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Equivalent notions of the Haagerup property

Introduction

A group G has the Haagerup property if:

m There exists a net of positive definite normalized functions in Cy(G)
converging to 1 uniformly on compacta

m G admits a proper affine action on a Hilbert space
m There exists a proper, conditionally negative function on G



Examples

Introduction

Amenable groups
Fn (Haagerup, '78/'79)

SL(2,Z)

Haagerup property + Property (T) implies compactness



HAP for von Neumann algebras

HAP for von Definition Haagerup property (Choda ‘83, Jolissaint '02)

e A finite von Neumann algebra (M, ) has HAP if there exists a net (%;); of normal

cp maps ®; : M — M such that:
B Tod; <7

m The map T; : xQ, — ®;(x)Q2- is compact
m T; — 1 strongly

Remark:

m In the definition (M, 7) has HAP than ®;’s can be chosen unital and such
that T o ®; = 7.



HAP for groups versus HAP for vNA’s

HAP for von »
Neumann Theorem (Choda '83)
algebras

A discrete group G has HAP < The group von Neumann algebra £(G) has HAP

Idea of the proof: (Haagerup)

= ¢; the positive definite functions = ®; : L(G) — L(G) : A(f) — A(@if).
< &, cp maps = use the ‘averaging technique’:

@i(s) = T(A(s)" ®i(A(s))-



HAP for von Neumann algebras

HAP for von
Neumann
algebras

Definition Haagerup property

A o-finite von Neumann algebra (M, ) has HAP if there exists a net (¥;); of
normal cp maps ®; : M — M such that:

B pod;<yp
m Themap T; : xQ, — ®;(x)Q, is compact
m T; — 1 strongly



HAP for von Neumann algebras

Definition Haagerup property (MC, Skalski)

HAP & An arbitrary von Neumann algebra (M, ) with nsf weight ¢ has HAP if there
arbitrary von exists a net (®;); of normal cp maps ®; : M — M such that:

Neumann .

algebras W podi<

m Themap T; : Ay (x) — Ay (Pi(x)) is compact
m T; — 1 strongly

Remark:
m In our approach it is essential to treat weights instead of states.



Motivating examples

m Brannan '12: Free orthogonal and free unitary quantum groups have HAP.

HAP for Kac case = Semi-finite.

arbitrary von
Neumann

S m De Commer, Freslon, Yamashita '13:
Non-Kac case of this result = Non-semi-finite.

m Houdayer, Ricard '11: Free Araki-Woods factors.



Problems arising?

Definition Haagerup property

An arbitrary von Neumann algebra (M, ¢) with nsf weight ¢ has HAP if there
exists a net (®;); of normal cp maps ®; : M — M such that:

HAP for
arbitrary von U we CD,- g @
Neumann m Themap T; : Ay (X) — Ay (Pi(x)) is compact

algebras
m T; — 1 strongly
Questions:
m Does the definition depend on the choice of the weight?
m Can the maps ®; be taken ucp and y-preserving?
m Can we always assume that ®; 0 o/ = of o ®;?



Weight independence

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, ¢) has HAP iff
(M, ) has HAP.

Idea of the proof:

HAP for
arbitrary von
Neumann
algebras
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m Treat the semi-finite case using Radon-Nikodym derivatives.

Let ¢ have cp maps @;. Then formally,
i(-):=h""o;(h - h)h™,

will yield the cp maps for .
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Weight independence

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, ¢) has HAP iff
(M, ) has HAP.

Idea of the proof:

HAP for
arbitrary von
Neumann

algebras Lp(h . h) = 1/’( ) )

m Treat the semi-finite case using Radon-Nikodym derivatives.

Let ¢ have cp maps @;. Then formally,
i(-):=h""o;(h - h)h™,

will yield the cp maps for .

m Let a be any ¢-preserving action of R on (M, ). If (M x R, $) has HAP
then (M, ¢) has HAP.

m Use crossed product duality to conclude the converse.
m Conclude from the semi-finite case (Step 1).



Crossed products

Consequence

HAP for Let « be any action of a group G on M.
arbitrary von m If M x,, G has HAP then so has M

Neumann

algebras m |f M has HAP and G amenable then M x, G has HAP



Crossed products

Consequence

HAP for Let « be any action of a group G on M.
arbitrary von m If M x,, G has HAP then so has M

Neumann

algebras m |f M has HAP and G amenable then M x, G has HAP

Comments:
® M x, G has HAP implies that G has HAP in case G discrete

m 72 x SL(2,7) does not have HAP whereas SL(2, Z) has HAP and is weakly
amenable



Markov property

Let M be a von Neumann algebra with normal state . We say that a normal map
& : M — Mis Markov if it is a ucp y-preserving map.

HAP for Theorem (MC, A. Skalski)
arbitrary von

Neumann The following are equivalent:
algebras
m (M, ) has HAP
m (M, ) has HAP and the cp maps ¢; are Markov

Corollary: If (My, »1) and (Ms, ¢2) have HAP then so does the free product
(M1 * ,V,27 ©1 * 4,02). (foIIowmg Boca ’93)



Modular HAP

We say that (M, ) has the modular HAP if the cp maps ¢; commute with
o, t €R.

HAP for
arbitrary von
Neumann

algebras (M, ¢) is the von Neumann algebra of a compact quantum group with Haar state
. TFAE:

m (M, ) has HAP
m (M, ) has the modular HAP

Theorem (MC, Skalski)




HAP for
arbitrary von
Neumann
algebras

Questions:

m Does the definition depend on the choice of the weight? NO

m Can the maps ®; be taken ucp and p-preserving (Markov)? YES if p is a
state.

m Can we always assume that ®; o oy = o o ®;? YES in every known
example.




Questions:

HAP for m Does the definition depend on the choice of the weight? NO

;g‘:afﬁr‘]’on m Can the maps @, be taken ucp and y-preserving (Markov)? YES if ¢ is a
algebras state.
m Can we always assume that ®; o oy = o o ®;? YES in every known
example.

Question: Can we find Markov maps in case (B(H), Tr)?



Equivalent Haagerup properties

m Haagerup property via standard forms (Okayasu-Tomatsu) see also [COST,
C.R. Adad. Sci. Paris 2014]

Symmetric Haagerup property

An arbitrary von Neumann algebra (M, ¢) with nsf weight ¢ has symmetric HAP if

Equivalent there exists a net (®;); of normal cp maps ®; : M — M such that:
notions

B pod; <o

11 1 1
m The map T; : D xD — DJ ®;(x)D} is compact
m T; — 1 strongly



Equivalent Haagerup properties

m Haagerup property via standard forms (Okayasu-Tomatsu) see also [COST,
C.R. Adad. Sci. Paris 2014]

Symmetric Haagerup property

An arbitrary von Neumann algebra (M, ¢) with nsf weight ¢ has symmetric HAP if

Equivalent there exists a net (®;); of normal cp maps ®; : M — M such that:
notions

B pod; <o

11 1 1
m The map T; : D xD — DJ ®;(x)D} is compact
m T; — 1 strongly or ; — 1 in the point o-weak topology



Equivalent Haagerup properties

Definition
Let (®¢)s>0 be a semigroup of cp maps on M. (;);>¢ is called Markov if ®¢,t > 0

11 11
is Markov. It is called KMS-symmetric if T; : D4 xDg — DJ xDg is self-adjoint. It is
called immediately L2-compact if T¢, t > 0 is compact.

Theorem: HAP via Markov semigroups (MC, Skalski)

Equivalent ;
notions M von Neumann algebra with normal state . TFAE:

m (M, ) has HAP.

m There exists an immediately L2-compact KMS-symmetric Markov semigroup
(¢t)t20 on M.

Comment: Proof via symmetric HAP + ideas of Jolissaint-Martin '04/Cipriani
Sauvageot '03.



Equivalent Haagerup properties

The next result is the non-commutative analogue of the existence of a proper
conditionally negative definite function on a discrete group. = quadratic form:
‘quantum Dirichlet form’.
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Theorem (MC, Skalski)
M von Neumann algebra with normal state ¢. The following are equivalent:
m M has HAP

m [?(M, o) admits an orthonormal basis {es}, and a non-decreasing
sequence of non-negative numbers {\n}n such that limp A\p — co and

Equivalent
notions

Q&) =D Ml(en &), & €Dom(Q),
n=1

where Dom(Q) = {£ € L2(M, p) | 3=, Anl{€n, &)|? < oo} defines a
conservative completely Dirichlet form.



Equivalent Haagerup properties

The next result is the non-commutative analogue of the existence of a proper
conditionally negative definite function on a discrete group. = quadratic form:
‘quantum Dirichlet form’.

Theorem (MC, Skalski)

M von Neumann algebra with normal state ¢. The following are equivalent:
m M has HAP
m [?(M, o) admits an orthonormal basis {es}, and a non-decreasing

sequence of non-negative numbers {\n}n such that limp A\p — co and

Equivalent
notions

Q&) =D Ml(en &), & €Dom(Q),
n=1

where Dom(Q) = {£ € L2(M, p) | 3=, Anl{€n, &)|? < oo} defines a
conservative completely Dirichlet form.

m Explicit example for free orthogonal quantum group (following
Cipriani-Kula-Franz '13).



Quantum groups

Locally compact quantum groups (Kustermans, Vaes)
A von Neumann algebraic quantum group G consists of:
m avon Neumann algebra L*°(G);

m a comultiplication, i.e. a unital normal x-homomorphism
A: L®(G) — L*°(G) ® L°°(G) such that (A ® t)A = (¢ ® A)A;

m two normal semi-finite faithful Haar weights ¢, ¢ : L>°(G)T — [0, 0], i.e.

(t®@)A(X) = p(x)1,  VxeL®(G)*,
Quantum (¥ ® )A(X) = P(x)1, Vx € LOO(G)+'

groups
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Locally compact quantum groups (Kustermans, Vaes)
A von Neumann algebraic quantum group G consists of:
m avon Neumann algebra L*°(G);

m a comultiplication, i.e. a unital normal x-homomorphism
A: L®(G) — L*°(G) ® L°°(G) such that (A ® t)A = (¢ ® A)A;

m two normal semi-finite faithful Haar weights ¢, ¢ : L>°(G)T — [0, 0], i.e.

(t®@)A(X) = p(x)1,  VxeL®(G)*,
Quantum (¥ ® )A(X) = P(x)1, Vx € LOO(G)+'

groups

Classical examples:
B L°(G) with Ag(f)(x,y) = f(xy) and o(f) = [ f(x)d;x Haar measure.
B VN(G), A(Ax) = Ax ® Ax, p(Af) = f(e) Plancherel weight.



Quantum groups

Haagerup property for quantum groups (Daws, Fima, Skalski, White)

A quantum group G has the Haagerup property if:
B ¢o(G) admits an approximate unit build from ‘positive definite functions’ [DS]
m G admits a mixing representation weakly containing the trivial representation
m G admits a proper real cocycle

Quantum

s [DS] Daws, Salmi: Completely positive definite functions and Bochner’s theorem

for locally compact quantum groups, ’13.

Open question: G has HAP if and only if L°(G) has HAP



Quantum groups

Theorem (MC)

The quantum group SUg(1, 1) (=non-compact+non-discrete+non-amenable) has
the following properties:

m HAP
m Weakly amenable
m Coamenable

Quantum

YL Comment: Proof based on Plancherel decomposition of the left multiplicative

unitary by Groenevelt-Koelink-Kustermans 10 + De Canniere-Haagerup '85.
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Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net a; € A(G) such
that,
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Quantum groups

Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net a; € A(G) such
that,

llaix — xllagy) =0,  x € AG),

and ||ajllmyac)) < A-

m One can find a sequence a; € A(G)* commuting with the scaling group 7
such that,

llaix — Xllcoe) — O, x € A(G),
Quantum
groups and |||y ac) <A

m Then work to turn Cy(G)-norm to A(G)-norm. Remark:

I e < I - llaey



	Introduction
	HAP for von Neumann algebras
	HAP for arbitrary von Neumann algebras
	Equivalent notions
	Quantum groups

