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Abstract. We produce an explicit description of the K-theory and K-homology of the pure

braid group on n strands. We describe the Baum–Connes correspondence between the gen-

erators of the left- and right-hand sides for n = 4. Using functoriality of the assembly map
and direct computations, we recover Oyono-Oyono’s result on the Baum–Connes conjecture

for pure braid groups [OO01a]. We also discuss the case of the full braid group B3.

1. Introduction

Given a locally compact group G, the Baum–Connes conjecture predicts a way of computing

the K-theory of the reduced group C∗-algebra of G in terms of the equivariant K-homology

of EG, the classifying space for proper actions of G. More precisely, let KG
i (EG) denote the

G-equivariant K-homology of the space EG of order i and Ki(C
∗
r (G)) is the K-theory of the

reduced C∗-algebra C∗r (G) of order i; the conjecture, as formulated by Baum, Connes and Higson

in [BCH94], states that the assembly map

µi : K
G
i (EG)→ Ki(C

∗
r (G))

for i = 0, 1, is a group isomorphism for all locally compact groups.

The Baum–Connes conjecture has been proven for large classes of groups, including all semi-

simple Lie groups and all groups satisfying Haagerup’s property ([Laf02], [HK01]). Many of the

proofs are based on methods that use heavy machinery, such as the Dirac-dual Dirac method,

introduced by Kasparov in the case of connected Lie groups and further developed by Higson

and Kasparov in [HK01] to prove the conjecture for groups having Haagerup’s property.

In the case of semi-simple Lie groups, a first proof was established by Wassermann ([Was87])

following the work of Penington–Plymen ([PP83]) and Valette ([Val84, Val85]). This proof was

based on the idea of giving a complete description of both sides of the assembly map and then

proving explicitly that the correspondence was an isomorphism of groups. Indeed, the descrip-

tion of the K-theory of the reduced C∗-algebra of a semi-simple group can be made using the

exhaustive work of Harish-Chandra on the classification of their reduced representations. For

discrete groups, as no such classification exists, other approaches were needed and led to the

development of very powerful techniques. For an account of the history of the conjecture and
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the recent developments, we refer to the survey [GAJV19] and the references therein, as well as

to the books [Val02, MV03].

In this paper, we study the Baum–Connes correspondence for the pure braid group on n

strands. The conjecture for those groups is known to be true by the work of Oyono-Oyono

[OO01a].

Our paper fits into the context of the work of Isely [Isl11] followed by the works of Flores,

Pooya and Valette [FPV17, PV18, Poo19], in which explicit computations of the Baum–Connes

correspondence are given for certain discrete groups. We believe that these explicit computations

contribute to a deeper understanding of the Baum–Connes correspondence.

It is important to mention that the conjecture also holds for full braid groups by the work of

Schick ([Sch07]) using permanence properties of the conjecture shown by Chabert–Echterhoff in

[CE01] and the result of Oyono-Oyono for pure braid groups. The conjecture holds in its strong

form, with coefficients, i.e. considering the action of the group on a C∗-algebra. Moreover, full

braid groups have property RD (see for example [Cha17]). Explicit computations for full braid

groups are more difficult, though, and other methods have to be used.

Therefore, the aim of this work is to compute the K-theory and K-homology arising in the

Baum–Connes assembly map explicitly for the pure braid group on n strands and then to un-

derstand the correspondence of the generators under this map. The case when n = 4 is worked

out explicitly as a typical example. In this case, the classifying space BP4 can be given a model

of the form S1 × X, where X is a 2-dimensional CW -complex. We can then apply a lemma

from [MV03] that relates K-homology of X to its integer singular homology, leading us to the

following result:

Theorem 1.1. For the pure braid group P4 the P4-equivariant K-homology of EP4 is

KP4
0 (EP4) ' Z12 and KP4

1 (EP4) ' Z12.

Matthey proved that the K-homology of a CW-complex of dimension ≤ 3 is isomorphic to its

integral homology [Mat02]; however, for higher number of strands (n ≤ 5), the classifying space

of Pn admits a model of dimension n − 1, so that one cannot apply Matthey’s results to BPn

when n ≥ 5 .

In the general case, we proceed as follows. First we deduce the K-homology group up to

torsion by means of existing results on the group homology of Pn. After that, we use an Atiyah–

Hirzebruch spectral sequence to remove the torsion. We are then able to extend our first result

to pure braid groups on n strands:

Theorem 1.2. For the pure braid group Pn we have

KPn
0 (EPn) ' Z

n!
2 and KPn

1 (EPn) ' Z
n!
2 .
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For the right-hand side of the Baum–Connes correspondence, we use the Pimsner–Voiculescu

six-term exact sequence in [MP80] and [PV82] to show the following:

Theorem 1.3. For the pure braid group Pn we have

K0(C∗r (Pn)) ' Z
n!
2 and K1(C∗r (Pn)) ' Z

n!
2 .

Next, using functoriality of the Baum–Connes assembly map, together with explicit compu-

tations, we recover Oyono-Oyono’s results for pure braid groups:

Theorem 1.4. The Baum–Connes assembly map µ : Ki(BPn)→ Ki(C
∗
r (Pn)) for the pure braid

group Pn is an isomorphism.

We explicitly describe the assembly map on each of the generators in the case of P4.

All our computations can be carried out explicitly, thanks to the iterated semidirect product

structure of pure braid groups:

Pn = Fn−1 o Fn−1 o · · ·o F1.

This also indicates that the rank of the K-groups grows as n increases.

The techniques we use for pure braid groups do not apply to full braid groups. Although there

is an extension

1→ Pn → Bn → Sn → 1

where we denote by Sn the symmetric group over the set of n-elments, that implies that the braid

group Bn contains the pure braid group Pn as a normal subgroup of finite index, the K-groups

of Bn have fewer generators than the K-groups for Pn. In fact, using an existing result on the

group homology of Bn(see [Arn69], [ACC03] and section 3.3), one knows that, up to torsion,

both the even and odd K-homology groups for BBn are Z. Then the Baum–Connes conjecture

says that, up to torsion, the K-theory of the reduced C∗-algebra of Bn is Z as well. When n = 3,

B3 has the special structure of a free amalgamated product, which allows us to perform a direct

calculation:

K0(C∗r (B3)) = K1(C∗r (B3)) ' Z.

For n = 4 the K-theory of C∗r (B4) is explicitly computed in the recent paper by Li, Omland,

and Spielberg ([LOS21]). To our knowledge, the problem of directly computing K-theory for the

full braid group C∗-algebra remains open.

The paper is organized as follows. In Section 2.1 we recall the structure and properties of

braid and pure braid groups (in the appendix we give some of the corresponding diagrams that

illustrate the structure of this groups). In Section 3 we describe the classifying space for P4

explicitly, compute its K-homology and generalize to the case of Pn. In Section 4 we apply the

Pimsner–Voiculescu six-term exact sequence to calculate the K-theory for the reduced group

C∗-algebras for Pn with n = 4 as a typical example. In Section 5 we describe the Baum–Connes
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assembly map on each generator for P4 and show that the map is an isomorphism for all n. In

Section 6 we compute the example for B3 on both sides of the assembly map and show that the

map is an isomorphism.

Acknowledgments. We thank Alain Valette for the suggestion to examine K-theory and K-

homology of pure braid groups. We thank the organisers of the Women in Operator Algebras

Conference that took place at BIRS where this project started. HW acknowledges the support

from Shanghai Rising-Star Program 19QA1403200 and NSFC-11801178. MGA was partially

supported by ANR project Singstar.

2. Braid and pure braid groups

2.1. Structure of braid and pure braid groups. Throughout the paper we will denote

by Fn(x1 . . . xn) the free group generated by x1, . . . , xn. Let us recall the definition and some

properties of braid groups. We refer to [Bir74].

The Artin Braid Group on n letters, denoted by Bn, is a finitely-generated group with gener-

ators σ1, σ2, . . . , σn−1 that satisfy the following relations:

σjσi = σiσj |i− j| > 1, i, j ∈ {1, . . . , n− 1}

σiσi+1σi = σi+1σiσi+1 i ∈ {1, . . . , n− 2}

It can also be described as the group of equivalence classes of all braids on n strands. The

generators are illustrated here for B4.

σ1 σ2 σ3

In this framework, composition of two elements is visualized as the concatenation of the

corresponding braid pictures. The identity is represented visually by four straight lines.

As every n-braid determines a permutation of the set of n elements in an obvious way, it is

easy to see that there is a surjective map from Bn to Sn, the symmetric group consisting of all

permutations of n elements

p : Bn → Sn.
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This map is compatible with the structures of the two groups so that it is a morphism of groups.

Notice that the image of the element σi is the permutation exchanging i and i + 1, hence

p(σi) = (i, i+ 1), a transposition.

By definition, the pure braid group on n-strands is the kernel of p (hence a subgroup of Bn

of index n!). It is usually denoted by Pn and it is easy to see that in the strand framework it

corresponds to the elements of Bn for which all strands start and end at the same point. Notice

that as (i, i+ 1) is a transposition of Sn, the element σ2
i belongs to Pn for all i ∈ {1, ..., n}.

Starting from Pn we can construct a surjective morphism

f : Pn → Pn−1

by forgetting the nth strand whose kernel is known to be isomorphic to the free group on n− 1

generators; this is easy to understand when viewing braids as configuration spaces. In that

context, the kernel of f correspond to the fundamental group of the space obtained by removing

n − 1 points to the plane C, which is isomorphic to the free group on n − 1 generators, Fn−1.

We have therefore a short exact sequence

1→ Fn−1 → Pn → Pn−1 → 1

that is split because it is always possible to add a strand to a braid in Pn−1 to obtain a braid in

Pn. Hence Pn is isomorphic to a semi-direct product Fn−1 o Pn−1, and hence isomorphic to an

iterated semi-direct product as follows :

Pn ' Fn−1 o Pn−1 ' Fn−1 o Fn−2 o · · ·o F1.

Throughout this paper we will us the following presentation of Pn which is due to Artin (see

[Bir74] Lemma 1.8.2.). Notice that we are conjugating in the reverse order of [Bir74], for the

sake of compatibility with the diagrams in the appendix, so our presentations appears slightly

different than the presentation in [Bir74].

The generators of Pn are given by the following formula :

Aij = σj−1σj−2 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ

−1
j−1 for 1 ≤ i < j ≤ n

where the σi, for i = 1, . . . , n are the generators of Bn given above; they are subject to the

following relations

ArsAijA
−1
rs =


Aij r < s < i < j, i < r < s < j

A−1
sj AijAsj r = i

(ArjAij)
−1Aij(ArjAij) s = i

(ArjAsj)
−1(AsjArj)Aij(AsjArj)

−1(A−1
rj Asj) r < i < s < j

Let αi = An−i,n for i = 1, . . . , n− 1. Then the subgroup of Pn isomorphic to Fn−1 appearing

in the decomposition Pn = Fn−1 o Pn−1 is generated by the elements αi, i = 1, . . . , n− 1. The
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semidirect product decomposition can be written as

Pn ' Fn−1 oϕ Pn−1

where the action ϕ of Pn−1 on Fn−1 is given by the map

ϕ : Pn−1 → Aut(Fn−1)

defined by

ϕ(Ars)(Ain) =


Ain r < s < i < n, i < r < s < n

A−1
snAinAsn r = i

(ArnAin)−1Ain(ArnAin) s = i

(ArnAsn)−1(AsnArn)Ain(AsnArn)−1(A−1
rnAsn) r < i < s < n

Following this notation, we have that Pn = Fn−1(α1, α2, . . . αn−1) oϕ Pn−1.

The center of Bn is generated by the element

(σ1σ2 · · ·σn−1)n

which can be expressed in terms of elements of Pn by

(A12)(A13A23) · · · (A1nA2n · · ·A(n−1)n).

(This is illustrated in the appendix in the case n = 4.)

For n = 3, the generators of P3 are

A13 = σ1σ
2
2σ
−1
1 , A23 = σ2

2 , A12 = σ2
1

Letting α2 = A13, α1 = A23 and σ2
1 = A12, we get that P3 has the following presentation

P3 =
〈
α1, α2, σ

2
1 | σ−2

1 α1σ
2
1 = (α2α1)α1(α2α1)−1, σ−2

1 α2σ
2
1 = α1α2α

−1
1

〉
,

whence

P3 ' F2(α1, α2) o 〈σ2
1〉,

that is P3 is isomorphic to the semi-direct product of the free group generated by α1 and α2 and

the group generated by σ2
1 , where the action of σ2

1 on F (α1, α2) is given by conjugation.

Denoting by c the element σ2
1α1α2, we can check that α1c = cα1 and α2c = cα2 so that

P3 = F (α1, α2)× 〈c〉.

For n = 4, to simplify notation in the rest of the paper, we will denote the generators of P4 as

follows.

σ2
1 = A12

α1 = A23 = σ2
2

α2 = A13 = σ2σ
2
1σ
−1
2

β1 = A34 = σ2
3

β2 = A24 = σ3σ
2
2σ
−1
3

β3 = A14 = σ3σ2σ
2
1σ
−1
2 σ−1

3

From the relations, and from the diagrams in the appendix, we have

P4 ' F3(β1, β2, β3) o
(
F2(α1, α2) o F (σ2

1)
)
.
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σ2
1 α1 = σ2

2 α2 = σ2σ
2
1σ

−1
2

β1 = σ2
3 β2 = σ3σ

2
2σ

−1
3 β3 = σ3σ2σ

2
1σ

−1
2 σ−1

3

where the actions are given by the following relations :

(1) α1β1α
−1
1 = (β2β1)−1β1(β2β1)

(2) α1β2α
−1
1 = β−1

1 β2β1

(3) α1β3α
−1
1 = β3

(4) α2β1α
−1
2 = (β3β1)−1β1(β3β1)

(5) α2β2α
−1
2 = (β3β1)−1β1β3β2(β1β3)−1(β3β1)

(6) α2β3α
−1
2 = β−1

1 β3β1

(7) σ2
1β1σ

−2
1 = β1

(8) σ2
1β2σ

−2
1 = (β3β2)−1β2(β3β2)

(9) σ2
1β3σ

−2
1 = β−1

2 β3β2

(10) σ2
1α1σ

−2
2 = (α2α1)−1α1(α2α1)

(11) σ2
1α2σ

−2
1 = α−1

1 α2α1

Remark 2.1. In this paper, we will use a splitting off the center of P4 in order to realize P4

as the direct product of its center and a semidirect product of free groups. The center of P4 is

generated by c = (σ1σ2σ3)4 = σ2
1α1α2β1β2β3, as illustrated in the appendix (see 7.4), and we

have

P4 ' (F (β1, β2, β3) o F (α1, α2))× 〈c〉.

2.2. The Baum–Connes conjecture for Pn and K-amenability. A property of Pn that we

will use in order to give explicit computations of its K-theory groups is its K-amenability. This

property implies that for every C∗-algebra A endowed with an action of Pn, the K-theory of the

maximal crossed product Ao Pn is isomorphic to the K-theory of the reduced crossed product

Aor Pn (see [JV84] for the definition of K-amenability). In particular,

K∗(C
∗(Pn)) ' K∗(C∗r (Pn)).
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The K-amenability of Pn can be proven using the following result of Pimsner combined with the

following proposition that is an adaptation of a result appearing in the proof of the Baum–Connes

conjecture for Pn given by Oyono-Oyono (see Proposition 7.3 in [OO01a]) :

Theorem 2.2 ([Pim86]). A locally compact group acting on an oriented tree such that the

stabilizer group of any vertices is K-amenable is K-amenable.

Proposition 2.3. Let D0, . . . , Dn be a finite sequence of groups such that D0 = {e} and for

1 ≤ k ≤ n there exists nk in N such that Dk = Fnk oDk−1. Then Dn is K-amenable.

Proof. The proof is the same as the proof of Proposition 7.3 in [OO01a] and it is held by induction

on n : if 0 ≤ k ≤ n − 1, let D′k be the kernel of the morphism mapping Dk+1 to D1 = Fn1 .

Then, D′0 = {e} and, if 1 ≤ k ≤ n − 1 then D′k = Fnk−1
o D′k−1. Hence, by induction, D′n−1

is K-amenable. But the group Dn acts on the Cayley graph of Fn1
(which is a tree) through

the morphism mapping Dn to D1 = Fn1
and the stabilizer group of the vertex corresponding to

the neutral element of Fn1
is exactly D′n−1; as the action is transitive, the stabilizer group of all

vertices is K-amenable and hence, by Pimsner’s theorem, Dn is K-amenable. �

Corollary 2.4. The pure braid group Pn is K-amenable.

In [OO01a], Oyono-Oyono proved that a countable discrete group acting on an oriented tree

satisfies the Baum–Connes conjecture with coefficients1 if and only if the groups stabilizing the

vertices of the tree satisfy Baum–Connes with coefficients. This result allows him to prove the

stability of the conjecture under free and amalgamated products and HNN extensions. It also

allows him to prove the analogous of Proposition 2.3 in the context of Baum–Connes and hence to

give his first proof of the Baum–Connes conjecture for Pn. He then proved in [OO01b] the Baum–

Connes conjecture for groups which are extensions of a group satisfying the Haagerup property

by a group satisfying Baum–Connes, which allowed him to give a second proof of Baum-Connes

for Pn (as the free group is known to have the Haagerup property).

3. Classifying space and K-homology for Pn

In this section, we deal with the compactly supported Γ-equivariant K-homology of EΓ, the

space classifying Γ-proper actions for Γ = Pn.

As Pn is a discrete torsion-free group, EPn coincides with EPn, the universal cover of the

classifying space BPn, and the Pn-equivariant K-homology of EPn is the K-homology of the

space BPn, that is KPn∗ (EPn) ' K∗(BPn).

We start with the case n = 4. We will give a model for BP4 and compute its K-homology

explicitly.

1The Baum-Connes conjecture with coefficients is a stronger version of the Baum–Connes that considers
actions of the group on a C∗-algebra.
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3.1. A model for BP4. Let us give a model for BP4. Recall that

P4 ' (F (β1, β2, β3) o F (α1, α2))× 〈c〉,

the center of P4 is generated by c = (σ1σ2σ3)4, and the generators β1, β2, β3, α1, α2 are subject

to 6 relations:

R1. α1β1α
−1
1 = (β2β1)−1β1(β2β1)

R2. α1β2α
−1
1 = β−1

1 β2β1

R3. α1β3α
−1
1 = β3

R4. α2β1α
−1
2 = (β3β1)−1β1(β3β1)

R5. α2β2α
−1
2 = (β3β1)−1(β1β3)β2(β1β3)−1(β3β1)

R6. α2β3α
−1
2 = β−1

1 β3β1

Conjugating the relation R5 by the last relation R6 we obtain:

R5′. α2(β3β2β
−1
3 )α−1

2 = β3β2β
−1
3 .

We may replace relation R5 by R5’ without changing the presentation of the group. Notice that

the pairs of relations R1 & R4, R2 & R6, R3 & R5’ are of the same type.

Let X be the 2-CW complex associated to the group F3oF2. That is, X consists of 1 0-cell p,

5 1-cells attached as loops on p, and 6 2-cells whose boundaries are given by the relations above.

Then π1(X) = F3 o F2. Denote by X̃ the universal cover of X. We want to show

Proposition 3.1. The 2-CW complex X is a model for B(F3 o F2).

Proof. We first construct X̃ and then show it is contractible (Lemma 3.3).

Step 1: We start from the 1-skeleton of X, denoted by X(1). This is a bouquet of 5 circles,

and its universal covering X̃(1) is a tree, the Cayley graph of the free product F2(α1, α2) ∗
F3(β1, β2, β3). The group F3 ∗ F2 acts freely on X̃(1).

As the group F3 o F2 is the quotient of F2 ∗ F3 by the six relations stated above,

F3 o F2 ' (F3 ∗ F2)/〈R1, R2, R3, R4, R5′, R6〉,

we shall modify X̃(1) so that the relations act trivially. This is done in Step 2 by gluing 2-cells

and by identification of branches.

Step 2: Note that every point in the Cayley graph X̃(1) is generic. Choose an arbitrary

vertex P ∈ X̃(1) and define Q := α1(P ) and R := α2(P ) in X̃(1). The six relations R1, R2, R3,

R4, R5’, R6 require that the pair of points on both sides of the following equations have to be

identified:

a) α1(β2P ) = β−1
1 β2β1Q

b) α1(β1Q) = β−1
1 β−1

2 β1β2β1Q

c) α1(β3P ) = β3Q

d) α2(β1P ) = β−1
1 β−1

3 β1β3β1R

e) α2(β3β2β
−1
3 P ) = β3β2β

−1
3 R

f) α2(β3P ) = β−1
1 β3β1R

Attach 2-cells given by the six relations and identify the branches at the vertices being glued

in the 2-cells. Performing this process for each vertex in X̃(1), we then obtain a 2-dimensional

CW-complex, we denoted by X̃0.



10 SARA AZZALI, SARAH L. BROWNE, MARIA P. GOMEZ APARICIO, LAUREN C. RUTH, HANG WANG

P β2P

β−1
1 β2β1Q = α1β2PQ

β1Q β2β1Q

α1

β2

β2

α1

β1 β1

Figure 1. 2 cell associated to R1

.. . . ...
...

.. . . ...
...

.. . . ...
...

β−1
1 β2β1Q = α1β2Pβ−1

1 β2β1Q α1β2P

Figure 2. Identify branches over two identified points

P P

α1α1 α1 α1

Q Q

β2P

β2

β1

β1P

β3

Figure 3. 2-cells for Relations 1 and 2

Lemma 3.2. The space X̃0 constructed in Step 1 and Step 2 is the universal cover X̃ of X.

Proof. Let us go through the process for R1, as an example. Starting from P and following the

expression α1(β2P ), we obtain the vertices P, β2P, and α1(β2P ); and starting from Q = α1(P )

and following the expression β−1
1 β2β1Q, we obtain vertices Q, β1Q, β2β1Q and β−1

1 β2β1Q. So,

by tracing out each letter in R1, one obtains a hexagon with 6 vertices. Fill in the interior of the

hexagon with a 2-cell. See Figure 1.

Because the two points α1(β2P ) and β−1
1 β2β1Q are identified in the hexagon, the branches

rooted over the two points will be identified under the group action. See Figure 2 for an illus-

tration.

In the left hand side of the Figure 3, the hexagon associated to R1 is the green hexagon relative

to other relevant vertices in the space. See Figures 3, 4 and 5 for the typical 2-cell associated to

each of the relations.
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β2

β1

β3

α1 α1

β3P

P

Q R

P

α2 α2

Figure 4. 2-cells for Relations 3 and 4

β2

β1

β3

P

α2 α2

R

β3β2β
−1
3 P

P

R

α2

α2

Figure 5. 2-cells for Relations 5 and 6

After the gluing of 2-cells on X̃(1) and identifications of branches, one can check that F3 oF2

acts freely on X̃0 with quotient X. In fact, let g ∈ F3 oF2 and suppose gx = x for some vertex x

in X̃0. Assume g 6= e. Then there exists g̃ ∈ F3 ∗F2 such that π(g̃) = g, where π is the morphism

π : F3 ∗F2 → F3 oF2. Let x̃ ∈ X̃(1) such that π(x̃) = x. Because g̃ is not the identity in F3 ∗F2

and F3 ∗ F2 acts freely on X̃(1), we have g̃x̃ 6= x̃. By definition, g̃x̃ and x̃ are identified with the

same point x in X̃0. So g̃x̃ and x̃ can be connected by relations R1, R2, R3, R4, R5’, R6. So g̃

can be expressed as Ri1 · · ·Rik , and then g = e in F3 o F2, which is a contradiction. This shows

that F3 o F2 acts freely on X̃0.

By construction, the quotient of X̃0 by F3 o F2 is X. Therefore the lemma is proved. �

Proposition 3.1 then follows from the lemma below.

Lemma 3.3. The universal cover X̃ is contractible.

Proof. We shall define a uniform deformation of every 2-cell in X̃ so that the resulting deformed

2-complex X̃ ′ is contractible.

Let P0 = P be a 0-cell in X̃, and set Pi = βi1(P ) and Qi = α1(Pi). Here βi1(P ) means

applying β1 to P i times. Let ci be the 2-cell containing Pi and Qi associated to Relation

1. Define a homotopy of ci by moving Qi continuously to β2β1(Qi) through the path Qi →
β1(Qi) → β2β1(Qi). See Figure 6. Then ci is continuously deformed to a rectangle c′i, where
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α1

..
.

..
.

..
.

..
.

P0

P−1

P2

P−2

P−3

P−4

Q0

Q1

Q−1

Q2

Q−2

Q−3

Q−4

P1

Figure 6. Homotopy for cells ci

P ′
0 P ′

1P ′
−1 P ′

2P ′
−2 P ′

3P ′
−3

α1

Q′
0

Q′
1

Q′
−1

Q′
2Q′

−2

Q′
3

Q′
−3

Figure 7. Homotopy for cells di

∪ic′i ' R×[0, 1]. This homotopy is uniform with respect to i. Similarly, one can define a homotopy

for the 2-cells associated to Relation 6. (In this case, α2(Pi) should be moved to β3β1(α2(Pi))).

Let P ′0 = P, P ′i = βi2(P ), and Q′i = α1(Pi). Let di be the 2-cell containing P ′i and Q′i associated

to Relation 2. Define a homotopy of di by moving each Q′i continuously to β2β1Q
′
i though the

path Q′i → β1Q
′
i → β2β1Q

′
i; see Figure 7. Then di deforms continuously to a rectangle d′i,

uniformly with respect to i, with ∪i∈Zd′i ' R× [0, 1].

Similarly, one can define a homotopy for the 2-cells associated to Relation 4. (In this case,

α2(P ′i ) should be moved to β3β1(α2(Pi))).
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P

Q

l

Figure 8. Homotopy for cells e

Relation 3 gives rise to 2-cells in the shape of a rectangle. Let a be a rectangle containing

P and α1Q. Deform a by a homotopy carrying the edge l with vertices Q and β3Q to β2β1l

through the path l→ β1l→ β2β1l.

For Relation 5, let Q = α2(P ). In the cell e containing P and Q and corresponding to Relation

5, move the edge l with vertices β3β2β
−1
3 (P ) and β3β2β

−1
3 (Q) through the path l → β−1

3 l →
β−1

2 β−1
3 l; see Figure 8. Then e is deformed to a 2-cell e′ in the shape of a rectangle. Deform e′

again by a homotopy carrying the edge l with vertices Q and β−1
3 Q to β3β1l through the path

l→ β1l→ β3β1l.

After this process, we obtain a 2-CW complex X̃ ′. All the 2-cells in X̃ are turned into

rectangular-shaped 2-cells in X̃ ′. Algebraically, this process corresponds to the abelianization of

all relations. Note that here we are using the special structure of the pure braid group: Indeed,

the deformations can be done uniformly, because all relations in P4 have the form

(3.1) αiβjα
−1
i = CβjC

−1

where C is a word depending on i, j, having finite letters chosen from β1, β2, β3. The deformation

from X̃ to X̃ ′ corresponds to replacing (3.1) by αiβjα
−1
i = βj . Indeed, the relations determine

the group

F2 × F3 = 〈α1, α2, β1, β2, β3|αiβj = βjαi,∀i, j〉.

Therefore we have shown that X̃ is homotopic to

X̃ ′ = E(F2 × F3) = EF2 × EF3

which is a contractible space. The lemma is then proved. �

This completes the proof of the proposition. �
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3.2. K-homology of BP4. We are ready to compute the K-homology of P4.

Theorem 3.4. We have that

K0(BP4) ' K1(BP4) ' Z12 .

Hence, as P4 is torsion-free, KP4
0 (EP4) ' KP4

1 (EP4) ' Z12.

To prove this theorem, we first observe the following two easy well-known facts:

Lemma 3.5. For any finite CW complex X, we have

Ki(X × S1) ' K0(X)⊕K1(X) for i = 0, 1.

Proof. Let i be 0 or 1. Note that Ki(X × S1) ' Ki(C(X × S1)) ' Ki(C(X) ⊗ C(S1)). As

C(S1) ' C0(R)⊕ C, we have that

Ki(C(X)⊗ C(S1)) ' Ki(C(X)⊗ C0(R))⊕Ki(C(X)).

Noting that Ki(C(X)⊗ C0(R)) = Ki+1(C(X)), the lemma is proved. �

Lemma 3.6. We have

BP4 ' B(F3 o F2)× S1.

Proof. We use the isomorphism P4 ' F3 o F2 o F1. By changing the representative of the

generator of F1 ' Z in P4 ' F3 o F2 o F1, we can obtain the trivial action of F1; see Remark

2.1. Hence P4 ' (F3 o F2)× Z. Thus

BP4 ' B(F3 o F2)×BZ ' B(F3 o F2)× S1;

which proves the lemma. �

Recall that a model of B(F3oF2) is given (Proposition 3.1) by the 2-dimensional CW complex

X constructed in Lemma 3.2 (and associated to the group presentation of F3 o F2).

Lemma 3.7. We have K0(X) ' Z7 and K1(X) ' Z5.

Proof. By Lemma 4.1 in [MV03], because X is a 2-dimensional CW complex, we have

K0(X) ' H0(X,Z)⊕H2(X,Z) K1(X) ' H1(X,Z) .

Note that H0(X,Z) = Z, since X is connected; and

H1(X,Z) ' (F3 o F2)/[F3 o F2, F3 o F2] ' Z5.

To calculate H2(X,Z), one notes that all 6 relations are cycles (nontrivial and distinct), and

there are at most 6 2-cells, so H2(X,Z) ' Z6. The lemma is thus proved. �
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Proof of Theorem 3.4. Making use of the Lemmas, we have for i = 0 or 1:

KP4
i (EP4) ' Ki(BP4) ' K0(B(F3 o F2))⊕K1(B(F3 o F2)),

where the first isomorphism is due to P4 being torsion-free, and the second isomorphism follows

from Lemma 3.5. Then by Proposition 3.1 and Lemma 3.7, we have

Ki(B(F3 o F2)) ' Ki(X) '

{
Z7 i = 0

Z5 i = 1
.

The theorem then follows. �

3.3. K-homology of BPn. In this section, we show that for i = 0 or 1,

(3.2) Ki(BPn) ' Ki(Y ) ' Z
n!
2 ,

where Y = BFn−1 ×BFn−2 × · · · ×BF1.

Recall that rationally, the Chern character on K-homology for any finite CW complex X is

an isomorphism:

(3.3) K0(X)⊗Q '
⊕
i

H2i(X,Q) K1(X)⊗Q '
⊕
i

H2i−1(X,Q).

Thus the second isomorphism in (3.2) holds up to torsion.

Lemma 3.8. Let Y = BFn−1 ×BFn−2 × · · · ×BF1. Then modulo torsion, we have

K0(Y ) ' Z
n!
2 and K1(Y ) ' Z

n!
2 .

Proof. We need to show that
∑
i dimH2i(Y ) = n!

2 =
∑
i dimH2i−1(Y ). Observe that Hi(Y,Q)

is generated by i-cells in Y . Denote by ak the number of k-cells in the CW-complex Y . It is

enough to show that ∑
i

a2i =
∑
i

a2i−1 =
n!

2
.

Because BFk has one 0-cell and k 1-cells, we have that for Y = BFn−1 ×BFn−2 × · · · ×BF1,

a0 = 1, a1 =

n−1∑
i=1

i, a2 =
∑

1≤i<j≤n−1

ij, . . . , an−1 = 1 · 2 · · · (n− 1).

That is, am is equal to the coefficient of tm in the series (1+ t)(1+2t) · · · (1+ [n−1]t). Therefore

we have
n−1∑
k=1

ak =

n−1∏
l=1

(1 + l) =

n∏
l=1

l = n!

and
n−1∑
k=1

(−1)kak =

n−1∏
l=1

(1− l) = 0.

The lemma is then proved. �

The first isomorphism in (3.2) also holds up to torsion. In other words, the K-homology for

BPn can be computed rationally.
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Proposition 3.9. Up to torsion,

K0(BPn) ' K1(BPn) ' Z
n!
2 .

Proof. The integer cohomology of BPn of degree m is torsion-free, with the power over Z being

equal to the coefficient of tm in the series (1 + t)(1 + 2t) · · · (1 + [n−1]t). This was first computed

by Arnold [Arn69]; see also Example 2.3 of [ACC03]. Applying the proof of Lemma 3.8, we find

that up to torsion,

K0(BPn) ' Heven(BPn,Z) ' Z
n!
2 K1(BPn) ' Hodd(BPn,Z) ' Z

n!
2 .

Together with (3.3) and Poincaré duality, this gives the result. Note that BPn is a Poincaré

complex in the sense of Wall [Wal67] and hence satisfies the Poincaré duality theorem. To see

that BPn is a Poincaré complex, notice that BPn is composed of iterated extensions of the BFis,

and it is easy to verify that the BFis are Poincaré complexes. �

Finally, the torsion in Proposition 3.9 can be removed using Atiyah-Hirzebruch spectral se-

quences, analogous to Arnold’s calculation of H∗(BPn) using Serre spectral sequences. Let us

review some key steps and properties of pure braid groups in computing H∗(BPn). For more

details, see [Wil].

It is well known that the ordered configuration space of n points in C is a model for the

classifying space of Pn:

BPn = {(z1, . . . , zn) ∈ Cn|zi 6= zj if i 6= j}.

Note that for n = 4, this model is homotopic to the model of BP4 that we constructed explicitly

earlier. Consider the map

ρn : BPn → BPn−1 (z1, . . . , zn) 7→ (z1, . . . , zn−1).

This is a fibration whose fiber is homeomorphic to the (n − 1)-times punctured plane, which is

homotopic to a wedge of n − 1 circles, so that the filtration can be written as BFn → BPn →
BPn−1. This can also be induced by the short exact sequence 1 → Fn−1 → Pn → Pn−1 → 1.

The map

in : BPn−1 → BPn (z1, . . . , zn−1) 7→ (z1, . . . , zn−1,max|zi|+ 1)

gives rise to a splitting of the fibration ρn. Associated to a fibration, there is a monodromy

action of π1(B) on the (co)homology of the fiber F. In our setting, it can be checked that

Pn−1 = π1(BPn−1) acts on the homology of BFn−1 trivially. Then the E2 page of the Atiyah-

Hirzebruch spectral sequence

Ep,q2 (BPn) = Hp(BPn−1, H
q(BFn−1))
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is a cohomology with untwisted coefficients in Hq(BFn−1) and is calculated by

Ep,q2 (BPn) =


Hp(BPn−1) q = 0

Hp(BPn−1)⊗ Zn−1 q = 1

0 q > 1.

One can then show that the spectral sequences collapse on the E2 page, and we obtain

Hk(BPn) =
⊕
p+q=k

Ep,q2 (BPn) = Ek,02 (BPn)⊕ Ek−1,1
2 (BPn).

The group can then be calculated using induction.

Theorem 3.10. We have

K0(BPn) ' K1(BPn) ' Z
n!
2 .

Proof. From [MV03], there is an Atiyah–Hirzebruch spectral sequence

E2
p,q(BPn) = Hp(BPn−1,Kq(BFn−1))⇒ Kp+q(BPn).

Because the spectral sequence collapses on the E2 page for similar reasons as above, one has

K0(BPn) '
⊕

p+q≡0(2)

E2
p,q(BPn) K1(BPn) '

⊕
p+q≡1(2)

E2
p,q(BPn).

Because the monodromy action is trivial, the homology

E2
p,q(BPn) = Hp(BPn−1,Kq(BFn−1))

has no twisted coefficients and can thus be calculated by

Hp(BPn−1,Kq(BFn−1)) =

{
Hp(BPn−1) q = 0

Hp(BPn−1)⊗ Zn−1 q = 1.

Therefore

K0(BPn) ' Heven(BPn−1)⊕ (Hodd(BPn−1)⊗ Zn−1)(3.4)

K1(BPn) ' Hodd(BPn−1)⊕ (Heven(BPn−1)⊗ Zn−1).(3.5)

Because H∗(BPn) is torsion-free for all n, from the above we obtain that K∗(BPn) is torsion-free

as well. Thus,

K0(BPn) ' K0(BPn−1)⊕ (K1(BPn−1)⊗ Zn−1)

K1(BPn) ' K1(BPn−1)⊕ (K0(BPn−1)⊗ Zn−1).

The theorem then follows by induction. �

Note that the calculation of the K-homology of Y = BFn−1 × · · · × BF1 is not used in the

proof of the theorem, but the comparison to the K-homology of BPn provides intuition for the

cycles of BPn that form a set of generators for K∗(BPn) in light of (3.4) and (3.5). By the

fibration structure BFn−1 → BPn → BPn−1, and by induction, BPn has a model of dimension

n− 1, and every k-simplex of BPn is labelled by Aj1,i1 , . . . , Ajk,ik , where 1 ≤ i1 < · · · < ir ≤ n,
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1 ≤ jl < il, and Fl(A1,l+1, . . . , Al,l+1) is the free subgroup of Pn. They are cycles because of the

pure braid group relations, and they correspond bijectively to cycles of Y . There is a canonical

map BPn → Y inducing an isomorphism on K-homology; see Section 5.4 for more details.

4. K-theory of the reduced group C∗-algebra of Pn

In this section, we compute the right-hand side of the Baum–Connes morphism for Pn. We

shall use the Pimsner–Voiculescu six-term exact sequence, as it allows us to compute the K-

theory of the reduced crossed product of a C∗-algebra with a free group [PV82]. Let A be a

C∗-algebra endowed with an action of the free group on n generators Fn = Fn(x1, . . . xn) by

automorphisms φ : Fn → Aut(A). Following Pimsner and Voiculescu (see [PV82, Theorem 3.1,

Theorem 3.5]), we have two six-term exact sequences

(4.1) K0(A)
wn // K0(Aoφ′,r Fn−1)

k∗ // K0(Aoφ,r Fn)

��
K1(Aoφ,r Fn)

OO

K1(Aoφ′,r Fn−1)
k∗oo K1(A)

wnoo

where φ′ is the restriction of the action to Fn−1, k : A oφ′,r Fn−1 → A oφ,r Fn is the natural

inclusion, i : A → A oφ′,r Fn−1 is the canonical inclusion, wn = i∗ ◦ (id∗ − φ(x−1
n )∗), and the

vertical arrows correspond to the connecting homomorphisms of a sequence induced by a Toeplitz

extension; and

(4.2) (K0(A))n
θ // K0(A)

π∗ // K0(Aor Fn)

��
K1(Aor Fn)

OO

K1(A)
π∗
oo (K1(A))n

θoo

where θ is the map

θ(γ1 ⊕ · · · ⊕ γn) =

n∑
i=1

(γi − φ(x−1
i )∗(γj)) .

and the vertical arrows come from connecting homomorphisms of a Toeplitz extension.

Moreover, we recall that in [PV82], Pimsner and Voiculescu used these six-term exact se-

quences to give the following computation of the K-theory of the C∗-algebra of a free group:

(4.3) K0(C∗r (Fn(α1, . . . , αn))) ' Z[1]

and

(4.4) K1(C∗r (Fn(α1, . . . , αn))) ' Zn[uα1 , . . . , uαn ]

where for g ∈ Fn(α1, . . . , αn), we denote by ug the element in C∗r (Fn(α1, . . . , αn)) such that

ug(h) = 1 if h = g, and ug(h) = 0 if h 6= g.
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As the group Fn is K-amenable (see [Cun83] and [Cun82]),

(4.5) K0(C∗(Fn(α1, . . . , αn))) ' Z[1]

and

(4.6) K1(C∗(Fn(α1, . . . , αn))) ' Zn[uα1
, . . . , uαn ] .

4.1. K-theory of C∗r (P4). We will start with the case of n = 4. To compute the K-theory of

C∗r (P4), we will use the decomposition P4 = (F3 oϕ F2)× Z, where the action ϕ is given by the

relations in Remark 2.1. Its reduced C∗-algebra C∗r (P4) is then isomorphic to C∗r (F3oF2)⊗C∗r (Z),

and by the Künneth formula we have the following decompositions:

K0(C∗r (P4)) ' K0(C∗r (F3 o F2))⊗Z K0(C∗r (Z))⊕K1(C∗r (F3 o F2))⊗Z K1(C∗r (Z)),

K1(C∗r (P4)) ' K0(C∗r (F3 o F2))⊗Z K1(C∗r (Z))⊕K1(C∗r (F3 o F2))⊗Z K0(C∗r (Z)) .

We then compute the K-theory of C∗r (F3 oF2). By the following well-known lemma, the former

C∗-algebra is the reduced crossed product C∗r (F3) or F2 (see [CELY17, Example 2.3.6], [Wil07,

§3.3]).

Lemma 4.1. Let H and N be discrete groups, and let φ : H → Aut(N) be an action by group

automorphisms. Then φ gives actions of H on the full and reduced group C∗-algebras C∗(N) and

C∗r (N) that are given by the formula φh(f)(n) = f(h−1nh), for f ∈ Cc(N), h ∈ H and n ∈ N ,

and one has

C∗r (N oφ H) ' C∗r (N) oφ,r H,

C∗(N oφ H) ' C∗(N) oφ H.

Applying Pimsner–Voiculescu’s first sequence to compute the K-theory of C∗r (F3)orF2, where

F3 = F3(β1, β2, β3) and F2 = F2(α1, α2), we get the following result.

Proposition 4.2. The K-theory of C∗r (F3 o F2) is as follows:

K0(C∗r (F3 o F2)) ' Z7, K1(C∗r (F3 o F2)) ' Z5.

Proof. Denote by ϕ : F2 → Aut(F2) the action of F3 on F2 given by the relations which determine

the structure of P4. Set B := C∗r (F3) or F2 = C∗r (F3(β1, β2, β3)) or F2(α1, α2). From (4.1), we

have the exact sequence:

(4.7)

K0(C∗r (F3(β1, β2, β3)))
w2 // K0(C∗r (F3(β1, β2, β3)) or F (α1))

k∗ // K0(B)

��
K1(B)

OO

K1(C∗r (F3(β1, β2, β3)) or F (α1))
k∗

oo K1(C∗r (F3(β1, β2, β3)))
w2

oo

We claim that the maps w2 = i∗ ◦ (id∗ − ϕ(α−1
2 )∗) are equal to zero. On K0, we have

ϕ(α−1
2 )∗([1]) = [1] = id∗([1]), so w2([1]) = 0; and on K1, for every j ∈ {1, 2, 3} we have
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ϕ(α−1
2 )∗([uβj ]) = [uϕ(α−1

2 )(βj)
] = [uα−1

2 βjα2
]. By the braid group relations 4., 5. and 6. in

Remark 2.1, we have α−1
2 βjα2 = fββjf

−1
β , where fβ is a product of elements in {β1, β2, β3}.

Hence

[uα−1
2 βjα2

] = [ufββjf−1
β

] = [uβj ] in K1(C∗(F (β1, β2, β3)) or F (α1)),

so w2([uβj ]) = 0 for all j, and the claim is proved.

From (4.7), we get two short exact sequences:

0→ K0(C∗r (F3(β1, β2, β3)) or F (α1))→ K0(B)→ K1(C∗r (F3(β1, β2, β3))→ 0(4.8)

0→ K1(C∗r (F3(β1, β2, β3)) or F (α1))→ K1(B)→ K0(C∗r (F3(β1, β2, β3))→ 0(4.9)

We now use another PV sequence to compute Ki(C
∗
r (F3(β1, β2, β3)) or F (α1)) for i = 0, 1. Set

B1 := C∗r (F3(β1, β2, β3)) or F (α1). We have from (4.2)that

(4.10) K0(C∗r (F3(β1, β2, β3)))
θ // K0(C∗r (F3(β1, β2, β3))) // K0(B1)

��
K1(B1)

OO

K1(C∗r (F3(β1, β2, β3)))oo K1(C∗r (F3(β1, β2, β3)))
θ
oo

where θ = id∗ − ϕ(α−1
1 )∗ is again the trivial map in K-theory, because by relations 1., 2. and 3.

in Remark 2.1, we have that α−1
1 βjα=fββjf

−1
β , where fβ is a product of elements in {β1, β2, β3},

as above.

We get the short exact sequences

0 // Z // K0(B1) // Z3 // 0,

0 // Z3 // K1(B1) // Z // 0,

from which we deduce

K0(B1) ' K1(B1) ' Z4 .

By inserting this in (4.8), we get

0 // Z4 // K0(B) // Z3 // 0,

0 // Z4 // K1(B) // Z // 0,

so we deduce

(4.11) K0(B) ' Z7, K1(B) ' Z5,

which proves the proposition. �

By applying the Künneth formula to P4 = B × Z, we obtain the following corollary.

Corollary 4.3. The K-theory of C∗r (P4) is given by

K0(C∗r (P4)) ' Z12, K1(C∗r (P4)) ' Z12.



K-HOMOLOGY AND K-THEORY OF PURE BRAID GROUPS 21

4.2. Going from Pn−1 to Pn. Before computing the K-theory of C∗r (Pn) for all n, let us

explain how to compute the K-theory of C∗r (P5). Recall that Pn = Fn−1 o Pn−1, so that

P5 = F4 o P4 = F4 o F3 o F2 × Z. We first compute the K-theory of C∗r (F4 o F3 o F2). By

Lemma 4.1, we have

C∗r (F4 o F3 o F2) ' (C∗r (F4 o F3)) or F2,

so the K-theory of C∗r (P5) can be computed via a Pimsner–Voiculescu sequence once we know the

K-theory of C∗r (F4 oF3), which is isomorphic to C∗r (F4)oF3. Notice that, as Fn is K-amenable

for all n, we have Ki(C
∗
r (F4) o F3) ' Ki(C

∗
r (F4) or F3), for i = 0, 1.

We compute the K-theory groups Ki(C
∗
r (F4) or F3) via Pimsner–Voiculescu sequences.

Letting n = 3 in (4.2), and using (4.6) and (4.5), we get the sequence below.

Z3 θ // Z // K0(C∗r (F4) or F3)

��
K1(C∗r (F4) or F3)

OO

Z4oo (Z4)3

θ
oo

Since again θ = 0 on both K0 and K1, we have

K0(C∗r (F4) or F3) ' Z13, K1(C∗r (F4) or F3) ' Z7.

To compute the K-theory of (C∗r (F4) or F3) or F2, we apply (4.2)

(Z13)2 θ // Z13 // K0(C∗r (F4) or F3) or F2)

��
K1(C∗r (F4) or F3) or F2

OO

Z7oo (Z7)2

θ
oo

and we get

K0(C∗r (F4) or F3) or F2) ' Z33, K1(C∗r (F4) or F3) or F2) ' Z27 .

By the Künneth formula, we finally obtain

K0(C∗r (F4) or F3) or F2 × Z) ' K1(C∗r (F4) or F3) or F2 × Z) ' Z33 ⊕ Z27 ' Z60 .

Let us now generalise this procedure to compute the K-theory of C∗r (Fn)orFn−1 in the following

lemma.

Lemma 4.4. The K-theory of C∗r (Fn) or Fn−1 is given by

K0(C∗r (Fn) or Fn−1) ' Z1+n(n−1), K1(C∗r (Fn) or Fn−1) ' Z2n−1.
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Proof. We apply (4.2)

(4.12) (K0(C∗r (Fn)))n−1 θ // K0(C∗r (Fn)) // K0(C∗r (Fn) or Fn−1))

��
K1(C∗r (Fn) or Fn−1))

OO

K1(C∗rFn)oo (K1(C∗rFn))n−1θoo

the maps θ are trivial in K-theory, so for i = 0, 1 this gives

K0(C∗r (Fn) or Fn−1) ' K0(C∗r (Fn))⊕ (K1(C∗r (Fn)))n−1,(4.13)

K1(C∗r (Fn) or Fn−1) ' K1(C∗r (Fn))⊕ (K0(C∗r (Fn)))n−1 .(4.14)

By the relations (4.6), we obtain the result. �

4.3. K-theory of C∗r (Pn). We are now ready to compute theK-theory of C∗r (Pn) using Pimsner–

Voiculescu sequences. We use the following remark.

Remark 4.5. Let A be a C∗-algebra whose K-theory is torsion-free and finitely generated.

This means that there exist two integers a0 and a1 such that K0(A) ' Za0 and K1(A) ' Za1 . If

φ : Fk → Aut(A) is an action of the free group Fk by automorphisms on A such that the induced

map θ in the PV sequence is zero, then we obtain

K0(Aor Fk) ' Za0+ka1 , K1(Aor Fk) ' Za1+ka0 .

In particular, the K-theory groups of Aor Fk are also torsion-free.

Proposition 4.6. The K-theory of C∗r (Pn) is given by

K0(C∗r (Pn)) ' K1(C∗r (Pn)) ' Z
n!
2 .

Proof. We set Qj := Fn−1 o Fn−2 o · · ·o Fn−j , for j = 1, . . . , n− 2.

We first show inductively that all the groups K∗(C∗r (Qj)) are torsion free. For j = 1, this holds

true; at each subsequent step, the K-theory of C∗r (Qj) ' C∗r (Fn−1oFn−2o· · ·oFn−j+1)orFn−j
is computed as in Remark 4.5 via a Pimsner-Voiculescu sequence involving the K-theory of the

reduced C∗-algebra C∗r (Fn−1 o Fn−2 o · · ·o Fn−j+1). We repeatedly apply Pimsner–Voiculescu

sequences (4.2) and we have

K0(C∗r (Qi)) ' K0(C∗r (Fn−i))⊕ (K1(C∗r (Qi−1)))n−i(4.15)

K1(C∗r (Qi)) ' K1(C∗r (Fn−i))⊕ (K0(C∗r (Qi−1)))n−i .(4.16)

To determine the rank, set

xi := rankK0(C∗r (Qi)), yi := rankK1(C∗r (Qi)).

From (4.15), we have for i = 2, . . . , n− 2

xi = rankK0(C∗r (Qi−1) or Fn−i) = xi−1 + yi−1(n− i),

yi = rankK1(C∗r (Qi−1) or Fn−i) = yi−1 + xi−1 · (n− i).
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with x1 = 1 and y1 = n− 1. This implies

xi + yi = xi−1 + yi−1 + (xi−1 + yi−1)(n− i) .

Note that Pn = Qn−2×Z; and by the Künneth formula, we have rankK∗(C∗r (Pn)) = xn−2+yn−2.

The sum si := xi + yi satisfies

si = si−1(n− i+ 1)

hence we deduce

sn−2 =sn−3(n− n+ 2 + 1)

= s2 · (n− 2)(n− 3) · . . . 4 · 3

= n(n− 1) · . . . 4 · 3

=
n!

2
.

�

As the group Pn is K-amenable (see section 2.3), the K-theory of the maximal C∗-algebra of

Pn coincides with the reduced one, see for instance, [JV84, Corollary 3.6]: If G is K-amenable,

then for every C∗-dynamical system (A,α,G) one has

(4.17) Ki(Aoα,r G) ' Ki(Aoα G), i = 0, 1 .

Since free groups are K-amenable, by Lemma 4.1 one has immediately:

(1) Ki(C
∗(Pn)) ' K(C∗r (Pn))

(2) For the iterated semidirect products

Q1 := Fn−1

Q2 := Fn−1 o Fn−2

...

Qn−2 := Fn−1 o Fn−2 o · · ·o F2 .

the K-theory of the maximal C∗-algebra is the same as the reduced one.

Therefore

K0(C∗(Pn)) ' K1(C∗(Pn)) ' Z
n!
2 .

5. Isomorphism of the Baum–Connes assembly map

Let us denote by Γ = F (β1, β2, β3) o F (α1, α2) the group generated by α1, α2, β1, β2, β3

satisfying the 6 relations described in section 3.1. In this section, we use the structure of P4

given by P4 ' Γ× Z, where Γ = F3 o F2, and the Künneth theorem in K-theory, to reduce the

proof of the Baum–Connes isomorphism for P4 to that of Γ. We will use the explicit computations

given in [Val02] of the Baum–Connes assembly map in small homological degree to write down
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the explicit image for Γ under the Baum–Connes assembly map. We will prove the following

theorem.

Theorem 5.1. The assembly map

µr : Ki(BΓ)→ Ki(C
∗
r (Γ))

is an isomorphism for i = 0 (even-degree case) and i = 1 (odd-degree case).

5.1. Odd-degree Baum–Connes isomorphism for Γ. We will start with the case i = 1. Re-

call that H1(Γ,Z) = Γ/[Γ,Γ] so that H1(Γ,Z) is the abelian group generated by β1, β2, β3, α1, α2.

There is a classical isomorphism H1(Γ,Z) ' H1(BΓ), where every generator of H1(Γ,Z) corre-

sponds to a unique 1-cycle coming from the 1-skeleton of the space BΓ. The correspondence

is determined by the fact that Γ = π1(BΓ): Every element γ ∈ Γ can be viewed as a pointed

continuous map γ : S1 → BΓ, thus inducing a map in K-homology γ∗ : K1(S1)→ K1(BΓ). Let

D be the Dirac operator on S1 and π the representation of C(S1) on L2(S1) given by pointwise

multiplication. Then the class of the cycle (π,D) is the generator of K1(S1) ' Z; we denote it

by [D]. Every element γ ∈ Γ can then be mapped to the class of the cycle γ∗(π,D) = γ∗([D]) in

K1(BΓ) (see [Val02, Chapter 7]). Moreover, every element γ ∈ Γ can be mapped to the invertible

element [γ] ∈ K1(C∗r (Γ)), which is determined by the class of the Dirac element δγ in Cc(Γ).

We are going to prove the following theorem.

Theorem 5.2. Let Γ be the group F (β1, β2, β3) o F (α1, α2) generated by the elements α1, α2,

β1, β2, β3 that satisfy the 6 relations described in Section 3.1. The Baum-Connes assembly map

µr : K1(BΓ)→ K1(C∗r (Γ))

is an isomorphism with

µr((αi)∗[D]) = [αi], i = 1, 2;

µr((βi)∗[D]) = [βi], i = 1, 2, 3,

where [D] is the K-homology cycle given by the Dirac operator on the unit circle S1.

Following [Val02] (see page 58), define a morphism β̃a : Γ → K1(C∗r (Γ)) by sending γ ∈ Γ to

the invertible element [γ] in K1(C∗r (Γ)). The map β̃a gives rise to a well-defined morphism

βa : H1(Γ,Z)→ K1(C∗r (Γ)), γ[Γ,Γ] 7→ [γ],

because K1(C∗r (Γ)) is an abelian group. The Dirac operator D on S1 gives rise to a class which

generates K1(S1). For every group element γ ∈ Γ, denote by γ : S1 → BΓ a 1-cycle representative

for [γ] ∈ H1(BΓ).

Define a morphism β̃t : Γ → K1(BΓ) by sending γ to γ∗[D]. By [Val02, Proposition 7.1], β̃t

descends to

βt : H1(Γ,Z)→ K1(BΓ), [γ] 7→ γ∗[D],
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and we have the following lemma due to Natsume, which we will use to prove Theorem 5.2.

Lemma 5.3 ([Nat88], [Val02] Proposition 7.2). The following diagram commutes.

H1(Γ,Z)

βt

yy

βa

&&
K1(BΓ)

µr // K1(C∗r (Γ))

That is, βa = µr ◦ βt.

Proof of Theorem 5.2. We are going to use the fact that there is an assembly map

µ : Ki(BΓ)→ K(C∗(Γ))

such that µr = λΓ,∗ ◦ µ where the morphism λΓ,∗ : Ki(C
∗(Γ)) → K(C∗r (Γ)) is induced by

the regular representation λΓ of Γ. We will then use the K-amenability of Pn which implies

that λΓ,∗ is an isomorphism. The advantage of µ with respect to µr is that µ is functorial in

Γ and we will make us of its functoriality. Consider the group homomorphism ψ : Γ → Γab,

where Γab = Γ/[Γ,Γ] ' Z5 is generated by the cosets of α1, α2, β1, β2, β3. This map induces a

continuous map ψ : BΓ→ BZ5 and a morphism of group C∗-algebras ψ : C∗(Γ)→ C∗(Z5). By

the functoriality of the Baum–Connes assembly map at the level of the maximal C∗-algebra, we

have the following commutative diagram.

K1(BΓ)
µ //

ψ∗

��

K1(C∗(Γ))

ψ∗

��
K1(BZ5)

µ′ // K1(C∗(Z5))

where µ and µ′ are the Baum-Connes assembly map defined at the level of the full C∗-algebra for Γ

and Z5. From our calculation of K1(BΓ) (see Lemma 3.7), we see that ψ∗ : K1(BΓ)→ K1(BZ5)

is an isomorphism. In fact, the following diagram is commutative by definition

H1(Γ,Z) //

'
��

K1(BΓ)

ψ∗

��
H1(Z5,Z)

' // K1(BZ5)

and the left and bottom arrows are isomorphisms. This shows that ψ∗ is a surjective morphism.

But ψ∗ is a surjective morphism from Z5 to itself. So ψ∗ is an isomorphism on K-homology.

As the Baum–Connes conjecture is known to be true for abelian groups, the map µ′ is an

isomorphism; so using the commutativity of the diagram, we get that the map ψ∗ : K1(C∗(Γ))→
K1(C∗(Z5)) is surjective. On the other hand, we have computed that

K1(C∗(Γ)) ' K1(C∗(Z5)) ' Z5;
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therefore, as a surjective homomorphism from Z5 to itself is an isomorphism, the map ψ∗ is an

isomorphism on K-theory as well, and hence µ is an isomorphism.

By commutativity of the diagram in Lemma 5.3, the map βa is surjective; and, being a sur-

jective morphism from Z5 to itself, it is an isomorphism. Thus, βa is an isomorphism, mapping

αi[Γ,Γ] to [αi] and βj [Γ,Γ] to [βj ]. Because µ is an isomorphism, we have that βt is an isomor-

phism, mapping [αi : S1 → BΓ] ∈ H1(BΓ) ' H1(Γ,Z) to (αi)∗[D] ∈ K1(BΓ). Therefore we

know that the generators of K1(BΓ) are of the form (αi)∗[D], i = 1, 2; or (βj)∗[D], j = 1, 2, 3.

The commutativity of the diagram of Lemma 5.3 then implies that

µ((αi)∗[D]) = [αi], i = 1, 2;

µ((βi)∗[D]) = [βi], i = 1, 2, 3.

The theorem is then proved by noting the K-amenability of Γ and applying λΓ,r to get the

elements of C∗r (Γ). �

5.2. Even-degree Baum–Connes isomorphism for Γ. Recall that Γ is the group F (β1, β2, β3)o
F (α1, α2) whose generators α1, α2, β1, β2, β3 satisfy the 6 relations of Section 3.1. Each relation

Ri corresponds to a surface Σi whose fundamental group is canonically related to Ri as follows.

π1(Σ1) = 〈a1, a2, a3, a4 | a1a2a
−1
1 = (a3a4)−1a4(a3a2)〉,

π1(Σ2) = 〈b1, b2, b3, b4 | b1b2b−1
1 = b−1

3 b4b3b
−1
4 b2〉,

π1(Σ3) = 〈c1, c2 | c1c2c−1
1 = c2〉,

π1(Σ4) = 〈d1, d2, d3, d4 | d1d2d
−1
1 = (d3d4)−1d4(d3d2)〉,

π1(Σ5) = 〈e1, e2, e3, e4, e5, e6 | e1e2e
−1
1 = (e6e5)−1e5e6e2(e3e4)−1(e4e3)〉,

π1(Σ6) = 〈f1, f2, f3, f4 | f1f2f
−1
1 = f−1

3 f4f3f
−1
4 f2〉.

Let Γi = π1(Σi), and set Γ̃ := Γ1 ∗ Γ2 ∗ · · · ∗ Γ6, the free product of the Γi. By the van Kampen

theorem, the group Γ̃ is the fundamental group of

Σ := Σ1 ∨ Σ2 ∨ · · · ∨ Σ6

obtained by joining together a base point from each of the Σi. Then the mapping defined by

a1, b1, c1 7→ α1

d1, e1, f1 7→ α2

a2, a4, b3, d2, d4, e3, e5, f3 7→ β1

a3, b2, b4, e2 7→ β2

c2, d3, e4, e6, f2, f4 7→ β3

sends relations of Γ̃ to relations of Γ, and it determines a surjective morphism

(5.1) f : Γ̃→ Γ.

The map f also leads to the morphism of full group C∗-algebras below.

f : C∗(Γ̃)→ C∗(Γ).
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Let X = BΓ, and denote by X1, . . . , X6 the 2-simplices of X corresponding to each Ri. The

union of the Xi is the 2-skeleton X(2); and since X is a space of dimension 2, we have X(2) = X.

The map f in (5.1) induces a map at the level of the classifying spaces f : BΓ̃ → BΓ = X.

Taking the 2-skeleton, we obtain a continuous map

(5.2) f : Σ→ X

such that f(Σi) = Xi. Applying the fundamental group functor for (5.2) recovers

f : π1(Σ)→ π1(X)

in (5.1). By the functoriality of the Baum–Connes assembly map, we have the following com-

mutative diagram.

K0(Σ)
µ //

f∗

��

K0(C∗(Γ̃))

f∗

��
K0(BΓ)

µ // K0(C∗(Γ)).

Note that the map in (5.2) gives rise to the two isomorphisms

H0(Σ) ' H0(BΓ) ' Z

and

f∗ : H2(Σ)→ H2(BΓ), [Σi] 7→ [Xi].

The existence of an inverse Chern character map

Heven(Σ) = H0(Σ)⊕H2(Σ)→ K0(Σ)

sending the generator [Σi] ∈ H2(Σ) to [DΣi ] ∈ K0(Σ), where DΣi is the Dirac operator on Σi,

which induces an isomorphism at the level of K-homology classes, allows one to construct a

morphism

βt : Heven(BΓ) ' Heven(Σ)→ K0(Σ)
f∗−→ K0(BΓ),

taking the composition with f∗ on K-homology,

By construction,

(5.3) βt([Xi]) = f∗[DΣi ].

The map βt is part of the lower-left of diagram

Heven(BΓ)

βa

44

βt
**

Heven(Σ)
' //

'
oo K0(Σ)

µ //

f∗

��

K0(C∗(Γ̃))

f∗

��
K0(BΓ)

µr // K0(C∗r (Γ)).

The upper-right of this diagram is defined to be βa; by definition, (see [Val02])

βa([Xi]) = f∗(µ([DΣi ])).
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The commutativity of this diagram is implied by the following lemma.

Lemma 5.4 ([Val02] Prop. 7.3). The diagram commutes with βt rationally injective:

Heven(Γ,Z)

βt

xx

βa

''
K0(BΓ)

µr // K0(C∗r (Γ))

That is, βa = µr ◦ βt.

Now, from our calculations (see Lemma 3.7), we have,

Heven(BΓ) ' K0(BΓ) ' Z7

Knowing that βt maps generators to generators from (5.3), and in view of the fact that βt

is rationally injective (see [Val02, Proposition 7.3], βt is an isomorphism. The commutativity

βa = µr ◦ βt hence implies that βa is an isomorphism if and only if µr is an isomorphism.

Since βa = µr ◦ βt, we can also describe the map µr explicitly.

µr : K0(BΓ)→ K0(C∗r (Γ))

f∗[DΣi ] 7→ f∗µ([DΣi ])

We are ready to prove the following theorem.

Theorem 5.5. The assembly map

µr : K0(BΓ)→ K0(C∗r (Γ))

is an isomorphism, with

µr(f∗[DΣi ]) = f∗(µ[DΣi ]), 1 ≤ i ≤ 6

µr(1) = [1].

Proof. Consider the trivial homomorphism 1: Γ → {e}. It induces a map BΓ → {pt} and

a map C∗(Γ) → C such that the K-homology and K-theory functor lead to two morphisms

1∗ : K0(BΓ) → K0(pt) and 1∗ : K0(C∗(Γ)) → K0(C). The first morphism in K-homology is a

surjective map capturing the 0-simplex of BΓ. The functoriality of the Baum–Connes assembly

map gives rise to the commutative diagram

K0(BΓ)
µ //

1∗

��

K0(C∗(Γ))

1∗

��
K0(pt)

µ0 // K0(C)

where µ0 is the identity map from Z to itself. Let i = 1 or 2, and let j = 1, 2, or 3. Denote by

φij the surjective morphism given by

φij : Γ→ Z2 αp 7→ δpiαi, βp 7→ δpjβj ,
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where δij is the Kronecker delta. As above, it induces two maps

φij : BΓ→ BZ2 ' T 2, φij : C∗(Γ)→ C∗(Z2),

where we denote by T the torus. Note that the map on the classifying space is given by collapsing

all 1-cells which do not represent αi or βj to a point, and collapsing all 2-cells that do not

represent the group relation involving αiβjα
−1
i (denoted Rij) to a point. Thus, the induced map

on K-homology φij,∗ : K0(BΓ) → K0(T 2) is a surjective map that maps the 2-cell represented

by Rij to the Bott generator of K0(T 2). As above, we also have the induced map on K-theory

φij,∗ : K0(C∗(Γ))→ K0(C∗(Z2)) the commutative diagram

K0(BΓ)
µ //

φij,∗

��

K0(C∗(Γ))

φij,∗

��
K0(T 2)

µij // K0(C∗(Z2))

Here µij is the assembly map for Z2. Putting 7 diagrams (involving 1∗ and φij,∗ where i = 1, 2

and j = 1, 2, 3) together, we have a commutative diagram

K0(BΓ)
µ //

φ∗
��

K0(C∗(Γ))

φ∗
��

K0(pt)
⊕[⊕

i,j K̃0(T 2)
]

µ′

'
// K0(C)

⊕[⊕
i,j K̃0(C∗(Z2))

]
.

Here, K̃0(T 2) is the reduced K-homology, excluding elements generated by the trivial cycle

from K0(T 2), and K̃0(C∗(Z2)) is the reduced K-theory, eliminating elements generated by the

trivial projection from K0(C∗(Z2)). By construction, φ∗ on K-homology (the left arrow) is an

isomorphism. It is well known that µ′ is an isomorphism for abelian groups Z2 and for the

trivial group {e}. Together with the commutativity of the diagram, the map φ∗ on K-theory

(the right arrow) is surjective. Because φ∗ is a surjective group homomorphism from Z7 to

itself, we conclude that φ∗ on K-theory is an isomorphism. Therefore the commutativity of

the diagram implies that µ for Γ is an isomorphism. As the group Γ is K-amenable, we have

K∗(C∗(Γ)) ' K∗(C∗r (Γ)), hence we find that the assembly map µr is an isomorphism. �

5.3. Isomorphism for P4. Let us now recover Oyono-Oyono’s theorem for P4 using the Künneth

formula.

Theorem 5.6. The assembly map

µr : Ki(BP4)→ Ki(C
∗
r (P4))

is an isomorphism for i = 0 or 1.
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Proof. Note that the isomorphism P4 ' Γ× Z implies that

Ki(BP4) ' K0(BΓ)⊗Ki(BZ)⊕K1(BΓ)⊗Ki+1(BZ),

Ki(C
∗
r (P4)) ' K0(C∗r (Γ))⊗Ki(C

∗
r (Z))⊕K1(C∗r (Γ))⊗Ki+1(C∗r (Z)).

Following the definition of the assembly map in [Val02] by twisting Mishchenko line bundles, we

have µP4
r (x⊗y) = µΓ

r (x)⊗µZ
r (y) for x ∈ Ki(BΓ) and y ∈ Kj(BZ), which are represented by Dirac-

type operators. Then the assembly map for P4 is an isomorphism if µr : Ki(BΓ) → Ki(C
∗
r (Γ))

for i = 0,1 is an isomorphism. The theorem thus follows from Theorems 5.2 and 5.5. �

5.4. Baum–Connes isomorphism for Pn. Let us now prove the following theorem, which is

originally due to Oyono-Oyono.

Theorem 5.7 ([OO01a] Proposition 7.2). The Baum–Connes assembly map for the pure braid

group Pn

µr : Ki(BPn)→ Ki(C
∗
r (Pn))

is an isomorphism.

For k ∈ {1, . . . , n− 1}, let

Fk := Fk(A1,k+1, A2,k+1, . . . , Ak,k+1)

be the free subgroup in Pn (see section 2.1). There is a canonical homomorphism

ρ : Pn → F1 × F2 × · · · × Fn−1, As,t 7→ (e, . . . , e, As,t, e, . . . , e)

where e is the identity element; here, As,t ∈ Ft−1. In particular, all relations in the presentation

for Pn reduce to the form

ρ(Ar,s)ρ(Ai,j) = ρ(Ai,j)ρ(Ar,s), i < j, r < s, s < j

in the image. The map ρ induces maps between the classifying spaces and the C∗-algebras:

Bρ : BPn → BF1 × · · · ×BFn−1, ρ : C∗(Pn)→ C∗(F1)⊗ · · · ⊗ C∗(Fn−1).

Consider the induced maps on K-homology and K-theory. By the functoriality of the Baum–

Connes assembly map at the level of the maximal C∗-algebra, one has the following commutative

diagram.

(5.4) Ki(BPn)
µ //

Bρ∗
��

Ki(C
∗(Pn))

ρ∗

��
Ki(BF1 × · · · ×BFn−1)

µ′

'
// Ki(C

∗(F1)⊗ · · · ⊗ C∗(Fn−1))

where µ′ is an isomorphism because the Baum–Connes conjecture is stable under direct products

(see [OO01b]) and it is an isomorphism for the free groups Fk because they have Haagerup’s
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property. Let us describe the map Bρ as a morphism between CW-complexes. For 0 ≤ r ≤ n,

choose pairs of numbers (ik, jk), where k ∈ {1, 2, . . . , r}, satisfying

(5.5) 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ jk < ik.

It can be checked that every r-simplex of BPn depends uniquely on the pairs (ik, jk), where

1 ≤ k ≤ r. Denote the r-simplex by [Aj1,i1 , . . . , Ajr,ir ]. Note that for a fixed r, the number of

distinct r-simplices in BPn is equal to∑
1≤i1<···<ir≤n

(i1 − 1) · · · (ir − 1) = ar,

which is the rank of the free part of Hr(BPn). Recall that a0 + · · · an = n!, so that BPn has n!

simplices in total.

Example 5.8. The CW complex BP4 has 1 0-simplex; 6 1-simplices α1, α2, β1, β2, β3; 11 2-

simplices R1, R2, R3, R4, R5, R6, c×α1, c×α2, c×β1, c×β2, c×β3; and 6 3-simplices Ri× c for

i ∈ {1, · · · , 6}.

The map Bρ : BPn → BF1×· · ·×BFn−1 is defined by sending the r-simplex [Aj1,i1 , . . . , Ajr,ir ]

in BPn to the r-simplex

([Aj1,i1 ], . . . , [Ajr,ir ]) ∈ BFi1−1 × · · · ×BFir−1 ⊂ BF1 × · · · ×BFn−1.

Observe that Bρ gives rise to an isomorphism

Bρ∗ : Hi(BPn)→ Hi(BF1 × · · · ×BFn−1).

Because the Chern character maps

Ch : K0/1(BPn)→ Heven/odd(BPn)

Ch : K0/1(BFir−1 ⊂ BF1 × · · ·BFn−1)→ Heven/odd(BF1 × · · · ×BFn−1)

are isomorphisms, and by the functoriality of the Chern character, we obtain an isomorphism on

K-homology

Bρ∗ : Ki(BPn)→ Ki(BF1 × · · · ×BFn−1), i = 0, 1.

Because the Baum–Connes conjecture holds for free groups, we obtain that µ′ in (5.4) is an

isomorphism. By the commutativity of (5.4), the map on K-theory

ρ∗ : Ki(C
∗(Pn))→ Ki(C

∗(F1)⊗ · · · ⊗ C∗(Fn−1))

is surjective. It is an easy exercise to compute that Ki(C
∗(F1) ⊗ · · · ⊗ C∗(Fn−1)) ' Zn!

2 . Thus

ρ∗ is a surjective morphism from Zn!
2 to itself. So ρ∗ is in fact an isomorphism. Therefore µ is

an isomorphism, by the commutativity of the diagram (5.4). As Pn is K-amenable (see section

2.3), Theorem 5.7 is then proved.
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6. The full braid group on three stands B3

In this section we consider full braid groups. The Baum–Connes correspondence for Bn is

known to be an isomorphisms by the work of Schick ([Sch07]). We provide the explicit description

in the case n = 3, modulo torsion. Note that in the paper [BBV99], the authors had computed

the K-theory of C∗r (B3).

6.1. K-homology of BBn. Modulo torsion, the K-homology of BBn is easier to compute using

the rational isomorphism of the Chern character:

Ch : K0(BBn)→
⊕
i

H2i(Bn,Z), Ch : K1(BBn)→
⊕
i

H2i−1(Bn,Z).

Arnold computed the integral cohomology ring of the braid groups:

H0(Bn,Z) ' Z, H1(Bn,Z) ' Z,

and Hi(Bn,Z) is finite for i > 1; see [Arn69] and [Ver98]. By Poincaré duality, we obtain the

following result.

Proposition 6.1. Up to torsion,

K0(BBn) ' K1(BBn) ' Z.

Remark 6.2. Calculating K∗(BBn) is a challenging task, since K∗(BBn) may contain torsion.

For example, in Example 5.10 in [LOS21], the K-theory of the reduced group C∗-algebra of B4

is computed to be

K0(C∗r (B4)) ' Z⊕ (Z/2Z), K1(C∗r (B4)) ' Z.

By the Baum-Connes isomorphism for the braid group, one knows that K0(BB4) has torsion.

6.2. K-theory of C∗r (B3). Let B3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉 be the braid group on three

strands. The center of this group is generated by (σ1σ2)3 = (σ1σ2σ1)2. Let x = σ1σ2σ1 and

y = σ1σ2. Then B3 can be presented alternatively as

B3 ' 〈x, y | x2 = y3〉,

where 〈x2〉 = 〈y3〉 = Z(B3). Setting G = 〈x〉, H = 〈y〉 and K = 〈x2〉 = 〈y3〉, then

B3 = 〈x〉 ∗Z(B3) 〈y〉 = G ∗K H.

For an amalgamated free product, one has the following six-term exact sequence (See [Nat85]

Theorem A1).

K0(C∗r (K))
a // K0(C∗r (G))⊕K0(C∗r (H))

d // K0(C∗(B3))

��
K1(C∗r (B3))

OO

K1(C∗r (G))⊕K1(C∗r (H))
coo K1(C∗r (K))

boo
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Note that Ki(C
∗
r (K)) = Ki(C

∗
r (G)) = Ki(C

∗
r (H)) ' Z. By definition,

a : Z→ Z⊕ Z, a(x) = (x, x);

b : Z→ Z⊕ Z, b(x) = (2x, 3x).

Thus a and b are injective, and then c and d are surjective. Therefore we have

K1(C∗r (B3)) ' Z⊕ Z/im(b) ' Z,

where the last isomorphism is due to the linear transformation

Z⊕ Z→ Z⊕ Z, (x, y) 7→ (3x− 2y,−x+ y)

in SL(2,Z). Similarly,

K0(C∗r (B3)) ' Z⊕ Z/im(a) ' Z.

Thus the following proposition is proved.

Proposition 6.3. We have that

(1) K0(C∗r (B3)) ' Z is generated by the unit of C∗r (B3), and

(2) K1(C∗r (B3)) ' Z is generated by [σ1] = [σ2].

Remark 6.4. The K-theory of C∗r (B4) is computed in [LOS21], Example 5.10. At present, we

are not aware of any direct method of computing K∗(C∗r (Bn)) when n ≥ 5.

The proof of the Baum–Connes isomorphism (rationally) for B3 can be carried out analogous

to Theorem 5.2 by considering the trivial morphism B3 → {e}, the quotient morphism B3 →
B3/[B3, B3] ' Z, and these commutative diagrams:

K0(BB3)
µ //

��

K0(C∗r (B3))

��
K0(B{e})

µ′ // K0(C∗r ({e}))

K1(BB3)
µ //

��

K1(C∗r (Γ))

��
K1(BZ)

µ′ // K1(C∗r (Z))

Theorem 6.5. The Baum–Connes assembly map

Ki(BB3)→ Ki(C
∗
r (B3)), i = 0, 1

is an isomorphism rationally.
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7. Appendix

In this appendix, we give some of diagrams that illustrate the structure of pure braid groups.

σ2
1 α1 = σ2

2 α2 = σ2σ
2
1σ

−1
2

β1 = σ2
3 β2 = σ3σ

2
2σ

−1
3 β3 = σ3σ2σ

2
1σ

−1
2 σ−1

3

7.1. Generators of P4.

σ2
1α1σ

−2
1 = (α2α1)−1α1(α2α1) σ2

1α2σ
−2
1 = α−1

1 α2α1
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7.2. Relations for F (α1, α2) o F (σ2
1).

σ2
1β1σ

−2
1 = β1 σ2

1β2σ
−2
1 = (β3β2)−1β2(β3β2)

σ2
1β2σ

−2
1 = (β3β2)−1β2(β3β2) α1β1α

−1
1 = (β2β1)−1β1(β2β1)

α1β2α
−1
1 = β−1

1 β2β1 α1β3α
−1
1 = β3
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α2β1α
−1
2 = (β3β1)−1β1(β3β1) α2β3α

−1
2 = β−1

1 β3β1

α2β2α
−1
2 = (β3β1)−1(β1β3)β2(β1β3)−1(β3β1)

7.3. Relations for F (β1, β2, β3) o
(
F (α1, α2) o F (σ2

1)
)
.

(σ1σ2σ3)4 = σ2
1α2α1β3β2β1

7.4. The center of P4. These diagrams show that the center splits off and gives us the direct

product decomposition:

F (β1, β2, β3) o
(
F (α1, α2) o 〈σ2

1〉
)

= (F (β1, β2, β3) o F (α1, α2))× 〈σ2
1α2α1β3β2β1〉.
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[BBV99] Cédric Béguin, Hela Bettaieb, and Alain Valette. K-theory for C∗-algebras of one-relator groups.
K-Theory, 16(3):277–298, 1999.



K-HOMOLOGY AND K-THEORY OF PURE BRAID GROUPS 37

[BCH94] P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-theory of group C∗-
algebras. In C∗-algebras: 1943–1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages

240–291. Amer. Math. Soc., Providence, RI, 1994.

[Bir74] J. S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.;
University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82.

[CE01] J. Chabert and S. Echterhoff. Permanence properties of the Baum-Connes conjecture. Doc. Math.,

6:127–183, 2001.
[CELY17] J. Cuntz, S. Echterhoff, X. Li, and G. Yu. K-theory for group C∗-algebras and semigroup C∗-algebras,

volume 47 of Oberwolfach Seminars. Birkhäuser/Springer, Cham, 2017.
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