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Foreword

These lecture notes cover the program of the course “ Mathematics for Artificial Intelligence ” from
the first year (M1) of the master program in Mathematics of the Université Paris Saclay. https:
//www.imo.universite-paris-saclay.fr/˜giraud/Orsay/MathIA2.html

This course aims at presenting some mathematical theory for the analysis and the understanding
of machine learning algorithms. The primary focus is on theory, presented all along with central
algorithms in data analysis. Some exercises and some numerical illustrations are provided at the
end of each chapter, with source code available online.

The first part presents some important optimization theory in the context of sequential learning. It
is an introduction to Stochastic Gradient optimization, Learning with Expert advices, and Bandits
problems. These three topics are very active in machine learning, with a wide range of applications
in science and in the daily life.

The second part covers some theory and some important applications around a central tool of linear
algebra: the Singular Value Decomposition. Some perturbation and concentration bounds (Weyl in-
equalities, Davis-Kahan perturbation bound, Hanson-Wright inequalities) play an important role in
the theoretical understanding of some popular tools in data analysis: Principal Component Analysis
and Spectral Clustering. These algorithms and the surrounding theory are presented in the Chapters
5–8.

Any comments or corrections are welcome :)
christophe.giraud@universite-paris-saclay.fr

Enjoy your reading!

Orsay, August 2023

Christophe
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Chapter 1

Sub-Gaussian random variables

1.1 Refresher on Gaussian random variables

A real random variable 𝑋 follows a N(0, 𝜎2) Gaussian distribution, if its distribution has the prob-
ability density function (p.d.f.) with respect to the Lebesgue measure on R

1
√

2𝜋𝜎2
𝑒−𝑥

2/(2𝜎2 ) .

In particular, if 𝑍 follows aN(0, 1) Gaussian distribution then 𝑋 = 𝜎𝑍 follows aN(0, 𝜎2) Gaussian
distribution.
The moment generating function, or Laplace transform, of a random variable 𝑋 with N(0, 𝜎2)
Gaussian distribution is given by

E[𝑒𝑠𝑋] = 1
√

2𝜋𝜎2

∫
R
𝑒𝑠𝑥𝑒−𝑥

2/2𝜎2
𝑑𝑥 =

1
√

2𝜋𝜎2
𝑒𝜎

2𝑠2/2
∫
R
𝑒−(𝑥−𝑠)

2/2𝜎2
𝑑𝑥 = 𝑒𝜎

2𝑠2/2.

1.2 SubGaussian random variables

1.2.1 Definition and examples

Definition. A random variable 𝑋 follows a SubGaussian distribution with variance proxy 𝜎2, de-
noted by 𝑋 ∈ 𝑆𝑢𝑏𝐺 (𝜎2) if it is centered E[𝑋] = 0 and

E[𝑒𝑠𝑋] ≤ 𝑒𝜎2𝑠2/2 for all 𝑠 ∈ R.

In addition, we write 𝑋 ∈ 𝑠𝑢𝑏𝐺 (𝜇, 𝜎2) if 𝑋 − 𝜇 ∈ 𝑠𝑢𝑏𝐺 (𝜎2).

Remark. If 𝑋 ∈ 𝑆𝑢𝑏𝐺 (𝜎2) then −𝑋 ∈ 𝑆𝑢𝑏𝐺 (𝜎2). So any property holding for 𝑋 , also holds for
−𝑋 .

Remark. If 𝑋 ∈ 𝑆𝑢𝑏𝐺 (1), then 𝜎𝑋 ∈ 𝑆𝑢𝑏𝐺 (𝜎2).

Exercise. By investigating the behavior of E[𝑒𝑠𝑋] − 1 for 𝑠 vanishing to 0, check that var(𝑋) ≤ 𝜎2.

Exercise. With the convexity of 𝑥 → 𝑒𝑥 , prove that if 𝑋 ∈ 𝑆𝑢𝑏𝐺 (𝜎2
𝑥) and 𝑌 ∈ 𝑆𝑢𝑏𝐺 (𝜎2

𝑦 ) then
𝑋 + 𝑌 ∈ 𝑆𝑢𝑏𝐺

(
(𝜎𝑥 + 𝜎𝑦)2

)
. This inequality can be thought as a “triangular inequality” on 𝜎.

A classical example of SubGaussian random variables are bounded variables.

Lemma 1.1 Bounded random variable.
If 𝑋 is a random variables taking values in [𝑎, 𝑏], then 𝑋 − E[𝑋] ∈ 𝑠𝑢𝑏𝐺 ((𝑏 − 𝑎)2/4)

Proof of Lemma 1.1. Replacing 𝑋 by 𝑋 − E[𝑋] and [𝑎, 𝑏] by [𝑎 − E[𝑋], 𝑏 − E[𝑋]], we can
assume with no loss of generality that E[𝑋] = 0. Since 𝑋 is bounded, the log-Laplace tranform

1



2 SUB-GAUSSIAN RANDOM VARIABLES

𝜓(𝑠) = logE[𝑒𝑠𝑋] exists. We can also compute differentials of 𝜓 by switching expectation and
derivation

𝜓′ (𝑠) =
E

[
𝑋𝑒𝑠𝑋

]
E

[
𝑒𝑠𝑋

] and 𝜓′′ (𝑠) =
E

[
𝑋2𝑒𝑠𝑋

]
E

[
𝑒𝑠𝑋

] − (
E

[
𝑋𝑒𝑠𝑋

]
E

[
𝑒𝑠𝑋

] )2

.

Setting

𝑑P𝑠 (𝜔) =
𝑒𝑠𝑋 (𝜔)

E
[
𝑒𝑠𝑋

] 𝑑P(𝜔),
we observe that

𝜓′′ (𝑠) = E𝑠 [𝑋2] − E𝑠 [𝑋]2 = E𝑠 [(𝑋 − E𝑠 [𝑋])2] ≤ E𝑠

[(
𝑋 − 𝑎 + 𝑏

2

)2
]
≤ (𝑏 − 𝑎)

2

4
.

Hence, integrating twice gives

𝜓(𝑠) = 𝜓(0) + 𝑠𝜓′ (0) +
∫ 𝑠

𝑢=0

∫ 𝑢

𝑥=0
𝜓′′ (𝑥) 𝑑𝑥 𝑑𝑢 ≤ 0 + 0 + 𝑠

2 (𝑏 − 𝑎)2
8

,

so, 𝑋 ∈ 𝑠𝑢𝑏𝐺 ((𝑏 − 𝑎)2/4). □

Remark: for bounded variables, the variance proxy (𝑏−𝑎)2/4 can be much larger than the variance
itself. As an illustration, let us consider the case of a Bernoulli variable 𝑋 with parameter 𝑝. As 𝑋
takes values 0 or 1, the random variable 𝑋 is subGaussian with variance proxy 1/4. In comparison,
the variance of 𝑋 is var(𝑋) = 𝑝(1 − 𝑝), which can be much smaller than 1/4 when 𝑝 is close to 0
or 1.

Next lemma can be thought as a “Pythagorean (in)equality” on 𝜎.

Lemma 1.2 Sum of subGaussian random variables.
If 𝑋1, . . . , 𝑋𝑛 ∈ 𝑠𝑢𝑏𝐺 (1) are 𝑛 independent random variables, then

𝑛∑︁
𝑖=1

𝑎𝑖𝑋𝑖 ∈ 𝑠𝑢𝑏𝐺 (∥𝑎∥2).

Proof of Lemma 1.2. By linearity of the expectation, we have E
(∑𝑛

𝑖=1 𝑎𝑖𝑋𝑖
)
= 0. In addition, by

independence

E

[
exp

(
𝑠

𝑛∑︁
𝑖=1

𝑎𝑖𝑋𝑖

)]
=

𝑛∏
𝑖=1

E [exp (𝑠𝑎𝑖𝑋𝑖)] ≤
𝑛∏
𝑖=1

𝑒 (𝑎𝑖𝑠)
2/2 = 𝑒 ∥𝑎∥

2𝑠2/2.

Hence
∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖 ∈ 𝑠𝑢𝑏𝐺 (∥𝑎∥2). □

1.2.2 Tails of subGaussian random variables and Hoefdding inequality

An important property of subGaussian random variables are the fast decreasing of their tails.

Lemma 1.3 Tails of a subGaussian random variable.
The tail of a random variable 𝑋 ∈ 𝑠𝑢𝑏𝐺 (𝜎2) fulfills for any 𝑡 ≥ 0

P[𝑋 ≥ 𝑡] ≤ 𝑒−𝑡2/(2𝜎2 ) .

Proof of Lemma 1.3. The method of the proof is called the Chernoff method. This method is as
important as the result.



SUBGAUSSIAN RANDOM VARIABLES 3

For any 𝑠 ≥ 0, Markov inequality gives

P[𝑋 ≥ 𝑡] ≤ 𝑒−𝑠𝑡E[𝑒𝑠𝑋] ≤ exp
(
−𝑠𝑡 + 𝜎2𝑠2/2

)
.

The right-hand side is minimum pour 𝑠 = 𝑡/𝜎2, which gives the result. □

Remark. It is worth to notice that if E[𝑋] = 0 and P[|𝑋 | ≥ 𝑡] ≤ 2𝑒−𝑡
2/(2𝜎2 ) , then 𝑋 ∈

𝑠𝑢𝑏𝐺 (11𝜎2). Indeed, we have

E[𝑒𝑠𝑋] ≤ E[𝑒 |𝑠𝑋 | ] =
∫ ∞

1
P[𝑒 |𝑠𝑋 | ≥ 𝑡] 𝑑𝑡.

The change of variable 𝑡 = 𝑒 |𝑠 |𝑢 gives

E[𝑒𝑠𝑋] ≤
∫ ∞

0
P[|𝑋 | ≥ 𝑢] |𝑠 |𝑒 |𝑠 |𝑢 𝑑𝑢 ≤

∫ ∞

0
2𝑒−𝑢

2/(2𝜎2 ) |𝑠 |𝑒 |𝑠 |𝑢 𝑑𝑢 ≤ 𝜎 |𝑠 |
√

8𝜋𝑒𝜎
2𝑠2/2 ≤ 𝑒11𝜎2𝑠2/2,

where the last inequality follows from 𝑥𝑒1/2 ≤ 𝑒𝑥
2/2 and hence 𝜎 |𝑠 |

√
8𝜋 ≤ exp

(
𝑠28𝜋𝜎2

2𝑒

)
≤

𝑒10𝜎2𝑠2/2.

Corollary 1.4 Tail for sums of subGaussian random variables.
If 𝑋1, . . . , 𝑋𝑛 ∈ 𝑠𝑢𝑏𝐺 (𝜎2) are 𝑛 independent random variables, then for any 𝑡 ≥ 0

P

[
𝑛∑︁
𝑖=1

𝑎𝑖𝑋𝑖 ≥ 𝑡
]
≤ exp

(
−𝑡2

2𝜎2∥𝑎∥2

)
.

As a consequence, if 𝑋1, . . . , 𝑋𝑛 are 𝑛 independent random variables, with E[𝑋𝑖] = 𝜇 and 𝑋𝑖 − 𝜇 ∈
𝑠𝑢𝑏𝐺 (𝜎2), then for any 𝐿 ≥ 0

P

[
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇 ≥
√︂

2𝐿𝜎2

𝑛

]
≤ 𝑒−𝐿 . (1.1)

Corollary 1.5 Hoeffding concentration inequality.
Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables with 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] for 𝑖 = 1, . . . , 𝑛, then for

any 𝑡 ≥ 0

P
[
𝑋̄𝑛 − E

[
𝑋̄𝑛

]
≥ 𝑡

]
≤ exp

(
− 2𝑛2𝑡2

∥𝑏 − 𝑎∥2

)
.

With a union bound, we get deviation bounds for suprema of subGaussian random variables.

Lemma 1.6 Supremum of subGaussian random variables.
Let 𝑋1, . . . , 𝑋𝑝 ∈ 𝑠𝑢𝑏𝐺 (𝜎2) be 𝑝 random variables. Then, for any 𝐿 ≥ 0, we have

P

[
max
𝑖=1,...𝑝

𝑋𝑖 ≥ 𝜎
√︁

2(log(𝑝) + 𝐿)
]
≤ 𝑒−𝐿 and E

[
max
𝑖=1,...𝑝

𝑋𝑖

]
≤ 𝜎

√︁
2 log(𝑝).

Proof of Lemma 1.6. The first inequality directly follows from Lemma 1.3 and a union bound.
For the second inequality, as log(𝑥) is concave, we apply Jensen inequality to get for any 𝑠 > 0

E

[
max
𝑖=1,...𝑝

𝑋𝑖

]
= E

[
1
𝑠

log
(
𝑒𝑠max𝑖=1,...𝑝 𝑋𝑖

)]
≤ 1
𝑠

log
(
E

[
𝑒𝑠max𝑖=1,...𝑝 𝑋𝑖

] )
≤ 1
𝑠

log

(
𝑝∑︁
𝑖=1

E
[
𝑒𝑠𝑋𝑖

] )
≤ 1
𝑠

log

(
𝑝∑︁
𝑖=1

𝑒𝑠
2𝜎2/2

)
=

log(𝑝)
𝑠
+ 𝜎

2𝑠

2
.
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Lemma 1.6 follows by setting 𝑠 =
√︁

2 log(𝑝)/𝜎2. □

1.2.3 Moments of subGaussian random variables

The bound on the Moment Generating function induces some bounds on the moments of a sub-
Gaussian random variables.

Lemma 1.7 Moments of subGaussian random variables.
Let 𝑋 ∈ 𝑠𝑢𝑏𝐺 (𝜎2). Then, we have

E
[
𝑋2𝑘 ] ≤ 2𝑘+1𝑘!𝜎2𝑘 for 𝑘 ≥ 1,

E
[
𝑒𝑠 (𝑋

2−E[𝑋2] )
]
≤ 1 + 64(𝑠𝜎2)2 ≤ 𝑒64(𝑠𝜎2 )2 for (𝑠𝜎2)2 ≤ 1/32.

Proof of Lemma 1.7. Replacing 𝑋 by 𝑋/𝜎, we can assume with no loss of generality that 𝑋 ∈
𝑠𝑢𝑏𝐺 (1). Let 𝑗 be a positive integer. With a change of variable 𝑡 = (2𝑢) 𝑗/2 we get

E
[
|𝑋 | 𝑗

]
=

∫ ∞

0
P

[
|𝑋 | 𝑗 ≥ 𝑡

]
𝑑𝑡

= 2 𝑗/2−1 𝑗

∫ ∞

0
P

[
|𝑋 | ≥

√
2𝑢

]
𝑢 𝑗/2−1 𝑑𝑢

≤ 2 𝑗/2 𝑗
∫ ∞

0
𝑒−𝑢𝑢 𝑗/2−1 𝑑𝑢 = 2 𝑗/2 𝑗 Γ( 𝑗/2) = 2 𝑗/2+1Γ( 𝑗/2 + 1).

The first bound follows by setting 𝑗 = 2𝑘 .

For the second bound, as 𝑥 → 𝑒𝑠𝑥 and 𝑥 → 𝑒−𝑠𝑥 are convex, Jensen inequality gives

E
[
𝑒𝑠 (𝑋

2−E[𝑋2] )
]
≤ 1

2
E

[
𝑒2𝑠𝑋2 + 𝑒−2𝑠E[𝑋2]

]
≤ 1

2
E

[
𝑒2𝑠𝑋2 + 𝑒−2𝑠𝑋2

]
= E

[
ch(2𝑠𝑋2)

]
= 1 +

∑︁
𝑘≥1

(2𝑠)2𝑘
(2𝑘)! E[𝑋

4𝑘] .

We can now use the bound E[𝑋4𝑘] ≤ 22𝑘+1 (2𝑘)! on the moments of 𝑋 , to get for |𝑠 | < 1/4

E
[
𝑒𝑠 (𝑋

2−E[𝑋2] )
]
≤ 1 + 2

∑︁
𝑘≥1

(4𝑠)2𝑘 = 1 + 2(4𝑠)2
1 − (4𝑠)2

.

To conclude, we notice that the right-hand side is smaller than 1 + 4(4𝑠)2 for 𝑠2 ≤ 1/32. □

As a corollary of Lemma 1.7, we have the following concentration inequality for square subGaussian
random variables.

Corollary 1.8 Concentration for sum of squares.
Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables in 𝑠𝑢𝑏𝐺 (1). Then, for any 𝑡 ≥ 0

P

[
𝑛∑︁
𝑖=1

𝑎𝑖

(
𝑋2
𝑖 − E[𝑋2

𝑖 ]
)
≥ 𝑡

]
≤ exp

(
−

(
𝑡

16∥𝑎∥

)2

∧
(

𝑡

12|𝑎 |∞

))
.

Proof of Corollary 1.8. According to Lemma 1.7, for 32|𝑎 |2∞𝑠2 ≤ 1, we have

P

[
𝑛∑︁
𝑖=1

𝑎𝑖

(
𝑋2
𝑖 − E[𝑋2

𝑖 ]
)
≥ 𝑡

]
≤ 𝑒−𝑠𝑡E

[
exp

(
𝑠

𝑛∑︁
𝑖=1

𝑎𝑖

(
𝑋2
𝑖 − E[𝑋2

𝑖 ]
))]

≤ 𝑒−𝑠𝑡
𝑛∏
𝑖=1

𝑒64(𝑎𝑖𝑠)2 = exp(−𝑠𝑡 + 64𝑠2∥𝑎∥2).
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Let us compute the minimum of 𝜙(𝑠) = −𝑠𝑡 + 64𝑠2∥𝑎∥2 over the 𝑠 fulfilling 32|𝑎 |2∞𝑠2 ≤ 1. We
observe that the unconstrained minimum of 𝜙 is achieved for 𝑠∗ = 𝑡/(128∥𝑎∥2). Hence, we consider
appart the two cases 32|𝑎 |2∞𝑠2

∗ ≤ 1 and 32|𝑎 |2∞𝑠2
∗ ≥ 1.

Case 32|𝑎 |2∞𝑠2
∗ ≤ 1: then

min
32 |𝑎 |2∞𝑠2≤1

𝜙(𝑠) = 𝜙(𝑠∗) = −𝑡2
128∥𝑎∥2

+ 64𝑡2∥𝑎∥2
1282∥𝑎∥4

=
−𝑡2

256∥𝑎∥2
.

Case 32|𝑎 |2∞𝑠2
∗ ≥ 1: then

min
32 |𝑎 |2∞𝑠2≤1

𝜙(𝑠) = 𝜙
(

1

|𝑎 |∞
√

32

)
=

−𝑡
|𝑎 |∞
√

32
+ 64∥𝑎∥2

32|𝑎 |2∞
≤ −𝑡
|𝑎 |∞
√

32
+ 𝑡

2|𝑎 |∞
√

32
=

−𝑡
|𝑎 |∞
√

128
,

where the inequality follows from 32|𝑎 |2∞𝑠2
∗ ≥ 1 with 𝑠∗ = 𝑡/(128∥𝑎∥2).

We then have proved that for any 𝑡 ≥ 0

P

[
𝑛∑︁
𝑖=1

𝑎𝑖

(
𝑋2
𝑖 − E[𝑋2

𝑖 ]
)
≥ 𝑡

]
≤ exp

(
−

(
𝑡

16∥𝑎∥

)2

∧
(

𝑡
√

128|𝑎 |∞

))
.

Since
√

128 ≤ 12 the Corollary 1.8 follows. □

Example: specifying Corollary 1.8 with 𝑎𝑖 = 𝜎2/𝑛 and 𝑡 = 16𝜎2
( √︃

𝐿
𝑛
∨ 𝐿
𝑛

)
, we get for any

𝑋1, . . . , 𝑋𝑛 independent with 𝑠𝑢𝑏𝐺 (𝜎2) distribution and 𝐿 ≥ 0

P

[
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋2
𝑖 − E[𝑋2

𝑖 ]
)
≥ 16𝜎2

(√︂
𝐿

𝑛
∨ 𝐿
𝑛

)]
≤ 𝑒−𝐿 . (1.2)

1.3 Problems

1.3.1 Median of Means

A) Median of Means estimator

Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random variables with E [𝑋𝑖] = 𝜇 and var(𝑋𝑖) = 𝜎2. The Central Limit
Theorem ensures that for any 𝐿 ≥ 0

P

[
𝑋̄𝑛 − 𝜇 ≥ 𝜎

√︂
2𝐿
𝑛

]
𝑛→∞→ P

[
N(0, 1) ≥

√
2𝐿

]
≤ 𝑒−𝐿 . (1.3)

This bound holds in the asymptotic where 𝑛 → ∞. Can we have a bound similar to (1.3) for any
𝑛 ≥ 1 and 𝐿 ≥ 0?
As for 𝑛 = 1, the bound (1.3) enforces that 𝑋 ∈ 𝑠𝑢𝑏𝐺 (𝜇, 11𝜎2), the answer is ”no” without
additional assumptions on 𝑋 . The answer becomes ”yes” for subGaussian random variables, as the
Bound (1.1) gives a non-asymptotic version of (1.3) for any 𝑋 ∈ 𝑠𝑢𝑏𝐺 (𝜇, 𝜎2).
Let us consider the case where we only have E [𝑋𝑖] = 𝜇 and var(𝑋𝑖) ≤ 𝜎2. We will investigate a
slightly different question: Without additional assumptions on 𝑋 , can we find an estimator 𝜇 of 𝜇
fulfilling a non-asymptotic version of the concentration bound (1.3)?

As discussed above, such a bound is not achievable in general for the empirical mean 𝑋̄𝑛. But it is
(under some restrictions) for a robust version of it, called “median-of-means”, as we will see in this
exercise.

Let 𝐾 ≤ 𝑛/2 and assume that 𝑛 can be divided by 𝐾 . Then, we can split {1, . . . , 𝑛} into 𝐾 disjoint
blocs 𝐵1, . . . , 𝐵𝐾 of size 𝑚 = 𝑛/𝐾 .
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1. Check that

P

[
𝑋̄𝐵 𝑗 − 𝜇 ≥

2𝜎
√
𝑚

]
≤ 1

4
.

2. Check that 𝜇𝐾 = median( 𝑋̄𝐵1 , . . . , 𝑋̄𝐵𝐾 ) fulfills

P

[
𝜇𝐾 − 𝜇 ≥

2𝜎
√
𝑚

]
≤ P [Binomial(𝐾, 1/4) ≥ 𝐾/2] .

3. Conclude that

P

[
𝜇𝐾 − 𝜇 ≥ 2𝜎

√︂
𝐾

𝑛

]
≤ 𝑒−𝐾/8.

This last deviation bound is similar (up to constants) to (1.1) with 𝐿 = 𝐾/8. Notice yet the two
important features:
• the estimator 𝜇𝐾 depends on the confidence level 𝐾;
• 𝐾 ≤ 𝑛/2 by construction, so we do not have subGaussian deviation bounds for values of 𝐿 larger

than 𝑛/16.

B) Illustration

In this section, we illustrate the behavior of the MOM estimator. The numerics have been performed
with the R software https://cran.r-project.org. You can reproduce them by downloading
the R-code at https://www.imo.universite-paris-saclay.fr/˜giraud/Orsay/MathIA/
MOM.R

We fix the sample size to 𝑛 = 200 and compare the estimation errors of the empirical mean 𝑋̄𝑛 and
the MOM estimator 𝜇𝑘 with 𝐾 = 10. In order to mimic the distribution of the errors, we repeat the
experiment 𝑁 = 10000 and for each estimator, we store the 𝑁 errors 𝑒𝑟𝑟1, . . . , 𝑒𝑟𝑟𝑁 . The better the
estimator, the closer to zero are the errors. In order to visualize the distribution of the errors, we plot
some boxplots of the absolute values of the errors {|𝑒𝑟𝑟1 |, . . . , |𝑒𝑟𝑟𝑁 |}.
Boxplots are a popular way to sketch and visualize the spread of the distribution of a set 𝑍 =

{𝑍1, . . . , 𝑍𝑁 } of values. Let us denote by 𝑄𝑘 the 𝑘-th quartile of 𝑍 . We also define 𝑄0 = min 𝑍 the
smallest value in 𝑍 and𝑄4 = max 𝑍 the largest value in 𝑍 . In a boxplot, a box is drawn representing
the first quartile 𝑄1, the median 𝑄2 and the third quartile 𝑄3 of 𝑍 , see Figure 1.1. In addition to the
box, an interval is drawn, with left value 𝑄0 ∨ (𝑄1 − 1.5(𝑄3 − 𝑄1)) and right value 𝑄4 ∧ (𝑄3 +
1.5(𝑄3 − 𝑄1)). Finally, if some values fall outside the interval, they are represented as dots. We
often refer to these values as ”outliers”.

Figure 1.1: Description of the boxplot representation of a set of values.

We compare the behaviors of the empirical mean and the MOM estimator for three different distri-
butions. We start with the Gaussian distribution. In this case, the empirical mean estimator behaves



PROBLEMS 7

very well. Actually, 𝑋̄𝑛 ∼ N(𝜇, 𝜎2/𝑛), so for any value of 𝑛, the fluctuations of 𝑋̄𝑛 − 𝜇 exactly
matches the asymptotic fluctuations given by the Central Limit Theorem. We cannot expect the
MOM estimator to be as good as the empirical mean in this case. We observe yet in Figure 1.2 that
the spread of the absolute errors of the MOM and empirical mean are similar.
The concentration bound (1.1) ensures that the empirical mean works well with subGaussian distri-
bution. Let us consider now a distribution with heavy tails, much heavier than the tails of Lemma
1.3. As a first example, we take the Student(3) distribution. It has heavy tails, since the Student(3)
distribution has an infinite moment of order 3. We observe in this case that the absolute errors of
the empirical mean and the MOM estimators have similar median and first / third quartile, but the
empirical mean as much more outliers, see Figure 1.2. This illustrates the facts that the empirical
mean is not robust to heavy tails and that the MOM estimator is much more robust than the empirical
mean.
Let us now consider a last example. We emphasize that the MOM estimator 𝜇𝐾 is kind of an interpo-
lation between the empirical mean estimator (which is MOM with 𝐾 = 1) and the empirical median
estimator (which is MOM with 𝐾 = 𝑛). So, MOM estimator is favored by a situation, where the
median and the mean are the same, as for the Student(3) distribution. We illustrate the case where
the mean and the median are different by taking a Gamma distribution with parameters (0.01, 10).
We observe in this case, two interesting features. First, we observe that the median absolute error
of the MOM estimator is much higher than the median absolute error of the empirical mean. This
reflect the fact that the MOM estimator is biased towards the median. Yet, we observe that the MOM
estimator has much less ”outliers” than the empirical mean. This reflects the robustness of the MOM
estimator compared to the empirical mean.

empirical mean MOM

0.
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15

0.
20
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25
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30
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35
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empirical mean MOM
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Student

empirical mean MOM
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4
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Figure 1.2: Boxplots of the absolute errors of the empirical mean and the MOM estimators. The
closer the absolute values to zero, the better the estimator. Left: Gaussian distribution. Center: Stu-
dent(3) distribution. Right: Gamma(0.01,10) distribution.

1.3.2 Bennett and Bernstein concentration inequalities

Hoeffding concentration inequality (Corollary 1.5) provides the following concentration bound for
averages of independent bounded random variables. When the 𝑋𝑖 are independent and fulfill 𝑋𝑖 ∈
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[𝑎𝑖 , 𝑎𝑖 + 𝐵] almost surely, then

P

[
𝑋̄𝑛 − E

[
𝑋̄𝑛

]
≥

√︂
𝐵2𝐿

2𝑛

]
≤ 𝑒−𝐿 , for any 𝐿 ≥ 0. (1.4)

Assume that the variables 𝑋𝑖 are i.i.d. with variance 𝜎2. Then, the Central Limit Theorem ensures
that

lim
𝑛→∞
P

[
𝑋̄𝑛 − E

[
𝑋̄𝑛

]
≥

√︂
2𝜎2𝐿

𝑛

]
= P

[
N(0, 1) ≥

√
2𝐿

]
≤ 𝑒−𝐿 , for any 𝐿 ≥ 0. (1.5)

If we compare (1.4) and (1.5), we observe that the variance 𝜎2 in (1.5) is replaced by the upper-
bound 𝜎2 ≤ 𝐵2/4 in (1.4). This discrepancy between the two bounds can be important as discussed
below.

Let 𝑝 ∈ (0, 1) and assume that 𝑋1, . . . , 𝑋𝑛 are i.i.d. with Bernoulli distribution B(𝑝). Then, the
variance is given by 𝜎2 = 𝑝(1 − 𝑝), while 𝐵 = 1. When 𝑝 = 1/2, we have 𝜎2 = 𝐵2/4 so (1.4)
and (1.5) are equivalent, but when 𝑝 is very close to 0 or 1, the ratio 4𝜎2/𝐵2 = 4𝑝(1 − 𝑝) is very
close to 0 and there is a large discrepancy between (1.4) and (1.5). Can we improve upon Hoeffding
concentration inequality in order to (partially) close this gap?

Let us discuss further the Bernoulli setting in order to figure out what we can hope to prove. First,
let us explain why we cannot hope to get a non-asymptotic version of (1.5). Indeed, when 𝑝 = 𝜆/𝑛
with 𝜆 > 0, the random variable 𝑛𝑋̄𝑛 follows a binomial distribution with parameter (𝑛, 𝜆/𝑛) and
converges in distribution towards a Poisson distribution of parameter 𝜆 when 𝑛 goes to infinity. We
simultaneously have

𝑛

√︂
2(𝜆/𝑛) (1 − 𝜆/𝑛)𝐿

𝑛
→
√

2𝜆𝐿.

It can be proved that, for some constant 𝑐 > 0,

P
[
Poisson(𝜆) − 𝜆 ≥

√
2𝜆𝐿

]
≥ exp(−𝑐

√
𝐿 log(𝐿)), when 𝐿 →∞,

so the upper bound (1.5) cannot hold non-asymptotically. Below, we will prove two bounds which
behave like (1.5) when 𝑝 ≫ 1/𝑛 and like Poisson deviation bounds when 𝑝 = 𝑂 (1/𝑛).

Bennett concentration bound

In this part, we will prove Bennett concentration inequality: for any independent real random vari-
ables 𝑋1, . . . , 𝑋𝑛 fulfilling

E [𝑋𝑖] = 0, 𝜎2
𝑖 := E

[
𝑋2
𝑖

]
< +∞, and 𝑋𝑖 ≤ 1 a.s. (1.6)

we have

P
[
𝑋̄𝑛 ≥ 𝑡

]
≤ exp

(
−𝑛𝜎2ℎ(𝑡/𝜎2)

)
, with ℎ(𝑢) = (1+𝑢) log(1+𝑢)−𝑢 and 𝜎2 =

1
𝑛

𝑛∑︁
𝑖=1

𝜎2
𝑖 . (1.7)

1. Let 𝜓(𝑥) = 𝑒𝑥 − 𝑥 − 1 =
∑
𝑘≥2 𝑥

𝑘/𝑘!. With Taylor inequality and the power series expansion,
prove the bounds

𝜓(𝑥) ≤ 𝑥2/2, for 𝑥 ≤ 0,

𝜓(𝑥) ≥ 𝑥2/2, for 𝑥 ≥ 0,

𝜓(𝑠𝑥) ≤ 𝑥2𝜓(𝑠), for 𝑥 ∈ [0, 1], and 𝑠 ≥ 0.
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2. We define 𝑥+ = 𝑥 ∨ 0 and 𝑥− = 𝑥 ∧ 0. For 𝑠 ≥ 0, prove the bounds

E
[
𝑒𝑠𝑋𝑖

]
≤ 1 + 𝜓(𝑠)E

[
(𝑋𝑖)2+

]
+ 𝑠

2

2
E

[
(𝑋𝑖)2−

]
≤ 1 + 𝜓(𝑠)𝜎2

𝑖 ≤ 𝑒𝜓 (𝑠)𝜎
2
𝑖 .

3. Derive from the previous question, the upper bound

P [𝑋1 + . . . + 𝑋𝑛 ≥ 𝑡] ≤ exp
(
inf
𝑠>0

{
𝑛𝜎2𝜓(𝑠) − 𝑠𝑡

})
.

4. Conclude the proof of (1.7).

Bernstein concentration bound

Bernstein concentration inequality is directly derived from Bennett inequality by using the lower-
bound ℎ(𝑢) ≥ 𝑢2/(2 + 2𝑢/3). The statement is weaker, but more handy.

Bernstein concentration inequality states that for 𝑛 independent random variables fulfilling

𝑋𝑖 − E [𝑋𝑖] ≤ 𝐵 a.s. and 𝜎2
𝑖 := var (𝑋𝑖) < +∞ , (1.8)

we have, for any 𝐿 ≥ 0

P

[
𝑋̄𝑛 − E

[
𝑋̄𝑛

]
≥

√︂
2𝜎2𝐿

𝑛
+ 2𝐵𝐿

3𝑛

]
≤ 𝑒−𝐿 , with 𝜎2 =

1
𝑛

𝑛∑︁
𝑖=1

𝜎2
𝑖 . (1.9)

Before proving this bound, it is worth to comment it. You can observe that it looks like a non-
asymptotic version of (1.5), except that an additional term 2𝐵𝐿/(3𝑛) has appeared. When 𝑛 goes
to infinity, with 𝜎2 and 𝐵 fixed, we observe that this additional term is negligible compared to√︁

2𝜎2𝐿/𝑛, so we recover the Central Limit Theorem bound (1.5). On the other hand, when 𝐵 = 1
and 𝜎2 ∼ 𝜆/𝑛 as in our Bernoulli example, the second term becomes the dominant one when 𝐿 goes
to infinity.

1. Check that it is enough to prove (1.9) for variables fulfilling (1.6).
2. By comparing the seconde derivative on both side, check that (1 + 𝑢/3)ℎ(𝑢) ≥ 𝑢2/2 for any
𝑢 ≥ 0.

3. Prove the first Bernstein inequality: For variables fulfilling (1.6) we have for any 𝑡 ≥ 0

P
[
𝑋̄𝑛 ≥ 𝑡

]
≤ exp

(
−𝑛𝑡2

2(𝜎2 + 𝑡/3)

)
.

4. Check that for 𝑥 ≥ 0 and 𝑡 =
√

2𝜎2𝑥 + 2𝑥/3, we have

𝑡2

2(𝜎2 + 𝑡/3)
≥ 𝑥.

5. Conclude the proof of (1.9).
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Chapter 2

Statistical learning and optimisation

2.1 Batch statistical learning problem

Supervised learning problem. A central problem in machine learning is to predict an outcome
𝑌 ∈ Y from some covariates or ”features” 𝑋 ∈ X. The prediction is done with a predictor ℎ : X →
Y built by the data scientist.

Loss and risk. In statistical learning, we assume that the couple (𝑋,𝑌 ) is a random variable with
distribution P(𝑋,𝑌 ) . For a specified measurable function ℓ : Y × Y → R+, usually called ”loss
function”, and a measurable predictor ℎ : X → Y, we define the so-called risk of the predictor ℎ by

𝑟 (ℎ) = E(𝑋,𝑌 )∼P(𝑋,𝑌 ) [ℓ(𝑌, ℎ(𝑋))] .

The best predictor in terms of the risk 𝑟 , is then the predictor ℎ∗ : X → Y minimizing 𝑟 (ℎ) over all
the possible measurable maps ℎ : X → Y.
Examples of loss functions:

• 𝐿 𝑝 loss: ℓ(𝑦, 𝑦′) = (𝑦 − 𝑦′) 𝑝 , for 𝑝 ≥ 1,
• Hard loss: ℓ(𝑦, 𝑦′) = 1𝑦≠𝑦′ ,
• Logistic loss: ℓ(𝑦, 𝑦′) = log(1 + 𝑒−𝑦𝑦′ ),
• Hinge loss: ℓ(𝑦, 𝑦′) = [1 − 𝑦𝑦′]+, where [𝑥]+ = max(𝑥, 0).

For example, when ℓ(𝑦, 𝑦′) = 1𝑦≠𝑦′ , then the risk 𝑟 (ℎ) = P (𝑌 ≠ ℎ(𝑋)) is the probability of mis-
prediction.

Learning from data. In practice, the distribution P(𝑋,𝑌 ) is unknown, so we can neither com-
pute 𝑟 (ℎ) nor ℎ∗. Instead, we have access to a sample 𝑍 = (𝑋𝑖 , 𝑌𝑖)𝑖=1,...,𝑛 ∈ (X × Y)𝑛 gathering
𝑛 observations i.i.d. with distribution P(𝑋,𝑌 ) . We then build a predictor based on these data. We
choose a mapping 𝐻 : (X × Y)𝑛 × X → Y and predict 𝑌 with 𝐻 (𝑍, 𝑋), resulting with a risk
E(𝑋,𝑌 )∼P(𝑋,𝑌 ) [ℓ(𝑌, 𝐻 (𝑍, 𝑋))]. The central question is then, how to choose and compute the map-
ping 𝐻?

Classically, the statistical learner specifies a family of predictors ℎ : Θ × X → Y, for example
ℎ(𝜃, 𝑥) = ⟨𝜃, 𝑥⟩ for data in R𝑑 , and she/he considers predictors of the form 𝐻 (𝑍, 𝑋) = ℎ(𝑔(𝑍), 𝑋),
with 𝑔 : (X × Y)𝑛 → Θ measurable.
Examples of family of predictors:

• linear predictors ℎ(𝜃, 𝑥) = ⟨𝜃, 𝑥⟩,
• logit predictors ℎ(𝜃, 𝑥) = exp(⟨𝜃, 𝑥⟩)/(1 + exp(⟨𝜃, 𝑥⟩)),
• kernel predictors ℎ(𝜃, 𝑥) = ∑𝑑

𝑖=1 𝜃𝑖𝑘 (𝑧𝑖 , 𝑥),
• neural networks, etc.

Goal in statistical learning. Setting

𝑓 (𝜃) := 𝑟 (ℎ(𝜃, ·)) = E(𝑋,𝑌 )∼P(𝑋,𝑌 ) [ℓ(𝑌, ℎ(𝜃, 𝑋)] , for 𝜃 ∈ Θ, (2.1)

13
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the goal is to design some 𝜎(𝑍)-measurable variable 𝜃̂ = 𝑔(𝑍), such that 𝑓 (𝜃̂) is as small as possible
in expectation or with high probability with respect to the randomness of 𝑍 .

Typical results in statistical learning theory provide
• some upper bounds on the so-called ”excess risk”

𝑓 (𝜃̂) −min
𝜃∈Θ

𝑓 (𝜃) = 𝑟 (ℎ(𝜃, ·)) −min
𝜃∈Θ

𝑟 (ℎ(𝜃, ·)),

either in expectation, or with high probability with respect to the randomness of 𝑍 .
• some lower-bounds on the best possible excess risk over a class of problems.

Remark: In practice, the data set that we observe corresponds to a realization 𝑍 (𝜔) of the random
variable 𝑍 . The statistical learner then computes the parameter 𝜃̂ (𝜔) = 𝑔(𝑍 (𝜔)) and he/she uses
the function ℎ(𝜃̂ (𝜔), ·) : X → Y for prediction. Yet, when we investigate the statistical properties
of the predictor, we consider 𝑍 , and hence 𝜃̂, as a random variable. The goal is to understand the
distribution of the risk 𝑓 (𝜃̂) or the distribution of the parameter 𝜃̂ with respect to the randomness of
𝑍 .

2.2 Learning with gradient descent

Let us assume that P(𝑋,𝑌 ) is unknown, but we observe some i.i.d. data 𝑍 = (𝑋𝑖 , 𝑌𝑖)𝑖=1,...,𝑛 distributed
according to P(𝑋,𝑌 ) . In order to find a 𝜃̂ such that 𝑓 (𝜃̂) is as small as possible, a classical strategy is
1. to replace 𝑓 (𝜃) by some empirical version 𝑓̂𝑍 (𝜃) of it

𝑓̂𝑍 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑌𝑖 , ℎ(𝜃, 𝑋𝑖)) +Ω(𝜃),

where Ω(𝜃) is a regularization convex penalty, for example Ω(𝜃) = 𝜆∥𝜃∥2 with 𝜆 ≥ 0;
2. to estimate 𝜃 with the so-called Penalized Empirical Risk Minimizer (PERM):

𝜃̂ ∈ argmin
𝜃∈Θ

𝑓̂𝑍 (𝜃). (2.2)

To implement this method, how can we perform the minimization above?

a) Gradient Flow

Let us assume for simplicity that Θ = R𝑑 . We want to solve an optimisation problem of the form

𝜃∗ ∈ argmin
𝜃∈R𝑑

𝑓 (𝜃), (2.3)

for some function 𝑓 : R𝑑 → R, for example 𝑓 (𝜃) = 𝑓̂𝑍 (𝜃) for the PERM. In most cases, there exists
no explicit formula for 𝜃∗, and we must evaluate it numerically. When 𝑓 is differentiable, a strategy
is to start from some 𝜃GF

0 ∈ R
𝑑 , and then follow the steepest descent, called Gradient Flow (GF),

𝑑𝜃GF
𝑡

𝑑𝑡
= −∇ 𝑓 (𝜃GF

𝑡 ). (2.4)

Analyzing GF: The GF can be analyzed very simply. Assume that 𝑓 is convex and differentiable.
Then, according to Lemma B.1, we have

𝑓 (𝜃GF
𝑡 ) − 𝑓 (𝜃∗)

Lemma 𝐵.1
≤ ⟨∇ 𝑓 (𝜃GF

𝑡 ), 𝜃GF
𝑡 − 𝜃∗⟩

= −⟨
𝑑𝜃GF
𝑡

𝑑𝑡
, 𝜃GF
𝑡 − 𝜃∗⟩ = −

1
2
𝑑

𝑑𝑡
∥𝜃GF
𝑡 − 𝜃∗∥2. (2.5)
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Let us consider now the average of the Gradient Flow trajectory over [0, 𝑇] for some 𝑇 > 0

𝜃GF
𝑇 :=

1
𝑇

∫ 𝑇

0
𝜃𝑡 𝑑𝑡.

According to the convexity of 𝑓 , we get from Jensen Inequality and (2.5)

𝑓 (𝜃GF
𝑇 ) − 𝑓 (𝜃

∗) ≤ 1
𝑇

∫ 𝑇

0
( 𝑓 (𝜃GF

𝑡 ) − 𝑓 (𝜃∗)) 𝑑𝑡

(2.5)
≤ − 1

2𝑇

∫ 𝑇

0

𝑑

𝑑𝑡
∥𝜃GF
𝑡 − 𝜃∗∥2 𝑑𝑡

=
1

2𝑇

(
∥𝜃GF

0 − 𝜃
∗∥2 − ∥𝜃GF

𝑇 − 𝜃
∗∥2

)
≤
∥𝜃GF

0 − 𝜃
∗∥2

2𝑇
.

This inequality ensures that when taking the average 𝜃GF
𝑇

of the Gradient Flow, we minimise 𝑓 up
to an 𝑂 (1/𝑇)-optimisation error.

Remark: the mapping 𝑡 → 𝑓 (𝜃GF
𝑡 ) is non-increasing since

𝑑

𝑑𝑡
𝑓 (𝜃GF

𝑡 ) = ⟨∇ 𝑓 (𝜃GF
𝑡 ),

𝑑𝜃GF
𝑡

𝑑𝑡
= −∥∇ 𝑓 (𝜃GF

𝑡 )∥2 ≤ 0,

so 𝑓 (𝜃GF
𝑇
) ≤ 𝑓 (𝜃GF

𝑇
) and therefore 𝜃GF

𝑇
also minimises 𝑓 up to an 𝑂 (1/𝑇)-optimisation error.

b) Gradient Descent

Computing continuous time dynamics as the Gradient Flow (2.4) is computationally very intensive
in general. Gradient Decent (GD) is a simple discretization of the Gradient Flow, which is easy to
implement, and which is widely used to seek for solutions to (2.3).

Gradient Descent (GD)
Input: 𝜂 > 0, and 𝜃1 ∈ R𝑑 .

Iterate: for 𝑡 = 1, . . . , 𝑇 − 1,
𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ 𝑓 (𝜃𝑡 )

Next theorem shows that the average 𝜃𝑇 = 1
𝑇

∑𝑇
𝑡=1 𝜃𝑡 of the sequence of the GD minimises 𝑓 up to

an 𝑂 (1/
√
𝑇)-optimisation error, provided that the gradient step 𝜂 is chosen proportional to 𝑇−1/2.

Theorem 2.1 GD: Rate for Lipschitz convex function.
Let 𝑓 : R𝑑 → R be a differentiable and convex function. Define the sequence (𝜃𝑡 )𝑡≥1 by induction,

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ 𝑓 (𝜃𝑡 ), 𝑡 ≥ 1, with 𝜂 =
𝑅

𝐿
√
𝑇
,

where 𝑅 ≥ ∥𝜃1 − 𝜃∗∥ and where 𝐿 ≥ ∥∇ 𝑓 (𝜃𝑡 )∥ for all 𝑡 = 1, . . . , 𝑇 .
Then, the average 𝜃𝑇 = 1

𝑇

∑𝑇
𝑡=1 𝜃𝑡 of the sequence of the GD fulfills

𝑓 (𝜃𝑇 ) − min
𝜃∈R𝑑

𝑓 (𝜃) ≤ 𝐿𝑅
√
𝑇
.

Remarks.
• Compared to Gradient Flow, the optimisation error for Gradient Descent is 𝑂 (1/

√
𝑇). This

slower rates is due to the discretization of the Gradient Flow dynamic.
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• The choice 𝜂 = 𝑅/(𝐿
√
𝑇) can be infeasible in practice, as the constant 𝑅 and 𝐿 are usually

unknown. If we set 𝜂 = 𝛼/
√
𝑇 for some 𝛼 > 0, then according to (2.9), the upper bound becomes

𝑓 (𝜃𝑇 ) − min
𝜃∈R𝑑

𝑓 (𝜃) ≤ 𝛼
−1𝑅2 + 𝛼𝐿2

2
√
𝑇

.

Choosing 𝜂 = 𝛼/
√
𝑇 has to drawback: first it requires to know in advance the time horizon 𝑇 ,

second an arbitrary choice of 𝛼, say 𝛼 = 1, may be suboptimal if 𝐿 and 𝑅 have very different
sizes. These two issues can be simply overcome by some adaptive choice of the step size 𝜂. This
topic is yet beyond the scope of these lecture notes.

Proof of Theorem 2.1. The proof of Theorem 2.1 is a reminiscence of the analysis of the Gradient
Flow page 14. As for the Gradient Flow, we get from the convexity of 𝑓 and Lemma B.1

𝑓 (𝜃𝑡 ) − 𝑓 (𝜃∗) ≤ ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃𝑡 − 𝜃∗⟩. (2.6)

From the polarisation formula 2⟨𝑎, 𝑏⟩ = ∥𝑎∥2 + ∥𝑏∥2 − ∥𝑏 − 𝑎∥2, we get

2⟨𝜂∇ 𝑓 (𝜃𝑡 ), 𝜃𝑡 − 𝜃∗⟩ = ∥𝜃𝑡 − 𝜃∗∥2 + 𝜂2∥∇ 𝑓 (𝜃𝑡 )∥2 − ∥𝜃𝑡 − 𝜃∗ − 𝜂∇ 𝑓 (𝜃𝑡 )∥2

= ∥𝜃𝑡 − 𝜃∗∥2 − ∥𝜃𝑡+1 − 𝜃∗∥2 + 𝜂2∥∇ 𝑓 (𝜃𝑡 )∥2. (2.7)

Summing (2.7) over 𝑡 generates a telescopic sum, leading to

𝑇∑︁
𝑡=1

( 𝑓 (𝜃𝑡 ) − 𝑓 (𝜃∗))
(2.6)
≤

𝑇∑︁
𝑡=1

⟨∇ 𝑓 (𝜃𝑡 ), 𝜃𝑡 − 𝜃∗⟩

(2.7)
=
∥𝜃1 − 𝜃∗∥2 − ∥𝜃𝑇+1 − 𝜃∗∥2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1

∥∇ 𝑓 (𝜃𝑡 )∥2 (2.8)

≤ 𝑅2

2𝜂
+ 𝜂

2
𝐿2𝑇. (2.9)

The convexity of 𝑓 finally ensures that

𝑓 (𝜃𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝜃𝑡 ),

so the result of Theorem 2.1 follows by plugging the value 𝜂 = 𝑅/(𝐿
√
𝑇) in (2.9). □

c) Stochastic Gradient Descent

In practice, Stochastic Gradient Descent (SGD) is widely used for minimizing the (penalized) empir-
ical risk 𝑓̂𝑍 defined in (2.2). It was already implemented in the early 60’s to train a linear regression
on the first generations of computers.
The recipe of SGD is to replace at each step the gradient of 𝑓̂𝑍 by a gradient based on a random
subsample of the data points (𝑋𝑖 , 𝑌𝑖)𝑖∈𝐼 . More precisely, for some 𝐵 ∈ N∗, let 𝐼1, 𝐼2, . . . ⊂ {1, . . . , 𝑛}
be a random sequence of subsets of {1, . . . , 𝑛} of size 𝐵, with uniform distribution, and independent
of the data 𝑍 . We define 𝐹𝑖 (𝜃) = ℓ(𝑌𝑖 , ℎ(𝜃, 𝑋𝑖)) +Ω(𝜃) and

𝐹̄𝐼𝑡 =
1
𝐵

∑︁
𝑖∈𝐼𝑡

𝐹𝑖 .

Batch-SGD amount to iterate

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐹̄𝐼𝑡 (𝜃𝑡 ), for some 𝜂 > 0.
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An important advantage of Batch-SGD compared to vanilla gradient descent

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ 𝑓̂𝑍 (𝜃𝑡 ), 𝑡 ≥ 1,

is that at each time step, we only need to compute ∇𝐹̄𝐼𝑡 (𝜃𝑡 ) instead of ∇ 𝑓̂𝑍 (𝜃𝑡 ) = 1
𝑛

∑𝑛
𝑖=1 ∇𝐹𝑖 (𝜃𝑡 ),

reducing the computational complexity by a factor 𝑛/𝐵. When the datasets are large, with millions
of samples, the speed-up is substantial.

The rationale for using ∇𝐹̄𝐼𝑡 (𝜃𝑡 ) instead of ∇ 𝑓̂𝑍 (𝜃𝑡 ) is that

∇ 𝑓̂𝑍 (𝜃𝑡 ) = E
[
∇𝐹̄𝐼𝑡 (𝜃𝑡 ) |F𝑡−1

]
, where F𝑡−1 = 𝜎(𝑍, 𝐼1, . . . , 𝐼𝑡−1), (2.10)

so the stochastic gradient ∇𝐹̄𝐼𝑡 (𝜃𝑡 ) can be viewed as a “noisy” version of ∇ 𝑓̂𝑍 (𝜃𝑡 ). Other choices
of stochastic gradient 𝑔𝑡 can be done, and the next theorem provides a convergence analysis for
minimizing (2.3) with any stochastic gradient 𝑔𝑡 fulfilling E [𝑔𝑡 |𝜃1, . . . , 𝜃𝑡 ] = ∇ 𝑓 (𝜃𝑡 ).

Theorem 2.2 SGD: Rate for Lipschitz convex function.
Let 𝑓 : R𝑑 → R be a differentiable and convex function and (F𝑡 )𝑡≥0 be a filtration. Define the
sequence (𝜃𝑡 )𝑡≥1 by induction,

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑔𝑡 , 𝑡 ≥ 1, with 𝜂 =
𝑅

𝐿
√
𝑇
,

where 𝑅 ≥ ∥𝜃1 − 𝜃∗∥ and where 𝑔𝑡 is any F𝑡 -measurable random variable fulfilling

E[𝑔𝑡 |F𝑡−1] = ∇ 𝑓 (𝜃𝑡 ), and E[∥𝑔𝑡 ∥2] ≤ 𝐿2, for 𝑡 = 1, . . . , 𝑇 .

Then, the average 𝜃𝑇 = 1
𝑇

∑𝑇
𝑡=1 𝜃𝑡 of the sequence of the SGD fulfills

E

[
𝑓 (𝜃𝑇 ) − min

𝜃∈R𝑑
𝑓 (𝜃)

]
≤ 𝐿𝑅
√
𝑇
.

Remark. The bound is similar to the one in Theorem 2.1, except that it holds only on average over
the randomness of the stochastic gradients.

Proof of Theorem 2.2. The proof follows the same lines as the proof of Theorem 2.1. We start again
from (2.6) and since E [𝑔𝑡 |F𝑡−1] = ∇ 𝑓 (𝜃𝑡 ), we get

E

[
𝑇∑︁
𝑡=1

( 𝑓 (𝜃𝑡 ) − 𝑓 (𝜃∗))
]
≤ E

[
𝑇∑︁
𝑡=1

⟨∇ 𝑓 (𝜃𝑡 ), 𝜃𝑡 − 𝜃∗⟩
]

= E

[
𝑇∑︁
𝑡=1

E [⟨𝑔𝑡 , 𝜃𝑡 − 𝜃∗⟩|F𝑡−1]
]

= E

[
𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃𝑡 − 𝜃∗⟩
]
. (2.11)

Following exactly the same computations as for proving (2.8), with ∇ 𝑓 (𝜃𝑡 ) replaced by 𝑔𝑡 , we get

𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃𝑡 − 𝜃∗⟩ =
∥𝜃1 − 𝜃∗∥2 − ∥𝜃𝑇+1 − 𝜃∗∥2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1

∥𝑔𝑡 ∥2. (2.12)
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Plugging this bound into (2.11) leads to

E

[
𝑇∑︁
𝑡=1

( 𝑓 (𝜃𝑡 ) − 𝑓 (𝜃∗))
]
≤ E

[
𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃𝑡 − 𝜃∗⟩
]

≤ 𝑅2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1

E
[
∥𝑔𝑡 ∥2

]
≤ 𝑅2

2𝜂
+ 𝜂

2
𝐿2𝑇.

We then conclude as in the proof of Theorem 2.1. □

d) One-pass Stochastic Gradient Descent

We observe that Batch-SGD presented above aims at minimizing the penalized empirical risk min-
imizer 𝑓̂𝑍 (𝜃). Our ultimate goal is yet to get the risk 𝑓 (𝜃) = E(𝑋,𝑌 ) [ℓ(𝑌, ℎ(𝜃, 𝑋)] as small as
possible.
Minimizing 𝑓 by GD would require to compute the gradient

∇ 𝑓 (𝜃𝑡 ) = ∇𝜃 E(𝑋,𝑌 ) [ℓ(𝑌, ℎ(𝜃𝑡 , 𝑋)] .

This quantity is unknown, but at each step 𝑡, we can compute

𝑔𝑡 = ∇𝜃ℓ(𝑌𝑡 , ℎ(𝜃𝑡 , 𝑋𝑡 )).

Under the assumption that (𝑋𝑡 , 𝑌𝑡 )𝑡=1,...,𝑛 are i.i.d., and some dominance assumptions ensuring that
we can invert gradient and expectation

E [∇𝜃ℓ(𝑌𝑡 , ℎ(𝜃, 𝑋𝑡 ))] = ∇𝜃E [ℓ(𝑌𝑡 , ℎ(𝜃, 𝑋𝑡 ))] , for all 𝜃 ∈ R𝑑 , (2.13)

the gradient 𝑔𝑡 fulfills

E [𝑔𝑡 |F𝑡−1] = ∇ 𝑓 (𝜃𝑡 ), where F𝑡−1 = 𝜎 ((𝑋𝑖 , 𝑌𝑖) : 𝑖 = 1, . . . , 𝑡 − 1) .

In light of Theorem 2.2 this suggests to apply a one-pass SGD on the data.

One-Pass Stochastic Gradient Descent (One-pass SGD)
Input: 𝜂 > 0, and 𝜃1 ∈ R𝑑 .

Iterate: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃ℓ(𝑌𝑡 , ℎ(𝜃𝑡 , 𝑋𝑡 )), for 𝑡 = 1, . . . , 𝑛 − 1

Output: 𝜃̂ = 1
𝑛

∑𝑛
𝑡=1 𝜃𝑡

Under the assumptions of Theorem 2.2 and assumptions ensuring that we can invert gradient and
expectation as in (2.13), we get from Theorem 2.2 that E𝑍

[
𝑓 (𝜃̂) − 𝑓 (𝜃∗)

]
≤ 𝐿𝑅/

√
𝑛, i.e.

E𝑍

[
E(𝑋,𝑌 )

[
ℓ(𝑌, ℎ(𝜃̂, 𝑋)

] ]
− min
𝜃∈R𝑑

E(𝑋,𝑌 ) [ℓ(𝑌, ℎ(𝜃, 𝑋)] ≤
𝐿𝑅
√
𝑛
.

Remark 1. At first sight, the application of Batch-SGD with 𝐵 = 1 for empirical risk minimization
looks similar to the application of One-pass SGD. We emphasize yet two important differences:
• For empirical risk minimisation, a data point 𝑍𝑖 = (𝑋𝑖 , 𝑌𝑖) can be involved in multiple steps in

Batch-SGD. The algorithm does “multiple passes” on the data. A contrario, in one-pass SGD,
each data point 𝑍𝑖 is used only once. The algorithm does a “single pass” on the data.
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• The goal in empirical risk minimization with Batch-SGD and one-pass SGD are different. In the
first case, we seek to minimize the (penalized) empirical risk

𝑓̂𝑍 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑌𝑖 , ℎ(𝜃, 𝑋𝑖)) +Ω(𝜃),

while in the second case, we seek to get the prediction risk

𝑓 (𝜃̂) = E(𝑋,𝑌 )
[
ℓ(𝑌, ℎ(𝜃̂, 𝑋))

]
,

as small as possible, which is our ultimate goal.
It is important to notice that while we can compute the function 𝑓̂𝑍 (𝜃), the function 𝑓 (𝜃) is unknown
to the data scientist, since 𝑃 (𝑋,𝑌 ) is unknown.

Remark 2. Another virtue of one-pass SGD is that we do not need to have all the data 𝑍 =

(𝑋𝑖 , 𝑌𝑖)𝑖=1,...,𝑛 from the very beginning. One-pass SGD can handle data that arrives sequentially
in time, and it outputs a stream of predictor as time passes. This setting, where data is observed
sequentially in time, is precisely the topic of theses lecture notes.

2.3 Sequential statistical learning

In batch statistical learning, we have access from the start to a whole data set 𝑍 = (𝑋𝑖 , 𝑌𝑖)𝑖=1,...,𝑛.
While this situation arises when analyzing data produced by some experiments, it does not fit many
practical situations where:
• the data 𝑍𝑡 = (𝑋𝑡 , 𝑌𝑡 ) is collected sequentially as time passes;
• a decision or prediction must be performed at each time step (based on the data available at this

time);
• possibly, the learner can choose at each time step the covariates 𝑋𝑡 , with a choice based on the

past observations.
Our focus on the first part of the lecture notes, will be on such problems. We will consider a set of
problems that can be summarized, at a high-level, as follows. At each time 𝑡 = 1, 2, . . ., we will have
to choose an ”action” 𝜃̂𝑡 from available data at time 𝑡. Each action 𝜃̂𝑡 has a risk or ”cost” 𝑓𝑡 (𝜃̂𝑡 ) and
our goal will be to find strategies 𝜃̂ such that the cumulated cost

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃̂𝑡 ),

is as small as possible.

Let us sketch succinctly the three problems that we will consider. These problems will be described
in full details in the next sections and chapters.

1) Online learning.
In this case, at each time 𝑡, we seek to predict a random outcome 𝑌𝑡 ∈ R from random covariates
𝑋𝑡 ∈ X. The prediction is assumed to be of the form ℎ(𝜃̂𝑡 , 𝑋𝑡 ), where ℎ(𝜃, 𝑥) is a prescribed family
of predictors. For a given loss function ℓ : R2 → R+, the ”cost” associated to the choice of a
parameter 𝜃 is the integrated loss

𝑓𝑡 (𝜃) = E(𝑋𝑡 ,𝑌𝑡 ) [ℓ(𝑌𝑡 , ℎ(𝜃, 𝑋𝑡 ))] .

2) Sequential prediction with expert advices.
A variant of the previous learning problem, is when at each time 𝑡, we have access to some pre-
dictions ℎ1 (𝑡), . . . , ℎ𝑑 (𝑡) of 𝑌𝑡 from a set of 𝑑 experts. The question is then how to aggregate this
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predictions in order to get a loss as small as possible? For a given loss function ℓ, we will consider
convex combinations of the predictions

∑𝑑
𝑘=1 𝜃̂𝑘,𝑡ℎ𝑘 (𝑡) and we will seek to minimise the cumulated

loss
𝑇∑︁
𝑡=1

ℓ

(
𝑌𝑡 ,

𝑑∑︁
𝑘=1

𝜃̂𝑘,𝑡ℎ𝑘 (𝑡)
)
.

3) Multi-armed bandit problems.
In the Multi-armed bandit (MAB) problems, the player chooses at each time 𝑡 an action 𝜃̂𝑡 ∈ Θ and
receives a pay-off 𝑍𝑡 with conditional mean E [𝑍𝑡 |𝜃] = 𝜇(𝜃) for any 𝜃 ∈ Θ. The function 𝜇 : Θ→ R
is unknown and the only information available at time 𝑡 are the past outcomes 𝑍1, . . . , 𝑍𝑡−1. We will
seek for strategies 𝜃̂ maximizing the predictable pay-off

𝑇∑︁
𝑡=1

E
[
𝑍𝑡 |𝜃̂𝑡

]
=

𝑇∑︁
𝑡=1

𝜇(𝜃̂𝑡 ),

or equivalently minimizing the regret

𝑇∑︁
𝑡=1

(
max
𝜃∈Θ

𝜇(𝜃) − 𝜇(𝜃̂𝑡 )
)
.

2.4 Online learning with stochastic gradient descent

2.4.1 Stochastic sequential prediction

Let us consider the sequential prediction problem, where at time 𝑡 we want to predict a real valued
outcome 𝑌𝑡 from covariates 𝑋𝑡 via a predictor ℎ(𝜃̂𝑡 , 𝑋𝑡 ). More precisely, we consider Θ ⊂ R𝑑 , a set
X and a prescribed regression function ℎ : Θ × X → R, differentiable in the first variable 𝜃.
For a parameter 𝜃 and a differentiable loss function ℓ : R2 → R+, we consider the integrated loss
𝑓𝑡 (𝜃) = E[ℓ(𝑌𝑡 , ℎ(𝜃, 𝑋𝑡 )], that we also assume to be differentiable. We have in mind a situation
where the functions 𝑓𝑡 do not vary too much accros time 𝑡, and hence we will compare ourself to
the best ”constant” strategy

𝜃∗ ∈ argmin
𝜃∈Θ

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃), (2.14)

which we assume to exist.
We cannot use the parameter 𝜃∗, as we do not have access to the functions 𝑓𝑡 . Actually, at
each time 𝑡, we have to choose the parameter 𝜃̂𝑡 according to the only information F𝑡−1 =

𝜎((𝑋1, 𝑌1), . . . , (𝑋𝑡−1, 𝑌𝑡−1)) available after the step 𝑡 − 1.

2.4.2 Sequential Stochastic gradient descent

a) Adapting One-pass SGD.

Let us assume for simplicity that Θ = R𝑑 . We wish to adapt (S)GD to our setting. The main difficulty
is that 𝜃̂𝑡 can only be computed based on information available at time 𝑡. In particular, at time 𝑡, we
do not have access to

∑𝑇
𝑡=1 𝑓𝑡 (𝜃), nor to an empirical version of it. We may yet adapt the one-pass

SGD idea to our setting, by computing sequentially

𝜃̂𝑡+1 = 𝜃̂𝑡 − 𝜂𝑔𝑡 , with 𝑔𝑡 = ∇𝜃ℓ(𝑌𝑡 , ℎ(𝜃̂𝑡 , 𝑋𝑡 )). (2.15)

Under the assumption that (𝑋𝑡 , 𝑌𝑡 ) is independent of F𝑡−1 and some dominance assumptions ensur-
ing that we can invert gradient and expectation

E [∇𝜃ℓ(𝑌𝑡 , ℎ(𝜃, 𝑋𝑡 ))] = ∇𝜃E [ℓ(𝑌𝑡 , ℎ(𝜃, 𝑋𝑡 ))] , for all 𝜃 ∈ R𝑑 ,
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the gradient 𝑔𝑡 fulfills
E [𝑔𝑡 |F𝑡−1] = ∇ 𝑓𝑡 (𝜃̂𝑡 ).

Hence, as in one-pass SGD, we may consider using the algorithm (2.15).

b) Sequential Stochastic Gradient Descent.

Motivated by the above example, we consider below the generic problem where, for a sequence of
differentiable convex functions { 𝑓𝑡 : 𝑡 = 1, . . . , 𝑇}, and a filtration (F𝑡 )𝑡≥0, we seek to minimize the
regret

𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃̂𝑡 ) − 𝑓𝑡 (𝜃∗)),

under the constraint that 𝜃̂𝑡+1 only has access to the past value 𝜃̂𝑡 which is F𝑡−1-measurable and to
some F𝑡 -measurable random vector 𝑔𝑡 fulfilling

E [𝑔𝑡 |F𝑡−1] = ∇ 𝑓𝑡 (𝜃̂𝑡 ).

Any random vector 𝑔𝑡 fulfilling the above property is called a stochastic gradient of 𝑓𝑡 at 𝜃̂𝑡 .

Sequential Stochastic Gradient Descent (Seq-SGD)
Input: 𝜂 > 0, and 𝜃1.

Iterate: for 𝑡 = 1, . . . , 𝑇 − 1,
𝜃̂𝑡+1 = 𝜃̂𝑡 − 𝜂𝑔𝑡

We have the following upper bound on the regret.

Theorem 2.3 Seq-SGD: Rate for Lipschitz convex function.
Let ( 𝑓𝑡 : R𝑑 → R)𝑡≥1 be a sequence of differentiable and convex functions and (F𝑡 )𝑡≥0 be a
filtration. Define the sequence (𝜃̂𝑡 )𝑡≥1 by induction,

𝜃̂𝑡+1 = 𝜃̂𝑡 − 𝜂𝑔𝑡 , 𝑡 ≥ 1, with 𝜂 =
𝑅

𝐿
√
𝑇
,

where 𝑅 ≥ ∥𝜃̂1 − 𝜃∗∥ and where 𝑔𝑡 is any F𝑡 -measurable random variable fulfilling

E[𝑔𝑡 |F𝑡−1] = ∇ 𝑓𝑡 (𝜃̂𝑡 ), and E[∥𝑔𝑡 ∥2] ≤ 𝐿2, for 𝑡 = 1, . . . , 𝑇 .

Then, the mean regret of the sequence of the SGD is upper-bounded by

E

[
1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃̂𝑡 ) − min
𝜃∈R𝑑

1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃)
]
≤ 𝐿𝑅
√
𝑇
.

Remark. Theorem 2.3 ensures that the average cost 1
𝑇

∑𝑇
𝑡=1 𝑓𝑡 (𝜃̂𝑡 ) of the sequence (𝜃̂𝑡 )𝑡≥1 induced

by Seq-SGD is almost as small as the average cost 1
𝑇

∑𝑇
𝑡=1 𝑓𝑡 (𝜃∗) of the best constant choice 𝜃∗, up

to a 𝑂 (𝑇−1/2)-term.

Proof of Theorem 2.3. The proof is exactly the same as for Theorem 2.2, simply replacing every-
where 𝑓 by 𝑓𝑡 . We give yet the main lines for convenience of the reader.
From (2.6) and E [𝑔𝑡 |F𝑡−1] = ∇ 𝑓𝑡 (𝜃̂𝑡 ), we get as for Theorem 2.2

E

[
𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃̂𝑡 ) − 𝑓𝑡 (𝜃∗))
]
≤ E

[
𝑇∑︁
𝑡=1

⟨∇ 𝑓𝑡 (𝜃̂𝑡 ), 𝜃̂𝑡 − 𝜃∗⟩
]

= E

[
𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃̂𝑡 − 𝜃∗⟩
]
. (2.16)
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Plugging the Equality (2.12), leads to

E

[
𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃̂𝑡 ) − 𝑓𝑡 (𝜃∗))
]
≤ 𝑅2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1

E
[
∥𝑔𝑡 ∥2

]
≤ 𝑅2

2𝜂
+ 𝜂

2
𝐿2𝑇.

The result of Theorem 2.3 follows by taking the value 𝜂 = 𝑅/(𝐿
√
𝑇). □

2.5 Problem: Sequential Projected Gradient Descent

For a sequence ( 𝑓𝑡 )𝑡≥1 of convex functions 𝑓𝑡 : D → R and C included in the interior of D, we
want to sequentially approximate the minimum

min
𝜃∈C

1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃). (2.17)

In the previous sections, we have made the simplifying assumption that D = C = R𝑑 . Yet, in many
instances, we need to minimize (2.17) on some specific set C, and not on the whole R𝑑 . In this
section, we will adapt (S)GD by adding a projection step in order to handle (2.17).
We consider a (non-empty) compact convex set C ⊂ R𝑑 , included in the interior of D. We assume
below that there exists a unique 𝜃∗ ∈ C solution to the minimisation problem (2.17).

2.5.1 Projection onto a convex set

As C is compact, the set of minimizers argmin𝑢∈C ∥𝑧 − 𝑢∥2 is non-empty. We denote by

𝜋C𝑧 ∈ argmin
𝑢∈C

∥𝑧 − 𝑢∥2

one of these minimizers.
1. Let us fix 𝑢 ∈ C and 0 < 𝑡 < 1. Why do we have ∥𝑧 − (𝑡𝑢 + (1 − 𝑡)𝜋C𝑧)∥2 ≥ ∥𝑧 − 𝜋C𝑧∥2?
2. Investigating this inequality for 𝑡 vanishing to 0, prove that

⟨𝑢 − 𝜋C𝑧, 𝑧 − 𝜋C𝑧⟩ ≤ 0 and ∥𝜋C𝑧 − 𝑧∥2 + ∥𝑢 − 𝜋C𝑧∥2 ≤ ∥𝑢 − 𝑧∥2. (2.18)

3. Prove that the projection 𝜋C𝑧 of 𝑧 onto the convex set C is uniquely defined.

2.5.2 Rate for Lipschitz convex functions

We assume in the following that each function 𝑓𝑡 is differentiable on the interior of D. To solve
(2.17), we can apply the Sequential Projected Gradient Descent algorithm (with 𝜂 > 0):

Sequential Projected Gradient Descent (SeqPGD)
Input: 𝜂 > 0, and 𝜃1 ∈ C.

Iterate: 𝜃𝑡+1 = 𝜋C (𝜃𝑡 − 𝜂∇ 𝑓𝑡 (𝜃𝑡 )), for 𝑡 = 1, . . . , 𝑇 − 1
Output: 𝜃𝑇 or 𝜃𝑇

We will prove the following theorem.

Theorem 2.4 Sequential PGD.
Assume that

max
𝑡=1,...,𝑇

max
𝜃∈C
∥∇ 𝑓𝑡 (𝜃)∥ ≤ 𝐿 , and max

𝜃∈C
∥𝜃 − 𝜃1∥ ≤ 𝑅.

Then, for 𝜂 = 𝑅/(𝐿
√
𝑇)

1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃𝑡 ) −min
𝜃∈C

1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃) ≤
𝐿𝑅
√
𝑇
.
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Remark. We get a bound similar to the bound in Theorem 2.3. Compared to Theorem 2.3, we notice
that the choice 𝜂 = 𝑅/(𝐿

√
𝑇) can be implemented in practice, as 𝑅 and 𝐿 can be computed from C

and 𝑓𝑡 .

Proof of Theorem 2.4.
For the analysis of the algorithm, we introduce the notation 𝜃+𝑡 = 𝜃𝑡 − 𝜂∇ 𝑓𝑡 (𝜃𝑡 ).
1. Similarly as in the unconstraint case, prove that

𝑓𝑡 (𝜃𝑡 ) − 𝑓𝑡 (𝜃∗) ≤
1
𝜂
⟨𝜃𝑡 − 𝜃+𝑡 , 𝜃𝑡 − 𝜃∗⟩ =

𝜂

2
∥∇ 𝑓𝑡 (𝜃𝑡 )∥2 +

1
2𝜂

(
∥𝜃𝑡 − 𝜃∗∥2 − ∥𝜃+𝑡 − 𝜃∗∥2

)
.

2. With (2.18), prove that

1
𝑇

𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃𝑡 ) − 𝑓𝑡 (𝜃∗)) ≤
𝜂𝐿2

2
+ ∥𝜃1 − 𝜃∗∥2

2𝜂𝑇
.

3. Conclude.

The proof is complete. □

Exercise. Extend the analysis above to the case where, as in Theorem 2.3, we only have access to a
stochastic gradient 𝑔𝑡 instead of ∇ 𝑓𝑡 (𝜃𝑡 ).
Remark. When all the 𝑓𝑡 are identically equal to 𝑓 , we have the next corollary of Theorem 2.4.

Corollary 2.5 Rate for Lipschitz convex function.
Assume that 𝑓𝑡 = 𝑓 for all 𝑡 ≥ 1. Assume also that max𝑥∈C ∥∇ 𝑓 (𝑥)∥ ≤ 𝐿 and that max𝑥,𝑦∈C ∥𝑥 −
𝑦∥ ≤ 𝑅.
Then, for 𝜂 = 𝑅/(𝐿

√
𝑇)

𝑓 (𝜃𝑇 ) −min
𝜃∈C

𝑓 (𝜃) ≤ 𝐿𝑅
√
𝑇
.





Chapter 3

Prediction with experts

3.1 Introduction

3.1.1 The learning problem

We consider the problem were we want to predict a sequence (𝑦(𝑡))𝑡≥1 of real valued outcomes,
based on some expert predictions. More precisely, at each time 𝑡 ≥ 1, we have access to 𝑑 pre-
dictions of experts ℎ(𝑡) = (ℎ1 (𝑡), . . . , ℎ𝑑 (𝑡)) ∈ R𝑑 and our goal is to predict 𝑦(𝑡) based on these
expert predictions ℎ(𝑡). We will predict 𝑦(𝑡) by taking a convex combination ⟨𝜃𝑡 , ℎ(𝑡)⟩ of the expert
predictions, usually referred to as ”convex aggregation” of the expert predictions.

The information available at time 𝑡 for the prediction is

𝐼𝑡 =
(
𝑦(1), . . . , 𝑦(𝑡 − 1), ℎ(1), . . . , ℎ(𝑡 − 1)

)
∈ R(𝑑+1) (𝑡−1) .

An aggregation strategy 𝜃̂ is a sequence of mapping {𝜃̂𝑡 : 𝑡 ≥ 1} with 𝜃̂𝑡 : R(𝑑+1) (𝑡−1) → 𝑆𝑑 , where
𝑆𝑑 is the simplex 𝑆𝑑 =

{
𝑥 ∈ [0, 1]𝑑 : |𝑥 |1 = 1

}
.

For a given strategy 𝜃̂, the outcome 𝑦(𝑡) is predicted by the convex aggregation

⟨𝜃̂𝑡 (𝐼𝑡 ), ℎ(𝑡)⟩ =
𝑑∑︁
𝑗=1

[𝜃̂𝑡 (𝐼𝑡 )] 𝑗 ℎ 𝑗 (𝑡).

To avoid cluttered notations, we will use the simple notation 𝜃𝑡 = 𝜃̂𝑡 (𝐼𝑡 ) in the following.

3.1.2 The regret of a strategy

Let us consider a loss function ℓ : R2 → R, convex in the first variable. Our goal is to find a strategy
𝜃̂ such that the cumulated loss

𝑇∑︁
𝑡=1

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) (3.1)

is as small as possible.

We will compare a strategy to a best constant aggregation strategy 𝜃∗

𝜃∗ ∈ argmin
𝜃∈𝑆𝑑

𝑇∑︁
𝑡=1

ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) .

We observe that 𝜃∗ always exists as the objective function 𝜃 → ∑𝑇
𝑡=1 ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) is convex on

the compact convex set 𝑆𝑑 .

The regret of a strategy 𝜃̂ is defined as

R(𝜃̂) = 1
𝑇

𝑇∑︁
𝑡=1

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) −
1
𝑇

𝑇∑︁
𝑡=1

ℓ (⟨𝜃∗, ℎ(𝑡)⟩, 𝑦(𝑡)) .
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In most of this chapter, we will derive upper-bounds on R(𝜃̂), which will be valid for any sequences
(𝑦(𝑡))𝑡≥1 and (ℎ(𝑡))𝑡≥1. The case where (𝑦(𝑡))𝑡≥1 is generated according to some random mecha-
nism, will be discussed briefly in the last section.

3.2 Warm-up: aggregation with SeqPGD

3.2.1 SeqPGD for expert aggregation

Setting 𝑓𝑡 (𝜃) = ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)), we are exactly in the setting investigated in Chapter 2, Sec-
tion 2.5, where we want to get

∑𝑇
𝑡=1 𝑓𝑡 (𝜃𝑡 ) as small as possible. Hence, if the loss ℓ is differentiable

in the first variable, we can differentiate 𝑓𝑡

∇ 𝑓𝑡 (𝜃) = 𝜕1ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) ℎ(𝑡),

and use as an aggregation strategy the sequence (𝜃𝑡 )𝑡≥1 produced by the SeqPGD

𝜃𝑡+1 = 𝜋𝑆𝑑 (𝜃𝑡 − 𝜂∇ 𝑓𝑡 (𝜃𝑡 )), 𝑡 = 1, 2, . . . , (3.2)

where 𝜋𝑆𝑑 is the projection onto the simplex 𝑆𝑑 as defined in Section 2.5.1.

According to Theorem 2.4, the regret can then be upper-bounded in terms of 𝑅 = max𝜃, 𝜃 ′∈𝑆𝑑 ∥𝜃 −
𝜃′∥ and

𝐿 = max
𝑡=1,...,𝑇

max
𝜃∈𝑆𝑑
∥∇ 𝑓𝑡 (𝜃)∥ = max

𝑡=1,...,𝑇
max
𝜃∈𝑆𝑑
∥𝜕1ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) ℎ(𝑡)∥.

We observe that |𝜃 𝑗 − 𝜃′𝑗 | ≤ 1 for any 𝜃, 𝜃′ ∈ 𝑆𝑑 , so

𝑅2 ≤ max
𝜃, 𝜃 ′∈𝑆𝑑

|𝜃 − 𝜃′ |1 ≤ 2.

As for 𝐿, let us assume that both the outcomes 𝑦(𝑡) and the expert predictions ℎ 𝑗 (𝑡) take values
in [−𝑀, 𝑀]. Then, if 𝜕1ℓ is continuous, the derivative 𝜕1ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) is bounded in absolute
value by some constant 𝐶 for any 𝜃 ∈ 𝑆𝑑 and 𝑡 ≥ 1 and hence

max
𝑡=1,...,𝑇

max
𝜃∈𝑆𝑑
|∇ 𝑓𝑡 (𝜃) |∞ = max

𝑡=1,...,𝑇
max
𝜃∈𝑆𝑑
|𝜕1ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) ℎ(𝑡) |∞ ≤ 𝐶𝑀.

Therefore we have 𝐿 ≤ 𝐶𝑀
√
𝑑 and the upper-bound of Theorem 2.4, Chapter 2, gives

R(𝜃̂SeqPGD) ≤ 𝐶𝑀
√︂

2𝑑
𝑇
. (3.3)

Remark. Let us comment on the nature of this result.
1. The regret (3.3) for SeqPGD holds for any sequences (𝑦(𝑡))𝑡≥1 and (ℎ 𝑗 (𝑡))𝑡≥1, for 𝑗 = 1, . . . , 𝑑,

with values in [−𝑀, 𝑀]. It means that, whatever these sequences, without any additional knowl-
edge, we can be almost as good as the best combination of the experts, with the regret (3.3)
tending to 0 at rate 1/

√
𝑇 . This can sound as magic, but we emphasize that:

• We only compare to the best combination of experts ”on average”, and this best combination
of experts ”on average” may give very bad prediction at some epoch 𝑡;
• Even ”on average”, if all experts are very poor in terms of prediction, the aggregated prediction

will also be very poor.
2. In the above bound, we notice that the upper-bound on the regret grows like

√
𝑑 with the number

𝑑 of experts. As we may wish to combine the predictions of many different experts, it is important
to understand if we can have a better dependence on the number of experts. As we will see, the√
𝑑 can be reduced to a

√︁
log(𝑑) for some more suitable aggregation strategies.
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3.2.2 Linearized problem

To get a better intuition on the problem, let us consider a linearized version of our problem. Let us
set

ℓ𝑡 = [ℓ 𝑗 ,𝑡 ] 𝑗=1,...,𝑑 = [ℓ(ℎ 𝑗 (𝑡), 𝑦(𝑡))] 𝑗=1,...,𝑑 .

Since ℓ is convex on the first variable and since 𝜃𝑡 ∈ 𝑆𝑑 , Jensen inequality ensures the upper-bound

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) = ℓ ©­«
𝑑∑︁
𝑗=1

𝜃 𝑗 ,𝑡ℎ 𝑗 (𝑡), 𝑦(𝑡)ª®¬ ≤
𝑑∑︁
𝑗=1

𝜃 𝑗 ,𝑡ℓ(ℎ 𝑗 (𝑡), 𝑦(𝑡)) = ⟨𝜃𝑡 , ℓ𝑡 ⟩. (3.4)

As a warm-up, we may investigate first the simpler problem with linear objective functions 𝑓𝑡 (𝜃) =
⟨𝜃, ℓ𝑡 ⟩. For a strategy 𝜃̂, we wish to control the linearized regret

R𝑙𝑖𝑛 (𝜃̂) =
1
𝑇

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ − min
𝜃∈𝑆𝑑

1
𝑇

𝑇∑︁
𝑡=1

⟨𝜃, ℓ𝑡 ⟩ =
1
𝑇

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ − min
𝑗=1,...,𝑑

1
𝑇

𝑇∑︁
𝑡=1

ℓ 𝑗 ,𝑡 , (3.5)

where the last equality follows from the fact that the map 𝜃 → ∑𝑇
𝑡=1⟨𝜃, ℓ𝑡 ⟩ is linear, so it is max-

imized at one of the extremal points of 𝑆𝑑 , namely, at one of the vectors of the canonical basis in
R𝑑 .

As before, we can aggregate the predictions ℎ(𝑡) according to a SeqPGD. As ∇⟨𝜃, ℓ𝑡 ⟩ = ℓ𝑡 , the
updates are then 𝜃𝑡+1 = 𝜋𝑆𝑑 (𝜃𝑡−𝜂ℓ𝑡 ). If we assume that the losses ℓ 𝑗 ,𝑡 = ℓ(ℎ 𝑗 (𝑡), 𝑦(𝑡)) are uniformly
bounded by some 𝐵, then ∥ℓ𝑡 ∥ ≤

√
𝑑 |ℓ𝑡 |∞ ≤

√
𝑑𝐵 and the upper-bound of of Theorem 2.4 gives

R𝑙𝑖𝑛 (𝜃̂SeqPGD) ≤ 𝐵
√︂

2𝑑
𝑇
. (3.6)

3.3 Aggregation with exponential updates

3.3.1 Exponential updates in the linearized problem

In the linearized problem with 𝑓𝑡 (𝜃) = ⟨𝜃, ℓ𝑡 ⟩, the SeqPGD iterate at time 𝑡 +1 amounts to update 𝜃𝑡
into 𝜃𝑡 − 𝜂ℓ𝑡 and then to project the result on 𝑆𝑑 according to 𝜋𝑆𝑑 . A glimpse at (3.5) shows that the
optimal 𝜃 is concentrated on a single expert, so we may wish to discard more strongly the weights
𝜃 𝑗 ,𝑡 corresponding to experts with strong loss ℓ 𝑗 ,𝑡 .

Following this direction, we can replace the linear discount 𝜃𝑡 − 𝜂ℓ𝑡 , by an exponential discount
𝜃𝑡𝑒
−𝜂ℓ𝑡 . As for the projection step, we may simply renormalized the update by its ℓ1-norm. This

lead us to the exponential weights strategy

𝜃1 =
1
𝑑
, 𝜃𝑡+1 =

𝜃𝑡𝑒
−𝜂ℓ𝑡

|𝜃𝑡𝑒−𝜂ℓ𝑡 |1
, 𝑡 = 1, 2, . . . , (3.7)

where 1 stands for the 𝑑-dimensional vector with all coordinates equal to 1, and 𝜃𝑡𝑒−𝜂ℓ𝑡 stands for
the vector with coordinates 𝜃 𝑗 ,𝑡𝑒−𝜂ℓ 𝑗,𝑡 , for 𝑗 = 1, . . . , 𝑑.

By a simple induction, we get the following closed-form formula for the weights 𝜃𝑡 of the exponen-
tial weights strategy

𝜃 𝑗 ,𝑡 =

exp
(
−𝜂∑𝑡−1

𝑠=1 ℓ 𝑗 ,𝑠

)
∑𝑑
𝑘=1 exp

(
−𝜂∑𝑡−1

𝑠=1 ℓ𝑘,𝑠

) , 𝑗 = 1, . . . , 𝑑, 𝑡 = 1, 2, . . . . (3.8)

In plain words, the exponential weights strategy consider the cumulated loss 𝐿 𝑗 ,𝑡−1 =
∑𝑡−1
𝑠=1 ℓ 𝑗 ,𝑠
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of each expert 𝑗 up to time 𝑡, and then gives a weight to the prediction ℎ 𝑗 (𝑡) proportional to
exp(−𝜂𝐿 𝑗 ,𝑡−1). Hence, the smaller the cumulated loss 𝐿 𝑗 ,𝑡−1, the larger the weight 𝜃 𝑗 ,𝑡 .

Next lemma bounds the regret (3.5) for the sequence (𝜃𝑡 )𝑡≥1 defined by (3.7) and for any bounded
sequence (ℓ𝑡 )𝑡≥1.

Lemma 3.1 Bound for exponential aggregation.
For any sequence (ℓ𝑡 )𝑡≥1, with ℓ𝑡 ∈ [𝑎, 𝑏]𝑑 , the sequence (𝜃𝑡 )𝑡≥1 defined by (3.7) with 𝜂 =√︃

8 log(𝑑)
(𝑏−𝑎)2𝑇 fulfills

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ − min
𝑗=1,...,𝑑

𝑇∑︁
𝑡=1

ℓ 𝑗 ,𝑡 ≤ (𝑏 − 𝑎)
√︂
𝑇 log(𝑑)

2
.

As a direct corollary of Lemma 3.1, we have the following theorem.

Theorem 3.2 Bound on the regret.
LetY be an interval in R. Assume that ℓ : Y ×Y → [0, 𝐵] is convex in the first variable. Then for
any sequences (𝑦(𝑡))𝑡≥1 and (ℎ 𝑗 (𝑡))𝑡≥1, for 𝑗 = 1, . . . , 𝑑, with values inY, the exponential weight

strategy (3.7) with 𝜂 =

√︃
8 log(𝑑)
𝐵2𝑇

fulfills

1
𝑇

𝑇∑︁
𝑡=1

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) − min
𝑗=1,...,𝑑

1
𝑇

𝑇∑︁
𝑡=1

ℓ
(
ℎ 𝑗 (𝑡), 𝑦(𝑡)

)
≤ 𝐵

√︂
log(𝑑)

2𝑇
.

Remark. Before proving Lemma 3.1 and Theorem 3.2, let us comment on theses last results.
Comparing the above regrets with the regret (3.6) of the SeqPGD algorithm, we observe that:
• We have the same scaling 1/

√
𝑇 with respect to 𝑇 ;

• The
√
𝑑 for SeqPGD has been replaced by

√︁
log(𝑑) for exponential weighting. So the price of

adding many experts is much lower in the exponential weight strategy than in SeqPGD.
• We compare the mean loss 1

𝑇

∑𝑇
𝑡=1 ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) to the mean loss of the best expert

min 𝑗=1,...,𝑑
1
𝑇

∑𝑇
𝑡=1 ℓ

(
ℎ 𝑗 (𝑡), 𝑦(𝑡)

)
, and not to the mean loss of the best convex combination of

the experts min𝜃∈𝑆𝑑
1
𝑇

∑𝑇
𝑡=1 ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) as in (3.3).

Proof of Theorem 3.2.
According to (3.4) we have

𝑇∑︁
𝑡=1

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) − min
𝑗=1,...,𝑑

𝑇∑︁
𝑡=1

ℓ
(
ℎ 𝑗 (𝑡), 𝑦(𝑡)

)
≤

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ − min
𝑗=1,...,𝑑

𝑇∑︁
𝑡=1

ℓ 𝑗 ,𝑡 . (3.9)

The proof of Theorem 3.2 then simply follows from Lemma 3.1 with 𝑎 = 0 and 𝑏 = 𝐵. □

Proof of Lemma 3.1.
For any 𝑡 = 1, . . . , 𝑇 , let 𝑍𝑡 : Ω→ [𝑎, 𝑏] be a random variable with distribution

P[𝑍𝑡 = ℓ 𝑗 ,𝑡 ] = 𝜃 𝑗 ,𝑡 , 𝑗 = 1, . . . , 𝑑.

According to Lemma 1.1 Chapter 1, we have

logE
[
𝑒−𝜂 (𝑍𝑡−E[𝑍𝑡 ] )

]
≤ (𝑏 − 𝑎)

2𝜂2

8
,

from which follows

E [𝑍𝑡 ] ≤
(𝑏 − 𝑎)2𝜂

8
− 1
𝜂

log
(
E

[
𝑒−𝜂𝑍𝑡

] )
. (3.10)
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We observe first that E [𝑍𝑡 ] = ⟨𝜃𝑡 , ℓ𝑡 ⟩. Second, setting 𝐿𝑡 =
∑𝑡
𝑠=1 ℓ𝑠 , with the convention that

𝐿0 = 0 ∈ R𝑑 , we have from (3.8)

𝜃𝑡 =
𝑒−𝜂𝐿𝑡−1

|𝑒−𝜂𝐿𝑡−1 |1
, for any 𝑡 = 1, . . . , 𝑇,

and hence

E
[
𝑒−𝜂𝑍𝑡

]
=

∑𝑑
𝑗=1 𝑒

−𝜂𝐿 𝑗,𝑡−1𝑒−𝜂ℓ 𝑗,𝑡

|𝑒−𝜂𝐿𝑡−1 |1
=
|𝑒−𝜂𝐿𝑡 |1
|𝑒−𝜂𝐿𝑡−1 |1

, for any 𝑡 = 1, . . . , 𝑇 .

Summing the Inequality (3.10) over 𝑡 then gives

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ ≤
(𝑏 − 𝑎)2𝜂𝑇

8
− 1
𝜂

𝑇∑︁
𝑡=1

(
log( |𝑒−𝜂𝐿𝑡 |1) − log( |𝑒−𝜂𝐿𝑡−1 |1)

)
=
(𝑏 − 𝑎)2𝜂𝑇

8
− 1
𝜂

(
log( |𝑒−𝜂𝐿𝑇 |1) − log( |𝑒−𝜂𝐿0 |1)

)
.

To conclude, we notice that |𝑒−𝜂𝐿0 |1 = 𝑑 and |𝑒−𝜂𝐿𝑇 |1 ≥ max 𝑗=1,...,𝑑 𝑒
−𝜂𝐿 𝑗,𝑇 , so that

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ ≤
(𝑏 − 𝑎)2𝜂𝑇

8
+ log(𝑑)

𝜂
+ min
𝑗=1,...,𝑑

𝐿 𝑗 ,𝑇 .

For 𝜂 =

√︃
8 log(𝑑)
(𝑏−𝑎)2𝑇 , the claim of Lemma 3.1 follows. □

Remark: Do you notice some similarities between the proof of Lemma 3.1 and the proof of Theo-
rem 2.2?

3.3.2 Faster aggregation rates for square loss

We may wonder whether the learning rate
√︁

log(𝑑)/𝑇 appearing in Theorem 3.2 is optimal. It can
be shown that the Lemma 3.1 cannot be (significantly) improved, in the following sense. There
exist some sequences (ℓ𝑡 )𝑡≥1 for which, for any sequence (𝜃𝑡 )𝑡≥1 with 𝜃𝑡 depending only on the
past losses ℓ1, . . . , ℓ𝑡−1, we have the minoration

lim inf
𝑑→∞

lim inf
𝑇→∞

√︄
2

(𝑏 − 𝑎)2𝑇 log(𝑑)

(
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , ℓ𝑡 ⟩ − min
𝑗=1,...,𝑑

𝑇∑︁
𝑡=1

ℓ 𝑗 ,𝑡

)
≥ 1.

Such sequences can be generated by sampling the ℓ 𝑗 ,𝑡 i.i.d. with Bernoulli(1/2) distribution.

Yet, the proof of Theorem 3.2 starts with Jensen inequality (3.9), and there is a room for improve-
ment for strongly convex losses. In this section, we exhibit this phenomenon for the square loss
ℓ(⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) = (𝑦(𝑡) − ⟨𝜃, ℎ(𝑡)⟩)2.

We assume that
sup
𝑡≥1
|𝑦(𝑡) | ≤

√
𝐵/2, sup

𝑡≥1
|ℎ(𝑡) |∞ ≤

√
𝐵/2, (3.11)

so that the losses ℓ 𝑗 ,𝑡 = (𝑦(𝑡) − ℎ 𝑗 (𝑡))2 belong to [0, 𝐵] as in the Theorem 3.2.

Theorem 3.3 Bound on the regret for the quadratic loss.
For any sequences (𝑦(𝑡))𝑡≥1 and (ℎ 𝑗 (𝑡))𝑡≥1, for 𝑗 = 1, . . . , 𝑑 fulfilling (3.11), the exponential
weight strategy (3.7) with 𝜂 = 1/(2𝐵) fulfills

1
𝑇

𝑇∑︁
𝑡=1

(𝑦(𝑡) − ⟨𝜃𝑡 , ℎ(𝑡)⟩)2 − min
𝑗=1,...,𝑑

1
𝑇

𝑇∑︁
𝑡=1

(
𝑦(𝑡) − ℎ 𝑗 (𝑡)

)2 ≤ 2𝐵 log(𝑑)
𝑇

.
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Remarks. In the setting where 𝑇 ≥ 2 log(𝑑), which typically holds when time grows, we notice
that:

1. We can choose 𝜂 = 1/(2𝐵) which is possibly much larger than the choice 𝜂 =

√︃
8 log(𝑑)
𝐵2𝑇

of
Theorem 3.2;

2. The regret then scales as log(𝑑)/𝑇 instead of
√︁

log(𝑑)/𝑇 as in Theorem 3.2;
3. This improvement is linked to this larger choice for 𝜂. Indeed, inspecting the proof below, we

observe that for the choice 𝜂 =

√︃
8 log(𝑑)
𝐵2𝑇

as in Theorem 3.2, we would only a get the bound

𝐵

√︃
log(𝑑)

8𝑇 on the regret.

Proof of Theorem 3.3.
According to (3.11), we have |𝑦(𝑡) − ℎ 𝑗 (𝑡) | ≤

√
𝐵, for all 𝑗 = 1, . . . , 𝑑 and 𝑡 = 1, . . . , 𝑇 .

Let us define the random variable 𝑍𝑡 : Ω→ [−
√
𝐵,
√
𝐵] by

P
[
𝑍𝑡 = 𝑦(𝑡) − ℎ 𝑗 (𝑡)

]
= 𝜃 𝑗 ,𝑡 , for 𝑗 = 1, . . . , 𝑑.

The map 𝑥 → 𝑒−𝜂𝑥
2

is concave on [−(2𝜂)−1/2, (2𝜂)−1/2], and for 𝜂 ≤ 1/(2𝐵), we have
[−
√
𝐵,
√
𝐵] ⊂ [−(2𝜂)−1/2, (2𝜂)−1/2]. So, Jensen inequality

E
[
exp

(
−𝜂𝑍2

𝑡

)]
≤ exp

(
−𝜂E [𝑍𝑡 ]2

)
ensures that

|𝜃𝑡𝑒−𝜂ℓ𝑡 |1 =

𝑑∑︁
𝑗=1

𝜃 𝑗 ,𝑡𝑒
−𝜂 (𝑦 (𝑡 )−ℎ 𝑗 (𝑡 ) )2

≤ exp
©­­«−𝜂

©­«
𝑑∑︁
𝑗=1

𝜃 𝑗 ,𝑡 (𝑦(𝑡) − ℎ 𝑗 (𝑡))ª®¬
2ª®®¬ = exp

(
−𝜂

(
𝑦(𝑡) − ⟨𝜃𝑡 , ℎ(𝑡)⟩

)2
)
. (3.12)

Setting 𝐿𝑡 =
∑𝑡
𝑠=1 ℓ𝑠 , with the convention that 𝐿0 = 0 ∈ R𝑑 , we have from (3.8)

𝜃𝑡 =
𝑒−𝜂𝐿𝑡−1

|𝑒−𝜂𝐿𝑡−1 |1
, for any 𝑡 = 1, . . . , 𝑇 .

So inequality (3.12) gives for any 𝑡 = 1, . . . , 𝑇

(𝑦(𝑡) − ⟨𝜃𝑡 , ℎ(𝑡)⟩)2 ≤ −
1
𝜂

log |𝜃𝑡𝑒−𝜂ℓ𝑡 |1 = −1
𝜂

log
(
|𝑒−𝜂𝐿𝑡 |1
|𝑒−𝜂𝐿𝑡−1 |1

)
.

Summing these inequalities over 𝑡, we conclude the proof as in Lemma 3.1

𝑇∑︁
𝑡=1

(𝑦(𝑡) − ⟨𝜃𝑡 , ℎ(𝑡)⟩)2 ≤ −
1
𝜂

(
log( |𝑒−𝜂𝐿𝑇 |1) − log( |𝑒−𝜂𝐿0 |1)

)
≤ log(𝑑)

𝜂
+ min
𝑗=1,...,𝑑

𝐿 𝑗 ,𝑇 .

As 𝜂 = 1/(2𝐵), the proof is complete. □

3.3.3 Exponential updates for the original problem

In Section 3.3.1, we have derived the strategy (3.7) from the linearized problem, by replacing linear
discounts, by exponential discounts. Let us come back to the original problem from Section 3.2.1,
and try to adapt this strategy directly to the original problem.
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Let us set 𝑔𝑡 := ∇ 𝑓𝑡 (𝜃𝑡 ) = 𝜕1ℓ(⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡))ℎ(𝑡). We can replace the linear discount 𝜃𝑡 − 𝜂𝑔𝑡
in the SPGD (3.2), by an exponential discount 𝜃𝑡𝑒−𝜂𝑔𝑡 . Hence, we consider the exponential weight
strategy relative to the gradients

𝜃1 =
1
𝑑
, 𝜃𝑡+1 =

𝜃𝑡𝑒
−𝜂𝑔𝑡

|𝜃𝑡𝑒−𝜂𝑔𝑡 |1
, 𝑡 = 1, 2, . . . . (3.13)

As before, we have the closed form formula

𝜃 𝑗 ,𝑡 =

exp
(
−𝜂∑𝑡−1

𝑠=1 𝑔 𝑗 ,𝑠

)
∑𝑑
𝑘=1 exp

(
−𝜂∑𝑡−1

𝑠=1 𝑔𝑘,𝑠

) . (3.14)

A simple adaptation of the proof of Theorem 3.2 gives the following bound on the regret.

Theorem 3.4 Bound on the regret for (3.13).
Assume that ℓ : R × R → R+ is convex and differentiable in the first variable. Then for any
sequences (𝑦(𝑡))𝑡≥1 with values in R and (ℎ(𝑡))𝑡≥1 with values in R𝑑 such that,

max
𝑡=1,...,𝑇

max
𝜃∈𝑆𝑑
|𝜕1ℓ(⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡))ℎ(𝑡) |∞ ≤ 𝐿, (3.15)

the exponential weight strategy (3.13) with 𝜂 =

√︃
2 log(𝑑)
𝐿2𝑇

fulfills

1
𝑇

𝑇∑︁
𝑡=1

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) − min
𝜃∈𝑆𝑑

1
𝑇

𝑇∑︁
𝑡=1

ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) ≤ 𝐿
√︂

2 log(𝑑)
𝑇

.

Remarks. Let us compare this result to the result (3.3) for SeqPGD and to Theorem 3.2.
1. Similarly as for Theorem 3.2, we observe that compared to SeqPGD, the scaling of the regret

bound with respect to the number 𝑑 of experts is
√︁

log(𝑑) instead of
√
𝑑, which is much better.

2. The bound of Theorem 3.4 may seem very similar to the one of Theorem 3.2. There is a major
difference though. We compare the performance of the aggregation strategy (3.13) to the per-
formance to the best aggregation strategy 𝜃∗, instead of the performance of the best expert. The
performance of the best aggregated predictor can be much better than the performance of the
best of the experts. In practice, it is common to observe that the predictions obtained from the
aggregation (3.13) of the expert advices outperform the predictions of the best of the experts.

Proof of Theorem 3.4.
As the function 𝜃 → ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) is convex and 𝑔𝑡 = ∇𝜃ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)), we have

𝑇∑︁
𝑡=1

ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) − min
𝜃∈𝑆𝑑

𝑇∑︁
𝑡=1

ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) = max
𝜃∈𝑆𝑑

𝑇∑︁
𝑡=1

(ℓ (⟨𝜃𝑡 , ℎ(𝑡)⟩, 𝑦(𝑡)) − ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)))

≤ max
𝜃∈𝑆𝑑

𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃𝑡 − 𝜃⟩

=

𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃𝑡 ⟩ − min
𝑗=1,...,𝑑

𝑇∑︁
𝑡=1

𝑔 𝑗 ,𝑡 ,

where the last inequality follows from the fact that the minimum of a linear function on the simplex
is achieved at the extremal points of the simplex.
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As 𝑔𝑡 ∈ [−𝐿, 𝐿]𝑑 , we can apply Lemma 3.1 with 𝑎 = −𝐿 and 𝑏 = 𝐿 to get

𝑇∑︁
𝑡=1

⟨𝑔𝑡 , 𝜃𝑡 ⟩ − min
𝑗=1,...,𝑑

𝑇∑︁
𝑡=1

𝑔 𝑗 ,𝑡 ≤ 𝐿
√︁

2 log(𝑑)𝑇.

The proof of Theorem 3.4 is complete. □

3.4 Mirror descent

3.4.1 Changing the geometry in gradient descent

Let us recall the recipe behind gradient descent. If 𝑓 : R𝑑 → R is differentiable, then Taylor
expansion ensures that for any 𝜃, 𝜃𝑡 ∈ R𝑑 ,

𝑓 (𝜃) = 𝑓 (𝜃𝑡 ) + ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩ + 𝑜(∥𝜃 − 𝜃𝑡 ∥).

When we do not have a closed-form formula for min𝜃∈R𝑑 𝑓 (𝜃), in order to minimize 𝑓 over R𝑑 , we
may wish to replace 𝑓 by a proxy more easily amenable to computations. If we replace 𝑓 by the
linear part in the Taylor expansion 𝜃 → 𝑓 (𝜃𝑡 ) + ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩, then the minimum is achieved
for some 𝜃 with diverging norm and the difference between 𝑓 and the linear proxy becomes large.
Hence, we must constrain the minimizer not to be too far away from 𝜃𝑡 . A simple recipe is then to
add a quadratic term ∥𝜃 − 𝜃𝑡 ∥2 which prevents the minimizer from being far away from 𝜃𝑡 . Hence,
we can replace the minimisation problem min𝜃∈R𝑑 𝑓 (𝜃) by

min
𝜃∈R𝑑

{
𝑓 (𝜃𝑡 ) + ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩ +

1
2𝜂
∥𝜃 − 𝜃𝑡 ∥2

}
. (3.16)

The solution 𝜃𝑡+1 to the minimisation problem (3.16) is given by the closed-form formula

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ 𝑓 (𝜃𝑡 ),

which corresponds to a step of gradient descent.

The penalization 1
2𝜂 ∥𝜃−𝜃𝑡 ∥

2 in (3.16) may not be the most suited one for the minimisation problem.
It can be suboptimal in some cases, as in Section 3.3.1, where the minimum is achieved in some
specific directions. It is then worth to replace the Euclidean norm 1

2 ∥𝜃 − 𝜃𝑡 ∥
2 by some more suited

divergence 𝐷 (𝜃, 𝜃𝑡 ) allowing some larger steps in directions of interest.

Which divergence 𝐷 (𝜃, 𝜃𝑡 ) shall we choose? If we come back to our minimisation problem
min𝜃∈R𝑑 𝑓 (𝜃), the ideal divergence is

𝐷 (𝜃, 𝜃𝑡 ) = 𝑓 (𝜃) − 𝑓 (𝜃𝑡 ) − ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩,

as then 𝑓 (𝜃𝑡 ) + ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩ + 𝐷 (𝜃, 𝜃𝑡 ) = 𝑓 (𝜃). Of course, this makes no sense in terms of
optimization algorithm, as we do not have closed-form updates for minimizing 𝑓 . Instead, we may
use a proxy 𝜙, which is amenable to closed-form updates and which induces a geometry suited to
the minimisation problem. This motivates the definition of the Bregman divergence.

Bregman divergence
Let 𝜙 : R𝑑 → R be convex and differentiable. The Bregman divergence associated to 𝜙 is

𝐷𝜙 (𝜃, 𝜔) = 𝜙(𝜃) − 𝜙(𝜔) − ⟨∇𝜙(𝜔), 𝜃 − 𝜔⟩, (3.17)

for 𝜃, 𝜔 ∈ R𝑑 .

As 𝜙 is convex, we observe that the Bregman divergence takes non-negative values.
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Replacing in (3.16) the Euclidean norm penalization 1
2 ∥𝜃 − 𝜃𝑡 ∥

2 by the Bregman divergence
𝐷𝜙 (𝜃, 𝜃𝑡 ), we get the update

𝜃𝑡+1 ∈ argmin
𝜃∈R𝑑

{
𝑓 (𝜃𝑡 ) + ⟨∇ 𝑓 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩ +

1
𝜂
𝐷𝜙 (𝜃, 𝜃𝑡 )

}
. (3.18)

As ∇𝜃𝐷𝜙 (𝜃, 𝜃𝑡 ) = ∇𝜙(𝜃)−∇𝜙(𝜃𝑡 ), differentiating the objective function, we get that 𝜃𝑡+1 is solution
to

∇𝜙(𝜃𝑡+1) = ∇𝜙(𝜃𝑡 ) − 𝜂∇ 𝑓 (𝜃𝑡 ).
The algorithm iterating these updates is called Mirror Descent (MD).

Exercise. check that for 𝜙(𝜃) = ∥𝜃∥2/2, we have 𝐷𝜙 (𝜃, 𝜔) = ∥𝜃 − 𝜔∥2/2, and hence gradient
descent is a special case of mirror descent for this choice of 𝜙.

More generally, when we have a sequence 𝑓𝑡 of objective functions, we may consider the sequential
mirror descent.
Sequential Mirror Descent (SeqMD)
Input: 𝜃1 ∈ R𝑑 , 𝜂 > 0.

Iterate: For 𝑡 = 1, . . . , 𝑇 − 1,

∇𝜙(𝜃𝑡+1) = ∇𝜙(𝜃𝑡 ) − 𝜂∇ 𝑓𝑡 (𝜃𝑡 )

When the minimisation is constrained to occur in a compact convex set C, we will constrain the
update (3.18) to occur in C

𝜃𝑡+1 ∈ argmin
𝜃∈C

{
𝑓𝑡 (𝜃𝑡 ) + ⟨∇ 𝑓𝑡 (𝜃𝑡 ), 𝜃 − 𝜃𝑡 ⟩ +

1
𝜂
𝐷𝜙 (𝜃, 𝜃𝑡 )

}
= argmin

𝜃∈C

{
⟨∇ 𝑓𝑡 (𝜃𝑡 ), 𝜃⟩ +

1
𝜂
(𝜙(𝜃) − ⟨∇𝜙(𝜃𝑡 ), 𝜃⟩)

}
= argmin

𝜃∈C
{𝜙(𝜃) − ⟨∇𝜙(𝜃𝑡 ) − 𝜂∇ 𝑓𝑡 (𝜃𝑡 ), 𝜃⟩}

= argmin
𝜃∈C

{𝜙(𝜃) − 𝜙(𝜔𝑡+1) − ⟨∇𝜙(𝜔𝑡+1), 𝜃⟩}︸                                        ︷︷                                        ︸
=𝐷𝜙 (𝜃,𝜔𝑡+1 )−⟨∇𝜙 (𝜔𝑡+1 ) ,𝜔𝑡+1 ⟩

, with ∇𝜙(𝜔𝑡+1) := ∇𝜙(𝜃𝑡 ) − 𝜂∇ 𝑓𝑡 (𝜃𝑡 ).

Let us denote by 𝜋𝜙C the projection relative to the Bregman divergence

𝜋
𝜙

C (𝜔) ∈ argmin
𝜃∈C

𝐷𝜙 (𝜃, 𝜔), (3.19)

which is shown to be well defined in Section 3.4.2. The Projected Mirror Descent is then defined as
follows.

Projected Mirror Descent (PMD)
Input: 𝜃1 ∈ R𝑑 , 𝜂 > 0.

Iterate: For 𝑡 = 1, . . . , 𝑇 − 1,
• ∇𝜙(𝜔𝑡+1) = ∇𝜙(𝜃𝑡 ) − 𝜂∇ 𝑓𝑡 (𝜃𝑡 )
• 𝜃𝑡+1 = 𝜋

𝜙

C (𝜔𝑡+1)

As discussed above, the mirror descent principle allows to change the geometry of the updates of
the gradient descent by replacing the Euclidean norm control on the step sizes by a control based
on another metric, the Bregman divergence. For example, in the case of expert aggregation we want
to favor large steps when far away from the extremal point of the simplex. It turns out that the
exponential weight aggregation of experts described in Section 3.3.3 corresponds to a projected
mirror descent with the geometry induced by the negative entropy function. This connection is
established and illustrated in Section 3.4.3, after the general analysis of PMD in Section 3.4.2.
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3.4.2 Regret bound for Projected Mirror Descent

In this part, we provide an upper-bound on the regret of PMD, in the spirit of the results for SeqPGD
established in Section 2.5.

On Bregman projection

In the remaining of this section, we consider a slightly more general version of the setting considered
in Section 3.4.1. Let D be a convex set of R𝑑 and 𝜙 : D → R a convex function differentiable on
the interior D̊ of its domain. The Bregman divergence 𝐷𝜙 : D×D̊ → R+ is then defined onD×D̊
by (3.17).

Let C ⊂ D be a compact convex set. For any 𝜔 ∈ D̊, the function 𝜃 → 𝐷𝜙 (𝜃, 𝜔) is convex on the
compact set C, so the set of minimizers argmin𝜃∈C 𝐷𝜙 (𝜃, 𝜔) is not empty. In the following, as we
want to be able to iterate the updates of the PMD, we assume that the following property holds

for any 𝜔 ∈ D̊, we have D̊ ∩ argmin
𝜃∈C

𝐷𝜙 (𝜃, 𝜔) ≠ ∅. (3.20)

Remark. The above property may not hold in some cases. As a counterexample, take C = 𝑆2, the
simplex in dimension 2, D = [0, +∞)2, and 𝜙(𝑥) = ∥𝑥∥2.

The next lemma generalizes the results of Section 2.5.1 on the projection operator 𝜋C .

Lemma 3.5 Assume that 𝜙 : D → R is strictly convex on C, so that D𝜙 (𝑥, 𝑦) > 0 for any 𝑥 ∈ C,
𝑦 ∈ C ∩ D̊, with 𝑥 ≠ 𝑦. Assume also that (3.20) holds. Then, for any 𝑦 ∈ D̊ and any 𝑧 ∈ C, we
have

1. the projection 𝜋𝜙C (𝑦) is uniquely defined and belongs to C ∩ D̊,

2. ⟨∇𝜙(𝜋𝜙C (𝑦)) − ∇𝜙(𝑦), 𝜋
𝜙

C (𝑦) − 𝑧⟩ ≤ 0,

3. 𝐷𝜙 (𝑧, 𝜋𝜙C (𝑦)) + 𝐷𝜙 (𝜋
𝜙

C (𝑦), 𝑦) ≤ 𝐷𝜙 (𝑧, 𝑦).

Remark. A simple induction shows that the assumptions of Lemma 3.5 ensure that if 𝜃1 ∈ C ∩ D̊,
then the subsequent updates 𝜃2, 𝜃3, . . . of the Projected Mirror Descent are also in C ∩ D̊. Hence,
the PMD algorithm can be run indefinitely.

Proof of Lemma 3.5. Let 𝜋𝑦 be any element in D̊ ∩ argmin𝜃∈C 𝐷𝜙 (𝜃, 𝑦), which is a non-empty set
according to Assumption (3.20).
2- The function 𝐻 (𝑠) = 𝐷𝜙 (𝜋𝑦 + 𝑠(𝑧 − 𝜋𝑦), 𝑦) is defined on [0,1]. By definition of 𝜋𝑦, it reaches its
minimum at 𝑠 = 0. Hence, the right derivative 𝐻′ (0) = ⟨∇1𝐷𝜙 (𝜋𝑦, 𝑦), 𝑧 − 𝜋𝑦⟩ is non negative. As
∇1𝐷𝜙 (𝜋𝑦, 𝑦) = ∇𝜙(𝜋𝑦) − ∇𝜙(𝑦), we get the second claim

⟨∇𝜙(𝜋𝑦) − ∇𝜙(𝑦), 𝜋𝑦 − 𝑧⟩ ≤ 0.

3- For the third claim, we apply an analog of the polarisation formula

⟨∇𝜙(𝑎) − ∇𝜙(𝑏), 𝑎 − 𝑐⟩ = 𝐷𝜙 (𝑎, 𝑏) + 𝐷𝜙 (𝑐, 𝑎) − 𝐷𝜙 (𝑐, 𝑏), for any 𝑎, 𝑏 ∈ D̊, 𝑐 ∈ D, (3.21)

with 𝑎 = 𝜋𝑦, 𝑏 = 𝑦 and 𝑐 = 𝑧 and we get

𝐷𝜙 (𝜋𝑦, 𝑦) + 𝐷𝜙 (𝑧, 𝜋𝑦) − 𝐷𝜙 (𝑧, 𝑦) = ⟨∇𝜙(𝜋𝑦) − ∇𝜙(𝑦), 𝜋𝑦 − 𝑧⟩ ≤ 0. (3.22)

The result follows.

1- It remains to prove the first claim. Let 𝑧 ∈ argmin𝜃∈C 𝐷𝜙 (𝜃, 𝑦). As 𝐷𝜙 (𝜋𝑦, 𝑦) = 𝐷𝜙 (𝑧, 𝑦), the
Inequality (3.22) gives 𝐷𝜙 (𝑧, 𝜋𝑦) = 0 and hence 𝑧 = 𝜋𝑦 according to the strict convexity of 𝜙. So,
the projection 𝜋𝜙C𝑦 is uniquely defined and belongs to C ∩ D̊. □
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Regret bound for PMD

In this section, we generalize the analysis of Section 2.5.2.

Let | · | be a norm on R𝑑 . We assume henceforth that 𝜙 is 𝛼-strongly convex with respect to this
norm:
• 𝛼-strong convexity: 𝐷𝜙 (𝑥, 𝑦) ≥ 𝛼

2 |𝑦 − 𝑥 |
2 for all 𝑥, 𝑦 ∈ D̊ ∩ C. (𝛼-Cvx)

We notice that the 𝛼-strong convexity property (𝛼-Cvx) implies the strict convexity of 𝜙 on C.

The objective functions 𝑓𝑡 : D → R are assumed to be convex on D and differentiable on D̊. Let
us denote by | · |∗ the dual norm of | · | on R𝑑 with respect to the Euclidean scalar product

|𝑦 |∗ = sup
|𝑥 | ≤1
⟨𝑥, 𝑦⟩.

We assume below that the functions 𝑓𝑡 are uniformly Lipschitz with respect to | · | :
• Lipschitz condition: |∇ 𝑓𝑡 (𝜃) |∗ ≤ 𝐿 for all 𝜃 ∈ D̊ ∩ C. (Lip)

Theorem 3.6 Regret bound for PMD
Under the Assumptions (3.20), (Lip), (𝛼-Cvx), and 𝐷𝜙 (𝜃∗, 𝜃1) ≤ 𝑅2, we have for 𝜂 =

√︃
2𝛼𝑅2

𝐿2𝑇

1
𝑇

𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃𝑡 ) − 𝑓𝑡 (𝜃∗)) ≤ 𝑅𝐿
√︂

2
𝛼𝑇

.

Discussion. Before proving Theorem 3.6, let us discuss it. We observe that we obtain for PMD a
result of the same nature as for SPGD, with the two following differences :
• 𝑅 controls the divergence 𝐷𝜙 between 𝜃∗ and 𝜃1,
• 𝐿 controls the dual norm of the gradients of 𝑓𝑡 .
Hence, a good choice of 𝜙 for the PMD, is a choice fulfilling
• the updates of PMD can be easily computed,
• the maximum divergence 𝑅2 = max𝜃∈C 𝐷𝜙 (𝜃, 𝜃1) is as small as possible,
• the Lipschitz constant 𝐿 = max

𝜃∈D̊∩C max𝑡=1,...,𝑇 |∇ 𝑓𝑡 (𝜃) |∗ in the dual norm related to 𝐷𝜙 is as
small as possible.

Exercise. For 𝜙(𝜃) = ∥𝜃∥2/2, recover the result proved for SPGD in Chapter 2.

Proof of Theorem 3.6. In the analysis of SPGD, the starting point was the polarisation formula
2⟨𝑎, 𝑏⟩ = ∥𝑎∥2 + ∥𝑏∥2 − ∥𝑎 − 𝑏∥2, applied with 𝑎 = 𝜂∇ 𝑓𝑡 (𝜃𝑡 ) and 𝑏 = 𝜃𝑡 − 𝜃∗. We follow the same
argument, but with the polarisation formula (3.21)

𝜂( 𝑓𝑡 (𝜃𝑡 ) − 𝑓𝑡 (𝜃∗))
𝑐𝑜𝑛𝑣𝑒𝑥
≤ ⟨𝜂∇ 𝑓𝑡 (𝜃𝑡 ), 𝜃𝑡 − 𝜃∗⟩

= ⟨∇𝜙(𝜃𝑡 ) − ∇𝜙(𝜔𝑡+1), 𝜃𝑡 − 𝜃∗⟩
𝑝𝑜𝑙𝑎𝑟.
= 𝐷𝜙 (𝜃𝑡 , 𝜔𝑡+1) + 𝐷𝜙 (𝜃∗, 𝜃𝑡 ) − 𝐷𝜙 (𝜃∗, 𝜔𝑡+1)

𝐿𝑒𝑚.3.5
≤ 𝐷𝜙 (𝜃𝑡 , 𝜔𝑡+1) − 𝐷𝜙 (𝜃𝑡+1, 𝜔𝑡+1) + 𝐷𝜙 (𝜃∗, 𝜃𝑡 ) − 𝐷𝜙 (𝜃∗, 𝜃𝑡+1). (3.23)

Let us upper-bound the first difference in terms of the dual norm of the gradient. According to the
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assumption (𝛼-Cvx) and according to the definition of the dual norm, we have

𝐷𝜙 (𝜃𝑡 , 𝜔𝑡+1) − 𝐷𝜙 (𝜃𝑡+1, 𝜔𝑡+1) = 𝜙(𝜃𝑡 ) − 𝜙(𝜃𝑡+1) − ⟨∇𝜙(𝜔𝑡+1), 𝜃𝑡 − 𝜃𝑡+1⟩
= ⟨∇𝜙(𝜃𝑡 ) − ∇𝜙(𝜔𝑡+1)︸                   ︷︷                   ︸

=𝜂∇ 𝑓𝑡 (𝜃𝑡 )

, 𝜃𝑡 − 𝜃𝑡+1⟩ − 𝐷𝜙 (𝜃𝑡+1, 𝜃𝑡 )

≤ 𝜂 |∇ 𝑓𝑡 (𝜃𝑡 ) |∗ |𝜃𝑡 − 𝜃𝑡+1 | −
𝛼

2
|𝜃𝑡+1 − 𝜃𝑡 |2

≤ 𝜂2

2𝛼
|∇ 𝑓𝑡 (𝜃𝑡 ) |2∗ , (3.24)

where, for the last inequality, we used 2𝑎𝑏 − 𝑏2 ≤ 𝑎2. Combining (3.23) and (3.24) and summing
over 𝑡, we get

𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃𝑡 ) − 𝑓𝑡 (𝜃∗)) ≤
𝜂

2𝛼

𝑇∑︁
𝑡=1

|∇ 𝑓𝑡 (𝜃𝑡 ) |2∗ +
1
𝜂
(𝐷𝜙 (𝜃∗, 𝜃1) − 𝐷𝜙 (𝜃∗, 𝜃𝑇+1))

(Lip)
≤ 𝜂

2𝛼
𝐿2𝑇 + 𝑅

2

𝜂
.

Setting 𝜂 =

√︃
2𝛼𝑅2

𝐿2𝑇
, we get the result. □

3.4.3 Problem: Projected Mirror Descent for expert aggregation

Exponential weights as PMD

Let us come back to our original problem, where, as discussed in Section 3.2.1, we seek for a
strategy 𝜃̂ which minimizes the regret

1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃𝑡 ) − min
𝜃∈𝑆𝑑

1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜃),

with 𝑓𝑡 (𝜃) = ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)). We denote by 𝑔𝑡 = 𝜕1ℓ (⟨𝜃, ℎ(𝑡)⟩, 𝑦(𝑡)) ℎ(𝑡), the gradient of 𝑓𝑡 (𝜃)
and the constraint set is C = 𝑆𝑑 .

Let us choose a function 𝜙. As the gradients 𝑔𝑡 fulfill (3.15), and as we wish to control the dual
norm |𝑔𝑡 |∗ of the gradients, we wish that the dual norm | · |∗ coincides with the sup-norm ℓ∞. Hence,
we want to choose a function 𝜙 which is strongly convex with respect to the ℓ1-norm. At the same
time, we wish to have a maximum divergence max𝜃∈𝑆𝑑 𝐷𝜙 (𝜃, 𝜃1) which is as small as possible.
Let D = [0, +∞)𝑑 and let us define 𝜙 : D → R by

𝜙(𝜃) =
𝑑∑︁
𝑗=1

𝜃 𝑗 log(𝜃 𝑗 ), for 𝜃 ∈ D, (3.25)

with the convention 0 log(0) = 0. The gradient of 𝜙 is given by

∇𝜙(𝜃) =
[
1 + log(𝜃 𝑗 )

]
𝑗=1,...,𝑑 , for 𝜃 ∈ D̊,

and the Bregman divergence is given by

𝐷𝜙 (𝜃, 𝜔) =
𝑑∑︁
𝑗=1

(
𝜃 𝑗 log

(
𝜃 𝑗

𝜔 𝑗

)
+ 𝜔 𝑗 − 𝜃 𝑗

)
, for 𝜃 ∈ D, 𝜔 ∈ D̊ . (3.26)

For 𝜃 ∈ 𝑆𝑑 , and 𝜔 ∈ 𝑆𝑑 ∩ D̊, this divergence is commonly called the Kullback-Leibler divergence,
which will be investigated into more details in Chapter 4, Section 4.3.1.
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Figure 3.1: The Euclidean geometry 𝜃 → ∥𝜃 − 𝜔∥2 (left) and the geometry 𝜃 → 𝐷𝜙 (𝜃, 𝜔) (right),
as seen from 𝜔 = (3/4, 1/4) (red dot). The red dashed line represents the simplex 𝑆2.

Let us compute the update of the PMD for this choice of 𝜙. We have for 𝜃𝑡 > 0

log( [𝜔𝑡+1] 𝑗 ) = log( [𝜃𝑡 ] 𝑗 ) − 𝜂𝑔 𝑗 ,𝑡

so 𝜔𝑡+1 = 𝜃𝑡𝑒
−𝜂𝑔𝑡 . Let us compute now the projection operator 𝜋𝜙

𝑆𝑑
related to 𝜙.

Lemma 3.7 Let 𝜙 : D → R+ be defined by (3.25). Then for any 𝜔 ∈ D̊, we have

𝜋
𝜙

𝑆𝑑
(𝜔) = 𝜔

|𝜔 |1
∈ D̊ .

As a consequence, we have the immediate corollary.

Corollary 3.8 If we set 𝜃1 = 1/𝑑, the sequence produced by the projected mirror descent with 𝜙
given by (3.25) exactly corresponds to the exponential weight strategy (3.13).

Proof of Lemma 3.7. You will prove the lemma by solving the next three questions.
Let us consider the Lagrangian associated to the constrained convex minimisation problem (3.19)
with C = 𝑆𝑑

𝐿 (𝜃, 𝜇) = 𝐷𝜙 (𝜃, 𝜔) + 𝜇
©­«
𝑑∑︁
𝑗=1

𝜃 𝑗 − 1ª®¬ , for 𝜃 ∈ D, 𝜇 ∈ R.

1. Compute the partial derivative with respect to 𝜃 𝑗 of 𝐿 (𝜃, 𝜇).
2. Check that the solution 𝜃𝜇 to ∇𝜃𝐿 (𝜃𝜇, 𝜇) = 0 is 𝜃𝜇 = 𝑒−𝜇𝜔.
3. Conclude the proof of Lemma 3.7.

Upper bound on the regret

Let us translate the bound of Theorem 3.6 in the expert prediction setting, under the hypotheses of
Theorem 3.4. The first step is to prove that 𝐷𝜙 is strongly convex with respect to the ℓ1 norm on the
simplex 𝑆𝑑 .
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Lemma 3.9 Pinsker inequality
For the Bregman divergence (3.26), we have

𝐷𝜙 (𝜃, 𝜔) ≥
1
2
|𝜃 − 𝜔 |21, for any 𝜃 ∈ 𝑆𝑑 , and 𝜔 ∈ 𝑆𝑑 ∩ D̊.

Proof of Pinsker inequality. You will prove the Pinsker inequality by solving the next five ques-
tions.
Let us set 𝑟 𝑗 = 𝜃 𝑗/𝜔 𝑗 − 1 for 𝑗 = 1, . . . , 𝑑 and 𝜓(𝑡) = (1 + 𝑡) log(1 + 𝑡) − 𝑡 for 𝑡 ≥ −1, with the
convention that 0 log(0) = 0.
1. Check that 𝑔 defined by 𝑔(𝑡) := (1 + 𝑡/3)𝜓(𝑡) for 𝑡 > −1, fulfills 𝑔′ (0) = 0 and

𝑔′′ (𝑡) = 1 + 2𝜓(𝑡)
3(1 + 𝑡) , for 𝑡 > −1.

2. Prove that

𝜓(𝑡) ≥ 𝑡2

2(1 + 𝑡/3) , for all 𝑡 ≥ −1.

3. Check that

𝐷𝜙 (𝜃, 𝜔) =
𝑑∑︁
𝑗=1

𝜔 𝑗𝜓(𝑟 𝑗 ) ≥
1
2

𝑑∑︁
𝑗=1

𝜔 𝑗
𝑟2
𝑗

1 + 𝑟 𝑗/3
.

4. Prove the inequalities

|𝜃 − 𝜔 |21 =
©­«
𝑑∑︁
𝑗=1

𝜔 𝑗 |𝑟 𝑗 |ª®¬
2

≤
𝑑∑︁
𝑗=1

𝜔 𝑗
𝑟2
𝑗

1 + 𝑟 𝑗/3
×

𝑑∑︁
𝑘=1

𝜔𝑘 (1 + 𝑟𝑘/3)

≤ 2𝐷𝜙 (𝜃, 𝜔).

The proof of Pinsker inequality is complete. □

Exercise. Adapt the proof of Lemma 3.9 to prove the general version of Pinsker inequality: For
any probability distributions P,Q, with P ≪ Q, we have

1
2
EQ

[���� 𝑑P𝑑Q − 1
����]2

≤ EP
[
log

(
𝑑P

𝑑Q

)]
.
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Figure 3.2: Plot of the function 𝜓(𝑡) = (1 + 𝑡) log(1 + 𝑡) − 𝑡 in blue and 𝑡 → 𝑡2

2(1+𝑡/3) in red.

Pinsker inequality ensures that 𝐷𝜙 is 1-strongly convex with respect to the ℓ1 norm on the simplex
𝑆𝑑 . Let us now bound the gradients in terms of the dual norm. The dual norm of the ℓ1 norm is the
ℓ∞ norm. Under the hypothesis (3.15) of Theorem 3.4, we have |𝑔𝑡 |∞ ≤ 𝐿 for 𝑡 = 1, . . . , 𝑇 .

It remains to bound 𝐷𝜙 (𝜃∗, 𝜃1) for 𝜃1 = 1/𝑑. We observe that for any 𝜃∗ ∈ C,

𝐷𝜙 (𝜃∗, 𝜃1) =
𝑑∑︁
𝑗=1

𝜃∗𝑗 log(𝜃∗𝑗𝑑) ≤
𝑑∑︁
𝑗=1

𝜃∗𝑗 log(𝑑) = log(𝑑).

Hence, the assumptions of Theorem 3.6 hold with 𝑅2 = log(𝑑) and 𝛼 = 1, so Theorem 3.6 ensures
that

1
𝑇

𝑇∑︁
𝑡=1

( 𝑓𝑡 (𝜃𝑡 ) − 𝑓𝑡 (𝜃∗)) ≤ 𝐿
√︂

2 log(𝑑)
𝑇

,

for the exponential weights strategy (3.13). We exactly recover the bound of Theorem 3.4.

3.5 Illustration

Let us illustrate the aggregation strategies (3.7) and (3.13) on some pollution data. We will work
with a data set gathering O3 concentration, temperature, nebulosity, rain, wind, etc in Brittany at
different times of the day. Our goal will be to predict the ozone O3 concentration from weather ob-
servations. The R-code can be downloaded at https://www.imo.universite-paris-saclay.
fr/˜giraud/Orsay/MathIA/Experts.R

Assume that we have the forecasts of three experts. A first expert, mister Heat, knows that O3
appears when the temperature is high enough. So he decides to predict the O3 concentration with
a linear combination of the O3 concentration of the day before and the temperature at midday. A
second expert, misses Sun, knows that some sun is needed in order to have a reaction producing O3.
So, she decides to predict O3 concentration with a linear combination of the O3 concentration of
the day before and the morning nebulosity index. Finally, a local expert claims ”come on, we are in
Brittany, with a lot of wind and rain, no pollution can appear with such conditions”. So he decides
to predict O3 concentration with a linear combination of the O3 concentration of the day before, the
wind and the rain intensity. The predictions of these 3 experts are displayed in the chart 3.3.
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Figure 3.3: In black, the actual ozone concentration. In red the prediction of mister Heat, in green
the prediction of misses Sun and in blue the prediction of the local expert.

We consider the aggregation strategies EW1 defined by (3.7) and EW2 defined by (3.13). For each
expert, and each aggregation strategy, we compute the sum of the residual square errors (RMSE)

RMSE =
∑︁
𝑡

(predict(𝑡) − O3(𝑡))2,

where predict(𝑡) is the prediction for the day 𝑡 and O3(𝑡) is the actual observation. We obtain the
following RMSE.

M. Heat Ms. Sun Local expert EW1 EW2
RMSE 26348 29013 35930 26577 23381

We observe that, in agreement with the theory, the RMSE of EW1 is almost as good as the RMSE
of the best expert (M. Heat), while the RMSE of EW2 is smaller than that of all the experts. This
last observation highlights the interest of taking convex combinations of expert predictions, instead
of simply selecting one of them.

In the Figure 3.4, we display the weights (𝜃𝑡 (1), 𝜃𝑡 (2), 𝜃𝑡 (3)) of each expert in the aggregations
EW1 and EW2. We observe that the weights in EW1 are mostly 0 or 1, with an abrupt change around
day 80. The weights in EW2 are more evenly spread, and the local expert is not fully discarded.
Keeping advices of all experts seems to be the recipe of the success!
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Figure 3.4: Weights (𝜃𝑡 (1), 𝜃𝑡 (2), 𝜃𝑡 (3)) of each expert in the predictions EW1 (top) and EW2
(bottom).





Chapter 4

Multi-Armed bandits

4.1 Setting

4.1.1 Bandits problems

Bandits problems correspond to problems where, at each time 𝑡 = 1, 2, . . .,
• the learner has to take a decision or choose an action,
• he then receives a reward for his action,
• the only information available at time 𝑡 for choosing the action, are the rewards collected at the

precedent rounds.

Figure 4.1: A one-armed bandit.

Examples:
• Medical trials. (initial motivation) A doctor face a new severe epidemic (coronavirus?). She

can prescribe different drugs, or the same drug but at different doses to her patients. She does not
know which drug or dose is the best. Her goal is to maximize the number of recoveries among
her patients. She then faces the following issue: she wants to give as often as possible the best
drug or dose in order to get a maximum of recoveries, but this best drug or dose is unknown, so
she needs to prescribe the different drugs or doses in order to gain knowledge about the efficiency
of the drugs or doses.
• Recommendation - advertisement. (prominent applications) Many websites display adver-

tisements or recommendations. A display is successful, if the visitor clicks on the advertisement
or recommendation. The system then tries to select among the huge number of possible adver-
tisements or recommendations, the ones leading to the largest number of clicks. Yet, these best
advertisements or recommendations are unknown, and the system has to simultaneously learn
which ones are the best, and display them as often as possible.
• Robot or algorithm control. (rising applications) A robot (or algorithm) can have a rigid pro-

gram in order to execute a task, or he can have a program which learns from the past the best

43
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strategies for executing complex tasks. The program tries to get as many successes as possible
(task completed). The goal is then to simultaneously learn the best strategies and apply them
as often as possible. Examples of application include computer game players, air-conditioning
regulation in data-centers, or optimisation of networking protocols.
• A gambler in a casino. (where the name comes from!) Let us consider the following toy

example. A gambler arrives in a casino. He has access to different slot machines1, each of them
having their own mean payoff. The gambler wants to get the largest possible cumulated payoff,
so he wants to focus on the slot machine having the largest mean payoff. Yet, the payoffs are
unknown, so the gambler has to simultaneously learn the mean payoffs and play as often as
possible the best one(s).

In all the above problems, the learner or algorithm has to choose at each round 𝑡 = 1, 2, . . . , an
action 𝐴𝑡 among a set A of possible actions. He then receives a reward 𝑌 (𝐴𝑡 ) ∈ R for this action.
The choice 𝐴𝑡 is only based on the past rewards 𝑌 (𝐴1), . . . , 𝑌 (𝐴𝑡−1). The learner or algorithm has
to deal with the following issue. He only has access to the outcomes of the past actions, so he
needs to try out different actions in order to gain information about his environment. At the same
time, he tries to apply as often as possible (one of) the best action. He then faces an exploration
- exploitation dilemma which is typical in learning problems with unknown environment. At time
𝑡, shall he explore the environment to get a better knowledge? or shall he exploit the action which
gave the best rewards so far?

4.1.2 Modeling

In most of this chapter, we will focus on the case where there is a finite number 𝐾 of possible
actions. We refer to Section 4.4 for a case with an infinite number of possible actions. In reference
to one-armed bandits, the set of possible actions is called the set of arms in the bandit literature.

Let us formalize the 𝐾-armed bandit problem. When the arm 𝑘 is pulled (i.e. the action 𝑘 is chosen)
for the 𝑛th time, we get a stochastic reward 𝑋𝑘 (𝑛).

Rewards for the 𝐾 arms. Each arm produces a sequence of rewards
• sample of arm 1: 𝑋1 (1), 𝑋1 (2), . . .
• ...
• sample of arm 𝐾: 𝑋𝐾 (1), 𝑋𝐾 (2), . . .

Observations. The rewards are observed only when an arm is pulled. At time 𝑡, if we choose the
arm 𝐴𝑡 ∈ {1, . . . , 𝐾}, we observe

𝑌𝑡 = 𝑋𝐴𝑡 (𝑁𝐴𝑡 (𝑡)), where 𝑁𝑘 (𝑡) =
𝑡∑︁
𝑠=1

1𝐴𝑠=𝑘 .

External randomness. The choice of the arm 𝐴𝑡 may depend on some auxiliary sequence of ran-
dom numbers 𝑈 (1),𝑈 (2), . . . ∈ [0, 1]. For example, this can be useful to select the first arm at
random.

Adaptive choices. The algorithm can adapt his choice 𝐴𝑡 from past observations, but he cannot use
future observations. In mathematical words, the choice 𝐴𝑡 is 𝜎(𝑈1, 𝑌1, . . . , 𝑌𝑡−1,𝑈𝑡 )-mesurable.

Strategy. A strategy corresponds to the prescription of an algorithm, which will run autonomously
as time passes. It can be encoded as a set of functions 𝜓 = (𝜓𝑡 )𝑡≥1, with 𝜓𝑡 : R2𝑡−1 → {1, . . . , 𝐾}.
At time 𝑡 = 1, 2, . . ., the arm 𝐴𝑡 is then pulled according to 𝐴𝑡 = 𝜓𝑡 (𝑈1, 𝑌1, . . . , 𝑌𝑡−1,𝑈𝑡 ).

1Lever operated slot machine used to be called one-armed bandit



SETTING 45

4.1.3 Regret

Cumulated reward. The cumulated reward collected up to time 𝑇 is
∑𝑇
𝑡=1𝑌𝑡 . Our goal is to design

a strategy maximizing the average of this cumulated reward.

Distributional assumption. In all the chapter, we make the following distributional assumption
• all the random variables (𝑋𝑘 (𝑛),𝑈 (𝑛))𝑛≥1 are jointly independent,
• the random variables (𝑋𝑘 (𝑛))𝑛≥1 are i.i.d. with distribution 𝜈𝑘 , and mean E[𝑋𝑘 (𝑛)] = 𝜇𝑘 for
𝑛 ≥ 1.

Next lemma connects the expected cumulated reward to the means {𝜇𝑘 : 𝑘 = 1, . . . , 𝑇} and the
expected number of draws of each arm. As a consequence, to assess the performance of strategy, we
”only” have to evaluate the expected numbers of draws for each arm.

Lemma 4.1 Expected cumulated reward.
Under the above distributional assumptions, we have

E

[
𝑇∑︁
𝑡=1

𝑌𝑡

]
=

𝐾∑︁
𝑘=1

𝜇𝑘E [𝑁𝑘 (𝑇)] .

Proof of Lemma 4.1. We have the decomposition

𝑇∑︁
𝑡=1

𝑌𝑡 =

𝐾∑︁
𝑘=1

𝑁𝑘 (𝑇 )∑︁
𝑛=1

𝑋𝑘 (𝑛),

with the convention
∑0
𝑛=1 𝑋𝑘 (𝑛) = 0. Hence, we only need to prove the identity

E

[
𝑁𝑘 (𝑇 )∑︁
𝑛=1

𝑋𝑘 (𝑛)
]
= E [𝑁𝑘 (𝑇)] 𝜇𝑘 .

Lemma 4.2 Wald formula.
Let (G𝑛)𝑛≥0 be a filtration and let 𝑁, 𝑋 (1), 𝑋 (2), . . . be random variables such that for all 𝑛 ≥ 1,

• 𝑁 takes value in {0, . . . , 𝑇} and {𝑁 ≥ 𝑛} ∈ G𝑛−1;

• 𝑋 (𝑛) is independent of G𝑛−1 and E [𝑋 (𝑛)] = 𝜇.

Then, we have

E

[
𝑁∑︁
𝑛=1

𝑋 (𝑛)
]
= 𝜇E [𝑁] . (4.1)

Proof of Wald formula. Since {𝑁 ≥ 𝑛} ∈ G𝑛−1 and 𝑋 (𝑛) is independent of G𝑛−1, we have 𝑋 (𝑛)
and {𝑁 ≥ 𝑛} independent. Hence

E

[
𝑁∑︁
𝑛=1

𝑋 (𝑛)
]
= E

[
𝑇∑︁
𝑛=1

𝑋 (𝑛)1𝑛≤𝑁

]
=

𝑇∑︁
𝑛=1

E [𝑋 (𝑛)1𝑛≤𝑁 ] =
𝑇∑︁
𝑛=1

𝜇E [1𝑛≤𝑁 ] = 𝜇E
[
𝑇∑︁
𝑛=1

1𝑛≤𝑁

]
= 𝜇E [𝑁] .

The proof of Wald formula is complete. □

Let us set G𝑛 = 𝜎(𝑋𝑘 (1), . . . , 𝑋𝑘 (𝑛), (𝑈 ( 𝑗)) 𝑗≥1, (𝑋ℓ ( 𝑗)) 𝑗≥1, ℓ≠𝑘). Then {𝑁𝑘 (𝑡) ≥ 𝑛} ∈ G𝑛−1 and
𝑋𝑘 (𝑛) is independent from G𝑛−1 for all 𝑛 ≥ 1. So, applying Wald formula, we get the identity (4.1).
□

Regret. As in the previous chapters, we will compare a strategy 𝜓 to the best possible fixed strategy,
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i.e. to the strategy selecting the (unknown) arm with largest mean. Setting Δ𝑘 = 𝜇𝑘∗ − 𝜇𝑘 , where
𝜇𝑘∗ = max 𝑗=1,...,𝐾 𝜇 𝑗 , the regret at time 𝑇 is

𝑅(𝑇) = 𝑅(𝜓,𝑇) = 𝑇𝜇𝑘∗ − E
[
𝑇∑︁
𝑡=1

𝑌𝑡

]
=

𝐾∑︁
𝑘=1

Δ𝑘 E [𝑁𝑘 (𝑇)] . (4.2)

4.2 UCB strategy

4.2.1 Optimism in face of uncertainty

Failure of a naive strategy based on empirical means

Let us write 𝑋̄𝑘 (𝑛) = (𝑋𝑘 (1) + . . . + 𝑋𝑘 (𝑛))/𝑛 for the empirical mean of the rewards of the arm 𝑘

after 𝑛 pulling.
After time 𝑡 − 1, the average observed reward of arm 𝑘 is 𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)). A first idea that may come
to your mind is to apply the following strategy: at time 𝑡, select the arm

𝐴𝑡 ∈ argmax
𝑘=1,...,𝐾

𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)).

This seems to be a good idea as it corresponds to the arm with the largest observed reward at time 𝑡.

Yet, this strategy can lead to very bad results. Actually, due to the random fluctuations, we may
observe at some time 𝑡0 a very small mean reward 𝑋̄𝑘∗ (𝑁𝑘∗ (𝑡0)) for the best arm compared to the
expected reward 𝜇𝑘∗ , possibly much smaller than the expected reward 𝜇𝑘 of another arm. This can
in particular happen in the early stages where the arm 𝑘∗ has only been sampled a small amount of
time. Then, if the observed mean reward ( 𝑋̄𝑘 (𝑁𝑘 (𝑡)) : 𝑡 ≥ 𝑡0) of the arm 𝑘 does not deviate to much
from below from the expected reward 𝜇𝑘 , the observed mean reward 𝑋̄𝑘 (𝑁𝑘 (𝑡)) will always stay
above the observed reward 𝑋̄𝑘∗ (𝑁𝑘∗ (𝑡0)) and hence the arm 𝑘∗ will not be pulled anymore. Such a
situation will lead to a cumulated regret linear in 𝑇 .

Where confidence bounds kick in

A benefit of statistical inference is to provide some measures of uncertainty. In the above example,
the naive strategy failed because the observed mean 𝑋̄𝑘∗ (𝑁𝑘∗ (𝑡0)) was not reliable and we trusted
too much this value. Instead of focusing only on the observed mean, we shall consider instead
confidence intervals.

Assume for example that 𝑋𝑘 (1), 𝑋𝑘 (2), . . . are i.i.d. with N(𝜇𝑘 , 1) distribution. Then, we have

P
[
𝜇𝑘 ∈

[
𝑋̄𝑘 (𝑛) −

√︁
2𝐿/𝑛 , 𝑋̄𝑘 (𝑛) +

√︁
2𝐿/𝑛

] ]
≥ 1 − 2𝑒−𝐿 .

In addition to the value 𝑋̄𝑘 (𝑛), the above confidence interval provides a measure
√︁

2𝐿/𝑛 of the un-
certainty of this value as an estimator of 𝜇𝑘 . This measure is useful to know how much we can trust
the value 𝑋̄𝑘 (𝑛). In particular, this measure informs the algorithm not to trust too much the empirical
mean for small sample sizes 𝑛. The question is: How can we use efficiently this information?

A popular recipe for this problem is the ”optimism in face of uncertainty”. This recipe states
that ”you should consider each action as being as good as it can possibly be given the obser-
vations so far, and choose the best action according to this assessment”. In our bandit prob-
lem, it means that we should consider each arm to be as good as the upper confidence bound
𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) +

√︁
2𝐿/𝑁𝑘 (𝑡 − 1) of the confidence interval, and hence choose the arm with the

largest upper confidence bound 𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) +
√︁

2𝐿/𝑁𝑘 (𝑡 − 1). Why does such a strategy make
sense?
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We observe that the largest upper confidence bound 𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) +
√︁

2𝐿/𝑁𝑘 (𝑡 − 1) can be large
for one of the two following reasons. Either the expected reward 𝜇𝑘 is large, so it is a good reason
to pull it (exploitation). Or the uncertainty

√︁
2𝐿/𝑁𝑘 (𝑡 − 1) is large, because the arm has not been

explored much. Again, it is worth to pull it in order to reduce the uncertainty (exploration). This
principle provides a simple way to trade-off between exploration and exploitation.

4.2.2 Fixed time horizon UCB

In this section, we analyse the UCB algorithm. Our goal is to get a simple understanding of UCB.
In particular, the constants in the theorem below can be improved with a more delicate analysis.

The UCB algorithm can be described in a general form as follows.

Fixed horizon UCB: Let (𝛿𝑇 (𝑛))𝑛≥1 be a positive sequence decreasing in 𝑛.
• initialization: sample the 𝐾 arms ones;
• iterations: for 𝑡 = 𝐾 + 1, . . . , 𝑇 , take 𝐴𝑡 ∈ argmax𝑘=1,...,𝐾 𝑈𝑘 (𝑡), where

𝑈𝑘 (𝑡) = 𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) + 𝛿𝑇 (𝑁𝑘 (𝑡 − 1)).

For any positive sequence (𝛿𝑇 (𝑛))𝑛≥1 decreasing in 𝑛, we have the following upper-bound on the
regret of Fixed horizon UCB.

Theorem 4.3 For 𝑇 ≥ 𝐾 + 1, we set

Ω𝑘,𝑇 =

{
max

1≤𝑛≤𝑇

(
𝑋̄𝑘 (𝑛) − 𝛿𝑇 (𝑛)

)
≤ 𝜇𝑘

}
∩

{
𝜇𝑘∗ < min

1≤𝑛≤𝑇

(
𝑋̄𝑘∗ (𝑛) + 𝛿𝑇 (𝑛)

)}
.

Then
𝑅(𝑇) ≤

∑︁
𝑘≠𝑘∗

Δ𝑘

(
𝑇P

(
Ω𝑐𝑘,𝑇

)
+ 𝛿−1

𝑇 (Δ𝑘/2)
)
, (4.3)

where 𝛿−1
𝑇
(𝑥) = min {𝑛 ≥ 1 : 𝛿𝑇 (𝑛) ≤ 𝑥}.

Discussion. Before proving this result, let us comment on it. The bound (4.3) gives us some direc-
tions for the choice of the sequence (𝛿𝑇 (𝑛))𝑛≥1. This choice must balance the size of the two terms
𝑇P(Ω𝑐

𝑘,𝑇
) and 𝛿−1

𝑇
(Δ𝑘/2). So 𝛿𝑇 (𝑛) must be large enough, so that P(Ω𝑐

𝑘,𝑇
) = 𝑂 (1/𝑇), but not too

large in order to keep 𝛿−1
𝑇
(Δ𝑘/2) under control. So, the best is to select 𝛿𝑇 (𝑛) as small as possible

such that the probability of the event Ω𝑐
𝑘,𝑇

is at most 𝑂 (1/𝑇). We refer to Corollary 4.5 below for
such an example.

Proof of Theorem 4.3. The theorem directly follows from (4.2), the trivial bound 𝑁𝑘 (𝑇) ≤ 𝑇 and
the next lemma.

Lemma 4.4 On the event Ω𝑘,𝑇 , we have 𝑁𝑘 (𝑇) ≤ 𝛿−1
𝑇
(Δ𝑘/2).

Proof of Lemma 4.4. Assume that at some time 𝑡 ∈ [𝐾 + 1, 𝑇] we have 𝛿𝑇 (𝑁𝑘 (𝑡)) ≤ Δ𝑘/2. Then,
on the event Ω𝑘,𝑇 we have for all 𝑡′ ∈ [𝑡, 𝑇]

𝑋̄𝑘 (𝑁𝑘 (𝑡)) + 𝛿𝑇 (𝑁𝑘 (𝑡)) ≤ 𝜇𝑘 + 2𝛿𝑇 (𝑁𝑘 (𝑡)) ≤ 𝜇𝑘∗ < 𝑋̄𝑘∗ (𝑁𝑘∗ (𝑡′)) + 𝛿𝑇 (𝑁𝑘∗ (𝑡′)).

This sequence of inequalities implies that the arm 𝑡 is not pulled anymore up to time 𝑇 , so 𝑁𝑘 (𝑇)
cannot become larger than 1 ∨ 𝛿−1

𝑇
(Δ𝑘/2) = 𝛿−1

𝑇
(Δ𝑘/2). □
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Corollary 4.5 Assume that the distributions of the rewards of each arm 𝑘 are in 𝑠𝑢𝑏𝐺 (𝜇𝑘 , 𝜎2).
Setting

𝛿𝑇 (𝑛) =
√︃

4𝜎2 log(𝑇)/𝑛,

we get

𝑅(𝑇) ≤
∑︁
𝑘≠𝑘∗

(
3Δ𝑘 +

16𝜎2 log(𝑇)
Δ𝑘

)
. (4.4)

Proof of Corollary 4.5. We have for all 𝑘, 𝑛 ≥ 1

P
(
𝑋̄𝑘 (𝑛) ≥ 𝜇𝑘 + 𝛿𝑇 (𝑛)

)
≤ 𝑒−𝑛𝛿2

𝑇
(𝑛)/2𝜎2

= 𝑒−2 log𝑇 =
1
𝑇2 .

Hence, with a union bound

P
(
Ω𝑐𝑘,𝑇

)
≤ 2

𝑇∑︁
𝑛=1

1
𝑇2 =

2
𝑇
.

In addition, 𝛿𝑇 (𝑛) ≤ Δ𝑘/2 if and only if 𝑛 ≥ 16𝜎2 log(𝑇)/Δ2
𝑘
, so

𝛿−1
𝑇 (Δ𝑘/2) ≤ 1 + 16𝜎2 log(𝑇)

Δ2
𝑘

.

4.2.3 Horizon free UCB

In the above section, the algorithm has the undesirable feature to depend on the time horizon 𝑇 via
𝛿𝑇 . Is it possible to have an horizon free algorithm?
With a refinement of the proof of the previous theorem, we show in this section that we can replace
𝛿𝑇 by 𝛿𝑡 at time 𝑡.

Let (𝛿𝑡 (𝑛))𝑡≥1,𝑛≥1 be a positive sequence non-decreasing in 𝑡 and decreasing in 𝑛.

Horizon-free UCB:
• initialization: sample the 𝐾 arms ones;
• iterations: for 𝑡 ≥ 𝐾 + 1, take 𝐴𝑡 ∈ argmax𝑘=1,...,𝐾 𝑈𝑘 (𝑡), where

𝑈𝑘 (𝑡) = 𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) + 𝛿𝑡 (𝑁𝑘 (𝑡 − 1)).

We have the following upper-bound on the regret of horizon-free UCB.

Theorem 4.6 Let (𝑇ℓ)ℓ≥0 be an increasing sequence of integers, with 𝑇0 = 0 and set

Ω𝑘,ℓ =

{
max

1≤𝑛≤𝑇ℓ+1

(
𝑋̄𝑘 (𝑛) − 𝛿𝑇ℓ+1 (𝑛)

)
≤ 𝜇𝑘

}
∩

{
𝜇𝑘∗ < min

1≤𝑛≤𝑇ℓ+1

(
𝑋̄𝑘∗ (𝑛) + 𝛿𝑇ℓ (𝑛)

)}
.

Then for any 𝑇 ∈ [𝑇𝐿 + 1, 𝑇𝐿+1] we have

𝑅(𝑇) ≤
∑︁
𝑘≠𝑘∗

𝐿∑︁
ℓ=0

Δ𝑘

(
(𝑇ℓ+1 − 𝑇ℓ)P

(
Ω𝑐𝑘,ℓ

)
+ 𝛿−1

𝑇ℓ+1
(Δ𝑘/2)

)
.

We observe first that for any 𝑇 ∈ [𝑇𝐿 + 1, 𝑇𝐿+1] we have

𝑅(𝑇) ≤
𝐾∑︁
𝑘=1

Δ𝑘

𝐿∑︁
ℓ=0

E [𝑁𝑘 (𝑇ℓ+1) − 𝑁𝑘 (𝑇ℓ)] .
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Hence the theorem follows from next lemma.

Lemma 4.7 On the event Ω𝑘,ℓ , we have 𝑁𝑘 (𝑇ℓ+1) − 𝑁𝑘 (𝑇ℓ) ≤ 𝛿−1
𝑇ℓ+1
(Δ𝑘/2).

Proof of Lemma 4.7. Assume that at some time 𝑡 ∈ [𝑇ℓ , 𝑇ℓ+1] we have 𝛿𝑇ℓ+1 (𝑁𝑘 (𝑡)) ≤ Δ𝑘/2. Then,
on the event Ω𝑘,ℓ we have for all 𝑡′ ∈ [𝑡, 𝑇ℓ+1]

𝑋̄𝑘 (𝑁𝑘 (𝑡)) + 𝛿𝑡 ′ (𝑁𝑘 (𝑡)) ≤ 𝑋̄𝑘 (𝑁𝑘 (𝑡)) + 𝛿𝑇ℓ+1 (𝑁𝑘 (𝑡)) ≤ 𝜇𝑘 + 2𝛿𝑇ℓ+1 (𝑁𝑘 (𝑡))
≤ 𝜇𝑘∗ < 𝑋̄𝑘∗ (𝑁𝑘∗ (𝑡′)) + 𝛿𝑇ℓ (𝑁𝑘∗ (𝑡′)) ≤ 𝑋̄𝑘∗ (𝑁𝑘∗ (𝑡′)) + 𝛿𝑡 ′ (𝑁𝑘∗ (𝑡′)).

This sequence of inequalities implies that the arm 𝑡 is not pulled anymore up to time 𝑇ℓ+1, so
𝑁𝑘 (𝑇ℓ+1) cannot become larger than 𝑁𝑘 (𝑇ℓ) ∨ 𝛿−1

𝑇ℓ+1
(Δ𝑘/2). The conclusion follows. □

Corollary 4.8 Assume that the distributions of the rewards of each arm 𝑘 are in 𝑠𝑢𝑏𝐺 (𝜇𝑘 , 𝜎2).
Setting

𝛿𝑡 (𝑛) =
√︃

8𝜎2 log(𝑡)/𝑛

we have

𝑅(𝑇) ≤
∑︁
𝑘:𝑘≠𝑘∗

(
Δ𝑘 (6 + 3 log2 log2 (𝑇)) +

128𝜎2 log(𝑇)
Δ𝑘

)
.

Proof of the corollary. We set 𝑇ℓ = 22ℓ−1
for ℓ ≥ 1. Then

P
(
Ω𝑐𝑘,ℓ

)
≤ 2𝑇ℓ+1𝑒−8 log(𝑇ℓ )/2 =

2𝑇ℓ+1
𝑇4
ℓ

=
2
𝑇ℓ+1

.

As 𝛿𝑡 (𝑛) ≤ Δ𝑘/2 iff 𝑛 ≥ 32𝜎2 log(𝑡)/Δ2
𝑘
, we get that

𝛿−1
𝑇ℓ+1
(Δ𝑘/2) ≤ 1 + 32𝜎2 log(𝑇ℓ+1)

Δ2
𝑘

.

To conclude, we observe that

𝐿∑︁
ℓ=0

log(𝑇ℓ+1) =
𝐿+1∑︁
ℓ=1

2ℓ−1 log(2) ≤ 2𝐿+1 log(2) = 4 log(𝑇𝐿) ≤ 4 log(𝑇),

and 𝐿 = 1 + log2 log2 (𝑇𝐿) ≤ 1 + log2 log2 (𝑇). □

4.3 Lower bounds

4.3.1 Kullback-Leibler divergence

Kullback-Leibler divergence. Let P,Q be two probability distributions defined on a common
measurable space and fulfilling P ≪ Q. The KL-divergence between P and Q is defined as

𝐾𝐿 (P,Q) = EQ
[
𝑑P

𝑑Q
log

(
𝑑P

𝑑Q

)]
, (4.5)

with the convention 0 log(0) = 0. By convention, we set 𝐾𝐿 (P,Q) = +∞ when P is not dominated
by Q.



50 MULTI-ARMED BANDITS

The Kullback-Leibler divergence can also be written as

𝐾𝐿 (P,Q) = EP
[
log

(
𝑑P

𝑑Q

)]
,

with the implicit convention that log(0) = 0.

Exercise. Positivity.
Let 𝜑 : [0, +∞) be defined by 𝜑(𝑥) = 𝑥 log(𝑥) for 𝑥 > 0, and 𝜑(0) = 0. Check that 𝜑 is convex and
conclude that 𝐾𝐿 (P,Q) ≥ 0.

Examples.
1. Let B(𝑝) and B(𝑞) denote two Bernoulli distributions with parameters 𝑝 and 𝑞 in (0, 1). Then,

𝑘𝑙 (𝑝, 𝑞) := 𝐾𝐿 (B(𝑝),B(𝑞)) = 𝑝 log
(
𝑝

𝑞

)
+ (1 − 𝑝) log

(
1 − 𝑝
1 − 𝑞

)
.

2. The Kullback-Leibler divergence between two Gaussian distributions N(𝜇, 1) and N(𝜇′, 1) is

𝐾𝐿

(
N(𝜇, 𝜎2),N(𝜇′, 𝜎2)

)
=

1
2𝜎2 (𝜇 − 𝜇

′)2.

Exercise. Pinsker inequality.
Adapt the proof of Lemma 3.9 to prove that for two probability distributions P, Q, with P ≪ Q, we
have

|P − Q|1 := EQ

[���� 𝑑P𝑑Q − 1
����] ≤ √︁

2𝐾𝐿 (P,Q).

Check also the following additive property.

Exercise. Tensorization of the Kullback-Leibler divergence.
For four probability distributions P1, P2,Q1,Q2, with P1 ≪ Q1 and P2 ≪ Q2, we have

𝐾𝐿 (P1 ⊗ P2,Q1 ⊗ Q2) = 𝐾𝐿 (P1,Q1) + 𝐾𝐿 (P2,Q2).
Next proposition provides an upper-bound on the difference between the expectations of a random
variable under two different probability distributions in terms of the Kullback-Leibler divergence. It
will be handy for analyzing the minimal regret in multi-armed bandit problems.

Proposition 4.9 Processing inequality.
Let 𝑍 be a random variable taking values in [0, 1], and P ≪ Q. Then

𝑘𝑙 (EP [𝑍] ,EQ [𝑍]) ≤ 𝐾𝐿 (P,Q).

Proof of Proposition 4.9. We first prove that for any P ≪ Q and any event 𝐴, we have

𝑘𝑙 (P(𝐴),Q(𝐴)) ≤ 𝐾𝐿 (P,Q), (4.6)

with 𝑘𝑙 (0, 0) = 0 = 𝑘𝑙 (1, 1).
We first observe that if Q(𝐴) = 0 (resp. Q(𝐴𝑐) = 0) then P(𝐴) = 0 (resp. P(𝐴𝑐) = 0), hence (4.6)
trivially holds for Q(𝐴) ∈ {0, 1}. Hence, we assume below that Q(𝐴) ∈ (0, 1).
The function 𝜑 : [0, +∞), defined by 𝜑(𝑥) = 𝑥 log(𝑥) for 𝑥 > 0, and 𝜑(0) = 0, is convex. From
Jensen inequality, we get

𝐾𝐿 (P,Q) = EQ
[
𝜑

(
𝑑P

𝑑Q

)]
= EQ

[
𝜑

(
𝑑P

𝑑Q

) ���𝐴] Q(𝐴) + EQ [
𝜑

(
𝑑P

𝑑Q

) ���𝐴𝑐] Q(𝐴𝑐)
≥ 𝜑

(
EQ

[
𝑑P

𝑑Q

���𝐴] ) Q(𝐴) + 𝜑 (
EQ

[
𝑑P

𝑑Q

���𝐴𝑐] ) Q(𝐴𝑐)
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We have

EQ

[
𝑑P

𝑑Q

���𝐴] = EQ

[
𝑑P

𝑑Q
1𝐴

]
/Q(𝐴) = P(𝐴)/Q(𝐴),

so we get

𝐾𝐿 (P,Q) ≥ P(𝐴) log(P(𝐴)/Q(𝐴)) + P(𝐴𝑐) log(P(𝐴𝑐)/Q(𝐴𝑐)) = 𝑘𝑙 (P(𝐴),Q(𝐴)),

which proves (4.6).

To prove Proposition 4.9, we apply (4.6) to the event 𝐴 = {(𝑤, 𝑢) : 𝑢 < 𝑍 (𝑤)} ⊂ Ω × [0, 1], and
the probability distributions P ⊗ 𝜆 and Q ⊗ 𝜆, where 𝜆 is the Lebesgue measure on [0, 1]

𝑘𝑙
(
(P ⊗ 𝜆) (𝐴), (Q ⊗ 𝜆) (𝐴)

)
≤ 𝐾𝐿 (P ⊗ 𝜆,Q ⊗ 𝜆).

To conclude, we notice that 𝐾𝐿 (P ⊗ 𝜆,Q ⊗ 𝜆) = 𝐾𝐿 (P,Q) + 𝐾𝐿 (𝜆, 𝜆) = 𝐾𝐿 (P,Q) and

(P ⊗ 𝜆) (𝐴) =
∫
𝑤∈Ω

𝑑P(𝑤)
∫ 1

𝑢=0
𝑑𝑢 1𝑍 (𝑤)>𝑢 = EP [𝑍] .

The proof of Proposition 4.9 is complete. □

Notation. For a set of distributions 𝜈 = (𝜈1, . . . , 𝜈𝐾 ) for the rewards, we define P𝜈 as the joint
distribution of

(
(𝑋𝑘 (𝑛))𝑘=1,...,𝐾, 𝑛≥1, (𝑈𝑛)𝑛≥1

)
. To a policy 𝜓, we associate the random variable

𝐼𝑡 = 𝐼𝑡 (𝜓) = (𝑈1, 𝑌1, . . . , 𝑌𝑡−1,𝑈𝑡 ) defined as in the introduction. We remind the reader that the arm
sampled at step 𝑡 is 𝐴𝑡 = 𝜓𝑡 (𝐼𝑡 ). We denote by P𝐼𝑡𝜈 the distribution of 𝐼𝑡 under P𝜈 .

Next lemma provides a useful decomposition of the Kullback-Leibler divergence between the two
distributions P𝐼𝑡𝜈 and P𝐼𝑡

𝜈′ associated to two sets of distributions (𝜈1, . . . , 𝜈𝐾 ) and (𝜈′1, . . . , 𝜈
′
𝐾
) for

the rewards.

Lemma 4.10 For two sets of distributions 𝜈 = (𝜈1, . . . , 𝜈𝐾 ) and 𝜈′ = (𝜈′1, . . . , 𝜈
′
𝐾
) for the rewards,

we have

𝐾𝐿 (P𝐼𝑇+1𝜈 , P𝐼𝑇+1
𝜈′ ) =

𝐾∑︁
𝑘=1

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘)E𝜈 [𝑁𝑘 (𝑇)] .

Proof of Lemma 4.10.
To start with, we observe that the random variable 𝑈𝑇+1 is independent of (𝐼𝑇 , 𝑌𝑇 ) and follows a
uniform distribution on [0, 1]. Hence, P𝐼𝑇+1𝜈 = P

(𝐼𝑇 ,𝑌𝑇 )
𝜈 ⊗ 𝜆, with 𝜆 the Lebesgue measure on [0, 1],

and
𝐾𝐿 (P𝐼𝑇+1𝜈 , P𝐼𝑇+1

𝜈′ ) = 𝐾𝐿 (P
(𝐼𝑇 ,𝑌𝑇 )
𝜈 , P

(𝐼𝑇 ,𝑌𝑇 )
𝜈′ ) + 𝐾𝐿 (𝜆, 𝜆) = 𝐾𝐿 (P(𝐼𝑇 ,𝑌𝑇 )𝜈 , P

(𝐼𝑇 ,𝑌𝑇 )
𝜈′ ).

In addition, we decompose the distribution

𝑑P
(𝐼𝑇 ,𝑌𝑇 )
𝜈 (𝑖𝑇 , 𝑦𝑇 ) = 𝑑P𝐼𝑇𝜈 (𝑖𝑇 ) 𝑑P𝑌𝑇𝜈 (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 ).

Hence, we get

log

(
𝑑P
(𝐼𝑇 ,𝑌𝑇 )
𝜈 (𝑖𝑇 , 𝑦𝑇 )

𝑑P
(𝐼𝑇 ,𝑌𝑇 )
𝜈′ (𝑖𝑇 , 𝑦𝑇 )

)
= log

(
𝑑P𝐼𝑇𝜈 (𝑖𝑇 )
𝑑P𝐼𝑇

𝜈′ (𝑖𝑇 )

)
+ log

(
𝑑P𝑌𝑇𝜈 (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 )
𝑑P𝑌𝑇

𝜈′ (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 )

)
. (4.7)

Integrating the first term in the right-hand side of (4.7), we get∫
𝑖𝑇

∫
𝑦𝑇

log

(
𝑑P𝐼𝑇𝜈 (𝑖𝑇 )
𝑑P𝐼𝑇

𝜈′ (𝑖𝑇 )

)
𝑑P
(𝐼𝑇 ,𝑌𝑇 )
𝜈 (𝑖𝑇 , 𝑦𝑇 ) =

∫
𝑖𝑇

∫
𝑦𝑇

log

(
𝑑P𝐼𝑇𝜈 (𝑖𝑇 )
𝑑P𝐼𝑇

𝜈′ (𝑖𝑇 )

)
𝑑P𝐼𝑇𝜈 (𝑖𝑇 ) 𝑑P𝑌𝑇𝜈 (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 )

=

∫
𝑖𝑇

log

(
𝑑P𝐼𝑇𝜈 (𝑖𝑇 )
𝑑P𝐼𝑇

𝜈′ (𝑖𝑇 )

)
𝑑P𝐼𝑇𝜈 (𝑖𝑇 ) = 𝐾𝐿 (P𝐼𝑇𝜈 , P

𝐼𝑇
𝜈′ ). (4.8)
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As for the second term of (4.7), we observe that under P𝜈 the conditional distribution of 𝑌𝑇 given
𝐼𝑇 = 𝑖𝑇 is 𝜈𝜓𝑇 (𝑖𝑇 ) . Hence 𝑑P𝑌𝑇𝜈 (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 ) = 𝑑𝜈𝜓𝑇 (𝑖𝑇 ) (𝑦𝑇 ). So∫

𝑖𝑇

∫
𝑦𝑇

log

(
𝑑P𝑌𝑇𝜈 (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 )
𝑑P𝑌𝑇

𝜈′ (𝑦𝑇 |𝐼𝑇 = 𝑖𝑇 )

)
𝑑P
(𝐼𝑇 ,𝑌𝑇 )
𝜈 (𝑖𝑇 , 𝑦𝑇 )

=

∫
𝑖𝑇

∫
𝑦𝑇

log

(
𝑑𝜈𝜓𝑇 (𝑖𝑇 ) (𝑦𝑇 )
𝑑𝜈′

𝜓𝑇 (𝑖𝑇 ) (𝑦𝑇 )

)
𝑑P𝐼𝑇𝜈 (𝑖𝑇 ) 𝑑𝜈𝜓𝑇 (𝑖𝑇 ) (𝑦𝑇 )

=

∫
𝑖𝑇

𝑑P𝐼𝑇𝜈 (𝑖𝑇 )
𝐾∑︁
𝑘=1

1𝜓𝑇 (𝑖𝑇 )=𝑘
∫
𝑦𝑇

log
(
𝑑𝜈𝑘 (𝑦𝑇 )
𝑑𝜈′
𝑘
(𝑦𝑇 )

)
𝑑𝜈𝑘 (𝑦𝑇 )︸                                ︷︷                                ︸

=𝐾𝐿 (𝜈𝑘 ,𝜈′𝑘 )

=

𝐾∑︁
𝑘=1

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) E𝜈
[
1𝐴𝑇=𝑘

]
, (4.9)

where 𝐴𝑇 = 𝜓𝑇 (𝐼𝑇 ) is the arm pulled at stage 𝑇 . Hence combining (4.8) and (4.9), we get by
induction that

𝐾𝐿 (P𝐼𝑇+1𝜈 , P𝐼𝑇+1
𝜈′ ) = 𝐾𝐿 (P

𝐼𝑇
𝜈 , P

𝐼𝑇
𝜈′ ) +

𝐾∑︁
𝑘=1

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) E𝜈
[
1𝐴𝑇=𝑘

]
= . . . =

𝐾∑︁
𝑘=1

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) E𝜈 [𝑁𝑘 (𝑇)] .

The proof of Lemma 4.10 is complete. □

We have the following immediate corollary of Proposition 4.9 and Lemma 4.10.

Corollary 4.11 Let 𝑍 be a 𝜎(𝐼𝑇+1)-mesurable random variable taking values in [0, 1], and let
𝜈 = (𝜈1, . . . , 𝜈𝐾 ) and 𝜈′ = (𝜈′1, . . . , 𝜈

′
𝐾
) be two set of distributions for the rewards. Then

𝑘𝑙 (E𝜈 [𝑍] ,E𝜈′ [𝑍]) ≤
𝐾∑︁
𝑘=1

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘)E𝜈 [𝑁𝑘 (𝑇)] . (4.10)

This result will be useful in order to lower bound the expected number of pulling of an arm
E𝜈 [𝑁𝑘 (𝑇)].

Proof of Corollary 4.11.
Since 𝑍 is 𝜎(𝐼𝑇+1)-mesurable, we have 𝑍 = 𝐹 (𝐼𝑇+1) for some measurable 𝐹 : R2𝑇+1 → [0, 1]. We
can write the expectation of 𝑍 as follows

E𝜈 [𝑍] =
∫
𝜔∈Ω

𝐹 (𝐼𝑇+1 (𝜔)) 𝑑P𝜈 (𝜔) =
∫
𝑥∈R2𝑇+1

𝐹 (𝑥) 𝑑P𝐼𝑇+1𝜈 (𝑥) = EP𝐼𝑇+1𝜈
[𝐹] .

Since 𝐹 takes values in [0, 1], Proposition 4.9 and Lemma 4.10 then gives

𝑘𝑙 (E𝜈 [𝑍] ,E𝜈′ [𝑍]) = 𝑘𝑙
(
E
P
𝐼𝑇+1
𝜈
[𝐹] ,E

P
𝐼𝑇+1
𝜈′
[𝐹]

)
≤ 𝐾𝐿

(
P𝐼𝑇+1𝜈 , P𝐼𝑇+1

𝜈′
)
=

𝐾∑︁
𝑘=1

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘)E𝜈 [𝑁𝑘 (𝑇)] .

The proof of Corollary 4.11 is complete. □
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4.3.2 Asymptotic lower bounds

We are now ready to prove a lower bound for the best possible performance of a policy on a bandit
problem with Gaussian rewards. We have seen that for Gaussian rewards 𝜈𝑘 = N(𝜇𝑘 , 𝜎2), the UCB
policy achieves a regret

𝑅(𝜓𝑈𝐶𝐵, 𝑇) = 𝑂
(∑︁
𝑘≠𝑘∗

𝜎2 log(𝑇)
Δ𝑘

)
.

We will prove that, in some sense, no policy can have a better regret.

Warning. For 𝜈 = (𝜈1, . . . , 𝜈𝐾 ), if the best arm is 𝑘∗ (𝜈) = 3, then the policy 𝜓 (3) which only
samples arm 3 is optimal and suffers a zero regret. Yet, the policy 𝜓 (3) is very poor when 𝑘∗ (𝜈) ≠ 3,
in which case the regret is Δ3𝑇 . This motivates the fact that we want policies 𝜓 which are good on
a whole class of problems.

Theorem 4.12 below shows that any policy with a 𝑜(𝑇 𝛼) regret on all bandit problems with Gaussian
rewards, has a regret larger than the regret of UCB, up to a possible multiplicative constant. Let us
formalize this result.

Definitions:
• Let D𝜎 =

{
N(𝜇, 𝜎2) : 𝜇 ∈ R

}
denote the set of Gaussian distributions with variance 𝜎2;

• Let Ψ𝛼− 𝑓 𝑎𝑠𝑡 denote the set of policies 𝜓 such that, for any 𝜈1, . . . , 𝜈𝐾 ∈ D𝜎 , and any 𝑘 ≠ 𝑘∗ (𝜈),
we have E𝜈 [𝑁𝑘 (𝑇)] = 𝑜(𝑇 𝛼) as 𝑇 →∞.

Theorem 4.12 For any 𝜈1, . . . , 𝜈𝐾 ∈ D𝜎 , with 𝜈𝑘 = N(𝜇𝑘 , 𝜎2), for 𝑘 = 1, . . . , 𝐾 , for any 𝛼 ∈
(0, 1), and for any policy 𝜓 ∈ Ψ𝛼− 𝑓 𝑎𝑠𝑡

lim inf
𝑇→+∞

𝑅(𝜓,𝑇)
log(𝑇) ≥ (1 − 𝛼)

∑︁
𝑘≠𝑘∗ (𝜈)

2𝜎2

Δ𝑘
.

Let us comment briefly on this result. We observe that a policy that has a regret 𝑜(𝑇 𝛼) uniformly
over (𝜈1, . . . , 𝜈𝐾 ) ∈ D𝐾𝜎 , cannot have a regret smaller than𝑂 (log(𝑇)) anywhere inD𝐾𝜎 . In addition,
the lower bound on the regret is proportional to∑︁

𝑘≠𝑘∗

𝜎2 log(𝑇)
Δ𝑘

,

which is the sum appearing in (4.4), up to constants. Hence, no policy can perform better (up to
constants) than the UCB policy, uniformly over (𝜈1, . . . , 𝜈𝐾 ) ∈ D𝐾𝜎 .

Proof of Theorem 4.12.
According to (4.2), we only need to prove that

lim inf
𝑇→∞

E𝜈 [𝑁𝑘 (𝑇)]
log(𝑇) ≥ 2(1 − 𝛼)𝜎2

Δ2
𝑘

, for all 𝑘 ≠ 𝑘∗ (𝜈), (4.11)

where 𝑘∗ (𝜈) is the best arm for the set of distribution 𝜈.
Let us fix 𝑘 ≠ 𝑘∗ (𝜈). The recipe for proving the lower bound is to compare, via Corollary 4.11,
the performance of 𝜓 on 𝜈 and on 𝜈′, where 𝜈′ is such that 𝑘∗ (𝜈′) = 𝑘 . We define the collection
(𝜈′1, . . . , 𝜈

′
𝐾
) ∈ D𝐾𝜎 as follows. For 𝛿 > 0, we set 𝜈′

𝑘
= N(𝜇𝑘∗ + 𝛿, 𝜎2) and for all 𝑗 ≠ 𝑘 we set

𝜈′
𝑗
= 𝜈 𝑗 . Hence, the difference between (𝜈′1, . . . , 𝜈

′
𝐾
) and (𝜈1, . . . , 𝜈𝐾 ) is only at the distribution 𝜈′

𝑘
.

According to (4.10) with 𝑍 = 𝑁𝑘 (𝑇)/𝑇 , we have

E𝜈 [𝑁𝑘 (𝑇)] 𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) ≥ 𝑘𝑙
(
E𝜈 [𝑁𝑘 (𝑇)]

𝑇
,
E𝜈′ [𝑁𝑘 (𝑇)]

𝑇

)
.
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We also have

𝑘𝑙 (𝑝, 𝑞) = (1 − 𝑝) log
(

1
1 − 𝑞

)
+ 𝑝 log (1/𝑞)︸       ︷︷       ︸

≥0

+ 𝑝 log(𝑝) + (1 − 𝑝) log(1 − 𝑝)︸                                 ︷︷                                 ︸
≥− log(2)

≥ (1 − 𝑝) log
(

1
1 − 𝑞

)
− log(2),

so

E𝜈 [𝑁𝑘 (𝑇)] 𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) ≥
(
1 − E𝜈 [𝑁𝑘 (𝑇)]

𝑇

)
log

(
𝑇

𝑇 − E𝜈′ [𝑁𝑘 (𝑇)]

)
− log(2),

We observe that 𝑘 is sub-optimal under P𝜈 , but it is the best arm under the distribution P𝜈′ . So, since
𝜓 ∈ Ψ𝛼− 𝑓 𝑎𝑠𝑡 , we have E𝜈 [𝑁𝑘 (𝑇)] = 𝑜(𝑇 𝛼) and E𝜈′

[
𝑁 𝑗 (𝑇)

]
= 𝑜(𝑇 𝛼) for all 𝑗 ≠ 𝑘 . Hence

E𝜈 [𝑁𝑘 (𝑇)] = 𝑜(𝑇 𝛼) and 𝑇 − E𝜈′ [𝑁𝑘 (𝑇)] =
∑︁
𝑗: 𝑗≠𝑘

E𝜈′
[
𝑁 𝑗 (𝑇)

]
= 𝑜(𝑇 𝛼).

It follows that

E𝜈 [𝑁𝑘 (𝑇)] 𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) ≥
(
1 − 𝑜(𝑇−(1−𝛼) )

)
(1 − 𝛼) log(𝑇) − log(2) − log(𝑜(1))

Direct computations give

𝐾𝐿 (𝜈𝑘 , 𝜈′𝑘) = 𝐾𝐿 (N (𝜇𝑘 , 𝜎
2),N(𝜇𝑘∗ + 𝛿, 𝜎2)) = 1

2𝜎2 (𝜇𝑘∗ + 𝛿 − 𝜇𝑘)
2,

so taking 𝛿 = 𝜀Δ𝑘 , with 𝜀 > 0, we get

lim inf
𝑇→∞

E𝜈 [𝑁𝑘 (𝑇)]
log(𝑇) ≥ 2(1 − 𝛼)𝜎2

(1 + 𝜀)2Δ2
𝑘

.

Since this lower bound is valid for any 𝜀 > 0, the lower bound (4.11) is proved. The proof of
Theorem 4.12 is complete. □

4.4 Problem: 𝑋-armed bandits

We consider now the case where there is an infinite number of arms, indexed by 𝑥 ∈ [0, 1]. We
assume that the arm 𝑥 produces rewards which are in [0, 1] with mean denoted by 𝜇(𝑥).
Without further assumptions, there is no hope to get a non-trivial regret bound, as we cannot even
sample all arms ones. Hence, we will consider the case where 𝑥 → 𝜇(𝑥) is regular. More precisely,
we assume that 𝜇 is (𝛽, 𝐿)-Hölder,

|𝜇(𝑥) − 𝜇(𝑦) | ≤ 𝐿 |𝑥 − 𝑦 |𝛽 : for all 𝑥, 𝑦 ∈ [0, 1],

for some 𝐿 ∈ R+ and 𝛽 ∈ (0, 1].
As 𝜇 is regular, arms with close indices 𝑥 and 𝑦 have close mean rewards 𝜇(𝑥) and 𝜇(𝑦). Hence,
an idea is to split [0, 1] = 𝐽1 ∪ . . . ∪ 𝐽𝐾 into 𝐾 intervals of length 1/𝐾 and then to cluster the arms
accordingly into 𝐾 groups. We can define then a 𝐾-arms bandit as follows: the arm 𝑘 corresponds
to sampling a value 𝑥 chosen uniformly at random in 𝐽𝑘 . Hence, the mean reward of the arm 𝑘 is

𝑚𝑘 = 𝐾

∫
𝐽𝑘

𝜇(𝑥) 𝑑𝑥.

As the rewards of the arm 𝑘 are in [0, 1], the distribution of the rewards of the arm 𝑘 is in
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𝑠𝑢𝑏𝐺 (𝑚𝑘 , 1/4). According to Corollary 4.5, the regret of fixed horizon UCB for this 𝐾-arms bandit
problem is upper-bounded by

𝑅𝐾 (𝑇) = 𝑇 max
𝑗=1,...,𝐾

𝑚 𝑗 − E
[
𝑇∑︁
𝑡=1

𝑌𝑡

]
≤

∑︁
𝑘≠𝑘∗

(
3Δ𝑘 +

4 log(𝑇)
Δ𝑘

)
,

where Δ𝑘 = max 𝑗=1,...,𝐾 𝑚 𝑗 − 𝑚𝑘 = 𝑚𝑘∗ − 𝑚𝑘 .

In this problem, you will work out this bound in order to get a bound on the regret for the original
problem

𝑅∗ (𝑇) = 𝑇 max
𝑥∈[0,1]

𝜇(𝑥) − E
[
𝑇∑︁
𝑡=1

𝑌𝑡

]
.

Theorem 4.13 When 𝜇 is (𝛽, 𝐿)-Hölder, for a suitable choice of 𝐾 (depending on 𝛽), the algorithm
described above fulfills the regret bound

𝑅∗ (𝑇) ≤ 𝐶𝐿,𝛽 𝑇
𝛽+1

2𝛽+1 (log𝑇)
𝛽

2𝛽+1 ,

for some constant 𝐶𝐿,𝛽 > 0 depending only on (𝐿, 𝛽).

Proof of Theorem 4.13. Prove the theorem by solving the five next questions.
1. Prove that max𝑥∈[0,1] 𝜇(𝑥) −max 𝑗=1,...,𝐾 𝑚 𝑗 ≤ 𝐿𝐾−𝛽 .
2. Let us choose some 𝐷 > 0. We can split the regret 𝑅𝐾 (𝑇) into two pieces

𝑅𝐾 (𝑇) =
∑︁

𝑘:Δ𝑘≤𝐷
Δ𝑘E [𝑁𝑘 (𝑇)] +

∑︁
𝑘:Δ𝑘>𝐷

Δ𝑘E [𝑁𝑘 (𝑇)] .

Check that the first sum can be simply upper bounded by 𝐷𝑇 .
3. Check that the second sum is upper bounded by∑︁

𝑘:Δ𝑘>𝐷

Δ𝑘E [𝑁𝑘 (𝑇)] ≤
4𝐾 log(𝑇)

𝐷
+ 3𝐾𝐿.

4. Putting pieces together, check that

𝑅∗ (𝑇) ≤ 𝐿𝐾−𝛽𝑇 + 𝐷𝑇 + 4𝐾 log(𝑇)
𝐷

+ 3𝐾𝐿.

5. Optimizing the value 𝐷 and then partially optimizing the number 𝐾 of blocks, conclude the proof
of Theorem 4.13.

4.5 Illustration of UCB

Let us visualize the UCB algorithm on a simulated example. The R-code can be downloaded at
https://www.imo.universite-paris-saclay.fr/˜giraud/Orsay/MathIA/Bandits.R

We consider 4 arms following a Bernoulli distribution with means

𝜇1 = 0.1, 𝜇2 = 0.5, 𝜇3 = 0.3, 𝜇4 = 0.4.

We run UCB as in Corollary 4.5 for 𝑇 = 1000 time steps. Here 𝜎2 = 1/4.

In Figure 4.2, we display the regret as time passes 𝑡 → 𝑅(𝑡) and the arms sampled at each time step.
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Figure 4.2: Top: Sampled arms when time passes. Arm1 in black, Arm 2 in red, Arm 3 in green,
Arm 4 in blue. Below: regret as time passes. The color of the dot at time 𝑡 corresponds to the color
of the arm sampled 𝐴𝑡

In Figure 4.3, we display the Upper Confidence Bound 𝑈𝑘 (𝑡) (triangles) and the empirical mean
𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) (crosses) for each arm 𝑘 = 1, . . . , 4, at three time steps 𝑡 = 100, 300, 1000. You can
observe that the empirical means 𝑋̄𝑘 (𝑁𝑘 (𝑡 − 1)) are slowly converging to the true means 𝜇𝑘 , and
that the 4 upper confidence bounds 𝑈1 (𝑡), . . . ,𝑈4 (𝑡) are almost at the same level at each time steps
(why?).
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Figure 4.3: Upper confidence bounds𝑈𝑘 (𝑡) (triangles) and empirical means 𝑋̄𝑘 (𝑁𝑘 (𝑡−1)) (crosses)
for each arm 𝑘 = 1, . . . , 4. Arm1 in black, Arm 2 in red, Arm 3 in green, Arm 4 in blue. Left: 𝑡 = 100.
Center: 𝑡 = 300. Right: 𝑡 = 1000.
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Chapter 5

Singular Value Decomposition

Linear algebra and matrix analysis play an important role in machine learning. They are involved in
many different topics, including dimension reduction, clustering or regression.

5.1 Reminder on spectral decomposition of symmetric real matrices

Spectral decomposition of symmetric real matrices plays an important role for constructive compu-
tations.

Theorem 5.1 Spectral decomposition of symmetric real matrices.
Let 𝐴 ∈ R𝑛×𝑛 be a symmetric real matrix. Then, there exists 𝜆1 ≥ 𝜆2 ≥ . . . , ≥ 𝜆𝑛 ∈ R and an
orthonormal basis {𝑢1, . . . , 𝑢𝑛} of R𝑛 such that

𝐴 =

𝑛∑︁
𝑘=1

𝜆𝑘𝑢𝑘𝑢
𝑇
𝑘 .

The spectral decomposition can also be written 𝐴 = 𝑈diag(𝜆1, . . . , 𝜆𝑛)𝑈𝑇 with𝑈 = [𝑢1𝑢2 · · · 𝑢𝑛].

Proof of Theorem 5.1. Let us give an analytic proof of the spectral decomposition. Let 𝐹 : R𝑛 → R
be defined by 𝐹 (𝑢) = 1

2𝑢
𝑇 𝐴𝑢. As 𝐹 is continuous and as the unit sphere 𝜕𝐵R𝑛 (0, 1) is compact,

there exists at least one maximizer 𝑢1 of 𝐹 in 𝜕𝐵R𝑛 (0, 1)

𝑢1 ∈ argmax
𝑢1∈𝜕𝐵R𝑛 (0,1)

𝐹 (𝑢).

7
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•

UN V1

<

Figure 5.1: Tangent plane 𝑢1 +𝑉1 to 𝜕𝐵R𝑛 (0, 1) in 𝑢1.

The tangent plane to 𝜕𝐵R𝑛 (0, 1) in 𝑢1 is 𝑢1 + 𝑉1, where 𝑉1 =< 𝑢1 >
⊥ with < 𝑢1 > the line spanned

by 𝑢1. Hence, as 𝑢1 is a maximizer on the sphere, we have ∇𝐹 (𝑢1) ⊥ 𝑉1. So, there exists 𝜆1 ∈ R
such that ∇𝐹 (𝑢1) = 𝜆1𝑢1. As ∇𝐹 (𝑢1) = 𝐴𝑢1, we have 𝐴𝑢1 = 𝜆1𝑢1.

59
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We can decompose R𝑛 =< 𝑢1 > +𝑉1. For any 𝑢 ∈ 𝑉1, we have

⟨𝐴𝑢, 𝑢1⟩ = ⟨𝑢, 𝐴𝑇𝑢1⟩ = ⟨𝑢, 𝐴𝑢1⟩ = 𝜆1⟨𝑢, 𝑢1⟩ = 0.

So 𝐴𝑉1 ⊂ 𝑉1. Hence, we can apply the same argument as above to 𝐹1 : 𝑉1 → R, 𝐹1 (𝑢) = 𝑢𝑇 𝐴𝑢/2,
which gives 𝑢2 ∈ 𝑉1 ∩ 𝜕𝐵R𝑛 (0, 1) such that 𝐴𝑢2 = 𝜆2𝑢2 for some 𝜆2 ∈ R.

We then get 𝜆1 ≥ 𝜆2 ≥ . . . , ≥ 𝜆𝑛 and the orthonormal family {𝑢1, . . . , 𝑢𝑛} of eigenvectors of 𝐴 by
induction. Finally, we observe that since any 𝑥 ∈ R𝑛 can be decomposed as 𝑥 =

∑
𝑘 (𝑢𝑇𝑘 𝑥) 𝑢𝑘 , we

have

𝐴𝑥 =

𝑛∑︁
𝑘=1

(𝑢𝑇𝑘 𝑥) 𝐴𝑢𝑘 =
𝑛∑︁
𝑘=1

𝜆𝑘 (𝑢𝑇𝑘 𝑥) 𝑢𝑘 =
𝑛∑︁
𝑘=1

𝜆𝑘𝑢𝑘𝑢
𝑇
𝑘 𝑥.

The proof of Theorem 5.1 is complete. □

Positive semi-definite matrices. We remind the reader that a symmetric real matrix 𝐴 is positive
semidefinite (p.s.d.) if 𝑥𝑇 𝐴𝑥 ≥ 0 for all 𝑥 ∈ R𝑛. Since

𝑥𝑇 𝐴𝑥 =

𝑛∑︁
𝑘=1

𝜆𝑘 ⟨𝑥, 𝑢𝑘⟩2,

a symmetric real matrix 𝐴 is positive semi-definite if and only if 𝜆1 ≥ 𝜆2 ≥ . . . , ≥ 𝜆𝑛 ≥ 0.

A.sc y

^ Mi
X M2

Mz
"

l
' A f 12

,

M
> dz v l

m
T

1- = [ ln unum
b.=L -

70

Figure 5.2: Geometric representation of the spectral theorem for p.s.d matrices.

5.2 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is a matrix decomposition that is very useful in many
fields of applied mathematics. In the following, we will use that, for any 𝑛× 𝑝 matrix 𝐴, the matrices
𝐴𝑇 𝐴 and 𝐴𝐴𝑇 are symmetric positive semidefinite.
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Theorem 5.2 Singular value decomposition
Any 𝑛 × 𝑝 matrix 𝐴 of rank 𝑟 can be decomposed as

𝐴 =

𝑟∑︁
𝑗=1

𝜎𝑗 𝑢 𝑗𝑣
𝑇
𝑗 , 𝑤ℎ𝑒𝑟𝑒 (5.1)

• 𝑟 = rank(𝐴),
• 𝜎1 ≥ . . . ≥ 𝜎𝑟 > 0,

•
{
𝜎2

1 , . . . , 𝜎
2
𝑟

}
are the nonzero eigenvalues of 𝐴𝑇 𝐴

(they are also the nonzero eigenvalues of 𝐴𝐴𝑇 ), and

• {𝑢1, . . . , 𝑢𝑟 } and {𝑣1, . . . , 𝑣𝑟 } are two orthonormal families of R𝑛 and R𝑝 , such that

𝐴𝐴𝑇𝑢 𝑗 = 𝜎
2
𝑗 𝑢 𝑗 and 𝐴𝑇 𝐴𝑣 𝑗 = 𝜎

2
𝑗 𝑣 𝑗 .

^
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Figure 5.3: Geometric representation of the SVD. In blue, 𝑥 = 0.75𝑣1 + 0.3𝑣2 is plotted on the left
hand figure and 𝐴𝑥 = 0.75𝜎1𝑢1 + 0.3𝜎2𝑢2 is plotted on the right hand side figure.

The values 𝜎1, . . . , 𝜎𝑟 are called the singular values of 𝐴. The vectors {𝑢1, . . . , 𝑢𝑟 } and {𝑣1, . . . , 𝑣𝑟 }
are said to be left-singular vectors and right-singular vectors, respectively. The decomposition (5.1)
is called a Singular Value Decomposition (SVD) of 𝐴.

Proof. Let us prove that such a decomposition exists. We remind first the following decomposition
of R𝑝 .

Lemma 5.3 For any matrix 𝐴 ∈ R𝑛×𝑝 , we have the orthogonal decomposition

R𝑝 = ker(𝐴) ⃝⊥ range(𝐴𝑇 ).

Proof of Lemma 5.3. First, we observe that ker(𝐴) ⊥ range(𝐴𝑇 ). Indeed, for any 𝑦 = 𝐴𝑇𝑥 ∈
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range(𝐴𝑇 ) and 𝑥0 ∈ ker(𝐴), we have

⟨𝑥0, 𝑦⟩ = ⟨𝑥0, 𝐴
𝑇𝑥⟩ = ⟨ 𝐴𝑥0︸︷︷︸

=0

, 𝑥⟩ = 0.

Since dim(range(𝐴𝑇 )) = rank(𝐴𝑇 ) = rank(𝐴) = 𝑝 − dim(ker(𝐴)), and since ker(𝐴) ⊥ range(𝐴𝑇 ),
the conclusion follows. □

According to Lemma 5.3, the range of 𝐴 and the range of 𝐴𝐴𝑇 coincide, so rank(𝐴𝐴𝑇 ) = rank(𝐴) =
𝑟 . Since 𝐴𝐴𝑇 is positive semidefinite with rank 𝑟 , we have a spectral decomposition

𝐴𝐴𝑇 =

𝑟∑︁
𝑗=1

𝜆 𝑗𝑢 𝑗𝑢
𝑇
𝑗 ,

with 𝜆1 ≥ . . . ≥ 𝜆𝑟 > 0 and {𝑢1, . . . , 𝑢𝑟 } an orthonormal family of R𝑛. Let us define 𝑣1, . . . , 𝑣𝑟 by
𝑣 𝑗 = 𝜆

−1/2
𝑗

𝐴𝑇𝑢 𝑗 for 𝑗 = 1, . . . , 𝑟 . We have

⟨𝑣𝑖 , 𝑣 𝑗⟩ = 𝜆−1/2
𝑖

𝜆
−1/2
𝑗

𝑢𝑇𝑖 𝐴𝐴
𝑇𝑢 𝑗 = 𝜆

−1/2
𝑖

𝜆
1/2
𝑗
𝑢𝑇𝑖 𝑢 𝑗 = 𝛿𝑖, 𝑗 ,

and
𝐴𝑇 𝐴𝑣 𝑗 = 𝜆

−1/2
𝑗

𝐴𝑇 (𝐴𝐴𝑇 )𝑢 𝑗 = 𝜆1/2
𝑗
𝐴𝑇𝑢 𝑗 = 𝜆 𝑗𝑣 𝑗 ,

so {𝑣1, . . . , 𝑣𝑟 } is an orthonormal family of eigenvectors of 𝐴𝑇 𝐴. Setting 𝜎𝑗 = 𝜆 𝑗1/2, we obtain

𝑟∑︁
𝑗=1

𝜎𝑗𝑢 𝑗𝑣
𝑇
𝑗 =

𝑟∑︁
𝑗=1

𝜆
1/2
𝑗
𝜆
−1/2
𝑗

𝑢 𝑗𝑢
𝑇
𝑗 𝐴

=

( 𝑟∑︁
𝑗=1

𝑢 𝑗𝑢
𝑇
𝑗

)
𝐴.

Writing 𝑃 =
∑𝑟
𝑗=1 𝑢 𝑗𝑢

𝑇
𝑗
, it remains to check that 𝑃𝐴 = 𝐴. We notice that 𝑃 is the projection onto

the range of 𝐴𝐴𝑇 . According to Lemma 5.3, the range of 𝐴 and the range of 𝐴𝐴𝑇 coincide so 𝑃 is
also the projection onto the range of 𝐴. Hence

𝑟∑︁
𝑗=1

𝜎𝑗𝑢 𝑗𝑣
𝑇
𝑗 =

( 𝑟∑︁
𝑗=1

𝑢 𝑗𝑢
𝑇
𝑗

)
𝐴 = 𝑃𝐴 = Projrange(𝐴) 𝐴 = 𝐴.

The proof of Lemma 5.2 is complete. 2

In the following, we denote by 𝜎1 (𝐴) ≥ 𝜎2 (𝐴) ≥ . . . the singular values of 𝐴.

Exercise: For any 𝑛 × 𝑝 matrix 𝐴, prove the equalities

𝜎1 (𝐴) = sup
∥𝑥 ∥=1

∥𝐴𝑥∥ = sup
∥𝑥 ∥=1,∥𝑦 ∥=1

⟨𝐴𝑥, 𝑦⟩.

The next result is a geometric characterization of the singular values.
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Theorem 5.4 Min–Max /Max–Min formulas
For any 𝑛 × 𝑝 matrix 𝐴 and 𝑘 ≤ 𝑟 = rank(𝐴), we have

𝜎𝑘 (𝐴) = max
𝑆:dim(𝑆)=𝑘

min
𝑥∈𝑆\{0}

∥𝐴𝑥∥
∥𝑥∥ , (5.2)

where the maximum is taken over all the linear spans 𝑆 ⊂ R𝑝 with dimension 𝑘 .
Symmetrically, we have

𝜎𝑘 (𝐴) = min
𝑆:codim(𝑆)=𝑘−1

max
𝑥∈𝑆\{0}

∥𝐴𝑥∥
∥𝑥∥ , (5.3)

where the minimum is taken over all the linear spans 𝑆 ⊂ R𝑝 with codimension 𝑘 − 1.

Proof. We start from the singular value decomposition 𝐴 =
∑𝑟
𝑗=1 𝜎𝑗 (𝐴)𝑢 𝑗𝑣𝑇𝑗 and we con-

sider
{
𝑣𝑟+1, . . . , 𝑣𝑝

}
, such that

{
𝑣1, . . . , 𝑣𝑝

}
is an orthonormal basis of R𝑝 . We define 𝑆𝑘 =

span {𝑣1, . . . , 𝑣𝑘} and 𝑊𝑘 = span
{
𝑣𝑘 , . . . , 𝑣𝑝

}
. For any linear span 𝑆 ⊂ R𝑝 with dimension 𝑘 ,

we have dim(𝑆) + dim(𝑊𝑘) = 𝑝 + 1, so 𝑆 ∩𝑊𝑘 ≠ {0}. For any nonzero 𝑥 ∈ 𝑆 ∩𝑊𝑘 we have

∥𝐴𝑥∥2
∥𝑥∥2

=

∑𝑟
𝑗=𝑘 𝜎𝑗 (𝐴)2⟨𝑣 𝑗 , 𝑥⟩2∑𝑝

𝑗=𝑘
⟨𝑣 𝑗 , 𝑥⟩2

≤ 𝜎𝑘 (𝐴)2,

so
max

𝑆:dim(𝑆)=𝑘
min

𝑥∈𝑆\{0}

∥𝐴𝑥∥
∥𝑥∥ ≤ 𝜎𝑘 (𝐴).

Conversely, for all 𝑥 ∈ 𝑆𝑘 \ {0}, we have

∥𝐴𝑥∥2
∥𝑥∥2

=

∑𝑘
𝑗=1 𝜎𝑗 (𝐴)2⟨𝑣 𝑗 , 𝑥⟩2∑𝑘

𝑗=1⟨𝑣 𝑗 , 𝑥⟩2
≥ 𝜎𝑘 (𝐴)2,

with equality for 𝑥 = 𝑣𝑘 . As a consequence,

max
𝑆:dim(𝑆)=𝑘

min
𝑥∈𝑆\{0}

∥𝐴𝑥∥
∥𝑥∥ = 𝜎𝑘 (𝐴),

with equality for 𝑆 = 𝑆𝑘 , which proves (5.2). The min–max formula (5.3) is proved similarly. 2

5.3 Matrix analysis

5.3.1 Matrix Norms

Several interesting norms are related to singular values.

Frobenius norm. The standard scalar product on matrices is ⟨𝐴, 𝐵⟩𝐹 =
∑
𝑖, 𝑗 𝐴𝑖 𝑗𝐵𝑖 𝑗 . It induces the

Frobenius norm
∥𝐴∥2𝐹 =

∑︁
𝑖, 𝑗

𝐴2
𝑖 𝑗 = Tr(𝐴𝑇 𝐴) =

∑︁
𝑘

𝜎𝑘 (𝐴)2.

The last equality follows from the fact that the 𝜎𝑘 (𝐴)2 are the eigenvalues of 𝐴𝑇 𝐴.

We remind the reader two useful properties of the Frobenius scalar product. The proof of these
properties is left to the reader.

Lemma 5.5 For any matrices 𝐴, 𝐵, 𝐶 with compatible dimensions, we have

⟨𝐴𝐵,𝐶⟩𝐹 = ⟨𝐴,𝐶𝐵𝑇 ⟩𝐹 = ⟨𝐵, 𝐴𝑇𝐶⟩𝐹 and ⟨𝐴, 𝐼⟩𝐹 = Tr(𝐴).
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Operator norm. The ℓ2 → ℓ2 operator norm is defined by

|𝐴|op = sup
∥𝑥 ∥≤1

∥𝐴𝑥∥ = 𝜎1 (𝐴).

The last equality has been proved in the exercise page 62.

Nuclear norm. The nuclear norm is defined by

|𝐴|∗ =
𝑟∑︁
𝑘=1

𝜎𝑘 (𝐴).

Ky–Fan (𝑝, 𝑞)-norm. For 𝑝 ≥ 1 and 𝑞 ∈ N, the Ky–Fan (𝑝, 𝑞)-norm is defined by

∥𝐴∥ (𝑝,𝑞) =
(
𝑞∑︁
𝑘=1

𝜎𝑘 (𝐴) 𝑝
)1/𝑝

, (5.4)

We observe that ∥𝐴∥ (2,𝑞) ≤ ∥𝐴∥𝐹 , with strict inequality if 𝑞 < rank(𝐴).
The three following inequalities are very useful.

Lemma 5.6 We have

1. |𝐴|∗ ≤
√︁

rank(𝐴) ∥𝐴∥𝐹 ,

2. ⟨𝐴, 𝐵⟩𝐹 ≤ |𝐴|∗ |𝐵 |op ,

3. ∥𝐴𝐵∥𝐹 ≤ |𝐴|op ∥𝐵∥𝐹 .

Proof. The first inequality is simply Cauchy–Schwartz inequality. For the second inequality, we
start from

⟨𝐴, 𝐵⟩𝐹 =
∑︁
𝑘

𝜎𝑘 (𝐴)⟨𝑢𝑘𝑣𝑇𝑘 , 𝐵⟩𝐹 =
∑︁
𝑘

𝜎𝑘 (𝐴)⟨𝑢𝑘 , 𝐵𝑣𝑘⟩

and since ∥𝑢𝑘 ∥ = ∥𝑣𝑘 ∥ = 1, we notice that ⟨𝑢𝑘 , 𝐵𝑣𝑘⟩ ≤ ∥𝐵𝑣𝑘 ∥ ≤ |𝐵 |op. The inequality

⟨𝐴, 𝐵⟩𝐹 ≤
∑︁
𝑘

𝜎𝑘 (𝐴) |𝐵 |op = |𝐴|∗ |𝐵 |op

then follows. Let us turn to the third inequality. We denote by 𝐵 𝑗 the 𝑗-th column of 𝐵. We observe
that ∥𝐵∥2

𝐹
=

∑
𝑗 ∥𝐵 𝑗 ∥2, so

∥𝐴𝐵∥2𝐹 =
∑︁
𝑗

∥(𝐴𝐵) 𝑗 ∥2 =
∑︁
𝑗

∥𝐴𝐵 𝑗 ∥2 ≤
∑︁
𝑗

|𝐴|2op ∥𝐵 𝑗 ∥2 = |𝐴|2op ∥𝐵∥2𝐹 .

The proof of Lemma 5.6 is complete. 2

5.3.2 Low rank projection

We present in this section some useful results on singular values and SVD.

Lemma 5.7 For an 𝑛 × 𝑝 matrix 𝐴 and 𝑘 ≤ min(𝑛, 𝑝), we have for any 𝑞 × 𝑛 matrix 𝐵

𝜎𝑘 (𝐵𝐴) ≤ |𝐵|op 𝜎𝑘 (𝐴). (5.5)

Similarly, we have for any 𝑝 × 𝑞 matrix 𝐵

𝜎𝑘 (𝐴𝐵) ≤ |𝐵|op 𝜎𝑘 (𝐴). (5.6)
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Proof. From the definition of the operator norm, we have ∥𝐵𝐴𝑥∥ ≤ |𝐵 |op ∥𝐴𝑥∥. The inequal-
ity (5.5) then follows from (5.2). Furthermore, we have 𝜎𝑘 (𝐴𝐵) = 𝜎𝑘 (𝐵𝑇 𝐴𝑇 ) ≤

��𝐵𝑇 ��op 𝜎𝑘 (𝐴
𝑇 ) =

|𝐵 |op 𝜎𝑘 (𝐴), which gives (5.6). 2

The second result provides an improvement of the classical Cauchy–Schwartz inequality ⟨𝐴, 𝐵⟩𝐹 ≤
∥𝐴∥𝐹 ∥𝐵∥𝐹 in terms of the Ky–Fan (2, 𝑞)-norm, with 𝑞 = rank(𝐴) ∧ rank(𝐵).

Lemma 5.8 For any matrices 𝐴, 𝐵 ∈ R𝑛×𝑝 , we set 𝑞 = rank(𝐴) ∧ rank(𝐵). We then have

⟨𝐴, 𝐵⟩𝐹 ≤ ∥𝐴∥ (2,𝑞) ∥𝐵∥ (2,𝑞) ,

where the Ky–Fan (2, 𝑞)-norm ∥𝐴∥ (2,𝑞) is defined in (5.4).

Proof. By symmetry, we can assume, that the rank of 𝐵 is not larger than the rank of 𝐴. Let us
denote by 𝑞 the rank of 𝐵 and 𝑃𝐵 the projection on the range of 𝐵. We have 𝐵 = 𝑃𝐵𝐵, so

⟨𝐴, 𝐵⟩𝐹 = ⟨𝐴, 𝑃𝐵𝐵⟩𝐹 = ⟨𝑃𝐵𝐴, 𝐵⟩𝐹 ≤ ∥𝑃𝐵𝐴∥𝐹 ∥𝐵∥𝐹 .

The rank of 𝑃𝐵𝐴 is at most 𝑞 and previous lemma ensures that 𝜎𝑘 (𝑃𝐵𝐴) ≤ 𝜎𝑘 (𝐴), so

∥𝑃𝐵𝐴∥2𝐹 =

𝑞∑︁
𝑘=1

𝜎𝑘 (𝑃𝐵𝐴)2 ≤
𝑞∑︁
𝑘=1

𝜎𝑘 (𝐴)2 = ∥𝐴∥2(2,𝑞) .

Since 𝑞 = rank(𝐵), we have ∥𝐵∥𝐹 = ∥𝐵∥ (2,𝑞) , and the lemma is proved. 2

The last result characterizes the “projection” on the set of matrices of rank 𝑟 .

Theorem 5.9 For 𝐴 =
∑𝑟
𝑘=1 𝜎𝑘 (𝐴)𝑢𝑘𝑣𝑇𝑘 and 𝑞 < 𝑟, we have

min
𝐵:rank(𝐵)≤𝑞

∥𝐴 − 𝐵∥2𝐹 =

𝑟∑︁
𝑘=𝑞+1

𝜎𝑘 (𝐴)2,

where the minimum is achieved for

𝐵 =

𝑞∑︁
𝑘=1

𝜎𝑘 (𝐴)𝑢𝑘𝑣𝑇𝑘 .

Proof. According to Lemma 5.8, for any matrix 𝐵 of rank 𝑞 < 𝑟, we have

∥𝐴 − 𝐵∥2𝐹 = ∥𝐴∥2𝐹 − 2⟨𝐴, 𝐵⟩𝐹 + ∥𝐵∥2𝐹 ≥ ∥𝐴∥2𝐹 − 2∥𝐴∥ (2,𝑞) ∥𝐵∥𝐹 + ∥𝐵∥2𝐹 .

The right-hand side is minimum for ∥𝐵∥𝐹 = ∥𝐴∥ (2,𝑞) , so

∥𝐴 − 𝐵∥2𝐹 ≥ ∥𝐴∥2𝐹 − ∥𝐴∥2(2,𝑞) =
𝑟∑︁

𝑘=𝑞+1
𝜎𝑘 (𝐴)2.

Finally, we observe that this lower bound is achieved for 𝐵 =
∑𝑞

𝑘=1 𝜎𝑘 (𝐴)𝑢𝑘𝑣
𝑇
𝑘

. 2
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5.4 Explicit computations with SVD decomposition

5.4.1 Moore–Penrose Pseudo-Inverse

The Moore–Penrose pseudo-inverse 𝐴+ of a matrix 𝐴 generalizes the notion of inverse for singular
matrices. It is a matrix such that 𝐴𝐴+𝑦 = 𝑦 for all 𝑦 in the range of 𝐴 and 𝐴+𝐴𝑥 = 𝑥 for all 𝑥 in the
range of 𝐴+. Furthermore, the matrices 𝐴𝐴+ and 𝐴+𝐴 are symmetric. When 𝐴 is nonsingular, we
have the identity 𝐴+ = 𝐴−1. We first describe 𝐴+ for diagonal matrices, then for symmetric matrices,
and finally for arbitrary matrices.

Diagonal matrices
The Moore–Penrose pseudo-inverse of a diagonal matrix 𝐷 is a diagonal matrix 𝐷+, with diagonal
entries [𝐷+] 𝑗 𝑗 = 1/𝐷 𝑗 𝑗 when 𝐷 𝑗 𝑗 ≠ 0 and [𝐷+] 𝑗 𝑗 = 0 otherwise.

Symmetric matrices
Write 𝐴 = 𝑈𝐷𝑈𝑇 for a spectral decomposition of 𝐴 with 𝐷 diagonal and 𝑈 unitary1. The Moore–
Penrose pseudo-inverse of 𝐴 is given by 𝐴+ = 𝑈𝐷+𝑈𝑇 .

Arbitrary matrices
Write 𝐴 =

∑𝑟
𝑗=1 𝜎𝑗 (𝐴)𝑢 𝑗𝑣𝑇𝑗 for a singular value decomposition of 𝐴 with 𝑟 = rank(𝐴). The Moore–

Penrose pseudo-inverse of 𝐴 is given by

𝐴+ =
𝑟∑︁
𝑗=1

𝜎𝑗 (𝐴)−1𝑣 𝑗𝑢
𝑇
𝑗 .

We notice that

𝐴+𝐴 =

𝑟∑︁
𝑗=1

𝑣 𝑗𝑣
𝑇
𝑗 = Projrange(𝐴𝑇 ) and 𝐴𝐴+ =

𝑟∑︁
𝑗=1

𝑢 𝑗𝑢
𝑇
𝑗 = Projrange(𝐴) ,

so 𝐴𝐴+𝑦 = 𝑦 for all 𝑦 in the range of 𝐴, and 𝐴+𝐴𝑥 = 𝑥 for all 𝑥 in the range of 𝐴+. In particular,
when 𝐴 is nonsingular, we have 𝐴𝐴+ = 𝐴+𝐴 = 𝐼, so 𝐴+ = 𝐴−1.

5.4.2 Problem: Ridge regression

Preliminaries on random vectors

Let 𝑍 be a random vector in R𝑝 and 𝐴 be a (non-random) 𝑛 × 𝑝 matrix. Prove that

E
[
∥𝑍 ∥2

]
= ∥E [𝑍] ∥2 + Tr(Cov(𝑍)),

and
Cov(𝐴𝑍) = 𝐴Cov(𝑍)𝐴𝑇 .

These two formulas are very useful and should be known by heart.

Ridge regression

We consider the linear model 𝑌 = X𝛽 + 𝜀, with 𝑌, 𝜀 ∈ R𝑛 et 𝛽 ∈ R𝑝 . The matrix X and the vector 𝛽
are non-random. We assume that E[𝜀] = 0 and Cov(𝜀) = 𝜎2𝐼𝑛.

We only observe the vector 𝑌 ∈ R𝑛 and the matrix X ∈ R𝑛×𝑝 . Our goal is to estimate the vector 𝛽.
In the following, the dimension 𝑝 can be larger than the dimension 𝑛.

For 𝜆 > 0, the ridge estimator 𝛽𝜆 is defined by

𝛽𝜆 ∈ argmin
𝛽∈R𝑝

L(𝛽) with L(𝛽) = ∥𝑌 − X𝛽∥2 + 𝜆∥𝛽∥2. (5.7)

1𝑈 unitary if𝑈𝑇𝑈 =𝑈𝑈𝑇 = 𝐼 .
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1. Check that L is strictly convex and has a unique minimum in R𝑝 . Is-it still true when 𝜆 = 0?
2. Prove that 𝛽𝜆 = 𝐴𝜆𝑌 with 𝐴𝜆 = (X𝑇X + 𝜆𝐼𝑝)−1X𝑇 .
3. Let

∑𝑟
𝑘=1 𝜎𝑘𝑢𝑘𝑣

𝑇
𝑘

be a singular value decomposition of X. Prove that

𝐴𝜆 =

𝑟∑︁
𝑘=1

𝜎𝑘

𝜎2
𝑘
+ 𝜆

𝑣𝑘𝑢
𝑇
𝑘

𝜆→0+→ X+

where 𝐴+ is the Moore–Penrose pseudo-inverse of 𝐴.
4. Check that we have

X𝛽𝜆 =
𝑟∑︁
𝑘=1

𝜎2
𝑘

𝜎2
𝑘
+ 𝜆
⟨𝑢𝑘 , 𝑌⟩ 𝑢𝑘 . (5.8)

5. Check that we have

E
[
𝛽𝜆

]
=

𝑟∑︁
𝑘=1

𝜎2
𝑘

𝜎2
𝑘
+ 𝜆
⟨𝑣𝑘 , 𝛽⟩𝑣𝑘 .

6. Prove that the mean square error E
[
∥𝛽𝜆 − 𝛽∥2

]
of the Ridge estimator can be decomposed as

E
[
∥𝛽𝜆 − 𝛽∥2

]
=




𝛽 − E [
𝛽𝜆

]


2
+ Tr(Cov(𝛽𝜆)).

The first term is the norm of the bias of the Ridge estimator and the second term is the variance
E

[
∥𝛽𝜆 − E[𝛽𝜆] ∥2

]
of the Ridge estimator.

7. Let us denote by 𝑃 =
∑𝑟
𝑗=1 𝑣 𝑗𝑣

𝑇
𝑗

the projection on the range of X𝑇 . Prove the following formula
for the bias term 


𝛽 − E [

𝛽𝜆

]


2
= ∥𝛽 − 𝑃𝛽∥2 +

𝑟∑︁
𝑘=1

(
𝜆

𝜆 + 𝜎2
𝑘

)2

⟨𝑣𝑘 , 𝛽⟩2.

8. Check that the variance of the ridge estimator is given by

Tr(Cov(𝛽𝜆)) = 𝜎2Tr(𝐴𝜆𝐴𝑇𝜆 ) = 𝜎2
𝑟∑︁
𝑘=1

(
𝜎𝑘

𝜎2
𝑘
+ 𝜆

)2

.

9. How do the bias and the variance of 𝛽𝜆 vary when 𝜆 increases?

Remark. We notice from (5.8) that X𝛽𝜆 shrinks 𝑌 in the directions 𝑢𝑘 where 𝜎𝑘 ≪ 𝜆, whereas it
leaves 𝑌 almost unchanged in the directions 𝑢𝑘 where 𝜎𝑘 ≫ 𝜆.





Chapter 6

Perturbation bounds

In many situations in statistics and machine learning, we have access to a matrix 𝐴 of observations,
which is a noisy version 𝐴 = 𝐵 + 𝐸 of an unknown signal matrix 𝐵 of interest. Since we only have
access to 𝐴, what SVD or spectral properties of 𝐵 can we learn from the SVD or spectral properties
of 𝐴?

In this chapter, we will provide some perturbation bounds which relates the SVD or spectral prop-
erties of 𝐴 and 𝐵. The first results hold for any perturbation 𝐸 and then the case of random pertur-
bations are investigated.

6.1 Singular values localization

Weyl inequalities provide some relationships between the singular values of 𝐴 and 𝐵. The first result
states that the singular values are 1-Lipschitz with respect to the operator norm.

Theorem 6.1 Weyl inequality
For two 𝑛 × 𝑝 matrices 𝐴 and 𝐵, we have for any 𝑘 ≤ min(𝑛, 𝑝)

|𝜎𝑘 (𝐴) − 𝜎𝑘 (𝐵) | ≤ 𝜎1 (𝐴 − 𝐵) = |𝐴 − 𝐵 |op . (6.1)

Proof. For any 𝑥 ∈ R𝑝 \ {0}, we have

∥𝐴𝑥∥
∥𝑥∥ ≤

∥𝐵𝑥∥
∥𝑥∥ +

∥(𝐴 − 𝐵)𝑥∥
∥𝑥∥ ≤ ∥𝐵𝑥∥∥𝑥∥ + 𝜎1 (𝐴 − 𝐵).

The Inequality (6.1) follows by applying the Max–Min formula (5.2). 2

The Inequality (6.1) can be generalized as follows.

Theorem 6.2 Generalized Weyl inequalities
For two 𝑛 × 𝑝 matrices 𝐴 and 𝐵, and any 𝑖, 𝑗 with 𝑖 + 𝑗 − 2 ≤ min(𝑛, 𝑝), we have

𝜎𝑖+ 𝑗−1 (𝐵) ≤ 𝜎𝑖 (𝐴) + 𝜎𝑗 (𝐴 − 𝐵).

We refer to the Exercise 6.4.1 page 76 for a proof of these inequalities.

6.2 Eigenspaces localization

As the left (respectively right) singular vectors of a matrix 𝑀 are the eigenvectors of the symmetric
matrix 𝑀𝑀𝑇 (resp. 𝑀𝑇𝑀), it is enough to get perturbation bounds for the eigenvectors of symmet-
ric matrices. This is the topic of this section.

Let 𝐴, 𝐵 ∈ R𝑛×𝑛 be two symmetric matrices and let 𝐴 =
∑
𝑘 𝜆𝑘𝑢𝑘𝑢

𝑇
𝑘

and 𝐵 =
∑
𝑘 𝜌𝑘𝑣𝑘𝑣

𝑇
𝑘

69
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be their eigenvalue decomposition with 𝜆1 ≥ · · · ≥ 𝜆𝑛 and 𝜌1 ≥ · · · ≥ 𝜌𝑛. The vec-
tors {𝑢1, . . . , 𝑢𝑛} and {𝑣1, . . . , 𝑣𝑛} are two orthonormal bases of R𝑛. We want to compare the
eigenspaces span {𝑢1, . . . , 𝑢𝑟 } and span {𝑣1, . . . , 𝑣𝑟 }, spanned by the 𝑟 leading eigenvectors of 𝐴
and 𝐵.

A first idea could be to compare the two matrices 𝑈𝑟 = [𝑢1, . . . , 𝑢𝑟 ] and 𝑉𝑟 = [𝑣1, . . . , 𝑣𝑟 ]. Yet,
there are some orthogonal transformation 𝑅 such that span {𝑅𝑢1, . . . , 𝑅𝑢𝑟 } = span {𝑢1, . . . , 𝑢𝑟 }, but
𝑅𝑈𝑟 ≠ 𝑈𝑟 , so a directed comparison of𝑈𝑟 and 𝑉𝑟 is not suited. Instead, we will compare

𝑈𝑟𝑈
𝑇
𝑟 =

𝑟∑︁
𝑘=1

𝑢𝑘𝑢
𝑇
𝑘 and 𝑉𝑟𝑉

𝑇
𝑟 =

𝑟∑︁
𝑘=1

𝑣𝑘𝑣
𝑇
𝑘 ,

which are the orthogonal projectors in R𝑛 onto the linear spans span {𝑢1, . . . , 𝑢𝑟 } and
span {𝑣1, . . . , 𝑣𝑟 } respectively. Next lemma relates the Frobenius distance between𝑈𝑟𝑈𝑇𝑟 and 𝑉𝑟𝑉𝑇𝑟
to the Frobenius norm of𝑈𝑇−𝑟𝑉𝑟 .

Lemma 6.3 Let𝑈−𝑟 = [𝑢𝑟+1, . . . , 𝑢𝑛] and 𝑉−𝑟 = [𝑣𝑟+1, . . . , 𝑣𝑛]. Then, we have

∥𝑈𝑟𝑈𝑇𝑟 −𝑉𝑟𝑉𝑇𝑟 ∥2𝐹 = 2∥𝑉𝑇−𝑟𝑈𝑟 ∥2𝐹 = 2∥𝑈𝑇−𝑟𝑉𝑟 ∥2𝐹 .

Proof of Lemma 6.3. We first expand the squares and use that the Frobenius norm of a projector is
equal to its rank

∥𝑈𝑟𝑈𝑇𝑟 −𝑉𝑟𝑉𝑇𝑟 ∥2𝐹 = ∥𝑈𝑟𝑈𝑇𝑟 ∥2𝐹 + ∥𝑉𝑟𝑉𝑇𝑟 ∥2𝐹 − 2⟨𝑈𝑟𝑈𝑇𝑟 , 𝑉𝑟𝑉𝑇𝑟 ⟩𝐹
= 2𝑟 − 2⟨𝑈𝑟𝑈𝑇𝑟 , 𝑉𝑟𝑉𝑇𝑟 ⟩𝐹

Then, since span{𝑣𝑟+1, . . . , 𝑣𝑛} is the orthogonal complement of span{𝑣1, . . . , 𝑣𝑟 }, we have𝑉𝑟𝑉𝑇𝑟 =

𝐼𝑛 −𝑉−𝑟𝑉𝑇−𝑟 . So, as ⟨𝑈𝑟𝑈𝑇𝑟 , 𝐼𝑛⟩ = Tr(UrUT
r ) = r,

∥𝑈𝑟𝑈𝑇𝑟 −𝑉𝑟𝑉𝑇𝑟 ∥2𝐹 = 2𝑟 − 2⟨𝑈𝑟𝑈𝑇𝑟 , 𝐼𝑛 −𝑉−𝑟𝑉𝑇−𝑟 ⟩𝐹
= 2⟨𝑉𝑇−𝑟𝑈𝑟 , 𝑉𝑇−𝑟𝑈𝑟 ⟩ = 2∥𝑉𝑇−𝑟𝑈𝑟 ∥2𝐹 .

The second equality of Lemma 6.3 follows by symmetry. □

Next result is the main theorem of this chapter. It provides a (classical) upper-bound on the norm
∥𝑈𝑇−𝑟𝑉𝑟 ∥2𝐹 .

Theorem 6.4 Davis-Kahan perturbation bound.
Let 𝐴, 𝐵 ∈ R𝑛×𝑛 be two symmetric matrices and let 𝐴 =

∑
𝑘 𝜆𝑘𝑢𝑘𝑢

𝑇
𝑘

and 𝐵 =
∑
𝑘 𝜌𝑘𝑣𝑘𝑣

𝑇
𝑘

be their
eigenvalue decomposition with 𝜆1 ≥ · · · ≥ 𝜆𝑛 and 𝜌1 ≥ · · · ≥ 𝜌𝑛.
Let 𝑈𝑟 = [𝑢1, . . . , 𝑢𝑟 ], 𝑈−𝑟 = [𝑢𝑟+1, . . . , 𝑢𝑛] and similarly 𝑉𝑟 = [𝑣1, . . . , 𝑣𝑟 ], 𝑉−𝑟 =

[𝑣𝑟+1, . . . , 𝑣𝑛]. Then, we have

∥𝑈𝑇−𝑟𝑉𝑟 ∥𝐹 ≤
(
√
𝑟 |𝐴 − 𝐵 |op) ∧ ∥𝐴 − 𝐵∥𝐹
(𝜌𝑟 − 𝜆𝑟+1) ∨ (𝜆𝑟 − 𝜌𝑟+1)

(6.2)

≤ 2
(
√
𝑟 |𝐴 − 𝐵 |op) ∧ ∥𝐴 − 𝐵∥𝐹

𝜆𝑟 − 𝜆𝑟+1
. (6.3)

In many cases, we only wish to compare the two leading eigenvectors of 𝐴 and 𝐵, which corresponds
to the case 𝑟 = 1.

Corollary 6.5 Comparing leading eigenvectors.√︁
1 − ⟨𝑢1, 𝑣1⟩2 ≤

2 inf𝜆∈R |𝐴 + 𝜆𝐼 − 𝐵 |op

𝜆1 − 𝜆2
. (6.4)
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Proof of Corollary 6.5.
We first observe that

∥𝑈𝑇−1𝑣1∥2 = 𝑣𝑇1𝑈−1𝑈
𝑇
−1𝑣1 = 𝑣𝑇1 (𝐼 − 𝑢1𝑢

𝑇
1 )𝑣1 = 1 − (𝑢𝑇1 𝑣1)2.

In addition, the eigenvectors of 𝐴 and 𝐴 + 𝜆𝐼 are the same, while the eigenvalues are all translated
by 𝜆, preserving the eigengap between the two largest eigenvalues. So, for any 𝜆 ∈ R, the Inequality
(6.3) applied to 𝐴 + 𝜆𝐼 and 𝐵 gives√︁

1 − ⟨𝑢1, 𝑣1⟩2 ≤
2 |𝐴 + 𝜆𝐼 − 𝐵 |op

𝜆1 − 𝜆2
.

The proof Corollary 6.5 is complete. □

Proof of Theorem 6.4.
We first observe that the Bound (6.3) directly follows from (6.2) and the inequalities

𝜆𝑟 − 𝜆𝑟+1 = 𝜆𝑟 − 𝜌𝑟+1 − (𝜌𝑟 − 𝜌𝑟+1) + 𝜌𝑟 − 𝜆𝑟+1
≤ (𝜆𝑟 − 𝜌𝑟+1) + (𝜌𝑟 − 𝜆𝑟+1) ≤ 2((𝜌𝑟 − 𝜆𝑟+1) ∨ (𝜆𝑟 − 𝜌𝑟+1)).

Let us prove (6.2). Since 𝜆𝑟 − 𝜆𝑟+1 ≥ 0, we notice that the inequality above also gives

(𝜌𝑟 − 𝜆𝑟+1) ∨ (𝜆𝑟 − 𝜌𝑟+1) = (𝜌𝑟 − 𝜆𝑟+1)+ ∨ (𝜆𝑟 − 𝜌𝑟+1)+.

In addition, we observe from Lemma 6.3 that the role of 𝐴 and 𝐵 are symmetric. Hence, we only
need to prove

∥𝑈𝑇−𝑟𝑉𝑟 ∥𝐹 ≤
(
√
𝑟 |𝐴 − 𝐵 |op) ∧ ∥𝐴 − 𝐵∥𝐹
(𝜌𝑟 − 𝜆𝑟+1)+

. (6.5)

When 𝜌𝑟 ≤ 𝜆𝑟+1 the right-hand side is infinite, so we only need to focus on the case where 𝜌𝑟 >
𝜆𝑟+1.
We have the decomposition

∥𝑈𝑇−𝑟𝑉𝑟 ∥2𝐹 =

𝑟∑︁
𝑘=1

∥𝑈𝑇−𝑟𝑣𝑘 ∥2, (6.6)

so we will start by bounding the square norms ∥𝑈𝑇−𝑟𝑣𝑘 ∥2. Since

𝐴 =

𝑛∑︁
𝑘=1

𝜆𝑘𝑢𝑘𝑢
𝑇
𝑘 = 𝑈𝑟 diag(𝜆1, . . . , 𝜆𝑟 )𝑈𝑇𝑟 +𝑈−𝑟 diag(𝜆𝑟+1, . . . , 𝜆𝑛)𝑈𝑇−𝑟 ,

we have𝑈𝑇−𝑟 𝐴 = diag(𝜆𝑟+1, . . . , 𝜆𝑛)𝑈𝑇−𝑟 . Hence, with 𝐵𝑣𝑘 = 𝜌𝑘𝑣𝑘 , we have for 𝑘 = 1, . . . , 𝑟

𝜌𝑘𝑈
𝑇
−𝑟𝑣𝑘 = 𝑈

𝑇
−𝑟 𝐵𝑣𝑘 = 𝑈

𝑇
−𝑟 (𝐴 + 𝐵 − 𝐴)𝑣𝑘

= diag(𝜆𝑟+1, . . . , 𝜆𝑛)𝑈𝑇−𝑟𝑣𝑘 +𝑈𝑇−𝑟 (𝐵 − 𝐴)𝑣𝑘 .

Hence,
diag(𝜌𝑘 − 𝜆𝑟+1, . . . , 𝜌𝑘 − 𝜆𝑛)𝑈𝑇−𝑟𝑣𝑘 = 𝑈𝑇−𝑟 (𝐵 − 𝐴)𝑣𝑘 ,

and then, since 𝜌𝑘 ≥ 𝜌𝑟 > 𝜆𝑟+1,

∥𝑈𝑇−𝑟𝑣𝑘 ∥2 ≤
��diag(𝜌𝑘 − 𝜆𝑟+1, . . . , 𝜌𝑘 − 𝜆𝑛)−1𝑈𝑇−𝑟

��2
op ∥(𝐵 − 𝐴)𝑣𝑘 ∥

2

≤ ∥(𝐵 − 𝐴)𝑣𝑘 ∥
2

(𝜌𝑘 − 𝜆𝑟+1)2
≤ ∥(𝐵 − 𝐴)𝑣𝑘 ∥

2

(𝜌𝑟 − 𝜆𝑟+1)2
,
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for 𝑘 = 1, . . . , 𝑟 . To conclude, we observe that
𝑟∑︁
𝑘=1

∥(𝐵 − 𝐴)𝑣𝑘 ∥2 ≤ |𝐵 − 𝐴|2op

𝑟∑︁
𝑘=1

∥𝑣𝑘 ∥2 = 𝑟 |𝐵 − 𝐴|op ,

since ∥𝑣𝑘 ∥ = 1. So, with (6.6) we get

∥𝑈𝑇−𝑟𝑉𝑟 ∥2𝐹 ≤
𝑟 |𝐴 − 𝐵 |2op

(𝜌𝑟 − 𝜆𝑟+1)2
. (6.7)

In addition, since 𝜎𝑘 ((𝐵 − 𝐴)𝑉𝑟 ) ≤ |𝑉𝑟 |𝜎𝑘 (𝐵 − 𝐴) = 𝜎𝑘 (𝐵 − 𝐴)
𝑟∑︁
𝑘=1

∥(𝐵 − 𝐴)𝑣𝑘 ∥2 = ∥(𝐵 − 𝐴)𝑉𝑟 ∥2𝐹 =

𝑛∑︁
𝑘=1

𝜎𝑘 ((𝐵 − 𝐴)𝑉𝑟 )2 ≤
𝑛∑︁
𝑘=1

𝜎𝑘 (𝐵 − 𝐴)2 = ∥𝐵 − 𝐴∥2𝐹 .

Combining this bound with (6.6), we get

∥𝑈𝑇−𝑟𝑉𝑟 ∥2𝐹 ≤
∥𝐴 − 𝐵∥2

𝐹

(𝜌𝑟 − 𝜆𝑟+1)2
. (6.8)

Combining (6.7) and (6.8) we get (6.5), so the proof of Theorem 6.4 is complete. □

6.3 Operator norm of random matrices

As mentioned in the preamble of this chapter, in statistics and machine learning, we often observe
a matrix 𝐴 which is the sum of a signal matrix 𝐵 and a random noise matrix 𝐸 . According to the
Weyl inequality and the Davis-Kahan inequality, the difference between the spectral or singular
value decomposition of 𝐴 = 𝐵 + 𝐸 and 𝐵 is controlled in terms of the operator norm |𝐸 |op. So to
understand the size of the perturbation induced by the noise, we need to understand the size of the
operator norm of a random matrix 𝐸 .

For simplicity, we focus on this chapter on the case where 𝐸 has i.i.d. entries 𝐸𝑖 𝑗 with N(0, 𝜎2)
distribution. All the results of this section are valid for i.i.d. entries with 𝑠𝑢𝑏𝐺 (𝜎2) distribution, at
the price of larger numerical constants.

6.3.1 Concentration of quadratic forms of Gaussian vectors

To bound the operator norm of a random matrix, we will need to evaluate quadratic forms of Gaus-
sian vectors. Next lemma gathers two simple versions of Hanson-Wright inequality for Gaussian
vectors.

Theorem 6.6 Hanson-Wright inequality for Gaussian vectors
Symmetric forms. Let 𝜀 be a standard Gaussian random variableN(0, 𝐼𝑝) in R𝑝 and 𝑆 be a real
symmetric 𝑝 × 𝑝 matrix. Then, we have for any 𝐿 ≥ 0

P

[
𝜀𝑇𝑆𝜀 − Tr(𝑆) >

√︃
8∥𝑆∥2

𝐹
𝐿 ∨ (8 |𝑆 |op 𝐿)

]
≤ 𝑒−𝐿 . (6.9)

Cross products. Let 𝜀, 𝜀′ be two independent standard Gaussian random variableN(0, 𝐼𝑝) in R𝑝

and 𝐴 be any real 𝑝 × 𝑝 matrix. Then, we have for any 𝐿 ≥ 0

P

[
𝜀𝑇 𝐴𝜀′ >

√︃
4∥𝐴∥2

𝐹
𝐿 ∨ (4 |𝐴|op 𝐿)

]
≤ 𝑒−𝐿 . (6.10)

Remarks:
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1. The Inequality (6.9) is equivalent to the following statement: there exists an exponential random
variable 𝜉 with parameter 1 such that

𝜀𝑇𝑆𝜀 − Tr(𝑆) ≤
√︃

8∥𝑆∥2
𝐹
𝜉 ∨ (8 |𝑆 |op 𝜉).

Using this compact formulation can be useful in complex proofs.
2. The Hanson-Wright inequalities remain valid (with worst constants) when 𝜀 has independent

subG(1) entries. For example, in Chapter 1 we have proved such a bound in (1.2), page 5, for a
diagonal matrix 𝑆 = diag(𝑎1, . . . , 𝑎𝑛).

Proof of Theorem 6.6.
Symmetric forms. The proof is based on the classical Chernoff argument. Next lemma provides an
upper-bound on the Laplace transform of a square Gaussian random variable.

Lemma 6.7 Let 𝑍 be a N(0, 1) standard Gaussian random variable. Then, for any |𝑠 | ≤ 1/4, we
have

E
[
exp(𝑠(𝑍2 − 1))

]
≤ 𝑒2𝑠2

.

Proof of Lemma 6.7. Since − log(1 − 𝑥) ≤ 𝑥 + 𝑥2 for |𝑥 | ≤ 1/2, we have

E
[
exp(𝑠(𝑍2 − 1))

]
=

𝑒−𝑠

(1 − 2𝑠)1/2
≤ 𝑒2𝑠2

.

Le proof of Lemma 6.7 is complete. □

Since 𝑆 is symmetric, we can diagonalize it, 𝑆 =
∑𝑝

𝑘=1 𝜆𝑘𝑣𝑘𝑣
𝑇
𝑘

and

𝜀𝑇𝑆𝜀 =

𝑝∑︁
𝑘=1

𝜆𝑘 (𝑣𝑇𝑘 𝜀)
2.

Since the eigenvectors
{
𝑣1, . . . , 𝑣𝑝

}
form an orthonormal basis of R𝑝 , the matrix 𝑉 = [𝑣1, . . . , 𝑣𝑝]

fulfills 𝑉𝑇𝑉 = 𝐼. Hence, 𝑍 = 𝑉𝑇𝜀 follows a N(0, 𝐼) distribution, which means that the random
variables 𝑍𝑘 = 𝑣𝑇𝑘 𝜀, for 𝑘 = 1, . . . , 𝑝 are i.i.d. N(0, 1)-random variables.
Applying Markov inequality, we get for 𝑡 ≥ 0 and |𝑠 | ≤ (4 |𝑆 |op)−1

P
[
𝜀𝑇𝑆𝜀 − Tr(𝑆) > 𝑡

]
≤ 𝑒−𝑠𝑡 E

[
𝑒𝑠 (𝜀

𝑇𝑆𝜀−Tr(𝑆) )
]

≤ 𝑒−𝑠𝑡
𝑝∏
𝑘=1

E
[
exp

(
𝑠𝜆𝑘 (𝑍2

𝑘 − 1)
)]

≤ exp

(
−𝑠𝑡 + 2𝑠2

𝑝∑︁
𝑘=1

𝜆2
𝑘

)
= exp

(
−𝑠𝑡 + 2∥𝑆∥2𝐹 𝑠2

)
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The minimum of 𝑠→ −𝑠𝑡+2∥𝑆∥2
𝐹
𝑠2 over |𝑠 | ≤ (4 |𝑆 |op)−1 is achieved for 𝑠 = 1

4 (𝑡/∥𝑆∥
2
𝐹
)∧(1/|𝑆 |op)

and hence

min
|𝑠 | ≤ (4 |𝑆 |op )−1

(
−𝑠𝑡 + 2∥𝑆∥2𝐹 𝑠2

)
= − 𝑡2

8∥𝑆∥2
𝐹

1{𝑡≤∥𝑆 ∥2𝐹/|𝑆 |op} +
(
∥𝑆∥2

𝐹

8 |𝑆 |2op

− 𝑡

4 |𝑆 |op

)
1{𝑡>∥𝑆 ∥2𝐹/|𝑆 |op}

≤ −1
8

(
𝑡2

∥𝑆∥2
𝐹

∧ 𝑡

|𝑆 |op

)
.

The Bound (6.9) follows.

Cross products. The trick for (6.10) is to notice that

𝜀𝑇 𝐴𝜀′ =

[
𝜀

𝜀′

]𝑇
𝑆

[
𝜀

𝜀′

]
, with 𝑆 =

1
2

[
0 𝐴

𝐴𝑇 0

]
.

Since 𝑆 is symmetric we can apply (6.9). The conclusion follows by checking that Tr(𝑆) = 0,
|𝑆 |op = |𝐴|op /2 and ∥𝑆∥2

𝐹
= ∥𝐴∥2

𝐹
/2. □

6.3.2 Concentration of random Gram matrices

In this section, we derive some bounds on the operator norm |𝐸 |op = 𝜎1 (𝐸) of a random matrix

with entries 𝐸𝑖 𝑗 following an i.i.d. N(0, 𝜎2) distribution. As |𝐸 |op =
√︃��𝐸𝐸𝑇 ��op, we focus on the

random Gram matrix 𝐸𝐸𝑇 .
We first observe that

E
[
𝐸𝑖𝑘𝐸 𝑗𝑘

]
=

{
E[𝐸𝑖𝑘] E[𝐸 𝑗𝑘] = 0 for 𝑖 ≠ 𝑗

E
[
𝐸2
𝑖𝑘

]
= 𝜎2 for 𝑖 = 𝑗 .

Hence, we have E[𝐸𝐸𝑇 ] = 𝑝𝜎2𝐼𝑛. Instead of simply upper-bounding
��𝐸𝐸𝑇 ��op, we will give a more

precise result by bounding the fluctuations of 𝐸𝐸𝑇 around its expectation E[𝐸𝐸𝑇 ] = 𝑝𝜎2𝐼𝑛.

Theorem 6.8 Concentration of 𝐸𝐸𝑇 .
Assume that 𝐸 ∈ R𝑛×𝑝 has i.i.d. entries following a N(0, 𝜎2) distribution. Then, there exists a
random variable 𝜉 with exponential distribution with parameter 1 such that��𝐸𝐸𝑇 − 𝑝𝜎2𝐼𝑛

��
op ≤ 4𝜎2

√︁
𝑝(6𝑛 + 2𝜉) + (48𝑛 + 16𝜉)𝜎2. (6.11)

We can derive from this theorem the following control on |𝐸 |op.

Corollary 6.9 Under the hypotheses of Theorem 6.8, there exists a random variable 𝜉 with expo-
nential distribution with parameter 1 such that

|𝐸 |op ≤ 𝜎
(√
𝑝 + 7

√︁
𝑛 + 𝜉

)
.

Proof of Corollary 6.9.
By the triangular inequality, we have

𝜎1 (𝐸)2 =
��𝐸𝐸𝑇 ��op ≤

��𝑝𝜎2𝐼𝑛
��
op +

��𝐸𝐸𝑇 − 𝑝𝜎2𝐼𝑛
��
op

≤ 𝜎2
(
𝑝 + 4

√︁
𝑝(6𝑛 + 2𝜉) + 48𝑛 + 16𝜉

)
≤ 𝜎2

(√
𝑝 + 7

√︁
𝑛 + 𝜉

)2
.
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The Corollary follows. □

Proof of Theorem 6.8.
Sketch of the proof. Before starting the proof of Theorem 6.8, let us sketch the main lines.
First of all, dividing both sides of (6.11) by 𝜎2, we can assume with no loss of generality that
𝜎2 = 1.
As 𝐸𝐸𝑇 − 𝑝𝐼𝑛 is a symmetric matrix, we have��𝐸𝐸𝑇 − 𝑝𝐼𝑛��op = sup

𝑥∈𝜕𝐵R𝑛 (0,1)
|⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑥, 𝑥⟩|.

For a given 𝑥 ∈ 𝜕𝐵R𝑛 (0, 1), the scalar product ⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑥, 𝑥⟩ is a quadratic form of independent
Gaussian random variables, and hence its random fluctuations can be controlled by Hanson-Wright
inequality (6.9).
Then, we have to handle the supremum of the scalar products ⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑥, 𝑥⟩ over all 𝑥 ∈
𝜕𝐵R𝑛 (0, 1). The supremum of 𝑛 random variables 𝑍1, . . . , 𝑍𝑛 can be handled easily with a union
bound

P

[
max
𝑖=1,...,𝑛

𝑍𝑖 > 𝑡

]
≤

𝑛∑︁
𝑖=1

P[𝑍𝑖 > 𝑡] .

Here, we have a supremum over an infinite (even uncountable) set 𝜕𝐵R𝑛 (0, 1), so we cannot imple-
ment directly such an union bound. Yet, we notice that for two close 𝑥 and 𝑦, the random values
⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑥, 𝑥⟩ and ⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑦, 𝑦⟩ are also close. Hence, the recipe is to discretize the ball
𝜕𝐵R𝑛 (0, 1) and to control the supremum over 𝜕𝐵R𝑛 (0, 1) by a supremum over the discretization of
the ball plus the error made when replacing 𝜕𝐵R𝑛 (0, 1) by its discretization.

The proof then proceeds into three steps: first a discretization of the supremum over 𝜕𝐵R𝑛 (0, 1), then
a concentration bound on the scalar product ⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑥, 𝑥⟩ based on Hanson-Wright inequality
and finally a union bound to conclude.

Step 1: Discretization. Let 𝜕𝐵R𝑛 (0, 1) denote the unit sphere in R𝑛. For any symmetric matrix 𝐴,
the operator norm of 𝐴 is equal to

|𝐴|op = sup
𝑥∈𝜕𝐵R𝑛 (0,1)

|⟨𝐴𝑥, 𝑥⟩|.

As explained above, since 𝜕𝐵R𝑛 (0, 1) is an infinite set, we cannot directly use an union bound in
order to control the fluctuation of the supremum. Instead, we use a discretized version of the above
equality, in order to be able to apply an union bound.
A set N𝜀 ⊂ 𝜕𝐵R𝑛 (0, 1) is called an 𝜀-net of 𝜕𝐵R𝑛 (0, 1), if for any 𝑥 ∈ 𝜕𝐵R𝑛 (0, 1), there exists
𝑦 ∈ N𝜀 such that ∥𝑥 − 𝑦∥ ≤ 𝜀. Next lemma links the operator norm of a matrix to a supremum over
an 𝜀-net.

Lemma 6.10 For any symmetric matrix 𝐴 ∈ R𝑛×𝑛 and any 𝜀-net of 𝜕𝐵R𝑛 (0, 1), we have

|𝐴|op ≤
1

1 − 2𝜀
sup
𝑥∈N𝜀

|⟨𝐴𝑥, 𝑥⟩|. (6.12)

Proof of Lemma 6.10.
Let 𝑥∗ ∈ 𝜕𝐵R𝑛 (0, 1) be such that |𝐴|op = |⟨𝐴𝑥∗, 𝑥∗⟩| and let 𝑦 ∈ N𝜀 fulfilling ∥𝑥∗ − 𝑦∥ ≤ 𝜀.
According to the decomposition

⟨𝐴𝑥∗, 𝑥∗⟩ = ⟨𝐴𝑦, 𝑦⟩ + ⟨𝐴(𝑥∗ − 𝑦), 𝑦⟩ + ⟨𝐴𝑥∗, 𝑥∗ − 𝑦⟩,
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and the triangular inequality, we have

|𝐴|op = |⟨𝐴𝑥∗, 𝑥∗⟩| ≤ |⟨𝐴𝑦, 𝑦⟩| + |⟨𝐴(𝑥∗ − 𝑦), 𝑦⟩| + |⟨𝐴𝑥∗, 𝑥∗ − 𝑦⟩|
≤ sup
𝑦∈N𝜀

|⟨𝐴𝑦, 𝑦⟩| + 2 |𝐴|op 𝜀.

The Bound (6.12) then follows. □

Next lemma provides an upper bound on the cardinality of a minimal 𝜀-net of 𝜕𝐵R𝑛 (0, 1).

Lemma 6.11 For any 𝑛 ∈ N and 𝜀 > 0, there exists an 𝜀-net of 𝜕𝐵R𝑛 (0, 1) with cardinality upper
bounded by

|N𝜀 | ≤
(
1 + 2

𝜀

)𝑛
.

We refer to the Exercise 6.4.2 for a proof of this lemma based on volumetric arguments. Choosing
𝜀 = 1/4, we get the existence of an 1/4-netN1/4 of 𝜕𝐵R𝑛 (0, 1) with cardinality at most 9𝑛 and such
that ��𝐸𝐸𝑇 − 𝑝𝐼𝑛��op ≤ 2 max

𝑥∈N1/4
|⟨(𝐸𝐸𝑇 − 𝑝𝐼𝑛)𝑥, 𝑥⟩| = 2 max

𝑥∈N1/4

��∥𝐸𝑇𝑥∥2 − 𝑝��. (6.13)

Step 2: concentration of the quadratic forms. Let 𝐸:𝑖 denotes the 𝑖th column of 𝐸 . We observe
that 𝑥𝑇𝐸:𝑖 ∼ N(0, 𝑥𝑇𝑥) and that the (𝑥𝑇𝐸:𝑖)𝑖=1,..., 𝑝 are independent since the columns 𝐸:𝑖 are
independent. Hence, since N1/4 ⊂ 𝜕𝐵R𝑛 (0, 1), the coordinates [𝐸𝑇𝑥]𝑖 = 𝐸𝑇:𝑖 𝑥 are i.i.d. N(0, 1),
and the random vector 𝜀𝑥 = 𝐸𝑇𝑥 follows a standard Gaussian distributionN(0, 𝐼𝑝) in R𝑝 . Hanson-
Wright inequality (6.9) with 𝑆 = 𝐼𝑝 and 𝑆 = −𝐼𝑝 ensures that there exist two exponential random
variables 𝜉𝑥 , 𝜉′𝑥 , such that

∥𝐸𝑇𝑥∥2 − 𝑝 ≤
√︁

8𝑝𝜉𝑥 ∨ 8𝜉𝑥 and 𝑝 − ∥𝐸𝑇𝑥∥2 ≤
√︁

8𝑝𝜉′𝑥 ∨ 8𝜉′𝑥 .

Therefore, combining with (6.13), we obtain the concentration bound

��𝐸𝐸𝑇 − 𝑝𝐼𝑛��op ≤ 2

(√︂
8𝑝 max

𝑥∈N1/4
(𝜉𝑥 ∨ 𝜉′𝑥) + 8 max

𝑥∈N1/4
(𝜉𝑥 ∨ 𝜉′𝑥)

)
. (6.14)

Step 3: Union bound. An union bound gives

P

[
max
𝑥∈N1/4

(𝜉𝑥 ∨ 𝜉′𝑥) > log(2|N1/4 |) + 𝑡
]
≤

∑︁
𝑥∈N1/4

(
P

[
𝜉𝑥 > log(2|N1/4 |) + 𝑡

]
+ P

[
𝜉′𝑥 > log(2|N1/4 |) + 𝑡

] )
≤ 2|N1/4 | exp(− log(2|N1/4 |) − 𝑡) = 𝑒−𝑡 ,

so there exists an exponential random variable 𝜉 with parameter 1 such that

max
𝑥∈N1/4

(𝜉𝑥 ∨ 𝜉′𝑥) ≤ log(2|N1/4 |) + 𝜉 ≤ 3𝑛 + 𝜉.

Combining this bound with (6.14), we obtain (6.11). The proof of Theorem 6.8 is complete. □

6.4 Exercices

6.4.1 Generalized Weyl inequalities

In this exercise, you will prove the Theorem 6.2.
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1. Check that there exists two linear spans 𝑆𝑖 ⊂ R𝑝 and 𝑆 𝑗 ⊂ R𝑝 of codimension 𝑖 − 1 and 𝑗 − 1
such that

max
𝑥∈𝑆𝑖\{0}

∥𝐴𝑥∥
∥𝑥∥ ≤ 𝜎𝑖 (𝐴) and max

𝑥∈𝑆 𝑗\{0}

∥(𝐵 − 𝐴)𝑥∥
∥𝑥∥ ≤ 𝜎𝑗 (𝐵 − 𝐴).

2. Check that the codimension of 𝑆𝑖 ∩ 𝑆 𝑗 is not larger than 𝑖 + 𝑗 − 2.
3. Prove that for any 𝑆 with dimension 𝑖 + 𝑗 − 1, we have 𝑆 ∩ 𝑆𝑖 ∩ 𝑆 𝑗 ≠ {0}.
4. Conclude with the Max–Min formula (5.2).

6.4.2 Cardinality of an 𝜀-net

In this exercise, we prove the Lemma 6.11. Let us define N𝜀 as follows. Start from any 𝑥1 ∈
𝜕𝐵R𝑛 (0, 1), and for 𝑘 = 2, 3, . . . choose recursively any 𝑥𝑘 ∈ 𝜕𝐵R𝑛 (0, 1) such that 𝑥𝑘 ∉

∪ 𝑗=1,...,𝑘−1𝐵R𝑛 (𝑥 𝑗 , 𝜀). When no such 𝑥𝑘 remains, stop and define N𝜀 = {𝑥1, 𝑥2, . . .}.
1. Assume that the algorithm has been able to perform 𝑘 steps (without stopping). Prove that

i) the balls
{
𝐵R𝑛 (𝑥 𝑗 , 𝜀/2) : 𝑗 = 1, . . . , 𝑘

}
are disjoint;

ii)
⋃
𝑗=1,...,𝑘 𝐵R𝑛 (𝑥 𝑗 , 𝜀/2) ⊂ 𝐵R𝑛 (0, 1 + 𝜀/2).

2. By comparing the volume of the balls 𝐵R𝑛 (𝑥, 𝜀/2) and 𝐵R𝑛 (0, 1 + 𝜀/2), prove that

𝑘 ≤
(
1 + 2

𝜀

)𝑛
.

3. Prove that N𝜀 is an 𝜀-net of 𝜕𝐵R𝑛 (0, 1) and that its cardinality is upper-bounded by
(
1 + 2

𝜀

)𝑛
.

6.4.3 Limit distribution of singular values of random matrices

As the singular values of 𝐸 and 𝐸𝑇 are the same, we can assume with no loss of generality that
𝑝 ≥ 𝑛. We consider the case where the entries 𝐸𝑖 𝑗 are i.i.d., centered, with variance 1. When 𝑛, 𝑝
go to infinity with the limiting ratio 𝑛/𝑝 → 𝛽 ≤ 1, the empirical distribution

1
𝑛

𝑛∑︁
𝑘=1

𝛿𝑝−1/2𝜎𝑘 (𝐸 ) (𝑥)

of the singular values of the matrix 𝑝−1/2𝐸 ∈ R𝑛×𝑝 converges almost surely to the the Marchenko-
Pastur distribution [?], which has a density on [1 −

√
𝛽, 1 +

√
𝛽] given by

𝑓𝛽 (𝑥) =
1
𝜋𝛽𝑥

√︂(
𝑥2 −

(
1 −

√︁
𝛽
)2

) ( (
1 +

√︁
𝛽
)2 − 𝑥2

)
. (6.15)

This classical result of random matrix theory is illustrated in Figure 6.1.
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Figure 6.1: Plot of the histogram of the singular values of 𝑝−1/2𝐸 and of the Marchenko-Pastur
distribution (6.15) for 𝛽 = 1/2 (in red).

You can reproduce this plot with the following R-code.
The first step is to download the R software at https://cran.r-project.org.
Then enter the next lines of R code.
# Generate the matrix E

n <- 1000

beta <- 1/2

p <- n/beta

E <- matrix(rnorm(n*p),ncol=n)

# Plot histogram of the singular values

hist(svd(E,nu=0,nv=0)$d/sqrt(p),freq=FALSE,xlab="singular values")

# Superimpose the Marchenko-Pastur distribution

x <- 1-sqrt(beta)+(0:p)/p*2*sqrt(beta)

f <- sqrt((x**2-(1-sqrt(beta))**2)*((1+sqrt(beta))**2-x**2))/(pi*beta*x)

points(x,f,type="l",col=2,lwd=3)



Chapter 7

Principal Component Analysis

In many cases, we have some observations 𝑋 (1) , . . . , 𝑋 (𝑛) which are in a space R𝑝 of high-
dimension 𝑝. Dealing with high-dimensional observations is an issue for two reasons. First, high-
dimensional data come with a high level of fluctuations (this phenomenon is known as the curse
of dimensionality), so classical estimation procedures fail in this context. Second, numerical com-
puting with high-dimensional data is very resource intensive. A solution to bypass these issues is
to perform dimension reduction. The goal of dimension reduction is to represent data in a lower
dimensional space, with a minimum of distorsion. The most simple dimension reduction technique
is the Principal Component Analysis (PCA). This technique, which is the subject of this chapter,
is one of the most widely used method in data analysis. As we will see, the Principal Component
Analysis (PCA) is tightly linked to the Singular Value Decomposition (SVD) introduced in Chapter
5.

7.1 Principal Component Analysis

7.1.1 Finding the best low dimensional linear representation of data

The principle of Principal Component Analysis (PCA) is to seek for a linear span 𝑉𝑑 in R𝑝 , with
a prescribed dimension 𝑑 such that the data point 𝑋 (1) , . . . , 𝑋 (𝑛) ∈ R𝑝 are as close as possible to
their projection on 𝑉𝑑 .

For data points 𝑋 (1) , . . . , 𝑋 (𝑛) ∈ R𝑝 and any dimension 𝑑 ≤
𝑝, the PCA computes the linear span 𝑉𝑑 in R𝑝 minimizing

𝑉𝑑 ∈ argmin
𝑉 :dim(𝑉 )≤𝑑

𝑛∑︁
𝑖=1

∥𝑋 (𝑖) − Proj𝑉 𝑋
(𝑖) ∥2, (7.1)

where the minimum is over all the subspaces 𝑉 ⊂ R𝑝 with
dimension at most 𝑑 and Proj𝑉 is the orthogonal projection
matrix onto the linear span 𝑉 . -1.0 -0.5  0.0  0.5  1.0
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𝑉2 in dimension 𝑝 = 3.

Let us stack the data 𝑋 (1) , . . . , 𝑋 (𝑛) into a 𝑛 × 𝑝 matrix

X =
©­­«
(𝑋 (1) )𝑇

...

(𝑋 (𝑛) )𝑇

ª®®¬ ∈ R𝑛×𝑝 ,
and let us denote by X =

∑𝑟
𝑘=1 𝜎𝑘𝑢𝑘𝑣

𝑇
𝑘

a SVD of X with the usual convention 𝜎1 ≥ 𝜎2 ≥ . . . ≥
𝜎𝑟 > 0.

79
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Theorem 7.1 PCA algorithm.
The solution to (7.1) is the linear span 𝑉𝑑 = span {𝑣1, . . . , 𝑣𝑑}.
In addition, the coordinates of Proj

𝑉𝑑
𝑋 (𝑖) in the orthonormal basis (𝑣1, . . . , 𝑣𝑑) of 𝑉𝑑 are given

by (𝑐1 (𝑖), . . . , 𝑐𝑑 (𝑖)), where 𝑐𝑘 (𝑖) denotes the 𝑖-th entry of the vector 𝑐𝑘 := 𝜎𝑘𝑢𝑘 ∈ R𝑛.

Figure 7.1: The data point 𝑋 (𝑖) projected on 𝑉2, represented in the axes 𝑣1, 𝑣2.

Comments.
1. We observe that performing a PCA only amounts to compute the 𝑑 first terms of the SVD of X.
2. The projection Proj

𝑉𝑑
𝑋 (𝑖) ∈ R𝑝 lies in 𝑉𝑑 , but it is still a vector in R𝑝 , hence with 𝑝 co-

ordinates. In order to handle a vector with only 𝑑 coordinates, we must work with the 𝑑-
tuple (𝑐1 (𝑖), . . . , 𝑐𝑑 (𝑖)) ∈ R𝑑 of the coordinates of the projection on the orthonormal basis
{𝑣1, . . . , 𝑣𝑑}.

3. Since 𝑉𝑑 is a linear span and not an affine span, it is highly recommended to first center the data
points

𝑋 (𝑖) = 𝑋 (𝑖) − 1
𝑛

𝑛∑︁
𝑗=1

𝑋 ( 𝑗 )

and then proceed with a PCA on the 𝑋 (1) , . . . , 𝑋 (𝑛) .

Terminology: The right-singular vectors 𝑣1, . . . , 𝑣𝑟 are called the principal axes. The vectors
𝑐𝑘 = 𝜎𝑘𝑢𝑘 for 𝑘 = 1, . . . , 𝑟 are called the principal components. As X𝑣𝑘 = 𝜎𝑘𝑢𝑘 , the principal
component 𝑐𝑘 is obtained as the image of 𝑣𝑘 by the matrix X. We emphasize that the principal axes
are orthonormal and the principal components are orthogonal.

Proof of Theorem 7.1. To start with, we observe that

𝑛∑︁
𝑖=1

∥𝑋 (𝑖) − Proj𝑉𝑋
(𝑖) ∥2 = ∥X − X Proj𝑉 ∥2𝐹 .

For any linear span 𝑉 of dimension 𝑑, the rank of the matrix X Proj𝑉 is not larger than 𝑑, so accord-
ing to Theorem 5.9 in Chapter 5, page 65,

𝑛∑︁
𝑖=1

∥𝑋 (𝑖) − Proj𝑉𝑋
(𝑖) ∥2 = ∥X − X Proj𝑉 ∥2𝐹 ≥ min

rank(𝐵)≤𝑑
∥X − 𝐵∥2𝐹 =

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘 . (7.2)
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Furthermore, for 𝑉𝑑 = span {𝑣1, . . . , 𝑣𝑑}, we have

X Proj
𝑉𝑑

=

𝑟∑︁
𝑘=1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘

𝑑∑︁
𝑗=1

𝑣 𝑗𝑣
𝑇
𝑗 =

𝑑∑︁
𝑘=1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘 .

So

∥X − X Proj
𝑉𝑑
∥2𝐹 =




 𝑟∑︁
𝑘=𝑑+1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘




2

𝐹
=

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘 . (7.3)

Comparing (7.2) and (7.3), we find that 𝑉𝑑 = span {𝑣1, . . . , 𝑣𝑑} is solution to (7.1).

In addition, the coordinate of Proj
𝑉𝑑
𝑋 (𝑖) over 𝑣𝑘 is obtained by taking the scalar product between

𝑋 (𝑖) and 𝑣𝑘 ,
⟨𝑋 (𝑖) , 𝑣𝑘⟩ = ⟨X𝑇𝑒𝑖 , 𝑣𝑘⟩ = ⟨𝑒𝑖 ,X𝑣𝑘⟩ = 𝜎𝑘 ⟨𝑒𝑖 , 𝑢𝑘⟩,

where we used for the last equality that X𝑣𝑘 = 𝜎𝑘𝑢𝑘 . Hence, the coordinates of Proj
𝑉𝑑
𝑋 (𝑖) in the

orthonormal basis (𝑣1, . . . , 𝑣𝑑) of 𝑉𝑑 are given by (𝑐1 (𝑖), . . . , 𝑐𝑑 (𝑖)), where 𝑐𝑘 := 𝜎𝑘𝑢𝑘 . □.

7.1.2 Illustration

PCA is a popular and powerful dimension reduction technique. Let us illustrate PCA with a visual
example based on the Mixed National Institute of Standards and Technology (MNIST) data set [?],
which gathers 1100 scans of each digit. Each scan is a 16 × 16 image, which can be encoded as a
vector in R256. The Figure 7.2 illustrates the compressed images, when they are projected on the
linear span 𝑉10 output by PCA with 𝑑 = 10.

Let us describe this example with more details. Let us focus on a single digit, say 8. The preliminary
step is to center each image 𝑋 (1) , . . . , 𝑋 (𝑛) ∈ R256 of the digit 8 according to

𝑋 (𝑖) = 𝑋 (𝑖) − 1
𝑛

𝑛∑︁
𝑗=1

𝑋 ( 𝑗 ) .

Then, we proceed with a PCA on the matrix

X̃ =
©­­«
(𝑋 (1) )𝑇

...

(𝑋 (𝑛) )𝑇

ª®®¬ =

𝑟∑︁
𝑘=1

𝜎̃𝑘 𝑢̃𝑘 𝑣̃
𝑇
𝑘 ,

by computing 𝑉10 = span {𝑣̃1, . . . 𝑣̃10}. The vectors Proj
𝑉10
(𝑋 (1) ), . . . , Proj

𝑉10
(𝑋 (𝑛) ) ∈ R256 give

the best approximation of X̃(1) , . . . , X̃(𝑛) by a projection on a linear span of dimension 10. To
obtain the final compressed images, we de-center the images

compressed(𝑋 (𝑖) ) = Proj
𝑉10
(𝑋 (𝑖) ) + 1

𝑛

𝑛∑︁
𝑗=1

𝑋 ( 𝑗 ) , 𝑖 = 1, . . . , 𝑛. (7.4)

These compressed images, together with the original images are plotted in Figure 7.2. While we
observe a loss in the compression, the digit can still be identified. The benefit of the compression is
that each compressed image is now described with only 10 parameters.

We emphasize that this example is for visual illustration only. In practice, there are some more
powerful algorithms for image compression based on discrete Fourier or wavelets transforms (jpeg,
jpeg2000, etc).
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PCA in action

original image original image original image original image

projected image projected image projected image projected image

Figure 7.2: Projection on 𝑉10 of some scans of the digit 8.

The Mixed National Institute of Standards and Technology (MNIST) data set [?] gathers 1100
scans of each digit. Each scan is a 16 × 16 image that is encoded by a vector in R256. The above
pictures represent the projections of four images onto the space 𝑉10, computed according to (7.4)
from the 1100 scans of the digit 8 in the MNIST database. The original images are displayed in the
first row, with their projection onto 𝑉10 in the second row.

7.2 Interpreting PCA

Formulas for projection

Let us denote by 𝑍 the projected data: 𝑍 (𝑖) = Proj
𝑉𝑑
𝑋 (𝑖) , for 𝑖 = 1, . . . , 𝑛. We have seen that

𝑍
(𝑖)
𝑎 =

𝑑∑︁
𝑘=1

𝑐𝑘 (𝑖)𝑣𝑘 (𝑎) = ⟨𝑐(𝑖), 𝑣(𝑎)⟩,

where 𝑐(𝑖) = (𝑐1 (𝑖), . . . , 𝑐𝑑 (𝑖)) and 𝑣(𝑎) = (𝑣1 (𝑎), . . . , 𝑣𝑑 (𝑎)).

Let us denote by 𝑋𝑎 = (𝑋 (1)𝑎 , . . . , 𝑋
(𝑛)
𝑎 ) ∈ R𝑛 the vector gathering the observations for the vari-

able 𝑎. Similarly as for the individual points 𝑋 (1) , . . . , 𝑋 (𝑛) , we may wish to project the variables
𝑋1, . . . , 𝑋𝑝 onto a linear span of dimension 𝑑. To do so, we only need to replace the matrix X by its
transpose

X𝑇 =
∑︁
𝑘

𝜎𝑘𝑣𝑘𝑢
𝑇
𝑘 ,

and apply PCA to X𝑇 . Theorem 7.1 ensures that the best possible approximation space is 𝑈𝑑 =

span {𝑢1, . . . , 𝑢𝑑} and

Proj
𝑈𝑑
𝑋𝑎 =

𝑑∑︁
𝑘=1

𝜎𝑘𝑣𝑘 (𝑎)𝑢𝑘 =
𝑑∑︁
𝑘=1

𝑣𝑘 (𝑎)𝑐𝑘 .
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Hence, 𝑣(𝑎) represents the coordinates of Proj
𝑈𝑑
𝑋𝑎 in the orthogonal (but not orthonormal!) basis

(𝑐1, . . . , 𝑐𝑑) of𝑈𝑑 .

PCA can be performed for two different purposes: reducing the dimension before further statistical
analysis (as with the MNIST data set), or visualizing the data (as in the next heptathlon example).

Dimension reduction

When the goal is to reduce the dimension, then emerges the question of choosing 𝑑. From the proof
of Theorem 7.1, we get the following measure of the quality of approximation

𝑛∑︁
𝑖=1

∥𝑋 (𝑖) − Proj
𝑉𝑑
𝑋 (𝑖) ∥2 = ∥X − X Proj

𝑉𝑑
∥2𝐹 =

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘 .

Hence, in order to evaluate the fraction of variance not explained by the projection on the 𝑑 first
principal axes, we only have to look at the ratio

∥X − X Proj
𝑉𝑑
∥2
𝐹

∥X∥2
𝐹

=

∑𝑟
𝑘=𝑑+1 𝜎

2
𝑘∑𝑟

𝑘=1 𝜎
2
𝑘

= 1 −
∑𝑑
𝑘=1 𝜎

2
𝑘∑𝑟

𝑘=1 𝜎
2
𝑘

.

Accordingly, it is classical to plot the square singular values 𝜎2
1 ≥ 𝜎

2
2 , . . . and look for an ”elbow”

in the plot. We then choose 𝑑 corresponding to this elbow: the fraction of unexplained variance
decreases fast before this elbow and more slowly after it. In the Section 7.3, we provide some
theoretical choices of 𝑑 when the signal can be decomposed as a signal part and a Gaussian noise
part.

Data visualization

It is hard to visualize data points in a high-dimensional space. PCA is frequently used for this
purpose. When the goal is to visualize data points, we choose 𝑑 = 2 (possibly 𝑑 = 3) and we
represent the cloud of points 𝑋 (1) , . . . , 𝑋 (𝑛) , by their projection on 𝑉2. More precisely, for 𝑖 =

1, . . . , 𝑛, we plot the vector 𝑐(𝑖) of coordinates of 𝑍 (𝑖) = Proj
𝑉2
𝑋 (𝑖) on the orthonormal basis

{𝑣1, 𝑣2} of 𝑉2. We can then observe the repartition of the data points: do we see some ”clusters” or
some ”outliers”, or some other patterns?
It is also important to compare the norm of 𝑍 (𝑖) and the norm of 𝑋 (𝑖) , in order to check if the point
𝑖 is well represented by its projection on 𝑉2. If the ratio ∥𝑐(𝑖)∥/∥𝑋 (𝑖) ∥ is smaller than, say 0.8, then
the point 𝑖 is not well represented by 𝑐(𝑖).
We can also visualize the variables by plotting their projection on𝑈2. It is interesting to note that

⟨Proj
𝑈2
𝑋𝑎, Proj

𝑈2
𝑋𝑏⟩ =

2∑︁
𝑘=1

𝜎2
𝑘𝑣𝑘 (𝑎)𝑣𝑘 (𝑏),

so we can plot the vectors [𝜎𝑘𝑣𝑘 (𝑎)]𝑘=1,2 and [𝜎𝑘𝑣𝑘 (𝑏)]𝑘=1,2 in order to visualize the correlations
between the variables 𝑎 and 𝑏. Again, it is good to check if the ratio ∥Proj

𝑈2
𝑋𝑎∥/∥𝑋𝑎∥ is close to

one, in order to trust or not the visualization of the variable 𝑎.
A popular plot is the so called biplot of 𝑐 and 𝑣, where we plot simultaneous the 𝑐(𝑖) and 𝑣(𝑎). In
this case 𝑐(𝑖) represents the projection of the data point 𝑖 and 𝑣(𝑎) represents the projection of the
variable 𝑎. We emphasize that there is a distorsion in the representation of the variable 𝑎, as 𝑣(𝑎)
corresponds to the coordinates of Proj

𝑈2
𝑋𝑎 in the orthogonal, but not orthonormal basis {𝑐1, 𝑐2} of

𝑈2. We can observe on a biplot the correlation between individuals and variables. As the projection
𝑍 (𝑖) = Proj

𝑉2
𝑋 (𝑖) of 𝑋 (𝑖) on 𝑉2 is given by 𝑍 (𝑖)𝑎 = ⟨𝑐(𝑖), 𝑣(𝑎)⟩, we can visualize on the biplot the

size of the entry 𝑍 (𝑖)𝑎 by looking at the scalar product ⟨𝑐(𝑖), 𝑣(𝑎)⟩. If 𝑐(𝑖) and 𝑣(𝑎) are well aligned,
then the entry 𝑍 (𝑖)𝑎 will be large, while if 𝑐(𝑖) and 𝑣(𝑎) are orthogonal, then the entry 𝑍 (𝑖)𝑎 will be
small.
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Example: heptathlon data set

Let us illustrate PCA on a second example. The R-code for analyzing this example is given in
Section 7.4.2.

The results of the heptathlon event at the 1988 Seoul Olympic Games are displayed in the table
below.

hurdles highjump shot run200m longjump javelin run800m
Joyner-Kersee (USA) 12.69 1.86 15.80 22.56 7.27 45.66 128.51
John (GDR) 12.85 1.80 16.23 23.65 6.71 42.56 126.12
Behmer (GDR) 13.20 1.83 14.20 23.10 6.68 44.54 124.20
Sablovskaite (URS) 13.61 1.80 15.23 23.92 6.25 42.78 132.24
Choubenkova (URS) 13.51 1.74 14.76 23.93 6.32 47.46 127.90
Schulz (GDR) 13.75 1.83 13.50 24.65 6.33 42.82 125.79
Fleming (AUS) 13.38 1.80 12.88 23.59 6.37 40.28 132.54
Greiner (USA) 13.55 1.80 14.13 24.48 6.47 38.00 133.65
Lajbnerova (CZE) 13.63 1.83 14.28 24.86 6.11 42.20 136.05
Bouraga (URS) 13.25 1.77 12.62 23.59 6.28 39.06 134.74
Wijnsma (HOL) 13.75 1.86 13.01 25.03 6.34 37.86 131.49
Dimitrova (BUL) 13.24 1.80 12.88 23.59 6.37 40.28 132.54
Scheider (SWI) 13.85 1.86 11.58 24.87 6.05 47.50 134.93
Braun (FRG) 13.71 1.83 13.16 24.78 6.12 44.58 142.82
Ruotsalainen (FIN) 13.79 1.80 12.32 24.61 6.08 45.44 137.06
Yuping (CHN) 13.93 1.86 14.21 25.00 6.40 38.60 146.67
Hagger (GB) 13.47 1.80 12.75 25.47 6.34 35.76 138.48
Brown (USA) 14.07 1.83 12.69 24.83 6.13 44.34 146.43
Mulliner (GB) 14.39 1.71 12.68 24.92 6.10 37.76 138.02
Hautenauve (BEL) 14.04 1.77 11.81 25.61 5.99 35.68 133.90
Kytola (FIN) 14.31 1.77 11.66 25.69 5.75 39.48 133.35
Geremias (BRA) 14.23 1.71 12.95 25.50 5.50 39.64 144.02
Hui-Ing (TAI) 14.85 1.68 10.00 25.23 5.47 39.14 137.30
Jeong-Mi (KOR) 14.53 1.71 10.83 26.61 5.50 39.26 139.17
Launa (PNG) 16.42 1.50 11.78 26.16 4.88 46.38 163.43

This table provides the scores of 𝑛 = 25 athletes at 𝑝 = 7 disciplines
1. hurdles: scores 100m hurdles.
2. highjump: scores high jump.
3. shot: scores shot.
4. run200m: scores 200m race.
5. longjump: scores long jump.
6. javelin: scores javelin.
7. run800m: scores 800m race.
The athletes are ranked according to their final combined score (Joyner-Kersee won the gold medal).

Here, the scores of the different disciplines are incommensurables. In order to get scores in the same
scale, the data points are first centered

𝑋𝑖𝑎 ← 𝑋𝑖𝑎 −
1
𝑛

𝑛∑︁
𝑗=1

𝑋 𝑗𝑎,

and then normalized to have unit norm

𝑋𝑎 ← 𝑋𝑎/∥𝑋𝑎∥.
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To start with, we can plot the square singular values 𝜎2
1 ≥ . . . ≥ 𝜎

2
𝑟 , and check that we will catch

most of the variance with 𝑑 = 2.
acp
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Figure 7.3: Plot of the square singular values 𝜎2
1 , . . . , 𝜎

2
𝑟

Then, we can check if the variables are well approximated by plotting Proj
𝑈2
𝑋𝑎/∥𝑋𝑎∥. These vec-

tors are close to the unit circle, so each discipline is well represented by the projection on𝑈2.
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Figure 7.4: Plot of the vectors Proj
𝑈2
𝑋𝑎/∥𝑋𝑎∥ relative to the unit circle.

Finally, we draw the biplot of the athletes (in black) and the disciplines (in red).
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Figure 7.5: Biplot of the athletes (in black) and the disciplines (in red). Each athlete is represented
with is final rank.

You can observe that the disciplines where you should have the smallest possible score (run200m,
hurdles, run800m) are in the opposite side of the disciplines where you should have the largest
possible score (highjump, longjump, shot). The javelin discipline looks quite orthogonal to all the
others. This may be due to the strong technical nature of this discipline. You can also observe that
the discipline requiring powerful qualities (run200m and shot) are well aligned, as well as those
corresponding to more lanky athletes (highjump, longjump, hurdles, run800m).

7.3 Theory for PCA

7.3.1 Recovering a low dimensional signal

PCA makes sense if the data points 𝑋 (1) , . . . , 𝑋 (𝑛) lie in the vicinity of a 𝑑-dimensional space. In
many cases the data points 𝑋 (𝑖) = 𝑏 (𝑖) + 𝜀 (𝑖) can be decomposed as a component 𝑏 (𝑖) lying in a
low dimensional space plus some fluctuation 𝜀 (𝑖) . The existence of a low-dimensional component
𝑏 (𝑖) is related to the physical nature of the data. For example, pictures can be represented in lower
dimensions (compression) due to the geometric structures in images; social or economical variables
can be represented in low-dimension due to the strong social and economical structures relating the
different variables; biological data reflect the biological networks producing them, etc. Most of the
time, the low-dimensional component 𝑏 (𝑖) is the signal of interest, and the goal is to recover it.

The decomposition 𝑋 (𝑖) = 𝑏 (𝑖) + 𝜀 (𝑖) for 𝑖 = 1, . . . , 𝑛, gives rise to the decomposition X = 𝐵 + 𝐸 ,
where the 𝑖-th rows of 𝐵 and 𝐸 are given by (𝑏 (𝑖) )𝑇 and (𝜀 (𝑖) )𝑇 , respectively. Let us consider the
SVD of X and 𝐵

X =

𝑟̂∑︁
𝑘=1

𝜎̂𝑘 𝑢̂𝑘 𝑣̂
𝑇
𝑘 , and 𝐵 =

𝑟∑︁
𝑘=1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘 .

We have set some ”hats” on the SVD of X in order to emphasize that these quantities can be com-
puted from the data X, while the matrix 𝐵 and its SVD are not observed. We estimate 𝐵 by the
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projection of the data X on the 𝑑 first principal axes

𝐵𝑑 = X Proj
𝑉𝑑

=

𝑑∑︁
𝑘=1

𝜎̂𝑘 𝑢̂𝑘 𝑣̂
𝑇
𝑘 . (7.5)

Next theorem provides a bound on the estimation error ∥𝐵𝑑 − 𝐵∥2𝐹 in terms of the operator norm
|𝐸 |op of the fluctuations and in terms of the best possible approximation error of 𝐵 by a matrix of
rank 𝑑 (see Theorem 5.9, page 65)

min
𝑀:rank(𝑀 )≤𝑑

∥𝐵 − 𝑀 ∥2𝐹 =

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘 .

Theorem 7.2 Recovering low rank component.
The estimator 𝐵𝑑 fulfills the error bound

∥𝐵𝑑 − 𝐵∥2𝐹 ≤ 9

(
𝑑 |𝐸 |2op +

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘

)
. (7.6)

Let us illustrate this result, by considering the case where the entries 𝐸𝑖 𝑗 of the 𝑛 × 𝑝 matrix 𝐸
are i.i.d. Gaussian with N(0, 𝜎2) distribution. Then, we have the next result which directly follows
from Theorem 7.2 and Corollary 6.9, page 74.

Corollary 7.3 Bound for Gaussian noise.
For any 𝐿 > 0, when the entries of the matrix 𝐸 ∈ R𝑛×𝑝 are i.i.d. Gaussian with N(0, 𝜎2)
distribution, we have with probability at least 1 − 𝑒−𝐿

∥𝐵𝑑 − 𝐵∥2𝐹 ≤ 9𝑑
(√
𝑝 + 7

√
𝑛 + 𝐿

)2
𝜎2 + 9

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘 .

We observe that in the setting of Corollary 7.3, we have

E
[
∥X − 𝐵∥2𝐹

]
= E

[
∥𝐸 ∥2𝐹

]
= 𝑛𝑝𝜎2,

which is much larger than 𝑑 (𝑝 + 𝑛)𝜎2 if 𝑑 ≪ 𝑛 ∧ 𝑝. So, when 𝐵 is approximately of rank 𝑑 with
𝑑 ≪ 𝑛 ∧ 𝑝, there is a substantial gain in using 𝐵𝑑 instead of X in order to estimate 𝐵.

Proof of Theorem 7.2. Before starting the proof, we remind the reader two useful inequalities.

Lemma 7.4 For any 𝑎 > 0, and 𝑥, 𝑦 ∈ R𝑛, we have

2⟨𝑥, 𝑦⟩ ≤ 𝑎∥𝑥∥2 + 𝑎−1∥𝑦∥2 , (7.7)

∥𝑥 + 𝑦∥2 ≤ (1 + 𝑎)∥𝑥∥2 + (1 + 𝑎−1)∥𝑦∥2. (7.8)

The Inequality (7.8) immediately follows from (7.7) and the Inequality (7.7) follows from

𝑎∥𝑥∥2 + 𝑎−1∥𝑦∥2 − 2⟨𝑥, 𝑦⟩ = ∥𝑎1/2𝑥 − 𝑎−1/2𝑦∥2 ≥ 0.

Let us prove now (7.6). We denote by

𝐵𝑑 =

𝑑∑︁
𝑘=1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘 ,
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the best approximation of 𝐵 by a matrix of rank 𝑑 (see Theorem 5.9, page 65). As 𝐵𝑑 is the best
approximation of X by a matrix of rank 𝑑, we have

∥X − 𝐵𝑑 ∥2𝐹 ≤ ∥X − 𝐵𝑑 ∥2𝐹 .

Using the decomposition X = 𝐵+𝐸 and expanding the squares, the previous inequality is equivalent
to

∥𝐵 − 𝐵𝑑 ∥2𝐹 ≤ ∥𝐵 − 𝐵𝑑 ∥2𝐹 + 2⟨𝐸, 𝐵𝑑 − 𝐵𝑑⟩𝐹 . (7.9)

We observe that rank(𝐵𝑑 − 𝐵𝑑) ≤ 2𝑑, so according to Lemma 5.8, we can upper-bound the scalar
product ⟨𝐸, 𝐵𝑑 − 𝐵𝑑⟩𝐹 in terms of the (2, 2𝑑)-Ky-Fan norm

2⟨𝐸, 𝐵𝑑 − 𝐵𝑑⟩𝐹 ≤ 2∥𝐸 ∥ (2,2𝑑) ∥𝐵𝑑 − 𝐵𝑑 ∥ (2,2𝑑) = 2∥𝐸 ∥ (2,2𝑑) ∥𝐵𝑑 − 𝐵𝑑 ∥𝐹 .

Applying Inequality (7.7) with 𝑎 = 5/2, then Inequality (7.8) with 𝑎 = 1/9, and finally ∥𝐸 ∥2(2,2𝑑) ≤
2𝑑 |𝐸 |op, we get

2⟨𝐸, 𝐵𝑑 − 𝐵𝑑⟩𝐹 ≤
5
2
∥𝐸 ∥2(2,2𝑑) +

2
5
∥𝐵𝑑 − 𝐵𝑑 ∥2𝐹

≤ 5
2
∥𝐸 ∥2(2,2𝑑) +

2
5

(
(10/9)∥𝐵𝑑 − 𝐵∥2𝐹 + 10∥𝐵 − 𝐵𝑑 ∥2𝐹

)
≤ 5𝑑 |𝐸 |2op +

4
9
∥𝐵𝑑 − 𝐵∥2𝐹 + 4∥𝐵 − 𝐵𝑑 ∥2𝐹 .

Combining this last inequality with (7.9) and

∥𝐵 − 𝐵𝑑 ∥2𝐹 =




 𝑟∑︁
𝑘=𝑑+1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘




2

𝐹
=

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘 ,

we get (7.6). □

7.3.2 Dimension selection

The Bound (7.6) can be used in order to propose a choice for 𝑑 with theoretical garanties. Indeed,
let us notice that the Bound (7.6) can be written as

∥𝐵𝑑 − 𝐵∥2𝐹 ≤ 9

(
𝑑∑︁
𝑘=1

(|𝐸 |2op − 𝜎2
𝑘 ) +

𝑟∑︁
𝑘=1

𝜎2
𝑘

)
. (7.10)

As the second term is independent of 𝑑, the integer 𝑑 minimizing the right-hand side of (7.10) is
the integer 𝑑 minimizing the first sum. As 𝜎2

1 ≥ 𝜎
2
2 ≥ . . ., the first sum is decreasing as long as

𝜎2
𝑑
≥ |𝐸 |2op and then it increases. Hence in order to minimize the right-hand side of (7.6), the best

is to choose the dimension
𝑑∗ := max

{
𝑘 : 𝜎𝑘 ≥ |𝐸 |op

}
. (7.11)

While the operator norm |𝐸 |op can be evaluated in some cases, for example with Corollary 6.9 page
74, the singular values 𝜎1 ≥ 𝜎2 ≥ . . . of 𝐵 are not observed, so we cannot directly use (7.11). Yet,
combining Weyl Inequality (6.1), page 69, with the Bound (7.10), we get

∥𝐵𝑑 − 𝐵∥2𝐹 ≤ 9

(
𝑑∑︁
𝑘=1

(
|𝐸 |2op − (𝜎̂𝑘 − |𝐸 |op)2+

)
+

𝑟∑︁
𝑘=1

𝜎2
𝑘

)
,

with 𝜎̂1 ≥ 𝜎̂2 ≥ . . . the singular values of X. Following the same reasoning as before, with 𝜎𝑘
replaced by (𝜎̂𝑘 − |𝐸 |op)+, we get the next selection rule for 𝑑.
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Corollary 7.5 Dimension selection.
For 𝑑 = max

{
𝑘 : 𝜎̂𝑘 ≥ 2 |𝐸 |op

}
, we have

∥𝐵
𝑑
− 𝐵∥2𝐹 ≤ 92 min

𝑑≥0

{
𝑑 |𝐸 |2op +

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘

}
.

As before, in the case where the entries 𝐸𝑖 𝑗 of the matrix 𝐸 are i.i.d. Gaussian with N(0, 𝜎2)
distribution, we can set 𝑑 = max

{
𝑘 : 𝜎̂𝑘 ≥ 2

(√
𝑝 + 7

√
2𝑛

)
𝜎

}
and then get with probability at

least 1 − 𝑒−𝑛

∥𝐵𝑑 − 𝐵∥2𝐹 ≤ 92 min
𝑑≥0

{
𝑑

(√
𝑝 + 7

√
2𝑛

)2
𝜎2 +

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘

}
.

Proof of Corollary 7.5. According to Weyl Inequality (6.1) and the definition of 𝑑, we have

𝜎
𝑑
≥ 𝜎̂

𝑑
− |𝐸 |op ≥ |𝐸 |op ,

so 𝑑 ≤ 𝑑∗, with 𝑑∗ defined by (7.11). In addition, Weyl Inequality (6.1) and the definition of 𝑑 also
ensure that for any 𝑘 ∈ [𝑑 + 1, 𝑑∗], we have

𝜎𝑘 ≤ 𝜎̂𝑘 + |𝐸 |op ≤ 3 |𝐸 |op ,

where the second inequality comes from 𝑘 ≥ 𝑑 +1 and the definition of 𝑑. So, the Bound (7.6) gives

∥𝐵
𝑑
− 𝐵∥2𝐹 ≤ 9 ©­«𝑑 |𝐸 |2op +

𝑑∗∑︁
𝑘=𝑑+1

𝜎2
𝑘 +

𝑟∑︁
𝑘=𝑑∗+1

𝜎2
𝑘

ª®¬
≤ 9

(
𝑑 |𝐸 |2op + 9(𝑑∗ − 𝑑) |𝐸 |2op +

𝑟∑︁
𝑘=𝑑∗+1

𝜎2
𝑘

)
≤ 92

(
𝑑∗ |𝐸 |2op +

𝑟∑︁
𝑘=𝑑∗+1

𝜎2
𝑘

)
= 92 min

𝑑≥0

{
𝑑 |𝐸 |2op +

𝑟∑︁
𝑘=𝑑+1

𝜎2
𝑘

}
,

where the last equality follows from the definition (7.11) of 𝑑∗. □

7.4 Exercises

7.4.1 Rank recovery

Let us consider the setting of Section 7.3.1 and let us assume that the rank of 𝐵 is 𝑑. As in Corollary
7.5, let us set for some 𝜆 > 0

𝑑 = max {𝑘 : 𝜎̂𝑘 ≥ 𝜆} . (7.12)

In this exercise, we will give some conditions ensuring that 𝑑 = 𝑑 with large probability.
1. Check that

P
[
𝑑 ≠ 𝑑

]
= P [𝜎̂𝑑+1 ≥ 𝜆 or 𝜎̂𝑑 < 𝜆] .

2. With Weyl Inequality (6.1), page 69, prove that

P
[
𝑑 ≠ 𝑑

]
≤ P

[
|𝐸 |op ≥ 𝜆 ∧ (𝜎𝑑 − 𝜆)

]
.
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3. Let us assume that the entries of the matrix 𝐸 ∈ R𝑛×𝑝 are i.i.d. Gaussian with N(0, 𝜎2) distri-
bution. We also assume that 𝜎𝑑 ≥ 2

(√
𝑝 + 7

√
2𝑛

)
𝜎 and set 𝜆 =

(√
𝑝 + 7

√
2𝑛

)
𝜎. Prove with

Corollary 6.9, page 74, that the integer 𝑑 defined by (7.12) fulfills

P
[
𝑑 = 𝑑

]
≥ 1 − 𝑒−𝑛.

Remark. We have recovered the rank under a condition ensuring that the singular value 𝜎𝑑 is large
enough. As 𝜎𝑑+1 = 0, such a condition ensures that there is a large enough gap between 0 and the
non-zero singular values of 𝐵. Such a gap condition is unavoidable for rank recovery. Indeed, if 𝜎𝑑
is small, much smaller than the fluctuations of 𝜎̂𝑑 −𝜎𝑑 , then no procedure can detect if 𝜎𝑑 is or not
0.

7.4.2 Implementing a PCA with R

You can implement a PCA on the Heptathlon example, with the following R-code.
The first step is to download the R software at https://cran.r-project.org.
Then, you can enter the following code to download and analyze the data.

# download heptathlon dataset

data("heptathlon", package = "HSAUR")

# display the dataset

heptathlon

# plot square singular values

pca <-prcomp(heptathlon[,1:7], scale = TRUE)

plot(pca)

# display principal axes

pca$rotation

# display principal components

pca$x

# biplot

biplot(pca,xlabs=1:25)



Chapter 8

Clustering

In a large fraction of data analysis methodologies, the data are considered as homogeneous: all
the observations are assumed to be distributed according to a common statistical model. Such an
assumption is valid for data coming from small scale controlled experiments, but it is highly unre-
alistic at the era of “big data”, where data come from multiple sources. A recipe for dealing with
such inhomogeneous data, is to consider them as an assemblage of several homogeneous data sets,
corresponding to homogeneous “subpopulations”. Then each subpopulation can be treated either in-
dependently or jointly. The main hurdle in this approach is to recover the unknown subpopulations,
which is the main goal of clustering algorithms.

8.1 Cluster model

Assume that we have 𝑛 observations 𝑋1, . . . , 𝑋𝑛 ∈ R𝑝 , which are independent, but not identically
distributed. We denote by 𝜇𝑖 = E[𝑋𝑖] the mean of 𝑋𝑖 and by Σ𝑖 = Cov(𝑋𝑖) the covariance of 𝑋𝑖 .
As discussed above, we assume that the distribution of the 𝑋𝑖 is homogeneous across some sub-
populations. This means that there exists an unknown partition 𝐺∗ =

{
𝐺∗1, . . . , 𝐺

∗
𝐾

}
of {1, . . . , 𝑛},

such that, within a group 𝐺∗
𝑘

all the means and covariances are equal.

Definition Cluster model.
We assume that

1. the observations 𝑋1, . . . , 𝑋𝑛 ∈ R𝑝 , are independent,

2. there exists a (minimal) partition 𝐺∗ =
{
𝐺∗1, . . . , 𝐺

∗
𝐾

}
of {1, . . . , 𝑛} such that all the random

variables (𝑋𝑖)𝑖∈𝐺∗
𝑘

are identically distributed.

In the following, we denote by 𝜃1, . . . , 𝜃𝐾 ∈ R𝑝 , Λ1, . . . ,Λ𝐾 ∈ R𝑝×𝑝 the vectors and covariances
such that

for all 𝑖 ∈ 𝐺∗𝑘 : E [𝑋𝑖] = 𝜃𝑘 and Cov(𝑋𝑖) = Λ𝑘 . (8.1)

The mean 𝜃1, . . . , 𝜃𝐾 ∈ R𝑝 are assumed to be all distinct.
As in the previous chapter, we denote by X ∈ R𝑛×𝑝 the matrix whose 𝑖-th row is given by 𝑋𝑖 . We
define similarly the matrices
• E ∈ R𝑛×𝑝 the matrix whose 𝑖-th row is given by 𝐸𝑖 = 𝑋𝑖 − 𝜇𝑖 = 𝑋𝑖 − 𝜃𝑘 for 𝑖 ∈ 𝐺∗

𝑘
;

• Θ ∈ R𝐾×𝑝 the matrix whose 𝑘-th row is given by 𝜃𝑘 ;
• and 𝐴 ∈ R𝑛×𝐾 the membership matrix defined by 𝐴𝑖𝑘 = 1𝑖∈𝐺∗

𝑘
, for 𝑖 = 1, . . . , 𝑛, and 𝑘 =

1, . . . , 𝐾 .
Then we have the compact formula

X = 𝐴Θ + E. (8.2)

Remark: a popular variant of the cluster model, is the mixture model. This model has an addi-
tional generating feature compared to the cluster model: Instead of being arbitrary, the partition 𝐺∗

is generated by sampling for each observation 𝑖 the label of its group according to a probability
distribution 𝜋 on {1, . . . , 𝐾}.

91
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8.2 Local algorithms

The main family of local algorithms are the so-called hierarchical clustering algorithms. The hier-
archical clustering algorithms cluster data points sequentially, starting from a trivial partition with
𝑛 singletons (each data point is a cluster on its own) and then merging them step by step until
eventually getting a single cluster with all the data points. At the end of the process, we obtain a
hierarchical family of nested clusterings and the data scientist can choose her favorite one.

0
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8

Dendrogram

d

H
ei
gh
t

Figure 8.1: Left: data points in R2. Right: dendrogram of hierarchical clustering with Euclidean
distance 𝑑 and complete linkage ℓ. The colors correspond to the clustering output when selecting
𝐾 = 2 clusters.

Linkage

In hierarchical clustering, the recipe for merging points is quite simple: at each step the algorithm
merges the two closest clusters (in a sense to be defined) of the current clustering, letting the other
clusters unchanged. This requires the definition of a ”distance” ℓ(𝐺,𝐺′) between clusters 𝐺 and
𝐺′, usually called ”linkage”. Let 𝑑 (𝑥, 𝑦) be any distance on R𝑝 , typically 𝑑 (𝑥, 𝑦) = ∥𝑥 − 𝑦∥ or
𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦 |1. Some classical examples of linkage are:
• Single linkage: single linkage corresponds to the smallest distance between the points of the two

clusters
ℓ𝑠𝑖𝑛𝑔𝑙𝑒 (𝐺,𝐺′) = min

{
𝑑 (𝑥𝑖 , 𝑥 𝑗 ) : 𝑖 ∈ 𝐺, 𝑗 ∈ 𝐺′

}
.

Single linkage clustering tends to produce clusters looking like ”chains”, and we can have within
a cluster two data points 𝑥, 𝑦 with 𝑑 (𝑥, 𝑦) very large.
• Complete linkage: complete linkage is kind of the opposite of single linkage. It corresponds to

the largest distance between the points of the two clusters

ℓ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (𝐺,𝐺′) = max
{
𝑑 (𝑥 𝑗 , 𝑥 𝑗 ) : 𝑖 ∈ 𝐺, 𝑗 ∈ 𝐺′

}
.

Complete linkage clustering tends to produce ”compact” clusters where all data points are close
to each other.
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• Average linkage: average linkage corresponds to the average distance between the points of the
clusters 𝐺,𝐺′

ℓ𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐺,𝐺′) =
1

|𝐺 | |𝐺′ |
∑︁

𝑖∈𝐺, 𝑗∈𝐺′
𝑑 (𝑥𝑖 , 𝑥 𝑗 ).

The clustering produced by average linkage is less ”chainy” than those produced by single link-
age and less compact than those produced by complete linkage.

In section 8.4.4, these features are illustrated in a randomly generated example.

Hierarchical clustering algorithm

Hierarchical clustering algorithms start from the trivial partition 𝐺 (𝑛) = {{1} , . . . , {𝑛}} with 𝑛
clusters, and then sequentially merge clusters two by two. At each step, the algorithm merge the two
clusters 𝐺,𝐺′ available at this step with the smallest linkage ℓ(𝐺,𝐺′). The output is a sequence of
clustering 𝐺 (1) , . . . , 𝐺 (𝑛) with 𝐾 = 1, . . . , 𝑛 clusters. These clusterings are nested, in the sense that
for 𝑗 ≤ 𝑘 the partition 𝐺 (𝑘 ) is a sub-partition of 𝐺 ( 𝑗 ) .

Hierarchical clustering
• Input: data points 𝑋1, . . . , 𝑋𝑛 and a linkage ℓ

• initialization: 𝐺 (𝑛) = {{1} , . . . , {𝑛}}
• iterations: for 𝑡 = 𝑛, . . . , 2

– find (𝑎̂, 𝑏̂) ∈ argmin(𝑎,𝑏) ℓ(𝐺
(𝑡 )
𝑎 , 𝐺

(𝑡 )
𝑏
)

– build 𝐺 (𝑡−1) from 𝐺 (𝑡 ) by merging 𝐺 (𝑡 )
𝑎

and 𝐺 (𝑡 )
𝑏

. The other clusters are let unchanged.

• Output: the 𝑛 partitions 𝐺 (1) , . . . , 𝐺 (𝑛) of {1, . . . , 𝑛}.

Dendrogram

It is popular to represent the sequence of clustering 𝐺 (1) , . . . , 𝐺 (𝑛) with a dendrogram, which is a
tree, rooted in𝐺 (1) , and whose leaves correspond to𝐺 (𝑛) . The dendrogram depicts how the merging
is performed. The partition 𝐺 (𝑘 ) can be read on the dendrogram as follows, see Figure 8.1:
1. locate the level where there are exactly 𝑘 branches in the dendrogram;
2. cut the dendrogram at this level in order to get 𝑘 subtrees;
3. each subtree corresponds to one cluster, gathering the points corresponding to its leaves.
The height in the tree represents the distance between two clusters. A classical recipe for choosing
the number 𝑘 of clusters is to look for a level 𝑘 where the height between two successive merges
increases abruptly.

Hierarchical clustering algorithms are popular, as they are simple to understand and to visualize.
When the clusters are well separated, they succeed to recover the hidden partition 𝐺∗, see Exercise
8.4.2. Yet, hierarchical clustering is based on local informations, and do not take into account global
informations on the distribution of the cloud of points, especially at the first steps. As the mistakes
in the first steps cannot be repaired in the following steps, it is a strong limitation for clustering in
less separated case, see Section 8.4.4 for an illustration. Next section presents another recipe for
clustering, based on more global informations, carried by the singular vectors of X.
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8.3 Spectral clustering

8.3.1 Spectral clustering recipe

The recipe of spectral clustering algorithms is to compute the 𝐾 first principal components of X and
then apply some basic clustering algorithms on these vectors. So, spectral clustering algorithms are
simply algorithms performing a dimension reduction step (PCA) before proceeding to a clustering.
Many state of the art clustering algorithms are based on spectral clustering. In some settings, spec-
tral clustering alone is able to provide statistically optimal clustering. In some other settings, an
additional refinement step is implemented, where each observation is reclassified according to a
more specialized algorithm. Hence, spectral clustering algorithm is a good and simple algorithm in
order to get a primary estimation of the groups, which can then be refined if needed, by running
more specialized algorithms.
Before describing the most basic version of spectral clustering, let us explain why PCA makes sense
in this setting. In the clustering model (8.2), the partition 𝐺∗ is encoded in the rows of the signal
𝐴Θ ∈ R𝑛×𝑝 . Indeed, for 𝑖 ∈ 𝐺∗

𝑘
, the 𝑖-th row of 𝐴Θ is given by 𝜃𝑘 , so all the rows belonging to a

same cluster are all the same. Hence, if, instead of applying a clustering algorithm on the rows of
X, we apply a clustering algorithm on the rows of a good estimator 𝐵 of 𝐴Θ, then we get a better
clustering. When the partition has 𝐾 clusters, the rows of 𝐴Θ are elements of the 𝐾 dimensional
space spanned by {𝜃1, . . . , 𝜃𝐾 }. Hence, in light of the previous chapter, it makes sense to project
the data on the space 𝑉𝐾 spanned by the 𝐾 first right singular vectors (principal axes) of X. The
coordinates of the projection Proj

𝑉𝐾
(𝑋𝑖) are given by the 𝑖-th coordinates of the 𝐾 first principal

components 𝑐̂𝑘 = 𝜎̂𝑘 𝑢̂𝑘 of X. This line of reasoning leads to the spectral clustering algorithm
described below.

Spectral clustering algorithm
1. Compute the singular value decomposition X =

∑︁
𝑘≥1

𝜎̂𝑘 𝑢̂𝑘 𝑣̂
𝑇
𝑘 ;

2. Extract the 𝐾 first principal components

𝐶𝐾 = [𝑐̂1, . . . , 𝑐̂𝐾 ] := [𝜎̂1𝑢̂1, . . . , 𝜎̂𝐾 𝑢̂𝐾 ]

3. Apply a clustering procedure on the rows of 𝐶𝐾 in order to get a partition 𝐺 of {1, . . . , 𝑛}.

There are many possible choices of clustering procedure for the last step, for example hierarchical
clustering algorithms. In the two clusters problem theoretically investigated in Section 8.3.2, the
clustering procedure will simply be based on the sign of the entries of the first left-singular vector.

We observe that computing the 𝐾 first left-singular vectors of X involves the whole matrix X, so,
contrary to hierarchical clustering, spectral clustering takes into account all points for clustering
each single data point.

A variant of spectral clustering

A popular alternative to the clustering of the rows of the principal components matrix 𝐶𝐾 =

[𝑐̂1, . . . , 𝑐̂𝐾 ], is the clustering of the rows of the left-singular vectors matrix 𝑈𝐾 = [𝑢̂1, . . . , 𝑢̂𝐾 ].
Next lemma shows that this clustering also makes sense.
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Lemma 8.1 Let

𝐴Θ =

𝐾∑︁
𝑘=1

𝜎𝑘𝑢𝑘𝑣
𝑇
𝑘

be a singular decomposition of 𝐴Θ, and set𝑈 = [𝑢1, . . . , 𝑢𝐾 ] ∈ R𝑛×𝐾 .
Then, there exist 𝑍1, . . . , 𝑍𝐾 ∈ R𝐾 , such that

𝑈𝑖: = 𝑍𝑘 for all 𝑖 ∈ 𝐺∗𝑘 , and ∥𝑍𝑘 − 𝑍ℓ ∥2 =
1
|𝐺∗
𝑘
| +

1
|𝐺∗
ℓ
| , for all 𝑘 ≠ ℓ.

Proof of Lemma 8.1. Let us define Δ = diag
(
|𝐺∗1 |

−1/2, . . . , |𝐺∗
𝐾
|−1/2) and 𝐵 := 𝐴Δ. We notice that

the columns of 𝐵 are

𝑏𝑘 = [𝐴Δ]:𝑘 =
[

1𝑖∈𝐺∗
𝑘

|𝐺∗
𝑘
|1/2

]
𝑖=1,...,𝑛

.

In particular, the columns 𝑏1, . . . , 𝑏𝐾 of 𝐵 are orthonormal. As

span {𝑏1, . . . , 𝑏𝐾 } = range(𝐴) ⊃ range(𝐴Θ) = span {𝑢1, . . . , 𝑢𝐾 } ,

with 𝑏1, . . . , 𝑏𝐾 orthonormal, the projection on range(𝐴) is given by 𝐵𝐵𝑇 and 𝐵𝐵𝑇𝑢𝑘 = 𝑢𝑘 for
𝑘 = 1, . . . , 𝐾 . Hence,

𝑈 = [𝑢1, . . . , 𝑢𝐾 ] = 𝐵 𝐵𝑇𝑈︸︷︷︸
=𝑅

,

with 𝑅 an orthogonal matrix, since 𝑅𝑇𝑅 = 𝑈𝑇𝐵𝐵𝑇𝑈 = 𝑈𝑇𝑈 = 𝐼𝐾 .
From the decomposition𝑈 = 𝐵𝑅 = 𝐴Δ𝑅, we obtain

𝑈𝑖 𝑗 =

𝐾∑︁
ℓ=1

1𝑖∈𝐺∗
ℓ
(Δ𝑅)ℓ 𝑗 = (Δ𝑅)𝑘 𝑗 for 𝑖 ∈ 𝐺∗𝑘 .

Hence, for 𝑖 ∈ 𝐺∗
𝑘
, we have𝑈𝑖: = 𝑍𝑘 , where the vectors

𝑍𝑘 := [Δ𝑅]𝑘: = |𝐺∗𝑘 |
−1/2𝑅𝑘: , for 𝑘 = 1, . . . , 𝐾,

are orthogonal with square norm ∥𝑍𝑘 ∥2 = 1/|𝐺∗
𝑘
|, as ∥𝑅𝑘:∥2 = 1. Hence,

∥𝑍𝑘 − 𝑍ℓ ∥2 =
1
|𝐺∗
𝑘
| +

1
|𝐺∗
ℓ
| , for ℓ ≠ 𝑘.

The proof of Lemma 8.1 is complete. □

Debiasing spectral clustering

The left-singular vectors 𝑢̂1, 𝑢̂2, . . . of X correspond to the eigenvectors of XX𝑇 . Computing the
expectation of an entry

(XX𝑇 )𝑖 𝑗 = (𝐴ΘΘ𝑇 𝐴𝑇 )𝑖 𝑗 + 𝐸𝑇𝑖 𝐸 𝑗 + 𝐸𝑇𝑖 (Θ𝑇 𝐴𝑇 ) 𝑗 + (𝐴Θ)𝑇𝑖 𝐸 𝑗 ,

we get

E
[
(XX𝑇 )𝑖 𝑗

]
= (𝐴ΘΘ𝑇 𝐴𝑇 )𝑖 𝑗 + E

[
𝐸𝑇𝑖 𝐸 𝑗

]
= (𝐴ΘΘ𝑇 𝐴𝑇 )𝑖 𝑗 + 1𝑖= 𝑗 Tr(Cov(𝐸𝑖)).
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Let us denote by Γ the diagonal matrix, with entries Γ𝑖𝑖 = Tr(Cov(𝐸𝑖)). We observe that we have
in expectation

E
[
XX𝑇

]
= 𝐴ΘΘ𝑇 𝐴𝑇 + Γ.

When Γ is proportional to the identity matrix, the eigenvectors of 𝐴ΘΘ𝑇 𝐴𝑇+Γ and 𝐴ΘΘ𝑇 𝐴𝑇 are the
same, so the eigenvectors of XX𝑇 are not biased. When Γ is not proportional to the identity matrix,
it is wise to reduce the bias of XX𝑇 by considering the eigenvalue decomposition of XX𝑇 − Γ̂, for
some estimator Γ̂ of Γ. Yet, unless the matrix Γ is known in advance, it is not straightforward to
design a (good) estimator Γ̂ of Γ. We refer to the Exercise 8.4.3 for an example of such an estimator.

Let us sum-up the debiased spectral algorithm.

Debiased spectral clustering algorithm
1. Compute the eigenvalue decomposition XX𝑇 − Γ̂ =

∑︁
𝑘≥1

𝑑𝑘 𝑢̂𝑘 𝑢̂
𝑇
𝑘 , with eigenvalues ranked in de-

creasing order;
2. Apply a clustering procedure either on the rows of 𝑈𝐾 = [𝑢̂1, . . . , 𝑢̂𝐾 ] or on the rows of 𝐶𝐾 =[

𝑑
1/2
1 𝑢̂1, . . . , 𝑑

1/2
𝐾
𝑢̂𝐾

]
, in order to get a partition 𝐺 of {1, . . . , 𝑛}.

8.3.2 Recovery bounds

In this section, we investigate the ability of spectral clustering to recover the partition 𝐺∗ from X.
In order to avoid an inflation of technicalities, we focus on the most simple setting where there are
only two groups with means symmetric with respect to 0 and Gaussian distribution. More precisely,
we assume that there exists an unobserved sequence 𝑧1, . . . , 𝑧𝑛 ∈ {−1, +1} of binary labels such that
the observations 𝑋1, . . . , 𝑋𝑛 are independent, and the distribution of 𝑋𝑖 is a Gaussian distribution
N(𝑧𝑖𝜃, 𝜎2𝐼𝑝) for 𝑖 = 1, . . . , 𝑛. Stacking as before the observations 𝑋1, . . . , 𝑋𝑛 into a 𝑛 × 𝑝 matrix
X, we then observe

X = 𝑧𝜃𝑇 + E, (8.3)

where 𝑧 ∈ {−1, +1}𝑛 and the 𝐸𝑖 𝑗 are i.i.d. with a N(0, 𝜎2) distribution. The underlying partition is
𝐺∗ = {{𝑖 : 𝑧𝑖 = 1} , {𝑖 : 𝑧𝑖 = −1}}.

Let us define for 𝑥 ∈ R𝑛

|𝑥 |0 =

𝑛∑︁
𝑖=1

1𝑥𝑖≠0.

A good clustering algorithm, is an algorithm that recovers the vector 𝑧, up to a sign change. Hence,
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if 𝑧̂ ∈ {−1, +1}𝑛 encodes the clustering output by this algorithm, ( 𝑧̂𝑖 = 1 if 𝑖 ∈ 𝐺1 and 𝑧̂𝑖 = −1 if
𝑖 ∈ 𝐺2), we measure the quality of the clustering by the metric

recov( 𝑧̂) :=
1
𝑛

min
𝛿∈{−1,+1}

|𝑧 − 𝛿𝑧̂ |0 , (8.4)

which counts the proportion of mismatches between 𝐺 and 𝐺∗.
When X follows the Model (8.3), we have

E
[
XX𝑇

]
= ∥𝜃∥2𝑧𝑧𝑇 + Γ,

with Γ𝑖𝑖 = Tr(cov(𝐸𝑖)). As all the covariances are assumed to be equal to 𝜎2𝐼𝑝 , the matrix Γ =

𝑝𝜎2𝐼𝑛 is proportional to the identity, and hence, we do not need to debias XX𝑇 in the spectral
clustering algorithm. Hence, we set Γ̂ = 0. Since 𝑧𝑧𝑇 is of rank one, we only focus on the first
eigenvector 𝑢̂1 of XX𝑇 .
The first eigenvector 𝑢̂1 of XX𝑇 does not provide a clustering of {1, . . . , 𝑛} into two groups and a
clustering procedure is needing (second step of Spectral algorithm). One of the nice feature of Model
(8.3) is that we can choose a very simple clustering procedure. Actually, as, hopefully, 𝑢̂1 ≈ ±𝑧/∥𝑧∥,
we can simply take the sign of the entries of 𝑢̂1 in order to get a partition of {1, . . . , 𝑛} into two
groups, corresponding to positive and negative entries of 𝑢̂1. We consider then the following spectral
clustering algorithm

𝑧̂ = sign(𝑢̂1), with 𝑢̂1 a leading eigenvector of
1
𝑛

XX𝑇 . (8.5)

Theorem 8.2 Assume that X follows the model (8.3). There exists a numerical constant 𝐶 ≥ 1
such that, with probability at least 1 − 2𝑒−𝑛/2, the spectral clustering (8.5) fulfills the recovery
bound

recov( 𝑧̂) ≤ 1 ∧ 𝐶
𝑠2 , (8.6)

with 𝑠2 defined by

𝑠2 =
∥𝜃∥4

∥𝜃∥2𝜎2 + 𝑝

𝑛
𝜎4

. (8.7)

We observe that the upper bound (8.6) is decreasing with the inverse of 𝑠2. It is possible to show that
optimal algorithms have a proportion of mismatches decreasing exponentially fast with 𝑠2. In order
to get such an optimal rate, we need to improve the spectral clustering with more refined algorithms.
This refinement is out of the scope of this monograph.

The remaining of this subsection is devoted to the proof of Theorem 8.2.

Proof of Theorem 8.2.
Let us first connect the Hamming distance |𝑧 − 𝛿𝑧̂ |0 to the square norm ∥𝑧 − 𝛿

√
𝑛𝑢̂1∥2.

Lemma 8.3 For any 𝑥 ∈ {−1, 1}𝑛 and 𝑦 ∈ R𝑛, we have

|𝑥 − sign(𝑦) |0 ≤ min
𝛼>0
∥𝑥 − 𝛼𝑦∥2.

This lemma simply follows from the inequality

1𝑥𝑖≠sign(𝑦𝑖 ) = 1𝑥𝑖≠sign(𝛼𝑦𝑖 ) ≤ |𝑥𝑖 − 𝛼𝑦𝑖 |2,

for any 𝛼 > 0 and 𝑖 = 1, . . . , 𝑛.
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From Lemma 8.3 with 𝛼 =
√
𝑛 and ∥𝑧∥2 = 𝑛, we get

1
𝑛

min
𝛿=−1,+1

|𝑧 − 𝛿sign(𝑢̂1) |0 ≤
1
𝑛

min
𝛿=−1,+1

∥𝑧 − 𝛿
√
𝑛𝑢̂1∥2

=
1
𝑛

min
𝛿=−1,+1

(2𝑛 − 2𝛿
√
𝑛⟨𝑧, 𝑢̂1⟩)

= 2(1 − |⟨𝑧/
√
𝑛, 𝑢̂1⟩|)

≤ 2(1 − ⟨𝑧/
√
𝑛, 𝑢̂1⟩2),

where we have used that |⟨𝑧/
√
𝑛, 𝑢̂1⟩| ≤ ∥𝑧/

√
𝑛∥∥𝑢̂1∥ = 1 in the last inequality.

Notice that 𝑧/
√
𝑛 is a unit-norm leading eigenvector of 1

𝑛
∥𝜃∥2𝑧𝑧𝑇 , associated with the eigenvalue

∥𝜃∥2. Notice also that the second eigenvalue of 1
𝑛
∥𝜃∥2𝑧𝑧𝑇 is 0, as 1

𝑛
∥𝜃∥2𝑧𝑧𝑇 is a rank one matrix.

Combining the previous bound with Davis-Kahan inequality (6.4) with 𝐴 = 1
𝑛
∥𝜃∥2𝑧𝑧𝑇 and 𝐵 =

1
𝑛

XX𝑇 , we get

min
𝛿=−1,+1

1
𝑛
|𝑧 − 𝛿𝑧̂ |0 ≤ 2(1 − ⟨𝑧/

√
𝑛, 𝑢̂1⟩2) ≤ 8 inf

𝜆∈R

��𝜆𝐼𝑛 + 1
𝑛

XX𝑇 − 1
𝑛
∥𝜃∥2𝑧𝑧𝑇

��2
op

∥𝜃∥4

≤ 8

��� 1
𝑛

XX𝑇 − 1
𝑛
∥𝜃∥2𝑧𝑧𝑇 − 𝑝𝜎2

𝑛
𝐼𝑛

���2
op

∥𝜃∥4
. (8.8)

It remains to bound from above
��� 1
𝑛

XX𝑇 − 1
𝑛
∥𝜃∥2𝑧𝑧𝑇 − 𝑝𝜎2

𝑛
𝐼𝑛

���
op

.

Lemma 8.4 There exists two exponential random variables 𝜉, 𝜉′ with parameter 1, such that the
operator norm of

𝑊 =
1
𝑛

XX𝑇 − ∥𝜃∥
2

𝑛
𝑧𝑧𝑇 − 𝑝𝜎

2

𝑛
𝐼𝑛

is upper-bounded by

|𝑊 |op ≤ 4𝜎2

√︄
𝑝

𝑛

(
6 + 2

𝜉

𝑛

)
+

(
48 + 16𝜉

𝑛

)
𝜎2 + 2∥𝜃∥𝜎

(
1 +

√︂
8𝜉′

𝑛

)
. (8.9)

Let us explain how Theorem 8.2 follows from the Bound (8.9). According to (8.8) and (8.9), we
have with probability at least 1 − 2𝑒−𝑛/2, the upper bound

min
𝛿=−1,+1

1
𝑛
|𝑧 − 𝛿𝑧̂ |0 ≤ 1 ∧

(
30

√︁
𝑝/𝑛 + 159 + 17∥𝜃∥/𝜎
∥𝜃∥2/𝜎2

)2

.

The right-hand side is smaller than 1 only if 17 ≤ ∥𝜃∥/𝜎, so 159 ≤ 10∥𝜃∥/𝜎, from which follows

min
𝛿=−1,+1

1
𝑛
|𝑧 − 𝛿𝑧̂ |0 ≤ 1 ∧

(
30

√︁
𝑝/𝑛 + 27∥𝜃∥/𝜎
∥𝜃∥2/𝜎2

)2

≤ 1 ∧
(
1800

𝑝/𝑛 + ∥𝜃∥2/𝜎2

∥𝜃∥4/𝜎4

)
= 1 ∧ 1800

𝑠2 ,

which gives (8.6). It remains to prove Lemma 8.4.

Proof of Lemma 8.4.
We have 𝑛𝑊 = (EE𝑇 − 𝑝𝜎2𝐼𝑛) + E𝜃𝑧𝑇 + 𝑧𝜃𝑇E𝑇 .
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The quadratic term EE𝑇 − 𝑝𝜎2𝐼𝑛 is controlled by the bound (6.11) of Theorem 6.8: There exists an
exponential random variable 𝜉 with parameter 1 such that��EE𝑇 − 𝑝𝜎2𝐼𝑛

��
op ≤ 4𝜎2

√︁
𝑝(6𝑛 + 2𝜉) + (48𝑛 + 16𝜉)𝜎2.

Let us now control the cross terms in𝑊 .

Lemma 8.5 There exists an exponential random variable 𝜉′ with parameter 1, such that

1
𝑛

��𝑧𝜃𝑇E𝑇
��
op =

1
𝑛

��E𝜃𝑧𝑇 ��op ≤ ∥𝜃∥𝜎
(
1 +

√︂
8𝜉′

𝑛

)
. (8.10)

Proof of Lemma 8.5. Dividing left and right-hand side of (8.10) by 𝜎, we can assume with no loss
of generality that 𝜎 = 1. Let us set 𝑢 = 𝜃/∥𝜃∥ and 𝑣 = 𝑧/

√
𝑛.

We observe that for 𝑥 with norm 1,

∥E𝑢𝑣𝑇𝑥∥ = |𝑣𝑇𝑥 |∥E𝑢∥ ≤ ∥E𝑢∥,
with equality for 𝑥 = 𝑣. Hence

��E𝑢𝑣𝑇 ��op = ∥E𝑢∥.
For the same reasons as in Step 2 of the proof of Theorem 6.8, the random variable 𝐸𝑢 follows a
standard Gaussian N(0, 𝐼𝑛) distribution. Hence, according to Hanson-Wright inequality (6.9) with
𝑆 = 𝐼𝑛, there exists an exponential random variable 𝜉′ with parameter 1, such that��E𝑢𝑣𝑇 ��2op = ∥E𝑢∥2 ≤ 𝑛 +

√︁
8𝑛𝜉′ + 8𝜉′ ≤

(√
𝑛 +

√︁
8𝜉′

)2
.

Since
1
𝑛

��E𝜃𝑧𝑇 ��op =
∥𝜃∥
√
𝑛

��E𝑢𝑣𝑇 ��op , the Bound (8.10) follows. □

Combining the Theorem 6.8, the Lemma 8.5, and the decomposition

𝑛𝑊 = (EE𝑇 − 𝑝𝜎2𝐼𝑛) + E𝜃𝑧𝑇 + 𝑧𝜃𝑇E𝑇 ,

we get (8.9). The proof of Lemma 8.4 is complete. □

8.4 Exercises

8.4.1 Sterling numbers of second kind

Let us denote by 𝑆(𝑛, 𝐾) the number of partitions of {1, . . . , 𝑛} into 𝐾 (non-empty) clusters.
1. What is the value of 𝑆(𝑛, 1)? of 𝑆(𝑛, 𝑛)?
2. With a combinatorial argument, prove the recursion formula

𝑆(𝑛, 𝑘) = 𝑘𝑆(𝑛 − 1, 𝑘) + 𝑆(𝑛 − 1, 𝑘 − 1), for 2 ≤ 𝑘 ≤ 𝑛 − 1.

3. Prove by induction that

𝑆(𝑛, 𝑘) = 1
𝑘!

𝑘∑︁
𝑗=0

(−1) 𝑗𝐶 𝑗
𝑘
(𝑘 − 𝑗)𝑛,

with 𝐶 𝑗
𝑘
= 𝑘!/( 𝑗!(𝑘 − 𝑗)!) the binomial coefficient.

4. With the recursion formula, prove the simple lower bound

𝑆(𝑛, 𝑘) ≥ 𝑘𝑛−𝑘 .
The numbers 𝑆(𝑛, 𝑘) are called the Sterling numbers of the second kind. The total number 𝐵𝑛 =∑𝑛
𝑘=1 𝑆(𝑛, 𝑘) of possible partitions of 𝑛 elements (without constraints on the number of groups) are

called the Bell numbers.
For a fixed 𝑘 , we observe that 𝑆(𝑛, 𝑘) grows exponentially fast with 𝑛, and for 𝑘 = 𝑛/log(𝑛) the
growth is even super-exponential as, for any 0 < 𝑐 < 1, we have 𝑆(𝑛, 𝑘) ≥ exp(𝑐𝑛 log(𝑛)) for 𝑛
large enough. In particular, the Bell number 𝐵𝑛 grows super-exponentially fast with 𝑛.
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8.4.2 Exact recovery with hierarchical clustering

In this exercise, we provide some conditions ensuring that hierarchical clustering exactly recovers
the hidden partition in the setting (8.3) of Section 8.3.2. We denote byW =

{
(𝑖, 𝑗) : 𝑧𝑖 = 𝑧 𝑗 , 𝑖 < 𝑗

}
the set of pairs of points within the same cluster 𝐺1 = {𝑖 : 𝑧𝑖 = −1} or 𝐺2 = {𝑖 : 𝑧𝑖 = 1}, and by
B =

{
(𝑖, 𝑗) : 𝑧𝑖 ≠ 𝑧 𝑗 , 𝑖 < 𝑗

}
the set of pairs of points between the two clusters.

1. What is the value of E
[
∥𝑋𝑖 − 𝑋 𝑗 ∥2

]
for (𝑖, 𝑗) ∈ W? and for (𝑖, 𝑗) ∈ B?

2. Prove that |W| ≤ 𝑛2/2 and |B| ≤ 𝑛2/4.
3. Prove that

P

(
max
(𝑖, 𝑗 ) ∈W

∥𝑋𝑖 − 𝑋 𝑗 ∥2 ≥ 2𝑝𝜎2 + (𝜎2
√︁

96𝑝 log(𝑛)) ∨ (48𝜎2 log(𝑛))
)
≤ 1

2𝑛
.

4. Let 𝜀 be a Gaussian N(0, 𝜎2𝐼𝑝) random variable. Check that

P
(
⟨𝜃, 𝜀⟩ ≤ −𝜎∥𝜃∥

√
2𝐿

)
≤ 𝑒−𝐿 .

5. Prove that

P

(
min
(𝑖, 𝑗 ) ∈B

∥𝑋𝑖 − 𝑋 𝑗 ∥2 ≤ 2𝑝𝜎2 + 4∥𝜃∥2 − (𝜎2
√︁

96𝑝 log(𝑛)) ∨ (48𝜎2 log(𝑛)) − 14𝜎∥𝜃∥
√︁

log(𝑛)
)

≤ 1
2𝑛
.

6. For 𝑎, 𝑏 > 0, prove that the condition ∥𝜃∥2 ≥ (𝑎/2) ∨ (𝑏/2)2 ensures the inequality 4∥𝜃∥2 ≥
𝑎 + 𝑏∥𝜃∥. Conclude that, when we have ∥𝜃∥2 ≥ 𝜎2

( √︁
24𝑝 log(𝑛) ∨ (49 log(𝑛))

)
, then the hi-

erarchical clustering algorithm with Euclidean distance and single or complete linkage recovers
the clusters 𝐺1 and 𝐺2 with probability at least 1 − 1/𝑛.

8.4.3 Estimating Γ

We use in this exercise the notation introduced at the beginning of this chapter: We have the decom-
position 𝑋𝑖 = 𝜇𝑖 + 𝐸𝑖 , with 𝜇𝑖 = E[𝑋𝑖] and 𝜇𝑖 = 𝜃𝑘 for all 𝑖 ∈ 𝐺∗

𝑘
.

As discussed in Section 8.3.1,

(XX𝑇 )𝑖 𝑗 = (𝐴ΘΘ𝑇 𝐴𝑇 )𝑖 𝑗 + 𝐸𝑇𝑖 𝐸 𝑗 + 𝐸𝑇𝑖 (Θ𝑇 𝐴𝑇 ) 𝑗 + (𝐴Θ)𝑇𝑖 𝐸 𝑗 ,

with E
[
𝐸𝑇
𝑖
(Θ𝑇 𝐴𝑇 ) 𝑗

]
= 0 = E

[
(𝐴Θ)𝑇

𝑖
𝐸 𝑗

]
, and

E
[
𝐸𝑇𝑖 𝐸 𝑗

]
= 1𝑖= 𝑗E

[
∥𝐸𝑖 ∥2

]
.

Let us denote by Γ̃ the diagonal matrix with Γ̃𝑖𝑖 := ∥𝐸𝑖 ∥2. In order to avoid the systematic bias
induced by Γ̃ in the spectral decomposition, we would like to work on the matrix XX𝑇 − Γ̃. This is
not possible though, since the norm ∥𝐸𝑖 ∥ is not observed. The idea is to compute instead the spectral
decomposition of the matrix XX𝑇 − Γ̂, where Γ̂ is built from data and is a good evaluation of Γ̃.
If we knew the partition 𝐺∗, “estimating1” the random quantity Γ̃𝑖𝑖 (or the parameter Γ𝑖𝑖) would be
a simple task. Actually, if 𝑖′ ≠ 𝑖 belongs to the same group as 𝑖, then

⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑖⟩ = ∥𝐸𝑖 ∥2 − ⟨𝐸𝑖 , 𝐸𝑖′⟩ + ⟨𝜇𝑖 , 𝐸𝑖 − 𝐸𝑖′⟩, (8.11)

1with some abuse of langage, we use the word “estimation” even if Γ̃𝑖𝑖 is a random quantity, not a parameter
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with E [⟨𝐸𝑖 , 𝐸𝑖′⟩] = E [⟨𝜇𝑖 , 𝐸𝑖 − 𝐸𝑖′⟩] = 0. So ⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑖⟩ is an unbiased “estimator” of Γ̃𝑖𝑖 (and
Γ𝑖𝑖).
The difficulty is that we do not know 𝐺∗, and we need to estimate Γ𝑖𝑖 to estimate 𝐺∗. To break this
vicious spiral, we can build yet on (8.11), by replacing 𝑖′ by a data-driven choice 𝑖̂. We observe that
we have the decomposition

⟨𝑋𝑖 − 𝑋𝑖̂ , 𝑋𝑖⟩ − ⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑖⟩ = ⟨𝑋𝑖 − 𝑋𝑖̂ , 𝑋𝑖′⟩ − ⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑖̂⟩,

and we will be able to control the size of the right hand side, if we are able to control max𝑘 |⟨𝑋𝑖 −
𝑋
𝑖̂
, 𝑋𝑘⟩|. This observation motivates the definition of the following estimator

Γ̂𝑖𝑖 := ⟨𝑋𝑖 − 𝑋𝑖̂ , 𝑋𝑖⟩, with 𝑖̂ ∈ argmin
𝑗

max
𝑘: 𝑘≠𝑖, 𝑗

|⟨𝑋𝑖 − 𝑋 𝑗 , 𝑋𝑘⟩|. (8.12)

In this exercise, you will prove the following bound on the error |Γ̂ − Γ̃ |∞.

Proposition 8.6 Assume that the observations 𝑋1, . . . , 𝑋𝑛 are independent, with 𝑋𝑖 following a
N(𝜇𝑖 , Σ𝑖) Gaussian distribution.
Assume also that each group 𝐺𝑘 has a cardinality as least 2.
Then, with probability at least 1 − 2𝑒−𝐿 , the diagonal matrix Γ̂ fulfills

|Γ̂ − Γ̃ |∞

≤ 6∥Θ∥2∞
√︃
|Σ |op (3 log(𝑛) + 𝐿) + 10(∥Σ∥𝐹

√︁
2 log(𝑛) + 𝐿) ∨ (|Σ |op (4 log(𝑛) + 2𝐿)),

where
∥Θ∥2∞ := max

𝑘
∥𝜃𝑘 ∥, |Σ |op := max

𝑖
|Σ𝑖 |op and ∥Σ∥𝐹 := max

𝑖
∥Σ𝑖 ∥𝐹 .

While this estimator Γ̂ gives good results, it can be improved in order to avoid the dependency on
∥Θ∥2∞. The improved estimator is somewhat more complex, and its analysis is beyond the scope of
this monograph.

To prove Proposition 8.6, answer to the following questions.

1. Take 𝑖′ ≠ 𝑖 in the same group as 𝑖. Starting from the decomposition

⟨𝑋𝑖 − 𝑋𝑖̂ , 𝑋𝑖⟩ = ⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑖⟩ + ⟨𝑋𝑖 − 𝑋𝑖̂ , 𝑋𝑖′⟩ − ⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑖̂⟩

and using the definition of 𝑖̂, prove the inequalities

|Γ̂𝑖𝑖 − Γ̃𝑖𝑖 | ≤|⟨𝜇𝑖 , 𝐸𝑖 − 𝐸𝑖′⟩| + |⟨𝐸𝑖′ , 𝐸𝑖⟩| +max
𝑘≠𝑖,𝑖̂

|⟨𝑋𝑖 − 𝑋𝑖̂ , 𝑋𝑘⟩| + max
𝑘≠𝑖,𝑖′

|⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑘⟩|

≤|⟨𝜇𝑖 , 𝐸𝑖 − 𝐸𝑖′⟩| + |⟨𝐸𝑖′ , 𝐸𝑖⟩| + 2 max
𝑘≠𝑖,𝑖′

|⟨𝑋𝑖 − 𝑋𝑖′ , 𝑋𝑘⟩|

≤3 max
𝑘,𝑖,𝑖′
|⟨𝜇𝑘 , 𝐸𝑖 − 𝐸𝑖′⟩| + 5 max

𝑘,𝑖
|⟨𝐸𝑖 , 𝐸𝑘⟩|.

2. Check that Var(⟨𝜇𝑘 , 𝐸𝑖 − 𝐸𝑖′⟩) = 𝜇𝑇
𝑘
(Σ𝑖 + Σ𝑖′ )𝜇𝑘 ≤ 2 |Σ |op ∥Θ∥2∞. What is the distribution of

⟨𝜇𝑘 , 𝐸𝑖 − 𝐸𝑖′⟩?
3. Prove the bound

P

[
max
𝑘,𝑖,𝑖′
|⟨𝜇𝑘 , 𝐸𝑖 − 𝐸𝑖′⟩| > 2∥Θ∥2∞

√︃
|Σ |op (3 log(𝑛) + 𝐿)

]
≤ 𝑒−𝐿 .

4. We can write the scalar product ⟨𝐸𝑖 , 𝐸𝑘⟩ as 𝜀𝑇
𝑖
Σ

1/2
𝑖

Σ
1/2
𝑘
𝜀𝑘 , with 𝜀𝑖 , 𝜀𝑘 , two independent standard

Gaussian random variables in R𝑝 . With Hanson-Wright inequality (6.10) page 72, proves that

P

[
|⟨𝐸𝑖 , 𝐸𝑘⟩| > (2∥Σ1/2

𝑖
Σ

1/2
𝑘
∥𝐹
√
𝐿) ∨ (4

���Σ1/2
𝑖

���
op

���Σ1/2
𝑘

���
op
𝐿)

]
≤ 𝑒−𝐿 .
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5. Deduce from the previous question that

P

[
max
𝑖≠𝑘
|⟨𝐸𝑖 , 𝐸𝑘⟩| > (2∥Σ∥𝐹

√︁
2 log(𝑛) + 𝐿) ∨ (4 |Σ |op (2 log(𝑛) + 𝐿))

]
≤ 𝑒−𝐿 ,

and conclude the proof of Proposition 8.6.

8.4.4 Illustration of hierarchical clustering and spectral clustering

In this section, we illustrate the behavior of different clustering algorithms on synthetic data.
We generate the data as follows. Setting 𝜃 = [0.9, 0.9] ∈ R2, half of the data points are i.i.d. with a
GaussianN(𝜃, 𝐼2/2) distribution and the other half are i.i.d. with a GaussianN(−𝜃, 𝐼2) distribution.
We compute the clusterings output by Spectral clustering, and by Hierarchical clustering with com-
plete, single and average linkage. We also add the results for clustering output by Lloyd algorithm
(another popular clustering algorithm, not covered in theses lectures notes). The results are dis-
played in Figure 8.2.

Points with original labels Spectral clustering Lloyd clustering

Hclust with complete linkage Hclust with single linkage Hclust with average linkage

Figure 8.2: First row: original labels (left), spectral clustering (middle) and Lloyd clustering (right).
Second row: hierarchical clustering with complete linkage (left), single linkage (middle) and aver-
age linkage (right).

We observe that the choice of the linkage has a strong impact on the output of hierarchical clustering.
Complete linkage tends to produce clusters with similar width, leading to cluster a fraction of the
green points with the red ones. Single linkage cut the data at the largest between points distance,
leading to two unbalanced clusters. In this case, it singles out one of the data points.
It is interesting to inspect the dendrogram for the three linkages. They are displayed in Figure 8.3.
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Figure 8.3: Dendrograms built from complete linkage (left), single linkage (middle) and average
linkage (right).

You can reproduce these results by running the following R-code.

# generate data

n<-100

X<-array(0,c(n,2))

X[1:(n/2),]<-rnorm(n,mean=0.9,sd=0.5)

X[(n/2+1):n,]<-rnorm(n,mean=-0.9)

etiquettes<-c(rep(1,n/2),rep(2,n/2)) # labels of points

d<-dist(X, method = "euclidean") # matrix of distances

# compute hierarchical clustering with complete linkage

hcomplete <- hclust(d, method = "complete")

G2complete <- cutree(hcomplete,k=2)

# compute hierarchical clustering with single linkage

hsingle <- hclust(d, method = "single")

G2single <- cutree(hsingle,k=2)

# compute hierarchical clustering with average linkage

haverage <- hclust(d, method = "average")

G2average <- cutree(haverage,k=2)

# compute spectral clustering

v<- svd(X,nu=1,nv=0)$u

spect <- sign(v)

# compute Lloyd clustering

lloyd<-kmeans(X,centers=2)

# display the results

par(mfrow=c(2,3))

plot(X,col=1+etiquettes, main="Original")

plot(X,col=2.5+spect/2, main="Spectral")
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plot(X,col=1+lloyd$cluster, main="Lloyd")

plot(X,col=G2complete+1,main="Complete linkage")

plot(X,col=G2single+1, main="Single linkage")

plot(X,col=G2average+1, main="Average linkage")

# display the dendrograms

par(mfrow=c(1,3))

plot(hcomplete,main="Complete linkage",label=FALSE)

rect.hclust(hcomplete,k=2,border=2:3)

plot(hsingle,main="Single linkage",label=FALSE)

rect.hclust(hsingle,k=2,border=2:3)

plot(haverage,main="Average linkage",label=FALSE)

rect.hclust(haverage,k=2,border=2:3)

When the clusters are better separated, the various algorithms tend to produce similar results. Run-
ning the same example for 𝜇 = [1.5, 1.5], we get the results displayed in Figure 8.4.

Points with original labels Spectral clustering Lloyd clustering

Hclust with complete linkage Hclust with single linkage Hclust with average linkage

Figure 8.4: Results for well separated clusters (𝜇 = [1.5, 1.5]).



Appendix A

Gaussian Distribution

A.1 Gaussian Random Vectors

A random vector𝑌 ∈ R𝑑 is distributed according to theN(𝑚, Σ) Gaussian distribution, with𝑚 ∈ R𝑑
and Σ ∈ S+

𝑑
(the set of all 𝑑 × 𝑑 symmetric positive semidefinite matrix), when

E
[
𝑒i⟨𝜆,𝑌 ⟩

]
= exp

(
i⟨𝜆, 𝑚⟩ − 1

2
𝜆𝑇Σ𝜆

)
, for all 𝜆 ∈ R𝑑 . (A.1)

When matrix Σ is nonsingular (i.e., positive definite), the N(𝑚, Σ) Gaussian distribution has a
density with respect to the Lebesgue measure on R𝑑 given by

1

(2𝜋)𝑑/2 det(Σ)1/2
exp

(
−1

2
(𝑦 − 𝑚)𝑇Σ−1 (𝑦 − 𝑚)

)
.

Affine transformations of Gaussian distribution are still Gaussian.

Lemma A.1 Affine transformation
Let 𝑌 ∈ R𝑑 be a random vector with N(𝑚, Σ) Gaussian distribution. Then for any 𝐴 ∈ R𝑛×𝑑 and
𝑏 ∈ R𝑛,

𝐴𝑌 + 𝑏 ∼ N(𝐴𝑚 + 𝑏, 𝐴Σ𝐴𝑇 ).

In particular, for 𝑎 ∈ R𝑑 ,
⟨𝑎,𝑌⟩ ∼ N (⟨𝑚, 𝑎⟩, 𝑎𝑇Σ𝑎).

Proof. The first identity is obtained by computing the characteristic function of 𝐴𝑌 + 𝑏

E
[
𝑒i⟨𝜆,𝐴𝑌+𝑏⟩

]
= E

[
𝑒i⟨𝐴𝑇𝜆,𝑌 ⟩+i⟨𝜆,𝑏⟩

]
= exp

(
i⟨𝐴𝑇𝜆, 𝑚⟩ − 1

2
(𝐴𝑇𝜆)𝑇Σ𝐴𝑇𝜆

)
𝑒i⟨𝜆,𝑏⟩

= exp
(
i⟨𝜆, 𝐴𝑚 + 𝑏⟩ − 1

2
𝜆𝑇 𝐴Σ𝐴𝑇𝜆

)
.

The second identity is obtained with 𝐴 = 𝑎𝑇 and 𝑏 = 0. 2

Lemma A.2 Orthogonal projections onto subspaces
Let 𝑌 ∈ R𝑑 be a random vector with N(𝑚, Σ) Gaussian distribution, and let 𝑆 and 𝑉 be two
linear spans of R𝑑 orthogonal with respect to the scalar product induced by Σ. Then the variables
Proj𝑆𝑌 and Proj𝑉𝑌 are independent and follow, respectively, the N(Proj𝑆𝑚, Proj𝑆Σ Proj𝑆) and
N(Proj𝑉𝑚, Proj𝑉Σ Proj𝑉 ) Gaussian distribution.

105
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Proof. Since the projection matrices Proj𝑆 and Proj𝑉 are symmetric, we obtain that the joint char-
acteristic function of Proj𝑆𝑌 and Proj𝑉𝑌 is

E
[
𝑒i⟨𝜆,Proj𝑆𝑌 ⟩+i⟨𝛾,Proj𝑉𝑌 ⟩

]
= E

[
𝑒i⟨Proj𝑆𝜆+Proj𝑉𝛾,𝑌 ⟩

]
= exp

(
i⟨Proj𝑆𝜆 + Proj𝑉𝛾, 𝑚⟩ −

1
2
(Proj𝑆𝜆 + Proj𝑉𝛾)𝑇Σ(Proj𝑆𝜆 + Proj𝑉𝛾)

)
= exp

(
i⟨𝜆, Proj𝑆𝑚⟩ −

1
2
𝜆𝑇Proj𝑆Σ Proj𝑆𝜆

)
× exp

(
i⟨𝛾, Proj𝑉𝑚⟩ −

1
2
𝛾𝑇Proj𝑉Σ Proj𝑉𝛾

)
= E

[
𝑒i⟨𝜆,Proj𝑆𝑌 ⟩

]
E

[
𝑒i⟨𝛾,Proj𝑉𝑌 ⟩

]
.

We conclude with Lemma A.1. 2

A.2 Chi-Square Distribution

Let 𝑌 ∈ R𝑛 be a random vector with N(0, 𝐼𝑛) Gaussian distribution. The 𝜒2 distribution with 𝑛
degrees of freedom, corresponds to the distribution of ∥𝑌 ∥2. In particular, the mean of a 𝜒2 (𝑛)
distribution is

E
[
∥𝑌 ∥2

]
=

𝑛∑︁
𝑖=1

E
[
𝑌2
𝑖

]
= 𝑛.

Lemma A.3 Norms of projections
Let𝑌 ∈ R𝑛 be a random vector withN(0, 𝐼𝑛) Gaussian distribution, and let 𝑆 be a linear subspace
of R𝑛 with dimension 𝑑. Then, the variable Proj𝑆𝑌 follows the N(0, Proj𝑆) Gaussian distribution
and the square-norm ∥Proj𝑆𝑌 ∥2 follows a 𝜒2-distribution of degree 𝑑.

In particular, E
[
∥Proj𝑆𝑌 ∥2

]
= dim(𝑆).

Proof. The projection Proj𝑆 is symmetric, so Proj𝑆Proj𝑇𝑆 = Proj𝑆 and Proj𝑆𝑌 follows aN(0, Proj𝑆)
Gaussian distribution according to Lemma A.1.

Let 𝑢1, . . . , 𝑢𝑑 be an orthonormal basis of 𝑆 and set 𝑈 = [𝑢1, . . . , 𝑢𝑑]. Since 𝑈𝑇𝑈 = 𝐼𝑑 , the vector
𝑈𝑇𝑌 follows a N(0, 𝐼𝑑)-distribution and

∥Proj𝑆𝑌 ∥2 =

𝑑∑︁
𝑘=1

(𝑢𝑇𝑘𝑌 )
2 = ∥𝑈𝑇𝑌 ∥2

follows a 𝜒2 distribution of degree 𝑑. 2

A.3 Gaussian Conditioning

We provide in this section a few useful results on Gaussian conditioning.
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Lemma A.4
We consider two sets 𝐴 = {1, . . . , 𝑘} and 𝐵 = {1, . . . , 𝑝} \ 𝐴, and a Gaussian random vector

𝑋 =

[
𝑋𝐴
𝑋𝐵

]
∈ R𝑝 with N(0, Σ) distribution. We assume that Σ is nonsingular and write 𝐾 =[

𝐾𝐴𝐴 𝐾𝐴𝐵
𝐾𝐵𝐴 𝐾𝐵𝐵

]
for its inverse.

In the next formulas, 𝐾−1
𝐴𝐴

will refer to the inverse (𝐾𝐴𝐴)−1 of 𝐾𝐴𝐴 (and not to (𝐾−1)𝐴𝐴 = Σ𝐴𝐴).

Then, the conditional distribution of 𝑋𝐴 given 𝑋𝐵 is the Gaussian N
(
−𝐾−1

𝐴𝐴
𝐾𝐴𝐵𝑋𝐵, 𝐾

−1
𝐴𝐴

)
distri-

bution. In others words, we have the decomposition

𝑋𝐴 = −𝐾−1
𝐴𝐴𝐾𝐴𝐵𝑋𝐵 + 𝜀𝐴, where 𝜀𝐴 ∼ N

(
0, 𝐾−1

𝐴𝐴

)
is independent of 𝑋𝐵. (A.2)

Proof. We write 𝑔(𝑥𝐴, 𝑥𝐵), respectively, 𝑔(𝑥𝐴 |𝑥𝐵) and 𝑔(𝑥𝐵), for the density of the distribution of
𝑋 , respectively, of 𝑋𝐴 given 𝑋𝐵 = 𝑥𝐵 and 𝑋𝐵. We have

𝑔(𝑥𝐴 |𝑥𝐵) = 𝑔(𝑥𝐴, 𝑥𝐵)/𝑔(𝑥𝐵)

=
1

(2𝜋)𝑘/2
exp

(
−1

2
𝑥𝑇𝐴𝐾𝐴𝐴𝑥𝐴 − 𝑥

𝑇
𝐴𝐾𝐴𝐵𝑥𝐵 −

1
2
𝑥𝑇𝐵

(
𝐾𝐵𝐵 − Σ−1

𝐵𝐵

)
𝑥𝐵

)
,

with Σ𝐵𝐵 the covariance matrix of 𝑋𝐵. Since Σ−1
𝐵𝐵

= 𝐾𝐵𝐵 − 𝐾𝐵𝐴𝐾−1
𝐴𝐴
𝐾𝐴𝐵, we have

𝑔(𝑥𝐴 |𝑥𝐵) =
1

(2𝜋)𝑘/2
exp

(
−1

2
(𝑥𝐴 + 𝐾−1

𝐴𝐴𝐾𝐴𝐵𝑥𝐵)
𝑇𝐾𝐴𝐴(𝑥𝐴 + 𝐾−1

𝐴𝐴𝐾𝐴𝐵𝑥𝐵)
)
.

We recognize the density of the Gaussian N
(
−𝐾−1

𝐴𝐴
𝐾𝐴𝐵 𝑥𝐵, 𝐾

−1
𝐴𝐴

)
distribution. 2

Corollary A.5 For any 𝑎 ∈ {1, . . . , 𝑝}, we have

𝑋𝑎 = −
∑︁
𝑏 : 𝑏≠𝑎

𝐾𝑎𝑏

𝐾𝑎𝑎
𝑋𝑏 + 𝜀𝑎, where 𝜀𝑎 ∼ N(0, 𝐾−1

𝑎𝑎) is independent of {𝑋𝑏 : 𝑏 ≠ 𝑎} . (A.3)

Proof. We apply the previous lemma with 𝐴 = {𝑎} and 𝐵 = 𝐴𝑐. 2

Finally, we derive from (A.2) the following simple formula for the conditional correlation of 𝑋𝑎 and
𝑋𝑏 given {𝑋𝑐 : 𝑐 ≠ 𝑎, 𝑏}, which is defined by

cor(𝑋𝑎, 𝑋𝑏 |𝑋𝑐 : 𝑐 ≠ 𝑎, 𝑏) = cov(𝑋𝑎, 𝑋𝑏 |𝑋𝑐 : 𝑐 ≠ 𝑎, 𝑏)√︁
var(𝑋𝑎 |𝑋𝑐 : 𝑐 ≠ 𝑎, 𝑏) var(𝑋𝑏 |𝑋𝑐 : 𝑐 ≠ 𝑎, 𝑏)

.

Corollary A.6 For any 𝑎, 𝑏 ∈ {1, . . . , 𝑝}, we have

cor(𝑋𝑎, 𝑋𝑏 |𝑋𝑐 : 𝑐 ≠ 𝑎, 𝑏) = −𝐾𝑎𝑏√
𝐾𝑎𝑎 𝐾𝑏𝑏

. (A.4)

Proof. The previous lemma with 𝐴 = {𝑎, 𝑏} and 𝐵 = 𝐴𝑐 gives

cov(𝑋𝐴 |𝑋𝐵) =
(
𝐾𝑎𝑎 𝐾𝑎𝑏
𝐾𝑎𝑏 𝐾𝑏𝑏

)−1

=
1

𝐾𝑎𝑎𝐾𝑏𝑏 − 𝐾2
𝑎𝑏

(
𝐾𝑏𝑏 −𝐾𝑎𝑏
−𝐾𝑎𝑏 𝐾𝑎𝑎

)
.

Plugging this formula in the definition of the conditional correlation, we obtain Formula (A.4). 2





Appendix B

Convex Functions

B.1 Convex functions

A function 𝐹 : R𝑛 → R is convex if 𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦) for all 𝑥, 𝑦 ∈ R𝑛
and 𝜆 ∈ [0, 1]. An equivalent definition is that the epigraph {(𝑥, 𝑦), 𝑥 ∈ R𝑛, 𝑦 ∈ [𝐹 (𝑥), +∞[} is a
convex subset of R𝑛+1.

Lemma B.1 When the function 𝐹 : R𝑛 → R is convex and differentiable, we have

𝐹 (𝑦) ≥ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩ , for all 𝑥, 𝑦 ∈ R𝑛.

Proof. Let 𝑥, ℎ ∈ R𝑛, and define 𝑓 : R→ R by 𝑓 (𝑡) = 𝐹 (𝑥 + 𝑡ℎ). Since 𝐹 is differentiable, so is 𝑓
and 𝑓 ′ (𝑡) = ⟨∇𝐹 (𝑥 + 𝑡ℎ), ℎ⟩. By Taylor’s expansion, we have for some 𝑡∗ ∈ [0, 1]

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) = ⟨∇𝐹 (𝑥 + 𝑡∗ℎ), ℎ⟩ = 𝑓 ′ (𝑡∗).
Since

𝑓 (𝜆𝑡 + (1 − 𝜆)𝑠) = 𝐹 (𝜆(𝑥 + 𝑡ℎ) + (1 − 𝜆) (𝑥 + 𝑠ℎ)) ≤ 𝜆 𝑓 (𝑡) + (1 − 𝜆) 𝑓 (𝑠) ,
the function 𝑓 is convex, so

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) = 𝑓 ′ (𝑡∗) ≥ 𝑓 ′ (0) = ⟨∇𝐹 (𝑥), ℎ⟩.
We conclude by setting ℎ = 𝑦 − 𝑥. 2

B.2 Jensen inequality

Jensen inequality generalizes the two points inequality 𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦) to
arbitrary convex combination given by expectations.

Lemma B.2 Jensen inequality
For any convex function 𝜑 : R𝑑 → R and any random variable 𝑋 in R𝑑 , such that 𝜑(𝑋) is
integrable, we have

𝜑(E [𝑋]) ≤ E [𝜑(𝑋)] .

Proof. Let us denote by L𝜑 the set of affine functions from R𝑑 to R, such that 𝐿 (𝑥) ≤ 𝜑(𝑥) for all
𝑥 ∈ R𝑑 . Since

𝜑(𝑥) = sup
𝐿∈L𝜑

𝐿 (𝑥) ,

the linearity of the expectation gives

E [𝜑(𝑋)] = E
[

sup
𝐿∈L𝜑

𝐿 (𝑋)
]
≥ sup
𝐿∈L𝜑

E [𝐿 (𝑋)] = sup
𝐿∈L𝜑

𝐿 (E [𝑋]) = 𝜑(E [𝑋]) .

2
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Appendix C

Constrained optimization

Let 𝑓 , 𝑔1, . . . , 𝑔𝑁 be 𝑁 + 1 functions from R𝑑 to R. In this appendix, we recall some basic results
related to the minimization problem

min
𝑥∈C

𝑓 (𝑥), where C =
{
𝑥 ∈ R𝑑 : 𝑔1 (𝑥) ≤ 0, . . . , 𝑔𝑁 (𝑥) ≤ 0, ℓ1 (𝑥) = 0, . . . , ℓ𝑚 (𝑥) = 0

}
. (C.1)

C.1 Dual problem

C.1.1 Lagrangian and dual functions

Two functions play an important role in the investigation of the optimization problem (C.1): The
Lagrangian function

𝐿 (𝑥, 𝜆, 𝜇) = 𝑓 (𝑥) +
𝑁∑︁
𝑗=1

𝜆 𝑗𝑔 𝑗 (𝑥) +
𝑚∑︁
𝑖=1

𝜇𝑖ℓ𝑖 (𝑥), for (𝑥, 𝜆, 𝜇) ∈ R𝑑 × R𝑁 × R𝑚, (C.2)

and the dual function

𝑞(𝜆, 𝜇) = inf
𝑥∈R𝑑

𝐿 (𝑥, 𝜆, 𝜇), for (𝜆, 𝜇) ∈ R𝑁 × R𝑚. (C.3)

Since 𝑞(𝜆, 𝜇) is an infimum of affine functions, the dual function 𝑞 is concave.

C.1.2 Weak duality

Let us abbreviate the 𝑁 conditions 𝜆 𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑁 by 𝜆 ≥ 0. For any 𝜆 ≥ 0, 𝜇 ∈ R𝑚 and
𝑥 ∈ C, we have

𝑞(𝜆, 𝜇) ≤ 𝐿 (𝑥, 𝜆, 𝜇) = 𝑓 (𝑥) +
𝑁∑︁
𝑗=1

𝜆 𝑗︸︷︷︸
≥0

𝑔 𝑗 (𝑥)︸︷︷︸
≤0

+
𝑚∑︁
𝑖=1

𝜇𝑖 ℓ𝑖 (𝑥)︸︷︷︸
=0

≤ 𝑓 (𝑥).

So, for any 𝜆 ≥ 0 and any 𝜇 ∈ R𝑚, we have

𝑞(𝜆, 𝜇) ≤ min
𝑥∈C

𝑓 (𝑥).

We then obtain the following lower bound on the minimization problem (C.1)

sup
𝜆≥0, 𝜇∈R𝑚

𝑞(𝜆, 𝜇) ≤ min
𝑥∈C

𝑓 (𝑥) (weak duality). (C.4)

This inequality is called the weak-duality condition. We observe that while the primal problem (C.1)
can be hard to solve numerically in general, when the function 𝑞 has an explicit expression, the dual
problem

sup
𝜆≥0, 𝜇∈R𝑚

𝑞(𝜆, 𝜇) (dual problem) (C.5)
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can be solved efficiently, since 𝑞 is concave and the constraint 𝜆 ≥ 0 is linear. The weak-duality can
then be a convenient tool to compute efficiently a lower bound on a minimisation problem.

The difference between the value of the primal problem (C.1) and the value of the dual problem (C.5)
is called the duality gap. When the inequality in (C.4) is strict, this gap is positive and otherwise it
is zero.

C.1.3 Finding a solution

When the functions are convex and differentiable, we can give some simple suffisant conditions for
𝑥∗ to be a minimizer of the primal problem (C.1).

Lemma C.1 Karush-Kuhn-Tucker (KKT) conditions
Assume that 𝑓 , 𝑔1, . . . , 𝑔𝑁 are convex and differentiable. Assume also that ℓ1, . . . , ℓ𝑚 are affine.
If (𝑥∗, 𝜆∗, 𝜇∗) ∈ R𝑑 × R𝑁 × R𝑚 are such that

∇𝑥𝐿 (𝑥∗, 𝜆∗, 𝜇∗) = 0 (first order condition)

𝑥∗ ∈ C, 𝜆∗ ≥ 0 (feasibility condition)

𝜆∗𝑗𝑔 𝑗 (𝑥∗) = 0 (slackness condition)

then, we have
𝑞(𝜆∗, 𝜇∗) = max

𝜆≥0, 𝜇∈R𝑚
𝑞(𝜆, 𝜇) = inf

𝑥∈C
𝑓 (𝑥) = 𝑓 (𝑥∗).

The conclusion of Lemma C.1 is twofold. First, if we find (𝑥∗, 𝜆∗, 𝜇∗) fulfilling the first order, the
feasibility and the slackness conditions, then 𝑥∗ minimizes the primal problem (C.1). Second, there
is no duality gap, and (𝜆∗, 𝜇∗) is solution of the dual problem (C.5).

We underline that the slackness and the feasibility conditions enforce two conditions:
1. both 𝜆∗

𝑗
and −𝑔 𝑗 (𝑥∗) must be non-negative;

2. at least one of these two quantities is zero.
The second condition enforces that if 𝑔 𝑗 (𝑥∗) < 0, then 𝜆∗

𝑗
= 0. In this case, where 𝑔 𝑗 (𝑥∗) < 0, we

say that the condition is not active.

Proof of Lemma C.1. Since 𝐿 is convex in 𝑥, and since 𝑥∗ is a critical point for 𝑥 → 𝐿 (𝑥, 𝜆∗, 𝜇∗),
we have

𝐿 (𝑥∗, 𝜆∗, 𝜇∗) = inf
𝑥∈R𝑑

𝐿 (𝑥, 𝜆∗, 𝜇∗) = 𝑞(𝜆∗, 𝜇∗).

By the feasibility and the slackness conditions, we then have

𝑞(𝜆∗, 𝜇∗) = 𝐿 (𝑥∗, 𝜆∗, 𝜇∗) = 𝑓 (𝑥∗) +
𝑁∑︁
𝑗=1

𝜆∗𝑗𝑔 𝑗 (𝑥∗)︸    ︷︷    ︸
=0

+
𝑚∑︁
𝑖=1

𝜇∗𝑖 ℓ𝑖 (𝑥∗)︸︷︷︸
=0

= 𝑓 (𝑥∗). (C.6)

Furthermore, since 𝜆∗ ≥ 0 and since 𝑥∗ ∈ C, the weak-duality ensures that

𝑞(𝜆∗, 𝜇∗) ≤ sup
𝜆≥0, 𝜇∈R𝑚

𝑞(𝜆, 𝜇) ≤ min
𝑥∈C

𝑓 (𝑥) ≤ 𝑓 (𝑥∗).

Combining this inequality with (C.6), we get the conclusion. □
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