G, to write:∑

x>τ

( ˙̀(x)− c( ˙̀))f(x) = 0.
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We thus get

c( ˙̀) =
∑
x>τ

˙̀(x)f(x)∑
x>τ f(x) . (30)

Now, we can easily compute the efficient score functions:

˜̀(x) =
{ ˙̀(x) if 1 ≤ x ≤ τ,
c( ˙̀) if x > τ.

(31)

Using the expressions of ˙̀
q and ˙̀

θ in Equation (24), we explicitly get ˜̀q and ˜̀θ. We start with ˜̀q.
We have: ∑

x>τ

˙̀
q(x)f(x) =

∑
x>τ

Rθ(x)− 1 + Rθ(0)
1− qRθ(0)

∑
x>τ

f(x)

= Rθ(0)
1− qRθ(0)

∑
x>τ

f(x)−
τ∑
x=0

Rθ(x).

We then determine c( ˙̀
q) from Equation (30),

c( ˙̀
q) = Rθ(0)

1− qRθ(0) −
∑τ
x=0Rθ(x)∑
x>τ f(x)

= Rθ(0)
1− qRθ(0) −

∑τ
x=0Rθ(x)

1− q
∑τ
x=0Rθ(x)

and since Rθ(x)−F (x)
f(x) = 1

q for all x ≤ τ , we finally obtain ˜̀q(x) as

˜̀
q(x) = 1

q
1{x ≤ τ} −

∑τ
x=0Rθ(x)

1− q
∑τ
x=0Rθ(x)1{x > τ}+ Rθ(0)

1− qRθ(0) .

Moving on to ˙̀
θ, from Equation (24) and using the fact that

∑
x∈N Ṙθ(x) = 0, we have:

∑
x>τ

˙̀
θ(x)f(x) = q

∑
x>τ

Ṙθ(x) + qṘθ(0)
1− qRθ(0)

∑
x>τ

f(x)

= qṘθ(0)
1− qRθ(0)

∑
x>τ

f(x)− q
τ∑
x=0

Ṙθ(x).

Then
c( ˙̀

θ) = qṘθ(0)
1− qRθ(0) −

q
∑τ
x=0 Ṙθ(x)

1− q
∑τ
x=0Rθ(x)

and ˜̀
θ(x) = Ṙθ(x)

Rθ(x)1{x ≤ τ} − q
∑τ
x=0 Ṙθ(x)

1− q
∑τ
x=0Rθ(x)1{x > τ}+ qṘθ(0)

1− qRθ(0) .

The efficient Fisher information matrix has coefficients defined as

Ĩq =
∑
x≥1

˜̀2
q(x)f+(x), Ĩqθj =

∑
x≥1

˜̀
q(x)˜̀θj (x)f+(x) and Ĩθiθj =

∑
x≥1

˜̀
θi(x)˜̀θj (x)f+(x) (32)
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for all i, j = 1, . . . , k. Recall that when we write ˜̀θ, we are referring to a vector of score functions,
whereas ˜̀θj stands for the jth coordinate of ˜̀θ. The computation of these coefficients leads to

Ĩq = 1
1− qRθ(0)

{
1
q

τ∑
x=1

Rθ(x) + [
∑τ
x=0Rθ(x)]2

1− q
∑τ
x=0Rθ(x) −

[Rθ(0)]2

1− qRθ(0)

}
(33)

Ĩθiθj = q

1− qRθ(0)

{
τ∑
x=1

[Ṙiθ(x)][Ṙjθ(x)]
Rθ(x) + q[

∑τ
x=0 Ṙ

i
θ(x)][

∑τ
x=0 Ṙ

j
θ(x)]

1− q
∑τ
x=0Rθ(x) −

q[Ṙiθ(0)][Ṙjθ(0)]
1− qRθ(0)

}
(34)

Ĩqθj = q

1− qRθ(0)

{
1
q

τ∑
x=1

Ṙjθ(x) + [
∑τ
x=0Rθ(x)][

∑τ
x=0 Ṙ

j
θ(x)]

1− q
∑τ
x=0Rθ(x) −

Ṙjθ(0)Rθ(0)
1− qRθ(0)

}
(35)

with Ṙjθ the partial derivative of Rθ with respect to the jth coordinate of θ. �

A.5 Proof of Theorem 2

We first state and prove two lemmas that will be used for the proof of Theorem 2.

As usual, let α be a component of the parameters vector (q, θ), denote by α0 the true value
of α (if it exists), and let V(α0) be a closed neighborhood of α0. We denote by Hα the subset of
L2(f+) defined by

Hα =
{˜̀

α, with α ∈ V(α0)
}
. (36)

Lemma 1 Let α̂ be a consistent estimator of α0. If θ 7→ Rθ(x) is twice continuously differentiable
for every x ≤ τ and Assumptions 1-3 hold, then Hα is a Donsker class with square integrable
envelope that contains ˜̀̂α with probability that tends to one.

Proof
We adapt the method used in Example 19.7 from van der Vaart (1998). Recall that a δ-

bracket is a subset [u1, u2] of L2(f+) such that ‖u2 − u1‖L2(f+) < δ. The bracketing number
N
(
δ,Hα,L2(f+)

)
is the minimum number of δ-brackets needed to cover Hα and the bracketing

entropy is the logarithm of this quantity. To show that Hα is Donsker, we establish the sufficient
condition that the square root entropy integral∫ 1

0

√
logN (γ,Hα,L2(f+))dγ (37)

is finite. (See Theorem 19.5 in van der Vaart (1998).)
We begin by establishing continuity properties of the parametric efficient score functions.

From the differentiability of Rθ in θ and the expressions given in Proposition 3, it is evident that
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˜̀
α is always a differentiable function of α. Let us denote these derivatives by ˙̀̃

α. For α = q and
α = θj we can respectively compute these as

˙̀̃
q =

{(
Rθ(0)

1− qRθ(0)

)2
− 1
q2

}
1{x ≤ τ}+

{(
Rθ(0)

1− qRθ(0)

)2
−
( ∑τ

k=0Rθ(k)
1− q

∑τ
k=0Rθ(k)

)2}
1{x > τ}

and
˙̀̃
θj =

R̈
j
θ(x)

Rθ(x) −
(
Ṙjθ(x)
Rθ(x)

)2

+ qR̈jθ(0)
1− qRθ(0) +

(
qṘjθ(0)

1− qRθ(0)

)2
1{x ≤ τ}+

 qR̈jθ(0)
1− qRθ(0) +

(
qṘjθ(0)

1− qRθ(0)

)2

−
q
∑τ
k=0 R̈

j
θ(k)

1− q
∑τ
k=0Rθ(k) −

(
q
∑τ
k=0 Ṙ

j
θ(k)

1− q
∑τ
k=0Rθ(k)

)2
1{x > τ}.

By inspection, we find that ˙̀̃
q is always continuous itself, and that ˙̀̃

θj is also continuous
provided that θ 7→ Rθ is in C2 and Rθ(x) ≥ η > 0 for all x ≤ τ , as assumed. These conditions
also imply that ˙̀̃

α have a finite L2(f+)-norm and that these functions are Lipschitz-continuous
on V(α0). We thus have a non-negative bounded V such that

|˜̀α2(x)− ˜̀α1(x)| ≤ V |α2 − α1| for every α1, α2 ∈ V(α0). (38)

Now, from this Lipschitz condition, it follows that if |α−α1| < ε then ˜̀α1−εV ≤ ˜̀α ≤ ˜̀α1 +εV.
This means that we need as many ε-balls (a ball with radius ε/2) to cover V(α0) as we need δ-
brackets (δ = 2εV ) to cover Hα. Since the number n0 of ε-balls needed to cover V(α0) is such
that

n0 ≤ C
diam[v(α0)]

ε
∨ 1,

with C a constant depending only on V(α0), it follows that the bracketing number is

N
(
δ,Hα,L2(f+)

)
≤
{
Cdiam[v(α0)]2V

δ

}
∨ 1. (39)

Thus the bracketing entropy is of order smaller than log(1/δ), whose square root is integrable
near 0. This establishes the sufficient condition of Equation (37), and thus Hα is indeed Donsker.

To complete the other claims of the proof, note that for all α in V(α0), ˜̀α has a finite
L2(f+)-norm and that |˜̀α(x)| ≤ U for some U < ∞, for all x ≥ 1. The boundedness of ˜̀α
is obtained from the expression of ˜̀q and ˜̀

θj . The constant function U is a square integrable
envelope for Hα. We use the continuity of the map α 7→ ˜̀

α(x) and consistency of α̂ to show
that limN→∞ P[| ˜̀̂α(x) − ˜̀α0(x)| > ε] = 0 for all x ≥ 1. This proves that Hα contains ˜̀̂α with
probability that tends to one and the lemma holds. �

The result in Lemma 1 holds for Hq and Hθj for all j = 1, . . . , k and thus also for their union
H. We conclude that H is a Donsker class with square integrable envelope that contains ( ˜̀̂q, ˜̀̂θ)
with probability that tends to one.

Lemma 2 θ̂τ and q̂τ solve the efficient score equations:
D∑
i=1

˜̀
q(xi) = 0, and

D∑
i=1

˜̀
θ(xi) = 0. (40)
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Proof Note that the efficient score equation
∑D
i=1

˜̀
q(xi) = 0 can be written as

Dτ

q
+ DRθ(0)

1− qRθ(0) −
(D −Dτ )

∑τ
k=0Rθ(k)

1− q
∑τ
k=0Rθ(k) = 0. (41)

The zero notation here refers to the null vector of Rk.
Recalling that q̂τ = q(θ̂τ ) where, for any θ, q̂(θ) is given by

q̂(θ) = Dτ

D
∑τ
k=1Rθ(k) +DτRθ(0) , (42)

we see that for θ = θ̂τ and q = q̂τ the efficient score equation
∑D
i=1

˜̀
q(xi) = 0 is verified.

Likewise, recall that if one sets to zero all the partial derivatives of the logarithm of the likelihood
in (13), one has (17), that is

τ∑
x=1

Ṙθ(x)
Rθ(x)nx −Dτ

∑τ
k=1 Ṙθ(k)∑τ
k=1Rθ(k) = 0.

This equality is equivalent to
∑D
i=1

˜̀
θ(xi) = 0 with q replaced by q̂(θ) in ˜̀θ. Thus again, for θ = θ̂τ

and q = q̂τ the efficient score equation
∑D
i=1

˜̀
θ(xi) = 0 is verified. �

We now prove the asymptotic efficiency of the estimators. Note that all results in this proof
are stated under the restriction τ ≤ τ0 when necessary.

By Lemma 2, θ̂ and q̂(θ̂) are such that

1√
D

D∑
i=1

˜̀̂
θ
(xi) = 0 and 1√

D

D∑
i=1

˜̀̂
q(xi) = 0. (43)

Efficient score functions, as score functions, are centered. Thus, for any parameter (q, θ, F ),
one has ∑

x≥1

˜̀
θ(x)f+

(q,θ,F )(x) = 0 and
∑
x≥1

˜̀
q(x)f+

(q,θ,F )(x) = 0.

As ˜̀θ and ˜̀q are free of F , and as this is also true for the plug-in estimators ˜̀̂
θ
and ˜̀̂q, the previous

equations imply that ∑
x≥1

˜̀̂
θ
(x)f+

(q̂,θ̂,F )
(x) = 0 and

∑
x≥1

˜̀̂
q(x)f+

(q̂,θ̂,F )
(x) = 0. (44)

The asymptotic efficiency of (q̂, θ̂) follows from Theorem 25.54 in van der Vaart (1998). As
assumptions, this theorem needs the assertions of Theorem 1 (consistency) and Lemma 1 (Donsker
property), in addition to the following two convergence properties pertaining to the “plug-in” score
functions. In particular, we need to show that our estimator (q̂, θ̂) satisfies:

‖˜̀(q̂,θ̂) −
˜̀
(q0,θ0)‖2L2(f+) = oP(1), (45)

and
‖˜̀(q̂,θ̂)‖

2
L2(f̂+)

=
∑
x≥1
‖˜̀(q̂,θ̂)(x)‖22f̂+(x) = OP(1), (46)
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where f+ stands for f+
(q0,θ0,F ), f̂

+ stands for the parametric plug-in f+
(q̂,θ̂,F )

, and ˜̀(q0,θ0) and ˜̀(q̂,θ̂)

are the stacked vectors of (k + 1) components, (˜̀q0 ,
˜̀
θ0) and ( ˜̀̂q, ˜̀̂θ) respectively.

To establish Equations (45) and (46), we can use for each parameter α the continuity properties
of ˜̀α per component, as in the proof of Lemma 1. In particular, note first that for all x > τ0,
we have that ˜̀α(x) is constant. Therefore, for each parameter α we need only to account for
the convergence of ˜̀̂α(x) to ˜̀α(x) for x = 1, · · · , τ0 + 1, all of which happen (in probability), by
continuity.

It follows that for each x, ‖˜̀(q̂,θ̂)(x)− ˜̀(q0,θ0)(x)‖2 converges to 0 in probability, and since we
have only finitely many distinct values, the convergence is uniform for all x. Equation (45) is thus
immediate.

On the other hand, f̂+(x) converges to f+(x) in probability for each x. By finiteness, it
follows that

∑
x≤τ0 f̂

+(x) converges to
∑
x≤τ0 f

+(x), and consequently
∑
x>τ0 f̂

+(x) converges to∑
x>τ0 f

+(x). By using once again the fact that ˜̀ is constant beyond τ , the convergence reduces to
finitely many convergences, and thus

∑
x≥1 ‖˜̀(q0,θ0)(x)‖22f̂+(x) converges to

∑
x≥1 ‖˜̀(q0,θ0)(x)‖22f+(x).

We can therefore write:∑
x≥1
‖˜̀(q̂,θ̂)(x)‖22f̂+(x) ≤ 2

∑
x≥1
‖˜̀(q̂,θ̂)(x)− ˜̀(q0,θ0)(x)‖22f̂+(x) + 2

∑
x≥1
‖˜̀(q0,θ0)(x)‖22f̂+(x)

= oP(1) + OP
(
‖˜̀(q0,θ0)‖2L2(f+)

)
,

which completes the proof of Equation (46) and the theorem. �
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