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Bayesian hierarchical models were used to assess trends of harbor seals, Phoca vitulina richardsi, in
Prince William Sound, Alaska, following the 1989 Exxon Valdez oil spill. Data consisted of 4-10
replicate observations per year at 25 sites over 10 years. We had multiple objectives, including
estimating the effects of covariates on seal counts, and estimating trend and abundance, both per site
and overall. We considered a Bayesian hierarchical model to meet our objectives. The model consists
of a Poisson regression model for each site. For each observation the logarithm of the mean of the
Poisson distribution was a linear model with the following factors: (1) intercept for each site and
year, (2) time of year, (3) time of day, (4) time relative to low tide, and (5) tide height. The intercept
for each site was then given a linear trend model for year. As part of the hierarchical model,
parameters for each site were given a prior distribution to summarize overall effects. Results showed
that at most sites, (1) trend is down; counts decreased yearly, (2) counts decrease throughout August,
(3) counts decrease throughout the day, (4) counts are at a maximum very near to low tide, and (5)
counts decrease as the height of the low tide increases; however, there was considerable variation
among sites. To get overall trend we used a weighted average of the trend at each site, where the
weights depended on the overall abundance of a site. Results indicate a 3.3% decrease per year over
the time period.

Keywords: trend analysis, abundance estimation, population monitoring, Markov Chain Monte
Carlo, Poisson regression, aerial surveys, Exxon Valdez oil spill, harbor seal, Phoca vitulina
richardsi, Prince William Sound
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1. Introduction

Monitoring programs to track long-term changes in population size are important for
applied ecological studies. Such monitoring programs often have multiple objectives that
include monitoring trends, estimating abundance, and estimating the effects of covariates,
both for large areas and smaller areas that comprise the larger area. In this paper we
develop a Bayesian hierarchical model for analyzing trend, abundance, and the effects of
covariates for monitoring programs of multiple sites, and we apply it to counts of harbor
seals following the Exxon/Valdez oil spill of 1989 in the Prince William Sound, Alaska.
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Harbor seals are one of the most common marine mammal species in Prince William
Sound (PWS), Alaska, and adjacent parts of the Gulf of Alaska. PWS has over
4800 km of coastline, consisting of many fiords, bays, islands, and offshore rocks. The
exact number of harbor seals inhabiting the region is unknown, but is at least several
thousand (T. R. Loughlin, unpublished report, National Marine Mammal Laboratory,
NMES, Seattle, WA.). Between 1984 and 1988 the number of seals counted at haulout
sites in eastern and central PWS declined by about 40% (Frost et al., 1994). The
harbor seal population was monitored by flying aerial surveys during 1989-1999
subsequent to the Exxon/Valdez oil spill as part of damage assessment and restoration
programs.

Many studies have demonstrated effects of time of day, date, and tide on the hauling out
behavior of harbor seals (Schneider and Payne, 1983; Stewart, 1984; Harvey, 1987; Pauli
and Terhune, 1987; Yochem et al., 1987; Thompson and Harwood, 1990; Moss, 1992;
Frost, et al., 1999). The data to describe those behavioral patterns has usually come from
continuous or repetitive visual observations of seal haulouts, or from telemetry studies.
Information derived from those studies has been used in the design of harbor seal surveys,
to the extent that survey programs are generally designed to occur on dates and at times
when the greatest number of seals is expected to be out of the water and available for
counting (Pitcher, 1990; Harvey et al., 1990; Olesiuk et al., 1990; Huber, 1995). However,
once a ‘‘survey window’’ has been established counts have usually been treated as
replicates during analyses, and the possible effects of other factors on annual abundance
estimates have been ignored. In fact there are generally two ways to account for the effects
of covariates. One is to use a design that ‘‘standardizes’’ for all of the effects, such as
picking a narrow range of dates, having a particular weather condition, a particular time of
day, a particular time in the tide cycle, etc. While desirable, the problem with the
standardized design approach, for our study, is that date, weather and tide cycles rarely
cooperate to provide standardized conditions year after year. We adopt an alternative
where we pick a relatively broad range of dates and count seals when weather allows. We
then make adjustments to counts based on data collected on covariates that are known to
have an effect on counts. Of course, the estimation of the effects of the covariates
themselves is also of interest.

There are often several statistical methods to analyze such data. One of the most
fundamental differences among statistical methods occurs when making a choice between
Bayesian and classical (frequentist) methods. While there are strong philosophical
differences, in practice results can be quite similar, and the choice can be made on
practical considerations. In this study, we consider models of trend and abundance that
include the effects of covariates for twenty-five sites individually. Then it is natural to give
the parameters of all 25 sites a common distribution, thus developing a hierarchical model.
The advantage of this approach is that the problems of estimating trend, abundance, and
the effects of covariates are given a single unified probability framework. The hierarchical
model also helps stabilize estimates in cases where sample sizes for individual
components are small.

This paper presents an analysis of aerial survey counts of harbor seals in PWS. The
objectives are to develop a Bayesian hierarchical model to (1) estimate trends at individual
sites, (2) estimate trends in the study area as a whole, (3) estimate yearly abundance at each
site, (4) estimate yearly abundance for all sites combined, and (5) study the effects of
covariates: date, time of day, time relative to low tide, and tide height, on seal counts.
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While we developed this model for harbor seal data, we believe it has broader application
in many other monitoring situations.

2. Methods
2.1 Aerial surveys

Harbor seals generally have high fidelity to a haulout site during the molting period. They
haul out near low tide, which allows them to be counted on multiple occasions. We
conducted aerial surveys along a trend count route that covered 25 harbor seal haulout sites
in eastern and central PWS (Fig. 1). The route included 7 sites that were substantially
affected by the Exxon Valdez oil spill and 18 unoiled sites that were outside of the primary
affected area (Frost et al., 1994). Surveys were flown during the molting period (August—
September) in 1984 and 1988-1999.

Visual counts of seals were conducted from a single-engine fixed-wing aircraft (Cessna
185) at altitudes of 200-300 m, usually with the aid of 7-power binoculars. Counts were
usually conducted from two hours before low tide to two hours after low tide. A survey
normally included counts at all 25 sites, but occasionally some sites could not be counted
because of poor weather or a rapidly rising tide. For each survey the date, time and height
of low tide, and time of sunrise and sunset were recorded for each site. Each site was
circled until the observer was confident that an accurate count had been made, and the time
of the count was recorded. For larger groups of seals (generally those of 40 or more) color
photographs were taken using a hand-held 35-mm camera, and seals were counted from
images projected on a white surface. Several survey flights, usually 7-10, were made each
year. The effects of the oil spill on harbor seal numbers has been extensively described
(e.g., Frost et al., 1994; Lowry et al., 1994; Morris and Loughlin, 1994). In this paper, we
only consider data after the 1989 oil spill, from 1990 to 1999. The total number of counts
for all sites for the time period was 1739.

Prior to further data analysis, the covariates: date, time-of-day, time-relative-to-low-
tide, and tide-height were rescaled to prevent computer overflows during estimation. The
effect of year was rescaled by setting 1994 as year 0. Specifically, the covariates were
adjusted as follows:

Jj = Year—1994,
_ (Date with August 1 as day 1-28)
ik = 100 ’

__ (Time-of-day from midnight [in minutes]—720)
ik = 1000 ’
(Time-relative-to-low-tide [in minutes])
ik = 100 ’
(Tide-height of low tide [in feet])

Xajjk = 10 )

for the k-th flight at site 7 in year j.
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Figure 1. Map showing trend-count sites for aerial surveys of harbor seals in Prince William Sound,
Alaska, 1990-1999.

2.2 Previous methods—Poisson regression for all sites combined

Frost et al. (1999) used a generalized linear model (McCullagh and Nelder, 1989) with a
log link function and a Poisson distribution to analyze the factors that may affect the
number of seals hauled out and available to be counted during surveys. The model may be
written as: Pr(Z;, = z) = exp(— 4 ) A5 /2! with In(4;;) = f'x;; where § is a parameter
vector and X is a vector containing information on the state of covariates: site, year, date,
time of day, time relative to low tide, and tide height, for the k-th flight at site i in year ;.
Loglikelihood ratios were used to obtain a parsimonious model. Then the count data were
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adjusted to a standardized set of covariates. The adjustment amounted to the expected
count at each site for each year under optimal conditions. Next, to assess overall trend,
linear regression and Poisson regression models were fitted to the adjusted yearly count
estimates. The analysis of Frost et al. (1999) was complicated because they first adjusted
yearly counts for each site to a standardized date, time of day, and time relative to low tide,
then summed over sites to get a yearly index, and then used the index in a trend regression
analysis. Under these circumstances, it is difficult to take all of the uncertainty associated
with adjusting the counts and then using trend analysis on the adjusted counts. Therefore,
they used bootstrap methods (Efron and Tibshirani, 1993; Manly, 1997) for the whole
procedure.

2.3 Bayesian hierarchical model

The Bayesian hierarchical model begins with Poisson regression for each observation. Let
Zjj, be a random variable of the number of seals counted for the k-th replicate flight in the
Jj-th year at the i-th site. Write

f(Zijk) = exp(— izfik);‘;}z{/zi/‘k!
with
, 2 2
In(Z;) = 05 + x5 — Xiiubai + %P — iubai
2
+ X33 Bsi — Wibei + XaijeBri + s (1)

where 0;; is an intercept, ¢; is an overdispersion parameter, and Xx,; is the p-th
explanatory variable containing observed values of the covariates: x;; = date, X, =
time of day, x3;; = time relative to low tide, and x,;; = height of tide, for the k-th flight at
site i in year j. For the effects of date, time of day, and time relative to low tide, we wanted
a model that would be unimodal with a single peak value, so we forced b,;, b,;, and bg; to
be positive by reparameterizing; e.g., by; = exp(f,;), where — oo < f3,; < oo. Thus, the
two terms X ff1; — x%l-jkbzl» form a Gaussian curve when exponentiated. We assume that
conditional on the covariates, all observations are independent, so the joint density is,

[(216,B) =T1f (z;3).-
In the next level of the hierarchy, we develop a separate trend model for each site,

F(Oy17oi; T4 0%) = N(ty; + 1,; X j, 0°), where N(m, V) is a normal distribution with mean
m and variance V, and jointly,

25 5

f(o“[,éz) = H H f(eij"TOthiaéz)'

i=1j=—4
Next, we group the site-specific covariate parameters and give them a distribution;
f(ﬁpi|:up7 0-127) = N(:u/n 0-127)’ where jOint]y’

7 25

Bl o) = T [1f Bty o2)-

p=1li=1
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For the trend parameters, we will also group the site-specific covariate parameters and give
. . . . 2 2 . .
them a distribution; f(z,[n,,v;) = N(n,,7;), where jointly,

1 25
f(xln,y) H H Fgilng 72)-

We also group the overdispersion parameters and give them a distribution;
F(&]0, &) = N(0, &), where jointly,

8|0 é H H Hf ljk|0 é

i=1 j=-4 k=1

and f(&|v,,v,) = GAM(v,,1;,), where GAM(a,b) is a gamma distribution with
parameters a and b, where jointly,

25
vp) = Hf(éf|VaaVb)-

i=1

In the fourth and final level of the hlerarchy, we give diffuse prior distributions, f(u,) and
f(n,) are N(0, 1,000,000); and f(8%),f (o 2).f(v2).f (v,) and f (v,) are GAM (0.001, 0. 001).
Jointly,

7 1 7 1

f) =T1rw), ro) = T]f(n,). f(e) = T[] f(op), and £(y) H F&2).

p=1 q=0 p=1 =

The hierarchical model is shown diagrammatically in Fig. 2. Using the hierarchical setup,
Bayes theorem allows us to write the posterior distribution:

f(07ﬂ7 T? 8) 527 67”7 O-, ’I? y’ Vm Vb|z) m
F(&IB,0)F (017, )f (Blu, &)f (£]0, EV (xlm, p)f (3 )f (v v ) (W (@)f () (2)f (W) (1)

| Diffuse Priors |

Figure 2. Diagrammatic scheme of hierarchical model.
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It is difficult to obtain an analytical solution to the above equation; however the modern
techniques of Markov Chain Monte Carlo (MCMC, see, for example, Gilks et al., 1996)
allow us to obtain samples from the posterior distribution. From these samples we can
compute functions and summaries of the posterior distribution, such as expectation,
standard errors, quantiles, etc. The resulting tables use covariates on their standardized
scale, but the figures show the effects back on the original scale. Rescaling the covariates
helped to stabilize the MCMC methods.

From the posterior distribution, several parameters have particular interest. The
parameter t,; is the slope parameter for the i-th site, and #, is the mean of all 25 sites,
which is an overall indication of trend among all sites. However, #, is not entirely
satisfactory because it weights all sites equally (actually, it depends on their sample
sizes—in this study, they are all relatively equal). In order to give sites with greater
abundance more weight, we can consider the following:

25

i explro) Ty 3

T VI (3)
>i—1exp(To;)

as an indicator of overall trend. Other weighting schemes are possible, such as weighting
by the last year, or the average of all years. The hierarchical Bayes method using MCMC
makes it easy to obtain inference on o;—we simply use the samples from the posterior
distributions of 7(; and 7,; to compute the posterior distribution of «;. Another function of
the parameters that has particular interest is an indication of overall abundance for each
year, which we compute as,

25

¢; = Z exp(0; + x1,By; — X1ybai + Xos B3 — X3bg; + X3.Bsi — X3,be; + XasBry)- (4)
i=1

where x;;k = 1,...,4, are specified values for the covariates.

We performed some model diagnostics. A common measure for the fit of the model is to
compute a Chi square discrepancy (see, for example, Gelman et al., page 172). In general,
it is defined as, [y — E(Y)]*/var(Y). For our application, we computed the posterior
distribution of the Chi square discrepancy for each site,

1 i (Zy — )’
R =— 2 Lj
S S

ij= —4k=1

where N, is the total number of observations over all replicates and years for the ith site. If
the model is fitting well, we expect R; to be near one for each site. We compute R, by site to
highlight whether lack of fit occurs locally or globally.

The statistical package WinBUGS was used for the Bayesian hierarchical model. For the
MCMC, we let the chain ‘‘burn in’” for 4000 samples, and then computed the means,
standard errors, and percentiles based on the next 10,000 simulations. We started the chain
from several different points and obtained very similar results, and examination of the
trace of the chain did not reveal any irregularities. Typically the autocorrelation in the
chain for each parameter dropped to near zero well before 30 iterations.
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3. Results
3.1 Covariates

Four primary factors were considered that might affect the counts of seals during aerial
surveys. Figs 3 to 6 show the effects of date, time of day, time relative to low tide, and tide
height for each site. There graphs were developed by first transforming the covariates as
described in Section 2, call them x;;k = 1,...,4. Then each panel is a graph of

exXp (kaBpi - xl%s[;qz) ) (5)

for the i-th site, where [31”- is the mean of the MCMC sample from the posterior distribution
for that 8 associated with x;,, and b,; is the mean of the MCMC sample from the posterior
distribution for b,; = exp(f,;). Notice that Fig. 6 only contains the term x;,3,,;. Also notice
that another estimate that easily allows credibility intervals can be obtained for the graphs

by using,

j
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Figure 3. Effect of date on counts of harbor seals for each of the 25 haul-out locations in Prince
William Sound, Alaska.



Bayesian hierarchical model

1

2 3 4 5
1.5 1
1.0 4 \ \ \ — \
0.5 -
6 7 8 9 10
15+
%10' ...--"""'f \ /\ / \
80.5-
£ 11 12 13 14 15
S 15 -
<
§‘|,O- \ \\ e— \\ ——
]
5 05+
5] 16 17 18 19 20
(=
2 15
S
1.0 —" \ \ —
0.5 -
21 22 23 24 25
1.5 1
1.0 - "'--.._______ \ — \
0.5 1

420 -
720 -
1020 A

420 A
720 A
1020 A

420 -
720 -
1020 -

420 -
720 -
1020 -

Time of Day (minutes from midnight)

420 A
720 A
1020 -

209

Figure 4. Effect of time of day on counts of harbor seals for each of the 25 haul-out locations in
Prince William Sound, Alaska.

1 & L L
N Z exp('xksﬁéi> - x/%sﬁz(]i>)’
L=1

rather than (5), where L indexes the MCMC iteration. However, all iterations must be
stored for various x values, so it requires more storage.

Note that l5q,- is enforced to be positive, which forces all curves in Figs 3 to 5 to be
Gaussian with a single maximum (which may be off the range of the abscissa). We chose
to do this because, from a biological viewpoint, we expect seals to spend most of their time
hauled out during the molting period, which is around mid to late August. Thus, there
should be a well-defined maximum during these molting dates for Fig. 3. Likewise, we
expect a peak time of day for haulout, and a peak time relative to low tide. However, we
expect only a linear trend (on the log scale) for tide height.

Finally, note that for standardized states of the covariates, Equation (1) can be written as
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Figure 5. Effect of time relative to low tide on counts of harbor seals for each of the 25 haul-out
locations in Prince William Sound, Alaska.

lij = exp(@,-j) exp(xy,By; — x%stI) exp(x B3 — x%xbm') exp(xsefls; — ngbsi) exp(xysB7:),

(6)

so (5) can be seen as a multiplicative factor for each effect that controls the proportional
change in the expected counts for the i-th site in the j-th year.

The overall effects of covariates are given in Fig. 7. The model predicted that, overall,
maximum counts occur near the 15th of August, after which counts decrease. Counts are
about 10% lower on the 21st of August compared to the 15th, and about 20% lower by the
beginning of September (Fig. 7(a)). The model predicted that overall counts would
decrease throughout the day, with counts 10% lower at noon than at 7:00 am, and another
10% lower at 5:00 pm than at noon (Fig. 7(b)). Relative to low tide, the model predicted
the highest counts near low tide, with lower counts (about 10% lower) at + 2hrs from
low tide (Fig. 7(c)). There is a small effect due to the height of the low tide (Fig. 7(d)), with
slightly higher counts at lower tides.
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Figure 6. Effect of the height of the low tide on counts of harbor seals for each of the 25 haul-out
locations in Prince William Sound, Alaska.

3.2 Trend and abundance

In the model (Equation (1)), the intercept term 0;; contains information on the expected
counts. The value exp(0;;) can be interpreted as the abundance for the i-th site in the j-th
year, for some standardized values of the covariates where x,; = O foreach k,k = 1,... 4.
This can be seen in Equation (1), which was given in multiplicative form in Equation (6).
The mean value of exp(0;;) from the posterior distribution, for all years j = 1,2, ..., 10,
for each of the sites i = 1,2,...,25, is given in Fig. 8. The actual counts are also given in
Fig. 8. Notice that the value of exp(@,»j) from the posterior distribution may be quite far
from the actual counts because exp(0;;) is standardized for certain values of the covariates,
while the actual counts may have occurred under a different set of values for the
covariates.

The estimated trend is also given in Fig. 8, which is the posterior distribution of
exp(tg; + 1y; X j) forj = —4,—3,...,5 where j = — 4 is the re-indexed value for year
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Figure 7. Overall effects of date, time of day, time relative to low tide, and height of low tide, on
counts of harbor seals for all of the 25 haul-out locations in Prince William Sound, Alaska.

1990. Fig. 8 shows that most sites have a decreasing trend. The credibility intervals, which
are not shown, often do not contain zero.

An example of the full range of inference on trend and abundance for a specific site is
given in Fig. 9 for site 4. Notice that we give estimates of abundance for each year, along
with the 2.5% and 97.5% credibility limits of the parameter estimates from the posterior
distribution. The estimated trend curve is also given, along with 2.5% and 97.5% bounds
for the curve from the posterior distribution. Notice that the actual counts show a slight
increase over the years but the estimated abundance and trend is downward. This is
explained by the fact that counts in earlier years were generally obtained later in the season
(often in September). The effect of decreasing counts with date for site 4 can be seen in
Fig. 3. Because of scaling to the standardized date (August 28), the abundance estimates
show a pattern different than the observed data.

Using a sample from the posterior distribution (2), Fig. 10 shows the posterior
distribution of both the mean trend parameter estimate #, and the weighted trend estimate
o, given by Equation (3). The mean of the posterior distribution of #, is — 18.5% change
per year with a standard deviation of 6.08% and a 95% credibility interval of —30.6% to
— 6.5%; the mean of the posterior distribution of o; is — 2.5% change per year with a
standard deviation of 1.36% and a 95% credibility interval of — 5.21% to 0.14%. The
contrast in the results is interesting, and due to the fact that several small sites dropped to
zero, creating several steep negative trends that had a large effect on 7, but having little
effect on «;. Nevertheless, both results indicate that over the 10 years from 1990 to 1999,
there has been a significant overall declining trend in harbor seal numbers. Frost et al.
(1999) estimated a 4.6% yearly decline from the period 1990 to 1997.

The overall abundance estimates for each year, given by Equation (4), were also
determined using a sample from the posterior distribution (2). The results for two different



Bayesian hierarchical model 213

+ seal counts
O abundance estimate
trend estimate

150
100

150
100
50 -
0 W Shosasssss | Teedscton M Pddsonnns
11 12 13 14 15
150
w0
S 100
w

.
150 {+1 g +

100

50

Od

21

150

100

50 i

o ¢ +
T LI LI T T T 1T 71 LI | T T LI T LI | T
CNTOD ONTOD ONUNTOO ONTOD ONFO©D
(=) B Ie) e I e)] (o) N e I e ey e o g O d [=) e e I ey I w)] g G
o Oy O 0 Oy O O (=2 MR o) B w) B o3 ] gy h O O O O 3 O D
— T ErTrT TR mrrr T e e

Figure 8. Trend and abundance for each of the 25 haul-out locations in Prince William Sound,
Alaska.

sets of covariate values are shown in Fig. 11. In Fig. 11, the results of Frost et al. (1999) are
also shown, where the abundance estimates were standardized to optimum conditions
under their model. Although absolute estimates of abundance vary (due mostly to differing
covariate adjustments), the temporal patterns are very similar.

Fig. 12 shows the model assessment, using Chi squared discrepancy, R;, for each site.
We initially tried a model without the overdispersion parameter. As Fig. 12 shows, most
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sites had more variability than explained with only covariates in (1). The addition of the
overdispersion parameter &;; in (1) gives a good model fit for these data.
Other parameters from the posterior distribution have less interest and are not given.

4. Discussion

The goals for monitoring ecological populations, even within a single study, are varied. We
may often be interested in population estimates at a given time and/or trend estimates for
each location or a collection of sites. We may also be interested in functions of population
estimates, trends, or their combination. Finally, we may have information on covariates,
and we may be interested in the effect of covariates on population trends and abundance.
In this paper, we considered a general setup where we have repeated samples within years,
at several sites, across several years. In this setup, there are four sources of variability due
to: (1) effect of covariates on observations, (2) sampling to estimate the population at some
site at some time, (3) the error of the true population at some time about the hypothetical
trend curve for that site, and (4) differences in trend among sites. For this setup, we
considered the Bayesian treatment of hierarchical models to be the ideal method of
statistical inference for several reasons: (1) the 4 sources of variability described earlier
could be put into one unified probability framework, (2) estimates of populations or trend
“‘borrowed strength’’ from the unified probability framework, (3) using MCMC methods,
it was relatively easy to make a wide range of inferences on functions of population
estimates and trends for collections of locations, and (4) we could make inferences on the
effect of covariates.

There is some need to discuss the modeling of trend with a simple linear model for each
site. True populations are fluctuating according to a model that we have no hope of ever
knowing completely. A linear trend component for the model is useful because a single
parameter, the slope, captures the essence of how we visualize ‘‘trend.”” We realize that
the linear model is smoothing over true population fluctuations. Our view is that this is
desirable; for our application, and many others, we want to smooth over the small
variations in time and look at trend over longer time frames. Also, we could add quadratic
and higher terms in the model. This might be desirable in order to assess whether a
population has ‘‘bottomed out.”” Bayes factors (see, for example, Gelman et al., 1995,
page. 175) could be used to make decisions on competing models. It was not our goal to
make such a decision, but rather to model trend, so our linear model is appropriate.

Other enhancements to the model could be considered. For example, it is possible that
the date for peak haulout has been trending through time, getting either later or earlier in
the season. In that case, (6), which is equal to (1), can be reparameterized so that it contains
exp((x;, — B 117)2 /b;), and then f;; can be given a linear trend per site (call it a date trend).
The date trend parameters can be given a distribution, just as the abundance trend
parameters. Once again, Bayes factors could be used to decide if this model provided an
improvement.

The Bayesian hierarchical model was used to assess trends of harbor seals, Phoca
vitulina richardsi, in Prince William Sound, Alaska, following the 1989 Exxon Valdez oil
spill. With respect to covariates, results showed that overall, (1) counts decreased with
date, (2) counts decreased throughout the day, (3) counts were at a maximum near low tide,
and (4) there was very little effect of tide height; however, there was considerable
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variation among sites. To get the overall trend we used a weighted average of the trend at
each site, where the weights depended on the overall abundance of a site. The overall trend
indicated a continued significant decrease in the harbor seal population. To get overall
abundance for each year, we summed the abundance estimates for each site. We used
MCMC methods to obtain a sample from the posterior distribution of the parameters,
which also yields a sample from the posterior distribution of the overall trend and
abundance. Other studies have shown site-specific trends and patterns of behavior in
harbor seals (Thompson et al., 1997). Other researchers have also used Bayesian
hierarchical models to assess trends in wildlife populations (e.g., Craig et al., 1997),
although the models vary depending on the wildlife species and sampling method. Here,
the use of a Bayesian hierarchical model allowed assessment of trend, abundance, and
effects of covariates both at specific sites and overall.
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