

Processus stochastiques: topologie, processus de Poisson et Processus de Lévy

Christophe Giraud

Université Paris-Sud et Ecole Polytechnique

Orsay, septembre-novembre 2012

Rappels convergence en loi

2/5

Notations:

- \bullet (E, \mathcal{E}) espace topologique mesuré
- $\langle \Pi, \phi \rangle = \int_{\mathcal{E}} \phi(x) \, \Pi(dx)$ pour $\phi : \mathcal{E} \to \mathbb{R}$ intégrable

Convergence étroite

Une suite (Π_n) de probabilités sur (E,\mathcal{E}) converge étroitement vers Π si

 $\langle \Pi_n, \phi \rangle \to \langle \Pi, \phi \rangle$ pour tout $\phi : E \to \mathbb{R}$ continue bornée

Convergence en loi

Une suite (X_n) de variables aléatoires à valeurs dans (E, \mathcal{E}) converge en loi vers X ssi

la suite \mathbb{P}^{X_n} converge étroitement vers \mathbb{P}^X

 \iff $\mathbb{E}[\phi(X_n)] \to \mathbb{E}[\phi(X)]$ pour tout $\phi : E \to \mathbb{R}$ continue bornée

Cas $E = \mathbb{R}$

Notations:

- Π_n , Π des probas sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$
- Fonctions de répartition: $F_{\Pi}(x) = \Pi(]-\infty,x]$)
- Fonctions caractéristiques: $\phi_\Pi(s) = \int_{\mathbb{R}} e^{isx} \Pi(dx)$

Caractérisation par les fonctions de répartition

 $\Pi_n \overset{\text{étroite}}{\to} \Pi \iff F_{\Pi_n}(x) \to F_{\Pi}(x) \text{ pour tout } x \text{ où } F_{\Pi} \text{ est continue.}$

Caractérisation par les fonctions caractéristiques

 $\Pi_n \overset{\text{\'etroite}}{\to} \Pi \quad \Longleftrightarrow \quad \phi_{\Pi_n}(s) \to \phi_{\Pi}(s) \text{ pour tout } s.$

Cas $E = \mathbb{R}$

Résultat plus précis:

Théorème de Lévy

Supposons que

- $\phi_{\Pi_n}(s)$ converge vers une limite notée $\phi(s)$ pour tout $s \in \mathbb{R}$
- $s \mapsto \phi(s)$ est continue en 0

alors il existe une unique proba Π telle que

- $\bullet \ \Pi_n \stackrel{\text{étroite}}{\to} \Pi$
- \bullet $\phi_{\Pi} = \phi$

Ce résultat reste vrai dans $E = \mathbb{R}^d$.

