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Abstract

We study the structure of the support of a doubling measure by analyzing its self-similarity
properties, which we estimate using a variant of the L1 Wasserstein distance. We show that a
measure satisfying certain self-similarity conditions admits a unique (up to multiplication by a
constant) flat tangent measure at almost every point. This allows us to decompose the support
into rectifiable pieces of various dimensions.

Soit µ une mesure doublante dans Rn. On introduit deux parties du support où µ a cer-
taines propriétés d’autosimilarité, que l’on mesure à l’aide d’une variante de la L1-distance
de Wasserstein, et on montre qu’en chaque point de ces deux parties, toutes les mesures tan-
gentes à µ sont des multiples d’une mesure plate (la mesure de Lebesgue sur un sous-espace
vectoriel). On utilise ceci pour donner une décomposition de ces deux parties en ensembles
rectifiables de dimensions diverses.

Key words/Mots clés. Rectifiability, Tangent measures, Doubling measures, Wasserstein
distance
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1 Introduction

1.1 Statement of Results
In this paper we are concerned with understanding the rectifiability properties of doubling
measures. Our ultimate goal is to characterize rectifiable doubling measures. Recently Tolsa
provided such a characterization for 1-rectifiable measures with upper density bounded below
(see [10]). His conditions are expressed in terms of the properties of the density ratios. We
are interested in whether self-similarity properties yield some sort of rectifiabilty. Roughly
speaking we analyze how the distance between the dilations of a measure appropriately scaled
yield information about the structure of its support. We provide a criteria which ensures that the
support of a doubling measure can be decomposed as a union of rectifiable pieces of different
dimensions. In a previous paper [1], similar decompositions were obtained by looking at
conditions that were expressed in terms of the properties of the local distance between the
measure and flat measures (that is multiples of Hausdorff measures restricted to affine subsets
of Euclidean space). In both cases a minor variant of the L1 Wasserstein distance is used to
estimate the good features of a measure.

To present our results we need to define local distances between measures as well as several
quantities which describe the self similar character of a measure. In this paper, µ denotes a
Radon measure on Rn (i.e., a locally finite positive Borel measure), and Σ = Σµ denotes its
support. That is,

Σ =
{
x ∈ Rn ; µ(B(x, r)) > 0 for r > 0

}
, (1.1)

where B(x, r) denotes the open ball centered at x and with radius r. We say that µ is doubling
when there is a constant Cδ > 0 for which

µ(B(x, 2r)) ≤ Cδ µ(B(x, r)) for all x ∈ Σ and r > 0. (1.2)

Let B = B(0, 1) denote the unit ball in Rn. For M ≥ 0, denote by LipM (B) the set of
functions ψ : Rn → R that are M -Lipschitz, i.e., such that

|ψ(x)− ψ(y)| ≤M |x− y| for x, y ∈ Rn, (1.3)

and for which
ψ(x) = 0 for x ∈ Rn \ B. (1.4)
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Definition 1.1. Let µ and ν be measures on Rn, whose restrictions to B := B(0, 1) are proba-
bility measures. We set

W1(µ, ν) := sup
ψ∈Lip1(B)

∣∣∣∣ˆ ψdµ−
ˆ
ψdν

∣∣∣∣ . (1.5)

Thus W1(µ, ν) only measures some distance between the restrictions to B of µ and ν. This
quantity is similar to the usual L1-Wasserstein distance, which by the Kantorovich duality
theorem has the same definition as W1 except that the infimum ranges over all 1-Lipschitz
nonnegative functions in B. Note that W1 has appeared before in the study of rectifiability of
measures; see for example [7], [8], [9], and [1]. In Section 5, we replace W1 with a smoother
version of local distance Wϕ which is easier to manipulate. Lemmas 5.1 and 5.3 state that W1

and Wϕ are essentially comparable. We refer to [11] for a detailed introduction to Wasserstein
distances and their properties.

To estimate the self-similarity properties of µ we use several groups of affine transforma-
tions of Rn. Denote by R the group of affine isometries of Rn (i.e., compositions of transla-
tions, rotations, and symmetries). Then let G denote the group of similar affine transforma-
tions, defined by

G =
{
λR ; λ > 0 and R ∈ R

}
. (1.6)

For G ∈ G , we denote by λ(G) the unique positive number such that G = λ(G)R for some
R ∈ R. Denote by D the group of translations and dilations:

D =
{
λI + a ; λ > 0 and a ∈ Rn

}
, (1.7)

where I denotes the identity on Rn.
The transformations that map a given x ∈ Rn to the origin, are denoted by

G (x) =
{
G ∈ G ; G(x) = 0

}
and D(x) =

{
D ∈ D ; D(x) = 0

}
. (1.8)

To each G ∈ G , we associate the measure µG = G]µ, which is defined by

µG(A) = µ(G−1(A)) for every Borel set A ⊂ Rn. (1.9)

When G ∈ G (x) for some x ∈ Σ, be may normalize µG and set

µG0 =
µG

µG(B)
=

µG

µ(G−1(B))
=

µG

µ(B(x, λ(G)−1))
(1.10)

because µ(B(x, λ(G)−1)) > 0. This normalization is needed if we want to compute W1-
distances.

A special case of this is when G = Tx,r, the element of D that maps B(x, r) to B; then µG

and µG0 are denoted by µx,r and µx,r0 respectively. That is,

µx,r(A) = µ(x+ rA) for A ⊂ Rn, and µx,r0 =
µx,r

µ(B(x, r))
. (1.11)

To measure the self-similar nature of µ we introduce two quantities αG and αD . We fix
two parameters 1 < λ1 < λ2 <∞. Set

G (x, r) =
{
G ∈ G (x) ; λ1r ≤ λ(G)−1 ≤ λ2r

}
(1.12)
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and then
αG (x, r) = inf

{
W1(µG0 , µ

x,r
0 ) ; G ∈ G (x, r)

}
. (1.13)

Thus, if αG (x, r) is small, this means that in B, µx,r0 is close to some measure µG0 , obtained
via a transformation G that contracts more than Tx,r and possibly rotates as well. After com-
position with T−1

x,r , the fact that αG (x, r) is small can be interpreted as saying that in B(x, r),
µ is quite close to the measure aµG

′
, where G′ = T−1

x,r ◦ G is a contracting element of G that
fixes x and a > 0 is a normalizing constant. It is important to note that even though we allow
some flexibility in the choice of G and G′, we demand that G′(x) = x. This is the reason why
the usual fractal measures do not satisfy the conditions below.

We also use the analogue of αG (x, r) for the smaller group D .That is, set

D(x, r) =
{
D ∈ D(x) ; λ1r ≤ λ(G)−1 ≤ λ2r

}
(1.14)

and
αD(x, r) = inf

{
W1(µG0 , µ

x,r
0 ) ; G ∈ D(x, r)

}
. (1.15)

For αD(x, r) we only compare µ with its image by some dilation centered at x. Obviously
αD(x, r) ≥ αG (x, r). Thus conditions on αD(x, r) are more restrictive than those on αG (x, r).

Our goal is to get a control on the part of Σ (see (1.1)) where either αG (x, r), or αD(x, r),
are sufficiently small. More precisely, we want to control the sets

Σ1 =
{
x ∈ Σ ;

ˆ 1

0
αD(x, r)

dr

r
<∞

}
(1.16)

and

Σ2 =
{
x ∈ Σ ;

ˆ 1

0
αG (x, r)

log(1/r)dr

r
<∞

}
. (1.17)

Theorem 1.2. Let µ be a doubling measure on Rn, and denote by Σ its support. Let 1 < λ1 <
λ2 <∞ be given, and define the sets Σ1 and Σ2 as above. Then there are sets S0, ...,Sn ⊂ Σ,
such that

µ
(

(Σ1 ∪ Σ2) \
( n⋃
d=0

Sd

))
= 0, (1.18)

and moreover

• S0 is the set of points where Σ has an atom; it is at most countable, and every point of
S0 is an isolated point of Σ.

• For 1 ≤ d ≤ n, if x ∈ Sd, there exists a d-dimensional vector space Vx such that all the
tangent measures to µ at x (defined below) are multiples of the Lebesgue measure on Vx.

• For 1 ≤ d ≤ n, Sd is d-rectifiable, and it can be covered by a countable family of
Lipschitz graphs of dimension d.

We may see Theorem 1.2 as a structural decomposition of the good parts of Σ. Tangent
measures will play an important role in proof and the definition of the Sd. Recall that the set
of tangent measures to µ at x, which will be denoted by Tan(µ, x), is the set of non-zero Radon
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measures σ for which there exist a sequence {rk}, with limk→∞ rk = 0, and a sequence {ak}
of nonnegative numbers, such that

σ is the weak limit of the measures akµx,rk , (1.19)

where the µx,rk are as in (1.11). That is, for every continuous function f with compact support,
ˆ
fdσ = lim

k→∞
ak

ˆ
fdµx,rk . (1.20)

Note that since here µ is doubling, Tan(µ, x) is not empty (see for instance the proof of
Lemma 2.1 in [1]). Furthermore if µ satisfies (1.2) and σ ∈ Tan(µ, x) then σ is also doubling
with a constant at mostC2

δ . A priori Tan(µ, x) may be large. Nevertheless Theorem 1.2 ensures
that for x ∈ Sd, Tan(µ, x) is of dimension 1.

A Lipschitz graph of dimension d is a set ΓA such that

ΓA =
{
x+A(x) ; x ∈ V

}
,

where V is a vector space of dimension d, A : V → V ⊥ is a Lipschitz map and V ⊥ denotes
the (n−d)-dimensional vector space perpendicular to V . In the statement of Theorem 1.2, Sd

can be covered by Lipschitz graphs where the corresponding functionA has Lipschitz constant
less than ε, where ε > 0 is any small number given in advance. Note that this yields that Sd is
d-rectifiable while providing additional information in the sense that Sd is completely covered
by Lipschitz graphs not simply up to a set of H d-measure zero. Let us make a few more
remarks on Theorem 1.2 and its proof. The advantage of using the quantities αG and αD is
that they yield information not only about the geometry of the support but also about how the
measure is distributed on it. The decomposition of Σ1∪Σ2 into pieces of different dimensions
is possible once we prove that for µ-almost every point x ∈ Σ1 ∩ Σ2, Tan(µ, x) is entirely
composed of flat measures of a same dimension depending on x. Recall that flat measures are
multiples of Lebesgue measures on vector subspaces of Rn; that is, for each integer d ∈ [0, n],
set

Fd =
{
cH d V ; c ≥ 0 and V ∈ G(d, n)

}
, (1.21)

where H d denotes the d-dimensional Hausdorff measure (see [6] or [4]) and G(d, n) is the
set of d-planes in Rn. The set of flat measures is F =

⋃
0≤d≤n Fd.

It is natural to use the self-similarity properties of µ to get information on the structure of Σ,
as in Theorem 1.2. In particular the numbers αG (x, r) provide an intrinsic way to measure the
regularity of µ. We contrast this approach with the one taken in [1] where we were interested
on the local approximation of the measure by flat measures.

As we shall see in Section 8, the additional logarithm in (1.17) is used to sum a series
which allows us to control the density of µ on most of Σ2. It may well be an artifact of the
proof.

To prove Theorem 1.2 we need to find a set Σ0 which covers almost all Σ1 ∪ Σ2 and such
that all tangents to µ at points in Σ0 are flat. To accomplish this we define an average analogue
of the numbers αG (x, r) by

α∗G (x, r) =

 
B(x,r)

 2r

r
αG (y, t)dµ(y)dt (1.22)
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(where
ffl

is our notation for an average) and consider the set

Σ0 =
{
x ∈ Σ ; lim

r→0
α∗G (x, r) = 0

}
. (1.23)

Theorem 1.3. Let µ be a doubling measure on Rn, and denote by Σ its support. Let 1 < λ1 <
λ2 <∞ be given, and define the functions αG (x, r) and α∗G (x, r) and the set Σ0 as above (see
(1.13), (1.22), and (1.23)). Then

Tan(µ, x) ⊂ F for every x ∈ Σ0. (1.24)

A consequence of (1.24) and the fact that elements of different Fd are far away from each
other is that for each x ∈ Σ0, there is an integer d ∈ [0, n] such that

Tan(µ, x) ⊂ Fd. (1.25)

This is not too hard to prove. In the case of Theorem 1.2, we obtain more than (1.25) directly,
thus we omit the proof of this fact.

To deduce Theorem 1.2 from Theorem 1.3, we shall first check that

µ
(
(Σ1 ∪ Σ2) \ Σ0

)
= 0. (1.26)

This uses standard techniques from measure theory including the Lebesgue density theorem.
Then we show that for each x ∈ Σ0 ∩ (Σ1 ∪ Σ2),

Tan(µ, x) =
{
cσ ; c > 0

}
for some σ ∈ F . (1.27)

Let us now say a few words about the definition of the Sd. Set

Sd =
{
x ∈ Σ0 ∩ (Σ1 ∪ Σ2) ; Tan(µ, x) ⊂ Fd

}
; (1.28)

these sets are disjoint, and by (1.27) or (1.25)

Σ0 ∩ (Σ1 ∪ Σ2) =

n⋃
d=0

Sd. (1.29)

The special set S0 is easily dealt with at the beginning of Section 7, and Theorem 1.2 follows
as soon as we prove that for d ≥ 1,

Sd can be covered by a countable collection (1.30)

of Lipschitz graphs of dimension d.

The fact that information on the tangent measures may imply rectifiability properties for
the measure is much better understood since D. Preiss [7] showed that if µ is a Radon measure,
not necessarily doubling, such that for µ-almost every x ∈ Rn, the d-density limr→0

µ(B(x,r))
rd

exists and is positive and finite, then Rn may be covered, up to a set of µ-measure zero, by a
countable collection of d-dimensional Lipschitz graphs. He deduced this from the hypothesis

6



on the d-density and the fact that at µ-almost every x ∈ Σ, Tan(µ, x) ⊂ F . In our case, we
are unable to use [7] because we are not given any information on the density of µ.

We shall use the fact that since µ is doubling, (1.27) implies the existence of a tangent
d-plane to Σ at x, and then (1.30) for the set where (1.27) holds. We include a proof of these
simple observations in Section 7.

To prove (1.27), we shall use the numbers αD(x, r) and αG (x, r) to control the variations
of the measures µx,r on Σ1 and Σ2. Eventually we compare them to the tangent measures.

For points of Σ1 we use the triangle inequality and the summability of the αD(x, r), to
show that the distance between two different tangent measures at x is controlled by integrals
that tend to 0. To deal with some of the technical complications that arise with the distance
W1, we shall introduce in Section 5 a smoother variant Wϕ of the Wasserstein distance, study
it briefly, and then use it in Section 6 to prove (1.27) on Σ1 ∩ Σ0.

For points of Σ2, we’ll use the bounds on the numbers αG (x, r) to compute the Wϕ-
distance between the µx,r and the tangent measures. This time we can only work modulo
rotations, but this is enough to control the W1-distance from the µx,r0 to flat measures, and
apply Theorem 1.5 in [1]. This yields additional information on Σ2 ∩ Σ0. In particular, it
guarantees that on the sets Σ2 ∩Sd, µ is absolutely continuous with respect to the Hausdorff
measure H d, with a density that can be computed from the measure of balls, and that some
local mutual absolute continuity of µ and H d

|Σ2∩Sd
holds. See near (8.17) for a statement, and

the rest of Section 8 for the proof.

There is a significant difference between (1.24) (or even (1.25)) and the stronger (1.27). For
instance, let Σ be an asymptotically flat snowflake in R2, constructed in the usual way but with
angles that tend slowly to 0. Put on Σ the natural measure µ, coming from the parameterization
of Σ (see [3]). In this case for µ-almost every x ∈ Σ, Tan(µ, x) = F1. Of course Σ is not
rectifiable, and Theorem 1.2 says that Σ1 ∪ Σ2 is µ-negligible.

The definitions (1.22) and (1.23) ensure that for x ∈ Σ0, the local self-similarity character
of µ improves as the balls get smaller and smaller, which yields self-similar tangent measures
at all point of Σ0. That is, we show that if x ∈ Σ0, σ ∈ Tan(µ, x) and y lies in the support of
σ, there is a transformation G ∈ G such that λ1 ≤ λ(H)−1 ≤ λ2, H(y) = y, and H]σ = cσ
for some c > 0. See Lemma 3.1, in Section 3. Once we prove this, showing that σ is flat is
mostly a matter of playing with the invariance properties of the support and the measure; see
Section 4.

1.2 Acknowledgements
The authors are grateful to Alessio Figalli and Xavier Tolsa for helpful discussions. Parts of
this work were done while the first author was visiting IPAM and while the second author was
visiting the University of Washington.
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2 Control of the averages αG

The main goal of this section is to prove (1.26). To this effect define the set

Σ3 =
{
x ∈ Σ ;

ˆ 1

0
αG (x, r)

dr

r
<∞

}
. (2.1)

Notice that Σ1 ∪ Σ2 ⊂ Σ3, by (1.16), (1.17), and because αG (x, r) ≤ αD(x, r). Thus (1.26)
follows once we prove that

µ(Σ3 \ Σ0) = 0. (2.2)

For N > 0 large and k ≥ 2, let

Σ3(N) =
{
x ∈ Σ3 ∩B(0, N) ;

ˆ 1

0
αG (x, r)

dr

r
≤ N

}
(2.3)

and

εk =

ˆ
Σ3(N)

ˆ 2−k+2

2−k

αG (y, r)
dµ(y)dr

r
. (2.4)

Then ∑
k≥2

εk ≤ 2

ˆ
Σ3(N)

ˆ 1

0
αG (x, r)

dµ(x)dr

r
≤ 2Nµ(Σ3(N)) <∞. (2.5)

Choose a decreasing sequence {γk} such that

lim
k→∞

γk = 0 and
∑
k≥2

γ−1
k εk <∞. (2.6)

For x ∈ Σ3(N), define auxiliary functions αk by

αk(x) =

ˆ
Σ3(N)∩B(x,2−k+1)

ˆ 2−k+2

2−k

αG (y, r)
dµ(y)dr

r
. (2.7)

Consider the bad sets

Zk =
{
x ∈ Σ3(N) ; αk(x) ≥ γkµ(B(x, 2−k+1))

}
. (2.8)

Our goal is to show that Zk is small. Let X ⊂ Zk be a maximal subset whose points lie at
distance at least 2−k+2 from each other. Thus the balls B(x, 2−k+2), x ∈ X , cover Zk, so by
(1.2) and (2.8)

µ(Zk) ≤
∑
x∈X

µ(B(x, 2−k+2)) ≤ C2
δ

∑
x∈X

µ(B(x, 2−k+1))

≤ C2
δ γ
−1
k

∑
x∈X

αk(x). (2.9)

Since the balls B(x, 2−k+1), x ∈ X , are disjoint,∑
x∈X

αk(x) ≤ εk
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(compare (2.4) and (2.7)); thus µ(Zk) ≤ C2
δ γ
−1
k εk. We are not interested in the precise bound,

but merely the fact that
∑

k µ(Zk) <∞, from which we deduce that if we set Z∗l =
⋃
k≥l Zk

for l ≥ 2, then liml→∞ µ(Z∗l ) = 0. Thus for µ-almost every x ∈ Σ3(N) there is kx ∈ N such
that

x ∈ Σ3(N) \ Zk for k ≥ kx. (2.10)

By the Lebesgue differentiation theorem applied to the doubling measure µ, we have that for
µ-almost every x ∈ Σ3(N)

lim
r→0

µ(B(x, r) ∩ Σ \ Σ3(N))

µ(B(x, r) ∩ Σ)
= 0; (2.11)

see for instance Corollary 2.14 in [6].
Let x ∈ Σ3(N) satisfy (2.10) and (2.11); we want to estimate α∗G (x, r) for r small. Choose

k such that 2−k ≤ r ≤ 2−k+1; then k ≥ kx for r small. Recall from (1.22) that

α∗G (x, r) = µ(B(x, r))−1

ˆ
y∈B(x,r)

 2r

r
αG (y, t)dµ(y)dt. (2.12)

We decompose the domain of integration above into two parts and estimate each one separately.
By (1.2), (2.7), (2.10), and (2.8),

µ(B(x, r))−1

ˆ
Σ3(N)∩B(x,r)

 2r

r
αG (y, t)dµ(y)dt

≤ 4µ(B(x, 2−k))−1

ˆ
Σ3(N)∩B(x,r)

ˆ 2−k+2

2−k

αG (y, t)
dµ(y)dt

t

≤ 4Cδµ(B(x, 2−k+1))−1αk(x) ≤ 4Cδγk. (2.13)

This term tends to 0 when r tends to 0, by (2.6).
For the second part, we notice that αG (y, t) ≤ 2 by definition (see (1.13) and (1.5)), so

µ(B(x, r))−1

ˆ
Σ∩B(x,r)\Σ3(N)

 2r

r
αG (y, t)dµ(y)dt

≤ 2µ(B(x, r))−1µ(Σ ∩B(x, r) \ Σ3(N)), (2.14)

which tends to 0 by (2.11). Combining (2.13) and (2.14) we get that

lim
r→0

α∗G (x, r) = 0 for µ-almost every x ∈ Σ3(N).

In other words, µ(Σ3(N) \ Σ0) = 0 (see (1.23)); (2.2) follows easily, and so does (1.26).

3 Tangent measures are self-similar
In this section we start the proof of Theorem 1.3 and prove the basic self-similarity estimate
for tangent measures.
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Lemma 3.1. Let µ be a doubling measure, let Σ denote its support, let Σ0 ⊂ Σ be as in (1.23),
and σ ∈ Tan(µ, x) be a tangent measure of µ at a point x ∈ Σ0. For each y ∈ Ξ, the support
of σ, there exist H ∈ G such that H(y) = y,

λ1 ≤ λ(H)−1 ≤ λ2 (3.1)

and
H]σ = cσ for some c > 0. (3.2)

The numbers λ1 and λ2 are the same as in (1.12), the dilation number λ(H) is defined
below (1.6), and H]σ, the push forward image of σ by H , is defined as in (1.9).

Proof. We may assume, without loss of generality, that x = 0. Since σ ∈ Tan(µ, x) there are
coefficients ak ≥ 0 and radii rk > 0, such that limk→∞ rk = 0, and σ is the weak limit of the
measures {σk}, where

σk = akµ
0,rk = akµ

Rk with Rk(u) = r−1
k u for u ∈ Rn. (3.3)

Note that Rk maps B(x, rk) = B(0, rk) to B. See (1.11) for the definition of µx,r.
Let

αk = sup
{
α∗G (0, r) ; 0 < r <

√
rk
}

; (3.4)

then since x ∈ Σ0 (see (1.23))
lim
k→∞

αk = 0. (3.5)

By (3.4), if for k large
rk < ρk <

√
rk (3.6)

then α∗G (0, ρk) ≤ αk for these k. Since σ is the weak limit of the σk, for each y ∈ Ξ := suppσ
we can find points yk ∈ supp(σk) = r−1

k Σ such that

lim
k→∞

|yk − y| = 0. (3.7)

Let {ηk}k≥1 and {ρk}k≥1 be sequences such that (3.6) holds for k large, and also

lim
k→∞

ρk
rk

=∞ and lim
k→∞

ηk = 0. (3.8)

Consider

Ak =

 
B(rkyk,ηkrk)

 2ρk

ρk

αG (z, t)dµ(z)dt. (3.9)

For k large, the domain of integrationB(rkyk, ηkrk) is contained inB(0, ρk) (because yk tends
to y, ηk tends to 0, and r−1

k ρk tends to +∞; see (3.7) and (3.8)). Recall thatB(0, ρk)×[ρk, 2ρk]
is the domain of integration in the definition of α∗G (0, ρk) (see (1.22)); hence for k large

Ak ≤
µ(B(0, ρk))

µ(B(rkyk, ηkrk))
α∗G (0, ρk) ≤ C

2+log2(ρk/(ηkrk))
δ αk (3.10)

by (3.9), (1.22), (3.6), (3.4), and the doubling property (1.2). Later on, we will choose ρk and
ηk, depending on αk, so that Ak is still small enough.
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By Chebyshev’s inequality there exist

zk ∈ Σ ∩B(rkyk, ηkrk) and tk ∈ [ρk, 2ρk] (3.11)

such that
αG (zk, tk) ≤ Ak. (3.12)

By the definition of αG (see (1.13)) there exists Gk ∈ G (zk, tk) such that

W1(µGk
0 , µzk,tk0 ) ≤ 2Ak, (3.13)

which by (1.5) means that∣∣∣∣ˆ ψdµGk
0 −

ˆ
ψµzk,tk0

∣∣∣∣ ≤ 2Ak for any ψ ∈ Lip1(B). (3.14)

Our next goal is to interpret (3.14) in terms of σk. Let Tk ∈ D be such that for u ∈ Rn

Tk(u) =
u− zk
tk

and so Tk(B(zk, tk)) = B. (3.15)

The definitions (1.10) and (1.11) yield

µGk
0 = ekµ

Gk and µzk,tk0 = e′kµ
zk,tk = e′kµ

Tk , (3.16)

where ek and e′k come from the normalization, and are given by

ek = µGk(B)−1 and e′k = µTk(B)−1. (3.17)

Let ψ be any Lipschitz function supported on B and set Ik = ek
´
Gk(Σ) ψdµ

Gk ; by (3.16) and
(1.9),

Ik = ek

ˆ
Gk(Σ)

ψdµGk = ek

ˆ
Σ
ψ(Gk(ξ))dµ(ξ) = ek

ˆ
ψ ◦Gk dµ. (3.18)

By (3.3), σk = akµ
Rk = ak(Rk)]µ, hence µ = a−1

k (R−1
k )]σk. Thus a similar computation

to the one in (3.18) yields

Ik = eka
−1
k

ˆ
ψ ◦Gk ◦R−1

k dσk. (3.19)

A similar computation, with Gk replaced by Tk, yields

I ′k :=

ˆ
ψµzk,tk0 = e′ka

−1
k

ˆ
ψ ◦ Tk ◦R−1

k dσk. (3.20)

We want to apply (3.19) and (3.20) to special functions ψ. Let ϕ be a compactly supported
1-Lipschitz function. Let

ψ = ϕ ◦Rk ◦ T−1
k . (3.21)

Note that ψ is a Lipschitz function with constant less or equal to r−1
k tk ≤ 2r−1

k ρk (see (3.11)).
If ϕ is supported in B(0, R), for k large enough the support of ψ is contained in

Tk ◦R−1
k (B(0, R)) = Tk(B(0, rkR)) = B

(−zk
tk

, t−1
k rkR

)
⊂ B(0, rkt

−1
k (R+ ηk + |yk|)) ⊂ B(0, 1),
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where we have used (3.11), (3.8), and (3.7). Because of (3.10), ψ̃ = (2r−1
k ρk)

−1ψ is 1-
Lipschitz; then (3.14) applies to ψ̃, and (3.10) yields

|I ′k − Ik| ≤ 4Akr
−1
k ρk ≤ 4r−1

k ρkC
2+log2(ρk/(ηkrk))
δ αk =: α̃k (3.22)

where Ik and I ′k are as in (3.18) and (3.20) with ψ coming from (3.21). The final identity is
the definition of α̃k. Notice that even though ϕ does not depend on k, ψ does, but this is not
an issue.

Note that by (3.21) and (3.20), we have

I ′k = e′ka
−1
k

ˆ
ϕdσk. (3.23)

Similarly, by (3.19) and (3.21) we have

Ik = eka
−1
k

ˆ
ϕ ◦Rk ◦ T−1

k ◦Gk ◦R−1
k dσk. (3.24)

Set
Hk = Rk ◦ T−1

k ◦Gk ◦R−1
k . (3.25)

Then Hk ∈ G , and by (3.15), its dilation factor λ(Hk) (which is also the n-th root of its
Jacobian determinant) is such that

λ(Hk)
−1 = λ(Tk)λ(Gk)

−1 = t−1
k λ(Gk)

−1 ∈ [λ1, λ2], (3.26)

because Gk ∈ G (zk, tk), and by the definition (1.12). Note that by (3.3), the fact that Gk ∈
G (zk, tk) (see (1.12) and (1.8)), and (3.15), we have

Hk(r
−1
k zk) = Rk ◦ T−1

k ◦Gk ◦R−1
k (r−1

k zk) = Rk ◦ T−1
k ◦Gk(zk)

= Rk ◦ T−1
k (0) = Rk(zk) = r−1

k zk. (3.27)

Notice also that by (3.11)

|r−1
k zk − y| ≤ |r−1

k zk − yk|+ |yk − y| = r−1
k |zk − rkyk|+ |yk − y| ≤ ηk + |yk − y|.

Thus |r−1
k zk − y| tends to 0 by (3.7) and (3.8), so

lim
k→∞

r−1
k zk = y. (3.28)

Combining (3.26), (3.27), and (3.28), we deduce that Hk lies in a compact subset of G . Thus
we can replace {rk} by a subsequence for which the Hk converge to a limit H . In addition,
(3.26), (3.27) and (3.28) imply that

λ(H)−1 ∈ [λ1, λ2] and H(y) = y. (3.29)

Combining (3.22), (3.23), (3.24), and (3.25) we see that if ϕ is a compactly supported 1-
Lipschitz function, then for k large∣∣∣eka−1

k

ˆ
ϕ ◦Hk dσk − e′ka−1

k

ˆ
ϕdσk

∣∣∣ ≤ α̃k. (3.30)
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By (3.17), (1.9), and (3.15),

e′k = µTk(B)−1 = µ(T−1
k (B))−1 = µ(B(zk, tk))

−1. (3.31)

Similarly notice that Gk(zk) = 0 because Gk ∈ G (zk, tk) ⊂ G (zk) (see (1.12) and (1.8));
then (3.17) and (1.9) yield

ek = µGk(B)−1 = µ(G−1
k (B))−1 = µ(B(zk, λ(Gk)

−1))−1. (3.32)

In addition,
B(zk, λ1tk) ⊂ G−1

k (B) = B(zk, λ(Gk)
−1) ⊂ B(zk, λ2tk) (3.33)

because Gk(zk) = 0 and by (1.12). Then (1.2), (3.31), (3.32), (3.33), and the fact that λ1 > 1
yield

C−1e′k ≤ ek ≤ e′k (3.34)

for some constant C that depends on Cδ and λ2.
To estimate ak, consider a test function f such that 1B ≤ f ≤ 12B. By definition of σ,´

fdσ = limk→∞
´
fdσk. By (1.2), (3.3) and the definition above (1.11), we have

akµ(B(0, rk)) = σk(B) ≤
ˆ
fdσk ≤ σk(2B) = akµ(B(0, 2rk)) ≤ Cδakµ(B(0, rk)).

(3.35)
Moreover, since σ is also doubling (see the remark below (1.20)), we have that

σ(B) ≤
ˆ
fdσ ≤ σ(2B) ≤ C2

δσ(B). (3.36)

Thus by (3.35), (3.36) and the definition of σ there exists C > 1 such that for k large,

C−1akµ(B(0, rk)) ≤ σ(B) ≤ CC2
δ akµ(B(0, rk)). (3.37)

Recall that ρk ≤ tk ≤ 2ρk by (3.11), and that r−1
k zk is bounded by (3.28); since r−1

k ρk
tends to +∞ by (3.8) we get that for k large, |zk| < Crk < ρk ≤ tk, and so B(zk, tk) ⊂
B(0, 2tk) ⊂ B(0, 4ρk). By (3.31), since 0 ∈ Σ, and by (1.2),

(e′k)
−1 = µ(B(zk, tk)) ≤ µ(B(0, 4ρk)) ≤ C

3+log2(ρk/rk)
δ µ(B(0, rk)). (3.38)

Combining (3.37) and (3.38) we obtain

ak ≤ CC
5+log2(ρk/rk)
δ e′k · σ(B). (3.39)

Return to (3.30), set bk = ek/e
′
k, and observe that by (3.39)∣∣∣bk ˆ ϕ ◦Hk dσk −
ˆ
ϕdσk

∣∣∣ ≤ akα̃k
e′k
≤ CC5+log2(ρk/rk)

δ α̃kσ(B). (3.40)

Now we choose ρk and ηk. Denote by

βk = CC
5+log2(ρk/rk)
δ α̃k = CC

5+log2(ρk/rk)
δ · 4r−1

k ρkC
2+log2(ρk/(ηkrk))
δ αk
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the right-hand side of (3.40) (see (3.22)). Since αk tends to 0 by (3.5), we can choose ρk and
ηk so that the constraints (3.8) and (3.6) hold, but the convergence in (3.8) is slow enough so
that

lim
k→∞

βk = 0. (3.41)

Recall from (3.34) that C−1 ≤ bk ≤ 1, hence modulo passing to a subsequence (which we
relabel) we can guarantee that limk→∞ bk = b > 0. Letting k tend to infinity in (3.40) we
obtain

lim
k→∞

ˆ
ϕdσk =

ˆ
ϕdσ. (3.42)

Since ϕ is Lipschitz and compactly supported, so is ϕ ◦H and

lim
k→∞

ˆ
ϕ ◦H dσk =

ˆ
ϕ ◦H dσ (3.43)

because σ is the weak limit of the σk. Note that there is also a ball B such that for k large
ϕ ◦H(x) = ϕ ◦Hk(x) = 0 for x ∈ Rn \B; then

ˆ
|ϕ ◦H − ϕ ◦Hk| dσk ≤ ||ϕ||lip

ˆ
B
|H −Hk| dσk

≤ ||ϕ||lip||H −Hk||L∞(B)σk(B)

≤ 2||ϕ||lip||H −Hk||L∞(B)σ(2B). (3.44)

Thus

lim
k→∞

∣∣∣∣ˆ ϕ ◦Hk dσk −
ˆ
ϕ ◦H dσk

∣∣∣∣ = 0. (3.45)

Combining (3.40), (3.41), (3.42), (3.43), (3.44) and (3.45) we obtain that for any 1-Lipschitz
function ϕ with compact support,

b

ˆ
ϕ ◦H dσ =

ˆ
ϕdσ. (3.46)

Since the Radon measure σ is regular, (3.46) also holds for characteristic functions of Borel
sets. Hence bH]σ = σ.

Recall that λ(H)−1 ∈ [λ1, λ2] and H(y) = y by (3.29); thus the conclusion of Lemma 3.1
hold, with c = b−1.

4 Self-similar measures are flat
In this section we complete the proof of Theorem 1.3. Using the notation in Section 3, our
goal is to show that if σ ∈ Tan(µ, x0), where x0 ∈ Σ0 (see (1.23)) then σ is a flat measure.
Lemma 3.1 guarantees that for each y ∈ Ξ (the support of σ), there is a transformationH(y) ∈
G and a constant c(y) > 0 such that

λ(y) := λ(H(y)) ∈ [λ−1
2 , λ−1

1 ] (4.1)
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and
H(y)]σ = c(y)σ. (4.2)

By definition of G (see (1.6)), the linear part of H(y) is of the form λ(y)R(y), where R(y) is
a linear isometry. Since H(y) fixes y, this means that

H(y)(u) = y + λ(y)R(y)(u− y) for u ∈ Rn. (4.3)

The next lemma allows us to replace H(y) with one of its large powers, chosen so that its
isometric part is very close to the identity.

Lemma 4.1. For each choice of ε > 0, there is an integer m0, that depends only on ε and n,
such that for each y ∈ Ξ and each integer ` ≥ 1, there is an integer m(y) ∈ [1,m0] such that

||R(y)m(y)` − I|| ≤ ε. (4.4)

Proof. Here I is the identity mapping. We use the compactness of the group of linear isome-
tries of Rn to choose m0 large enough so that if R1, . . . , Rm0 are linear isometries, we can
find integers m1,m2 such that 1 ≤ m1 < m2 < m0 and ||Rm2 − Rm1 || ≤ ε. We apply
this with Rm = R(y)m` to find m1 and m2 such that ||R(y)m2` − R(y)m1`|| ≤ ε. Then
||R(y)(m2−m1)` − I|| ≤ ε, as needed.

Next we study elementary properties of Ξ. Notice that by (4.2), H(y)(Ξ) = Ξ, and itera-
tions also yield

H(y)m(Ξ) = Ξ for m ≥ 1. (4.5)

Lemma 4.2. The set Ξ is convex.

Proof. Let x, y ∈ Ξ be given. Our goal is to show that the segment [x, y] is contained in Ξ.
For each ε > 0 and ` ≥ 1, we construct a sequence {yk} in Ξ (depending on ε and `) which
will allow us to estimate how far [x, y] is from Ξ. We start with y0 = y. If k ≥ 0 and yk ∈ Ξ
has been defined, we define yk+1 as follows. Set

Hk = H(yk)
m(yk)` and yk+1 = Hk(x). (4.6)

By (4.5) and since x ∈ Ξ, yk+1 ∈ Ξ. Let us show that for ` large and ε small, the yk stay close
to the segment [x, y] and converge (slowly) to x. First observe that by iterations of (4.3), Hk

is given by
Hk(u) = yk + λ′kRk(u− yk) for u ∈ Rn, (4.7)

with
λ′k = λ(H(yk))

m(yk)` ∈ [λ−m0`
2 , λ−`1 ] and hence λ′k < 1. (4.8)

In addition, Rk = R(yk)
m(yk)` and therefore, by (4.4), ||Rk − I|| ≤ ε.

Set rk = |x− yk| and y∗k+1 = yk + λ′k(x− yk). Notice that by (4.7) and (4.4),

|yk+1 − y∗k+1| =
∣∣[yk + λ′kRk(x− yk)]− [yk + λ′k(x− yk)]

∣∣
=

∣∣λ′k[Rk − I](x− yk)
∣∣ ≤ ελ′krk. (4.9)
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Since
|y∗k+1 − x| = (1− λ′k)|yk − x| = (1− λ′k)rk, (4.10)

we also get that if ε < 1/2,

rk+1 = |yk+1 − x| ≤ |y∗k+1 − x|+ |yk+1 − y∗k+1|
≤ (1− λ′k)rk + ελ′krk ≤ (1− λ′k/2)rk. (4.11)

Then since y∗k+1 ∈ [x, yk], and by (4.9) and (4.11) we have

dist(yk+1, [x, yk]) ≤ |yk+1 − y∗k+1| ≤ ελ′krk ≤ 2ε(rk − rk+1). (4.12)

By elementary geometry,

dist(yk+1, [x, y]) ≤ dist(yk+1, [x, yk]) + dist(yk, [x, y]). (4.13)

An iteration of (4.12) combined with (4.13) yields

dist(yk+1, [x, y]) ≤ 2ε
∑

0≤j≤k
(rj − rj+1) ≤ 2εr0 = 2ε|x− y|. (4.14)

Notice that by (4.11) and (4.8) rk tends to 0. Thus we have constructed a sequence {yk} in Ξ,
which goes from y = y0 to x = limk→∞ yk. The points yk lie within 2ε|x − y| from [x, y].
Using the definition of y∗k+1, (4.9), and (4.8) we can estimate their successive distances

|yk+1 − yk| ≤ |yk+1 − y∗k+1|+ |y∗k+1 − yk| ≤ ελ′krk + λ′krk

≤ 2λ′krk ≤ 2λ−`1 |x− y|. (4.15)

Let zk be the orthogonal projection of yk into the line containing x and y. Note that by (4.14)
zk ∈

[
x − 2ε|x − y| y−x|x−y| , y + 2ε|x − y| y−x|x−y|

]
. By (4.15), |zk+1 − zk| ≤ 2λ−`1 |x − y| and

by the definition of zk, |zk − yk| ≤ 2ε|x − y|. Therefore every point of [x, y] lies within
2(ε + λ−`1 )|x − y| of some yk, that is each point of [x, y] is at most 2(ε + λ−`1 )|x − y| away
from Ξ. Choosing ε arbitrarly small and ` arbitrarly large, we get that [x, y] ⊂ Ξ. Lemma 4.2
follows.

Lemma 4.3. The set Ξ is a vector subspace of Rn.

Proof. Let V be the smallest affine subspace of Rn that contains Ξ, and let d denote its di-
mension. Choose d+ 1 affinely independent points y0, . . . yd in V (this means that the vectors
yj−y0, j ≥ 1, are linearly independent), and set y = 1

d+1

∑d
j=0 yj . By Lemma 4.2, Ξ contains

the convex hull of the yj , so there is a small radius r > 0 such that V ∩B(y, r) ⊂ Ξ.
Recall from (4.5) that H(y)m(Ξ) = Ξ for m ≥ 1. Applying the bijection H(y)−m to both

sides, we see that H(y)−m(Ξ) = Ξ for m ≥ 1, so

H(y)−m(V ∩B(y, r)) ⊂ Ξ. (4.16)
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We know thatH(y)−m(V ∩B(y, r)) is a nontrivial open subset of the affine spaceH(y)−m(V ),
and since Ξ ⊂ V we get thatH(y)−m(V ) ⊂ V . Then by a dimension countH(y)−m(V ) = V ,
and by the description (4.3) of H(y), we see that

H(y)−m(V ∩B(y, r)) = V ∩B(y, λ(H(y))−mr). (4.17)

Recall that λ(H(y)) < 1; then λ(H(y))−mr is as large as we want by picking m as large as
we need. Hence (4.16) guarantees that Ξ contains V , and this means that Ξ = V .

Note that Remark 14.4 (2) in [6] ensures that 0 ∈ Ξ, as Ξ is the support of σ and σ ∈
Tan(µ, x0) where µ is a doubling measure and x0 ∈ Σ. Hence Ξ = V is a vector space. This
completes our proof of Lemma 4.3.

Now we study the distribution of σ on Ξ. If Ξ is reduced to the origin, then σ is a Dirac
mass, and Dirac masses lie in F0. Thus in this case σ is trivially flat. We may now assume
that Ξ is a vector space of dimension d > 0.

Lemma 4.4. There is a dimensionD ≥ 0 such that σ is Ahlfors-regular of dimensionD, which
means that

C−1ρD ≤ σ(B(y, ρ)) ≤ CρD for y ∈ Ξ and ρ > 0 (4.18)

for some constant C ≥ 1.

Proof. Set λ(y) = λ(H(y)), and recall from (4.1) that 1 < λ1 ≤ λ(y)−1 ≤ λ2. Notice that
by (4.2), for y ∈ Ξ and r > 0

σ(B(y, λ(y)−1r)) = σ(H(y)−1(B(y, r))) = H(y)]σ(B(y, r))

= c(y)σ(B(y, r)). (4.19)

Iterating we obtain for m ≥ 0

σ(B(y, λ(y)−mr)) = c(y)mσ(B(y, r)). (4.20)

Applying (4.20) to λ(y)mr instead of r we have that (4.20) also holds for m ≤ 0. Observe
that since λ(y) < 1 and σ(B(y, r)) > 0 when y ∈ Ξ, (4.20) yields c(y) ≥ 1. If c(y) = 1,
then σ(B(y, λ(y)−mr)) = σ(B(y, r)) for all m ∈ Z, and σ is a Dirac mass. This case was
excluded before the statement of the lemma, so c(y) > 1.

Now let ρ > 0 be given, and choose m such that

λ(y)−m ≤ ρ ≤ λ(y)−m−1. (4.21)

By (4.20) applied to r = 1,

c(y)mσ(B(y, 1)) ≤ σ(B(y, ρ)) ≤ c(y)m+1σ(B(y, 1)), (4.22)

hence, letting ` = log(σ(B(y, 1))), (4.22) yields

m log(c(y)) + ` ≤ log(σ(B(y, ρ))) ≤ (m+ 1) log(c(y)) + `. (4.23)
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By (4.21)
m log(λ(y)−1) ≤ log ρ ≤ (m+ 1) log(λ(y)−1). (4.24)

Hence combining (4.23) and (4.24) we have

lim
ρ→+∞

log(σ(B(y, ρ)))

log ρ
=

log(c(y))

log(λ(y)−1)
=: D(y). (4.25)

We claim that D(y) does not depend on y. Indeed, if z ∈ Ξ, observe that B(y, ρ) ⊂ B(z, ρ+
|z − y|), hence

D(y) = lim
ρ→+∞

log(σ(B(y, ρ)))

log ρ
≤ lim inf

ρ→+∞

log(σ(B(z, ρ+ |z − y|)))
log ρ

= lim inf
ρ→+∞

log(σ(B(z, ρ+ |z − y|)))
log(ρ+ |z − y|)

= D(z); (4.26)

the opposite inequality also holds exchanging the roles of y and z. LetD be the common value
of the D(y) for y ∈ Ξ. By definition (see (4.25)), λ(y)−D = c(y), and using (4.21) we can
rewrite (4.22) as

λ(y)−mDσ(B(y, 1)) ≤ σ(B(y, ρ)) ≤ λ(y)−Dλ(y)−mDσ(B(y, 1)). (4.27)

Thus, by (4.21),

λ(y)DρDσ(B(y, 1)) ≤ σ(B(y, ρ)) ≤ λ(y)−DρDσ(B(y, 1)), (4.28)

which yields (4.18) with C = λD2 max(σ(B(y, 1)), σ(B(y, 1))−1) (because (4.1) guarantees
that λ(y)−1 ≤ λ2).

Lemma 4.5. Let d be the dimension of the vector space Ξ, and denote by ν = H d Ξ the
restriction of H d to Ξ. Let D be as in (4.18). Then d = D, and there exists a constant c0 > 0
such that σ = c0ν.

Proof. Since σ is Ahlfors regular of dimension D (by Lemma 4.4), a standard covering argu-
ment (see for instance Lemma 18.11 in [2]) guarantees that there exists a constant C > 0 such
that

C−1H D Ξ ≤ σ ≤ CH D Ξ, (4.29)

and Ξ is a D-dimensional Ahlfors regular set. Hence D = d.
By (4.29), σ is absolutely continuous with respect to ν, and the Radon-Nikodym derivative

of σ with respect to ν is bounded. Thus there is a bounded function f on Ξ such that σ = fν.
We now show that f is constant. First observe that since d = D = log(c(y))

log(λ(y)−1)
(by (4.25)),

(4.20) guarantees that for y ∈ Ξ, r > 0, and m ∈ Z

σ(B(y, λ(y)−mr)) = c(y)mσ(B(y, r)) = λ(y)−mdσ(B(y, r)). (4.30)
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Since ν(B(y, λ(y)−mr)) = λ(y)−mdν(B(y, r)), we may rewrite (4.30) as

σ(B(y, λ(y)−mr))

ν(B(y, λ(y)−mr))
=
σ(B(y, r))

ν(B(y, r))
. (4.31)

The Lebesgue differentiation theorem says that for ν-almost every y ∈ Ξ,

f(y) = lim
ρ→0

σ(B(y, ρ))

ν(B(y, ρ))
. (4.32)

For such an y and every r > 0, by (4.32) and (4.31) for −m

f(y) = lim
m→∞

σ(B(y, λ(y)mr))

ν(B(y, λ(y)mr))
=
σ(B(y, r))

ν(B(y, r))
. (4.33)

That is,
σ(B(y, r)) = f(y)ν(B(y, r)) for r > 0. (4.34)

If z ∈ Ξ is another Lebesgue point of f , since B(z, r) ⊂ B(y, r + |y − z|) we have

f(z) = lim
r→∞

σ(B(z, r))

ν(B(z, r))
≤ lim inf

r→∞

σ(B(y, r + |y − z|))
ν(B(z, r))

= lim inf
r→∞

σ(B(y, r + |y − z|))
ν(B(y, r + |y − z|))

= f(y). (4.35)

Similarly f(y) ≤ f(z), and f is constant.

This completes the proof of Theorem 1.3. In fact we have proved that if σ ∈ Tan(µ, x0)
with x0 ∈ Σ0 (see (1.23)) then σ = c0H d Ξ for some vector space Ξ.

5 A smoother version of the Wasserstein W1 distance
So far we managed to work with the distance W1 defined by (1.5), but for the proof of Theo-
rem 1.2, it is more convenient to use a slightly smoother variant, which attenuates the possible
discontinuities in r > 0 of the normalizing factors µx,r(B(0, 1))−1 = µ(B(x, r))−1.

Let us choose a smooth radial function ϕ such that

1B(0,1/2) ≤ ϕ ≤ 1B(0,1); (5.1)

If µ and ν are two Radon measures such that

µ(B(0, 1/2)) > 0 and ν(B(0, 1/2)) > 0, (5.2)

we define a new distance Wϕ(µ, ν) by

Wϕ(µ, ν) = sup
ψ∈Lip1(B)

∣∣∣∣´ ψϕdµ´
ϕdµ

−
´
ψϕdν´
ϕdν

∣∣∣∣ . (5.3)

Recall that Lip1(B) is defined near (1.3). The distance W1 above essentially corresponds to
ϕ = 1B here.
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We required (5.2) (and (5.1)) to make sure that we do not divide by 0. But notice that even
when µ(B(0, 1/2)) or ν(B(0, 1/2)) is very small, we always get that

Wϕ(µ, ν) ≤ 2, (5.4)

because |
´
ψϕdµ| ≤

´
ϕdµ and similarly for ν. Note that

Wϕ(aµ, bν) = Wϕ(µ, ν) for a, b > 0, (5.5)

so we do not need to normalize µ and ν in advance. Finally observe that Wϕ satisfies the
triangle inequality. That is, if σ is a third Radon measure such that σ(B(0, 1/2)) > 0, if
follows at once from the definition that

Wϕ(µ, σ) ≤Wϕ(µ, ν) + Wϕ(ν, σ). (5.6)

Let us check that if we restrict to measures that are not to small on B(0, 1/2), then W1

controls Wϕ.

Lemma 5.1. Let µ and ν be Radon measures such that (5.2) holds and

µ(B) = ν(B) = 1. (5.7)

Then

Wϕ(µ, ν) ≤
1 + 2||ϕ||lip
µ(B(0, 1/2))

W1(µ, ν), (5.8)

where ||ϕ||lip denotes the Lipschitz norm of ϕ.

The fact that the estimate is not symmetric is not an issue. In particular we shall apply (5.8)
to doubling measures µ and ν; in this case µ(B(0, 1/2)) ∼ µ(B) = 1 = ν(B) ∼ ν(B(0, 1/2)).

Proof. Let ψ ∈ Lip1(B) be given. The definition (1.5), applied to ψϕ, yields∣∣∣ˆ ψϕdµ−
ˆ
ψϕdν

∣∣∣ ≤ ||ψϕ||lipW1(µ, ν) ≤ (1 + ||ϕ||lip)W1(µ, ν). (5.9)

The same definition, applied to ϕ itself, yields∣∣∣ ˆ ϕdµ−
ˆ
ϕdν

∣∣∣ ≤ ||ϕ||lipW1(µ, ν). (5.10)

Set

∆ =

∣∣∣∣´ ψϕdµ´
ϕdµ

−
´
ψϕdν´
ϕdν

∣∣∣∣ (5.11)

and write

∆ =
∣∣∣a
b
− c

d

∣∣∣ =

∣∣∣∣ad− bcbd

∣∣∣∣ =
|d(a− c) + c(d− b)|

bd
(5.12)

with a =
´
ψϕdµ, b =

´
ϕdµ, c =

´
ψϕdν, and d =

´
ϕdν. Notice that |c| ≤ d because

ψ ∈ Lip1(B) and ϕ ≥ 0. Also, b ≥ µ(B(0, 1/2)) by (5.1). Hence by (5.9) and (5.10); we have

∆ ≤ |a− c|+ |d− b|
b

≤
1 + 2||ϕ||lip
µ(B(0, 1/2))

W1(µ, ν). (5.13)

Taking the supremum over ψ ∈ Lip1(B) in (5.13) ( recall (5.11)) yields (5.8).
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The following lemma specifies the sense in which Wϕ is more stable that W1.

Lemma 5.2. Let µ and ν be Radon measures and let θ ∈ (0, 1/2] be such that

µ(B(0, θ/2)) > 0 and ν(B(0, θ/2)) > 0, (5.14)

and define new measures µ1 and ν1 by

µ1(A) = µ(θA) and ν1(A) = ν(θA) for A ⊂ Rn. (5.15)

Then

Wϕ(µ1, ν1) ≤ θ−1(1 + 4||ϕ||lip)
µ(B(0, 1))

µ(B(0, θ/2))
Wϕ(µ, ν). (5.16)

As in (5.8) the estimate is not symmetric in µ and ν, but is nonetheless valid. We require
that µ(B(0, θ/2)) 6= 0 and ν(B(0, θ/2)) 6= 0 to make sure that Wϕ(µ1, ν1) is easily defined.
Often µ is the restriction to B of a doubling measure and its support contains the origin; then
µ(B(0,1))
µ(B(0,θ/2)) ≥ C

−1, for some C that depends on θ and the doubling constant Cδ.

Proof. Let ψ ∈ Lip1(B) be given; we want to control the quantity

∆ =

∣∣∣∣´ ψϕdµ1´
ϕdµ1

−
´
ψϕdν1´
ϕdν1

∣∣∣∣ =:
∣∣∣a
b
− c

d

∣∣∣ (5.17)

(as above, but with integrals relative to µ1 and ν1). Notice that by (5.15),

a =

ˆ
ψϕdµ1 =

ˆ
ψ(θ−1x)ϕ(θ−1x)dµ(x) =

ˆ
ψ(θ−1x)ϕ(θ−1x)ϕ(x)2dµ(x), (5.18)

where we just use the fact that ϕ(θ−1x) = 0 when x ∈ Rn \ B(0, 1/2), and the special shape
of ϕ in (5.1), to add an extra ϕ2(x). Similarly,

c =

ˆ
ψϕdν1 =

ˆ
ψ(θ−1x)ϕ(θ−1x)ϕ2(x)dν(x). (5.19)

The same computations without ψ yield

b =

ˆ
ϕdµ1 =

ˆ
ϕ(θ−1x)ϕ(x)2dµ(x), (5.20)

d =

ˆ
ϕdν1 =

ˆ
ϕ(θ−1x)ϕ(x)2dν(x). (5.21)

It is also useful to introduce

e =

ˆ
ϕdµ and f =

ˆ
ϕdν. (5.22)

Let us first estimate δ1 = a
e −

c
f . We want to apply the definition of Wϕ(µ, ν) to the function

Ψ defined by Ψ(x) = ψ(θ−1x)ϕ(θ−1x)ϕ(x). Notice that Ψ is supported in B (this is why we
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added ϕ(x)), and its Lipschitz norm is at most θ−1(1+ ||ϕ||lip)+ ||ϕ||lip ≤ θ−1(1+2||ϕ||lip).
Thus (5.3) yields

|δ1| =
∣∣∣∣ae − c

f

∣∣∣∣ ≤ θ−1||Ψ||lipWϕ(µ, ν) ≤ θ−1(1 + 2||ϕ||lip)Wϕ(µ, ν). (5.23)

We can also apply the definition of Wϕ(µ, ν) to ϕ(θ−1x)ϕ(x), whose Lipschitz norm is at
most 2θ−1||ϕ||lip, and we get that

|δ2| :=
∣∣∣∣be − d

f

∣∣∣∣ ≤ 2θ−1||ϕ||lipWϕ(µ, ν). (5.24)

Thus

a

b
=
e

b

a

e
=
e

b

( c
f

+ δ1

)
=
e

b

c

d

d

f
+
eδ1

b
=
e

b

c

d

(b
e

+ δ2

)
+
eδ1

b
=
c

d
+
ecδ2

bd
+
eδ1

b
,

where δ1 and δ2 are as in(5.23) and (5.24). Thus

∆ =
∣∣∣a
b
− c

d

∣∣∣ ≤ |ecδ2|
bd

+
|eδ1|
b
. (5.25)

Now |c| ≤ d becauseϕ ≥ 0 and |ψ| ≤ 1, e =
´
ϕdµ ≤ µ(B(0, 1)), and b =

´
ϕ(θ−1x)ϕ(x)2dµ(x) ≥

µ(B(0, θ/2)) because of (5.1). Thus we have

∆ ≤ (δ1 + δ2)
e

b
≤ θ−1(1 + 4||ϕ||lip)Wϕ(µ, ν)

µ(B(0, 1))

µ(B(0, θ/2))
. (5.26)

Noting (5.17) and taking the supremum over ψ ∈ Lip1(B), we obtain (5.16).

The next lemma is used in Section 8. It shows that the distance function Wϕ also controls
W1 in some averaged way. Thus W1 and Wϕ are basically interchangeable.

Lemma 5.3. Let µ and ν are Radon measures such that µ(B(0, 1/4)) > 0 and ν(B(0, 1/4)) >
0. Define µt and νt , 1/4 ≤ t ≤ 1/2, by

µt(A) =
µ(tA)

µ(B(0, t))
and νt(A) =

µ(tA)

ν(B(0, t))
for A ⊂ Rn. (5.27)

Then  1/2

1/4
W1(µt, νt)dt ≤

(8 + ||ϕ||lip)µ(B)

µ(B(0, 1/4))
Wϕ(µ, ν). (5.28)

Proof. First notice that the statement does not change when we multiply µ and ν by positive
constants. So we may assume that

ˆ
ϕdµ =

ˆ
ϕdν = 1. (5.29)
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Next fix t ∈ [1/4, 1/2] and ψ ∈ Lip1(B). We want to estimate
ˆ
ψdµt −

ˆ
ψdνt =

´
ψ(t−1x)dµ(x)

µ(B(0, t))
−
´
ψ(t−1x)dν(x)

ν(B(0, t))
=:

a

b
− c

d
. (5.30)

As before,

∆ =
|ad− bc|

bd
=
|d(a− c)− c(b− d)|

bd
≤ |a− c|+ |b− d|

b
(5.31)

because |c| = |
´
ψ(t−1x)dν(x)| ≤ ||ψ||∞ν(B(0, t)) ≤ d. Notice that ϕ(x) = 1 when

ψ(t−1x) 6= 0 since this implies that |t−1x| ≤ 1 and hence |x| ≤ t ≤ 1/2. Thus

|a− c| =

∣∣∣∣ˆ ψ(t−1x)dµ(x)−
ˆ
ψ(t−1x)dν(x)

∣∣∣∣ (5.32)

=

∣∣∣∣ˆ ψ(t−1x)ϕ2(x)dµ(x)−
ˆ
ψ(t−1x)ϕ2(x)dν(x)

∣∣∣∣ .
We apply the definition (5.3) of Wϕ with the function x→ ψ(t−1x)ϕ(x), which is supported
in B and (t−1 + ||ϕ||lip)-Lipschitz. We obtain that

|a− c| ≤ (t−1 + ||ϕ||lip)Wϕ(µ, ν) (5.33)

Notice also that
1

b
=

´
ϕdµ

µ(B(0, t))
≤ µ(B)

µ(B(0, t))
≤ µ(B)

µ(B(0, 1/4))
. (5.34)

Thus

∆ ≤ |a− c|+ |b− d|
b

≤ µ(B)

µ(B(0, 1/4))
[(t−1 + ||ϕ||lip)Wϕ(µ, ν) + |b− d|]

=
µ(B)

µ(B(0, 1/4))

[
(t−1 + ||ϕ||lip)Wϕ(µ, ν) + |µ(B(0, t))− ν(B(0, t))|

]
. (5.35)

We take the supremum over ψ ∈ Lip1(B) and get that

W1(µt, νt) ≤
µ(B)

µ(B(0, 1/4))

[
(t−1 + ||ϕ||lip)Wϕ(µ, ν) + |µ(B(0, t))− ν(B(0, t))|

]
. (5.36)

Since t−1 ∈ [2, 4], (5.28) will follow as soon as we prove that
ˆ

[1/4,1/2]
|µ(B(0, t))− ν(B(0, t))|dt ≤Wϕ(µ, ν). (5.37)

Let h be a bounded measurable function, defined on [1/4, 1/2]; we want to evaluate

Ih =

ˆ
[1/4,1/2]

h(t)[µ(B(0, t))− ν(B(0, t))]dt. (5.38)

Observe that by Fubini
ˆ

[1/4,1/2]
h(t)µ(B(0, t))dt =

ˆ
x∈B(0,1/2)

{ˆ
1t∈[1/4,1/2]1t>|x|h(t)dt

}
dµ(x),
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and similarly for ν. Set ψh(x) =
´
1t∈[1/4,1/2]1t>|x|h(t)dt. This is a ||h||∞-Lipschitz function

of |x|, which vanishes when |x| ≥ 1/2, so by (5.1), (5.3) and the normalization in (5.29) we
have

|Ih| =

∣∣∣∣∣
ˆ
B(0,1/2)

ψhdµ−
ˆ
B(0,1/2)

ψhdν

∣∣∣∣∣ (5.39)

=

∣∣∣∣ˆ ψhϕdµ−
ˆ
ψhϕdν

∣∣∣∣ ≤ ||h||∞Wϕ(µ, ν).

Thus (5.39) holds for all bounded measurable functions h defined on [1/4, 1/2], and (5.37)
follows by duality. We saw earlier that (5.37) implies (5.28). Lemma 5.3 follows.

We conclude this section with an easy observation concerning the behavior of Wϕ(µ, ν)
when taking weak limits.

Lemma 5.4. Let µ and ν satisfy (5.2), suppose that µ is the weak limit of some sequence {µk},
and that ν is the weak limit of some sequence {νk}. Then

Wϕ(µ, ν) ≤ lim inf
k→∞

Wϕ(µk, νk). (5.40)

Proof. Set Lk = Wϕ(µk, νk) and L = lim infk→∞ Lk. Notice that
´
ϕdµ = limk→∞

´
ϕdµk

by weak convergence; by (5.2), this implies that
´
ϕdµk > 0 for k large. The same ar-

gument applied to a continuous function f ≤ 1B(0,1/2) such that
´
fdµ > 0 shows that

µk(B(0, 1/2)) > 0 for k large. Similar observations hold for ν and νk. For each ψ ∈ Lip1(B),
the weak convergence yields

´
ψϕdµ = limk→∞

´
ψϕdµk. For k large,∣∣∣∣´ ψϕdµk´

ϕdµk
−
´
ψϕdνk´
ϕdνk

∣∣∣∣ ≤ Lk.
Since each term has a limit and the denominators are bounded away from 0, taking a lim inf
we have that ∣∣∣∣´ ψϕdµ´

ϕdµ
−
´
ψϕdν´
ϕdν

∣∣∣∣ ≤ L.
Taking the supremum over ψ ∈ Lip1(B) we conclude that (5.40) holds.

6 Uniqueness of the tangent measure at “good points”
In this section show that for x ∈ Σ0 ∩Σ1, Tan(µ, x) is a one-dimensional set of flat measures.
Recall that Σ1 and Σ0 were defined in (1.16) and (1.23) respectively.

Lemma 6.1. Let µ be a doubling measure, and let x ∈ Σ0 ∩ Σ1. Then there is a nonzero flat
measure σ such that Tan(µ, x) =

{
cσ ; c > 0

}
.
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Proof. Fix µ and x ∈ Σ0 ∩ Σ1; without loss of generality, we may assume that x = 0. By
Theorem 1.3, we know that

Tan(µ, 0) ⊂ F (6.1)

where F denotes the set of flat measures (see (1.21)). By definition of Σ1,
ˆ 1

0
αD(0, r)

dr

r
<∞. (6.2)

Thus it only remains to show that Tan(µ, 0) is one-dimensional. Our initial goal is to bound
the Wϕ distance for two different scaled dilations of µ by αD(0, ·) at the right scale. For each
r ∈ (0, 1/4) we use Chebyshev’s inequality to find r+ ∈ [2r, 4r] such that

αD(0, r+) ≤ (2r)−1

ˆ 4r

2r
αD(0, t)dt ≤ 2

ˆ 4r

2r
αD(0, t)

dt

t
. (6.3)

By the definition of αD(0, r+) (see (1.15)): there is a transformation G ∈ D(0, r+), such that

W1(µG0 , µ
0,r+
0 ) ≤ 2αD(0, r+). (6.4)

By the definition (1.14) of D(0, r+), G is simply given by G(u) = λu, with λ−1 = λ(G)−1 ∈
[λ1r+, λ2r+]. Set

r∗ = λ−1 ∈ [λ1r+, λ2r+]; (6.5)

notice that G is the homotety that sends B(0, r∗) to B, so µG0 = µ0,r∗

0 (see near (1.11)) and
now (6.4) says that

W1(µ0,r∗

0 , µ
0,r+
0 ) ≤ 2αD(0, r+). (6.6)

First apply Lemma 5.1 to the measures µ0,r∗

0 and µ0,r+
0 ;(6.6) yields that

Wϕ(µ0,r∗

0 , µ
0,r+
0 ) ≤ CαD(0, r+) (6.7)

(where we do not record any more the dependence on ϕ or Cδ). Then we apply Lemma 5.2 to
the same measures, with θ = r/r∗. Notice that θ ≤ 1/2 because r∗ ≥ r+ ≥ 2r.

Recall from (5.15) that µ1 is defined by

µ1(A) = µ0,r∗

0 (θA) = µ0,r∗

0 (rA/r∗) =
µ(r∗rA/r∗)

µ(B(0, r∗))

=
µ(rA)

µ(B(0, r∗))
=

µ(B(0, r))

µ(B(0, r∗))
µ0,r

0 (A) (6.8)

by (1.11). Similarly, ν1 is defined by

ν1(A) = µ
0,r+
0 (θA) = µ

0,r+
0 (rA/r∗) =

µ(r+rA/r
∗)

µ(B(0, r+))

=
µ(ρ(r)A)

µ(B(0, r+))
=
µ(B(0, ρ(r)))

µ(B(0, r+))
µ

0,ρ(r)
0 (A) (6.9)

where
ρ(r) =

rr+

r∗
∈ [λ−1

2 r, λ−1
1 r]. (6.10)
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By (5.5), (6.8), (6.9), Lemma 5.2, the fact that µ0,r∗

0 is also doubling with the same constant
as µ (which controls mass ratio in (5.16)), and (6.7),

Wϕ(µ0,r
0 , µ

0,ρ(r)
0 ) = Wϕ(µ1, ν1) ≤ CWϕ(µ0,r∗

0 , µ
0,r+
0 ) ≤ CαD(0, r+). (6.11)

In order to show that Tan(µ, 0) is one-dimensional, we define a specific sequence of mea-
sures µ0,rj , which will be used to approximate all the tangent measures of Tan(µ, 0) up
to a multiplicative constant. We start with r0 = 1/4, and define rj by induction, taking
rj+1 = ρ(rj) for j ≥ 0. Note that for all choice of integers 0 ≤ k ≤ l, by (5.6), (6.11), and
(6.3) we have

Wϕ(µ0,rk
0 , µ

0,rl+1

0 ) ≤
∑
k≤j≤l

Wϕ(µ
0,rj
0 , µ

0,rj+1

0 ) ≤ C
∑
k≤j<l

αD(0, (rj)+)

≤ 2C
∑
k≤j<l

ˆ 4rj

2rj

αD(0, t)
dt

t
. (6.12)

Recall that rj+1 = ρ(rj) ≤ λ−1
1 rj (see (6.10)), thus the rj’s decay at a definite rate. Therefore

the intervals [2rj , 4rj ] have bounded overlap, and since they are all contained in (0, 4rk], we
obtain

Wϕ(µ0,rk
0 , µ

0,rl+1

0 ) ≤ C
ˆ 4rk

0
αD(0, t)

dt

t
. (6.13)

Let σ ∈ Tan(µ, 0) be given. There exist sequences {ρk} and {ak} such that ρk ∈ (0, 1/4],
limk→∞ ρk = 0, ak > 0, and

σk = akµ
0,ρk converges weakly to σ. (6.14)

Let j = j(k) denote the largest integer such that rj ≥ ρk. Thus j ≥ 0 (because r0 = 1/4),
and rj+1 < ρk; since rj+1 = ρ(rj) ∈ [λ−1

2 rj , λ
−1
1 rj ] (by (6.10)), we get that

λ−1
2 rj(k) < ρk ≤ rj(k). (6.15)

Set θk = ρk/rj(k) ∈ [λ−1
2 , 1]; we may replace {ρk} by a subsequence such that the θk converge

to a limit θ. Consider the dilation Dk defined by Dk(u) = θku, and set D(u) = θu. Notice
that by (6.14) and (1.11)

[Dk]]σk = ak[Dk]]µ
0,ρk = akµ

0,ρk/θk = akµ
0,rj(k) . (6.16)

Also, the [Dk]]σk converge weakly to D]σ. In fact for f continuous and compactly supported,

lim
k→∞

ˆ
f d[Dk]]σk = lim

k→∞

ˆ
f(θ−1

k x)dσk(x) = lim
k→∞

ˆ
f(θ−1x)dσk(x)

=

ˆ
f(θ−1x)dσ(x) =

ˆ
f d[D]]σ (6.17)

(use the uniform continuity of f and local uniform bounds on the σk). By (6.1), σ is a flat
measure; then D]σ = σ and (6.17) shows that

{akµrj(k)} converges weakly to σ. (6.18)
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If σ′ is another nonzero element of Tan(µ, 0), we can find other sequences {j′(k)} and {a′k},
with limk→∞ j

′(k) =∞ (by the analogue of (6.15)), such that

{a′kµ
0,rj′(k)} converges weakly to σ′. (6.19)

By Lemma 5.4, then (5.5), and then (6.13) and (6.2),

Wϕ(σ, σ′) ≤ lim inf
k→∞

Wϕ(akµ
0,rj(k) , a′kµ

0,rj′(k)) = lim inf
k→∞

Wϕ(µ0,rj(k) , µ0,rj′(k))

≤ C lim inf
k→∞

ˆ 4 max(rj(k),rj′(k))

0
αD(0, t)

dt

t
= 0. (6.20)

Then σ = σ′, and this completes our proof of Lemma 6.1.

7 The decomposition of the “good set” in Σ1

In (1.28)-(1.29) we announced a decomposition of Σ0∩(Σ1∪Σ2) into pieces Sd (0 ≤ d ≤ n),
which satisfy the property that for each x ∈ Sd, Tan(µ, x) ⊂ Fd. In this section we check
that the pieces Σ1 ∩Sd satisfy the requirements of Theorem 1.2. The remaining sets Σ2 ∩Sd

will be treated in Section 8.
We start with d = 0. Set

S0 =
{
x ∈ Σ ; Tan(µ, x) ⊂ F0

}
. (7.1)

We claim (as in the statement of Theorem 1.2) that S0 is the set of points where µ has an atom,
and that every point of S0 is an isolated point of Σ.

Suppose that µ has an atom at x. Then since µ is doubling, x is an isolated point of Σ
(Lemma 2.3 in [1]). We can check by hand that Tan(µ, x) is the set F0 of multiples of the
Dirac measure at the origin, and that x ∈ Σ0 ∩ Σ1 ∩ Σ2 (because αD(x, r) = 0 for r small).

Conversely, suppose that Tan(µ, x) ⊂ F0, and let us check that x is an isolated point of
Σ. Suppose instead that we can find a sequence {xk} in Σ \ {x} that converges to x. Set
rk = 2|x − xk|. Since µ is doubling, there is a subsequence of {µx,rk0 } which converges
weakly to a measure σ. Since σ ∈ Tan(µ, x), σ is a Dirac mass. Let ζ be smooth function such
that 1B\B(0,1/4) ≤ ζ ≤ 1(B(0,2)\B(0,1/4). Then

´
ζdσ = 0, so limk→∞

´
ζµx,rk0 = 0. On the

other hand, by (1.11) and (1.2)ˆ
ζdµx,rk0 = µ(B(x, rk))

−1

ˆ
ζdµx,rk (7.2)

= µ(B(x, rk))
−1

ˆ
ζ(r−1

k (y − x))dµ(y)

≥ µ(B(x, rk))
−1µ(B(xk, rk/4)) ≥ C−3

δ

because ζ(r−1
k (y − x)) = 1 for y ∈ B(xk, rk/4). This contradiction shows that if x ∈ S0,

then x is an isolated point in Σ, and then µ has a Dirac mass at x. This gives the desired
description of S0, the fact that S0 is at most countable is easy to see.

We may now concentrate on exponents d ∈ [1, n]. Set

S ′
d =

{
x ∈ Σ0 ∩ Σ1 ; Tan(µ, x) ⊂ Fd

}
= Sd ∩ Σ1, (7.3)
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where the last equality comes from (1.28). Together with S0, these sets are disjoint and cover
Σ1 ∩ Σ0 (by (1.29)), hence also µ-almost all of Σ1 (by (1.26)). By Lemma 6.1, the only part
of Theorem 1.2 concerning Σ1 that remains to be proven is the fact that S ′

d is rectifiable for
1 ≤ d ≤ n, and more precisely

S ′
d can be covered by a countable family (7.4)

of d-dimensional Lipschitz graphs.

(This is slightly more precise because we don not need to add a H d-negligible set.) This
follows from the following lemma, which is essentially known, but which we prove for the
reader’s convenience.

Lemma 7.1. Suppose that µ is a doubling measure, Σ is its support, d ∈ {1, ..., n}, andE ⊂ Σ
is such that for all x ∈ E, there is a vector space Vx of dimension d such that Tan(x, µ) ={
cH d|Vx ; c > 0

}
. Then E can be covered by a countable family of d-dimensional Lipschitz

graphs.

The fact that E = S ′
d satisfies the assumption of the lemma comes from Lemma 6.1.

Proof. If d = n, Rn is a d-dimensional Lipschitz graph that covers E, thus we assume that
d < n. We claim that for x ∈ E

x+ Vx is a tangent plane to Σ at x. (7.5)

If not there is a sequence {yk} in Σ \ {x}, that tends to x, and such that

dist(yk, x+ Vx) ≥ c|yk − x| (7.6)

for some c > 0. Set rk = 2|yk−x|, and replace {yk}with a subsequence for which the {µx,rk0 }
converges weakly to a measure σ ∈ Tan(µ, x). Let ζ be a smooth compactly supported non-
negative function such that ζ(0) = 0 on Vx, but

ζ(u) = 1 for u ∈ B such that dist(u, Vx) ≥ c/2. (7.7)

By assumption, σ is supported on Vx and so
´
ζdσ = 0. Thus limk→∞

´
ζµx,rk0 = 0. On the

other hand, (7.6) says that for y ∈ B(yk, crk/4),

dist(r−1
k (y − x), Vx) = r−1

k dist(y, x+ Vx) ≥ r−1
k [dist(yk, x+ Vx)− crk

4
] ≥ c/4,

hence ζ(r−1
k (y − x)) = 1 by (7.7), and (1.11) and (1.2) imply that

ˆ
ζdµx,rk0 = µ(B(x, rk))

−1

ˆ
ζdµx,rk (7.8)

= µ(B(x, rk))
−1

ˆ
ζ(r−1

k (y − x))dµ(y)

≥ µ(B(x, rk))
−1µ(B(xk, crk/4)) ≥ C−1.

This contradiction proves (7.5).
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For ε > 0 small and x ∈ E, choose an integer j = j(x) ≥ 0 such that

dist(y, x+ Vx) ≤ ε|y − x| for y ∈ Σ ∩B(x, 2−j(x)). (7.9)

On the Grassmann manifold G(d, n) of vector spaces of dimension d in Rn, let us for instance
use the distance defined by dist(V,W ) = ||πV − πW ||, where πV and πW denote the orthog-
onal projections on V and W . With this distance, G(d, n) is compact. Choose a finite family
V in G(d, n) such that dist(V,V ) ≤ ε for V ∈ G(d, n). Set

E(V, j) =
{
x ∈ E ; j(x) = j and dist(Vx, V ) ≤ ε

}
(7.10)

for V ∈ V and j ≥ 0. We now cover each E(V, j) with a countable collection of d-
dimensional Lipschitz graphs. We claim that for each ball B of radius 2−j−1,

E(V, j) ∩B is contained in a Lipschitz graph over V . (7.11)

Lemma 7.1 follows from this claim because the E(V, j) cover E. To prove the claim, let
x, y ∈ E(V, j) ∩B be given. Observe that |x− y| < 2−j and y ∈ E ⊂ Σ, so (7.9) guarantees
that dist(y, x+ Vx) ≤ ε|y − x|. Then

|πV (y)− πV (x)| ≤ |πVx(y)− πVx(x)|+ ||πV − πVx |||x− y| ≤ 2ε|x− y|,

which yields (7.11). This completes our proof of Lemma 7.1.

8 The decomposition of the “good set” in Σ2

Our goal in the section is to apply Theorem 1.5 in [1] to the set Σ0 ∩ Σ2, to obtain the desired
decomposition. For the reader’s convenience we include the necessary background below.

Theorem 8.1 (Theorem 1.5, [1]). Let µ be a doubling measure in Rn, denote by Σ its support,
and set

Σ0 =
{
x ∈ Σ ;

ˆ 1

0
α(x, r)

dr

r
<∞

}
,

where
α(x, r) = min

d=0,1,...,n
αd(x, r),

and
αd(x, r) = inf

{
W1(µx,r0 , νV ) ; V ∈ A′(d, n)

}
.

Here A′(d, n) denotes the set of n dimensional affine spaces which intersect B(0, 1/2) and
νV = cV H d V = cV 1V H d, with cV = H d(V ∩ B)−1. Then there are disjoint Borel sets
Σ0(d) ⊂ Σ, 0 ≤ d ≤ n, such that

Σ0 =

n⋃
d=0

Σ0(d),

with the following properties.
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1. First, Σ0(0) is the set of points of Σ where µ has an atom; it is at most countable and
each of its point is an isolated point of Σ.

2. For 1 ≤ d ≤ n and x ∈ Σ0(d), the limit

θd(x) := lim
r→0

r−dµ(B(x, r))

exists, and 0 < θd(x) <∞.

3. For 1 ≤ d ≤ n and x ∈ Σ0(d), Σ has a tangent d-plane at x, W , and set W ∗ =
W − x. Then Tan(x, µ) = {cH d W ∗ ; c > 0}. In addition, the measures µx,r0

converge weakly to H d W ∗.

4. Further decompose Σ0(d), 1 ≤ d ≤ n, into the sets

Σ0(d, k) =
{
x ∈ Σ0(d) ; 2k ≤ θd(x) < 2k+1

}
, k ∈ Z;

then each Σ0(d, k) is a rectifiable set of dimension d, with H d(Σ0(d, k) ∩ B(0, R)) <
∞ for every R > 0, µ and H d are mutually absolutely continuous on Σ0(d, k), and
µ = θdH

d there.

We want to apply Theorem 8.1, so we need to show that for each x ∈ Σ0 ∩ Σ2,
ˆ 1

0
α(x, t)

dt

t
<∞. (8.1)

Let x ∈ Σ0 ∩ Σ2 be given. By Theorem 1.3 every tangent measure σ ∈ Tan(µ, x) is flat. To
estimate to the distance from µx,r0 to σ we proceed as in Section 6 except that we work with
the whole group G rather than D . We now follow that argument, without some of the details
but we do emphasize the differences.

Without loss of generality, we assume that x = 0. We use the definition of αG and Cheby-
shev’s inequality to associate to each r ∈ (0, 1/4] a radius r+ ∈ [2r, 4r] such that

αG (0, r+) ≤ 2

ˆ 4r

2r
αG (0, t)

dt

t
(8.2)

(see (6.3)). By the definition (1.13), there exists G ∈ G (0, r+) such that

W1(µG0 , µ
0,r+
0 ) ≤ 2αG (0, r+) (8.3)

(see (6.4)). By (1.6) G = λR for some isometry, and since G ∈ G (x), (1.8) guarantee
that G(0) = 0 and hence R(0) = 0. That is, R is a linear isometry. We still have that
λ−1 = λ(G)−1 ∈ [λ1r+, λ2r+], and if we set

r∗ = λ−1 ∈ [λ1r+, λ2r+]; (8.4)

as in (6.5), we have that
G(B(0, r∗)) = B (8.5)

and µG0 is the image of µ0,r∗

0 by a linear isometry. That is, µG0 = R]µ
0,r∗

0 and (8.3) only yields

W1(R]µ
0,r∗

0 , µ
0,r+
0 ) ≤ 2αG (0, r+) (8.6)
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instead of (6.6). We still multiply the radii by r/r∗, set

ρ(r) =
rr+

r∗
∈ [λ−1

2 r, λ−1
1 r] (8.7)

as in (6.10), and deduce from (8.6) that

Wϕ(R]µ
0,r
0 , µ

0,ρ(r)
0 ) ≤ CαG (0, r+), (8.8)

using the same proof which involves Lemma 5.1 and Lemma 5.2 (the extra rotation does not
affect the argument). Inequality (8.8) is the analogue of (6.11). Let us write this slightly
differently. Set Rr = R−1; then by (8.8)

Wϕ(µ0,r
0 , Rr]µ

0,ρ(r)
0 ) ≤ CαG (0, r+), (8.9)

since the Wϕ-distance is invariant under isometry.

Given r0 ≤ 1/4, we can construct a decreasing sequence {rj} as we did before, defined
by rj+1 = ρ(rj). Let us keep track of the rotations: set S0 = I and Sj+1 = SjRrj . For k ≥ 0
we want to estimate the numbers

δk = Wϕ(µ0,r0
0 , Sk+1

] µ
0,rk+1

0 ). (8.10)

Let us check by induction that

δk ≤ C
∑

0≤j≤k
αG (0, (rj)+). (8.11)

When k = 0, this is (8.9) for r0. If k ≥ 1 and (8.11) holds for k − 1, the triangle inequality
(5.6) yields

δk ≤ δk−1 + Wϕ(Sk] µ
0,rk
0 , Sk+1

] µ
0,rk+1

0 ) (8.12)

= δk−1 + Wϕ(Sk] µ
0,rk
0 , [SkRrk ]]µ

0,rk+1

0 )

= δk−1 + Wϕ(µ0,rk
0 , Rrk] µ

0,ρ(rk)
0 ) ≤ δk−1 + CαG (0, (rk)+)

by definition of Sk+1, the invariance of Wϕ under linear isometries, and (8.9). This proves
(8.11). Then (8.2) and the same argument as in (6.12)-(6.13) yield

δk ≤ C
∑

0≤j≤k
αG (0, (rj)+) ≤ C

∑
0≤j≤k

ˆ 4rj

2rj

αG (0, t)
dt

t

≤ C

ˆ 4r0

0
αG (0, t)

dt

t
. (8.13)

The final integral is finite because 0 ∈ Σ2 (see the definition (1.17)).
The measures µ0,rk

0 are suitably normalized, so there is a subsequence which converges
weakly to some measure σ (again see Lemma 2.1 in [1] for a little more detail). There is

31



also a further subsequence for which the Sk converge to an isometry S, and then the Sk] µ
0,rk
0

converge to S]σ (proceed as for (6.17)). By Lemma 5.4, (8.10), and (8.13),

Wϕ(µ0,r0
0 , S]σ) ≤ lim inf

k→∞
Wϕ(µ0,r0

0 , Sk] µ
0,rk
0 ) = lim inf

k→∞
δk

≤ C

ˆ 4r0

0
αG (0, t)

dt

t
. (8.14)

We now use Lemma 5.3 to translate estimate (8.14) into an upper bound for the
´ 1

0 α(x, r)drr .
For t ∈ [1/4, 1/2], the measure µt that is defined by (5.27) with µ replaced by µ0,r0

0 is just
µ0,tr0

0 . Since σ is a flat measure, so is S]σ. Hence the measure νt built from ν = S]σ as in
(5.27) is also a flat measure supported on a d-plane V passing through the origin. We use νt to
estimate α(x, r). By (5.28), the fact that µ is doubling, and (8.14), we have

ˆ 1/2

1/4
α(x, tr0)dt ≤

ˆ 1/2

1/4
W1(µ0,tr0

0 , νt)dt =

ˆ 1/2

1/4
W1(µt, νt)dt (8.15)

≤ (8 + ||ϕ||lip)C2
δWϕ(µ0,r0

0 , S]σ) ≤ C
ˆ 4r0

0
αG (0, t)

dt

t
.

Note that (8.15) holds for r0 ≤ 1/4.
We are now ready to prove that for x ∈ Σ0 ∩ Σ2,

´ 1
0 α(x, r)drr < ∞. Recall we are

assuming x = 0. By (8.15) and the definition (1.17) of Σ2 we have

ˆ 1/8

0
α(x, s)

ds

s
=

∑
k≥2

ˆ 2−k−1

2−k−2

α(0, s)
ds

s
=
∑
k≥2

ˆ 1/2

1/4
α(0, t2−k)

dt

t

≤ 4
∑
k≥2

ˆ 1/2

1/4
α(0, t2−k)dt

≤ 4C
∑
k≥2

ˆ 2−k+2

0
αG (0, t)

dt

t
(8.16)

= 4C

ˆ 1

0
αG (0, t)

{∑
k≥2

1{k:2−k+2>t}(k)
}dt
t

≤ C

ˆ 1

0
αG (0, t)

log(2/t)dt

t
<∞.

A brutal estimate shows that α(x, r) ≤ 2 for r > 0, hence
´ 1

1/8 α(x, s)dss <∞. Hence the
hypothesis of Theorem 8.1 hold. We obtain a decomposition of the set Σ0 ∩ Σ2 into subsets
S ′′
d , 0 ≤ d ≤ n, which satisfy all the requirements for Theorem 1.2. In fact we get some

additional information which we record here. First, for every point x ∈ S ′′
d , d ≥ 1, Tan(µ, x)

is the vector space of dimension 1 spanned by some flat measure of dimension d (see (1.27))
which implies

S ′′
d =

{
x ∈ Σ0 ∩ Σ2 ; Tan(µ, x) ⊂ Fd

}
= Σ2 ∩Sd, (8.17)

where Sd is as in (1.28). Moreover once we know that Tan(µ, x) is the space of dimension
1 spanned by some flat measure σ ∈ Fd, we have that Σ has a tangent d-plane at x whose
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direction is given by the support of σ; see (7.5). Then S ′′
d is rectifiable, and even satisfies

(7.4); see the proof above, and also[1]. This completes the proof of Theorem 1.2.
As mentioned in Section 1 we have additional control on the size of µ on Σ2 and the

behavior of µ on S ′′
d . For 1 ≤ d ≤ n and every point x ∈ S ′′

d = Σ2 ∩Sd, the density of µ
exists, that is

θd(x) = lim
r→0

r−dµ(B(x, r)) ∈ (0,∞) (8.18)

(see [1]). Morever, we have the further decomposition of S ′′
d into sets S ′′

d ∩ Σ0(d, k) where
µ and H d are mutually absolutely continuous, as in 4. in Theorem 8.1.
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