Generalized Additive Models: mgcv package
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MGCV

The principal functions we will use are gam or bam

library (mgcv)

gam(y ~ x0 + s(x1l)+s(x2)+s(x3,x4), data=Data, family=gaussian())

e the model is enter via the formula syntax
e non-linear effects are entered with the syntax s

e bivariate effects can be either enterd with the syntax s or te if the smoothness is
different between axes
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The funct

ion s has different arguments:

e & :the dimension of the basis used to represent the smooth term

® bs:i
(@)

o

o

» =
2~ EDF

ndicating the (penalized) smoothing basis to use, could be:

bs="tp", thin plate regression splines

bs="ds" , Duchon splines (generalize the thin plate slines)

bs="cr", cubic regression splines

bs="cc", cyclic cubic regression splines

bs="ps", P-splines as proposed by Eilers and Marx (1996), they combine a B-spline

basis, with a discrete penalty on the basis coefficients
bs="ad" univariate and bivariate adaptive smooths are available (see

adaptive.smooth).
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It is also possible to set the position of knots:

knot <- ¢(20,40,50,70, 80, 90)
g <- gam(y ~ s(x, k=6, bs='cr'), knots=list (x=knot), sp=0)

otherwise knots are positionned on a regular partition of the quantiles
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Model summary

Linearterms ——»

Smooth terms —»
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g <- gam(y ~ s(x, k=10, bs='cr')+s(z, k=10, bs='cr'

summary (g)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Family: gaussian
Link function: identity

Formula:
y ~ s(x, k =10, bs = "cr") + s(z, k = 10, bs =
Parametric coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.18684 0.02436 48.71 <2e-16
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05

Approximate significance of smooth terms:
edf Ref.df F p-value

s(x) 7.254 8.258 204.3 <2e-16 ***

s(z) 8.555 8.920 178.4 <2e-16 ***

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05

97.5%
100

R-sqg. (adj) = 0.97 Deviance explained
GCV = 0.071359 Scale est. = 0.059364 n
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Model check

g <- gam(y ~ s(x, k=10, bs='cr')+s(z, k=10, bs='cr'))
gam.check (qg)

Resids vs. linear pred.
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Choice of k

in practice k-1 (or k) sets the upper limit on the degrees of freedom associated with an s
smooth (1 degree of freedom is usually lost to the identifiability constraint on the smooth)

e kshould be chosen large enough to capture the function complexity
e kshould be chosen small enough to avaoid overfitting and maintain reasonable
computational efficiency

‘large’ and ‘small” are dependent on the particular problem being addressed.
A useful general purpose approach goes as follows (see mgcv: : choose. k)

e fit your model and extract the deviance residuals

e for each smooth term in your model, fit an equivalent, single, smooth to the residuals,
using a substantially increased k to see if there is pattern in the residuals that could
potentially be explained by increasing k.

The obvious, but more costly, alternative is simply to increase the suspect k and refit the
original model. If there are no statistically important changes as a result of doing this, then k
was large enough.
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g <- gam(y ~ s(x,

plot (g,

k=10,

bs="cr

residuals=T, rug=T,

s(x,7.79)

s(2,4.04)

1) 8 (%,

k=10,
se=F, pch=20)
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g <- gam(y ~ s(x,2z))

vis.gam(g,view=c("x","z"

z"),plot.type="persp",box=T
,ticktype="detailed")
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forecasting

=datal)
newdata

data

g <- gam(y ~ s(x,z),

datal)

g.forecast <- predict (g,
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