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Informations on the course
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Objective

1 To understand the main features of high-dimensional observations;

2 To learn the mains concepts and methods to handle the curse of
dimensionality;

3 To get prepared for a PhD in statistics or machine learning

4 [MSV] Some complement and biological illustrations by Z. Naulet.

−→ conceptual and mathematical course

−→ blackboard course (except today)
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Agenda (1/2)

Structure

The course has two parts

Part 1 [MDA+MSV+MIA]: 6 weeks with C. Giraud: central concepts
in high-dimensional statistics

Part 2 [MDA]: 6 weeks with M. Lerasle: essential probabilistic tools
for stats and ML

Part 2 [MSV]: 3 weeks with Z. Naulet: false discoveries, supervised
classification and illustrations
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Agenda (2/2)

[MDA+MSV]+MIA 26/09 – 07/11

1 Curse of dimensionality + principle of model selection

2 Model selection theory

3 Information theoretic lower bounds

4 Convexification: principle and theory

5 Iterative algorithms

6 Low rank regression

MDA (Matthieu)

6 weeks on central probabilistic
tools for ML and statistics

MSV (Zacharie)

3 weeks on false discoveries,
supervised classification,
algorithmic aspects, and
illustrations. November 14, 21,
and 28 from 15h to 18h, room
1A11.
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Organisation

Organisation for the first part

Lectures: the lectures will take place every Thursday (26/09 – 07/11)
at 15h-19h room 0A1. A recorded version of the lectures (2020) is
available on the Youtube channel
https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ

Lecture notes: lectures notes are available on the website of the
course https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html

as well as handwritten notes for each lecture

Exercises: the list of assigned exercises is given on the website

December 19: exam on the first part of the course
I 7 pt: on 1 or 2 exercises from the assigned list
I 13pt: research oriented problem
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Learn by doing

you follow actively the lectures:
I you try to understand all the explanations;
I if a point is not clear, please ask questions. You can also look back at

the explanations on the lecture notes and the Youtube channel.

you work out the lecture notes: take a pen and a sheet of paper, and
redo all the computations. You have understood something, only
when you are able to

I explain it to someone else;
I answer the question ”why have we done this, instead of anything else?”

you work out the assigned exercises.

you interact with the others: discussing with the others is very
efficient for making progress (both when explaining something, and
when receiving an explanation).

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 7 / 41



Documents

Documents

Lecture notes: pdf & printed versions, handwritten notes

Website of the course
https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html

Youtube channel
https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ

A wiki website for sharing solutions to the exercises
http://high-dimensional-statistics.wikidot.com
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Evaluation

[MDA+MSV+MIA] Exam December 19

1 or 2 (part of) exercises of the list (7/20)
I list = those on the website

https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html

a research oriented problem (13/20)

you can take with you the printed lecture notes

[MDA] second evaluation in January

Project related to the material presented by Matthieu Lerasle
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Any questions so far?
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High-dimensional data
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High-dimension data

biotech data (sense thousands of features)

images (millions of pixels / voxels)

web data

crowdsourcing data

etc
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Blessing?

, we can sense thousands of variables on each ”individual” : potentially
we will be able to scan every variables that may influence the phenomenon
under study.

/ the curse of dimensionality : separating the signal from the noise is in
general almost impossible in high-dimensional data and computations can
rapidly exceed the available resources.
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Probability in high-dimension

Chapter 1

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 14 / 41



A ball is essentially a sphere
Volume of an Euclidean ball Bp(0, r) of radius r : Vp(r) = rpVp(1)

The volume of a high-dimensional ball is
concentrated in its crust!

Crust: Cp(r) = Bp(0, r) \ Bp(0, 0.99r)

The fraction of the volume in the crust

volume(Cp(r))

volume(Bp(0, r))
= 1− 0.99p

goes exponentially fast to 1!
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Forget your low-dimensional intuitions!
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Thin tails can concentrate the mass!
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Thin tails can concentrate the mass!
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Figure: Mass of the standard Gaussian distribution gp(x) in the “bell”
B = {x ∈ Rp : gp(x) ≥ 0.001gp(0)} for increasing dimension p.

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 17 / 41



Thin tails can concentrate the mass!

Where is the Gaussian mass located?

For X ∼ N (0, Ip) and ε > 0 small

1

ε
P [R ≤ ‖X‖ ≤ R + ε] =

1

ε

∫
R≤‖x‖≤R+ε

e−‖x‖
2/2 dx

(2π)p/2

=
1

ε

∫ R+ε

R
e−r

2/2 rp−1 pVp(1) dr

(2π)p/2

≈ p

2p/2Γ(1 + p/2)
Rp−1 × e−R

2/2.

This mass is concentrated around R∗ =
√
p − 1 !

Remark: the density ratio
gp(R∗)
gp(0) is smaller than 2e−p/2.

C. Giraud (Paris Saclay) High-dimensional statistics & probability M2 Maths Aléa & MathSV 18 / 41



Thin tails can concentrate the mass!

Concentration of the square norm

Let X ∼ N (0, Ip). We have for all x ≥ 0

P
[
p − 2

√
px ≤ ‖X‖2 ≤ p + 2

√
2px + 2x

]
≥ 1− 2e−x .

Proof: Chernoff bound (Exercise 1.6.6).

Gaussian ≈ Uniform on the sphere S(0,
√
p)

As a first approximation, the Gaussian N (0, Ip) distribution can be
thought as a uniform distribution on the sphere of radius ≈ √p !
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Lost in high-dimensional spaces

We sample n = 100 data points X (1), . . . ,X (n) i .i .d .∼ U ([0, 1]p) i.i.d.
uniformly in the hypercube [0, 1]p.

let us look at the distribution of the pairwise distances dij = ‖X (i) − X (j)‖
between the points.
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Lost in high-dimensional spaces

dimension = 2
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Fr
eq
ue
nc
y

0.0 0.5 1.0 1.5

0
20
0

40
0

60
0

dimension = 10

distance between points

Fr
eq
ue
nc
y

0.0 0.5 1.0 1.5 2.0

0
20
0

40
0

60
0

80
0

dimension = 100

distance between points

Fr
eq
ue
nc
y

0 1 2 3 4 5

0
20
0

40
0

60
0

80
0

dimension = 1000

distance between points

Fr
eq
ue
nc
y

0 5 10 15
0

20
0

40
0

60
0

80
0

Figure: Histograms of the pairwise-distances between n = 100 points sampled
uniformly in the hypercube [0, 1]p, for p = 2, 10, 100 and 1000.
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Lost in high-dimensional spaces

Square distances.

E
[
‖X (i) − X (j)‖2

]
=

p∑
k=1

E
[(

X
(i)
k − X

(j)
k

)2
]

= p E
[
(U − U ′)2

]
= p/6,

with U,U ′ two independent random variables with U [0, 1] distribution.

Standard deviation of the square distances

sdev
[
‖X (i) − X (j)‖2

]
=

√√√√ p∑
k=1

var

[(
X

(i)
k − X

(j)
k

)2
]

=
√

pvar [(U ′ − U)2] ≈ 0.2
√
p .
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Lost in high-dimensional spaces

High-dimensional unit balls have a
vanishing volume!

Vp(r) = volume of a ball of radius r

in dimension p

= rpVp(1)

with

Vp(1)
p→∞∼

(
2πe

p

)p/2

(pπ)−1/2.
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Vanishing volume for r ≤
√

p
2πe !
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Unreliable empirical covariance matrix
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Take home message (so far)

In high-dimensional spaces,

be careful
not to be mislead by

your low dimensional intuitions.
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The curse of dimensionality

Chapter 1
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Curse 1 : fluctuations cumulate

Example : X (1), . . . ,X (n) ∈ Rp i.i.d. with cov(X ) = σ2Ip. We want to
estimate E [X ] with the sample mean

X̄n =
1

n

n∑
i=1

X (i).

Then

E
[
‖X̄n − E [X ] ‖2

]
=

p∑
j=1

E
[(

[X̄n]j − E [Xj ]
)2
]

=

p∑
j=1

var
(
[X̄n]j

)
=

p

n
σ2.

/ It can be huge when p � n...
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Curse 2 : local averaging is ineffective (in general)

Observations (Yi ,X
(i)) ∈ R× [0, 1]p for i = 1, . . . , n.

Model: Yi = f (X (i)) + εi with f smooth.

assume that (Yi ,X
(i))i=1,...,n i.i.d. and that X (i) ∼ U ([0, 1]p)

Local averaging: f̂ (x) = average of
{
Yi : X (i) close to x

}
Problem: for x ∈ [0, 1]p, we have

P [∃i = 1, . . . , n : ‖x − Xi‖ ≤ δ] ≤ n P [‖x − X1‖ ≤ δ] ≤ n Vp(δ)

≈ n

(
2πe

p

)p/2 δp
√
πp
.

which goes more than exponentially fast to 0 when p →∞.
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Curse 2 : local averaging is ineffective

Which sample size to avoid the lost of locality?

Number n of points x1, . . . , xn required for having at least one observation
at distance δ = 1 with probability 1/2:

n ≥ 1

2Vp(1)

p→∞∼
( p

2πe

)p/2
√

pπ

4

p 20 30 50 100 200

larger than the estimated
n 39 45630 6 . 1012 42 . 1039 number of particles

in the observable universe
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Curse 3: weak signals are lost

Finding active genes: we observe n repetitions for p genes

Z
(i)
j = θj + ε

(i)
j , j = 1, . . . , p, i = 1, . . . , n,

with the ε
(i)
j i.i.d. with N (0, σ2) Gaussian distribution.

Our goal: find which genes have θj 6= 0

For a single gene

Set
Xj = n−1/2(Z

(1)
j + . . .+ Z

(n)
j ) ∼ N (

√
nθj , σ

2)

Since P
[
|N (0, σ2)| ≥ 2σ

]
≤ 0.05, we can detect the active gene with Xj

when

|θj | ≥
2σ√
n
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Curse 3: weak signals are lost

Maximum of Gaussian

For W1, . . . ,Wp i.i.d. with N (0, σ2) distribution, we have

max
j=1,...,p

Wj ≈ σ
√

2 log(p).

Consequence: When we consider the p genes together, we need a signal
of order

|θj | ≥ σ
√

2 log(p)

n

in order to dominate the noise /
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Some other curses

Curse 6 : an accumulation of rare events may not be rare (false
discoveries, etc)

Curse 7 : algorithmic complexity must remain low.

When p is large, an algorithmic complexity larger than O(p2) is
computationally prohibitive. For very large p, even a complexity
O(p2) can be an issue...

etc
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Low-dimensional structures in high-dimensional data

Hopeless?

Low dimensional structures : high-dimensional data are usually
concentrated around low-dimensional structures reflecting the (relatively)
small complexity of the systems producing the data

geometrical structures in an image,

regulation network of a ”biological system”,

social structures in marketing data,

human technologies have limited complexity, etc.

Back to low dimensional statistics! Projecting the data on the
low-dimensional structures, we are back to classical low-dimensional
statistics ,
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Low-dimensional structures in high-dimensional data

But the low-dimensional structures are unknown!

/

Dimension reduction :

”unsupervised” (PCA)

”supervised”
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Principal Component Analysis

For any data points X (1), . . . ,X (n) ∈ Rp and
any dimension d ≤ p, the PCA computes the
linear span in Rp

Vd ∈ argmin
dim(V )≤d

n∑
i=1

‖X (i) − ProjV X (i)‖2,

where ProjV is the orthogonal projection ma-
trix onto V .
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V2 in dimension p = 3.

Recap on PCA

Exercise 1.6.4
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PCA in action

original image original image original image original image

projected image projected image projected image projected image

MNIST : 1100 scans of each digit. Each scan is a 16 × 16
image which is encoded by a vector in R256. The original
images are displayed in the first row, their projection onto 10
first principal axes in the second row.
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”Supervised” dimension reduction
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Figure: 55 chemical measurements of 162 strains of E. coli.
Left : the data is projected on the plane given by a PCA.
Right : the data is projected on the plane given by a LDA.
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Summary

Statistical difficulty

high-dimensional data

relatively small sample size

Good feature
Data usually generated by a large stochastic system

existence of low dimensional structures

(sometimes: expert models)

The way to success
Finding, from the data, the hidden structure in order to exploit them.
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Paradigm shift

Chapter 1
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Paradigm shift
Classical statistics:

small number p of parameters

large number n of observations

we investigate the performances of the estimators when n→∞
(central limit theorem...)
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Paradigm shift

Classical statistics:

small number p of parameters

large number n of observations

we investigate the performances of the estimators when n→∞
(central limit theorem...)

Actual data:

inflation of the number p of parameters

small sample size: n ≈ p or n� p

=⇒ Change our point of view on statistics!
(the n→∞ asymptotic does not fit anymore)
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Statistical settings

double asymptotic: both n, p →∞ with p ∼ g(n)

non asymptotic: treat n and p as they are

Double asymptotic

more easy to analyse, sharp results ,
but sensitive to the choice of g /

ex: if n = 33 and p = 1000, do we have g(n) = n2 or g(n) = en/5?

Non-asymptotic

no ambiguity ,
but the analysis is more involved /
(based on concentration inequalities)
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