
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2005; 28:1647–1672
Published online 26 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mma.629
MOS subject classi�cation: 80A 32; 76X 05; 35M20; 76N 10

The local Cauchy problem for ionized magnetized
reactive gas mixtures

Vincent Giovangigli1;∗;† and Benjamin Graille2;‡

1CMAP; CNRS; Ecole Polytechnique; 91128 Palaiseau Cedex; France
2CMAP; Ecole Polytechnique; 91128 Palaiseau Cedex; France

Communicated by D. Pearson

SUMMARY

We investigate a system of partial di�erential equations modelling ionized magnetized reactive gas
mixtures. In this model, dissipative �uxes are anisotropic linear combinations of �uid variable gradients
and also include zeroth-order contributions modelling the direct e�ect of electromagnetic forces. There
are also gradient dependent source terms like the conduction current in the Maxwell–Ampere equation.
We introduce the notion of partial symmetrizability and that of entropy for such systems of partial
di�erential equations and establish their equivalence. By using entropic variables, we recast the system
into a partially normal form, that is, in the form of a quasilinear partially symmetric hyperbolic–parabolic
system. Using a result of Vol’Pert and Hudjaev, we prove local existence and uniqueness of a bounded
smooth solution. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: ionized gas mixtures; chemical reactions; entropy; symmetric hyperbolic–parabolic system;
normal forms

1. INTRODUCTION

Ionized magnetized reactive gas mixtures have many practical applications such as to labora-
tory plasmas, high-speed gas �ows or atmospheric phenomena. In this paper, we investigate
the structure and properties of the corresponding systems of partial di�erential equations.
The kinetic theory of ionized gas mixtures can be used to obtain the equations govern-

ing high density low temperature plasmas. The resulting systems are di�erent according to
the various characteristic lengths and times of the phenomena under investigation. Assum-
ing that there is a single temperature in the mixture—this is the case for various practical
applications—the corresponding governing equations are derived in Ferziger and Kaper [1]
and Giovangigli and Graille [2] for general reactive polyatomic gas mixtures.
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1648 V. GIOVANGIGLI AND B. GRAILLE

The corresponding equations—governing ionized magnetized reactive gas mixtures—can be
split into conservation equations, transport �uxes, thermochemistry, and Maxwell’s equations.
A remarkable aspect is that the magnetic �eld yields anisotropic di�usion mass �uxes, heat
�ux and viscous tensor. Furthermore, di�usion �uxes involve anisotropic linear combinations
of �uid variable gradients as well as zeroth-order terms arising from the direct action of elec-
tromagnetic forces. There are also gradient-dependent source terms as the conduction current
in the Maxwell–Ampere equation. The corresponding structural mathematical assumptions con-
cerning thermoelectrochemistry and transport coe�cients are derived from the kinetic theory
of gases [2] and they generalize the situation of non-ionized species [3].
The governing equations for reactive ionized magnetized dissipative gas mixtures constitute

a second-order quasilinear system of conservation laws with zeroth order terms in dissipative
�uxes and gradient-dependent source terms. We introduce the notion of partial symmetrizabil-
ity as well as that of entropy for such systems of partial di�erential equations and establish
their equivalence. There is in particular an entropic compatibility condition between zeroth
order terms of dissipative �uxes and gradient-dependent source terms. We use the termi-
nology ‘partial symmetrization’ since the resulting quasilinear system contains symmetric as
well as antisymmetric contributions in contrast with the non-ionized case [4–7]. The partially
symmetric form is the form that reveals most of the structural symmetry properties of the
corresponding partial di�erential operators.
By using entropic variables, we recast the system into a partially normal form, that is,

in the form of a quasilinear partially symmetric hyperbolic–parabolic system. We again use
the terminology ‘partially normal’ since the resulting e�ective �rst-order di�erential operators
involve non-symmetric matrices in contrast with the non-ionized case [3–5,7]. In particular,
global existence results and asymptotic stability of equilibrium states cannot be obtained from
the theorems established in [3–5,7]. Nevertheless, we prove local existence of a unique solu-
tion to the Cauchy problem with smooth initial conditions. Our method of proof relies on the
results of Kawashima [4] or Vol’Pert and Hudjaev [8] concerning the Cauchy problem for
symmetric quasilinear hyperbolic–parabolic composite systems of partial di�erential equations.
The governing equations for ionized magnetized reactive gas mixtures are presented in

Section 2. In Section 3, we investigate partial symmetrizability, normal form and existence
of solutions for an abstract system. Finally, in Section 4, we apply these results to the sys-
tem of partial di�erential equations modelling multicomponent ionized magnetized reactive
gas mixtures.

2. EQUATIONS FOR IONIZED MAGNETIZED REACTIVE GAS MIXTURES

The equations governing dissipative plasmas can be split between conservation equations,
transport �uxes, thermochemistry, and Maxwell’s equations. These equations can be derived
from the kinetic theory of gases by using a �rst-order Enskog expansion [1,2].

2.1. Conservation equations

We denote by G the species indexing set G= {1; : : : ; ns}, ns the number of species, nk , �k

and qk the number of moles, the mass and the charge per unit volume of the kth species and
mk the molar mass of the kth species.
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The species mass conservation equations read

@t�k + 999x·(�kv) + 999x·Fk =mk!k; k ∈G (1)

where v is the macroscopic velocity of the mixture, Fk the di�usion �ux and !k the chemical
source term of the kth species.
The momentum conservation equation can be written as

@t(�v) + 999x·(�v⊗v + pI) + 999x·�=�g+ q(E+ v∧B) + j∧B (2)

where � denotes the total mass per unit volume, p the pressure, I the unit tensor, � the
viscous tensor, q the total charge per unit volume, E the electric �eld, B the magnetic �eld,
g a species independent external force, and j the conduction current density.
Denoting by et = e+v·v=2+”0E·E=2+B·B=2�0 the total energy per unit mass, e the internal

energy per unit mass, ”0 the dielectric constant, �0 the magnetic permeability, P=(E∧B)=�0
the Poynting vector, and Q the heat �ux, the energy conservation equation reads

@t(�et) + 999x·((�et + p)v + P) + 999x·(Q+�·v)=�g·v (3)

2.2. Transport �uxes

A remarkable aspect of dissipative plasmas is that transport �uxes in strong magnetic �elds
are anisotropic [1,2]. In order to take into account this anisotropy we de�ne the unitary vector
B=B=B, where B is the norm of the magnetic �eld B, and for any vector X, we introduce
the three vectors

X‖=(B·X)B; X⊥=X −X‖ and X�=B∧X

which are mutually orthogonal. The di�usion �ux Fk , k ∈G, is then given by

Fk =�kVk ; k ∈G (4)

where the di�usion velocity Vk , k ∈G, reads

Vk =−∑
l∈G

(D‖
kld

‖
l +D⊥

kld
⊥
l +D�

kld
�
l )

−(�‖
k (999x log T )

‖ + �⊥
k (999x log T )⊥ + ��

k (999x log T )
�) (5)

In these expressions, the species di�usion driving force dk , k ∈G, is given by

dk =
1
p
(999xpk − �kg− qk(E+ v∧B)) (6)

and D‖
kl, D⊥

kl and D�
kl , k; l∈G, are the multicomponent di�usion coe�cients, �‖

k , �⊥
k and

��
k , k ∈G, the thermal di�usion coe�cients, T the absolute temperature, and pk , k ∈G, the
species partial pressures. For non-ionized gases, the charges qk , k ∈G, vanish so that we have
D‖

kl=D⊥
kl , D�

kl =0, k; l∈G, and �‖
k = �⊥

k , ��
k =0, k ∈G, [1,2] and we recover the classical

expression [3] of the di�usion velocities Vk = − ∑
l∈G Dkldl − �k999x log T , k ∈G. For ionized

gases, however, the di�usion coe�cients are di�erent according to the three spatial directions
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1650 V. GIOVANGIGLI AND B. GRAILLE

denoted by ‖, ⊥ and �, as a consequence of anisotropy. We also observe that the species
di�usion driving forces dk , k ∈G, contain additional terms due to the macroscopic electro-
magnetic forces qk(E+v∧B), k ∈G. Although the formalism uses the unitary vector B=B=B,
the �uxes behave smoothly as B goes to zero thanks to the properties of transport coe�cients
[9,10]. The corresponding conduction current density j reads

j=
∑
k∈G

qkVk (7)

and the expression of the heat �ux is

Q=−�̂‖(999xT )‖ − �̂⊥(999xT )⊥ − �̂�(999xT )�

−p
∑
k∈G

(�‖
k d

‖
k + �⊥

k d
⊥
k + ��

k d
�
k ) +

∑
k∈G

�khkVk (8)

where hk is the enthalpy per unit mass of the kth species, �̂‖, �̂⊥ and �̂� the partial thermal
conductivities. For non-ionized gases, the charges qk , k ∈G, vanish so that we have �̂‖= �̂⊥,
�̂�=0, and �‖

k = �⊥
k , �

�
k =0, k ∈G, [1,2], and we also recover the classical expression [3] of

the heat �ux vector Q= − �̂999xT − p
∑

k∈G �kdk +
∑

k∈G �khkVk . The heat �ux is smooth as
B goes to zero thanks to the properties of transport coe�cients [9,10].
Finally, the viscous stress tensor can be written in the form

� =−�(999x·v)I− �1S− �2(AS− SA)− �3(−ASA+B⊗BSB⊗B)

−�4(SB⊗B+B⊗BS− 2B⊗BSB⊗B)− �5(B⊗BSA− ASB⊗B) (9)

where B=B=B, � is the volume viscosity, and �1, �2, �3, �4, �5 are the shear viscosities. In
this expression, we have denoted by S the symmetric traceless strain rate tensor

S= 999xv + 999xvT − 2
3 (999x·v)I

where T denotes transposition, and by A the antisymmetric rotation matrix associated with B

A=

⎛⎜⎜⎝
0 −B3 B2

B3 0 −B1

−B2 B1 0

⎞⎟⎟⎠
The viscous tensor is a linear combination of the identity matrix and of all the symmetric
traceless tensors built from S and A, which are linear in S. The viscous tensor behaves
smoothly as B goes to zero thanks to the properties of transport coe�cients [9,10]. For
non-ionized gases, the viscous tensor reduces to �=−�(999x·v)I − �1S since we then have
�2 = �3 = �4 = �5 = 0.
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2.3. Chemical source term expression

We consider nr elementary reversible reactions among the ns species which can be formally
written as ∑

k∈G

�fkrMk �
∑
k∈G

�bkrMk ; r ∈R

where Mk is the chemical symbol of the kth species, �fkr and �bkr are the forward and the
backward stoichiometric coe�cients of the kth species in the rth reaction, respectively, and
R= {1; : : : ; nr} is the set of reaction indexes.
The Maxwellian production rates given by the kinetic theory can be written as

!k =
∑
r∈R

(�bkr − �fkr)�r; k ∈G (10)

where �r is the rate of progress of the rth reaction. The rates of progress are given by the
symmetric expression [3]

�r =Ks
r (exp〈�fr ;M�〉 − exp〈�br ;M�〉) (11)

where �fr =(�
f
1r ; : : : ; �

f
nsr)

T, �br =(�
b
1r ; : : : ; �

b
nsr)

T, �=(�1; : : : ; �ns)T, with �k , k ∈G, the species
reduced chemical potential, M the diagonal matrix de�ned by M=diag(m1; : : : ; mns) andKs

r the
symmetric reaction constant. This symmetric formulation of the rates of progress is obtained
by using the fundamental reciprocal relation between forward and backward reaction constants
that can be deduced from the kinetic theory [3].

2.4. Thermodynamics

Thermodynamics obtained in the framework of the kinetic theory of gases is valid out of
equilibrium and has, therefore, a wider range of validity than classical thermodynamics intro-
duced for stationary homogeneous equilibrium states. The formalism obtained from the kinetic
theory still coincides with the Gibbs formalism applied to intensive variables.
The total mass per unit volume �, the total charge per unit volume q, and the total pressure

p can be written in the form

�=
∑
k∈G

�k ; q=
∑
k∈G

qk ; p=
∑
k∈G

pk

where the species partial pressure pk , k ∈G, is given by pk = rk�kT with rk =R=mk , R the
perfect gas constant.
The internal energy e and the entropy per unit mass s can be decomposed into

�e=
∑
k∈G

�kek ; �s=
∑
k∈G

�ksk

where ek and sk are the internal energy and the entropy per unit mass of the kth species and
T the temperature. The internal energy is given by

ek(T )= estk +
∫ T

T st
cv; k(�) d�
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where estk = ek(T st) is the formation energy of the kth species at the positive standard tempera-
ture T st and cv; k is the constant-volume speci�c heat of the kth species. The species entropies
sk , k ∈G, are given by

sk(T; �k)= sstk +
∫ T

T st

cv; k(�)
�

d� − rk log
(

�k

mk	st

)
where 	st =pst=(RT st) is the standard concentration, that is, the concentration at the standard
state T st, pst. The enthalpy per unit mass hk and the Gibbs function gk of the kth species
are given by hk = ek + rkT and gk = hk − Tsk . We �nally de�ne the species reduced chemical
potential �k by �k = gk=(RT ).

2.5. Maxwell’s equations

The electric and magnetic �elds satisfy the two macroscopic Maxwell’s equations

”0@tE+ qv + j− 999x∧B=�0 = 0 (12)

@tB+ 999x∧E = 0 (13)

where ”0 is the dielectric constant and �0 the magnetic permeability. It is well known that
the equations 999x·E= q=”0 and 999x·B=0 are consequences of (12) and (13) provided that they
hold at initial time t=0.

2.6. Mathematical assumptions

We describe in this subsection the mathematical assumptions concerning thermoelectro-
chemistry and transport coe�cients for self completeness. These assumptions are obtained
from the kinetic theory [2] and are not su�ciently intuitive to be guessed empirically. We
assume that these assumptions are satis�ed whenever we consider the equations governing
reactive ionized magnetized dissipative gas mixtures, that is, in Sections 2 and 4.
The species of the mixture are assumed to be constituted by neutral atoms and electrons.

We denote by A= {1; : : : ; na} the atoms indexing set, by na the number of atoms in the
mixture, by m̃l, l∈A, the atom masses and by akl the number of lth atoms in the kth
species. We de�ne ak0 as the number of electrons in the kth species, and for notational
convenience, we de�ne A= {0} ∪ A= {0; : : : ; na}. We introduce the atomic vectors al, l∈A,
de�ned by al=(a1l; : : : ; ansl)T, l∈A, and the electron vector a0, by a0 = (a10; : : : ; ans0)T. We
also de�ne the reaction vectors by �r =(�1r ; : : : ; �nsr)T, r ∈R, where �kr = �bkr − �fkr , k ∈G, so
that �r = �br −�fr , and we denote by R the linear space spanned by �r , r ∈R. We �nally de�ne
the mass vector per unit volume %=(�1; : : : ; �ns)T and the unit vector u=(1; : : : ; 1)T.

2.6.1. Assumption on thermoelectrochemistry

(Th1) The species molar masses mk , k ∈G, and the gas constant R are positive constants.
The formation energies estk , k ∈G, and the formation entropies sstk , k ∈G, are con-
stants. The speci�c heats cv; k , k ∈G, are C∞ functions of T¿0. Furthermore, there
exist positive constants cv and cv with 0¡cv6cv; k(T )6cv, for T¿0 and k ∈G.
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THE LOCAL CAUCHY PROBLEM FOR MAGNETIZED REACTIVE GAS MIXTURES 1653

(Th2) The stoichiometric coe�cients �fkr and �bkr , k ∈G, r ∈R, and the atomic coe�cients
akl, k ∈G, l∈A, are non-negative integers. The numbers of electrons ak0, k ∈G,
are integers. The atomic vectors al, l∈A, and the reaction vectors �r , r ∈R, sat-
isfy the conservation relations 〈�r; al〉=0, r ∈R, l∈A. This relation expresses atom
conservation for l∈A and charge conservation for l=0.

(Th3) The atom masses m̃l, l∈A, and the electron mass m̃0 are positive constants. More-
over, the species molar masses mk , k ∈G, are given by mk =

∑
l∈A m̃lakl + m̃0ak0,

k ∈G. We also have the proportionality relation between the species charge per unit
volume qk , k ∈G, and the number of electrons in the kth species, qk = − –ak0nk ,
k ∈G, where – is a positive constant which represents the absolute value of charge
per unit mole for electrons.

(Th4) The rate constants Ks
r , r ∈R, are C∞ positive functions of T¿0.

2.6.2. Assumptions on transport coe�cients

(Tr1) The �ux di�usion coe�cients D
‖
kl, D

⊥
kl and BD�

kl , k; l∈G, the thermal di�usion coe�-
cients �‖

k , �
⊥
k , B��

k , k ∈G, the volume viscosity �, the shear viscosities �1; B�2; �3; �4;
B�5 and the thermal conductivities �̂‖, �̂⊥ and B�̂� are C∞ functions of (T; %;B)
for T¿0, %¿0 and B∈R3, where B is the norm of the magnetic �eld B. More-
over, the coe�cients D‖

kl, k; l∈G, do not depend on the magnetic �eld B and we
can write D⊥

kl −D‖
kl=B2
⊥

kl(B
2) and D�

kl =B
�
kl(B

2), where 
⊥
kl and 
�

kl , k; l∈G, are
C∞([0;∞);R) functions. The coe�cients �‖

k , k ∈G, do not depend on the magnetic
�eld B and we can write �⊥

k −�‖
k =B2 ⊥

k (B
2), ��

k =B �
k (B

2), where  ⊥
k and  �

k are
C∞([0;∞);R) functions. The coe�cient �̂‖ does not depend on the magnetic �eld
B and we can write �̂⊥ − �̂‖=B2&⊥(B2) and �̂�=B&�(B2), where &⊥ and &� are
C∞([0;∞);R) functions. Lastly, we have �1 =’1(B2), �2 =B’2(B2), �3 =B2’3(B2),
�4 =B2’4(B2), �5 =B3’5(B2) and 2�4 − �3 =B4’6(B2), where ’�, �∈ {1; : : : ; 6}, are
C∞([0;∞);R) functions.

(Tr2) Thermal conductivities �̂‖ and �̂⊥ are positive functions. The volume viscosity � is
a non-negative function and the shear viscosities �1, �2, �3, �4, �5 verify �1 +�4¿0,
�1 + �3¿0, �1 − �3¿0.

(Tr3) The matrices A‖, A⊥ and A� de�ned by

A�=

⎛⎜⎝T
p
�̂� ��T

�� D�

⎞⎟⎠ ; 	 ∈ {‖;⊥;�}

are symmetric, A‖ and A⊥ are positive semide�nite and their nullspace is spanned
by the vector (0; %T)T. Moreover, the vector (0; %T)T is in the nullspace of A�.

2.7. Quasilinear form

We rewrite the system of equations governing reactive ionized magnetized dissipative gas
mixtures as a quasilinear system of second-order partial di�erential equations. We de�ne
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1654 V. GIOVANGIGLI AND B. GRAILLE

the conservative variable U by

U=(%T; �vT;ET;BT; �et)T (14)

and the natural variable Z by

Z=(%T; vT;ET;BT; T )T (15)

The conservation equations can then be written in the compact form

@tU+
∑
i∈C

@iFi +
∑
i∈C

@iF
diss
i =� (16)

where C denotes the set {1; 2; 3}, Fi, i∈C, the convective �ux in the ith direction, Fdissi , i∈C,
the dissipative �ux in the ith direction and � the source term. The source term � is given
by �=�j +�0, where

�j = (0; : : : ; 0; (j∧B)T;−jT=”0; 01;3; 0)T (17)

�0 = (m1!1; : : : ; mns!ns ; (�g+ q(E+ v∧B))T;−qvT=”0; 01;3; �g·v)T (18)

The convective �ux Fi is given by

Fi=(%Tvi; �vTvi + peiT;−(ei∧B)T=”0�0; (ei∧E)T; (�ef + p)vi + Pi)
T (19)

and the dissipative �ux Fdissi can be split into Fdissi = Fdi�i + Fvisci where Fvisci , the viscous �ux,
and Fdi�i , the di�usion �ux, are given by

Fvisci = (01; ns ;�i ; 01;3; 01;3;�i·v)T (20)

Fdi�i = (F1i ; : : : ;Fnsi; 01;3; 01;3; 01;3; Qi)
T (21)

For notational convenience, we have denoted by �i the ith rows extracted from the stress
tensor � and by e1; e2; e3, the canonical basis vectors of R3.
In order to express the natural variable Z in terms of the conservative variable U, we investi-

gate the map Z 
→U and its range. We introduce the open set OZ=(0;∞)n
s

×R3×R3×R3×(0;∞)
and the open set OU de�ned by

OU= {(ui)∈Rns+10 : u1; : : : ; uns¿0; uns+10¿f(ui)}

where f is the map from (0;∞)ns×R9 to R de�ned by

f(ui)=
1
2

∑
16i63 u

2
ns+i∑

16i6ns ui
+

”0
2

∑
46i66

u2ns+i +
1
2�0

∑
76i69

u2ns+i +
∑

16i6ns
uie0i

and where e0i is the internal energy of the ith species at T =0. The following proposition is
easily established as in the non-ionized case [3,7].
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Proposition 2.1
The map Z 
→U is a C∞ di�eomorphism from the open set OZ onto the convex open set OU.

Thanks to Proposition 2.1, the dissipative �uxes and the source terms, which are naturally
expressed in terms of Z, are rewritten in terms of U.

Proposition 2.2
The convective �uxes Fi(U), i∈C, are C∞ functions of the variable U∈OU, the dissipative
�uxes Fdissi (U; 999xU), i∈C, can be written in the form

Fdissi (U; 999xU)=−∑
j∈C
Bij(U)(@jU+ Gj(U)); i∈C

where the dissipation matrices Bij, i; j ∈C, and the zeroth-order contributions Gi, i∈C, are C∞

functions of U∈OU. Moreover, the source term �(U; 999xU) can be written in the form

�(U; 999xU)=
∑
i∈C

Mi(U)TFdissi (U; 999xU) + �0(U)

where the matrices Mi(U), i∈C, and the zeroth-order source term �0(U), are C∞ function of
U∈OU. Finally, de�ning the matrices Ai(U)= @UFi, i∈C, which are C∞ functions of U∈OU,
the system of partial di�erential equations (16) can be rewritten in the form

@tU+
∑
i∈C

Ai(U)@iU=
∑

i; j∈C
@i(Bij(U)(@jU+ Gj(U)))

− ∑
i; j∈C

Mi(U)TBij(U)(@jU+ Gj(U)) + �0(U) (22)

Proof
The proof is lengthy and tedious but presents no serious di�culties, and we refer to [9,10]
for more details.

We observe fundamental di�erences between (22) and the classical case of non-ionized
mixtures. For non-ionized mixtures, the dissipative terms Fdissi , i∈C, are linear combinations
of the solution gradients [3–7] whereas for ionized mixtures, they also contain the zeroth-order
contributions Gi, i∈C, arising from the direct action of macroscopic electromagnetic forces.
A second di�erence is that for ionized mixtures the source term � not only depends on U but
also on its gradient 999xU through the conduction current j appearing in Maxwell’s equations.
We will see in the next section that these terms are related through entropy. Finally, for
i; j ∈C, we denote by Bsij and Baij the even and odd parts of the dissipation matrix Bij with
respect to the magnetic �eld B. The odd parts Baij, i; j ∈C, are due to anisotropy of the species
di�usive �uxes, the heat �ux and the viscous tensor.

3. LOCAL EXISTENCE FOR AN ABSTRACT SYSTEM

In this section, we investigate partial symmetrization and entropy for an abstract second-order
quasilinear system with zeroth-order terms in dissipative �uxes and gradient dependent source
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terms. Partially normal forms are next obtained by using the nullspace invariance condition
introduced by Kawashima and Shizuta [5]. Local existence of solutions are �nally obtained
by using theorems of Kawashima [4] or Vol’Pert and Hudjaev [8].

3.1. Quasilinear abstract system

We consider an abstract second-order quasilinear system in the form

@tU
∗ +

∑
i∈C∗

@iF
∗
i +

∑
i∈C∗

@iF
∗
i =�

∗ (23)

where U∗ ∈OU∗ , OU∗ is an open convex set of Rn∗
, C∗= {1; : : : ; d} the set of direction indexes

of Rd, F∗
i , i∈C∗, the convective �uxes, F∗

i , i∈C∗, the dissipative �uxes, and �∗ the source
term. The superscript ∗ is used to distinguish between the abstract second-order system (23)
of size n∗ in Rd and the particular multicomponent reactive magnetized �ows system (16) of
size ns+10 in R3. The convective �uxes are functions of U∗

F∗
i = F

∗
i (U

∗); i∈C∗ (24)

and the dissipative �uxes are assumed to be in the form

F∗
i (U

∗; 999xU∗)= − ∑
j∈C∗

B∗
ij(U

∗)(@jU
∗ + G∗

j (U
∗)); i∈C∗ (25)

where B∗
ij, i; j ∈C∗, are the dissipation matrices and G∗

i , i∈C∗ are the zeroth-order contribu-
tions. We assume that the dissipation matrices B∗

ij, i; j ∈C∗, can be split into

B∗
ij=B

s∗
ij + B

a∗
ij ; i; j ∈C∗ (26)

where the partial dissipation matrices Bs∗ij and Ba∗ij , i; j ∈C∗, will have di�erent symmetry
properties. We also assume that the source term can be split into

�∗(U∗; 999xU∗)=
∑
i∈C∗

M∗
i (U

∗)TF∗
i (U

∗; 999xU∗) + �∗
0(U

∗) (27)

where M∗
i (U

∗), i∈C∗, are matrices and �∗
0(U

∗) is a vector. De�ning the convective Jacobian
matrices by A∗

i = @U∗F∗
i , i∈C∗, we �nally obtain

@tU
∗ +

∑
i∈C∗

A∗
i (U

∗)@iU
∗ =

∑
i; j∈C∗

@i(B∗
ij(U

∗)(@jU
∗ + G∗

j (U
∗)))

− ∑
i; j∈C∗

M∗
i (U

∗)TB∗
ij(U

∗)(@jU
∗ + G∗

j (U
∗)) + �∗

0(U
∗) (28)

and we assume that the following properties hold for system (28).

(Edp1) The convective �uxes F
∗
i , i∈C∗, the dissipation matrices B∗

ij, B
s∗
ij , B

a∗
ij , i; j ∈C∗, the

zeroth-order terms G∗
i , i∈C∗, the matrices M∗

i , i∈C∗, and the source term �∗
0 are

smooth functions of the variable U∗ ∈OU∗ , where OU∗ is a convex open set of Rn∗
.
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3.2. Partial symmetrization and entropy

Symmetric forms are a fundamental step towards existence results for systems of partial di�er-
ential equations of hyperbolic–parabolic type [3–8]. In the framework of isotropic hyperbolic–
parabolic systems, existence of a conservative symmetric formulation has been shown to be
equivalent to the existence of a mathematical entropy [5]. We generalize in this section the
notion of symmetrization as well as that of entropy to the situation of hyperbolic–parabolic
systems with zeroth-order contributions in dissipative �uxes and gradient dependent source
terms. We then use the terminology ‘partial symmetrization’ since the resulting quasilinear
systems contain symmetric as well as antisymmetric contributions. However, it is the form
that reveals most of the structural symmetry properties of the partial di�erential operators
under investigation. Finally, it is the structure that corresponds to the situation of ionized
magnetized dissipative gaz mixtures.

De�nition 3.1
Assume that U∗ 
→V∗ is a di�eomorphism from OU∗ onto OV∗ , and consider the system in the
V∗ variable

Ã∗
0(V

∗)@tV
∗ +

∑
i∈C∗

Ã∗
i (V

∗)@iV
∗ =

∑
i; j∈C∗

@i(B̃∗
ij(V

∗)(@jV
∗ + G̃∗

j (V
∗)))

− ∑
i; j∈C∗

M̃∗
i (V

∗)TB̃∗
ij(V

∗)(@jV
∗ + G̃∗

j (V
∗)) + �̃∗

0(V
∗) (29)

where Ã∗
0 = @V∗U∗, Ã∗

i =A
∗
i @V∗U∗, B̃∗

ij=B
∗
ij@V∗U∗, B̃s∗ij =B

s∗
ij @V∗U∗, B̃a∗ij =B

a∗
ij @V∗U∗, G̃∗

i =

(@V∗U∗)−1G∗
i , M̃

∗
i =M

∗
i , and �̃

∗
0 =�

∗
0 . System (29) is said to be of the partially symmet-

ric form if the vector and matrix coe�cients satisfy the following properties:

(S1) The matrix Ã∗
0(V

∗) is symmetric positive de�nite for V∗ ∈OV∗ .
(S2) The convective matrices Ã∗

i (V
∗), i∈C∗, are symmetric for V∗ ∈OV∗ .

(S3) The dissipation matrices satisfy the reciprocity relations B̃s∗ij (V
∗)T= B̃s∗ji (V

∗), and
B̃a∗ij (V

∗)T= − B̃a∗ji (V
∗), for i; j ∈C∗, V∗ ∈OV∗ .

(S4) The matrix B̃∗(V∗; ���)=
∑

i; j∈C∗ B̃s∗ij (V
∗)�i�j is symmetric positive semide�nite for

V∗ ∈OV∗ and ���∈�d−1 where �d−1 is the unit sphere in d dimensions, and for any x
in N (B̃∗) we have B̃s∗ij x=0 and B̃

a∗
ij x=0.

(S5) We have the compatibility conditions G̃∗
i (V

∗)= M̃∗
i (V

∗)V∗, i∈C∗.

Properties (S1)–(S2) are the same as those of non-ionized mixtures whereas (S3) takes
into account the symmetric and antisymmetric parts of the dissipation matrices B̃∗

ij, i; j ∈C∗.
In practical applications, the antisymmetric contributions B̃a∗ij , i; j ∈C∗ are a consequence of
the Onsager reciprocal relations B̃ij

T(B)= B̃ji(−B), i; j ∈C, where we have emphasized the
dependence on the magnetic �eld B. The condition (S4) express as usual that the system is
degenerate strongly parabolic. The necessary conditions that B̃s∗ij and B̃

a∗
ij vanish over N (B̃∗)

have been included in (S4) rather than in the nullspace invariance condition [3]. Finally,
the condition (S5) is a fundamental entropic compatibility condition between the zeroth-order
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contributions of dissipatives �uxes and gradient dependent source terms. We now introduce
the concept of entropy for the system of partial di�erential equations (28).

De�nition 3.2
A smooth function ∗(U∗) de�ned on a convex set OU∗ is said to be an entropy function for
system (28) if the following properties hold:

(E1) The function ∗ is a strictly convex function on OU∗ in the sense that the Hessian
matrix is positive de�nite on OU∗ .

(E2) There exists smooth functions q∗
i (U

∗), i∈C∗, such that on OU∗

(@U∗∗)A∗
i = @U∗q∗

i ; i∈C∗; U∗ ∈OU∗

(E3) The matrices Bs∗ij and B
a∗
ij , i; j ∈C∗, satisfy the reciprocity relations

(@2U∗∗(U∗))
−1
Bs∗ij (U

∗)T = Bs∗ji (U
∗)(@2U∗∗(U∗))

−1

(@2U∗∗(U∗))
−1
Ba∗ij (U

∗)T =−Ba∗ji (U∗)(@2U∗∗(U∗))
−1

(E4) The matrix B∗(U∗; ���)=
∑

i; j∈C∗ Bs∗ij (U
∗)(@2U∗∗(U∗))−1�i�j is symmetric positive

semide�nite for U∗ ∈OU∗ and ���∈�d−1. Furthermore, for any x∈N (B∗) we have
Bs∗ij (@

2
U∗∗)−1x=0 and Ba∗ij (@

2
U∗∗)−1x=0.

(E5) We have the entropic compatibility conditions

G∗
i (V

∗)= (@2U∗∗(U∗))
−1
M∗

i (U
∗) @U∗∗(U∗)T; i∈C∗

We now establish the equivalence between partial symmetrizability and the existence of an
entropy function for system (28).

Theorem 3.3
System (28) can be partially symmetrized on the open convex set OU∗ if and only if the
system admits an entropy function ∗ on OU∗ . In this situation, the symmetrizing variable V∗

and the entropy ∗ satisfy the relation V∗=(@U∗∗)T.

Proof
Assume �rst that there exists an entropy ∗, and let V∗=(@U∗∗)T be the symmetrizing
variable. The map U∗ 
→V∗ is then a di�eomorphism since OU∗ is convex and @U∗V∗= @2U∗∗

is positive de�nite. We can thus de�ne the smooth functions

̂∗(V∗)=U∗TV∗ − ∗(U∗) and q̂∗
i (V

∗)= F∗
i
TV∗ − q∗

i (U
∗); i∈C∗

Di�erentiating these equalities then yields the relations (@V∗ ̂∗)T=U∗ and (@V∗ q̂∗
i )

T= F∗
i , mak-

ing use of property (E2). We then obtain that Ã∗
0 = @V∗U∗=(@U∗V∗)−1 = (@2U∗∗)−1 and

Ã∗
i = @V∗F∗

i = @2V∗ q̂∗
i , i∈C∗, so that the matrix Ã∗

0 is symmetric de�nite positive and the matri-
ces Ã∗

i , i∈C∗, are symmetric. Moreover, we directly get from properties (E3)–(E5) that the
matrices B̃∗

ij=B
∗
ij(@

2
U∗∗)−1, i; j ∈C∗, and the vectors G̃∗

i =(@
2
U∗∗)G∗

i , i; j ∈C∗, are such that
property (S3)–(S5) holds.
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Conversely, assume that the system can be partially symmetrized in the sense of De�ni-
tion 3.1. Since @V∗U∗ and @V∗F∗

i , i∈C∗, are symmetric and OV∗ is simply connected, there
exists ̂∗ and q̂∗

i , i∈C∗, de�ned over OV∗ , such that (@V∗ ̂∗)T=U∗ and (@V∗ q̂∗
i )

T= F∗
i , i∈C∗.

We can thus de�ne the functions

∗(U∗)=U∗TV∗ − ̂∗(V∗) and q∗
i (U

∗)= F∗
i
TV∗ − q̂∗

i (V
∗); i∈C∗

Di�erentiating these identities, and using properties (S1)–(S3), it is then straightforward to
establish that ∗ is an entropy with �uxes q∗

i , i∈C∗, such that V∗=(@U∗∗)T. Properties
(S3)–(S5) are then easily shown to be equivalent to (E3)–(E5).

Corollary 3.4
Assume that system (28) can be partially symmetrized into (29) and introduce the dissipative
entropy �uxes p∗

i , i∈C∗, de�ned by

p∗
i = 〈V∗;F∗

i 〉; i∈C∗

The entropy balance equation can then be obtained upon multiplying the symmetrized system
by the entropic variable V∗ and reads

@t∗ +
∑

i∈C∗
@iq

∗
i +

∑
i∈C∗

@ip
∗
i = − ∑

i; j∈C∗
〈@iV

∗ + M̃∗
i V

∗; B̃s∗ij (@jV
∗ + M̃∗

j V
∗)〉+ 〈�̃0;V∗〉

(30)

Proof
This results from straightforward calculations.

The physical meaning of the entropy conservation equation (30) is that when 〈x; B̃s∗ij (V∗)x〉
¿ 0 and 〈�̃0(V∗);V∗〉60, for any V∗ ∈OV∗ and any x∈Rd×n∗

, then the integral
∫
Rd ∗ dx is

decreasing in time, which corresponds to the second principle of thermodynamics. This reveals
the close links between the second principle of thermodynamics and the parabolic nature of
systems of conservation laws. Note also that we have 〈x; B̃s∗ij x〉= 〈x; B̃∗

ijx〉 for any x ∈ Rd×n∗

so that the matrices B̃a∗ij , i; j ∈C∗, do not contribute to entropy production. Finally, it is funda-
mental to note that the zeroth-order contributions are included in the entropy production term
associated with dissipative processes, and this is notably the case for magnetized dissipative
mixtures [2,9,10].

3.3. Partially normal form

The purpose of this section is to introduce partially normal forms. We �rst assume that the
system admits an entropy according to De�nition 3.2.

(Edp2) The system of partial di�erential equations (28) admits an entropy function ∗ on
the open convex set OU∗ .

From Theorem 3.3 the system can be partially symmetrized in the form (29). We now want
to rewrite this system by regrouping with the convective terms all �rst-order derivatives arising
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from the zeroth-order contributions of dissipative �uxes G̃∗
i , i∈C∗, and from the gradient-

dependent source terms
∑

j∈C∗ M̃∗
j
TB̃∗

ji. To this purpose, we de�ne the matrices Ã
∗a
i , i∈C∗,

by

Ã∗a
i (V

∗)=
∑

j∈C∗
(M̃∗

j
TB̃∗

ji − B̃∗
ijM̃

∗
j − @V∗(B̃∗

ijM̃
∗
j )V

∗) (31)

where, with a small abuse of notation, the quantity @V∗(B̃∗
ijM̃

∗
j )V

∗ has the following meaning:

{@V∗(B̃∗
ijM̃

∗
j )V

∗}rs=
∑

16u;v6n∗
@V∗s(B̃ij

∗ruM̃j
∗uv)V∗v

and we also de�ne

L̃∗(V∗)=
∑

i; j∈C∗
M̃∗

i
TB̃∗

ijM̃
∗
j ; �̃∗(V∗)=−L̃∗(V∗)V∗ + �̃∗

0(V
∗)

Then, after a little algebra, the partially symmetrized system (29) is easily rewritten in the
e�ective form

Ã∗
0(V

∗)@tV
∗ +

∑
i∈C∗

(Ã∗
i (V

∗) + Ã∗a
i (V

∗))@iV
∗=

∑
i; j∈C∗

@i(B̃∗
ij(V

∗)@jV
∗) + �̃∗(V∗) (32)

In order to rewrite this system as a composite hyperbolic–parabolic system, we introduce the
following de�nition of partially normal forms.

De�nition 3.5
Consider a system in partially symmetric form (29) rewritten as (32), a di�eomorphism
V∗ 
→W∗ from OV∗ onto OW∗ and the system in the new variable W∗

A
∗
0@tW

∗ +
∑
i∈C∗

(A∗
i +A

∗a
i )@iW

∗=
∑

i; j∈C∗
@i(B

∗
ij@jW

∗) +T
∗
+�∗ (33)

where we de�ne

A
∗
0 = (@W∗V∗)T Ã∗

0 (@W∗V∗); B
∗
ij=(@W∗V∗)T B̃∗

ij (@W∗V∗)

B
s∗
ij =(@W∗V∗)T B̃s∗ij (@W∗V∗); B

a∗
ij =(@W∗V∗)T B̃a∗ij (@W∗V∗)

A
∗
i =(@W∗V∗)T Ã∗

i (@W∗V∗); �∗=(@W∗V∗)T �̃∗

M
∗
i =(@W∗V∗)−1 M̃∗

i (@W∗V∗); G
∗
i =(@W∗V∗)−1 G̃∗

i

A
∗a
i =(@W∗V∗)T Ã∗a

i (@W∗V∗); T
∗
=− ∑

i; j∈C∗
@i(@W∗V∗)T B̃∗

ij (@W∗V∗) @jW
∗

Then we have

A
∗a
i =

∑
j∈C∗

(M∗
j
T B

∗
ji − B

∗
ijM

∗
j − (@W∗V∗)T@W∗(B̃∗

ijM̃
∗
j )V

∗) (34)

and the matrix and vector coe�cients satisfy (S1)–(S5):

(S1) The matrix A
∗
0(W

∗) is symmetric positive de�nite for W∗ ∈OW∗ .
(S2) The matrices A

∗
i (W

∗), i∈C∗, are symmetric for W∗ ∈OW∗ .

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1647–1672



THE LOCAL CAUCHY PROBLEM FOR MAGNETIZED REACTIVE GAS MIXTURES 1661

(S3) The dissipation matrices satisfy the reciprocity relations B
s∗
ij

T=Bs∗ji and B
a∗
ij

T= −Ba∗ji ,
for W∗ ∈OW∗ , i; j ∈C∗.

(S4) The matrix B
∗(W∗; ���)=

∑
i; j∈C∗B

s∗
ij (W

∗)�i�j is symmetric positive semide�nite for
W∗ ∈OW∗ and ���∈�d−1, and for any x in N (B∗) we have Bs∗ij x=0 and B

a∗
ij x=0.

(S5) We have the compatibility conditions G
∗
i =M

∗
i (@V∗W∗)V∗, i∈C∗.

This system is said to be of the partially normal form if there exists a partition of {1; : : : ; n∗}
into I= {1; : : : ; n∗

0} and II= {n∗
0+1; : : : ; n

∗}, such that the following properties hold:
(Nor1) The matrices A

∗
0 , A

∗a
i , i∈C∗, and B∗

ij, i; j ∈C∗, have the bloc structure

A
∗
0 =

⎛⎝A∗I; I
0 0

0 A
∗II; II
0

⎞⎠ ; A
∗a
i =

⎛⎝ 0 A
∗aI; II
i

A
∗aII; I
i A

∗aII; II
i

⎞⎠ ; B
∗
ij=

⎛⎝0 0

0 B
∗II; II
ij

⎞⎠
(Nor2) The matrix B

∗II; II(W∗; ���)=
∑

i; j∈C B
s∗II; II
ij (W∗)�i�j is positive de�nite for W∗ ∈OW∗ and

���∈�d−1.
(Nor3) We have T

∗
(W∗; 999xW∗)= (T

∗
I (W

∗; 999xW∗
II )

T;T
∗
II (W

∗; 999xW∗)T)
T

In these properties, we have used the vector and the matrix block structure induced by the
partitioning of {1; : : : ; n∗}, so that we have W∗=(W∗

I
T;W∗

II
T)T, for instance.

The main interest of partially normal forms is that, for any i∈C∗, the symmetric hyperbolic
bloc of the convective matrix A∗

i is not perturbed by the matrix A
∗a
i . Using partially normal

forms, it is then possible to apply local existence theorem. Note, however, that the matrices
A

∗a
i , i∈C∗, which contain antisymmetric factors, prevent application of global existence theo-
rems as in References [3,4]. We now introduce the nullspace invariance property [3,5] which
is a su�cient condition for system (29) to be recast into a partially normal form.

(Edp3) The nullspace of the symmetric matrix B̃∗(V∗; ���)=
∑

i; j∈C∗ B̃s∗ij (V
∗)�i�j does not de-

pend on V∗ ∈OV∗ and ���∈�d−1. We denote by N this nullspace and by n∗
0 its

dimension.

An important consequence of partial symmetrization and nullspace invariance is that for any
x and y in N (B̃∗), we have 〈x; Ã∗a

i y〉=0, i∈C∗. This is a direct consequence of the de�nition
(31) of the matrices Ã∗a

i , i∈C∗ This property will imply that there are normal forms such that
the hyperbolic blocs of the symmetric convective Jacobians Ã∗

i , i∈C∗, are not perturbed by
the matrices Ã∗a

i , i∈C∗. Note that the necessary conditions B̃s∗ij x=0, and B̃
a∗
ij x=0, i; j ∈C∗,

for any x ∈ N [3], have been included in the de�nition of partially symmetric form for the
sake of clarity.
In order to characterize more easily, partially normal forms for partially symmetrized sys-

tems satisfying the nullspace invariance property, we introduce the auxiliary variables U∗′ and
V∗′, depending linearly on U∗ and V∗, respectively. The dissipation matrices corresponding to
these auxiliary variables have non-zero coe�cients only in the lower right bloc of size n∗−n∗

0 ,
and moreover, the Jacobian matrices Ã∗a′

i , i∈C, have zero coe�cients in the upper left bloc
of size n∗

0 . Partial normal forms are then equivalently—and more easily—obtained from the
V∗′ symmetric equation.
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Lemma 3.6
Consider a system (29) that is partially symmetric in the sense of De�nition 3.1 and assume
that the nullspace invariance property holds. Denote by ∗ the associated entropy function
and by V∗=(@U∗∗)T the partial symmetrizing variable, and assume that the nullspace invari-
ance property is satis�ed over OV∗ . Further consider any constant non-singular matrix P of
dimension n∗, such that its �rst n∗

0 columns span the nullspace N . Then the auxiliary variable
U∗′= PTU∗ satis�es the equation

@tU
∗′ +

∑
i∈C∗

(A∗′
i +A

∗a′
i )@iU

∗′=
∑

i; j∈C∗
@i(B∗′

ij @jU
∗′) + �∗′ (35)

where A∗′
i = P

TA∗
i (P

T)−1, A∗a′
i = P

TA∗a
i (P

T)−1, B∗′
ij = P

TB∗
ij(P

T)−1, and �∗′= PT�∗. The corres-
ponding entropy is the functional ∗′(U∗′)=∗((PT)−1U∗′), and the associated entropic vari-
able V∗′=(@U∗′∗′)T is given by V∗′= P−1V∗ and satis�es the equation

@tV
∗′ +

∑
i∈C∗

(Ã∗′
i +Ã

∗a′
i )@iV

∗′=
∑

i; j∈C∗
@i(B̃∗′

ij @jV
∗′) + �̃∗′ (36)

where Ã∗′
0 = P

TÃ∗
0P, Ã

∗′
i = P

TÃ∗
iP, Ã

∗a′
i = P

TÃ∗a
i P, B̃

∗′
ij = P

TB̃∗
ijP, and �̃

∗′= PT�̃∗. In particular, the
matrices Ã∗a′

i , i∈C∗, and B̃∗′
ij , i; j ∈C∗, are in the form

Ã∗a′
i =

⎛⎝ 0 Ã∗a′I; II
i

Ã∗a′II; I
i Ã∗a′II; II

i

⎞⎠ ; B̃∗′
ij =

⎛⎝0 0

0 B̃∗′II; II
ij

⎞⎠ (37)

and the matrix B̃∗′II; II(V∗′; ���)=
∑

i; j∈C∗ B̃s∗′II; II
ij (V∗′)�i�j, is positive de�nite for V∗′ ∈OV∗′ and

���∈�d−1. Finally, the partially normal form (33) is equivalently obtained by multiplying the
V∗ equation (29) by (@W∗V∗)T or the V∗′ equation (36) by (@W∗V∗′)T.

Proof
Equation (35) is easily established by multiplying (28) on the left by PT. This also yields
the matrix relations A∗′

i = P
TA∗

i (P
T)−1, A∗a′

i = P
TA∗a

i (P
T)−1, B∗′

ij = P
TB∗

ij(P
T)−1, Bs∗′

ij = P
TBs∗ij (P

T)−1,
Ba∗′
ij = P

TBa∗ij (P
T)−1, and �∗′= PT�∗. It is also easily checked that the functional ∗′(U∗′)=

∗((PT)−1U∗′) is the corresponding entropy. From the de�nition V∗′=(@U∗′∗′)T and the chain
rule, we then get that V∗′= P−1V∗ and (36) is obtained as in (28)–(29). Since B̃∗′= PTB̃∗P
and the �rst n∗

0 columns of P span N , we next deduce that B̃∗′ is in the form

B̃∗′=

(
0 0

0 B̃∗′II; II

)

and similarly, all matrices B̃∗′
ij , i; j ∈C∗, and Ã∗a′

i , i∈C∗, are also in the form (37). Moreover,
the matrix B̃∗′II; II(V∗′; ���), is symmetric positive de�nite, for V∗′ ∈OV∗′ and ���∈�d−1, since the
n∗−n∗

0 last columns of P span a subspace complementary to N .

Partially normal forms for partially symmetrizable systems satisfying the nullspace consis-
tency property are now completely characterized in the following theorem, in terms of the
auxiliary variables U∗′ and V∗′.
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Theorem 3.7
Keeping the assumptions and notations of Lemma 3.6, any partially normal form of system
(29) is given by a change of variables in the form

W∗=( I(U∗′
I ); 
II(V∗′

II ))
T (38)

where  I and 
II are two di�eomorphisms of Rn∗
0 and Rn∗−n∗

0 , respectively. Furthermore, we
have

T
∗
(W∗; 999xW∗)= (0;T

∗
II (W

∗; 999xW∗
II ))

T

Proof
The proof is exactly the same as in Reference [3] for non-ionized gases. The only di�erence
concerns the matrices A∗a

i which can be treated as B∗
ij

3.4. An existence theorem in Vl(Rd)

The system in partially normal form (33) can be split into a hyperbolic subsystem and a
parabolic subsystem⎧⎪⎪⎨⎪⎪⎩

A
∗I; I
0 @tW

∗
I = − ∑

i∈C∗
A

∗I; I
i @iW

∗
I + �

∗
I

A
∗II; II
0 @tW

∗
II = − ∑

i∈C∗
(A∗II; I

i +A∗aII; I
i )@iW

∗
I +

∑
i; j∈C∗

@i(B
∗II; II
ij @jW

∗
II ) + �

∗
II

(39)

where

�
∗
I =�

∗
I − ∑

i∈C∗
(A∗aI; II

i + A∗I; II
i )@iW

∗
II ; �∗

II =�
∗
II +T

∗
II − ∑

i∈C∗
(A∗aII; II

i + A∗II; II
i )@iW

∗
II

We consider the Cauchy problem for this system (39) with initial conditions

W∗
I (0;x)=W

∗0
I (x); W∗

II (0;x)=W
∗0
II (x) (40)

These equations are considered in the strip 	Q
 where 
 is positive and Qt =(0; t)×Rd, for
t¿0. The unknown vectors W∗

I and W
∗
II are assumed to be in the convex open sets OW∗

I
⊂ Rn∗

0

and OW∗
II

⊂ Rn∗−n∗
0 .

Local existence theorems for the system (39) can be obtained from the results of Kawashima
[4] or of Vol’Pert and Hudjaev [8]. The results of Kawashima are valid for initial conditions
near equilibrium states and directly applies to the system in partially normal form [4]. The
results of Vol’Pert and Hudjaev [8], which are summarized in this section, require a slightly
stronger parabolicity condition easily established in the situation of magnetized mixtures.
We will use the classical functional spaces Lp(Rd) with norm

||
||0; p=
(∫

Rd
|
(x)|p dx

)1=p
if 16p¡∞ and ||
||0;∞= sup

Rd

|
(x)|

the Sobolev spaces Wl
p(Rd), 16p6∞, with norm

||
||l;p=
∑

k∈[[0;l]]
|
|k;p; |
|k;p=

∑
|�|= k

||@�
||0; p
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and the Vol’Pert spaces Vl(Rd) with norm [8]

||
||l= |
|0;∞ +
∑

k∈[[1;l]]
|
|k;2

These de�nitions are extended to vector functions by using the Euclidean norm of Rd. Accord-
ing to the Sobolev inequalities, there is an embedding of Wl

2 (Rd) into Wk
∞(Rd) for l¿k+d=2

and an embedding of Wl
2 (Rd) into Vl(Rd) for l¿d=2.

In the following, L denotes an arbitrary �xed positive continuous convex function, on
the open convex set OW∗ =OW∗

I
×OW∗

II
, which grows without bound as any �nite point of the

boundary of OW∗ is approached. The following theorem of Vol’Pert and Hudjaev [8] shows
that, in a certain strip, there exists a solution which preserves the smoothness of the initial
condition.

Theorem 3.8
Suppose that system (39)–(40) satis�es the following assumptions where l¿d=2+3 denotes
an integer:

(Ex1) The initial conditions W∗0
I , W

∗0
II satisfy supx∈Rd L(W∗0

I (x);W
∗0
II (x))¡+∞ and W∗0

I

and W∗0
II are in the space Vl(Rd).

(Ex2) The matrix coe�cients A
∗I; I
0 (wI; wII), A

∗II; II
0 (wI; wII) and B

∗II; II
ij (wI; wII), i; j ∈C∗, have con-

tinuous derivative of order l with respect to wI ∈OW∗
I
and wII ∈OW∗

II
.

(Ex3) The matrix coe�cients A
∗I; I
i (wI; wII; �), A

∗II; I
i (wI; wII; �), A

∗aII; I
i (wI; wII; �), i∈C∗, and the

vector coe�cients �
∗
I (wI; wII; �) and �∗

II (wI; wII; �) have continuous derivative of order
l with respect to wI ∈OW∗

I
, wII ∈OW∗

II
and ���∈Rd×(n∗−n∗

0 ).
(Ex4) The matrix coe�cients A

∗I; I
0 (wI; wII) and A

∗II; II
0 (wI; wII) are symmetric and positive def-

inite for wI ∈OW∗
I
and wII ∈OW∗

II
.

(Ex5) The matrix coe�cients A
∗I; I
i (wI; wII; �), i∈C∗, are symmetric for wI ∈OW∗

I
, wII ∈OW∗

II

and �∈Rd×(n∗−n∗
0 ).

(Ex6) The matrices A
∗I; I
0 (wI; wII), A

∗II; II
0 (wI; wII) and the vectors �

∗
I (wI; wII; 0) and �∗

II (wI; wII; 0)
have continuous derivatives to order l+ 3 in wI ∈OW∗

I
and wII ∈OW∗

II
.

(Ex7) For any compact subset K of OW∗ =OW∗
I

×OW∗
II
, there exists �¿0 such that for any

smooth function w=(wI; wII) from Rd to Rn∗
with value in K we have∫

Rd

∑
i; j∈C∗

(@i
II)TB
∗II; II
ij (w(x))(@j
II) dx¿�

∫
Rd

∑
i∈C∗

(@i
II)T(@i
II) dx (41)

where 
II is any function in W 1
2 (Rd) with n∗−n∗

0 components.

Then there exists t0, 0¡t06
, such that the Cauchy problem (39), (40), admits a unique
solution (W∗

I
T;W∗

II
T)T de�ned on 	Qt0 = [0; t0]×Rd, which is continuous with its derivatives of

�rst-order in t and second-order in x, and for which the following quantities are �nite:

sup
06t6t0

||(W∗
I (t);W

∗
II (t))||l; sup

	Qt0

L(W∗
I ;W

∗
II ) (42)

sup
06t6t0

||@tW
∗
I (t)||l−1;

∫ t0

0
(||@tW

∗
II (�)||2l−1 + ||W∗

II (�)||2l+1) d� (43)
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Moreover, either t0 =
, or there exists t1 such that the theorem is true for any t0¡t1 and
such that for t0 → t−1 , at least one of the quantities

||W∗
I (t0)||1;∞ + ||W∗

II (t0)||2;∞; sup
	Qt0

L(W∗
I ;W

∗
II ) (44)

grows without bound, that is to say, the solution can be extended as long as quantities (44)
remain �nite.

4. EXISTENCE THEOREM FOR MULTICOMPONENT MAGNETIZED
DISSIPATIVE MIXTURES

We now apply the general results of Section 3 to the system of equations governing multi-
component ionized magnetized reactive �ows (22).

4.1. Partial symmetrization

We establish in this section that the equations governing ionized magnetized dissipative mix-
tures admit an entropy function. We de�ne the mathematical entropy function  as the opposite
of the physical entropy per unit volume

=− ∑
k∈G

�ksk =− 1
T
∑
k∈G

�k(hk − gk) (45)

and the corresponding entropic variable V is easily obtained

V=
1
T
(g1 − 1

2v·v; : : : ; gns − 1
2v·v; vT; ”0ET;BT=�0;−1)T (46)

Proposition 4.1
The function  de�ned on OU to R is a C∞ strictly convex function, in the sense that
its Hessian matrix @2U is symmetric positive de�nite. Moreover, the map U 
→V is a C∞

di�eomorphism from the open set OU onto the open set OV=Rns+9×(−∞; 0).

Proof
It is easily established that the Hessian matrix @2U is positive de�nite and the inverse function
theorem can then be applied [9,10].

We now obtain a partially symmetric form for the system of partial di�erential equations
governing multicomponent magnetized reactive �ows, making use of entropic variables.

Theorem 4.2
The function  is an entropy function for system (22). Furthermore, the change of variables
U 
→V transforms system (22) into

Ã0(V) @tV+
∑
i∈C

Ãi(V)@iV=
∑

i; j∈C
@i(B̃ij(V)(@jV+ G̃j(V)))

− ∑
i; j∈C

M̃i(V)T B̃ij(V)(@jV+ G̃j(V)) + �̃0(V) (47)
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with Ã0 = @VU, Ãi=Ai@VU, B̃ij=Bij@VU, B̃sij=B
s
ij@VU, B̃

a
ij=B

a
ij@VU, G̃i=(@VU)

−1Gi, M̃i=Mi,

and �̃0 =�0, where the matrices Ã0(V), Ãi(V), M̃i(V), i∈C, B̃ij(V), B̃sij(V), B̃
a
ij(V), i; j ∈C,

and the vectors G̃i(V), i∈C, �̃0(V) are C∞ functions. Note that the matrices Bsij and B
a
ij are

the even and odd parts of Bij with respect to the magnetic �eld B. Finally, system (47) is
of the partially symmetric form, that is, the vector and matrix coe�cients verify properties
(S1)–(S5).

Proof
The proof is lengthy and tedious and we refer the reader to References [9,10].

We investigate the nullspace of the matrix B̃(V; ���) in order to obtain a partially symmetric
form for system (47).

Lemma 4.3
The nullspace of the matrix B̃(V; ���)=

∑
i; j∈C B̃

s
ij(V)�i�j, denoted by N , is of dimension 7

and does not depend on V∈OV and ���∈�2. This nullspace is spanned by the column vectors
(uT; 01;10)T and en

s+k , k=1; : : : ; 6, where (ek)k = 1;:::;ns+10 is the canonical basis of Rns+10.

Proof
This results from an explicit evaluation of the partially symmetrized system and we refer to
References [9,10] for more details.

The following proposition is a direct consequence of (31).

Proposition 4.4
System (47) can be rewritten in the form

Ã0(V) @tV+
∑
i∈C
(Ãi(V) + Ãai (V))@iV=

∑
i; j∈C

@i(B̃ij(V) @jV) + �̃(V) (48)

where

Ãai (V)=
∑
j∈C
(M̃j

TB̃ji − B̃ijM̃j − @V(B̃ijM̃j)V) (49)

and

�̃(V)=−L̃(V)V+ �̃0(V); L̃(V)=
∑

i; j∈C
M̃i

TB̃ijM̃j

Moreover, the matrices Ãai , i∈C, are such that for any x and y in N (B̃), we have
〈x; Ãai y〉=0, i∈C.
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4.2. Partially normal form

In this section, we investigate a partially normal form for the system (48). Making use of the
explicit basis of N , we de�ne the matrix P by

P=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01;3 01;3 01; ns−1 01;3 0

�u 0ns−1;3 0ns−1;3 Ins−1;ns−1 0ns−1;3 0ns−1;1

03;1 03;3 03;3 03; ns−1 I 03;1

03;1 I 03;3 03; ns−1 03;3 03;1

03;1 03;3 I 03; ns−1 03;3 03;1

01;1 01;3 01;3 01; ns−1 01;3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(50)

with �u the vector of size ns−1 de�ned by �u=(1; : : : ; 1)T. We may then introduce the auxiliary
variable U′= PTU and the corresponding entropic variable V′= P−1V given by

U′=(�;ET;BT; �%T; �vT; �et)T

with �%=(�2; : : : ; �ns)T, and

V′=
1
T
(g1 − 1

2v·v; ”0ET; 1�0B
T; g2 − g1; : : : ; gns − g1; vT;−1)T

From Theorem 3.7, normal variables are in the form W=( I(U′
I ); 
II(V′

II))
T, where U′

I is the
�rst seven components of U′ and V′

II the last n
s + 3 components of V′. For convenience, we

choose the variable W given by

W=
(
�;ET;BT; log

�r2
2

�r1
1
; : : : ; log

�rns
ns

�r1
1
; vT; T

)T
(51)

Proposition 4.5
The map V 
→W is a C∞ di�eomorphism from the open set OV onto the open set OW=
(0;∞)×R6×Rns−1×R3×(0;∞).
Proof
We only have to prove that the map Z 
→W is a C∞ di�eomorphism, thanks to Proposi-
tions 2.1 and 4.1. It is readily C∞ and, in order to describe its range, let w∈OW and de�ne
zns+10 =wns+10, zns+6+�=w4+�, zns+3+�=w1+�, zns+�=wns+6+�, �=1; 2; 3, z1 by the following
equation:

z1 +
∑

26k6ns
zr1=rk1 exp(w6+k =rk)=w1

which admits a unique positive solution and zk =(zr11 expw6+k)1=rk , 26k6ns. Evaluating of
@ZW and applying the inverse function theorem, we then deduce that the map Z 
→W is a C∞

di�eomorphism onto OW.

In order to separate hyperbolic and parabolic variables, we introduce the partitioning of
{1; : : : ; ns+10} into I= {1; : : : ; 7} and II= {8; : : : ; ns+10}, since n0 = 7, and we use the vector
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and matrix block structure induced by this partitioning. We have W=(WI
T;WII

T)T, where WI

corresponds to the hyperbolic variables and WII to the parabolic variables

WI =
(
�;E T;B T

)T; WII =
(
log

�r2
2

�r1
1
; : : : ; log

�rns
ns

�r1
1
; vT; T

)T
(52)

Theorem 4.6
The change of variables V 
→W transforms the system (47) into

A0@tW+
∑
i∈C
(Ai+A

a
i )@iW=

∑
i; j∈C

@i(Bij@jW) +T+� (53)

where

A0 = (@WV)T Ã0 (@WV); Bij=(@WV)T B̃ij (@WV)

Bsij=(@WV)
T B̃sij (@WV); Baij=(@WV)

T B̃aij (@WV)

Ai=(@WV)T Ãi (@WV); �=(@WV)T �̃

Mi=(@WV)
−1 M̃i (@WV); Gi=(@WV)

−1 G̃i

A
a
i =(@WV)

T Ãai (@WV); T=− ∑
i; j∈C

@i(@WV)T B̃ij (@WV) @jW

and

A
∗
i =

∑
j∈C
(Mj

TBji − BijMj − (@WV)T@W(B̃ijM̃j)V) (54)

where the matrices A0(W), Ai(W), A
a
i (W), i∈C, Bij(W), Bsij(W), B

a
ij(W), i; j ∈C, and vectors

Gi(W), i∈C, �(W), T(W; 999xW) are C∞ functions of W∈OW and 999xW∈R3(ns+10). Further-
more, system (53) is of the partially normal form, that is the matrices A0, A

a
i , i∈C, Bij,

i; j ∈C, and vector T satisfy property (Nor1)–(Nor3).

Proof
This theorem is a direct application of Theorem 3.7.

The partially normal form (53) will be used for local existence theorems. This form, how-
ever, is insu�cient in order to establish global existence results around constant equilibrium
states [3,4,7]. More speci�cally, consider an equilibrium state We such that Ee=Be= ve=0.
One can then establish that the antisymmetric contributions of dissipative matrices vanish
B
ae
ij =0, i; j ∈C, and that we also have (@V(BijMj)V)e=0, i∈C. Furthermore, the linearized
source term L

e= − (@W�)
e is symmetric positive semide�nite thanks to the structural as-

sumptions on thermochemistry. However, it can be shown that the antisymmetric contri-
butions

∑
j∈C(Mj

TBji − BijMj)e, i∈C, never vanish, so that we cannot apply the existence
theorems of [3,4,7].
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Proposition 4.7
The system in normal form (53) can be split into a hyperbolic subsystem and a parabolic
subsystem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

A
I; I
0 @tWI = −∑

i∈C
A
I; I
i @iWI + �I

A
II; II
0 @tWII =−∑

i∈C

(
A
II; I
i +A

aII; I
i

)
@iWI +

∑
i; j∈C

@i(B
II; II
ij @jWII) + �II

(55)

where

�I =�I −
∑
i∈C
(AaI; IIi + A

I; II
i )@iWII; �II =�II +TII −

∑
i∈C
(AaII; IIi + AII; II

i )@iWII

Moreover, the matrices AI; I
0 (W), A

II; II
0 (W), A

I; I
i (W), A

II; I
i (W), A

aII; I
i (W), i∈C, BII; IIij (W), i; j ∈C, are

C∞ functions of W∈OW, and the vectors �I(W; 999xWII), �II(W; 999xWII) are C∞ functions of
W∈OW and 999xWII ∈R3(ns+3).
Proof
It is a direct application of Theorem 4.6.

4.3. Existence theorem

We now apply Theorem 3.8 to system modelling multicomponent reactive magnetized
dissipative �ows. Note that the local existence result of Kawashima [4] also applies to the
system (55).

Theorem 4.8
Consider the Cauchy problem for system (55) in R3 with initial conditions

W(0;x)=W0(x); x∈R3 (56)

where W0 ∈Vl(R3), l¿9=2, infR3 �0¿0 and infR3 T 0¿0.
Then there exits t0¿0, such that (55), (56) admit a unique solution W=(WI

T;WII
T)T

with W(t;x)∈OW de�ned on the strip 	Qt0 = [0; t0]×R3, continuous in 	Qt0 with its deriva-
tives of �rst-order in t and second-order in x, and for which the following inequalities
hold:

sup
06t6t0

[
||�(t)||l +

ns∑
k=2

∣∣∣∣∣∣∣∣log �rk
k

�r1
1
(t)

∣∣∣∣∣∣∣∣
l

+
∑
i∈C
(||vi(t)||l+||Ei(t)||l+||Bi(t)||l) + ||T (t)||l

]
¡+∞

inf
	Qt0

�(t;x)¿0; inf
	Qt0

T (t;x)¿0

sup
06t6t0

[
||@t�(t)||l−1 +

∑
i∈C
(||@tEi(t)||l−1 + ||@tBi(t)||l−1)

]
¡+∞
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∫ t0

0

[
ns∑

k=2

∣∣∣∣∣∣∣∣@t log
�rk
k

�r1
1
(�)

∣∣∣∣∣∣∣∣2
l−1
+
∑
i∈C

||@tvi(�)||2l−1 + ||@tT (�)||2l−1

+
ns∑

k=2

∣∣∣∣∣∣∣∣log �rk
k

�r1
1
(�)

∣∣∣∣∣∣∣∣2
l+1

+
∑
i∈C

||vi(�)||2l+1 + ||T (�)||2l+1
]
d�¡+∞

Moreover, either t0 is as large as one wants, or there exists t1 such that the theorem is true
for any t0¡t1 and such that for t0 → t−1 , either the following quantity:

||�(t0)||1;∞ +
ns∑

k=2

∣∣∣∣∣∣∣∣log �rk
k

�r1
1
(t0)

∣∣∣∣∣∣∣∣
2;∞
+ ||T (t0)||2;∞ +

∑
i∈C
(||vi(t0)||2;∞ + ||Ei(t0)||1;∞ + ||Bi(t0)||1;∞)

(57)

or sup 	Qt0
1=T is unbounded.

We only have to verify that the assumptions of Theorem 3.8 are satis�ed.

Proof
We de�ne the function L by L(WI;WII)= 1=� + 1=T . As we assume that W0 ∈Vl(R3), infR3
�0¿0, l¿9=2, and infR3 T 0¿0, we obtain that property (Ex1) holds. Proposition 4.7 implies
readily properties (Ex2)–(Ex3) and (Ex6) on the regularity of matrices and vectors. Properties
(Ex4)–(Ex5) concerning symmetry of matrices A

I; I
0 , A

II; II
0 and AI; I

i , i∈C, are obtained by using
properties (S1)–(S2) obtained in Theorem 4.6.
In order to establish that (Ex7) holds, we consider 
II in W 1

2 (R3) written in the form

II = (
%T; 
vT; 
T)T, with 
%=(
%

2; : : : ; 

%
ns)T, 
v ∈R3 and 
T ∈R. For the di�usive part BII; IIij ,

i; j ∈ G, we obtain ∑
i;j∈C

(@i
II)TB
di� ; II; II
ij (@j
II)=

p
T
 ‖TA‖ ‖ +

p
T
∑
k∈C

 ⊥
k
TA⊥ ⊥

k

where  ‖=
∑

i∈CB·ei@i
d,  ⊥
k =

∑
i∈C(ei−B·eiB)·ek @i
d, 
d is de�ned by 
d =

( 1T 

T; 0; T

p �2(

%
2+

r2
T 


T); : : : ; T
p �ns(


%
ns+

rns
T 
T))

T
, and (e1, e2, e3) is the canonical basis of R3.

We now use (Tr3) concerning A‖ et A⊥. Since the second component of 
d vanish, 
d is
proportional to (0; %T)T only if 
d = 0, in such a way that∑

i;j∈C
(@i
II)TB

di� ; II; II
ij (@j
II)¿ �

∑
k∈C
[|ek ·(999x
T)‖|2+|ek ·(999x
T)⊥|2]

+ �
ns∑
l=1

∑
k∈C
[|ek ·(999x
%

l )
‖|2+|ek ·(999x
%

l )
⊥|2]

and, for W in a compact set of OW, we have uniformly

∑
i;j∈C

(@i
II)TB
di� ; II; II
ij (@j
II)¿�

(
|999x
T|2 +

∑
26l6ns

|999x
%
l |2
)

(58)
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Concerning the viscous part BII; IIij , i; j ∈C, we have∑
i;j∈C

(@i
II)TB
visc; II; II
ij (@j
II)

=
�
T

[∑
i∈C
ei·@i
v

]2
+

�1 + �3
3T

[∑
i∈C
(ei·(@i
v)−3e‖i ·(@i
v)‖)

]2

+
�1−�3

T

⎡⎣[∑
i∈C
e⊥i ·(@i
v)⊥

]2
+

[∑
i∈C
e⊥i ·(@i
v)�

]2
−2∑

i;j∈C
(e⊥i ·e�j (@i
v)⊥·(@j
v)�)

⎤⎦
+

�1+�4
T

[∑
i∈C
(B·ei(@i
v)⊥+B·@i
v e⊥i

]
·
[ ∑

j∈C
(B·ej(@j
v)⊥+B·@j
v e⊥j

]

In order to establish that this quantity is bounded from below, we use the invariance property
with respect to orthogonal co-ordinate transforms and we chose a new co-ordinate system
(e1; e2; e3) such that B= e1. We then have∑

i;j∈C
(@i
II)T B

visc; II; II
ij (@j
II) =

�
T
(999x·
v)2+�1+�4

T
[(S


12)
2−(S


13)
2]

+
3
4
�1+�3

T
(S

11)

2+
�1−�3

T
[ 14 (S



22−S


33)
2+(S


23)
2]

where S
 is de�ned by S
= 999x
v + (999x
v)T − 2
3 (999x·
v)I. Thanks to (Tr2) about strict dissi-

pativity and concerning �1 + �4, �1 + �3, �1 − �3, and assuming that �, is strictly positive, we
have ∑

i;j∈C
(@i
II)TB

visc; II; II
ij (@j
II)¿�

∑
i;j∈C

(@i
vj + @j
vi )
2 (59)

uniformly in W in a compact set of OW. Combining these estimates (58) and (59) with∫ ∑
i;j∈C

(@i
vj + @j
vi )
2 dx=

1
2

∫ ∑
i;j∈C

(@i
vj )
2 dx+

1
2

∫ (∑
i∈C

@i
vi

)2
dx

valid for 
vi ∈W 1
2 (R3), i∈C, we obtain (Ex8). The case where � vanishes can be reduced to

the case where � is strictly positive proceeding as in Reference [6].
Finally, we note that from the conservation of �, we have

�(t;x)¿ inf
R3

�0(x) exp
(

−
∫ t

0
||999x·v(s)||0;∞ds

)
and thus infR3 �(t;x)¿0 as long as (57) remains �nite, so that only T may reach the boundary
of OW.
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the conservation laws. Tôhoku Mathematical Journal 1988; 40:449–464.

6. Giovangigli V, Massot M. The local Cauchy problem for multicomponent reactive �ows in full vibrational
non-equilibrium. Mathematical Methods in the Applied Sciences 1998; 21:1415–1469.

7. Giovangigli V, Massot M. Asymptotic stability of equilibrium states for multicomponent reactive �ows.
Mathematical Models and Methods in Applied Sciences 1998; 8:251–297.

8. Vol’Pert AI, Hudjaev SI. On the Cauchy problem for composite systems of nonlinear di�erential equations.
Mathematics of the USSR-Sbornik 1972; 16:517–544.

9. Giovangigli V, Graille B. The local Cauchy problem for ionized magnetized reactive gas mixtures.
Internal Report 532, Centre de Math�ematiques Appliqu�ees, Ecole Polytechnique, France, 2004,
http://www.cmap.polytechnique.fr/preprint.

10. Graille B. Mod�elisation de M�elanges Gazeux R�eactifs Ionis�es Dissipatifs. Ph.D. Thesis, Ecole Polytechnique,
2004.

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1647–1672


