

High-dimensional statistics

Christophe Giraud

Université Paris Saclay

Geometry and Statistics in Data Sciences, Cargèse 2022

Informations on the lectures

Plan

5 lectures of 1h30

- Curse of dimensionality
- Structure learning
- Convexification
- Iterative algorithms
- Implicit regularisation, benign overfitting and overparametrisation

A mixture of very standard materials and some more recent results. (I will adapt depending on your background)

Emphasize on ideas, concepts and intuitions, rather than on mathematical technics.

Documents

Documents

Website of the lectures

```
https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/Cargese2022.html (where you can download the slides)
```

Book available online (pdf)

```
https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/Bookv3.pdf
```

- A wiki website for sharing solutions to the exercises
 - http://high-dimensional-statistics.wikidot.com
- Youtube channel: related lectures on High-Dimensional Statistics https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ

High-dimensional data

High-dimension data

- biotech data (sense thousands of features)
- images (millions of pixels / voxels)
- web data
- crowdsourcing data
- etc

Blessing?

we can sense thousands of variables on each "individual": potentially we will be able to scan every variables that may influence the phenomenon under study.

the curse of dimensionality: separating the signal from the noise is <u>in</u> general almost impossible in high-dimensional data and computations can rapidly exceed the available resources.

Probability in high-dimension

Chapter 1

A ball is essentially a sphere

Volume of a ball $B_p(0,r)$ **of radius** r: $V_p(r) = r^p V_p(1)$

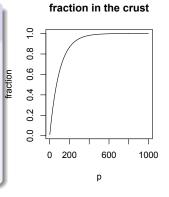
The volume of a high-dimensional ball is concentrated in its crust!

Crust:
$$C_p(r) = B_p(0, r) \setminus B_p(0, 0.99r)$$

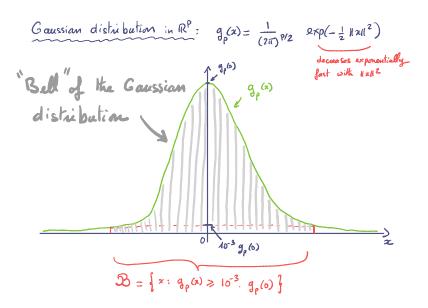
The fraction of the volume in the crust

$$\frac{\text{volume}(C_p(r))}{\text{volume}(B_p(0,r))} = 1 - 0.99^p$$

goes exponentially fast to 1!



Forget your low-dimensional intuitions!



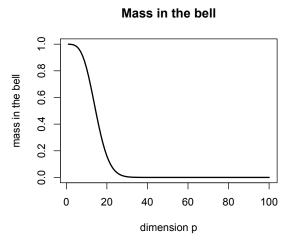


Figure: Mass of the standard Gaussian distribution $g_p(x)$ in the "bell" $\mathcal{B} = \{x \in \mathbb{R}^p : g_p(x) \geq 0.001g_p(0)\}$ for increasing dimension p.

Where is the Gaussian mass located?

For $X \sim \mathcal{N}(0, I_p)$ and $\varepsilon > 0$ small

$$\begin{split} \frac{1}{\varepsilon} \mathbb{P}\left[R \leq \|X\| \leq R + \varepsilon\right] &= \frac{1}{\varepsilon} \int_{R \leq \|x\| \leq R + \varepsilon} e^{-\|x\|^2/2} \, \frac{dx}{(2\pi)^{p/2}} \\ &= \frac{1}{\varepsilon} \int_{R}^{R + \varepsilon} e^{-r^2/2} \, r^{p-1} \frac{pV_p(1) \, dr}{(2\pi)^{p/2}} \\ &\approx \frac{p}{2^{p/2} \Gamma(1 + p/2)} \, R^{p-1} \times e^{-R^2/2}. \end{split}$$

This mass is concentrated around $R^* = \sqrt{p-1}$!

Remark: the density ratio $\frac{g_p(R^*)}{g_p(0)}$ is smaller than $2e^{-p/2}$.

Concentration of the square Norm

Let $X \sim \mathcal{N}(0, I_p)$. We have for all $x \geq 0$

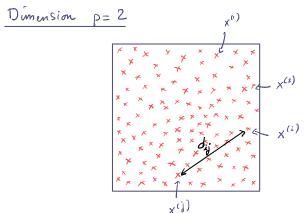
$$\mathbb{P}\left[p - 2\sqrt{px} \le \|X\|^2 \le p + 2\sqrt{2px} + 2x\right] \ge 1 - 2e^{-x}.$$

Proof: Chernoff bound (Exercise 1.6.6).

Gaussian pprox Uniform on the sphere $S(0,\sqrt{p})$

As a first approximation, the Gaussian $\mathcal{N}(0, I_p)$ distribution can be thought as a uniform distribution on the sphere of radius $\approx \sqrt{p}$!

We sample n=100 data points $X^{(1)},\ldots,X^{(n)}\overset{i.i.d.}{\sim}\mathcal{U}\left([0,1]^p\right)$ i.i.d. uniformly in the hypercube $[0,1]^p$.



let us look at the distribution of the pairwise distances $d_{ij} = ||X^{(i)} - X^{(j)}||$ between the points.

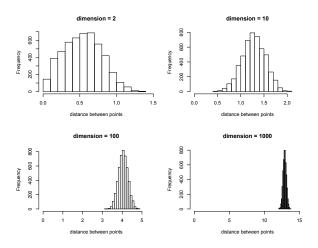


Figure: Histograms of the pairwise-distances between n = 100 points sampled uniformly in the hypercube $[0, 1]^p$, for p = 2, 10, 100 and 1000.

Square distances.

$$\mathbb{E}\left[\|X^{(i)} - X^{(j)}\|^2\right] = \sum_{k=1}^{p} \mathbb{E}\left[\left(X_k^{(i)} - X_k^{(j)}\right)^2\right] = p \,\mathbb{E}\left[(U - U')^2\right] = p/6,$$

with U,U' two independent random variables with $\mathcal{U}[0,1]$ distribution.

Standard deviation of the square distances

$$sdev \left[\|X^{(i)} - X^{(j)}\|^2 \right] = \sqrt{\sum_{k=1}^{p} var \left[\left(X_k^{(i)} - X_k^{(j)} \right)^2 \right]}$$
$$= \sqrt{p var \left[(U' - U)^2 \right]} \approx 0.2 \sqrt{p}.$$

High-dimensional unit balls have a vanishing volume!

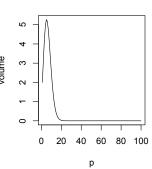
$$V_p(r) = \text{volume of a ball of radius } r$$

in dimension p
 $= r^p V_p(1)$

with

$$V_p(1) \stackrel{p \to \infty}{\sim} \left(\frac{2\pi e}{p}\right)^{p/2} (p\pi)^{-1/2}.$$

volume Vp(1)



Vanishing volume for $r \leq \sqrt{\frac{p}{2\pi e}}$!

Take home message (so far)

In high-dimensional spaces,

be careful

not to be mislead by
your low dimensional intuitions.

The curse of dimensionality

Chapter 1

Curse 1: fluctuations cumulate

Example : $X^{(1)}, \dots, X^{(n)} \in \mathbb{R}^p$ i.i.d. with $cov(X) = \sigma^2 I_p$. We want to estimate $\mathbb{E}[X]$ with the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X^{(i)}.$$

Then

$$\mathbb{E}\left[\|\bar{X}_n - \mathbb{E}\left[X\right]\|^2\right] = \sum_{j=1}^p \mathbb{E}\left[\left([\bar{X}_n]_j - \mathbb{E}\left[X_j\right]\right)^2\right]$$
$$= \sum_{j=1}^p \operatorname{var}\left([\bar{X}_n]_j\right) = \frac{p}{n}\sigma^2.$$

 \odot It can be huge when $p \gg n...$

Curse 2: local averaging is ineffective (in general)

Observations $(Y_i, X^{(i)}) \in \mathbb{R} \times [0, 1]^p$ for i = 1, ..., n.

Model: $Y_i = f(X^{(i)}) + \varepsilon_i$ with f smooth. assume that $(Y_i, X^{(i)})_{i=1,...,n}$ i.i.d. and that $X^{(i)} \sim \mathcal{U}([0,1]^p)$

Local averaging: $\widehat{f}(x) = \text{average of } \{Y_i : X^{(i)} \text{ close to } x\}$

Problem: for $x \in [0,1]^p$, we have

$$\mathbb{P}\left[\exists i=1,\ldots,n:\|x-X_i\|\leq\delta\right] \leq n\,\mathbb{P}\left[\|x-X_1\|\leq\delta\right] \leq n\,V_p(\delta)$$

$$\approx n\left(\frac{2\pi e}{p}\right)^{p/2}\frac{\delta^p}{\sqrt{\pi p}}.$$

which goes more than exponentially fast to 0 when $p \to \infty$.

Curse 2: local averaging is ineffective

Which sample size to avoid the lost of locality?

Number n of points x_1, \ldots, x_n required for covering $[0,1]^p$ by the balls $B(x_i,1)$:

$$n \geq rac{1}{V_p(1)} \stackrel{p o \infty}{\sim} \left(rac{p}{2\pi e}
ight)^{p/2} \sqrt{p\pi}$$

p	20	30	50	100	200
					larger than the estimated
n	39	45630	5.710^{12}	4210^{39}	number of particles
					in the observable universe

Curse 3: weak signals are lost

Finding active genes: we observe n repetitions for p genes

$$Z_j^{(i)} = \theta_j + \varepsilon_j^{(i)}, \quad j = 1, \dots, p, \quad i = 1, \dots, n,$$

with the $\varepsilon_j^{(i)}$ i.i.d. with $\mathcal{N}(0,\sigma^2)$ Gaussian distribution.

Our goal: find which genes have $\theta_i \neq 0$

For a single gene

Set

$$X_j = n^{-1/2}(Z_j^{(1)} + \ldots + Z_j^{(n)}) \sim \mathcal{N}(\sqrt{n}\theta_j, \sigma^2)$$

Since $\mathbb{P}\left[|\mathcal{N}(0,\sigma^2)|\geq 2\sigma\right]\leq 0.05$, we can detect the active gene with X_j when

$$|\theta_j| \ge \frac{2\sigma}{\sqrt{n}}$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

Curse 3: weak signals are lost

Maximum of Gaussian

For W_1, \ldots, W_p i.i.d. with $\mathcal{N}(0, \sigma^2)$ distribution, we have

$$\max_{j=1,\ldots,p} W_j \approx \sigma \sqrt{2\log(p)}.$$

Consequence: When we consider the p genes together, we need a signal of order

$$|\theta_j| \ge \sigma \sqrt{\frac{2\log(p)}{n}}$$

in order to dominate the noise ©

Curse 4: an accumulation of rare events may not be rare

$$\hat{\Sigma} = \frac{1}{M} \sum_{i=1}^{M} X_i X_i^{\top}$$

$$u^{\mathsf{T}} \widehat{\Sigma} \mathcal{M} = \underbrace{1}_{m} \underbrace{\sum_{i=1}^{m} (X_{i}^{\mathsf{T}} \mathcal{U})^{2}}_{i=1} + \|\widehat{S}_{\mathcal{U}}\|^{2}$$

Where
$$\frac{3}{3}u = \begin{bmatrix} x_1^T u \\ \vdots \\ x_m^T u \end{bmatrix} \sim \mathcal{N}(0, I_m)$$

$$\mathbb{P}\left[\frac{1}{m} \|\beta_{\mu}\|^{2} \geqslant \left(1 + \sqrt{\frac{2L}{m}}\right)^{2}\right] \leq e^{-L}$$
In particular, for any $u \in \mathbb{R}^{p}$ with uu_{i-1}

$$\mathbb{P}\left[u^{\mathsf{T}} \hat{\Sigma} u \geqslant (1+\sqrt{\frac{p}{n}})^2\right] \leq e^{-p/2}$$

$$\simeq (1+\sqrt{\frac{\rho}{m}})^2$$

$$\approx \frac{\rho}{m} \quad \forall \quad \rho \gg m$$

-
$$\operatorname{Rank}(\hat{\Sigma}) = m$$
 a.s.

(We will come back to this phenomenon in the last lecture)

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ めへで

Algorithmic complexity must remain low

When p is large, an algorithmic complexity larger than $O(p^2)$ is computationally prohibitive.

For very large p, even a complexity $O(p^2)$ can be an issue...

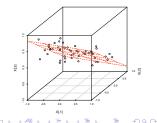
Low-dimensional structures in high-dimensional data **Hopeless?**

Low dimensional structures: high-dimensional data are usually concentrated around low-dimensional structures reflecting the (relatively) small complexity of the systems producing the data

- geometrical structures in an image,
- regulation network of a "biological system",
- social structures in marketing data,
- human technologies have limited complexity, etc.

Dimension reduction:

- "unsupervised" (PCA)
- "supervised"

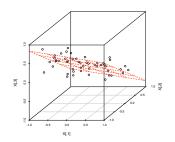


Principal Component Analysis

For any data points $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^p$ and any dimension $d \leq p$, the PCA computes the linear span in \mathbb{R}^p

$$V_d \in \operatorname*{argmin}_{\dim(V) \leq d} \ \sum_{i=1}^n \|X^{(i)} - \operatorname{Proj}_V X^{(i)}\|^2,$$

where Proj_V is the orthogonal projection matrix onto V.



 V_2 in dimension p=3.

Recap on PCA

Exercise 1.6.4

PCA in action original image original image original image original image projected image projected image projected image projected image

MNIST: 1100 scans of each digit. Each scan is a 16×16 image which is encoded by a vector in \mathbb{R}^{256} . The original images are displayed in the first row, their projection onto 10 first principal axes in the second row.

"Supervised" dimension reduction

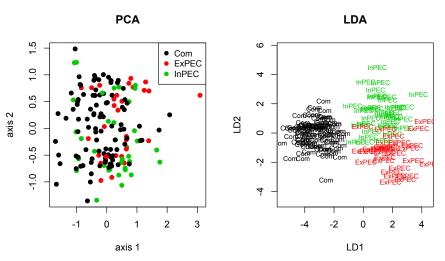


Figure: 55 chemical measurements of 162 strains of E. coli. Left: the data is projected on the plane given by a PCA.

Right: the data is projected on the plane given by a LDA. 30 / 34

Summary

Statistical difficulty

- high-dimensional data
- relatively small sample size

Good feature

Data usually generated by a large stochastic system

- existence of low dimensional structures
- (sometimes: expert models)

The way to success

Finding, from the data, the hidden structure in order to exploit them.

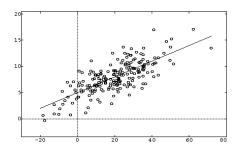
Paradigm shift

Chapter 1

Paradigm shift

Classical statistics:

- small number *p* of parameters
- ullet large number n of observations
- we investigate the performances of the estimators when $n \to \infty$ (central limit theorem...)



Paradigm shift

Classical statistics:

- small number p of parameters
- large number n of observations
- we investigate the performances of the estimators when $n \to \infty$ (central limit theorem...)

Actual data:

- inflation of the number p of parameters
- small sample size: $n \approx p$ ou $n \ll p$

 \implies Change our point of view on statistics! (the $n \to \infty$ asymptotic does not fit anymore)

Statistical settings

- double asymptotic: both $n, p \to \infty$ with $p \sim g(n)$
- non asymptotic: treat n and p as they are

Double asymptotic

- more easy to analyse, sharp results ©
- but sensitive to the choice of g \odot

ex: if n = 33 and p = 1000, do we have $g(n) = n^2$ or $g(n) = e^{n/5}$?

Non-asymptotic

- no ambiguity ©
- but the analysis is more involved (based on concentration inequalities)