High-dimensional statistics and probability

Christophe Giraud1, Matthieu Lerasle2,3 and Tristan Mary-Huard4,5

\begin{itemize}
 \item 1 Université Paris-Saclay
 \item 2 CNRS
 \item 3 ENSAE
 \item 4 AgroParistech
 \item 5 INRA - Le Moulon
\end{itemize}

M2 Maths Aléa & MathSV
Informations on the course
Objective

1. To understand the main features of high-dimensional observations;
2. To learn the main concepts and methods to handle the curse of dimensionality;
3. To get prepared for a PhD in statistics or machine learning;

→ conceptual and mathematical course
Structure

The course has two parts

- **Part 1** [MDA + MSV]: 7 weeks with C. Giraud: central concepts in the simple Gaussian setting
- **Part 2** [MDA]: 7 weeks with M. Lerasle: essential probabilistic tools for stats and ML
- **Part 2** [MSV]: 3 weeks with T. Mary-Huard: supervised classification and illustrations
Agenda (2/2)

[MDA+MSV] 23/09 – 10/11

<table>
<thead>
<tr>
<th>1</th>
<th>Curse of dimensionality + principle of model selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Model selection theory</td>
</tr>
<tr>
<td>3</td>
<td>Information theoretic lower bounds</td>
</tr>
<tr>
<td>4</td>
<td>Convexification: principle and theory</td>
</tr>
<tr>
<td>5</td>
<td>Iterative algorithms</td>
</tr>
<tr>
<td>6</td>
<td>Low rank regression</td>
</tr>
<tr>
<td>7</td>
<td>False discoveries and multiple testing</td>
</tr>
</tbody>
</table>

MDA (Matthieu)

7 weeks on central probabilistic tools for ML and statistics

MSV (Tristan)

3 weeks on supervised classification, algorithmic aspects, and illustrations. October 4, 11 and 18. Orsay, room 0A5, 9h-12h.
Organisation

Organisation for the first part

- **Lectures:** the lectures will take place every Thursday (23/09 – 28/10) at 3 p.m. room 0A1, and 10/11 at 3 p.m. room 2L8. A recorded version of the lectures (2020) is available on the Youtube channel https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ

- **Lecture notes:** lectures notes are available on the website of the course https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html as well as handwritten notes for each lecture

- **Exercises:** the list of assigned exercises is given on the website

- **December 16:** exam on the first part of the course
 - 7 pt: on 1 or 2 exercises from the assigned list
 - 13pt: research problem
Learn by doing

- you follow actively the lectures:
 - you try to understand all the explanations;
 - if a point is not clear, please ask questions. You can also look back at the explanations on the lecture notes and the Youtube channel.

- you work out the lecture notes: take a pen and a sheet of paper, and redo all the computations. You have understood something, only when you are able to
 - explain it to someone else;
 - answer the question "why have we done this, instead of anything else?"

- you work out the assigned exercises.

- you interact with the others: discussing with the others is very efficient for making progress (both when explaining something, and when receiving an explanation).
Documents

- Lecture notes: pdf & printed versions, handwritten notes
- Website of the course
 https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html
- Youtube channel
 https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ
- A wiki website for sharing solutions to the exercises
 http://high-dimensional-statistics.wikidot.com
Evaluation

[MDA+MSV] Exam December 16

- 1 or 2 (part of) exercises of the list (7/20)
 - list = those on the website

 https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html

- a research problem (13/20)

[MDA] second evaluation in January

mainly on the material presented by Matthieu Lerasle
Any questions so far?
High-dimensional data

Chapter 1
High-dimension data

- biotech data (sense thousands of features)
- images (millions of pixels / voxels)
- marketing, business data
- crowdsourcing data
- etc
Blessing?

😊 we can sense thousands of variables on each ”individual” : potentially we will be able to scan every variables that may influence the phenomenon under study.

😢 the curse of dimensionality : separating the signal from the noise is generally almost impossible in high-dimensional data and computations can rapidly exceed the available resources.
Curse of dimensionality

Chapter 1
Curse 1: fluctuations cumulate

Example: \(X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^p \) i.i.d. with \(\text{cov}(X) = \sigma^2 I_p \). We want to estimate \(\mathbb{E}[X] \) with the sample mean

\[
\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}.
\]

Then

\[
\mathbb{E} \left[||\bar{X}_n - \mathbb{E}[X]||^2 \right] = \sum_{j=1}^{p} \mathbb{E} \left[(\bar{X}_n)_j - \mathbb{E}[X_j])^2 \right]
\]

\[
= \sum_{j=1}^{p} \text{var} (\bar{X}_n)_j = \frac{p}{n} \sigma^2.
\]

It can be huge when \(p \gg n \)...
Curse 2: locality is lost

Observations \((Y_i, X^{(i)}) \in \mathbb{R} \times [0, 1]^p\) for \(i = 1, \ldots, n\).

Model: \(Y_i = f(X^{(i)}) + \varepsilon_i\) with \(f\) smooth.

Assume that \((Y_i, X^{(i)})_{i=1,\ldots,n}\) i.i.d. and that \(X^{(i)} \sim U([0, 1]^p)\).

Local averaging: \(\hat{f}(x) = \text{average of } \{Y_i : X^{(i)} \text{ close to } x\}\)
Curse 2: locality is lost

Figure: Histograms of the pairwise-distances between $n = 100$ points sampled uniformly in the hypercube $[0, 1]^p$, for $p = 2, 10, 100$ and 1000.
Why?

Square distances.

\[\mathbb{E} \left[\| X^{(i)} - X^{(j)} \|^2 \right] = \sum_{k=1}^{p} \mathbb{E} \left[(X^{(i)}_k - X^{(j)}_k)^2 \right] = p \mathbb{E} \left[(U - U')^2 \right] = \frac{p}{6}, \]

with \(U, U' \) two independent random variables with \(U[0, 1] \) distribution.

Standard deviation of the square distances

\[\text{sdev} \left[\| X^{(i)} - X^{(j)} \|^2 \right] = \sqrt{\sum_{k=1}^{p} \text{var} \left[(X^{(i)}_k - X^{(j)}_k)^2 \right]} \]
\[= \sqrt{p \text{var} \left[(U' - U)^2 \right]} \approx 0.2 \sqrt{p}. \]
Curse 3: lost in high-dimensional spaces

High-dimensional balls have a vanishing volume!

\[V_p(r) = \text{volume of a ball of radius } r \]
\[\text{in dimension } p \]
\[= r^p V_p(1) \]

with

\[V_p(1) \xrightarrow{p \to \infty} \left(\frac{2\pi e}{p} \right)^{p/2} (p\pi)^{-1/2}. \]
Curse 3 : lost in high-dimensional space

Which sample size to avoid the lost of locality?

Number n of points x_1, \ldots, x_n required for covering $[0, 1]^p$ by the balls $B(x_i, 1)$:

$$n \geq \frac{1}{V_p(1)} \xrightarrow{p \to \infty} \left(\frac{p}{2\pi e} \right)^{p/2} \sqrt{p\pi}$$

<table>
<thead>
<tr>
<th>p</th>
<th>20</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>39</td>
<td>45630</td>
<td>5.7 10^{12}</td>
<td>42 10^{39}</td>
<td>larger than the estimated number of particles in the observable universe</td>
</tr>
</tbody>
</table>
Curse 4: Thin tails concentrate the mass!

Figure: Mass of the standard Gaussian distribution $g_p(x) \, dx$ in the “bell” $B_{p,0.001} = \{ x \in \mathbb{R}^p : g_p(x) \geq 0.001g_p(0) \}$ for increasing dimensions p.
Why?

Volume of a ball: \(V_p(r) = r^p V_p(1) \)

The volume of a high-dimensional ball is concentrated in its crust!

Ball: \(B_p(0, r) \)

Crust: \(C_p(r) = B_p(0, r) \setminus B_p(0, 0.99r) \)

The fraction of the volume in the crust

\[
\frac{\text{volume}(C_p(r))}{\text{volume}(B_p(0, r))} = 1 - 0.99^p
\]

goes exponentially fast to 1!

⚠️ **Forget your low-dimensional intuitions!**
Curse 4: Thin tails concentrate the mass!

Where is the Gaussian mass located?

For $X \sim \mathcal{N}(0, I_p)$ and $\varepsilon > 0$ small

$$\frac{1}{\varepsilon} \mathbb{P}[R \leq \|X\| \leq R + \varepsilon] = \frac{1}{\varepsilon} \int_{R \leq \|x\| \leq R + \varepsilon} e^{-\|x\|^2/2} \frac{dx}{(2\pi)^{p/2}}$$

$$= \frac{1}{\varepsilon} \int_{R}^{R+\varepsilon} e^{-r^2/2} r^{p-1} \frac{pV_p(1)}{(2\pi)^{p/2}} dr$$

$$\approx \frac{p}{2^{p/2}\Gamma(1 + p/2)} R^{p-1} \times e^{-R^2/2}.$$

This mass is concentrated around $R = \sqrt{p - 1}$!

Gaussian = uniform?

The Gaussian $\mathcal{N}(0, I_p)$ distribution looks like a uniform distribution on the sphere of radius $\sqrt{p - 1}$!
Curse 5: weak signals are lost

Finding active genes: we observe n repetitions for p genes

$$Z_j^{(i)} = \theta_j + \varepsilon_j^{(i)}, \quad j = 1, \ldots, p, \quad i = 1, \ldots, n,$$

with the $\varepsilon_j^{(i)}$ i.i.d. with $\mathcal{N}(0, \sigma^2)$ Gaussian distribution.

Our goal: find which genes have $\theta_j \neq 0$

For a single gene

Set

$$X_j = n^{-1/2} (Z_j^{(1)} + \ldots + Z_j^{(n)}) \sim \mathcal{N} (\sqrt{n} \theta_j, \sigma^2)$$

Since $\mathbb{P} [|\mathcal{N}(0, \sigma^2)| \geq 2\sigma] \leq 0.05$, we can detect the active gene with X_j when

$$|\theta_j| \geq \frac{2\sigma}{\sqrt{n}}$$
Curse 5: weak signals are lost

Maximum of Gaussian

For W_1, \ldots, W_p i.i.d. with $\mathcal{N}(0, \sigma^2)$ distribution, we have (see later)

$$\max_{j=1,\ldots,p} W_j \approx \sigma \sqrt{2 \log(p)}.$$

Consequence: When we consider the p genes together, we need a signal of order

$$|\theta_j| \geq \sigma \sqrt{\frac{2 \log(p)}{n}}$$

in order to dominate the noise 😊
Some other curses

- Curse 6: an accumulation of rare events may not be rare (false discoveries, etc)
- Curse 7: algorithmic complexity must remain low
- etc
Low-dimensional structures in high-dimensional data

Hopeless?

Low dimensional structures: high-dimensional data are usually concentrated around low-dimensional structures reflecting the (relatively) small complexity of the systems producing the data

- geometrical structures in an image,
- regulation network of a ”biological system”,
- social structures in marketing data,
- human technologies have limited complexity, etc.

Dimension reduction:

- ”unsupervised” (PCA)
- ”supervised”
Principal Component Analysis

For any data points $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^p$ and any dimension $d \leq p$, the PCA computes the linear span in \mathbb{R}^p

$$V_d \in \arg\min_{\dim(V) \leq d} \sum_{i=1}^{n} \|X^{(i)} - \text{Proj}_V X^{(i)}\|^2,$$

where Proj_V is the orthogonal projection matrix onto V.

Recap on PCA

Exercise 1.6.4
PCA in action

original image

projected image

original image

projected image

original image

projected image

original image

projected image

MNIST : 1100 scans of each digit. Each scan is a 16×16 image which is encoded by a vector in \mathbb{R}^{256}. The original images are displayed in the first row, their projection onto 10 first principal axes in the second row.
"Supervised" dimension reduction

Figure: 55 chemical measurements of 162 strains of *E. coli*. Left: the data is projected on the plane given by a PCA. Right: the data is projected on the plane given by a LDA.
Summary

Statistical difficulty

- high-dimensional data
- small sample size

Good feature

Data generated by a large stochastic system

- existence of low dimensional structures
- (sometimes: expert models)

The way to success

Finding, from the data, the hidden structure in order to exploit them.
Mathematics of high-dimensional statistics

Chapter 1
Paradigm shift

Classical statistics:

- small number p of parameters
- large number n of observations
- we investigate the performances of the estimators when $n \to \infty$ (central limit theorem...)

![Graph showing a scatter plot with a trend line and data points]

C. Giraud (Paris Saclay)
Paradigm shift

Classical statistics:
- small number p of parameters
- large number n of observations
- we investigate the performances of the estimators when $n \to \infty$ (central limit theorem...)

Actual data:
- inflation of the number p of parameters
- small sample size: $n \approx p$ ou $n \ll p$

\implies Change our point of view on statistics!
(the $n \to \infty$ asymptotic does not fit anymore)
Statistical settings
- double asymptotic: both \(n, p \to \infty \) with \(p \sim g(n) \)
- non asymptotic: treat \(n \) and \(p \) as they are

Double asymptotic
- more easy to analyse, sharp results 😊
- but sensitive to the choice of \(g \) 😞

ex: if \(n = 33 \) and \(p = 1000 \), do we have \(g(n) = n^2 \) or \(g(n) = e^{n/5} \)?

Non-asymptotic
- no ambiguity 😊
- but the analysis is more involved 😞