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FORECASTING: principles and methodology




FORECASTING

Can take many forms:

« Expert advice

» Prospective (science fiction, anticipation)
e Scenario generation

 What if scenarios

« Physical modeling

We will focus here on forecasting from data



FORECASTING FROM DATA

Forecasting electricity load (industrial consumption at 5 min resolution) at a one day horizon:
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FORECASTING FROM DATA

Forecasting car sales (UK) at a 2 years horizon:
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FORECASTING FROM DATA

Forecasting low voltage stations load :
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FORECASTING FROM DATA

Characterize statistical properties of the data:
« Endogenous (time dependancy)
» Exogenous (dependancy with other covariates)
Correlation/causality
Stationnarity
Mean forecast/ distribution forecast/ quantile forecast

We restrict here to statistical models which are a good
compromise between quality of the forecast and interpretability of
the models.

Some recent development have been done in the field of Al
methods (e.g. deep learning) but these approach are still black
boxes.



FORECASTING FROM DATA

Exogenous/endogenous dependance: the exemple of french electricity load
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FORECASTING FROM DATA

Correlation/causality
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FORECASTING FROM DATA

Stationnarity: is the law of the process stable with time?
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FORECASTING FROM DATA

Mean forecast, density forecast, quantile forecast
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FORECASTING: descriptive statistics




FORECASTING: DESCRIPTIVE ANALYTICS

Scatter plots
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FORECASTING: DESCRIPTIVE ANALYTICS

Scatter plots / kernel smoothing
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FORECASTING: DESCRIPTIVE ANALYTICS
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FORECASTING: DESCRIPTIVE ANALYTICS

Histograms/ boxplots
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FORECASTING: DESCRIPTIVE ANALYTICS

Autocorrelation

More specifically for time series, these statistics are useful:

e the empirical mean of a time series (y;)1</<n: V,, = % Z;’zl Vi

e the empirical standart deviation to estimate its dispersion : ¢, = \/% Z?zl(y, - ¥,)?

e empirical auto-covariance y or autocorrelation p indicate the temporal (linear)
dependancy:

1 n—h
() = — 3 Or = 5)Qeh = )
=1

Yn(h)

nh=
pn(h) 0)

remark that y,(0) = o7

thus p, (h) is the estimate of the correlation between y; and v+, supposing this correlation
exists and is stable in function of time (stationnarity)
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FORECASTING: DESCRIPTIVE ANALYTICS

Partial Autocorrelation

e partial autocorrelation (PACF) : dependancy between two instant ¢ and ¢ + k conditionnally
to what happened attimes ¢+ 1,...,t+ k — 1

To obtain order h PACF one have to consider the following linear model:
Vi = A1Y—1 + Y2+, .. +ARYi—n + &

the order h PACF is defined as a; and can be estimated solving the OLS problem.
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FORECASTING: DESCRIPTIVE ANALYTICS

ACF and PACF
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FORECASTING: linear model




THE LINEAR REGRESSION MODEL

We consider a target Y which is a real random variable that we want to forecast according to:

e pastevalue of Y
e and/or covariates X1, ..., X,

We assume that the data are generated according to the following (linear regression) model:

Vi = Xi1p1 + xi2fa+. .. +x,-,pﬁp + &;

fori = 1,...,n observations. Our objective is to estimate the unknown parameters

We will also suppose:

e ¢; areindependant and indentically distributed (iid)

e mean 0 and constant variance: E(g;) = 0, V(g;) = o2
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THE LINEAR REGRESSION MODEL

This can be rewritten with matrix notations:
Y=Xp+¢
where

e X has nrows and p columns and is of rank p
e YER!,pER?
e E(¢) =0, V(gj) = 0>

suppose that we measure our performance with the quadratic loss, we can solve the
well known ordinary least square problem to infer f from the data:

n
mingerr Z(y,- —x;p)? = mingerr |1Y — Xp| 2

i=1
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THE LINEAR REGRESSION MODEL

This can be seen as a convex optimisation problem where we minimise the fonction

g: = X0i—xip).
So, ﬁ satisfying Z—i,(,/ﬁ\) = 0, ie:

d
i = 2xTy + 2xTxp = 2XT(Xp - V)

thus, X/ﬂ\ = Y and XTX/ﬂ\ = X'Y and, as X is rank p:

B=x"x)"'xTy
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THE LINEAR REGRESSION MODEL

Geometric interpretation

Observed Y

I ," Residuals
e=Y- ?
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THE LINEAR REGRESSION MODEL

Useful statistics:

A— V|| —A 2 . . .
e R? =cos?(0) = % =1- H the proportion of variance explained by our model. It

indicates wether the regression is close to the observations (including the noise variance).
e don't work if we compare different nature of models (e.g. multiplicative vs additive)

e can induce overfitting as R? increases as p increases, there is an adjusted version to take

n Y=Y IP
n—=p |ly-ylp?

dimension p into account: R:2=1-

| 26



FEATURE ENGENEERING

Linear models are a powerful tool as, conditional to the good transformations of the data X — Xnew, we
can often express Y as a linear combination of Xnew. Here are a few examples.

e periodic data: Fourier basis regression

For a well chosen w = 2 * /T and an harmonic k: Xnew = cos(k * wx)
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FEATURE ENGENEERING

@ can be chosen according to a frequency analysis of the signal:




FEATURE ENGENEERING

e polynomial transformation:
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FEATURE ENGENEERING

e spline basis decomposition: e.g. truncated power functions 1, x, (x — k)+

0 20 40 60 80 100
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MODEL VALIDATION

The forecaster needs an objective criteria to:

Select the set of covariates to include into the model
Find the good transformation of the covariates
Calibrate the model

Have a good estimate of its forecasting performances

Many pitfalls:

- Overfitting
- Extrapolation problem (trends)
- Most of the time data are not iid
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MODEL VALIDATION

Validatior

| (Test) set

Test set
Estimation set
X o -
o
8‘ —
| I
jul sep
Work only if:

- the data have the same generation process in the 2 sets

- we have enough data to split it

jul

Try to choose the test set in accordance with your final purpose/ the characteristic of the data
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MODEL VALIDATION

Cross validation

leave one out:

e chooserandomlyi € {1,...,n}
e fit your model on all the data except i ie

X1, Y1)5 -« s (Xi=1, Yi=1), (Xit1, Yit1), - - -, (Xn, Yn), denotes this model
b, R

e estimate a forecast error (y; — ¢ _l-(Xi))2

e repeat that N times and compute an estimate of the forecast error of

your model ¢

Rn(¢) = Z(y, ¢ (X))
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MODEL VALIDATION

Cross validation

K-fold:
Forke {1,...,K},

e choose randomly Iy = (i1,...,ip) € {1,...,n}2, where K« Q =n
e fit your model on all the data except I, denotes this model ¢ _,
e estimate a forecast error Rj, = é ZkQ:l(yik - E_,k (x;.))?

then compute an estimate of the forecast error of your model ¢

K
1
Re($) = — 2; Ry,
1=
Remarks:

e [ is here randomly sample but it could be blocks of consecutives observations (blockwise K-fold CV) so
that I,..., Ix is a partition of 1, ..., n. This is particularly relevant in the time series context.

e in addition to the error Rg(¢), if K is sufficiently large, we can also compute a measure of the uncertainty
of this estimate (variance, quantile...)
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X1

MODEL VALIDATION
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MODEL VALIDATION

Sequential testing

Fort € {ng,...,n}:

e fit a model Et on the data (x1,y1),..., (X7, Vr)

A~

o forecast y.1 as @ ,(xi41)

then compute an estimate of the forecast error of your model ¢

1 o~
Ruy(@) = —— > (= ¢ ()’
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MODEL VALIDATION

Well chosen blockwise test set

month 1 month 2 month 11

A A A

s Y N\ s N\ = Training periods

| 23 days I 7 days | 23 days | 7 days | 23 days | 7 days - Test periods

Yearly seasonnal time series
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MODEL VALIDATION

For linear model we have this convenient property:

“~)\2
y/ yi ~] ~
V= Zé_ s & =8/0-H)

i=1

Preuve:

» |lemme d’inversion matriciel:
Soit M une matrice symétrique inversible p X p, u et v deux
vecteurs de taille p. Alors:

MLy M1

M 1yt
( —I—uv) 1—l—u’M_1v

» X'X = X/_I-X_,' —|—X,'XI{
» X'Y =X, Y+ xiyi
> h,',,' = XI{(X/X)_IX,'
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MODEL VALIDATION

Résiduals checks

- Independance: acf, pacf
- Test de Box-Pierce

HO(h) : Ps(l) = p€(2) == Pe(h) =0

Hy(h):3k e (1,...,h) t.q pe(k) #0

ACF

Partial ACF

00 02 04 06 08 10

0.5

0.3

L 1 ] | |

Series eps

| 39




MODEL VALIDATION

Adequation to a given distribution:

Normal Q-Q Plot

- Qgplot
- Density estimation
- Tests: chi2, kolmogorov-Smirnov
s
a0 P

Theoretical Quantiles

| 40



MODEL VALIDATION

density.default(x = eps, bw = "sj")
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MODEL VALIDATION

Now, linear modeling of french electricity consumption....
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