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Abstract

We study the structure of the support of a doubling measure by analyzing its self-similarity
properties, which we estimate using a variant of the L' Wasserstein distance. We show that a
measure satisfying certain self-similarity conditions admits a unique (up to multiplication by a
constant) flat tangent measure at almost every point. This allows us to decompose the support
into rectifiable pieces of various dimensions.

Soit © une mesure doublante dans R™. On introduit deux parties du support ol x4 a cer-
taines propriétés d’autosimilarité, que 1’on mesure 2 I’aide d’une variante de la L!-distance
de Wasserstein, et on montre qu’en chaque point de ces deux parties, toutes les mesures tan-
gentes a u sont des multiples d’une mesure plate (la mesure de Lebesgue sur un sous-espace
vectoriel). On utilise ceci pour donner une décomposition de ces deux parties en ensembles
rectifiables de dimensions diverses.
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1 Introduction

1.1 Statement of Results

In this paper we are concerned with understanding the rectifiability properties of doubling
measures. Our ultimate goal is to characterize rectifiable doubling measures. Recently Tolsa
provided such a characterization for 1-rectifiable measures with upper density bounded below
(see [10]). His conditions are expressed in terms of the properties of the density ratios. We
are interested in whether self-similarity properties yield some sort of rectifiabilty. Roughly
speaking we analyze how the distance between the dilations of a measure appropriately scaled
yield information about the structure of its support. We provide a criteria which ensures that the
support of a doubling measure can be decomposed as a union of rectifiable pieces of different
dimensions. In a previous paper [1], similar decompositions were obtained by looking at
conditions that were expressed in terms of the properties of the local distance between the
measure and flat measures (that is multiples of Hausdorff measures restricted to affine subsets
of Euclidean space). In both cases a minor variant of the L' Wasserstein distance is used to
estimate the good features of a measure.

To present our results we need to define local distances between measures as well as several
quantities which describe the self similar character of a measure. In this paper, p denotes a
Radon measure on R" (i.e., a locally finite positive Borel measure), and X = X, denotes its
support. That is,

Y= {xER";,u(B(:U,r)) >Of0r7">0}, (1.1)

where B(x,r) denotes the open ball centered at = and with radius . We say that y is doubling
when there is a constant C's > 0 for which

w(B(xz,2r)) < Cs u(B(x,r)) forall x € ¥ and r > 0. (1.2)

Let B = B(0,1) denote the unit ball in R™. For M > 0, denote by Lip,,(B) the set of
functions ¢ : R™ — R that are M -Lipschitz, i.e., such that

[¥(x) = (y)| < M|z —y| forz,y € R", (1.3)

and for which
Y(x) =0 forz € R"\ B. (1.4)



Definition 1.1. Let 1 and v be measures on R", whose restrictions to B := B(0, 1) are proba-

bility measures. We set
[ v~ [ vav

Thus W, (1, v) only measures some distance between the restrictions to B of x and v. This
quantity is similar to the usual L'-Wasserstein distance, which by the Kantorovich duality
theorem has the same definition as W; except that the infimum ranges over all 1-Lipschitz
nonnegative functions in B. Note that W; has appeared before in the study of rectifiability of
measures; see for example [7], [8]], [9], and [1]. In Section we replace W; with a smoother
version of local distance W, which is easier to manipulate. Lemmas and [5.3|state that Wy
and W, are essentially comparable. We refer to [[11] for a detailed introduction to Wasserstein
distances and their properties.

Wi(u,v):= sup . (1.5)

¥ €Lip, (B)

To estimate the self-similarity properties of 1 we use several groups of affine transforma-
tions of R™. Denote by & the group of affine isometries of R™ (i.e., compositions of transla-
tions, rotations, and symmetries). Then let ¢ denote the group of similar affine transforma-
tions, defined by

¢ ={AR;\>0and R € %}. (1.6)

For G € ¢, we denote by A\(G) the unique positive number such that G = A\(G)R for some
R € Z. Denote by Z the group of translations and dilations:

2 ={M+a;x>0anda € R"}, (1.7)

where I denotes the identity on R".
The transformations that map a given « € R" to the origin, are denoted by

Y (x)={Ge€¥; G(x) =0} and Z(z) = {D € Z; D(z) = 0}. (1.8)
To each G € ¥, we associate the measure ;& = G's 1, which is defined by
1C(A) = n(G7Y(A)) for every Borel set A C R". (1.9)
When G € 4(x) for some 2 € ¥, be may normalize 1 and set
¢ K puc ne

we = = — = — (1.10)
© T uEB)  uGHB)  uBAG))
because j(B(x, \(G)~')) > 0. This normalization is needed if we want to compute W -
distances.
A special case of this is when G’ = T, ,, the element of & that maps B(z, ) to B; then ue
and ,LLOG are denoted by p*" and 1" respectively. That is,

x,r

o
w(B(z,r))

To measure the self-similar nature of i we introduce two quantities ay and . We fix
two parameters 1 < A\; < Ag < 00. Set

p*r(A) = p(x +rA) for ACR", and py" = (1.11)

G(z,r)={GeG(x); Mir <MG)™ ' < dor} (1.12)
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and then
ag(z,r) = inf {Wy( u§ us"y s Ge 9(x, r)}. (1.13)

Thus, if o (x,r) is small, this means that in B, ,uo’ is close to some measure ,ug , obtained
via a transformation G that contracts more than 77, and possibly rotates as well. After com-
position with T}, !, the fact that ag(:c r) is small can be interpreted as saying that in B(z, 1),

1 is quite close to the measure au” , where G’ = T} o G is a contracting element of & that
fixes x and a > 0 is a normalizing constant. It is 1mportant to note that even though we allow
some flexibility in the choice of G and G’, we demand that G’(x) = x. This is the reason why
the usual fractal measures do not satisfy the conditions below.

We also use the analogue of a (x, r) for the smaller group %.That is, set
D(x,1)={D € 2(x); ir < ANG)™' < Xor} (1.14)

and
ag(z,r) = inf {W;( u§ ut") ;s G e 9(x, r)}. (1.15)

For ay(x,r) we only compare p with its image by some dilation centered at . Obviously
ag(xz,r) > ag(xz,r). Thus conditions on avy (x, r) are more restrictive than those on ag (x, 7).

Our goal is to get a control on the part of X (see (I.1))) where either ag (x,r), or ag(x,r),
are sufficiently small. More precisely, we want to control the sets

1
= {a: eX; / ag(z, r)@ < oo} (1.16)
0
and .
zzz{xez;/ ag(m,r)w < 00} (1.17)
0

Theorem 1.2. Let i be a doubling measure on R", and denote by % its support. Let 1 < A\ <
Ao < 00 be given, and define the sets 31 and Yo as above. Then there are sets .7y, ..., S C 3,

such that
(21u22 (Uyd)) (1.18)

and moreover

o Y is the set of points where 3 has an atom; it is at most countable, and every point of
S Is an isolated point of 3.

o Forl <d < n,ifx €., there exists a d-dimensional vector space V. such that all the
tangent measures to |4 at x (defined below) are multiples of the Lebesgue measure on V.

e For 1 < d < n, %y is d-rectifiable, and it can be covered by a countable family of
Lipschitz graphs of dimension d.

We may see Theorem [I.2] as a structural decomposition of the good parts of ¥. Tangent

measures will play an important role in proof and the definition of the .#;. Recall that the set
of tangent measures to p at z, which will be denoted by Tan(y, ), is the set of non-zero Radon
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measures o for which there exist a sequence {7y}, with limy_,, 7z = 0, and a sequence {ay}
of nonnegative numbers, such that

o is the weak limit of the measures a,u®™"*, (1.19)

where the ™" are as in (L.11)). That is, for every continuous function f with compact support,

/fda = kli_}r{)loak/fdux’rk. (1.20)

Note that since here p is doubling, Tan(u, x) is not empty (see for instance the proof of
Lemma 2.1 in [1]]). Furthermore if x4 satisfies and o € Tan(u, x) then o is also doubling
with a constant at most Cg. A priori Tan(u, x) may be large. Nevertheless Theoremensures
that for x € .7, Tan(u, x) is of dimension 1.

A Lipschitz graph of dimension d is a set I" 4 such that

Ly={z+A(@);z eV},

where V is a vector space of dimension d, A : V — V' is a Lipschitz map and V* denotes
the (n — d)-dimensional vector space perpendicular to V. In the statement of Theorem S
can be covered by Lipschitz graphs where the corresponding function A has Lipschitz constant
less than €, where € > 0 is any small number given in advance. Note that this yields that .%} is
d-rectifiable while providing additional information in the sense that ./ is completely covered
by Lipschitz graphs not simply up to a set of .#%-measure zero. Let us make a few more
remarks on Theorem [I.2] and its proof. The advantage of using the quantities ay and oy is
that they yield information not only about the geometry of the support but also about how the
measure is distributed on it. The decomposition of 3; U X5 into pieces of different dimensions
is possible once we prove that for p-almost every point x € ¥ N X9, Tan(u, z) is entirely
composed of flat measures of a same dimension depending on x. Recall that flat measures are
multiples of Lebesgue measures on vector subspaces of R™; that is, for each integer d € [0, n],
set

gfd:{&%”dLV; cEOandVGG(d,n)}, (1.21)

where .77 denotes the d-dimensional Hausdorff measure (see [6] or [4]) and G(d,n) is the
set of d-planes in R". The set of flat measures is .# = | <4<, Zd-

It is natural to use the self-similarity properties of 1 to get information on the structure of 3,
as in Theorem In particular the numbers o (x, ) provide an intrinsic way to measure the
regularity of . We contrast this approach with the one taken in [1] where we were interested
on the local approximation of the measure by flat measures.

As we shall see in Section [§] the additional logarithm in (1.17) is used to sum a series
which allows us to control the density of 1 on most of 5. It may well be an artifact of the
proof.

To prove Theorem [I.2] we need to find a set ¥ which covers almost all ¥; U ¥ and such
that all tangents to u at points in g are flat. To accomplish this we define an average analogue
of the numbers ag (x, ) by

2r
a@(az,m:]é » f g (y, ) duly)dt (122)
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(where f is our notation for an average) and consider the set

Yo ={zex; }g%ag(x,r) =0}. (1.23)

Theorem 1.3. Let i1 be a doubling measure on R", and denote by . its support. Let 1 < \; <
Ao < 00 be given, and define the functions g (x, ) and oy (x, ) and the set ¥ as above (see

({@T.13), (1.22), and (1.23)). Then

Tan(p, ) C F forevery x € ¥. (1.24)

A consequence of (I.24)) and the fact that elements of different .%, are far away from each
other is that for each = € X, there is an integer d € [0, n] such that

Tan(p, x) C Fy. (1.25)

This is not too hard to prove. In the case of Theorem [[.2] we obtain more than (I.23) directly,
thus we omit the proof of this fact.

To deduce Theorem [I.2] from Theorem [1.3] we shall first check that

This uses standard techniques from measure theory including the Lebesgue density theorem.
Then we show that for each z € 3¢ N (X1 U X9),

Tan(p,z) = {co; ¢ > 0} forsomeo € F. (1.27)
Let us now say a few words about the definition of the .#;. Set
Sy ={x € TN (X1 UXy); Tan(p, z) C Fy}; (1.28)

these sets are disjoint, and by (I.27) or (I.25)
SN (S1U%) = S (1.29)
d=0

The special set .7} is easily dealt with at the beginning of Section [7, and Theorem [I.2]follows
as soon as we prove that for d > 1,

%4 can be covered by a countable collection (1.30)

of Lipschitz graphs of dimension d.

The fact that information on the tangent measures may imply rectifiability properties for
the measure is much better understood since D. Preiss [7]] showed that if 1 is a Radon measure,
not necessarily doubling, such that for y-almost every x € R", the d-density lim,_,q @
exists and is positive and finite, then R™ may be covered, up to a set of y-measure zero, by a

countable collection of d-dimensional Lipschitz graphs. He deduced this from the hypothesis
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on the d-density and the fact that at u-almost every = € X, Tan(u, ) C .%. In our case, we
are unable to use [7]] because we are not given any information on the density of L.

We shall use the fact that since p is doubling, (1.27) implies the existence of a tangent
d-plane to ¥ at x, and then (1.30) for the set where holds. We include a proof of these
simple observations in Section [7]

To prove (1.27), we shall use the numbers . (x, ) and o (z, ) to control the variations
of the measures " on X1 and 9. Eventually we compare them to the tangent measures.

For points of ¥; we use the triangle inequality and the summability of the ag(z,7), to
show that the distance between two different tangent measures at x is controlled by integrals
that tend to 0. To deal with some of the technical complications that arise with the distance
W1, we shall introduce in Section E] a smoother variant W, of the Wasserstein distance, study
it briefly, and then use it in Section [6]to prove on X1 N Xy.

For points of ¥, we’ll use the bounds on the numbers ag(z,7) to compute the W-
distance between the p™" and the tangent measures. This time we can only work modulo
rotations, but this is enough to control the W-distance from the p" to flat measures, and
apply Theorem 1.5 in [1]]. This yields additional information on 39 N ¥y. In particular, it
guarantees that on the sets Yo N %, u is absolutely continuous with respect to the Hausdorff
measure .7, with a density that can be computed from the measure of balls, and that some
local mutual absolute continuity of x and ‘%ngm% holds. See near for a statement, and
the rest of Section [§]for the proof.

There is a significant difference between (or even (1.23)) and the stronger (I.27). For
instance, let ¥ be an asymptotically flat snowflake in R?, constructed in the usual way but with
angles that tend slowly to 0. Put on X the natural measure p, coming from the parameterization
of ¥ (see [3]]). In this case for p-almost every x € X, Tan(u,z) = %#;. Of course X is not
rectifiable, and Theorem [I.2]says that X1 U X5 is p-negligible.

The definitions (1.22) and (I.23) ensure that for x € X, the local self-similarity character
of p improves as the balls get smaller and smaller, which yields self-similar tangent measures
at all point of ¥¢. That is, we show that if z € ¥, o € Tan(u, z) and y lies in the support of
o, there is a transformation G € ¢ such that \; < A\(H)~! < X, H(y) = v, and Hyo = co
for some ¢ > 0. See Lemma in Section |3} Once we prove this, showing that o is flat is
mostly a matter of playing with the invariance properties of the support and the measure; see
Section

1.2 Acknowledgements
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2 Control of the averages oy

The main goal of this section is to prove (I.26). To this effect define the set

1
Egz{mEE;/ g (z, T‘)d <oo} 2.1
0

Notice that ¥ U X9 C X3, by (I.16), (1.17), and because oy (z,7) < ag(x,r). Thus (1.26)
follows once we prove that

(X3 \ Xo) = 0. (2.2)
For N > 0 large and k£ > 2, let

1
d
Zg(N):{J:GEgﬂB(O,N);/ ()ég(fL‘,T)lSN} (2.3)
0 T
and )kt
d dr
€k —/ / ag(y,r 1) . 2.4)
$3(N) J2 r
Then
)dr
Zek <2 ag(z,T) <2Np(X3(N)) < oo. (2.5)
k>2
Choose a decreasing sequence {fyk} such that
li = - : :
Jm 0 and Zyk gL < 00 (2.6)
k>2
For z € ¥3(NN), define auxiliary functions oy, by
9—k+2
d dr
anle) = [ [, astyn 0T )
Y3(N)NB(z,2-k+1) J2-k r
Consider the bad sets
Zy, = {w € B3(N); ag(x) > yep(B(z,275))}. (2.8)

Our goal is to show that Zj, is small. Let X C Zj; be a maximal subset whose points lie at
distance at least 27512 from each other. Thus the balls B(x,27%+2), z € X, cover Zj, so by

(I.2) and (2.8)
wZ) < D u(Bx,2772) < CF > p(B(a,27F)

zeX zeX

Civ Y (). (2.9)

zeX

IN

Since the balls B(z, 2_k+1), x € X, are disjoint,

Z ar(r) < e

zeX



(compare and (2.7)); thus p(Zy) < C'gy,; Le}.. We are not interested in the precise bound,
but merely the fact that ), u(Z)) < oo, from which we deduce that if we set Z = J;.~; Zk
for [ > 2, then limy_, o p1(Z;") = 0. Thus for p-almost every x € 33(IV) there is k, € N such
that

z € $3(N)\ Zy for k > ky. (2.10)

By the Lebesgue differentiation theorem applied to the doubling measure u, we have that for
p-almost every z € X3(N)

i H(B(,7) 05\ Sa(N))

M BNy Y @10

see for instance Corollary 2.14 in [6].
Letz € ¥3(V) satisfy (2.10) and (2.11); we want to estimate o (x, ) for r small. Choose
k such that 2% < r < 275t then k > k, for r small. Recall from (1.22) that

2r
oy (@,r) = (B, r) ! / f g (y, ) du(y)dt. 2.12)
yeEB(z,r) Jr

We decompose the domain of integration above into two parts and estimate each one separately.

By (1.2)), 2.7), (2.10), and (2.8)),

2r
w(B(z,r) ! / f gy, D) dpu(y)dt

Y3(N)NB(z,r)
27k+2

< 4M(B(x,2k))1/ / 0y (3, 1) LAt
S3(N)NB(z,r) J2-k t
< ACspu(B(z, 27" )ty (z) < 4C5v. (2.13)

This term tends to 0 when  tends to 0, by (2.6).
For the second part, we notice that ay (y,t) < 2 by definition (see (I.13) and (I.5)), so

2r
(B [ F astytdutw)i
SNB(z,r)\E3(N) Jr

< 2u(B(z,r) 'u(E 0 B(z,r) \ 23(N)), (2.14)
which tends to 0 by (2.11)). Combining (2.13) and (2.14) we get that

lin%) ay(z,r) =0 for p-almost every x € 33(N).
r—

In other words, pu(X3(NV) \ 3o) = 0 (see (1.23)); (2.2)) follows easily, and so does (1.26).

3 Tangent measures are self-similar

In this section we start the proof of Theorem [I.3]and prove the basic self-similarity estimate
for tangent measures.



Lemma 3.1. Let i be a doubling measure, let 3. denote its support, let X9 C X be as in (1.23)),
and o € Tan(p, x) be a tangent measure of | at a point © € . For each y € Z, the support
of o, there exist H € ¢4 such that H(y) = v,

A SAH) < N (3.1)

and
Hyo = co for some c > 0. (3.2)

The numbers A; and Ay are the same as in (I.12), the dilation number A(H) is defined
below (1.6)), and Hyo, the push forward image of o by H, is defined as in (L.9).

Proof. We may assume, without loss of generality, that z = 0. Since o € Tan(yu, x) there are
coefficients a; > 0 and radii 75, > 0, such that limy_,., rr = 0, and o is the weak limit of the
measures {oy, }, where

op = app®" = app with Ry(u) = r;lu foru € R"™. (3.3)

Note that Ry, maps B(x,r;) = B(0, ) to B. See (I.1I)) for the definition of p*".
Let

Qp = sup {o@(o,r); 0<r< \/ﬁ}, (3.4
then since x € ¥ (see (1.23))
lim ap = 0. 3.5)
k—o0
By (3.4), if for k large
T < pr < \/7Tk (3.6)

then o} (0, pi,) < ay, for these k. Since o is the weak limit of the o, foreachy € = := suppo
we can find points y, € supp(oy) = 7",;12 such that

lim |y, —y| = 0. (3.7
k—o0

Let {ny }x>1 and {px }x>1 be sequences such that (3.6) holds for k large, and also

lim 2% = 00 and lim 7;, = 0. (3.8)
k—oo Tk k—o0
Consider
2pk
A = ][ ][ ag(z,t)du(z)dt. (3.9)
B(rrykmemr)  p

For k large, the domain of integration B(ryx, n,ry) is contained in B(0, p,) (because yj, tends
to y, Ny tends to 0, and r,;lpk tends to +o00; see (3.7) and (3.8)). Recall that B(0, p) X [k, 20k)
is the domain of integration in the definition of o} (0, py) (see (1.22)); hence for k large

= w(B(reye, mer))
by (3.9), (1.22)), (3.6), (3.4), and the doubling property (I.2). Later on, we will choose pj and

Nk, depending on a, so that Ay is still small enough.

ag}(o,ﬂk) < C(?Hng(ﬂk/(??k?“k))ak (3.10)

10



By Chebyshev’s inequality there exist
zi € X0 B(rpyk, merk) and ty € [pr, 2px] (3.11)

such that
ag(zg, ) < Ag. (3.12)

By the definition of a (see (T.13)) there exists Gy € ¥(zx, tx) such that
Wi (ug'™, pit ™) < 24y, (3.13)

which by (T.3)) means that

’ / g — / T

Our next goal is to interpret (3.14) in terms of 0. Let T}, € Z be such that for u € R"

< 24y, forany ¢ € Lip,(B). (3.14)

u — 2

Tk(u) = ; and so Tk(B(Zk, tk)) = B. (315)

k

The definitions (T.10) and (T.11)) yield
uo" = exp and pgt" = ettt = e, (3.16)

where e, and €} come from the normalization, and are given by
e = pC*(B)~! and ¢}, = pT+(B)7L. (3.17)

Let 1 be any Lipschitz function supported on B and set I, = ey, |, Gi(®) Y»dp©*; by (3.16) and
(L9).
=a | v = e [ GG =a [voGidn Gy
Gr(%) b

By B33), 0 = appu® = aj(Ry)sp, hence pn = a;, ' (R, ');0. Thus a similar computation
to the one in (3.18) yields

I = exa; ! /w o Gy o R 'doy,. (3.19)

A similar computation, with Gy, replaced by T, yields

I = /ng’tk = eja; " /1/} o Ty, o R; doy,. (3.20)

We want to apply (3.19) and (3.20) to special functions . Let ¢ be a compactly supported
1-Lipschitz function. Let
Yp=poRoT, . (3.21)

Note that 1 is a Lipschitz function with constant less or equal to r,;ltk < 21",;1 Pk (see (3.11)).
If ¢ is supported in B(0, R), for k large enough the support of 1) is contained in

_ e
T o R;1(B(0,R)) = Tp(B(0,rpR)) = B(?ﬁtklrm)
C B0, ity (R + i + yk])) € B(0,1),
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where we have used (3.11), (3.8), and (3.7). Because of (3.10), ¢ = (2r; o) "t s 1-
Lipschitz; then (3.14)) applies to ¢, and (3.10) yields

I} — I < AAgry i < oyt ppC2toBoeltnrid) g . 5 (3.22)

where I}, and I}, are as in (3.18)) and (3.20) with 1) coming from (3.21). The final identity is
the definition of ;. Notice that even though ¢ does not depend on k, v does, but this is not
an issue.

Note that by (3.21)) and (3:20), we have

I, = e%akl/wdak. (3.23)
Similarly, by (3.19) and (3.21) we have
I = epa; ! / @o Ry oT, ' oGy o R, 'doy. (3.24)
Set
Hi,=RyoT, 'oGroR . (3.25)

Then Hy, € ¢, and by (3.13), its dilation factor A\(Hj) (which is also the n-th root of its
Jacobian determinant) is such that

A(Hy) ™ = MTe)A(Ge) ™ =" MGr) ™ € [, A, (3.26)

because G, € ¥ (zx,tx), and by the definition (I.I2). Note that by (3.3)), the fact that Gj, €

G 2k, tr) (see (1.12) and (T.8)), and (3-13)), we have

Hk(T'k_IZk) = Rk o Tk_l o Gk o R;l(lelzk) = Rk o Tk_l o Gk(zk)
= RioT;'0) = Ri(zk) = 1} 2. (3.27)

Notice also that by (3:11)
ok =yl < Ptz — il 4 e =yl =7 ok — rl + lye =yl <+ lue =yl
Thus |r, 2 — y| tends to 0 by (37) and (3-8), so
Jim. rta =y (3.28)

Combining (3.26)), (3.27), and (3.28)), we deduce that Hy, lies in a compact subset of ¢. Thus
we can replace {r} by a subsequence for which the H}, converge to a limit H. In addition,

(3.26), (3.27) and (3.28) imply that
MH) ™t e [A,A\2] and H(y) =v. (3.29)

Combining (3.22), (3.23), (3.24), and (3.23) we see that if ¢ is a compactly supported 1-
Lipschitz function, then for k large

‘ekalzl /cp o Hydoj, — e;alzl /godo’k‘ < Q. (3.30)
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By G17), (9). and (515,
¢p =" (B) " = u(T '(B) ' = p(Bla tr)) " (3.31)

Similarly notice that G (z;) = 0 because Gy, € ¥ (z, tr) C ¥ (zx) (see (I.12) and (L.8));
then and (1.9) yield

ex = pu(B) ™" = p(G ' (B)) ™! = u(B(ak A(Gr) ™)) 7 (3.32)
In addition,

B(zk, Mtr) C Gy '(B) = B(zp, M(Gi) ™) C Bz, Aaty) (3.33)

because G (zx) = 0 and by (I.12). Then (1.2), (3:31), (3:32), (3:33), and the fact that \; > 1
yield

Cle), <ep <e¢j (3.34)

for some constant C' that depends on Cs and As.
To estimate ay, consider a test function f such that 1y < f < 155. By definition of o,

[ fdo =limy_, [ fdoy. By (I.2), (3:3) and the definition above (T.11)), we have

ak,u(B(O, Tk)) = Uk(B) < /fddk < Uk(QB) = aku(B(O, 2Tk)) < Cgaku(B(O, Tk))
(3.35)
Moreover, since o is also doubling (see the remark below (1.20)), we have that

o(B) < / fdo < o(2B) < Cio(B). (3.36)

Thus by (3:35), (3:36) and the definition of o there exists C' > 1 such that for & large,
C~lapu(B(0,71)) < o(B) < CCFapu(B(0,71)). 3.37)

Recall that pj, < tj, < 2p; by B-11), and that 7}, 'z, is bounded by (3:28); since r, * px
tends to +o0o by (3.8) we get that for k large, |zx| < Cry < pr < tx, and so B(zk,t;) C
B(0, 2t) C B(0,4py). By (3:31)), since 0 € X, and by (I.2),

(e}) ™! = (B2, 1) < p(B(0, 4py)) < CFHB 0 1(B(0,74)). (3.38)
Combining (3.37) and (3.38)) we obtain
a, < CCTTRW/T) ol (), (3.39)

Return to (3:30), set b, = ey /€},, and observe that by (3.39)

/

’bk / o Hy doy, — / godak‘ < “’ZO"“ < cootlosee/m g, o (). (3.40)
k

Now we choose py, and 1. Denote by

By, = Oc«gﬂogz(/)k/m)ak _ CC(?Hng(Pk/Tk) . 4r]€—1ka§+10g2(Pk/(le7‘k))ak

13



the right-hand side of (see (3.22)). Since oy, tends to 0 by (3.5)), we can choose pj, and
7N so that the constraints (3.8) and (3.6) hold, but the convergence in (3.8) is slow enough so
that
lim B, = 0. (3.41)
k—o00
Recall from (3:34) that C~! < b;, < 1, hence modulo passing to a subsequence (which we
relabel) we can guarantee that limy ., by = b > 0. Letting k tend to infinity in (3.40) we
obtain

lim | pdoy = / pdo. (3.42)
k—o0
Since ¢ is Lipschitz and compactly supported, so is ¢ o H and
lim [ ¢o Hdo, = /gp oHdo (3.43)
k—o00

because o is the weak limit of the o;. Note that there is also a ball B such that for k large
po H(x)=¢poHg(x) =0forx € R"\ B;then

/|on oo Hy| doy < Hsomp/ H — Hy| doy
B

< llelliipl[H — Hi||L(5)0k(B)
< 2||@llupl|H — Hil|| oo (Byo (2B). (3.44)

Thus

lim ’/cpondak—/cpoHdak = 0. (3.45)

k—o0

Combining (3.40), (3.41), (3.42)), (3.43), (3.44) and (3.43) we obtain that for any 1-Lipschitz
function ¢ with compact support,

b/(pOHdO':/ngO'. (3.46)

Since the Radon measure o is regular, also holds for characteristic functions of Borel
sets. Hence bHyo = o.

Recall that \(H) ™! € [A1, \o] and H (y) = y by (3:29); thus the conclusion of Lemma|3. 1]
hold, with ¢ = b~ 1. O

4 Self-similar measures are flat

In this section we complete the proof of Theorem [I.3] Using the notation in Section [3] our
goal is to show that if o € Tan(u, zg), where o € X (see (I.23)) then o is a flat measure.
Lemma guarantees that for each y € = (the support of ), there is a transformation H(y) €
¢ and a constant ¢(y) > 0 such that

Ay) = AH(y)) € ALY (4.1)

14



and
H(y)go = c(y)o. 4.2)

By definition of ¢ (see (1.6)), the linear part of H (y) is of the form A\(y)R(y), where R(y) is
a linear isometry. Since H (y) fixes y, this means that

H(y)(u) =y + AMy)R(y)(u —y) foru € R™. (4.3)

The next lemma allows us to replace H (y) with one of its large powers, chosen so that its
isometric part is very close to the identity.

Lemma 4.1. For each choice of € > 0, there is an integer my, that depends only on € and n,
such that for each y € Z and each integer { > 1, there is an integer m(y) € [1, mg] such that

|R(y)™ ™ —I|| <e. (4.4)

Proof. Here I is the identity mapping. We use the compactness of the group of linear isome-
tries of R™ to choose my large enough so that if 1?1, ..., R,,, are linear isometries, we can
find integers mq, mg such that 1 < m; < mg < mg and ||Ry,, — Ry, || < . We apply
this with R, = R(y)™ to find m; and my such that ||R(y)™2¢ — R(y)™*|| < e. Then
||R(y)(m2=m1)¢ _ [|| < ¢, as needed. O

Next we study elementary properties of =. Notice that by #.2), H(y)(E) = =, and itera-
tions also yield
H(y)™(E) = E form > 1. (4.5)

Lemma 4.2. The set = is convex.

Proof. Let x,y € = be given. Our goal is to show that the segment [z, y| is contained in =.
For each ¢ > 0 and ¢ > 1, we construct a sequence {y;} in = (depending on ¢ and ¢) which
will allow us to estimate how far [z, y] is from =. We start with yo = y. If k > O and y, € E
has been defined, we define yj1 as follows. Set

Hy = H(yp)™"")* and yji1 = Hy(). (4.6)

By (4.3) and since = € =, yi4+1 € E. Let us show that for ¢ large and & small, the yy, stay close
to the segment [z, y| and converge (slowly) to x. First observe that by iterations of {.3)), Hy,
is given by
Hy(u) =y + A\, Rp(u — yg) foru € R™, @.7)

with

= M(H (yp))™ W) e [A;™0f ATY) and hence A}, < 1. (4.8)
In addition, Ry, = R(y;)™¥+)¢ and therefore, by @A), || Ry, — I|| < e.

Setry = |z — yx| and ¥ | = yx + A, (z — yx). Notice that by (4.7) and (.4,

lke1 — vesal = |k + MeRe(z — yi)] — [ye + Mo (z — wn)]|
= [NlBrk = I)(x — yp)| < eNpr- (4.9)
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Since

ipr — @l = (1= X)lye — 2 = (1 = A, (4.10)
we also get that if £ < 1/2,
Tk+1 = |yk+1 - 5U| < |yZ+1 - 3U| + |yk+1 - y/f;+1|
< (1= XN)re +eNpre < (1 — N, /2)7. 4.11)

Then since ¥, ; € [z,yx), and by and (4.11) we have
dist(yer1s (2, 9k]) < Y1 — Y| < eXre < 26(re — Trn)- (4.12)

By elementary geometry,

dist (Y11, [, y]) < dist(yg+1, [z, ye]) + dist(yg, [z, y])- (4.13)

An iteration of (4.12) combined with (4.13)) yields

dist(yx+1, [z, y]) < 2¢ Z —rjt1) < 2erg = 2|z — yl. (4.14)
0<j<k

Notice that by (4.11) and (4.8) ry tends to 0. Thus we have constructed a sequence {y} in =,
which goes from y = yp to = limy_, yx. The points yj, lie within 2¢|z — y| from [z, y].
Using the definition of 3 ;, (4.9), and (4.8 we can estimate their successive distances

W1 — Ykl < (Y1 — Vi ]+ Wier — vkl < eXprk 4+ Ak
< 2Nre < 207z — g, (4.15)

Let z; be the orthogonal projection of yy, into the line containing = and y. Note that by (.14))
ZE € [33 — 2|z — y’|x YT 2|z — y| é:;] By @.I5), |2k41 — 2k| < 2)‘fe’x —y| and
by the definition of z, |z — yi| < 2¢|z — y|. Therefore every point of [x,y] lies within
2(e + A Y|z — y| of some yy, that is each point of [z, y] is at most 2( + A\[ )|z — y| away
from =. Choosing ¢ arbitrarly small and ¢ arbitrarly large, we get that [z, y] C =. Lemma
follows. O

Lemma 4.3. The set = is a vector subspace of R™.

Proof. Let V be the smallest affine subspace of R™ that contains =, and let d denote its di-
mension. Choose d + 1 affinely independent points v, . . . y4 in V' (this means that the vectors
Y; —%Yo, j = 1, are linearly independent), and set y = ﬁ Z;l:o y;. By Lemma = contains
the convex hull of the y;, so there is a small radius ~ > 0 such that V' N B(y,r) C =.

Recall from (@.35) that H(y)™(Z) = Z for m > 1. Applying the bijection H (y)~™ to both
sides, we see that H(y)~™(Z) = = form > 1, so

H(y)™™(VNnB(y,r)) C = (4.16)

16



We know that H (y) " (VNB(y,r)) is a nontrivial open subset of the affine space H (y) ™" (V),
= V,

and since = C V we get that H (y) =" (V') C V. Then by a dimension count H (y) " (V)
and by the description (4.3)) of H(y), we see that
H(y) "™ (V N B(y,r)) =V N By, \(H(y))""r). 4.17)

Recall that A(H(y)) < 1; then A\(H (y))~™r is as large as we want by picking m as large as
we need. Hence (4.16) guarantees that = contains V, and this means that = = V.

Note that Remark 14.4 (2) in [6] ensures that 0 € =, as = is the support of o and ¢ €
Tan(u, 29) where p is a doubling measure and zy € X. Hence = = V' is a vector space. This
completes our proof of Lemma 4.3 O

Now we study the distribution of o on =. If = is reduced to the origin, then o is a Dirac
mass, and Dirac masses lie in .%;. Thus in this case o is trivially flat. We may now assume
that = is a vector space of dimension d > 0.

Lemma 4.4. There is a dimension D > 0 such that o is Ahlfors-regular of dimension D, which
means that

C1pP <a(B(y,p) < CpP forycZandp>0 (4.18)

for some constant C' > 1.

Proof. Set A(y) = A(H (y)), and recall from @) that 1 < A\; < A(y)~! < A2. Notice that
by @.2)), fory € Zandr > 0

o(By, A\y)~'r)) = o(H(y) " (B(y, 7)) = H(y)so(B(y,r))
= c(y)a(B(y,r)). (4.19)

Iterating we obtain for m > 0
a(B(y, A(y)~"r)) = c(y)"a(B(y,r))- (4.20)

Applying (@.20) to A(y)™r instead of r we have that (4.20) also holds for m < 0. Observe
that since A(y) < 1 and o(B(y,r)) > 0 when y € E, @.20) yields c(y) > 1. If ¢(y) = 1,
then o(B(y, A(y)~™r)) = o(B(y,r)) for all m € Z, and o is a Dirac mass. This case was
excluded before the statement of the lemma, so ¢(y) > 1.

Now let p > 0 be given, and choose m such that

Ay) ™ <p<Aly) ™ (4.21)
By applied to 7 = 1,
c(y)"a(B(y,1)) < o(B(y,p)) < c(y)" o (B(y, 1)), 4.22)
hence, letting ¢ = log(c(B(y, 1))), yields
mlog(c(y)) + € < log(a(B(y, p))) < (m + 1)log(c(y)) + L. (4.23)
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By (4.21)

mlog(A(y) ") <logp < (m+1)log(A(y) ). (4.24)
Hence combining (4.23)) and (4.24)) we have
1 B 1
p—r-+oo log p log(A ( )7
We claim that D(y) does not depend on y. Indeed, if z € =, observe that B(y, p) C B(z,p +
|z — yl|), hence

D(y) = lim M < liminf IOg(U(B(ZaP+ ’Z—y’)))

p—+oo log p T p—too log p
log(a(B(z,p+ |2z —y|)))
p—-+o0 log(p + [z — yl)

= D(z); (4.26)

the opposite inequality also holds exchanging the roles of y and z. Let D be the common value
of the D(y) for y € =. By definition (see @#23)), A\(y) ™" = c(y), and using @#.21) we can

rewrite (4.22) as

My) ™o (B(y,1)) < a(B(y, p)) < Ay) PAly) " o(B(y,1)). 4.27)

Thus, by @21),
Ay)PpPo(B(y, 1)) < o(B(y, p)) < Ay)~"pPa(B(y, 1)), (4.28)
which yields @18) with C = A\ max(o(B(y,1)),0(B(y,1))!) (because [@.I) guarantees
that A(y) ™1 < Ag). O

Lemma 4.5. Let d be the dimension of the vector space =, and denote by v = H#* = the
restriction of % to E. Let D be as in @18). Then d = D, and there exists a constant co > 0
such that o = cyv.

Proof. Since o is Ahlfors regular of dimension D (by Lemma.4), a standard covering argu-
ment (see for instance Lemma 18.11 in [2]) guarantees that there exists a constant C' > 0 such
that

Cl#P L E<o<C#PLE, (4.29)

and = is a D-dimensional Ahlfors regular set. Hence D = d.
By (@.29), o is absolutely continuous with respect to v, and the Radon-Nikodym derivative
of o with respect to v is bounded. Thus there is a bounded function f on = such that o = fu.

We now show that f is constant. First observe that since d = D = lolg(g)\ 7 (by (4.23)),
(4.20) guarantees that fory € =, > 0, and m € Z
o(B(y, A(y)"™"r)) = e(y)"o(B(y,r)) = Ay)""o(B(y,r)). (4.30)
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Since v(B(y, A(y) ™)) = AMy) "™ (B(y,r)), we may rewrite as
o(B(y, A(y)""r)) _ o(B(y,r))

— . (4.31)
v(B(y, AMy)~™r))  v(B(y,7))
The Lebesgue differentiation theorem says that for v-almost every y € =,
. 0(B(y;p))
fly) = lim ——————==. 4.32)
W)= v(B(y, p))
For such an y and every r > 0, by (4.32) and (@.31)) for —m
0By, AMy)"r)) _ o(B(y,r))
f(y) = lim = ) (4.33)
W)= e U (Bl Aw)™)  W(Bly.m)
That is,
o(B(y,r)) = f(y)v(B(y,r)) forr>0. (4.34)
If z € = is another Lebesgue point of f, since B(z,7) C B(y,r + |y — z|) we have
_o(B(zr) _ .. o(Bly,r+|y—z]))
= 1 <1 f
1&) = B B = BB e )
. o(By,m + |y — 2]))
= liminf = f(y). (4.35)
e By Y
Similarly f(y) < f(z), and f is constant. O

This completes the proof of Theorem In fact we have proved that if o € Tan(u, )
with zg € X (see (T.23)) then o = co.2#? L = for some vector space =.

5 A smoother version of the Wasserstein W, distance

So far we managed to work with the distance W defined by (1.3), but for the proof of Theo-
rem|1.2} it is more convenient to use a slightly smoother variant, which attenuates the possible
discontinuities in 7 > 0 of the normalizing factors > (B(0,1)) ™! = pu(B(x, 7))~ L.

Let us choose a smooth radial function ¢ such that

1B0,1/2) < ¢ < 1p0,1); (5.1
If 1 and v are two Radon measures such that
w(B(0,1/2)) >0 and v(B(0,1/2)) > 0, (5.2)

we define a new distance W, (1, v) by

Wo(p,v) = sup J vy — J vpdv (5.3)

¥€Lip, (B) f%ﬁdﬂ stdV '

Recall that Lip, (B) is defined near (I.3). The distance W; above essentially corresponds to
@ = 1p here.
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We required (5.2)) (and (5.1)) to make sure that we do not divide by 0. But notice that even
when 1(B(0,1/2)) or v(B(0,1/2)) is very small, we always get that

Wlp(:ua V) S 27 (54)
because | [ odp| < [ dp and similarly for v. Note that
Wy (ap, bv) = W, (u, v) fora,b >0, (5.5)

so we do not need to normalize 1 and v in advance. Finally observe that W, satisfies the
triangle inequality. That is, if o is a third Radon measure such that o(B(0,1/2)) > 0, if
follows at once from the definition that

Wo(p,0) < Wy (p,v) +Wy(v,0). (5.6)

Let us check that if we restrict to measures that are not to small on B(0,1/2), then W,
controls W,.

Lemma 5.1. Let i and v be Radon measures such that (5.2)) holds and
uw(B) =v(B) = 1. (5.7)

Then

1+ 2[|¢lluip
W (p,v) < mwl(ﬂy v), (5.8)

where ||||1ip denotes the Lipschitz norm of .

The fact that the estimate is not symmetric is not an issue. In particular we shall apply (5.8))
to doubling measures g and v; in this case (B(0,1/2)) ~ u(B) =1 = v(B) ~ v(B(0,1/2)).

Proof. Let 1 € Lip,(B) be given. The definition (I.5]), applied to ¥y, yields

’/Wdu—/WdV‘ < [1YellipW1(p, v) < (1 + [lllip) Wi, v). (5.9)
The same definition, applied to ¢ itself, yields
| [ edu— [ av] < el 1), (5.10)
Set p p
A S edn [ pedy 5.41)
[edn [ dv
and write g d ) (@)
a C ad — oc a—c)+cla—
A“E‘&“ bd | bd ©-12)

with a = [edp, b = [@du, ¢ = [edr, and d = [ pdv. Notice that |¢| < d because
¢ € Lip;(B) and ¢ > 0. Also, b > n(B(0,1/2)) by (5.1). Hence by (5.9) and (5.10); we have
la —c| + |d —b] < 1+ 2] ip W,
b W(B(0,1/2))
Taking the supremum over ¢ € Lip, (B) in (5.13)) ( recall (5.11)) yields (5.8). O

A<

(M? V)' (513)
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The following lemma specifies the sense in which W, is more stable that W.

Lemma 5.2. Let p and v be Radon measures and let 6 € (0, 1/2] be such that
1(B(0,6/2)) > 0 and v(B(0,6/2)) > 0, (5.14)
and define new measures |11 and vy by
u1(A) = (@A) and v1(A) = v(BA) for A C R". (5.15)

Then

W (g1, v1) < 0711+ 4l 1p) Wo(u, v). (5.16)

As in (5.8)) the estimate is not symmetric in 1 and v, but is nonetheless valid. We require
that ;1(B(0,6/2)) # 0 and v(B(0,6/2)) # 0 to make sure that W, (y1, 1) is easily defined.

Often p is the restriction to B of a doubling measure and its support contains the origin; then

% > (O, for some C that depends on 6 and the doubling constant Csj.

Proof. Let 1 € Lip,(B) be given; we want to control the quantity

Jpdps [ pdin| _
[odpr [ pdin

(as above, but with integrals relative to y; and v;). Notice that by (5.13)),

a c
i 5.17
b d (.17

A =

a—/¢apdu1 /¢0 )0 x)du(x /1/)«9 ) (07 x)o(x)2du(z), (5.18)

where we just use the fact that ¢(#~'z) = 0 when 2 € R \ B(0, 1/2), and the special shape
of ¢ in (5.1), to add an extra ©?(z). Similarly,

e [wedin = [0 )00 ) @) (o). (5.19
The same computations without v yield
b= [ i = [ olo" D)) du(a), (5.20)
d= /ﬁpdl/l / (0 ) p(x)?dv(x). (5.21)
It is also useful to introduce
e= / wdp and f = /(pdu. (5.22)
Let us first estimate §; = £ — 5 We want to apply the definition of W (1, v/) to the function

U defined by ¥(x) = ¢(0 x) (6~ 12)p(x). Notice that W is supported in B (this is why we
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added ¢(z)), and its Lipschitz norm is at most 0 =1 (1 + ||| [1ip) + ||| liip < 0711 + 2|0 ]|1ip)-
Thus (5.3) yields

a_c
e f

We can also apply the definition of W, (u, v) to ¢(0~ x)¢(x), whose Lipschitz norm is at
most 201 ||¢||1ip, and we get that

|01] = <O ipWoo (1, v) < 0711+ 21| liip) Wi (1, v). (5.23)

b d _
ol = | = | < 20l ). (529
Thus
a ea e/c ecd ed ecyrb edy ¢ ecdy el
b be b(f+1) bdf b bd<+2)+b it T
where 91 and d are as in(5.23)) and (5.24). Thus
e c lecda|  |edi]
A_’b dl = bd b (5-25)

Now |c| < dbecause p > Oand [¢p| < 1,e = [ pdu < u(B(0,1)),andb = [ p(0~ z)p(z)?du(x) >
w(B(0,0/2)) because of (5.1)). Thus we have

e . p(B(0,1))
A < (614 62)~ < 0711+ 4[] ]1ip) W e 5.26
Noting (5.17) and taking the supremum over ) € Lip, (B), we obtain (5.16). O

The next lemma is used in Section|8] It shows that the distance function W, also controls
W1 in some averaged way. Thus W; and W, are basically interchangeable.

Lemma 5.3. Let p and v are Radon measures such that j1(B(0,1/4)) > 0and v(B(0,1/4)) >
0. Define iy and vy, 1/4 <t < 1/2, by

= 7#(1514) and v, = 7};(1&4) or "
) =B, A= B, AR 627
e 12 (8 + llellip)(B)
8+ |[p]lip) (B
» Wi (e, ve)dt < (B(0,1/4) W (e, v). (5.28)

Proof. First notice that the statement does not change when we multiply i and v by positive
constants. So we may assume that

/gpd,u = /gody =1. (5.29)
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Next fix ¢ € [1/4,1/2] and ¢ € Lip, (B). We want to estimate

fw t Wdu(e)  [Y(w)dv(@)
| v~ [ v = (B(0,1)) WBO.0) b a0

o

As before,

lad — be| _ |d(a —¢) — ¢(b—d)] < la —c| +|b—d]
bd bd - b

because |c| = | [ (t7 z)dv(z)| < ||9]|eov(B(0,t)) < d. Notice that p(z) = 1 when

Y(t~1x) # 0 since this implies that |t ~'z| < 1 and hence |z| <t < 1/2. Thus

la—¢ = '/w LoYdu(a /wt LoYdv(z
- 1 [ P @) - [ v e @)

We apply the definition (5.3) of W, with the function x — ¢ (¢~*z)¢(z), which is supported
in B and (¢~ + ||¢||1ip)-Lipschitz. We obtain that

A =

(5.31)

(5.32)

la—c| < (¢ + lllip) W (1, v) (5.33)
Notice also that . [ o ®) ®)
edp [ 1
Z = < < . 5.34
b~ w(B(0,6) = n(B0.) = w(B(0,1/1)) -39
Thus
—cl+b—-d B _
a g lomdrlbod o 0Bt W) + 1o — d]

b ~ u(B(0,1/4))
_ ©(B) _ ' B
= L(BO.1/1) [+ 11l W (1, v) + [(B(0, 1)) — v(B(0,6)]].  (5.35)

We take the supremum over 1) € Lip, (B) and get that

p(B)
u(B(0,1/4))

Since ¢! € [2,4], (5.28) will follow as soon as we prove that

Wi (e, ve) < [+ lellip) W (1, v) + 1u(B(0,)) = v(B(0,1))]]. (5.36)
[ (BO.6) - BO.0)d < W) (5.37)
(1/4,1/2]
Let h be a bounded measurable function, defined on [1/4, 1/2]; we want to evaluate
= WORBO,0) - B (5.38)
[1/4,1/2]
Observe that by Fubini

[ wwnmooi= [ [ e ehldt duta),
(1/4,1/2] z€B(0,1/2)
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and similarly for v. Set ), (x) = [ Lye1/a,1/2)Le>|oh(t)dt. This is a [|h||o-Lipschitz function
of |x|, which vanishes when |z| > 1/2, so by (5.1), (5.3) and the normalization in (5.29) we
have

Il = (5.39)

/ Ypdp — / Pndv
B(0,1/2) B(0,1/2)

= ’/whwdu—/wwdv

Thus (5.39) holds for all bounded measurable functions & defined on [1/4,1/2], and (5.37)
follows by duality. We saw earlier that (5.37) implies (5.28)). Lemma [5.3] follows. ]

< [PflocWe (11, v)-

We conclude this section with an easy observation concerning the behavior of W, (i, /)
when taking weak limits.

Lemma 5.4. Let pi and v satisfy (5.2), suppose that y is the weak limit of some sequence { .},
and that v is the weak limit of some sequence {vy}. Then

W (p,v) < li]gn inf W, (pk, v ). (5.40)
—00

Proof. Set Ly, = W (g, v) and L = liminfy_, L. Notice that [ pdp = limy_o [ oduy,
by weak convergence; by (5.2)), this implies that [ ¢dyuy, > 0 for k large. The same ar-
gument applied to a continuous function f < 1y 1/2) such that [ fdp > 0 shows that
wi(B(0,1/2)) > 0 for k large. Similar observations hold for v and v,. For each ¢) € Lip, (B),
the weak convergence yields [ ¢pdu = limy_,~ [ ¥oduy. For k large,

S edp [ Ppdyy
[edp, [ dvy

Since each term has a limit and the denominators are bounded away from 0, taking a lim inf
we have that

< Ly

Jvedp [ vpdv]
Jedu  [edv |~
Taking the supremum over 1) € Lip, (B) we conclude that (5.40) holds. O

6 Uniqueness of the tangent measure at ‘“‘good points”

In this section show that for x € ¥y N Xy, Tan(y, x) is a one-dimensional set of flat measures.
Recall that 3 and X were defined in (1.16) and (1.23)) respectively.

Lemma 6.1. Let pi be a doubling measure, and let x € Yo N X1. Then there is a nonzero flat
measure o such that Tan(p, z) = {co ; ¢ > 0}.
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Proof. Fix pand x € Yy N Xq; without loss of generality, we may assume that x = 0. By
Theorem[I.3] we know that
Tan(p,0) C 7 (6.1)

where .7 denotes the set of flat measures (see (I.21))). By definition of ¥,

1
/ CM_@(O,T)@ < 0. (6.2)
0 T

Thus it only remains to show that Tan(y, 0) is one-dimensional. Our initial goal is to bound
the W, distance for two different scaled dilations of 1 by (0, -) at the right scale. For each
r € (0,1/4) we use Chebyshev’s inequality to find r € [2r, 4] such that

4r 4r dt

ag(0,t)dt < 2/ az(0,1)— (6.3)
2r

as(0.re) < ! |

T

By the definition of a5 (0, 7) (see (I.I5)): there is a transformation G € 2(0, ), such that

Wi(n§, mg™™) < 205(0,74). (6.4)

By the definition (T.14) of 2(0, ), G is simply given by G (u) = Au, with A\~! = \(G) ™! €
[A174, Aory]. Set
r = AT Ay, Aoy ; (6.5)

notice that G is the homotety that sends B(0,7*) to B, so HoG = Mg,r* (see near (1.11))) and

now (6.4)) says that
Y 0,r*  O,ry
M‘1(#0 s Mg ) < 2ag(0,74). (6.6)

First apply Lemmato the measures ,uO’T* and ,ug’r* ;(6.6) yields that
0,
Wo(ug" 1o < Cag(0,74) ©6.7)

(where we do not record any more the dependence on ¢ or Cj). Then we apply Lemma[5.2]to
the same measures, with § = r/r*. Notice that § < 1/2 because r* > r > 2r.
Recall from (5.13) that i is defined by

m(A) = W07 (04) = 10 (rAfr) = “((“” r4/r’)

" W(B(0, )
O ulra) M(B ) o
= B0, ~ wBE,m e @ (©8)
by (I.T1)). Similarly, v, is defined by
B . oy w(rerAjr)
M) = T OA) = " A = T
ulp(r) A u(BO,p(r) o0
W(BO.r)) ~ w(BOr) M0 (09
where
p(r) = T:—j e Dyt AT (6.10)



By (5.3), (6.8), (6.9), Lemma the fact that ;)" is also doubling with the same constant
as p (which controls mass ratio in (3.16)), and (6.7),

W (1", 1) = W (p1,11) < CW (", 1d™) < Cag(0,74). 6.11)

In order to show that Tan(y, 0) is one-dimensional, we define a specific sequence of mea-
sures 1%7i, which will be used to approximate all the tangent measures of Tan(u,0) up
to a multiplicative constant. We start with 79 = 1/4, and define r; by induction, taking
rj+1 = p(rj) for 5 > 0. Note that for all choice of integers 0 < k < [, by (5.6), (6.11), and

we have
0, 0, 0,r; 0,r;
W (g™ ™) < D Wy mg™™) <C > ag(0,(r))4)

k<j<l k<j<l
41”j dt
< 20 Z/ g (0,8)—. (6.12)
- 2r; 3
k<j<l J

Recall that 711 = p(r;) < A;'r; (see (6-10)), thus the r;’s decay at a definite rate. Therefore
the intervals [2r;, 4r;] have bounded overlap, and since they are all contained in (0, 4ry], we

obtain
dt

: (6.13)

4Tk
W (47, 107 < C /0 0(0,)

Let o € Tan(yu,0) be given. There exist sequences {py } and {ay} such that p;, € (0,1/4],
limg o0 pr = 0, ax > 0, and

o) = ay ,uo””“ converges weakly to o. (6.14)

Let j = j(k) denote the largest integer such that r; > pi. Thus j > 0 (because ro = 1/4),
and rj41 < pg; since 711 = p(r;) € [M\y ', AL ;] (by (6-10)), we get that

/\Q_ITj(k) < Pk S Tk (6.15)

Set O, = pr./7Tj) € [Ny 1 1]; we may replace {p;} by a subsequence such that the 6, converge
to a limit . Consider the dilation Dy, defined by Dy (u) = 0xu, and set D(u) = Ou. Notice

that by (6.14) and (I.11)
[Dilsor = ar[Dilsu® = appu®/% = agu®rieo, (6.16)

Also, the [Dy]yoy, converge weakly to Dyo. In fact for f continuous and compactly supported,
lim / fd[Dilsor = lim / £(0; ' x)doy(z) = lim / f(0~1z)doy(x)
k—o0 k—o0 k—o0
_ / FO~ ) do(z) = / fd[Dlo 6.17)

(use the uniform continuity of f and local uniform bounds on the o). By (6.1)), o is a flat
measure; then Dyo = o and shows that

{app"i® } converges weakly to o. (6.18)
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If o/ is another nonzero element of Tan(y,0), we can find other sequences {j'(k)} and {a} },
with limy_, j'(k) = oo (by the analogue of (6.13))), such that

073'x) } converges weakly to o (6.19)

{ajp

By Lemma[5.4] then (5.5)), and then (6.13)) and (6.2),

/ . . 0.7 / O’ . BT . ()7 . 07 .
Wy (o,0") < hkmlan@(aku Tt a0 ) = Timinf W, ("0 "))
—00 k—oo

4max(r]-(k),rJ/(k)) dt
< (Clim inf/ ag(0,t)— = 0. (6.20)
k—o00 0 t
Then o = ¢’, and this completes our proof of Lemma O

7 The decomposition of the “good set” in >,

In (1.28)-(1.29) we announced a decomposition of XN (X1 U32) into pieces .7y (0 < d < n),
which satisfy the property that for each = € .7, Tan(u, z) C #4. In this section we check
that the pieces 31 N .%; satisfy the requirements of Theorem The remaining sets o N .7y
will be treated in Section [8l

We start with d = 0. Set

S = {x € X; Tan(p, z) C 90}. (7.1)

We claim (as in the statement of Theorem|I.2)) that . is the set of points where j has an atom,
and that every point of .%} is an isolated point of 3.

Suppose that i has an atom at . Then since p is doubling, x is an isolated point of X
(Lemma 2.3 in [1]). We can check by hand that Tan(u, ) is the set .%; of multiples of the
Dirac measure at the origin, and that z € ¥y N X1 N Xy (because ag (z, ) = 0 for r small).

Conversely, suppose that Tan(u, z) C %y, and let us check that x is an isolated point of
Y. Suppose instead that we can find a sequence {zj} in ¥ \ {z} that converges to z. Set
r, = 2|z — xx|. Since p is doubling, there is a subsequence of {4xy"*} which converges
weakly to a measure 0. Since o € Tan(u, =), o is a Dirac mass. Let ¢ be smooth function such
that ]13\3(071/4) <(¢< 1(3(072)\3(071/4). Then deU =0, so limp_, fcugﬂ"k = 0. On the
other hand, by and

/ Cdug™ = p(B(z,ry)) " / Cdp™ ™ (7.2)
= (Bl ) / ¢ My — 2)du(y)

> u(B(x,r)) " p(Blag, ri/4) > €58

because {(r; ' (y — z)) = 1 fory € B(wg,7y/4). This contradiction shows that if z € .74,
then x is an isolated point in X, and then g has a Dirac mass at . This gives the desired
description of .79, the fact that .} is at most countable is easy to see.

We may now concentrate on exponents d € [1,n]. Set

Fy={x€TogN¥y; Tan(p,z) C Fy} = SNy, (7.3)
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where the last equality comes from (1.28). Together with .}, these sets are disjoint and cover
Y1 N3 (by (1.29)), hence also p-almost all of ¥ (by (1.26)). By Lemma 6.1} the only part
of Theorem concerning 3, that remains to be proven is the fact that .7} is rectifiable for
1 < d < n, and more precisely

. can be covered by a countable family (7.4)

of d-dimensional Lipschitz graphs.

(This is slightly more precise because we don not need to add a ./#“-negligible set.) This
follows from the following lemma, which is essentially known, but which we prove for the
reader’s convenience.

Lemma 7.1. Suppose that 1 is a doubling measure, X is its support, d € {1,...,n},and E C ¥
is such that for all © € FE, there is a vector space V,, of dimension d such that Tan(z, ) =
{c%” Ay e > O}. Then E can be covered by a countable family of d-dimensional Lipschitz
graphs.

The fact that E' = . satisfies the assumption of the lemma comes from Lemma

Proof. If d = n, R™ is a d-dimensional Lipschitz graph that covers F, thus we assume that
d < n. We claim that forx € E

x + V, is a tangent plane to X at x. (7.5)
If not there is a sequence {yx } in X\ {z}, that tends to z, and such that

dist(yx, = + Vi) > clyp — 2| (7.6)

for some ¢ > 0. Set 7, = 2|y;, — x|, and replace {yy,} with a subsequence for which the {y;"™* }

converges weakly to a measure o € Tan(u, z). Let ¢ be a smooth compactly supported non-
negative function such that {(0) = 0 on V/, but

C(u) =1 for u € B such that dist(u, V) > ¢/2. (7.7)

By assumption, o is supported on V;, and so [ (do = 0. Thus limy_, [ Cug"™ = 0. On the
other hand, says that for y € B(yg, cri/4),

dist(r, *(y — x), Vi) = 7y, tdist(y, @ + Vi) > ) Hdist(yg, 2 + Vi) — %] > c/4,

hence ¢(r; ' (y — x)) = 1 by (7.7), and (I.11) and (T.2) imply that
/Cd,ug’rk = u(B(z,r)) "t /Cd,uz’”“ (7.8)

— (B ) / ¢l My — 2))di(y)
> w(B(x, )" p(B(a, erg /4)) > O

This contradiction proves (7.3)).
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For € > 0 small and = € E, choose an integer j = j(x) > 0 such that
dist(y, z + V,) < ely — 2| fory € ©N B(z,277@), (7.9)

On the Grassmann manifold G(d, n) of vector spaces of dimension d in R™, let us for instance
use the distance defined by dist(V, W) = ||y — mw ||, where my and 7y denote the orthog-
onal projections on V and W. With this distance, G(d, n) is compact. Choose a finite family
¥ in G(d, n) such that dist(V, #) < e for V € G(d,n). Set

E(V,j)={z € E; j(z) = jand dist(V,,V) < e} (7.10)

for V.€ ¥ and j > 0. We now cover each F(V,j) with a countable collection of d-
dimensional Lipschitz graphs. We claim that for each ball B of radius 27771,

E(V,j) N B is contained in a Lipschitz graph over V. (7.11)

Lemma follows from this claim because the E(V,j) cover E. To prove the claim, let
x,y € E(V,j) N B be given. Observe that |z —y| < 277 andy € E C %, so (7.9) guarantees
that dist(y, z + V) < ¢|y — z|. Then

v (y) = mv(@)| < [mv, (y) = v, (@) + [lmy — 7, ] —y| < 2ele -y,

which yields (7.11)). This completes our proof of Lemma/7.1

8 The decomposition of the “good set’” in >

Our goal in the section is to apply Theorem 1.5 in [1]] to the set 3 N X9, to obtain the desired
decomposition. For the reader’s convenience we include the necessary background below.

Theorem 8.1 (Theorem 1.5, [1]]). Let i be a doubling measure in R™, denote by 3. its support,

and set
0 1 dr
0 ={zex; oz(:z,r)7<oo},
0
where
afr) = min aga.r).
and

aq(z,r) =inf {Wy(ug",vv); V € A'(d,n)}.

Here A'(d,n) denotes the set of n dimensional affine spaces which intersect B(0,1/2) and
vy = cy LYV = cyly Y, with cyy = AUV NB)~L. Then there are disjoint Borel sets
¥0(d) ¢ ¥, 0 < d < n, such that

n
20 = =%a),
d=0
with the following properties.
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1. First, ©.°(0) is the set of points of ¥ where . has an atom; it is at most countable and
each of its point is an isolated point of X..

2. For1 <d<nandx € X°(d), the limit

04(x) := lim r~¢u(B(z, 7))

r—0

exists, and 0 < 04(z) < oo.

3. For1 <d < nandx € Xd), ¥ has a tangent d-plane at x, W, and set W* =
W — x. Then Tan(z,p) = {c#*LW*;c > 0}. In addition, the measures ug"
converge weakly to 7% _ W™,

4. Further decompose ¥.°(d), 1 < d < n, into the sets
¥0(d, k) = {z € £%(d) ; 2F < O4(x) < 2"}, k € Z;

then each ¥.°(d, k) is a rectifiable set of dimension d, with 7#%(X°(d, k) N B(0, R)) <
oo for every R > 0, p and % are mutually absolutely continuous on ¥0(d, k), and
= 0q% there.

We want to apply Theorem 8.1} so we need to show that for each z € £y N Xo,

1
/ oz(:c,t)ﬂ < 0. (8.1)
0 t

Let z € ¥y N X3 be given. By Theorem [I.3|every tangent measure o € Tan(p, z) is flat. To
estimate to the distance from 4" to o we proceed as in Section |§] except that we work with
the whole group ¢ rather than . We now follow that argument, without some of the details
but we do emphasize the differences.

Without loss of generality, we assume that x = 0. We use the definition of a and Cheby-
shev’s inequality to associate to each r € (0, 1/4] aradius r € [2r, 4r] such that

4r dt
ag(0,r4) <2 ag(O,t)T (8.2)
27

(see (6.3). By the definition (I.13), there exists G € ¢(0, r) such that
Wi (n, 1g™) < 204(0,74) (8.3)

(see (6.4)). By (1.6) G = AR for some isometry, and since G € ¥(x), (I.8) guarantee
that G(0) = 0 and hence R(0) = 0. That is, R is a linear isometry. We still have that
AE=XNG)7 € [Mry, Aoy ], and if we set

r* = )\_1 S [)\1’F+, )\2T+]; (84)

as in (6.3), we have that
G(B(0,r")) =B (8.5)

and ,ug is the image of ,ug’r* by a linear isometry. That is, MoG = Ry ug’r* and (8.3) only yields

Wi (Ryug™, 1p"™) < 204/(0,74) (8.6)
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instead of (6.6). We still multiply the radii by r/r*, set

rr 4
p(r) = rj € Myt ATt (8.7)

as in (6.10), and deduce from (8.6)) that
Wo(Ryg" ™)) < Cag(0,14), (8.8)

using the same proof which involves Lemma [5.1] and Lemma [5.2] (the extra rotation does not
affect the argument). Inequality (8:8) is the analogue of (6.11). Let us write this slightly
differently. Set R” = R™1; then by (8:8)

W (10", Bypg™") < Cag(0,1), (8.9)

since the W ,-distance is invariant under isometry.

Given ry < 1/4, we can construct a decreasing sequence {r;} as we did before, defined
by rj+1 = p(r;). Let us keep track of the rotations: set S° = I and S7+1 = S7R"i. Fork > 0
we want to estimate the numbers

O = Wolpg ™, S ™). (8.10)
Let us check by induction that
S <C Y ag(0,(rj)y). 8.11)
0<j<k

When k = 0, this is (8.9) for ro. If £ > 1 and (8.I1)) holds for & — 1, the triangle inequality

(3.6) yields
Ok < Opy+ W (SEug™, SET g™ ) (8.12)
= Op-1+ ch(SéCMg’rkv [Serk]W%rkH)
= 1+ Wo (g™, By ™) < 81 + Cag (0, () )

by definition of S**!, the invariance of W,, under linear isometries, and (8.9). This proves

(8.11). Then (8.2)) and the same argument as in (6.12)-(6.13)) yield

47"j dt
S < C Y an0.(m)) <C Y /2 0y (0,6)
0<j<k 0<j<k““"i
4ro dt
< c/ s (0,0). 8.13)
0

The final integral is finite because 0 € X9 (see the definition (T.I7)).
The measures u87rk are suitably normalized, so there is a subsequence which converges
weakly to some measure o (again see Lemma 2.1 in [1] for a little more detail). There is
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also a further subsequence for which the S* converge to an isometry S, and then the Sé“ ,ug "k

converge to Syo (proceed as for (6.17)). By Lemmal[5.4} (8.10), and (8.13),
Wo(ug™, Spo) < hm me (0™, fug B likminf Ok

—00

4r0
< C’/ v(0,t)— dt (8.14)

We now use Lemmato translate estimate (8.14)) into an upper bound for the f 01 (z, )" dr.

For t € [1/4,1/2], the measure 1 that is defined by (5.27) with u replaced by ,ug’ % is just
ug 70 Since o is a flat measure, so is Syo. Hence the measure v; built from v = Syo as in
7) is also a flat measure supported on a d-plane V' passing through the origin. We use v, to

estimate a(x,r). By (5.28), the fact that y is doubling, and (8.14)), we have
1/2 1/2 1/2
/ a(z, tro)dt < Wi (™", vy)dt = W1 (e, v)dt (8.15)
1/4 1/4 1/4
dt

4rg
8+ lellin) CEW, (1™ Si) < € [ (0.0

IN

Note that (8.13) holds for o < 1/4.
We are now ready to prove that for z € Zo N X, fol a(z,r)SF
assuming z = 0. By (8.15) and the definition (I.1I7) of 32 we have

1/8 ds ds 1/2 dt
i t2™
/0 a(z, s) . E /2 a(0, s) g / a(0, t

k>2 k>2

1/2
4 Z/ (0,27 %)dt
1

dr — ~o. Recall we are

9—k-1

IN

(8.16)

AN
A
Q
C\m
Q
N
=
=
N

dt
= 4C/ ag(0,1) Z]l{kg k+2>t} )}

k>2

1 2
< C/ o8 t/t) < 0.

A brutal estimate shows that a(x, ) < 2 for r > 0, hence fl oz, s)% ds < 0. Hence the
hypothesis of Theorem [8.1 hold. We obtain a decomposition of the set 20 N X9 into subsets
i, 0 < d < n, which satisfy all the requirements for Theorem |1.2} . In fact we get some
additional information which we record here. First, for every point x € yé’ ,d > 1, Tan(p, )
is the vector space of dimension 1 spanned by some flat measure of dimension d (see (1.27))
which implies

S ={x € TogNTy; Tan(p, z) C Fy} = Xz N.Sy, (8.17)

where .7 is as in (I.28)). Moreover once we know that Tan(u, =) is the space of dimension
1 spanned by some flat measure o € %, we have that > has a tangent d-plane at x whose
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direction is given by the support of o; see (7.3). Then .7/ is rectifiable, and even satisfies
(7.4); see the proof above, and also[1]]. This completes the proof of Theorem[1.2]

As mentioned in Section [1| we have additional control on the size of ; on Yo and the
behavior of y on .. For 1 < d < n and every point z € ./ = Xy N .y, the density of ;1
exists, that is

04(x) = lim r~u(B(xz,7)) € (0,00) (8.18)
r—0
(see [1]). Morever, we have the further decomposition of . into sets .7 N X°(d, k) where
w and 274 are mutually absolutely continuous, as in 4. in Theorem 8.1
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