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Operator propagation
Let X be a proper metric space (i.e closed balls are compact) and
let π : C0(X )→ L(H) be a representation of C0(X ) on a Hilbert
space H.
Example : H = L2(µ,X ) for µ Borelian measure on X and π the
pointwise multiplication.

Definition
If T is an operator of L(H), then Supp T is the complementary of
the open subset of X × X

{(x , y) ∈ X × X such that ∃f and g ∈ Cc(X ) such that
f (x) 6= 0, g(y) 6= 0 and π(f ) · T · π(g) = 0}

T has propagation less than r if d(x , y) ≤ r for all (x , y) in Supp T .
if such r exists we say that T has finite propagation (less than r).
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Propagation and indices
Let D be an elliptic differential operator on a compact manifold M.
Let Q be a parametrix for D.
Then S0 := Id −QD and S1 := Id − DQ are smooth kernel
operators on M ×M:

PD =

(
S0

2 S0(Id + S0)Q
S1D Id − S1

2

)
is an idempotent with coefficients in smooth kernel operators on

M ×M and we can choose Q such that PD has arbitrary small
propagation.
D is a Fredholm operator and

Ind D=[P]−
[(

0 0
0 Id

)]
∈ K0(K(L2(M)) ∼= Z.

How can we keep track of the propagation and have homotopy
invariance?
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Quasi-projections

Definition (Quasi-projection)
If X is a proper metric space and π : C0(X )→ L(H) is a representation
of C0(X ) on a Hilbert space H, 0 < ε < 1/4 (control) and r > 0
(propagation). Then q in L(H) is an ε-r -projection if

q = q∗;
‖q2 − q‖ < ε;
q has propagation less than r .

If q is an ε-r -projection, then its spectrum has a gap around 1/2.
Hence there exists κ : Sp q → {0,1} continuous and such that
κ(t) = 0 if t < 1/2 and κ(t) = 1 if t > 1/2.
By continuous functional calculus, κ(q) is a projection such that
‖κ(q)− q‖ < 2ε;
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Quasi-projections and indices
Let D be a differential elliptic operator on a manifold, let Q be a
parametrix. Set S0 := Id −QD and S1 := Id − DQ and

PD =

(
S0

2 S0(Id + S0)Q
S1D Id − S1

2

)
the idempotent with coefficients in

smooth kernel operators that gives the index.Then

((2P∗D − 1)(2PD − 1) + 1)1/2PD((2P∗D − 1)(2PD − 1) + 1)−1/2

is a projection conjugated to the idempotent PD ;
Choosing Q = Qε,r with propagation small enought and
approximating
((2P∗D − 1)(2PD − 1) + 1)1/2PD((2P∗D − 1)(2PD − 1) + 1)−1/2 using
a power serie, we can for all 0 < ε < 1/4 and r > 0, construct a
ε-r -projection qε,rD such that κ(qε,rD ) is canonically conjugated to PD
and hence

Ind D = [κ(qε,rD )]−
[(

0 0
0 Id

)]
in K0(K(L2(M)) ∼= Z (recall that κ(qε,rD ) is the spectral proj. of qε,rD ).

H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2014 5 / 26



Higher Indices
The receptacles of higher indices of elliptic differential operators are
K -theory of C∗-algebras which encode the (large scale) geometry of
the underlying spaces.

Example
Group C∗-algebra of a discrete group Γ : higher indices for
equivariant elliptic differential operators on cocompact covering
space with group Γ;
Crossed product C∗-algebras : higher indices for longitudinally
elliptic differential operators;
Roe algebras : higher indices for elliptic differential operators on
complete noncompact Riemannian manifolds.

These algebras are endowed with a propagation structure arising from
the geometric structure.Differential operators are local and these
higher indices can be defined using ε-r -projections.
Aim: find obstructions for K -theory elements to be realized as higher
indices.
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The framework : Filtered algebras

Definition
A filtered C∗-algebra A is a C∗-algebra equipped with a family (Ar )r>0
of closed linear subspaces:

Ar ⊂ Ar ′ if r 6 r ′;
Ar is closed under involution;
Ar · Ar ′ ⊂ Ar+r ′ ;
the subalgebra

⋃
r>0 Ar is dense in A.

If A is unital, we also require that the identity 1 is an element of Ar
for every positive number r .
The elements of Ar are said to have propagation less than r .
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Examples
K(L2(X , µ)) for X a metric space and µ probability measure on X .
More generally A⊗K(L2(X , µ)) for A is a C∗-algebra.
Roe algebras:

I Σ proper discrete metric space, H separable Hilbert space
I C[Σ]r : space of locally compact operators on `2(Σ)⊗H (i.e T

satisfies fT and Tf compact for all f ∈ Cc(Σ)) and with propagation
less than r .

I The Roe algebra of Σ is C∗(Σ) = ∪r>0C[Σ]r ⊂ L(`2(Σ)⊗H)
(filtered by (C[Σ]r )r>0).

C∗-algebras of groups and cross-products:
I If Γ is a discrete finitely generated group equipped with a word

metric. Set

C[Γ]r = {x ∈ C[Γ] with support in B(e, r)}.

Then C∗red (Γ) and C∗max (Γ) are filtered by (C[Γ]r )r>0.
I More generally, if Γ acts on a A by automorphisms, then A ored Γ

and A omax Γ are filtered C∗-algebras.
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Almost projections and almost unitaries
Let A = (Ar )r>0 be a unital filtered C∗-algebra, r > 0 (propagation) and
0 < ε < 1/4 (control):

p ∈ Ar is a ε-r -projection if p ∈ Ar , p = p∗ and ‖p2 − p‖ < ε.
a ε-r projection p gives rise by functional calculus to a projection
κ(p) such that ‖p − κ(p)‖ < 2ε.
u ∈ Ar is a ε-r -unitary if u ∈ Ar , ‖u∗ · u − 1‖ < ε and
‖u · u∗ − 1‖ < ε.
any ε-r -unitary is invertible.

Remark
if q is a ε-r -projection of A, there exists h an ε-r -projection of
C([0,1],M2(A)) such that h(0) = I2 and h(1) = diag(q,1− q);
if u and v are ε-r -unitaries in A, there exists W a 3ε-2r -unitary of
C([0,1],M2(A)) such that W (0) = diag(u, v) and
W (1) = diag(uv ,1).
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Notations

Pε,r (A) is the set of ε-r -projections of A.
Uε,r (A) is the set of ε-r -unitaries of A.
Pε,r∞ (A) =

⋃
n∈N Pε,r (Mn(A)) for

Pε,r (Mn(A)) ↪→ Pε,r (Mn+1(A)); x 7→ diag(x ,0).
Uε,r
∞ (A) =

⋃
n∈N Uε,r (Mn(A)) for

Uε,r (Mn(A)) ↪→ Uε,r (Mn+1(A)); x 7→ diag(x ,1).

H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2014 10 / 26



Quantitative K -groups
Define for a unital C∗-algebra A, r > 0 and 0 < ε < 1/4 the
(stably)-homotopy equivalence relations on Pε,r∞ (A)× N and Uε,r

∞ (A)
(recall that Pε,r∞ (A) =

⋃
n∈N Pε,r (Mn(A)) and

Uε,r
∞ (A) =

⋃
n∈N Uε,r (Mn(A)) ):

(p, l) ∼ (q, l ′) if there exists k ∈ N and h ∈ Pε,r∞ (C([0,1],A)) s.t
h(0) = diag(p, Ik+l ′) and h(1) = diag(q, Ik+l).
u ∼ v if there exists h ∈ U3ε,2r

∞ (C([0,1],A)) s.t h(0) = u and
h(1) = v .

Definition
1 K ε,r

0 (A) = Pε,r (A)/ ∼ and [p, l]ε,r is the class of (p, l) mod. ∼;
2 K ε,r

1 (A) = Uε,r (A)/ ∼ and [u]ε,r is the class of u mod. ∼.

K ε,r
0 (A) is an abelian group for

[p, l]ε,r + [p′, l ′]ε,r = [diag(p,p′), l + l ′]ε,r ;
K ε,r

1 (A) is an abelian group for [u]ε,r + [v ]ε,r = [diag(u, v)]ε,r .

H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2014 11 / 26



The non-unital case
Lemma

K ε,r
0 (C)

∼=→ Z; [p, l]ε,r 7→ rank κ(p)− l ; K ε,r
1 (C) ∼= {0}.

Definition
If A is a non unital filtered C∗-algebra and Ã the unitarization of A,

K ε,r
0 (A) = ker : K ε,r

0 (Ã)→ K ε,r
0 (C) ∼= Z;

K ε,r
1 (A) = K ε,r

1 (Ã);

Definition
If A and B are filtered C∗-algebras with respect to (Ar )r>0 and (Br )r>0,
a homomorphism f : A→ B is filtered if f (Ar ) ⊂ Br .

A filtered f : A→ B induces f ε,r∗ : K ε,r
∗ (A)→ K ε,r

∗ (B);
A ↪→ A⊗K((`2(N))); a 7→ a⊗e1,1 induces the Morita equivalence

K ε,r
∗ (A)

∼=→ K ε,r
∗ (A⊗K(`2(N))).
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Structure homomorphisms
For any filtered C∗-algebra A, 0 < ε 6 ε′ < 1/4 and 0 < r 6 r ′, we
have natural (compatible) structure homomorphisms

ιε,r0 : K ε,r
0 (A)−→K0(A); [p, l]ε,r 7→ [κ(p)]− [Il ];

ιε,r1 : K ε,r
1 (A)−→K1(A); [u]ε,r 7→ [u]; (ε-r -unitaries are invertible);

ιε,r∗ = ιε,r0 ⊕ ι
ε,r
1 ;

ιε,ε
′,r ,r ′

0 : K ε,r
0 (A)−→K ε′,r ′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r ′ ;
ιε,ε

′,r ,r ′
1 : K ε,r

1 (A)−→K ε′,r ′
1 (A); [u]ε,r 7→ [u]ε′,r ′ .

ιε,ε
′,r ,r ′

∗ = ιε,ε
′,r ,r ′

0 ⊕ ιε,ε
′,r ,r ′

1 .
For any ε ∈ (0,1/4) and any projection p (resp. unitary u) in A, there
exists r > 0 and q (resp. v) an ε-r -projection (resp. an ε-r -unitary) of A
such that κ(q) and p are closed and hence homotopic projections
(resp. u et v are homotopic invertibles)

Consequence

For every ε ∈ (0,1/4) and y ∈ K∗(A), there exists r and x in K ε,r
∗ (A)

such that ιε,r∗ (x) = y .
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Controlled index map
Recall that if D is an elliptic differential operator on a compact
manifold M, then for every 0 < ε < 1/4 and r > 0, there exists qε,rD
a ε-r -projection in K(L2(M)) s.t. Ind D = [κ(qε,rD )]−

[(
0 0
0 Id

)]
;

We can define in this way a controlled index Indε,r D = [qε,rD ,1] in
K ε,r

0 (K(L2(M))) such that Ind D = ιε,r0 (Indε,r D);
More generally, we have:

Lemma
Let X be a cpct metric space, then for any 0 < ε < 1/4 and any r > 0,
there exists a controlled index map Indε,rX ,∗ : K∗(X )→ K ε,r

∗ (K(L2(X ))) s.t

1 ιε,ε
′,r ,r ′

∗ ◦ Indε,rX ,∗ = Indε
′,r ′

X ,∗ ;
2 the composition

K0(X )−→K ε,r
0 (K(L2(X )))

ιε,r0−→ K0(K(L2(X ))) ∼= Z

is the index map.
H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2014 14 / 26



Behaviour for small propagation

Theorem
Let X be a finite simplicial complex equipped with a metric. Then there
exists 0 < ε0 < 1/4 such that the following holds :

For every 0 < ε < ε0, there exists r0 > 0 such that for any 0 < r < r0
then

Indε,rX ,∗ : K∗(X )→ K ε,r
∗ (K(L2(X )))

is an isomorphism.

Under this identification the usual index map IndX : K0(X )→ Z is given
by

ιε,r0 : K ε,r
0 (K(L2(X )))−→Z; [p, l]ε,r 7→ rangκ(p)− l .
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Persistent Approximation Property

Recall that for every ε ∈ (0,1/4) and y ∈ K∗(A), there exist r and x in
K ε,r
∗ (A) s.t ιε,r∗ (x) = y . How faithfull this approximation is?

Lemma
For any ε small enough, any r > 0 and any x in K ε,r

∗ (A) s.t ιε,r∗ (x) = 0
then there exists r ′ > r such that ιε,λε,r ,r

′
∗ (x) = 0 in K λε,r ′

∗ (A) for some
universal λ > 1.

Does r ′ depend on x?

Definition (Persistent Approximation Property)
For A a filtered C∗-algebra and positive numbers ε, ε′, r and r ′ such
that 0 < ε 6 ε′ < 1/4 and 0 < r 6 r ′, define :

PA∗(A, ε, ε′, r , r ′) : for any x ∈ K ε,r
∗ (A), then ιε,r∗ (x) = 0 in K∗(A) implies

that ιε,ε
′,r ,r ′

∗ (x) = 0 in K ε′,r ′
∗ (A).
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Persistent Approximation Property

PA∗(A, ε, ε′, r , r ′) : for any x ∈ K ε,r
∗ (A), then ιε,r∗ (x) = 0 in K∗(A) implies

that ιε,ε
′,r ,r ′

∗ (x) = 0 in K ε′,r ′
∗ (A)

is equivalent to:

the restriction of ιε
′,r ′
∗ : K ε′,r ′

∗ (A) −→ K∗(A) to ιε,ε
′,r ,r ′

∗ (K ε,r
∗ (A)) is

one-to-one.

Example

If A = K(`2(Σ)) for Σ discrete metric set.
PA0(A, ε, ε′, r , r ′) holds if for any ε-r -projections q and q′ in
K(`2(Σ)⊗H) such that rangκ(q) = rangκ(q′), then q and q′ are
homotopic ε′-r ′-projections up to stabilization.
PA1(A, ε, ε′, r , r ′) holds if any ε-r -unitary in K(`2(Σ)⊗H) + CId) is
homotopic to Id as a ε′-r ′-unitary.
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Examples
Definition (Universal example for proper actions)
A locally compact space Z is a universal example for proper actions of
Γ if for any locally compact space X provided with a proper action of Γ,
there exists f : X → Z continuous and equivariant, and any two such
maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem
Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;
Γ has a cocompact universal example for proper action;

Then for a universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

r ′ > r such that PA∗(A ored Γ, ε, λε, r , r ′) holds for any Γ-C∗-algebra A.

Examples: Γ hyperbolic, Γ Haagerup with cocompact universal
example.
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The geometric case

Observation : we can identify C0(Γ) o Γ as a filtered C∗-algebra to
K(`2(Γ)) and (recall that κ(q) is the spectral projection affiliated to q)
ιε,r0 : K ε,r

0 (K(`2(Γ))→ K0(K(`2(Γ)) ∼= Z : [q, l]ε,r 7→ rangκ(q)− l .

Corollary
Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;
Γ has a cocompact universal example for proper action.

Then for a universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

r ′ > r such that PA∗(A⊗K(`2(Γ)), ε, λε, r , r ′) holds for any C∗-algebra
A.

The Gromov group does not satisfy the conclusion of the corollary.
This statement is purely geometric.
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Coarse geometry

Let (Σ,d) be a proper discrete metric space;
Σ has bounded geometry if for all r > 0, there exists an integer N
such that any ball of radius r has cardinal less than N (example :
|Γ|, the underlying metric space of a finitely generated group Γ
equipped with any word metric) ;
Let (Σ′,d ′) be another proper discrete metric space. A map
f : Σ→ Σ′ is coarse if

I f is proprer ;
I ∀r > 0, ∃s > 0 such that d(x , y) < r ⇒ d ′(f (x), f (y)) < s;

A coarse map f : Σ→ Σ′ is a coarse equivalence if there is a
coarse map g : Σ′ → Σ and M > 0 such that d(f ◦ g(y), y) < M
and d(g ◦ f (x), x) < M ∀x ∈ X and ∀y ∈ Y .
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The geometrical Persistent Approximation Property
Definition
Let (Σ,d) a proper discrete metric space. We say that Σ satisfies the
geometrical Persistent Approximation Property if there exists λ > 1
such that for any 0 < ε 6 1

4λ and any r > 0, there exists r ′ > r and
ε′ ∈ [ε,1/4) such that PA∗(A⊗K(`2(Σ)), ε, ε′, r , r ′) holds for any
C∗-algebra A.

Remark
The geometrical Persistent Approximation Property is invariant under
coarse equivalence.

Example
If Γ (finitely generated) satisfies the Baum-Connes conjecture with
coefficients and admits a cocompact universal example for proper
action, then |Γ| satisfies the geometrical Persistent Approximation
Property.
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Uniform coarse contractibility property

Let (Σ,d) be a discrete metric space with bounded geometry. Recall
that the Rips complex of degree r is the set Pr (Σ) of probability
measures on Σ with support of diameter less than r (notice that
Pr (Σ) ⊂ Pr ′(Σ) if r 6 r ′).

Definition
Σ has the uniform coarse contractibility property if for any r > 0, there
exists r ′ > r such that every compact subset in Pr (Σ) lies in a
contractible compact subset of Pr ′(Σ).

Remark
This is the topological counterpart of the Persistent Approximation
Property!

Example : Σ Gromov hyperbolic.
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Coarse embedding in a Hilbert space

Definition
Σ coarsely embeds in a Hilbert space H if there exists f : Σ→ H s.t :
for all R > 0, there exists S > 0 s.t d(x , y) < R ⇒ ‖f (x)− f (y)‖ < S
and ‖f (x)− f (y)‖ < R ⇒ d(x , y) < S.

Examples : Σ Gromov hyperbolic, Γ amenable group, exact, linear...

Theorem
Let Σ be a discrete metric space with bounded geometry. Assume that

Σ coarsely embeds in a Hilbert space;
Σ satisfies the uniform coarse contractibility property.

Then Σ satisfies the geometrical Persistent Approximation Property.
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Persistence approximation property and homotopy
groups

For A a unital C∗-algebras, we set U∞(A) = ∪n∈NUn(A) for
Un(A) ↪→ Un+1(A); x 7→ diag(x ,1) and GL∞(A) = ∪n∈NGLn(A) for
GLn(A) ↪→ GLn+1(A); x 7→ diag(x ,1).
Recall that Un(C) and GLn(C) (and therefore U∞(C) and GL∞(C))
are homotopy equivalent. Hence πk (U∞(C)) = πk (GL∞(C)) for all
integer k ;
Bott Periodicity : π2k (U∞(C)) = {0} and π2k+1(U∞(C)) ∼= Z.

For any finite set X , any 0 < ε 6 ε′ < 1/4 and 0 < r 6 r ′, the
inclusions

Uε,r
∞ (K(`2(X )) ⊆ Uε′,r ′

∞ (K(`2(X )) ⊆ GL∞(K(`2(X )) ∼= GL∞(C)

gives rise for any integer k to
ε,ε

′,r ,r ′
k : πk (Uε,r

∞ (K(`2(X ))))→ πk (Uε′,r ′
∞ (K(`2(X ))))

ε,rk : πk (Uε,r
∞ (K(`2(X ))))→ πk (GL∞(C)))

such that ε
′,r ′

k ◦ ε,ε
′,r ,r ′

k = ε,rk .
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Persistence approximation property and πk

Definition
For F a family of finite metric spaces and k integer consider:
PAk (F , ε, ε′, r , r ′) : for any X in F and any x ∈ πk (Uε,r

∞ (K(`2(X )))),
then ε,rk (x) = 0 in πk (GL∞(C))) implies that ε,ε

′,r ,r ′
k (x) = 0 in

πk (Uε,r
∞ (K(`2(X )))).

Theorem
Let F be a family of finite metric spaces. Then for some ε0 > 0
(independent on F) the following assertions are equivalent:

1 for any integer k, any ε > ε0 and any r > 0, there exists ε′ > ε and
r ′ > r such that PAk (F , ε, ε′, r , r ′) holds;

2 for k = 0,1, any ε > ε0 and any r > 0, there exists ε′ > ε and
r ′ > r such that PAk (F , ε, ε′, r , r ′) holds;

3 for any ε > ε0 and any r > 0, there exists ε′ > ε and r ′ > r such
that PA∗(K(`2(X )), ε, ε′, r , r ′) holds for any X in F ;
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Applications

1 If F is a family of finite δ-hyperbolic spaces for some fixed δ, then
for any integer k , any ε > ε0 and any r > 0, there exists ε′ > ε and
r ′ > r such that PAk (F , ε, ε′, r , r ′) holds;

2 If F is the family of a finite subsets of a finitely generated group Γ
and with some conditions on RIps complexes, then Baum-Connes
conjecture with coefficients for Γ implies that for any integer k , any
ε > ε0 and any r > 0, there exists ε′ > ε and r ′ > r such that
PAk (F , ε, ε′, r , r ′) holds.
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