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Abstract

We investigate partially ionized reactive gas mixtures in the presence of electric and mag-
netic 0elds. Our starting point is a generalized Boltzmann equation with a chemical source term
valid for arbitrary reaction mechanism. We study the Enskog expansion and obtain macroscopic
equations in the zeroth- and 0rst-order regimes, together with transport 5uxes and transport co-
e6cients. New bracket expressions are obtained for perpendicular/transverse di8usion, thermal
di8usion and thermal conductivity coe6cients as well as shear viscosity coe6cients. A new def-
inition of thermal di8usion ratios—consistent with the zero magnetic 0elds limit—is introduced.
Positivity properties of multicomponent di8usion matrices are investigated and macroscopic en-
tropy production is shown to be positive. The mathematical structure of the transport linear
systems that are to be solved in order to evaluate transport coe6cients is discussed. In particu-
lar, all transport coe6cients are expressed as convergent series. These series yield by truncation
accurate approximated coe6cients relevant to computational models.
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1. Introduction

Extensive interest in the kinetic theory of ionized gas mixtures with chemical reac-
tions has grown signi0cantly over the past years. The subject is indeed related to a
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wide range of practical applications including laboratory plasmas, high-speed gas 5ows
and atmospheric phenomena.

Application of the Chapman–Enskog method to partially ionized gases is feasible
for low temperature high density plasmas [1,2]. The e8ects of electrical and magnetic
0elds are then split into two di8erent contributions. The interactions between particles
at distances greater than the Debye length are considered to be mediated by the electric
and magnetic 0elds while those at shorter distance are considered to be true collisions
[1]. Additionally, the number of particles in a Debye sphere must be large, the cy-
clotron radius and the wavelength of any electromagnetic wave must be larger than
the Debye length. For partially ionized gases, the proper operator to be used is the
Boltzmann collision operator with shielded potentials [3]. In the particular situation of
fully ionized gases, the Fokker–Planck operator can also be used, but yields identical
results within a few percent [1]. The Fokker–Planck operator can indeed be obtained
from the Boltzmann operator in the limit of grazing collisions and, for most particles,
multiple collisions involving weak forces are statistically equivalent to successions of
numerous small angle binary collisions [4].

Application of the Chapman–Enskog theory to ionized mixtures was 0rst discussed
by Chapman and Cowling for monatomic binary mixtures [5]. Higher order evaluations
of transport coe6cients were performed by Kaneko and coworkers for binary neutral
mixtures in uniform magnetic 0elds in a simpli0ed steady kinetic framework [6–8].
The case of multicomponent mixtures of monatomic gases was comprehensively in-
vestigated by Ferziger and Kaper [1]. In this paper we consider the general case of
reactive polyatomic gas mixtures. The mixture of polyatomic species is described in a
semi-classical framework by using Wang Chang–Uhlenbeck–de Boer equations. These
equations preaverage the collision cross sections over degeneracies [9,10]. The chemical
source terms appearing in the Boltzmann equations are taken essentially from Ludwig
and Heil [11], Alexeev et al. [12], Ern and Giovangigli [13] and Grunfeld [14]. These
chemical source terms are valid for arbitrary chemical mechanisms. We also assume
that the distribution functions do not depend on any of the angular momentum [15].

We consider a regime where there is only one temperature in the mixture, assuming
that the electric 0eld is not intense [1]. This situation arises in various laboratory or
atmospheric plasmas as for instance positive columns of high pressure arcs, inductively
coupled plasma torches, microwaves plasmatrons or continuous optical discharges [1,9].
The generalization to mixture at thermodynamic nonequilibrium with multitemperature
transport and chemistry—arising from small electron/ion mass ratio asymptotics—is
beyond the scope of the present paper. We also assume that there is only one velocity
in the mixture and discard multi5uid models where each species has its own velocities
[16]. We note, incidentally, that macroscopic multi5uid conservation equations lead to
very serious mathematical pathologies [17].

We study the Enskog expansion and obtain macroscopic equations in the zeroth- and
0rst-order regimes, together with transport 5uxes and transport coe6cients. Our bracket
expressions for transport coe6cients perpendicular and transverse to the magnetic 0eld
include quadratic terms overlooked in [1]. We also express the shear viscosities as
bracket products for the 0rst time. A new de0nition of thermal di8usion ratios is in-
troduced which reduces to the usual de0nition in the absence of magnetic 0eld. We
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further investigate the positivity properties of the resulting multicomponent di8usion
matrices parallel, perpendicular and transverse to the magnetic 0eld. These properties,
established here for the exact matrices arising from the kinetic theory of gases, are a
key point in numerical approximations of multicomponent di8usion, where these prop-
erties must be enforced by the computational algorithms used to evaluate the transport
coe6cients. From these positivity properties, we next establish that macroscopic en-
tropy production is positive. To the author’s knowledge, it is the 0rst time that such
an analysis is made and this result is important from a thermodynamical, mathematical
and numerical points of view [18]. As a tool, we generalize the use of complex quan-
tities introduced in Refs. [1,5] which reduce vector products to scalar multiplication by
imaginary numbers.

Upon using matrix approximations of the collision operator, the transport coe6cients
can 0nally be evaluated by solving large linear systems. We address the question of the
mathematical structure of the resulting transport linear systems. Although direct inver-
sion of these linear systems is feasible, it is prohibitively expensive for most practical
applications involving multidimensional multicomponent 5ows. With an eye toward the
development of e6cient numerical models, there is thus a strong motivation for deriv-
ing cost e8ective approximations of transport coe6cients in a manner consistent with
the underlying kinetic theory rather than by simply using empirical mixture-averaged
expressions which are often less accurate. To this aim, we investigate well posedness
of the transport linear systems and establish the convergence of iterative technique. As
a consequence, we express the transport coe6cients as convergent series which yield
by truncation sequences of approximations of increasing accuracy as in the nonionized
case [19,20].

Our paper is organized as follows. In Section 2, we present the generalized equation
for chemically reactive mixtures. In Section 3 we investigate the zeroth-order Enskog
expansion. Sections 4 and 5 are concerned with the molecular and the macroscopic
equations in the 0rst-order expansion. In Section 6, we investigate the structure of the
corresponding transport linear systems. Finally, in Section 7 we brie5y address the
weak magnetic 0eld regime.

2. Theoretical framework

In this section, we describe a theoretical framework for polyatomic reactive gas
mixtures in the presence of electric and magnetic 0elds. We 0rst present a generalized
Boltzmann equation valid for an arbitrary reaction mechanism. We then show that
both nonreactive and reactive source terms are compatible with the positivity of kinetic
entropy production. We next present the collisional invariants and investigate Enskog
expansion.

2.1. Generalized Boltzmann equation

We consider a dilute reactive gas mixture composed of ns chemical species having
internal degrees of freedom. The starting point is the Boltzmann equation for polyatomic
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gas mixtures derived from Ref. [2] in a semiclassical framework. It preaverages the
collision cross sections over the degeneracies and can be derived from the Waldmann–
Snider quantum mechanical Boltzmann equation [2]. This equation is then generalized
to reactive partially ionized gas mixtures with chemical source terms taken from Refs.
[11–14].

The state of the mixture is described by the species distribution functions denoted
by fi(t; x; ci ; I), where i is the index of the species, t the time, x the three-dimensional
spatial coordinate, ci the velocity and I the index for the internal energy state. We
denote by S the species indexing set S = {1; : : : ; ns}, by mi, ei, and zi = ei=mi the
molecular mass, charge, and charge per unit mass of the ith species, and 0nally by
EiI the internal energy of the ith species in the Ith state. For a family of functions �i,
i∈S, we introduce the compact notation � = (�i)i∈S.

The family of species distribution functions f = (fi)i∈S is the solution of the fol-
lowing generalized Boltzmann equation

Di(fi) = Si(f) + Ci(f); i∈S ; (2.1)

where Di is the usual di8erential operator and Si(f) and Ci(f) are respectively the
nonreactive and the reactive source terms. The streaming operator Di can be written

Di(fi) = 9tfi + ci · 9xfi + bi · 9cifi ; (2.2)

where bi is the force acting on the ith species. In our model, bi is in the form bi =
g+ zi(E+ ci ∧B), where g is a species independent external force, E the electric 0eld
and B the magnetic 0eld.

The nonreactive source term can be written in the form

Si(f) =
∑
j

∑
I′JJ′

∫ (
f′

if
′
j

�iI�jJ

�iI′�jJ′
− fifj

)
WIJI′J′
ij dcj dc′i dc

′
j ; (2.3)

where �iI is the degeneracy of the Ith quantum state and WIJI′J′
ij the transition probability

for nonreactive collisions. Note that we work with transition probabilities rather than
collision cross sections since reactive collision terms are then much easier to write
[11,12,18]. The following reciprocity relations hold for transition probabilities [2]:

�iI�jJW
IJI′J′
ij = �iI′�jJ′W

I′J′IJ
ij : (2.4)

The reactive source term Ci(f) results from chemical reactions between species in
the mixture. We consider an arbitrary reaction mechanism, including, in particular,
bimolecular and trimolecular chemical reactions. Indeed, although triple nonreactive
collisions have been neglected in the nonreactive source term Si(f), triple reactive
collisions are retained since recombination reactions cannot often proceed otherwise
[11,12]. Triple reactive collisions can also be viewed as a sequence of two bimolecular
reactions proceeding extremely fast [12]. The chemical reactions taking place in the
mixture are indexed by r ∈R and can be written in the form [13]∑

i∈Fr

Mi �
∑
k∈Br

Mk ; r ∈R ;

where Fr and Br are the indices for reactants and products, counted with their
multiplicity. We denote by �f

ir and �b
ir the forward and the backward stoichiometric
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coe6cients of the ith species for the rth reaction, that is, the order of multiplicity
of species i in Fr and Br , respectively. We denote by Fr and Br the indices of the
quantum states for reactants and products, respectively. Lastly, we denote by Fr

i a
subset of Fr where the index i has been removed only once. We introduce similar
notations for Br

k , Fr
I and Br

K. The reactive source term for the ith species then reads
[13]

Ci(f) =
∑
r∈R

Cr
i (f) ; (2.5)

where Cr
i (f) represents the reactive source term due to the rth reaction. The source

term Cr
i (f) is given by

Cr
i (f) = �f

ir

∑
Fr

I ;B
r

∫ ∏
k∈Br

fk

∏
k∈Br �kK∏
j∈Fr �jJ

−
∏
j∈Fr

fj


WFrBr

FrBr

∏
j∈Fr

i

dcj
∏
k∈Br

dck

−�b
ir

∑
Fr ;Br

I

∫ ∏
k∈Br

fk

∏
k∈Br �kK∏
j∈Fr �jJ

−
∏
j∈Fr

fj


WFrBr

FrBr

∏
j∈Fr

dcj
∏
k∈Br

i

dck ;

(2.6)

where �iI = h3
P=(�iIm3

i ) and hP is the Planck constant. The quantity WFrBr

FrBr is the
transition probability for a reactive collision in which the reactants Fr with energy
states Fr are transformed into products Br with energy states Br . The summation over
Fr in (2.6) represents the sum over all quantum states J for all j∈Fr with similar
conventions for Fr

I , Br , and Br
I . Finally, the following reciprocity relations hold for the

reactive transition probabilities [11–13]:

WFrBr

FrBr

∏
k∈Br

�kK = WBrFr

BrFr

∏
j∈Fr

�jJ : (2.7)

2.2. Kinetic entropy

The nonreactive source term (2.3) and the reactive source term (2.5) are both com-
patible with the H -theorem [13]. In other words, they yield a positive kinetic entropy
production. We introduce to this purpose the kinetic entropy per unit volume

Skin = −kB

∑
i;I

∫
fi(log (�iIfi) − 1) dci ; (2.8)

where kB is the Boltzmann constant. Multiplying the Boltzmann equation (2.1) by
log (�iIfi), integrating over dci and summing over i∈S and I yields the entropy con-
servation equation in the form

9tSkin + 9x · (Skinv) + 9x ·Jkin = bkin ; (2.9)

where Jkin is the entropy di8usive 5ux given by

Jkin = −kB

∑
i;I

∫
fi(ci − v)(log (�iIfi) − 1) dci ; (2.10)
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and bkin the kinetic entropy source term. After a little algebra, we obtain

bkin = bS + bC ; (2.11)

where the nonreactive and reactive contributions are

bS =
kB

4

∑
i; j∈S

∑
II′JJ′

∫
�
(

f′
if

′
j

�iI′�jJ′
;
fifj

�iI�jJ

)
WIJI′J′
ij �iI�jJ dci dcj dc′i dc

′
j ;

bC =
kB

4

∑
r∈R

∑
Fr ;Br

∫
�


∏

k∈Br

�kKfk;
∏
j∈Fr

�jJfj


 WFrBr

FrBr∏
j∈Fr �jJ

∏
j∈Fr

dcj
∏
k∈Br

dck ;

and where �(x; y) = (x − y) log (x=y) is a positive function. We observe that both
bS and bC are a sum of positive terms. In other words, all the collisions, nonreac-
tive or reactive, yield a positive contribution to the kinetic entropy production. The
generalized Boltzmann equation is thus compatible with the H -theorem and yields a
dissipative structure. This property is particularly important in the modeling of reactive
gas mixtures where special care should be taken so that all the terms arising in the
macroscopic entropy production yield a positive—or zero—contribution.

2.3. Invariants of the nonreactive collision operator

The scalar collisional invariants of the nonreactive collision operator form a linear
space spanned by  l; l∈{1; : : : ; ns + 4}, with

 l =




(�li)i∈S; l∈S ;

(mici�)i∈S; l = ns + � ;

( 1
2 mici · ci + EiI)i∈S; l = ns + 4 ;

�∈{1; 2; 3} ;

where ci� is the component of ci in the �th spatial coordinate. On the other hand the
collisional invariant of the complete collision operator are constituted by the momentum
and energy invariants together with the element invariants. These later invariants are
associated with the conservation of elements in chemical reactions [13].

For two families � = (�i)i∈S and � = (�i)i∈S, we introduce the scalar product

〈〈�; �〉〉 =
∑
i;I

∫
�i 	 P�i dci ;

where �i 	 P�i denotes the maximum contracted product between the tensor �i and the
complex conjugate tensor �i. The scalar product is de0ned for families of complex
tensors as such quantities will naturally arise in the solution of Boltzmann linearized
equations in the presence of magnetic 0elds. The macroscopic properties are then con-
veniently written in the form

〈〈f;  l〉〉 =




nl; l∈S ;

�v�; l = ns + � ;
1
2 �v · v+ E; l = ns + 4 ;

�∈{1; 2; 3} ;
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where nl is the number density of the lth species, � =
∑

l∈S mlnl the mixture mass
density, v� the component of the mixture velocity v in the �th spatial coordinate, and
E the internal energy per unit volume.

2.4. Enskog expansion

An approximate solution to the Boltzmann equation (2.1) is now obtained using an
Enskog expansion. We assume that the chemistry characteristic times are larger than
the characteristic times of internal energy relaxation and the characteristic times of
free 5ight. Furthermore, we distinguish two models according to the intensity of the
magnetic 0eld [16]. More speci0cally, when the magnetic 0eld is strong enough, we
have to assume that E + v ∧ B is much smaller than (ci − v) ∧ B. Accordingly, we
rewrite Boltzmann equation (2.1) in the form

D̃i(fi) +
1
�b

D̂i(fi) =
1
�
Si(f) + �aCi(f); i∈S ; (2.12)

where D̃i is the streaming operator

D̃i(fi) = 9tfi + ci · 9xfi + b̃i · 9cifi ; (2.13)

associated with the reduced force b̃i

b̃i = g + zi(E + v ∧ B) ; (2.14)

and D̂i is the remaining term

D̂i(fi) = zi((ci − v) ∧ B) · 9cifi : (2.15)

In these equations, � is the usual formal parameter associated with Enskog expansion,
and a and b are positive integers which depends on the regime under consideration.
In this paper, we will consider both the strong magnetic 0eld regime b = 1, and the
simpler weak magnetic 0eld regime b = 0. On the other hand, the di8erent regimes
associated with the parameter a are discussed, in particular, in Refs. [13,18]. We will
consider the Maxwellian reaction regime a = 1 and brie5y discuss the strong reaction
regime a = 0, the kinetic equilibrium regime a = −1 being out of the scope of the
present work [13]. Finally, we expand the species distribution functions as

fi = f0
i (1 + �"i + O(�2)); i∈S ; (2.16)

and we impose that f0 yields the local macroscopic properties

〈〈f0;  l〉〉 = 〈〈f;  l〉〉; l∈{1; : : : ; ns + 4} : (2.17)

For convenience we also introduce the notation D(�)=(Di(�i))i∈S, D̃(�)=(D̃i(�i))i∈S,
D̂(�) = (D̂i(�i))i∈S, S(�) = (Si(�))i∈S, and C(�) = (Ci(�))i∈S, where � = (�i)i∈S is
any family of functionals �i depending on (ci ; I).
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3. Zeroth-order approximation

In this section, we obtain the expression of f0
i , i∈S, and we present the corre-

sponding macroscopic equations for polyatomic gas mixtures resulting from the Euler
zeroth-order approximation in both regimes b = 0 and b = 1.

3.1. Generalized Maxwellian distribution functions

The family of zeroth-order species distribution functions f0 =(f0
i )i∈S is the solution

of

Si(f0) = �1bD̂i(f0
i ); i∈S ; (3.1)

where ��� denotes the usual Kronecker symbol. Multiplying Eq. (3.1) by log (�iIf0
i ),

integrating over dci and summing over i∈S and I yields∑
i;I

∫
log (�iIf0

i )Si(f0) dci = �1b

∑
i;I

∫
log (�iIf0

i )D̂i(f0) dci :

Using relation (2.15) expressing D̂i(f0
i ) and integrating by parts, we obtain that the

right member of the latter equation vanishes. As a consequence (log (�iIf0
i ))i∈S is a

collisional invariant so that

log (�iIf0
i ) = �i − � · mici − #( 1

2 mici · ci + EiI); i∈S ;

where �i ∈R, �∈R3 and #∈R, and these parameters are determined from the macro-
scopic constraints (2.17). After some algebra, we obtain

f0
i =

ni

�iIQi
exp
(
− mi

2kBT
Ci · Ci − EiI

kBT

)
; i∈S ; (3.2)

where Ci = ci − v is the relative velocity of the ith species, T the temperature and Qi

the full partition function per unit volume of the ith species

Qi = Qint
i Qtr

i ;

with Qint
i the partition function for internal energy and Qtr

i the translational partition
function per unit volume of the ith species

Qint
i =

∑
I

�iI exp
(
− EiI

kBT

)
; Qtr

i =
(

2&mikBT
h2

P

)3=2

:

3.2. Zeroth-order macroscopic equations

The macroscopic conservation equations are obtained by taking the scalar product of
Boltzmann equation by collisional invariants. At zeroth-order, only the terms that are
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O(�0) are kept, and we obtain

〈〈D̃(f0);  l〉〉 + �1b〈〈D̂(f0");  l〉〉 = �a0〈〈C(f0);  l〉〉 ; (3.3)

for l∈{1; : : : ; ns + 4}. After some algebra, we obtain, for l = 1; : : : ; ns, the equations
expressing the conservation of species mass

9t�i + 9x · (�iv) = �a0mi P!0
i ; i∈S ; (3.4)

where �i =mini is the mass density of the ith species and P!0
i the zeroth-order chemical

source term

P!0
i = 〈〈 i;C(f0)〉〉 =

∑
I

∫
Ci(f0) dci ; i∈S :

This source term can be written in the form [14]

P!0
i =

∑
r∈R

(�b
ir − �f

ir) P(r; i∈S ; (3.5)

where P(r is the zeroth-order macroscopic rate of progress of the rth reaction

P(r = Kr


∏

j∈S

(
nj

Qj

)�f
jr

−
∏
j∈S

(
nj

Qj

)�b
jr


 ; r ∈R ; (3.6)

and Kr is the rate constant of the rth reaction. This quantity can be written

Kr =
∑
Fr ;Br

∫
Dr

∏
Fr

dcj
∏
Br

dck ; (3.7)

where Dr can be expressed in terms of reaction transition probabilities [13]

Dr =
∏
j∈Fr

exp
[
− mj

2kBT
Cj · Cj − EjJ

kBT

]
WFrBr

FrBr∏
j∈Fr �jJ

: (3.8)

These zeroth-order chemistry production terms are compatible with the law of mass
action and classical thermochemistry.

The momentum conservation equation, obtained for l = ns + 1; : : : ; ns + 3, can be
written in the form

9t(�v) + 9x · (�v⊗ v+ pI) = �g + Q(E + v ∧ B) + �1b j ∧ B ; (3.9)

where I is the unit tensor, p=nkBT the pressure and Q=
∑

i∈S niei the mixture charge
per unit volume. The current density j, measured with an observer moving with the
gas, depends on the 0rst-order species distribution functions

j =
∑
i;I

∫
f0

i "ieiCi dci : (3.10)

Finally, the last equation, obtained for l = ns + 4, expresses the conservation of total
energy

9t( 1
2 �v · v+ E) + 9x · (( 1

2 �v · v+ E + p)v)

= (�g + Q(E + v ∧ B)) · v+ �1b(j ∧ B) · v : (3.11)
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The zeroth-order macroscopic equations thus appear as the reactive compressible Eu-
ler equations for polyatomic gas mixtures with new terms expressing the e8ect of the
Lorentz force on the gas as a whole. In the regime b = 1, provided the conduction
current j is expressed in terms of the natural unknowns, these equations, together with
Maxwell’s equations, form the magnetogasdynamic equations. Eventhough the molecu-
lar equations at zeroth-order can be solved for f0, and yield Maxwellian distributions,
the zeroth-order macroscopic equations still contain terms involving the 0rst-order per-
turbation " when b = 1. The origin of the di6culty is that the term D̂(f0") is not
orthogonal to collisional invariants—with respect to the scalar product 〈〈f0·; ·〉〉. In
magnetogasdynamics, the conduction current is usually expressed by using Ohm’s law
j=�(E + v∧B) where � is a tensorial electrical conductivity. We will see in the next
sections that, at 0rst-order, the kinetic theory yields more complex expressions for the
conduction current j.

3.3. Temperature governing equation

A governing equation for temperature is easily recovered from the energy conserva-
tion equation. We 0rst express the internal energy E in the form

E =
∑
i∈S

ni( 3
2 kBT + PEi) ;

where PEi is the averaged internal energy of the ith species de0ned by

PEi =
1

Qint
i

∑
I

�iIEiI exp
(
− EiI

kBT

)
; i∈S :

For convenience, we also introduce the internal speci0c heat per molecule for the ith
species cint

i , the mixture internal speci0c heat cint, the translational constant volume
speci0c heat ctr

v and the mixture constant volume speci0c heat cv given by

cint
i =

d PEi

dT
=

1
kBT 2Qint

i

∑
I

�iI(EiI − PEi)2 exp
(
− EiI

kBT

)
; i∈S ;

cint =
∑
i∈S

ni

n
cint
i ; ctr

v = 3
2 kB; cv = ctr

v + cint :

After some algebra, we obtain the temperature zeroth-order governing equation

ncv(9tT + v · 9xT ) = −p9x · v− �a0

∑
i∈S

( 3
2 kBT + PEi) P!0

i : (3.12)

4. First-order molecular equations

In this section, we discuss the 0rst-order molecular equations for polyatomic gas
mixtures in the regime b = 1, that is, when the magnetic 0eld is strong enough. In
Section 5, we will derive the corresponding macroscopic equations.
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4.1. Linearized Boltzmann operator

The linearized Boltzmann operator, FS = (FS
i )i∈S, is de0ned by

FS
i (") =

∑
j∈S

∑
1′JJ′

∫
f0

j ("i + "j − "′
i − "′

j)W
IJI′J′
ij dcj dc′i dc

′
j; i∈S :

An important property is that the linearized Boltzmann operator is isotropic, i.e., it
converts a tensor constructed from (ci)i∈S into another tensor of the same type as in
the monatomic case [1].

We further introduce the associated bracket operator <�; �= = 〈〈f0�;FS(�)〉〉, where
� = (�i)i∈S; � = (�i)i∈S, and where �i and �i depend on ci and I. The bracket operator
is hermitian <�; �== <�; �=, it is positive semi-de0nite <�; �=¿ 0, and its kernel is spanned
by the collisional invariants, that is, <�; �== 0 implies that � is a (tensorial) collisional
invariants, or in other words, that all its tensorial components are scalar collisional
invariants.

4.2. Linearized Boltzmann equations

The 0rst-order integro-di8erential equations governing "=("i)i∈S are easily obtained
from (2.12) and can be written

FS
i (") = −zi(Ci ∧ B) · 9ci"i + *i; i∈S ; (4.1)

where

*i = −D̃i(logf0
i ) + �a0

Ci(f0)
f0

i
:

Moreover, relations (2.17) yield the scalar constraints

〈〈f0";  l〉〉 = 0; l∈{1; : : : ; ns + 4} : (4.2)

The right member D̃i(logf0
i ) may be evaluated by using the zeroth-order macroscopic

conservation equations. After lengthy calculations, we obtain

FS
i (") + zi(Ci ∧ B) · 9ci"i +

∑
j;J

miej
�kBT

Cj ·
∫

f0
j "jCj ∧ B dcj

=*S
i + �a0*C

i ; i∈S ; (4.3)

where

*S
i = −!+

i : 9xv− 1
3 *,

i 9x · v−
∑
j∈S

p!Dj
i · dj −!.̂

i · 9x
(

1
kBT

)
;

*C
i =

Ci(f0)
f0

i
− P!0

i

ni
− 1

pcvT

[
3
2

kBT − mi

2
Ci · Ci + PEi − EiI

]

×
∑
j∈S

(
3
2

kBT + PEj

)
P!0
j ;
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and where pi = nikBT is the partial pressure and di = (9xpi − �ib̃i)=p is the di8usion
driving forces of the ith species. In these expressions, we have

!+
i =

mi

kBT
(Ci ⊗ Ci − 1

3 Ci · CiI) ; (4.4)

*,
i =

2cint

cvkBT
( 1

2 miCi · Ci − 3
2kBT ) +

2ctr
v

cvkBT
( PEi − EiI) ; (4.5)

!Dj
i =

1
pi

(
�ij − �i

�

)
Ci ; (4.6)

!.̂
i = (5

2 kBT − 1
2miCi · Ci + PEi − EiI)Ci : (4.7)

In order to expand *C
i , we now write that

*C
i =

∑
r∈R

*r
i P(r; i∈S ;

where P(r is the zeroth-order macroscopic rate of progress of the rth reaction (3.6) and
where *r

i is given by

*r
i =

1
f0

i Kr


�b

ir

∑
Fr ;Br

I

∫
Dr

∏
Fr

dcj
∏
Br

i

dck − �f
ir

∑
Fr
I ;B

r

∫
Dr

∏
Fr

i

dcj
∏
Br

dck




−�b
ir − �f

ir

ni
− 1

pcvT


∑

j∈S

( 3
2kBT + PEj)(�b

jr − �f
jr)




×
(

3
2
kBT − mi

2
Ci · Ci + PEi − EiI

)
:

By linearity and isotropy of the linearized Boltzmann operator FS, the solution " =
("i)i∈S of (4.3) is expanded in a similar form

"i = "S
i + �a0"C

i ; (4.8)

where

"S
i = −+

i : 9xv− 1
3"

,
i 9x · v−

∑
j∈S

Dj
i · (9xpj − �jb̃j) − .̂

i · 9x
(

1
kBT

)
;

(4.9)

"C
i =

∑
r∈R

"r
i P(r : (4.10)

The functions "0, for 0∈{+; ,; (Dj)j∈S; .̂; r ∈R}, are now tensorial and satisfy the
integro-di8erential equations

FS
i ("0) + zi(Ci ∧ B) · 9ci"0

i +
∑
j;J

miej
�kBT

Ci ·
∫

f0
jCj ∧ B"0

j dcj

=*0
i ; i∈S ; (4.11)
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and the scalar constraints

〈〈f0"0;  l〉〉 = 0; l∈{1; : : : ; ns + 4} : (4.12)

4.3. Equations associated with .̂ and Dj

We look for a solution .̂ = (.̂
i )i∈S in the form

.̂
i = .̂(1)

i Ci + 
.̂(2)
i Ci ∧ B + .̂(3)

i Ci · BB ;

where .̂(1)
i ; .̂(2)

i and .̂(3)
i are scalar functions of Ci · Ci ; (Ci · B)2 and B · B, since

.̂ must be invariant under a change of coordinates. Substituting this expansion into
(4.11) for 0= .̂ and using isotropy, this equation splits into the three separate coupled
equations

FS
i (".̂(1)C) +

∑
j;J

miej
3�kBT

B2Ci

∫
f0

j "
.̂(2)
j Cj · Cj dcj

−ziB2".̂(2)
i Ci = !.̂

i ; i∈S ; (4.13)

FS
i (".̂(2)C ∧ B) −

∑
j;J

miej
3�kBT

Ci ∧ B
∫

f0
j "

.̂(1)
j Cj · Cj dcj

+zi"
.̂(1)
i Ci ∧ B = 0; i∈S ; (4.14)

FS
i (".̂(3)C · BB) −

∑
j;J

zjmimj

3�kBT
Ci · BB

∫
f0

j "
.̂(2)
j Cj · Cj dcj

+ zi"
.̂(2)
i Ci · BB = 0; i∈S ; (4.15)

where B2 = B · B, ".̂(1)C = (".̂(1)
i Ci)i∈S, ".̂(2)C ∧ B = (".̂(1)

i Ci ∧ B)i∈S and ".̂(3)C ·
BB = (".̂(3)

i Ci · BB)i∈S. At this step, the integro-di8erential equations associated with

.̂ have been reduced to integral equations. Further simpli0cation is now obtained if,

for each species i, instead of three real quantities ".̂(1)
i , ".̂(2)

i and ".̂(3)
i , we introduce

one real and one complex unknowns de0ned by

’.̂(1)
i = ".̂(1)

i + B2".̂(3)
i ; ’.̂(2)

i = ".̂(1)
i + iB".̂(2)

i ; i∈S ;

where of course i2=−1. Summing Eqs. (4.13) and (4.15), and taking the scalar product
with B yields the equation satis0ed by ’.̂(1)

FS
i (’.̂(1)C) = !.̂

i ; i∈S : (4.16)
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The equation for ’.̂(2) is obtained by taking the vector product of Eq. (4.13) with B,
multiplying Eq. (4.14) by iB and adding the two resulting equations

FS
i (’.̂(2)C) − iB

∑
j;J

miej
3�kBT

Ci

∫
f0

j ’
.̂(2)
j Cj · Cj dcj

+ iBzi’
.̂(2)
i Ci = !.̂

i ; i∈S : (4.17)

Upon introducing ’.̂(1) = (’.̂(1)
i Ci)i∈S, ’.̂(2) = (’.̂(2)

i Ci)i∈S, and the operator FB; v =
(FB; v

i )i∈S de0ned for u = (ui)i∈S by

FB; v
i (u) = −BmiCi

∑
j;J

ej
3�kBT

∫
f0

juj · Cj dCj + Bziui ; i∈S ;

where ui is the product of Ci by a (complex) scalar function of Ci ·Ci, (Ci · B)2 and
B · B, Eqs. (4.16) and (4.17) are conveniently rewritten in the form

FS(’.̂(1)) = !.̂ ; (4.18)

(FS + iFB; v)(’.̂(2)) = !.̂ : (4.19)

Furthermore, the constraint equations (4.12) are easily rewritten in the form

〈〈f0’.̂(1);  l〉〉 = 0; l∈{1; : : : ; ns + 4} ; (4.20)

〈〈f0’.̂(2);  l〉〉 = 0; l∈{1; : : : ; ns + 4} : (4.21)

The structure of the integral equation (4.18) is classical and the structure of Eq. (4.19)
is similar in a complex framework. More speci0cally, the operator FS+iFB; v and the
associated bilinear form a(u;v) = (u; (FS + iFB; v)v), de0ned on the proper Hilbert
space of complex isotropic squared integrable functions, are such that |a(u;u)|¿ [u;u]
which yields existence and uniqueness thanks to the constraints. Moreover, from the
isotropy of the operator FS, the functions ’.̂(1) and ’.̂(2) cannot be functions of
(C · B)2 [1].

In order to conveniently express .̂ in terms of ’.̂(1) and ’.̂(2), we introduce some
extra notation. We de0ne the unitary vector B by B =B=B and for any vector X, we
introduce the associated vectors

X‖ = (B · X)B; X⊥ = X − X‖ and Xt = B ∧ X :

For any vector X, the vectors X‖, X⊥ and Xt are mutually orthogonal. In addition, for
any vectors X and Y, we have X⊥ · Y‖ = 0, Xt · Y‖ = 0, X⊥ · Yt + Y⊥ · Xt = 0, and
X⊥ ·Y⊥ =Xt ·Yt . Finally X‖, X⊥ and Xt are obtained from X by applying the linear
operators p‖ = B ⊗ B, p⊥ = I− B ⊗ B and pt =MB, that is

p‖X = X‖; p⊥X = X⊥; ptX = Xt ;

where MB is the matrix de0ned by

MB =




0 −B3 B2

B3 0 −B1

−B2 B1 0


 :
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It is then straightforward to obtain that

.̂ = (’.̂(1)B ⊗ B + R(’.̂(2))(I− B ⊗ B) − I(’.̂(2))MB)Ci ; (4.22)

or equivalently

.̂ = R(’.̂(1)C‖
i + ’.̂(2)(C⊥

i + iC t
i )) ; (4.23)

where R(z) and I(z) denote the real and imaginary part of a complex quantity z =
R(z) + iI(z).

The success of the complex framework can be understood upon introducing a com-
plex representation Xc=X‖+X⊥−iXt associated with any real vector X=X‖+X⊥. In-
deed, in this complex framework, applying MB is then equivalent to a multiplication by
i in the plane orthogonal to B, that is, we have B∧(X⊥−iXt)=Xt+iX⊥=i(X⊥−iXt).

The above development can be followed through for Dj , j∈S, as well. More specif-
ically, the perturbed distribution functions Dj are expanded in the form

Dj
i = "Dj(1)

i Ci + "Dj(2)
i Ci ∧ B + "Dj(3)

i Ci · BB ;

and de0ning

’Dj(1)
i = "Dj(1)

i + B2"Dj(3)
i ; ’Dj(2)

i = "Dj(1)
i + iB"Dj(2)

i ; i; j∈S ;

and ’Dj(1) = (’Dj(1)
i Ci)i∈S, ’Dj(2) = (’Dj(2)

i Ci)i∈S, j∈S, we obtain

FS(’Dj(1)) = !Dj ; (4.24)

(FS + iFB; v)(’Dj(2)) = !Dj ; (4.25)

together with the constraints

〈〈f0’Dj(1);  l〉〉 = 0; l∈{1; : : : ; ns + 4} ; (4.26)

〈〈f0’Dj(2);  l〉〉 = 0; l∈{1; : : : ; ns + 4} ; (4.27)

for all j∈S. An important property of the right members !Dj is then that
∑

j∈S �j!
Dj=

0, which in turns implies by linearity that
∑

j∈S �j
Dj = 0 so that∑

j∈S

�j’Dj(1) = 0;
∑
j∈S

�j’Dj(2) = 0 : (4.28)

We can also write that

Dj = (’Dj(1)B ⊗ B + R(’Dj(2))(I− B ⊗ B) − I(’Dj(2))MB)Ci ; (4.29)

or equivalently

Dj = R(’Dj(1)C‖
i + ’Dj(2)(C⊥

i + iC t
i )) : (4.30)

Finally, it is also established that the linear rank of ’.̂(1); ’D1(1); : : : ; ’Dns (1) and ’.̂(2);
’D1(2); : : : ; ’Dns (2) is exactly ns, because it is the rank of the corresponding right mem-
bers !.̂:!D1 ; : : : ;!Dns .
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4.4. Equations associated with +

For the sake of simplicity, we introduce the following renormalized velocities:

Ci =
√

mi

2kBT
Ci ; i∈S :

We look for a solution + = (+
i )i∈S such that +

i is composed from all the sym-
metric, traceless second-order tensors that can be created from the vector Ci and the
pseudo-vector B. As the dimension of this space is 0ve, it would be su6cient to
consider 0ve independent tensors. However, it is more elegant [1] to consider the six
tensors T(1)

i ; : : : ;T(6)
i , de0ned by

T(1)
i = Ci ⊗ Ci − 1

3 Ci · CiI ;

T(2)
i = 1

2 [Ci ⊗ (Ci ∧ B) + (Ci ∧ B) ⊗ Ci] ;

T(3)
i = (Ci ∧ B) ⊗ (Ci ∧ B) − 1

3 [Ci · CiB · B − (Ci · B)2]I ;

T(4)
i = 1

2Ci · B[Ci ⊗ B + B ⊗ Ci] − 1
3 (Ci · B)2I ;

T(5)
i = 1

2Ci · B[B ⊗ (Ci ∧ B) + (Ci ∧ B) ⊗ B] ;

T(6)
i = (Ci · B)2[B ⊗ B − 1

3 B · BI] ;

which span the same space, and the following linear relation:

Ci · CiT
(6)
i + (Ci · B)2[T(3)

i + B · BT(1)
i − 2T(4)

i ] = 0 :

We then expand the tensor +
i as

+
i =

6∑
n=1

"+(n)
i T(n)

i ; (4.31)

where "+(n)
i are scalar functions of Ci · Ci, (Ci · B)2 and B · B, for i∈S. Substituting

this expansion into Eq. (4.11) for 0 = + and equating the corresponding terms yields
six equations, each one involving one tensor T(n)

i for n = 1; : : : ; 6. Using the property
that all the tensors T(n)

i for n = 1; : : : ; 6 are simple transformations of the tensor T(1)
i ,

and thanks to the isotropy of the Boltzmann linearized operator FS, we then obtain
six coupled equations between the family of tensors +(n) = (+(n)

i )i∈S de0ned by

+(n)
i = "+(n)

i (Ci ⊗ Ci − 1
3 Ci · CiI) :

The resulting equations are in the form

FS
i (+(1)) − ziB2+(2)

i = !+
i ; i∈S ; (4.32)

FS
i (+(2)) + 2zi(

+(1)
i − B2+(3)

i ) = 0; i∈S ; (4.33)

FS
i (+(3)) + zi

+(2)
i = 0; i∈S ; (4.34)
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FS
i (+(4)) + zi(

+(2)
i − B2+(5)

i ) = 0; i∈S ; (4.35)

FS
i (+(5)) + zi(2

+(3)
i + +(4)

i ) = 0; i∈S ; (4.36)

FS
i (+(6)) + zi

+(5)
i = 0; i∈S : (4.37)

As FS is a linear operator and +(n), n∈{1; : : : ; 6}, are orthogonal to collisional
invariants, adding (4.34) minus (4.35) minus B2 (4.37) yields

B2+(6)
i = +(3)

i − +(4)
i ; i∈S : (4.38)

Therefore, we may solve Eqs. (4.32)–(4.36) and subsequently obtain +(6)
i from Eq.

(4.38). We again introduce auxiliary complex quantities

’+(1)
i = +(1)

i + B2+(3)
i ;

’+(2)
i = +(1)

i + iB+(2)
i − B2+(3)

i ;

’+(3)
i = +(1)

i + 1
2 iB+(2)

i + 1
2 B2+(4)

i + 1
2 iB3+(5)

i ;

de0ned for each species i∈S. After a little algebra, the corresponding families ’+(1),
’+(2), and ’+(3) are found to satisfy the following uncoupled equations

FS
i (’+(1)) = 2T(1)

i ; i∈S ; (4.39)

FS
i (’+(2)) + 2iBzi’

+(2)
i = 2T(1)

i ; i∈S ; (4.40)

FS
i (’+(3)) + iBzi’

+(3)
i = 2T(1)

i ; i∈S : (4.41)

We introduce the operator FB;m = (FB;m
i )i∈S de0ned for u= (ui)i∈S by

FB;m
i (u) = Bziui ; i∈S ;

where ui is the product of Ci ⊗ Ci − 1
3 Ci · CiI by a (complex) scalar function of

Ci · Ci (Ci · B)2 and B · B. Eqs. (4.39)–(4.41) are then conveniently rewritten in the
form

FS(’+(1)) = !+; (4.42)

(FS + 2iFB;m)(’+(2)) = !+ : (4.43)

(FS + iFB;m)(’+(3)) = !+ : (4.44)

These systems are shown to be well posed and imply that the (complex) scalar function
’+(n)

i such that ’+(n)
i = ’+(n)

i (Ci ⊗ Ci − 1
3Ci · CiI) only depends on Ci · Ci and B · B

[1], for n = 1; 2; 3. It is also possible to express "+ in terms of ’+(n), n = 1; 2; 3; but
the corresponding relation is intricate.
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4.5. Equations associated with ",
i and "r

i

For 0 = ,, Eqs. (4.11) become

FS
i (",) + zi(Ci ∧ B) · 9ci",

i +
∑
j;J

miej
�kBT

Ci ·
∫

f0
j Cj ∧ B",

j dcj

=*,
i ; i∈S : (4.45)

We look for scalar functions ",
i of Ci · Ci, (Ci · B)2 and B · B. As f0

i Ci ∧ B",
i is an

odd function of Ci, all the integrals
∫

f0
jCj ∧ B",

j dcj vanish. Moreover, the vector
9ci",

i is in the plane spanned by Ci and B so that (Ci ∧ B) · 9ci",
i = 0 for i∈S.

Eq. (4.45) then becomes

FS(",) = *, ; (4.46)

which are to be completed with the constraints (4.12)

〈〈f0",;  l〉〉 = 0; l∈{1; : : : ; ns + 4} : (4.47)

This problem falls then into the common framework without electric and magnetic
0elds [1,21]. As a consequence, we obtain that there exist only one scalar function of
Ci · Ci which satis0es Eqs. (4.46) and (4.47).

Similar results are obtained for 0 = r, r ∈R, and Eqs. (4.11) are easily reduced to

FS("r) = Sr ; r ∈R ; (4.48)

〈〈f0"r;  l〉〉 = 0; l∈{1; : : : ; ns + 4} : (4.49)

5. First-order macroscopic equations

In this section we investigate the macroscopic 0rst-order equations for polyatomic
gas mixtures in the regime b = 1. More speci0cally, we investigate the conservation
equations, the transport 5uxes and the transport coe6cients. We also investigate the
structure and properties of the resulting multicomponent di8usion matrices and mul-
ticomponent heat–mass transport matrices. These properties are fundamental in order
to investigate macroscopic entropy production. These properties, established here for
exact matrices arising from the kinetic theory of gases, are a key point in numerical
approximations of multicomponent di8usion. In this situation, the coe6cients arising
from theoretical physics are replaced by ordinary numerical parameters, so that these
properties have to be guaranteed by the computational algorithms used to evaluate
the transport coe6cients. We 0nally investigate the macroscopic entropy conversation
equation and establish that macroscopic entropy production is positive.

5.1. First-order conservative equations

The macroscopic conservation equations at 0rst-order are obtained by taking the
scalar product of Boltzmann equation by collisional invariants and by keeping the
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terms that are O(�0) or O(�1). More speci0cally, in the regime b = 1, these equations
are obtained from

〈〈D̃(f0 + f0");  l〉〉 + 〈〈D̂(f0");  l〉〉= 〈〈C(f0);  l〉〉
+ �a0〈〈9fC(f0)f0";  l〉〉 ; (5.1)

for l∈{1; : : : ; ns+4}, where we have de0ned 9fCi(f0)f0"=(9fCi(f0)f0")i∈S. After
some algebra, the species mass conservation equations, obtained for l = 1; : : : ; ns, are
found in the form

9t�i + 9x · (�iv) + 9x · (�iVi) = mi P!i; i∈S ; (5.2)

where Vi is the di8usion velocities and P!i the 0rst-order chemical source term of the
ith species. The di8usion velocities are de0ned by

Vi =
1
ni

∑
I

∫
Cif0

i "i dci ; i∈S ; (5.3)

and the source term by

P!i =
∑

I

∫
(Ci(f0) + �ao9fCi(f0)f0") dci ; i∈S : (5.4)

The momentum conservation equation, obtained for l = ns + 1, ns + 2, ns + 3, reads

9t(�v) + 9x · (�v⊗ v+ pI) + 9x ·' = �g + Q(E + v ∧ B) + j ∧ B ; (5.5)

where j is the electric current density (3.10), which can also be written in the form
j =
∑

i∈S nieiVi, and ' is the viscous stress tensor

' =
∑
i;I

∫
miCi ⊗ Cif0

i "i dci : (5.6)

The energy conservation equation, obtained for l = ns + 4, 0nally reads

9t( 1
2�v · v+ E) + 9x · (( 1

2�v · v+ E + p)v)

+ 9x · (q + ' · v) = (�g + Q(E + v ∧ B)) · v+ j · E ; (5.7)

where q is the heat 5ux vector

q =
∑
i;I

∫
( 1

2miCi · Ci + EiI)cif0
i "i dci : (5.8)

Note that there should be an extra term in the left member of (5.1). This extra term
reads 〈〈D̂(f0"(2));  l〉〉—where "(2) is the second order contribution in the Enskog
expansion of f—and seems to be usually neglected without notice. It yields contribu-
tions in the form j(2) ∧B in the right member of the momentum conservation equation
and (B∧ v) · j(2) in the right member of the energy conservation equation, where j(2) is
the second order current [4]. Since the charge usually goes to zero rapidly in globally
neutral ionized reactive 5ows, this second order current is likely to be neglected.
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5.2. Expressions of the di<usion velocities Vi

Using de0nition (5.3) of Vi and expression (4.6) of !Dj
i yields [10]

Vi = kBT 〈〈!Di ; f0"〉〉; i∈S :

Substituting expansion (4.8), (4.9) into the latter equation, only the terms in Dj , j∈S,
and .̂, yield non-null contributions, so that

Vi =−kBT
∑
j∈S

〈〈!Di ; f0Dj · (9xpj − �jb̃j)〉〉

− kBT
〈〈

!Di ; f0".̂ · 9x
(

1
kBT

)〉〉
:

Further expanding Dj , j∈S, and .̂, with (4.22) and (4.29), using isotropy and keep-
ing in mind that dj = (9xpj − �jb̃j)=p, we obtain

Vi =−
∑
j∈S

(D‖
ijd

‖
j + D⊥

ij d
⊥
j + Dt

ijd
t
j)

− (5‖i (9x log T )‖ + 5⊥i (9x log T )⊥ + 5t
i(9x log T )t) ; (5.9)

where the transport coe6cients are de0ned by D‖
ij = (pkBT=3)〈〈!Di ;’Dj(1)〉〉, D⊥

ij +

iDt
ij=(pkBT=3)〈〈!Di ;’Dj(2)〉〉, 5‖i =−(1=3)〈〈!Di ;’.̂(1)〉〉; 5⊥i +i5t

i=−(1=3)〈〈!Di ;’.̂(2)〉〉.
These coe6cients are easily rewritten in the symmetrized form

D‖
ij = 1

3pkBT <’Di(1);’Dj(1)= ; (5.10)

D⊥
ij + iDt

ij = 1
3pkBT

(
<’Di(2);’Dj(2)= + i((’Di(2);’Dj(2)))

)
; (5.11)

and

5‖i = − 1
3 <’

Di(1);’.̂(1)= ; (5.12)

5⊥i + i5t
i = − 1

3

(
<’Di(2);’.̂(2)= + i((’Di(2);’.̂(2)))

)
; (5.13)

where we have de0ned the scalar product

((�; �)) =
∑
k;K

zkB
∫

f0
k�k 	 P�k dck : (5.14)

Note that the contributions involving the scalar product ((·; ·)) in D⊥ Dt , 5 ⊥, and 5 t

have been overlooked in Ref. [1].
It is also possible to rewrite (5.9) in the compact form

Vi = −
∑
j∈S

Dijdj − �i9x log T ; (5.15)
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where we have de0ned the tensorial coe6cients

Dij = D‖
ijB ⊗ B + D⊥

ij (I− B ⊗ B) + Dt
ijM

B; i; j∈S ; (5.16)

�i = 5‖i B ⊗ B + 5⊥i (I− B ⊗ B) + 5t
iM

B; i∈S : (5.17)

We now investigate the properties of the multicomponent di8usion matrices D‖ =
(D‖

ij)i; j∈S, D⊥ = (D⊥
ij )i; j∈S, and Dt = (Dt

ij)i; j∈S. These properties are fundamental in
order to establish that macroscopic entropy production is positive and for e6cient
computational evaluation of transport coe6cient in multicomponent numerical simula-
tions. We will denote by 〈x; y〉 the euclidean scalar product between two real vectors
x and y, or equivalently the hermitian scalar products between two complex vectors x
and y, and we introduce the mass fraction vector Y = (Yi)i∈S where Yi = �i=�; i∈S.
From the properties of the bracket operator, the linear constraint (4.28) among the
’Dj(1); j∈S, and the identity

〈D‖x; x〉 = 1
3 pkBT

[[∑
i∈S

’Di(1)xi;
∑
i∈S

’Di(1)xi
]]

;

valid for x∈Rns , it is easily established—as in the nonionized case [10]—that D‖ is
real symmetric positive semi-de0nite and that its nullspace is spanned by the vector
Y in Rns . On the other hand, the matrices D⊥ and Dt have a more complex structure
since

D⊥
ij = 1

3 pkBT
(

R<’Di(2);’Dj(2)= − I
(

(’Di(2);’Dj(2))
) )

;

Dt
ij = 1

3 pkBT
(

I<’Di(2);’Dj(2)= + R
(

(’Di(2);’Dj(2))
) )

;

so that the symmetric part of D⊥ is associated with R<·; ·= and its antisymmetric part
with I((·; ·)), whereas the symmetric part of Dt is associated with R((·; ·)) and its
antisymmetric part with I<·; ·=. For these matrices, one can 0rst establish that for x∈Rns

and y∈Rns

〈D⊥x; x〉 + 〈D⊥y; y〉 + 〈Dtx; y〉 − 〈x; Dty〉
=R〈(D⊥ + iDt)(x − iy); x + iy〉 ;

=1
3 pkBT

[[∑
i∈S

’Di(2)(xi − iyi);
∑
i∈S

’Di(2)(xi − iyi)
]]

so that this quantity is nonnegative, and it is zero if and only if both vectors x and
y are proportional to Y . Note, in particular, that only the symmetric part of D⊥ and
the antisymmetric part of Dt are associated with this nonnegativity property, needed to
establish that the entropy production term associated with D⊥ and Dt is nonnegative.
In addition, proceeding essentially as in Ref. [10], one can also establish that the
nullspace of the complex matrix D⊥ + iDt is spanned by Y in Cns and that its range
is the (hermitian) orthogonal complement of Y in Cns . Similarly, the nullspace of the
real matrix D⊥ is spanned by Y in Rns and that its range is the (euclidean) orthogonal
complement of Y in Rns eventhough D⊥ is not symmetric. Finally, still using the linear
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constraint (4.28) and the de0nition of thermal di8usion coe6cients we easily obtain
that 〈5 ‖; Y 〉 = 0; 〈5 ⊥; Y 〉 = 0, and 〈5 t ; Y 〉 = 0.

We now de0ne the thermal di8usion ratios 7‖=(7‖i )i∈S; 7⊥=(7⊥i )i∈S, and 7t=(7t
i)i∈S ,

from the linear systems{
D‖7‖ = 5 ‖ ;

〈7‖; U 〉 = 0 ;

{
(D⊥ + iDt)(7⊥ + i7t) = 5 ⊥ + i5 t ;

〈7⊥ + i7t ; U 〉 = 0 ;
(5.18)

where U is the vector of length ns with unity component U = (1)i∈S. From these
de0nitions, after some algebra, we obtain an alternative expression for the di8usion
velocities Vi

Vi =−
∑
j∈S

D‖
ij(d

‖
j + 7‖j (9x log T )‖) −

∑
j∈S

D⊥
ij (d⊥j + 7⊥j (9x log T )⊥

+ 7t
j(9x log T )t) −

∑
j∈S

Dt
ij(d

t
j + 7⊥j (9x log T )t − 7t

j(9x log T )⊥) : (5.19)

Another de0nition of the thermal di8usion ratios 7⊥ and 7t has been given by Ferziger
and Kaper. This de0nition is in the form D⊥7⊥ = 5 ⊥; 〈7⊥; U 〉 = 0, and Dt7t =
5 t ; 〈7t ; U 〉 = 0. However, there are several di6culties associated with this de0nition.
First, the linear system Dtx = 5 t ; 〈x; U 〉= 0 is not always well posed. In particular, in
the limit of zero magnetic 0elds, the matrix Dt is the zero matrix and the constraint
〈7t ; U 〉 = 0 is insu6cient to determine that 7t = 0. In addition, the projections of di
and 9x log T that are denoted by d⊥i and (9x log T )⊥ are not necessarily in the same
direction and it is somewhat arti0cial to try to regroup these projections under the
same coe6cients. On the other hand, we note that system (5.18) is always well posed
since 5 ⊥ + i5 t is in the range of D⊥ + iDt and U is complementary to the nullspace
of D⊥ + iDt in Cns . In particular, in the limit of zero magnetic 0eld B= 0, it is easily
checked that I(’.̂(2)) = 0 and I(’Di(2)) = 0, so that 5 t = 0 and Dt = 0, which implies
directly D⊥7t = 0 and 0nally 7t = 0 thanks to 〈7t ; U 〉 = 0.

Finally, from the expressions of the di8usion velocities, we can readily express the
0rst-order conduction current j in terms of the macroscopic variable gradients, the
electric 0eld and the magnetic 0eld. After some algebra, we obtain that

j =−
∑
j∈S

(:‖
j d

′‖
j + :⊥

j d
′⊥
j + :t

jd
′t
j )

+ (:‖E‖ + :⊥(E⊥ + v ∧ B) + :t(E + v ∧ B)t) ;

− (:‖
T (9x log T )‖ + :⊥

T (9x log T )⊥ + :t
T (9x log T )t) ; (5.20)

where d ′j =(9xpj−�jg)=p and where the electrical conductivities :‖; :⊥; :t are de0ned
by

:‖ =
∑
i; j∈S

D‖
ijnieinjej; :⊥ =

∑
i; j∈S

D⊥
ij nieinjej; :t =

∑
i; j∈S

Dt
ijnieinjej ;
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the electro-thermal coe6cients :‖
T ; :

⊥
T ; :t

T are de0ned by

:‖
T =

∑
i∈S

5‖i niei; :⊥
T =

∑
i∈S

5⊥i niei; :t
T =

∑
i∈S

5t
iniei ;

and the electro-di8usion coe6cients :‖
j ; :

⊥
T ; :t

j are given by

:‖
j =

∑
i∈S

D‖
ijniei; :⊥

j =
∑
i∈S

D⊥
ij niei; :t

j =
∑
i∈S

Dt
ijniei :

5.3. Expressions of the heat =ux q

Using de0nition (5.8) of q and expression (4.7) of !.̂
i yields [10]

q = −〈〈!.̂; f0"〉〉 +
∑
i∈S

( 5
2kBT + PEi)niVi :

Using expansions (4.8), (4.9), (4.22), and (4.29) we further obtain that

q=−(.̂‖(9xT )‖ + .̂⊥(9xT )⊥ + .̂t(9xT )t)

−p
∑
i∈S

(5̂‖i d
‖
i + 5̂⊥i d

⊥
i + 5̂t

id
t
i ) +

∑
i∈S

( 5
2kBT + PEi)niVi ; (5.21)

where the transport coe6cients are de0ned by .̂‖ = (1=3kBT 2)〈〈!.̂;’.̂(1)〉〉, .̂⊥ + i.̂t =

(1=3kBT 2)〈〈!.̂;’.̂(2)〉〉, 5̂‖i =−(1=3)〈〈!.̂;’Di(1)〉〉, and 5̂⊥i +i5̂t
i =−(1=3)〈〈!.̂;’Di(2)〉〉.

These coe6cients can be easily rewritten in the symmetrized form

.̂‖ =
1

3kBT 2 <’
.̂(1);’.̂(1)= ;

.̂⊥ + i.̂t =
1

3kBT 2

(
<’.̂(2);’.̂(2)=; +i((’.̂(2);’.̂(2)))

)
;

and

5̂‖i = − 1
3 <’

.̂(1);’Di(1)= ;

5̂⊥i + i5̂t
i = − 1

3

(
<’.̂(2);’Di(2)= + i((’.̂(2);’Di(2)))

)
:

Note that the contributions involving the scalar product ((·; ·)) in .̂⊥, .̂t , .̂t , 5̂ ⊥, and
5̂ t have been overlooked in Ref. [1]. It is easily established that 5̂‖i = 5‖i and that
5̂⊥i (B) = 5 ⊥

i (−B) and 5̂t
i(B) = 5t

i(−B) where only the dependence on the magnetic
0eld is explicited. These relations will be investigated in more details in the section
concerning Onsager relations.

Relation (5.21) can also be written in the compact form

q = −�̂9xT − p
∑
i∈S

�̂idi +
∑
i∈S

( 5
2 kBT + PEi)niVi ;
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where we have de0ned the tensorial coe6cients

�̂ = .̂‖B ⊗ B + .̂⊥(I− B ⊗ B) + .̂tMB ; (5.22)

�̂i = 5̂‖i B ⊗ B + 5̂⊥i (I− B ⊗ B) + 5̂t
iM

B; i∈S : (5.23)

The positivity properties associated with the heat 5ux and the di8usion velocities can
be written with the help of the heat–mass transport matrices

A‖ =


 T

p .̂
‖ 5̂ ‖T

5 ‖ D‖


 ; A⊥ + iAt =


 T

p .̂
⊥ 5̂ ⊥T

5 ⊥ D⊥


+ i

(
T
p .̂

t 5̂ tT

5 t Dt

)
;

where the superscript T indicates a transposition. Proceeding as for the multicomponent
matrices, and using

〈A‖x′; x′〉 = 1
3 pkBT <<;<= ;

where < =
∑

i∈S xi’Di(1) − x0’.̂(1)=(pkBT ) and x′ = (x0; x)∈Rns+1, one can establish
that the matrix A‖ is real symmetric positive semi-de0nite and that its nullspace is one
dimensional and spanned by (0; Y ). Similarly, one can also establish that for x′=(x0; x)
and y′ = (y0; y), x′; y′ ∈Rns+1, x; y∈Rns

〈A⊥x′; x′〉 + 〈A⊥y′; y′〉 + 〈Atx′; y′〉 − 〈x′; Aty′〉 = 1
3pkBT <<;<= ;

where <=
∑

i∈S (xi+iyi)’Di(2)−(x0+iy0)’.̂(2)=(pkBT ). In particular, the latter quantity
is nonnegative and is zero if and only if x0 = y0 = 0 and both vectors x and y are
proportional to Y . Once again, only the terms involving the bracket product, that is,
only the symmetric part of A⊥ and the antisymmetric part of At , are associated with
nonnegativity properties. In addition, one can establish that the nullspace of A⊥ + iAt

is spanned by (0; Y ) in Cns+1 whereas its range is the (hermitian) orthogonal to (0; Y )
in Cns+1. Similarly, the nullspace of A⊥ is spanned by (0; Y ) in Rns+1 and its range is
the (euclidean) orthogonal to (0; Y ) in Rns+1.

We next de0ne the modi0ed thermal di8usion ratios 7̂‖ = (7̂‖i )i∈S; 7̂⊥ = (7̂⊥i )i∈S and
7̂t = (7̂t

i)i∈S from the linear systems{
D‖7̂‖ = 5̂ ‖ ;

〈7̂‖; U 〉 = 0 ;

{
(7̂⊥ + i7̂t)T(D⊥ + iDt) = (5̂ ⊥ + i5̂ t)T ;

〈7̂⊥ + i7̂t ; U 〉 = 0 :

One can then obtain the following alternative expression of the heat 5ux

q=−.‖(9xT )‖ − .⊥(9xT )⊥ − .t(9xT )t

+p
∑
i∈S

(7̂‖i V
‖
i + 7̂⊥i V

⊥
i + 7̂t

iV
t
i ) +

∑
i∈S

( 5
2 kBT + PEi)niVi ; (5.24)

where we have introduced

.‖ = .̂‖ − (p=T )
∑
i; j∈S

D‖
ji7̂

‖
j 7

‖
i ;

.⊥ + i.t = .̂⊥ + i.̂t − (p=T )
∑
i; j∈S

(D⊥
ji + iDt

ji)(7̂
⊥
j + i7̂⊥j )(7⊥i + i7t

i) :
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Note that there is no term involving ( 5
2kBT + PEi)niV t

i in the heat 5ux [1] since Vi =

V‖
i + V⊥

i . The positivity properties can also be explicitly written in terms of .⊥ +
i.t with the help of the hermitian part Ah = (A + PAT)=2 of A = A⊥ + iAt and the
(generalized) Schur complement of its lower right block Dh. More speci0cally, we
have Dh

ij = (pkBT=3)<’Di(2);’Dj(2)=, 5h
i =−(1=3)<’.̂(2), ’Di(2)=, .̂h = .̂⊥ and de0ning 7h

from Dh7h =5 h and 〈7h; U 〉=0, the Schur complement .h = .̂h− (p=T )〈Dh7h; P7h〉 must
be positive.

5.4. Expressions of the viscous stress tensor '

Using expressions (4.4) and (4.5) and Eq. (5.6) yields the following relation for the
viscous stress tensor '

' = kBT 〈〈!+; f0"〉〉 + 1
3kBT 〈〈S,; f0"〉〉I :

The term 〈〈S,; f0"〉〉 is easily evaluated in the form

〈〈S,; f0"〉〉 = − 1
3kBT 〈〈S,; f0",〉〉 + �a0

∑
r∈R

〈〈*,; f0"r〉〉 P(r :

De0ning the volume viscosity , by

, = 1
9kBT <",; ",= ; (5.25)

and the reactive pressure by

preac =
∑
r∈R

<S,; "r = P(r ;

we obtain that

' = '̂ − ,9x · vI+ �a0preacI ;

where '̂ = kBT 〈〈!+; f0"〉〉. In order to evaluate

'̂ = kBT 〈〈!+; f0"〉〉 = −kBT 〈〈!+; f0+: 9xv〉〉 ;

we substitute expansion (4.31), we use the relations expressing the tensors T(n)
i for n=

1; : : : ; 6 as simple transformations of the tensor T(1)
i , and the isotropy of the Boltzmann

linearized operator FS. De0ning the 0ve shear viscosities +1; : : : ; +5 by

+1 = 1
20kBT (<’+(1);’+(1)= + <’+(2);’+(2)=); (5.26)

+2 = − 1
10kBT ((’+(2);’+(2))) ; (5.27)

+3 = 1
20kBT (<’+(1);’+(1)= − <’+(2);’+(2)=) ; (5.28)

+4 = 1
10kBT (<’+(3);’+(3)= − 1

2 <’
+(1);’+(1)= − 1

2 <’
+(2);’+(2)=) ; (5.29)

+5 = 1
10kBT

(
((’+(2);’+(2))) − ((’+(3);’+(3)))

)
; (5.30)
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we obtain after lengthy algebra the following expression for '̂

−'̂ = +1S+ +2(MBS− SMB) + +3(−MBSMB + BTSBB ⊗ B)

+ +4(SB ⊗ B + B ⊗ BS− 2BTSBB ⊗ B)

+ +5(B ⊗ BSMB −MBSB ⊗ B) ;

where S is given by

S= (9xv+ 9xvT) − 2
3 (9x · v)I :

To the best of our knowledge, the bracket expressions (5.26)–(5.30) expressing the
0ve shear vicosities in terms of the solutions ’+(1);’+(2), and ’+(3) are new.

5.5. Expression of the chemical source term P!i

Eq. (5.4) can be rewritten in the form

P!i = P!0
i + wi ; i∈S ;

with

wi = �a0

∑
I

∫
9fCi(f0)f0" dci ; i∈S :

The structure of the perturbed chemical source terms wi are investigated in [18] for
nonionized gas mixtures but the same formalism apply. In particular, the perturbed
source term is a quadratics in the zeroth-order forward and backward reaction rates of
progress plus a linear combination of the same quantities multiplied by 9x · v. Some
estimates of the perturbed terms wi have been given in the literature and they are
believed to be small as well as the chemical pressure and we refer to [10] for more
details. Finally, upon neglecting both the chemical pressure preac and the perturbed
source terms wi ; i∈S, the governing equations for both regimes a = 0 and a = 1
coincide.

5.6. Macroscopic entropy

Expanding (2.8) up to 0rst-order terms yields that Skin = S + O(�2) where S is
the zeroth-order macroscopic entropy per unit volume, easily evaluated in the form

S =−kB

∑
i;I

∫
f0

i (log(�i1f0
i )−1) dci =

∑
i∈S

�i

(
5
2

kB

mi
+

PEi

Tmi
− kB

mi
log
(

ni

Qi

))
:

From the explicit expression of S we can obtain the macroscopic entropy conservation
equation

9tS + 9x · (Sv) + 9x ·
(
q
T

−
∑
i∈S

gi

T
�iVi

)
= ?; (5.31)
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where ? is the entropy production term given by

? = −
∑
i∈S

gimi P!i

T
− ' : 9xv

T
−
(
q −

∑
i∈S

�ihiVi

)
· 9xT

T 2 −
∑
i∈S

p
T
Vi · di : (5.32)

5.7. Positivity of entropy production

In this section, we show that the entropy production term ? splits into a sum of
nonnegative terms. This property is important from several points of view. First, from
a thermodynamical point of view, it shows that the macroscopic model satis0es the
second principle, inherited from the kinetic model. From a mathematical point of view,
entropy plays a central role in establishing well posedness of the resulting system of
partial di8erential equations and in the de0nition of shock waves. It can also be used to
derive symmetrized form of the system of conservation laws. These symmetric forms
can be used for theoretical purposes as well as 0nite element numerical simulations [18].
In order to establish that the entropy production term splits into a sum of nonnegative
terms, we use in particular the structure properties that have been established for the
heat-mass transport matrices.

We 0rst investigate entropy production in the Maxwellian reaction regime where
a = 1. When a = 1, using Eqs. (3.5), (3.6), entropy production due to chemistry is
easily rewritten in the form

− 1
T

∑
i∈S

gimi P!i = kB

∑
r∈R

Kr�

(∏
i∈S

(
ni

Qi

)�f
ir

;
∏
i∈S

(
ni

Qi

)�b
ir
)

;

where �(x; y)=(x−y)log(x=y) is a nonnegative function. In other words, when a=1,
the chemistry terms arising from the Maxwellian distributions are compatible with
classical thermo-chemistry.

Furthermore, when a = 1, the entropy production due to viscous e8ects reads

−' : 9xv
T

=
,
T

(9x · v)2 − '̂ : S
T

;

so that, , being nonnegative—and positive if there is at least one polyatomic species
in the mixture—it is su6cient to show that −'̂ : S is positive. To this aim, we 0rst
rewrite '̂ : S into an intrinsic form, i.e., which is basis independent. Denoting by
p‖ the orthogonal projection with range spanned by the vector B and p⊥ = I − p‖

the orthogonal projection with kernel spanned by the vector B, one can establish after
lengthy calculations that

−'̂ : S= 2(+1 + +4)Tr(p‖Sp⊥p⊥Sp‖)

+(+1 + +3)[(Tr(p‖Sp‖))2 + 1
2 (Tr(p⊥Sp⊥))2]

+(+1 − +3)[Tr(p⊥Sp⊥p⊥Sp⊥) − 1
2 (Tr(p⊥Sp⊥))2] ;

where Tr(A) denotes the trace of a tensor A. However, according to bracket expressions
(5.26)–(5.30) of the 0ve shear viscosities, we have the following relations

+1 + +4 ¿ 0; +1 + +3 ¿ 0; +1 − +3 ¿ 0 :
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It is therefore su6cient to show that

Tr(p‖Sp⊥p⊥Sp‖) ;

(Tr(p‖Sp‖))2 + 1
2 (Tr(p⊥Sp⊥))2

and

Tr(p⊥Sp⊥p⊥Sp⊥) − 1
2 (Tr(p⊥Sp⊥))2

are nonnegative. As these expressions are invariant under a change of coordinates, we
choose an orthonormal basis (e1; e2; e3) such as e1 is proportional to the vector B. In
this situation, we then obtain

Tr(p‖Sp⊥p⊥Sp‖) = S2
12 + S2

13 ;

(Tr(p‖Sp‖))2 + 1
2 (Tr(p⊥Sp⊥))2 = S2

11 + 1
2 (S22 + S33)2

and

Tr(p⊥Sp⊥p⊥Sp⊥) − 1
2 (Tr(p⊥Sp⊥))2 = 2S2

23 + 1
2 (S22 − S33)2 ;

so that −'̂ : S is nonnegative and −'̂ : S is zero if and only if S is zero.
We 0nally show that the entropy production term involving the heat 5ux and the

di8usion velocities

?v = −
(
q −

∑
i∈S

�ihiVi

)
· 9xT

T 2 −
∑
i∈S

p
T
Vi · di ; (5.33)

is nonnegative. By using expressions (5.19) and (5.24) of Vi and q, we can write

?v =
1
T 2 .̂‖(9xT )‖ · (9xT )‖ +

p
T

∑
i; j∈S

D‖
ijd

‖
j · d‖i +

p
T 2

∑
i∈S

5̂‖i d
‖
i · (9xT )‖

+
p
T 2

∑
i∈S

5‖i (9xT )‖ · d‖i +
1
T 2 .̂

⊥(9xT )⊥ · (9xT )⊥ +
p
T 2

∑
i∈S

5̂⊥i d
⊥
i · (9xT )⊥

+
p
T 2

∑
i∈S

5⊥i (9xT )⊥ · d⊥i +
p
T

∑
i; j∈S

D⊥
ij d

⊥
j · d⊥i +

p
T 2

∑
i∈S

5̂t
id

t
i · (9xT )⊥

+
p
T 2

∑
i∈S

5t
i(9xT )t · d⊥i +

p
T

∑
i; j∈S

Dt
ijd

⊥
i · d⊥j :

We claim that this expression is nonnegative from the positivity properties established
for the matrices A‖ and A⊥ + iAt . Indeed, we can readily rewrite the four 0rst terms
of ?v into a sum of terms 〈A‖x‖; x‖〉 with x‖0 = (9�T )‖ and x‖i = (d�i)‖ for � = 1; 2; 3.
Similarly, using X⊥ · Y⊥ = Xt · Yt and X⊥ · Yt = −Xt · Y⊥ for any vectors X and Y,
we can rewrite the seven remaining terms of ?v into a sum of terms 〈A⊥x⊥; x⊥〉 +
〈A⊥xt ; xt〉+〈A⊥x⊥; xt〉−〈Atxt ; x⊥〉, with x0=(9�T )⊥, xi=(d�i)⊥, y0=(9�T )t , xi=(d�i)t ,
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for � = 1; 2; 3. This shows that ?v is a sum of positive contributions, and after a little
algebra, we also obtain that

?v = kB<’‖
v ;’

‖
v = + 1

2 kB<’⊥
v − i’t

v;’
⊥
v − i’t

v= ;

where

’‖
v = −

∑
i∈S

’Di(1) · pd‖i − ’.̂(1) · 9x
(

1
kBT

)‖
;

and

’⊥
v − i’t

v = −
∑
i∈S

’Di(2) · p(d⊥i − id t
i ) − ’.̂(2) ·

(
9x
(

1
kBT

)⊥
− i9x

(
1

kBT

)t)
:

We now brie5y discuss the strong reaction regime where a = 0. In this situation, the
calculations are more complex and one can show that the extra entropy production is
[18]

d? =
preac

T
9x · v− 1

T

∑
i∈S

gimiwi :

A close examination reveals that, in this regime a=0, entropy production arising solely
from reactive collisions is not necessarily nonnegative, at variance with the kinetic
underlying framework [18]. This shows that, in the regime a = 0, the macroscopic
governing equations are somewhat ill-posed. However, neglecting the two contributions
preac and wi, i∈S, the governing equations in both regimes a = 0 and a = 1 coincide
and yields a positive entropy production as the underlying kinetic framework.

5.8. Onsager’s reciprocal relations

The Onsager relations are symmetry constraints which must hold between the trans-
port coe6cients. In the case of gases, these symmetry properties can directly be deduced
from the kinetic theory of gases [22].

The tensorial relations expressing the transport 5uxes in terms of the macroscopic
gradients have been given in the preceding sections. From these relations, the Onsager’s
reciprocal relations read

Dij(−B) =Dji(B)T; �i(−B) = �̂i(B)T; �̂(−B) = �̂(B)T; i; j∈S :

Since p‖ = B ⊗ B and p⊥ = I − B ⊗ B are symmetric matrices and odd functions
of B, and MB is antisymmetric matrix and even function of B, these relations can be
written as follow

D‖
ij(−B) = D‖

ji(B); D⊥
ij (−B) = D⊥

ji (B); Dt
ij(−B) = Dt

ji(B) ;

5‖i (−B) = 5̂‖i (B); 5⊥i (−B) = 5̂⊥i (B); 5t
i(−B) = 5̂t

i(B) ;

.̂‖(−B) = .̂‖(B); .̂⊥(−B) = .̂⊥(B); .̂t(−B) = .̂t(B) :
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It is easy, however, to check that

’.̂(1)
i (−B) = ’.̂(1)

i (B); ’.̂(2)
i (−B) = ’.̂(2)

i (B) ;

’Dj(1)
i (−B) = ’Dj(1)

i (B); ’Dj(2)
i (−B) = ’Dj(2)

i (B) ;

and these properties directly imply the above relations.

6. Structure of transport linear systems

In order to evaluate the transport coe6cients, in practice, the linearized Boltzmann
integral equations are solved approximatively by using a variational procedure. The
transport coe6cients in multicomponent mixtures can then be evaluated by solving
large linear systems [10]. Although direct inversion of these systems is feasible, it is
prohibitively expensive for most practical applications involving multidimensional mul-
ticomponent 5ows [19]. Following previous work on nonionized mixtures [10,18–20]
we investigate here the mathematical structure of the transport linear systems result-
ing from the kinetic framework described in the preceding sections. We establish, in
particular, that the transport coe6cients can be expanded as convergent series which
yield approximate expressions by truncation.

6.1. Variational formulation

For each transport coe6cient 0 to be evaluated, we have to solve linear integral
equations that can be written in the form

(FS + iFB)(’0) =  0 ; (6.1)

where FB denotes either the null operator in the scalar case, or the operator FB; v

in the vector case, or the operator FB;m in the traceless matrix case. This (complex)
integral equations must be completed with the constraints

〈〈f0’0;  l〉〉 = 0; l∈{1; : : : ; ns + 4} : (6.2)

The transport coe6cient 0 is then generally obtained from scalar products in the form
0 = 〈〈f0’0;  0〉〉. The linear integral equations (6.1), (6.2) associated with the trans-
port coe6cients are solved approximately by using a variational procedure. A 0nite
dimensional space is 0rst selected

A = span{�rk ; (r; k)∈B} ;

where �rk ; (r; k)∈B, are basis functions and where B is a set of basis function indices.
The set of basis function indices is such that B ⊂ F× S where F denotes a function
type indexing set and we denote by ! the dimension of the functional space A.

The species perturbed distribution functions "0 are next expanded in the form

’0 =
∑

(r; k)∈B

�r
k�

rk ; (6.3)

where the �r
k are scalars. A (hermitian) Galerkin approach is used by requiring the

di8erence between the approximated (FS + iFB)(’0) and *0 to be orthogonal to
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the space A. The components with respect to the basis �rk ; (r; k)∈B, of any function
�=
∑

(r; k)∈B xrk�
rk of A now form a vector of C! denoted by x=(xrk)(r; k)∈B and the set

B can be used as a natural indexing set. For x; y∈C!, the scalar product 〈x; y〉 is given
by 〈x; y〉=∑(r; k)∈B xrk Pyr

k . For A∈C!;!, we write A=(Ars
kl)(r; k); (s; l)∈B the coe6cients of

the matrix A. Making use of this notation, the expansion coe6cients �r
k ; (r; k)∈B, form

a vector �=(�r
k)(r; k)∈B ∈C! which is easily shown to be the solution of a constrained

linear system in the form

(G + iG̃B)� = �;

�∈C ; (6.4)

where we have de0ned

Grs
kl = 〈〈f0FS(�sl); �rk〉〉 = <�sl; �rk = ;

(G̃B)rskl = 〈〈f0FB(�sl); �rk〉〉 ;

�r
k = 〈〈 0; �rk〉〉 :

In addition, we have introduced the constraint space C given by

C = (span{Gl�; l∈{1; : : : ; ns + 4}; �∈{1; : : : ; n(}})⊥ ;

where the constraint vectors have components given by

Grl�
k = 〈〈�rk ;T� l〉〉; l∈{1; : : : ; ns + 4}; �∈{1; : : : ; n(} :

Here  l; l∈{1; : : : ; ns + 4} are the scalar collisional invariants whereas T�;
�∈{1; : : : ; n(}, is the canonical basis of tensors of the same type than ’0, and n(

is the dimension of the corresponding tensor space, that is, n( = 1 in the scalar case,
n( = 3 in the vector case, and n( = 9 in the matrix case. Note that, thanks to isotropy,
the constraint space is usually at most one dimensional [10]. Finally, the transport
coe6cients are evaluated from simple scalar products in the form

0 = 〈�; �′〉 ;

where �′ denotes a vector of C!.
It is then of fundamental interest to select as basis functions the usual real expansion

polynomials. In this situation, the matrix G is the same as in the zero magnetic 0eld
case and G̃B is a real matrix although without a simple structure. In particular, the
whole formalism developed in Refs. [10,20] can be used for the matrix G so that G is
symmetric positive semi-de0nite and �∈R(G) = N (G)⊥. The well posedness property
N (G) ⊕ C = R! (associated with the system where G̃B = 0) also holds provided that
the Galerkin variational approximation space A is perpendicular to the linear space of
collisional invariants I that are of the same tensorial rank [10,20], that is, provided
that

I = I ∩A⊕I ∩A⊥ ;
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where I ∩A⊥ denotes the elements of I that are orthogonal to A with respect to
the bilinear form 〈〈f0·; ·〉〉.

A careful analysis then reveals that the system in its initial form (6.4) is not properly
structured. In particular, the nullspace N (G + iG̃B) is not known explicitly, there are
no simple positivity properties associated with G + iG̃B, and iterative techniques are
not guaranteed to be convergent. As a consequence, we rewrite this system into a new
form which is shown to have a much better mathematical structure and whose unique
solution is still �. To this aim, we introduce the matrix

GB = G̃BPC;N (G) ;

where for two supplementary subspaces A ⊕ B = C! we denote by PA;B the projector
onto A along B. The corresponding modi0ed system then reads

(G + iGB)� = � ;

�∈C ; (6.5)

and is strictly equivalent to (6.4) since �=PC;N (G)�. The structure of the matrix G+iGB

can then be investigated by using essentially the same techniques as those used for
G in the nonionized case [10]. Among the important properties are the symmetry of
GB = (GB)T, that N (G) ⊂ N (GB) and that R(GB) ⊂ N (G)⊥. One can then show that
the nullspace N (G + iGB) is spanned in C! by the same real vectors spanning N (G)
in R!, and that R(G + iGB) is the (hermitian) orthogonal of N (G + iGB) eventhough
G + iGB is not hermitian. In addition, the well posedness property

N (G + iGB) ⊕ C = C! ;

is a direct consequence of the similar result in R! for G and we also have �∈R(G +
iGB) so that the linear system (6.5) is well posed.

6.2. Iterative techniques

We introduce the sparse transport matrix db(G)∈R!;! associated with the unper-
turbed part of the transport linear system [10]

db(G)rskl = Grs
kl�kl; (r; k); (s; l)∈B :

The matrix db(G) plays a fundamental role in the asymptotic expansion of the transport
coe6cients [10]. One can establish that the matrix 2db(G) − G is symmetric positive
semi-de0nite for ns¿ 1 and positive de0nite for ns¿ 3. The nullspace of 2db(G)−G
is easily identi0ed is the special cases ns6 2. The structure of the matrix 2db(G)−G
shows incidentally that the general case for mixtures is ns¿ 3 and that binary mixtures
are a degenerate case inadequate for a general theory [10]. In order to obtain asymptotic
expansions for the transport coe6cients, we now use the theory of projective iterative
methods for constrained singular linear systems. Several mathematical results have been
derived in the framework of multicomponent transport [10].

We introduce a matrix decomposition G+iGB=M−Z and the corresponding iteration
matrix T =M−1Z = I −M−1(G + iGB). Let P = PC;N (G) be the oblique projector onto
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the subspace C along N (G + iGB), let also �∈R(G + iGB); x0 ∈C!; y0 = Px0, and
consider for i¿ 0 the iterates xi+1=Txi+M−1�; i¿ 1, and yi+1=PTyi+PM−1�; i¿ 1.
The projector matrix P ensures that at each iteration the approximation to the species
perturbed distribution functions satis0es the physical constraints. Our aim is to chose
M in such a way that the powers of the matrix T are convergent [10]. In this situation,
the product PT has a spectral radius strictly lower than unity, the iterates xi; i¿ 1,
and yi; i¿ 1, are convergent and

lim
i→∞

yi = P
(

lim
i→∞

xi
)

= � ;

where � is the unique solution of the transport linear system (6.5). Upon de0ning the
approximate transport coe6cients

0[i] =

〈
i∑

j=0

(PT )jPM−1Pt�; �′
〉

;

we then have

lim
i→∞

0[i] =

〈 ∞∑
j=0

(PT )jPM−1Pt�; �′
〉

= 0 ;

and all transport coe6cient are written as convergent series.
A 0rst appropriate choice for the splitting matrix M is M = db(G) in the general

case ns¿ 3, whereas in the particular cases ns = 1 or 2, the main diagonal of db(G)
needs to be weighted by some positive coe6cients. Indeed, when M =db(G), has been
established that the spectral radius of PM−1(M − G) is strictly lower that unity since
2M −G is then positive de0nite [10]. As a consequence, since PT =PM−1(M −G)−
PM−1GB, the spectral radius of PT is strictly lower than unity whenever GB is small
enough, that is, provided the magnetic 0eld is small enough.

In order to obtain convergent algorithms in the general case, is necessary to in-
clude the matrix iGB in the matrix M . More speci0cally, we consider the choice
M = db(G) + iGB in the general case ns¿ 3 with the above diagonal modi0ca-
tions of db(G) for ns6 2. This matrix M = db(G) + iGB is still simple to invert
in practice since the complex part iGB is either diagonal or is a rank-one pertur-
bation of a diagonal matrix [1]. The convergence proof can then be directly estab-
lished following the zero magnetic investigations—mutatis mutandis—and using that
for any x∈C!〈db(G)x; x〉¡ |〈Mx; x〉| thanks to the symmetry of GB [23]. The choice
M = db(G) + iGB thus leads to convergent asymptotic expansions of the transport
coe6cients for any magnetic 0eld strength, generalizing previous results obtained for
nonionized mixtures [10,19,20].

7. First-order approximation in the regime b = 0

In this section, we are interested in the weak magnetic 0eld regime where b = 0.
This case is simpler than the previous since b = 1 since we do not have anymore to
distinguish between the parallel, perpendicular and transverse components. We do not
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detail the calculations since they are identical to those without electromagnetic 0elds
[18].

7.1. First-order macroscopic equations

In this regime b = 0 we obtain the following 0rst-order macroscopic equations

9t�i + 9x · (�iv) + 9x · (�iVi) = mi P!i; i∈S ; (7.1)

9t(�v) + 9x · (�v⊗ v+ pI) + 9x ·' = �g + Q(E + v ∧ B) + j ∧ B ; (7.2)

9t( 1
2 �v · v+ E) + 9x · [( 1

2�v · v+ E + p)v] + 9x · (q + ' · v)
=(�g + Q(E + v ∧ B)) · v+ j · E : (7.3)

These 0rst-order macroscopic equations appear as the Navier–Stokes reactive compress-
ible equations with terms expressing the e8ect of the Lorentz force on the gas as a
whole and the Ohmic heating.

7.2. Flux and transport coeAcients

In this regime, the species di8usion velocities Vi ; i∈S, read

Vi = −5i9x log T −
∑
j∈S

Dijdj; i∈S ; (7.4)

with

Dij = 1
3 pkBT <Di ;Dj =; 5i = − 1

3 <
Di ;.̂= :

We can then de0ne the thermal di8usion ratios 7 = (7i)i∈S, from the linear system

D7 = 5 ; 〈7; U 〉 = 0 ;

and we obtain an alternative expression for the species di8usion velocities

Vi = −
∑
j∈S

Dij(dj + 7j9x log T ); i∈S : (7.5)

On the other hand, the heat 5ux q is given by

q = −.̂9xT − p
∑
i∈S

5i di +
∑
i∈S

( 5
2 kBT + PEi)niVi ; (7.6)

with

.̂ =
1

3kBT 2 <
.̂;.̂= :

By introducing the new coe6cient

. = .̂− nkB

∑
i; j∈S

Dij7i7j ;
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we obtain another expression of the heat 5ux

q = −.9xT + p
∑
i∈S

7iVi +
∑
i∈S

(
5
2 kBT + PEi

)
niVi : (7.7)

In addition, in the regime a = 1, we obtain the following expression for the viscous
stress tensor

' = −,9x · vI− +S ; (7.8)

with

, = 1
9kBT <",; ",=; + = 1

10 kBT <+;+= :

Finally, the mathematical structure of the corresponding transport linear systems that are
to be solved in order to evaluate the transport coe6cients has already been investigated
in Ref. [10].

7.3. Entropy production

The entropy conservation equation is similar to Eq. (5.31) but the source term is
changed into

? = ,(9x · v)2 + +S : S+
.
T 2 9xT · 9xT

+
p
T

∑
i; j∈S

Dij(di + 7i9x log T ) · (dj + 7j9x log T ) ; (7.9)

so that entropy production is easily shown to be positive.
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