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We investigate iterative algorithms for solving complex symmetric

constrained singular systems arising in magnetized multicompo-

nent transport. Thematricesof thecorresponding linear systemsare

symmetric with a positive semi-definite real part and an imaginary

part with a compatible nullspace. We discuss well posedness, the

symmetryof generalized inverses andCholeskymethods.We inves-

tigate projected stationary iterative methods as well as projected

orthogonal residuals algorithms generalizing previous results on

real systems. As an application, we consider the linear systems aris-

ing from the kinetic theory of gases and providing transport coef-

ficients of partially ionized gas mixtures subjected to a magnetic

field.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Transport linear systems

In nonionized gas mixtures, the evaluation of transport coefficients—such as the diffusion matrix

or the thermal conductivity—requires solving real linear systems [10,7]. Similarly, in partially ionized

gasmixtures subjected to strongmagnetic fields, the evaluation of non-isotropic transport coefficients

requires solving complex linear systems [10,16,17]. The linear systems associated with transport coef-
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ficients parallel to the magnetic field are real and similar to that of nonionized mixtures whereas the

linear systems associated with transport coefficients perpendicular and transverse to the magnetic

field are complex and are investigated in this paper. These linear systems arise—in a kinetic theory

framework—from variational procedures used to solve approximately linearized Boltzmann integral

equations [10,6,15].

The complex linear systems associatedwith partially ionized gasmixtures are constrained singular

systems that can be written{
Ga = b,

a ∈ C,
(1.1)

where G ∈ Cn,n
,C is a linear subspace of Cn

, and a, b ∈ Cn
are vectors. The matrix G and the con-

strained spaceC have a special structure derived from the kinetic theory of magnetized multicompo-

nent transport [16,17]. ThematrixG is in the formG = G + iG′ where G ∈ Rn,n
is a symmetric positive

semi-definite matrix, G′ ∈ Rn,n
a symmetric matrix with a ‘compatible’ nullspace, that is, such that

G′N(G) = 0. The constrained subspace C is the complexification C = C + iC of a real linear subspace

C ⊂ Rn
complementary toN(G). In some applications, there are n complex transport coefficients asso-

ciated with the system (1.1) which are given by the components of a and in some others there is a

single complex transport coefficient usually given by a scalar product μ = 〈a, b′〉 where b′ ∈ Cn
is a

vector. The constraint a ∈ C is generally a constraint on the transport coefficients which is important

from a physical point of view and is typically associated with a conservation property.

In thispaper,wegeneralize themathematical tools introduced in [6,7] in the special situationG′ = 0.

We first relate the solution of (1.1) to generalized inverses naturally associated with the problem and

investigate their symmetry. We also investigate regular reformulations of (1.1) involving symmetric

matrices with a positive definite real part which can be inverted by using a complex Choleskymethod.

We then study the convergence of projected stationary iterative methods for solving the constrained

singular system (1.1). We establish in particular that the convergence rate is never worse in the case

G′ /= 0 upon properly choosing the splitting matrix.

Various generalized conjugated gradient techniques have been introduced in order to solve invert-

ible complex symmetric linear systems [9,11,12]. In this paper, we investigate projected orthogonal

residuals methods for solving the constrained singular system (1.1) and establish their convergence.

Orthogonal residuals methods seem natural in this framework since they make use of the positiv-

ity properties of the real symmetric part G and they exactly correspond to previously introduced

algorithms when G′ = 0 [7]. Orthogonal residuals methods have a better convergence behavior than

stationarymethods and should generally be preferred. However they do not yield a linear dependency

between the iterates and the right-hand side and this linear dependency may be important in some

applications.

In order to illustrate the projected iterative algorithms we present an application to the species

diffusion matrices perpendicular and transverse to the magnetic field in partially ionized magnetized

mixtures.

After some mathematical preliminaries in Section 1, we investigate in Section 2 the properties of

generalized inverses aswell as regular reformulations and Cholesky type decompositions. In Section 3,

westudy theconvergenceofprojected stationary iterativealgorithms. InSection4wediscussprojected

orthogonal residuals algorithms. Finally, in Section 5, we present an application to multicomponent

transport.

1.2. Notation and preliminaries

Let K be a field designating either R or C, we denote by Kn
the corresponding n-dimensional

vector space, and by Kn,n
the set of n × nmatrices where n ∈ N,n � 1. For a vector z ∈ Kn

, we denote

by z = (z1, . . . , zn) its components and by Kz the subspace span(z) of Kn
. For x, y ∈ Cn

, 〈x, y〉 denotes
the scalar product 〈x, y〉 = ∑

1�k�n xkȳk and ‖x‖ = 〈x, x〉1/2 the Hermitian norm of x. Therefore, if x, y ∈
Rn

, 〈x, y〉 also denotes the scalar product 〈x, y〉 = ∑
1�k�n xkyk and ‖x‖ = 〈x, x〉1/2 the Euclidean norm
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of x. For a subspaceS of Rn
, we denote byS⊥

its orthogonal complement and for a nonzero vector

a ∈ Rn
we denote by a⊥ the orthogonal complement of Ra. For x, y ∈ Cn

, (x, y) denotes the bilinear

form (x, y) = ∑
1�k�n xkyk , so that 〈x, y〉 = (x, ȳ).

Weuse classical notation concerning complexifications and z ∈ Cn
maybewritten z = x + iywhere

x, y ∈ Rn
. A subspaceF ⊂ Cn

is the complexificationof a subspaceofRn
if andonly ifF = F inwhich

caseF is the complexification ofH = F ∩ Rn
so thatF = H+ iH and dimC(F) = dimR(H). If

S1 andS2 are two complementary subspacesS1 ⊕S2 = Rn
, the corresponding complexifications

are easily shown to satisfy (S1 + iS1) ⊕ (S2 + iS2) = Cn
as well as (S⊥

1 + iS⊥
1 ) ⊕ (S⊥

2 + iS⊥
2 ) =

Cn
. IfH is a real vector space andF = H+ iH its complexification,H⊥ + iH⊥

is the orthogonal

complement ofFwith respect to either the scalar product 〈 , 〉 or the bilinear form ( , ).

For A ∈ Kn,n
, we write A = (akl)1�k,l�n the coefficients of the matrix A and At the transpose of

A. The nullspace and the range of A are denoted by N(A) and R(A), respectively, and the rank of A is

denoted by rank(A). For x, y ∈ Kn
, x ⊗ y ∈ Kn,n

denotes the tensor productmatrix x ⊗ y = (xkyl)1�k,l�n.

The identity matrix is denoted by I and diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements

λ1, . . . , λn. If S1 and S2 are two complementary subspaces of Kn
, i.e., S1 ⊕S2 = Rn

, we denote

by PS1,S2
the oblique projector matrix onto the subspace S1 along the subspace S2. For a matrix

A ∈ Kn,n
, we denote by ‖A‖ its Frobenius norm ‖A‖ =

(∑
1�k,l�n |akl|2

)1/2
. If A ∈ Kn,n

is such that

N(A) ⊕ R(A) = Kn
we denote by A� its group inverse [1,4]. The following proposition characterizes

generalized inverseswithprescribedrangeandnullspaceand itsproof is identical in the realor complex

cases [1,4,15].

Proposition 1.1. LetG ∈ Cn,n
be a matrix and letC andS be two subspaces of Cn

such that N(G) ⊕C =
Cn

and R(G) ⊕S = Cn
. Then there exists a uniquematrixZ such thatGZG = G,ZGZ = Z,N(Z) =

S, and R(Z) = C. The matrix Z is called the generalized inverse of G with prescribed range C and

nullspaceS and is also such thatGZ = PR(G),S andZG = PC,N(G).

For a matrixT ∈ Cn,n
, σ(T) and ρ(T) denote, respectively, the spectrum and the spectral radius

of T, and we also define γ (T) = max{|λ|; λ ∈ σ(T), λ /= 1}. A matrix T is said to be convergent

when limi→∞ Ti
exists—not necessarily being zero [22]—and we have the following characterization

[26,22].

Proposition 1.2. AmatrixT ∈ Cn,n
is convergent if and only if either ρ(T) < 1 or ρ(T) = 1, 1 ∈ σ(T),

γ (T) < 1, and (I −T)� exists, i.e.,T has only elementary divisors corresponding to the eigenvalue 1.

Next, for a matrixG ∈ Cn,n
, the decomposition

G = M−W (1.2)

is a splitting if the matrix M is invertible. In order to solve the linear system Ga = b, where b ∈ Cn
,

the splitting (1.2) induces the iterative scheme

zi+1 = Tzi +M−1
b, i � 0, (1.3)

where T = M−1W. Assuming that b ∈ R(G), we have M−1
b ∈ R(I −T), and the behavior of the

sequence of iterates (1.3) is given in the next lemma which can be found in [21,4] (some misprints in

the matrix E are corrected in recent versions of Bermann and Plemmons [4]).

Lemma 1.3. LetT ∈ Cn,n
and let c ∈ Cn

such that c ∈ R(I −T). Then the iterative scheme zi+1 = Tzi +
c, i � 0, converges for any z0 ∈ Cn

if and only ifT is convergent. In this situation, the limit limi→∞ zi = z∞
is given by z∞ = (I −T)�c + Ez0 where E = I − (I −T)(I −T)�.
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2. Constrained singular systems

In this section we investigate well posedness of constrained singular systems, complex symmetric

generalized inverses, regular symmetric reformulations of (1.1) and complex Cholesky methods.

2.1. Well posedness

Proposition 2.1. LetG ∈ Cn,n
be a matrix andC be a subspace of Cn

. The constrained linear system (1.1)

is well posed, i.e., admits a unique solution a for any b ∈ R(G), if and only if

N(G) ⊕C = Cn
. (2.1)

In this situation, for any subspace S such that R(G) ⊕S = Cn
, the solution a can be written a = Zb,

whereZ is the generalized inverse ofG with prescribed rangeC and nullspaceS.

Proof. Assume first that the system (1.1) is well posed and let x ∈ Cn
. Then there exists a unique

solution y ∈ C to the system Gy = Gx, and hence x − y ∈ N(G) so that N(G) +C = Cn
. Furthermore,

for any z ∈ N(G) ∩C, z satisfiesGz = 0 and z ∈ C, so thatwemust haveN(G) ∩C = {0} by uniqueness.
Conversely, if N(G) ⊕C = Cn

and b ∈ R(G), there exists x ∈ Cn
such that Gx = b, and we may write

x = y + z where y ∈ N(G) and z ∈ C. Therefore, we haveGz = b and z ∈ C so that (1.1) has at least one

solution which is also unique since the difference between any two solutions is in N(G) ∩C = {0}. Let
nowS be a subspace such that R(G) ⊕S = Cn

. The generalized inverseZ then exists by Proposition

1.1 since N(G) ⊕C = Cn
and R(G) ⊕S = Cn

. Moreover, the vectorZb satisfiesGZb = PR(G),Sb = b

since b ∈ R(G), and we also haveZb ∈ C since R(Z) = C, so that a = Zb. �

We also investigate in this section the range and nullspace of the complex matrices G = G + iG′
associated with the linear systems (1.1).

Lemma 2.2. Let G = G + iG′ where G,G′ are real symmetric matrices, G is positive semi-definite and

G′N(G) = 0. Then we have N(G) = N(G) + iN(G) and R(G) = N(G)⊥ + iN(G)⊥. Moreover, for any sub-

space C ⊂ Rn
complementary to N(G), we have G′ = (PC,N(G))

tG′PC,N(G), and denoting C = C + iC the

complexification of C, we have N(G) ⊕C = Cn
and PC,N(G) = PC,N(G).

Proof. For any z = x + iy where x, y ∈ Rn
, a direct calculation yields

〈(G + iG′)z, z〉 = 〈Gx, x〉 + 〈Gy, y〉 + i(〈G′x, x〉 + 〈G′y, y〉),
since G and G′ are symmetric. Assuming (G + iG′)z = 0 thus yields that x, y ∈ N(G) since G is positive

semi-definite and conversely, it is obvious that N(G) + iN(G) ⊂ N(G + iG′) since G′N(G) = 0. Since

N(G) ⊂ N(G′), we also deduce by transposing that N(G′)⊥ ⊂ N(G)⊥ so that R(G′) ⊂ R(G) since G and

G′ are symmetric. As a consequence R(G + iG′) ⊂ R(G) + iR(G) and thus R(G + iG′) = R(G) + iR(G) since

both subpaces of Cn
are of dimension n − dim(N(G)) = n − dim(N(G)). If C is complementary to N(G),

we can decompose any x ∈ Rn
into x = PC,N(G)x + (I − PC,N(G))x where PC,N(G)x ∈ C and (I − PC,N(G))x ∈

N(G), and this implies that G′x = G′PC,N(G)x so that G′ = G′PC,N(G). Upon transposing this relation we

also obtain G′ = (PC,N(G))
tG′. Finally it is straightforward to establish that N(G) ⊕ C = Cn

and that

PC,N(G) = PC,N(G) upon decomposing vectors of Cn
into their real and imaginary parts. �

2.2. Symmetric generalized inverses

By using the symmetry of the matrix G = G + iG′ it is possible to select a symmetric generalized

inverse ofGwith prescribed rangeC = C + iC.

Proposition 2.3. LetG = G + iG′ where G,G′ are real symmetric matrices, G is positive semi-definite and

G′N(G) = 0. LetC = C + iC where C ⊂ Rn
is a subspace complementary to N(G). LetZ be the generalized
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inverse of G with prescribed nullspace N(Z) = C⊥ + iC⊥ and range R(Z) = C + iC. Then the matrix Z
is symmetric and is the unique symmetric generalized inverse of G with range C, that is, the unique

symmetricmatrixL such thatLGL = L,GLG = G and R(L) = C.Upon decomposingZ = Z + iZ ′,
where Z , Z ′ ∈ Rn,n

, Z and Z ′ are symmetric matrices, Z is positive semidefinite, Z ′N(Z) = 0 and N(Z) = C⊥.

Furthermore, denoting by u1, . . . ,up a real basis of N(G),where p = dim(N(G)) � 1, there exist real vectors

v1, . . . , vp spanning C⊥ such that 〈vi,uj〉 = δij , 1 � i, j � p. Then for any positive numbers αi,βi, 1 � i � p,

such that αiβi = 1, 1 � i � p, we have

Z =
⎛⎝G+

∑
1�i�p

αivi ⊗ vi

⎞⎠−1

−
∑

1�i�p

βiui ⊗ ui (2.2)

and the real part G +∑
1�i�p αivi ⊗ vi of the matrix G+∑

1�i�p αivi ⊗ vi is symmetric positive definite.

Therefore, for b ∈ R(G), the solution a of (1.1) obtained from Proposition 2.1 also satisfies the regular system⎛⎝G+
∑

1�i�p

αivi ⊗ vi

⎞⎠ a = b (2.3)

and we also have

PC,N(G) = PC,N(G) = I −
∑

1�i�p

ui ⊗ vi. (2.4)

Proof. From N(G) ⊕ C = Rn
we obtain that N(G)⊥ ⊕ C⊥ = Rn

so that R(G) ⊕ C⊥ = Rn
since G is sym-

metric. These relations implies that N(G) ⊕ (C + iC) = Cn
and R(G) ⊕ (C⊥ + iC⊥) = Cn

in such a way

that the generalized inverse of G with prescribed range C = C + iC and prescribed nullspace C⊥ +
iC⊥ is well defined. Furthermore, fromGZG = G,ZGZ = Z,N(Z) = C⊥ + iC⊥,R(Z) = C + iC, and
Gt = G, we first deduce that GZtG = G,ZtGZt = Zt

, and we also have N(Zt
) = C⊥ + iC⊥, and

R(Zt
) = C + iC. More specifically, let z = x + iy, x, y ∈ Rn

and assume thatZt
z = 0. For any c ∈ C there

exists z′ ∈ Cn
with Zz′ = c and (z, c) = (z,Zz′) = (Zt

z, z′) = 0 so that (z, c) = 〈z, c〉 = 〈x, c〉 + i〈y, c〉 = 0.

This yields x, y ∈ C⊥, z ∈ C⊥ + iC⊥ and N(Zt
) ⊂ C⊥ + iC⊥ so that N(Zt

) = C⊥ + iC⊥ since both sub-

spaces of Cn
are of dimension p over C. Similarly, assume that z = Zt

z′, z′ ∈ Cn
, and z = x + iy, x, y ∈

Rn
. Then for any d ∈ C⊥ we have (z, d) = (Zt

z′, d) = (z′,Zd) = 0 since N(Z) = C⊥ + iC⊥ andZd = 0.

Thus (z, d) = 〈z, d〉 = 〈x, d〉 + i〈y, d〉 = 0, so that x, y ∈ C,R(Zt
) ⊂ C + iC andfinallyR(Zt

) = C + iC. Since
R(Zt

) = R(Z),N(Zt
) = N(Z),GZtG = G, andZtGZt = Zt

,wededuce fromtheuniquenessof the

generalized inverse with prescribed range and nullspace that Z = Zt
so that Z is symmetric. Any

symmetricmatrixL such thatLGL = L,GLG = G and R(L) = C also satisfiesN(L) = C⊥ + iC⊥
by symmetry. Indeed, ifLz = 0 then for any z′ ∈ Cn

, (Lz, z′) = 0 = (z,Lz′). If c ∈ C, there exists z′ ∈
Cn

such that c = Zz′ and if z = x + iy, x, y ∈ Rn
, (z, c) = 〈z, c〉 = 〈x, c〉 + i〈y, c〉 = 0 for any c ∈ C and

x, y ∈ C⊥,N(L) ⊂ C⊥ + iC⊥ and N(L) = C⊥ + iC⊥ so thatL coincides withZ.

WritingZ = Z + iZ ′, where Z , Z ′ ∈ Rn,n
, we have already established that Z and Z ′ are symmetric.

Fromthe relation (Z + iZ ′)(G + iG′) = PwhereP = PC,N(G),weobtain thatZG − Z ′G′ = P andZG′ + Z ′G =
0. This implies that Z = PZ = ZGZ − Z ′G′Z = ZGZ + Z ′GZ ′ so that 〈Zx, x〉 = 〈GZx, Zx〉 + 〈GZ ′x, Z ′x〉 and Z

is positive semidefinite. Moreover, Zx = 0 implies that Z ′x ∈ N(G) and since R(Z) = C + iC, Z ′x ∈ C, so
that Z ′x = 0, and Z ′N(Z) = 0. From Lemma 2.2 we deduce that N(Z) = N(Z) + iN(Z) and since N(Z) =
C⊥ + iC⊥ weobtainN(Z) = C⊥. Thevectorsvi, 1 � i � p,withp = dim(N(G))are theneasilyobtainedby

selecting for vi a nonzero element in the one-dimensional subspace span(u1, . . . ,ui−1,ui+1, . . . ,up)
⊥ ∩

C⊥ and by normalizing it. It is then easily shown that PR(Z),N(G) = I −∑
1�i�p ui ⊗ vi and PR(G),N(Z) =

I −∑
1�i�p vi ⊗ ui, which yields (2.4) and implies thatGZ = I −∑

1�i�p vi ⊗ ui and the formula (2.2)

directly follows. Eq. (2.3) is then a direct consequence of (2.2) since b ∈ R(G) = N(G)⊥ + iN(G)⊥. �

2.3. Cholesky method

Since the transport linear systems (1.1) can be rewritten into the nonsingular form (2.3) involving

an invertible matrix G+∑
1�i�p αivi ⊗ vi with a positive definite real part G +∑

1�i�p αivi ⊗ vi we
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investigate direct methods in this section. We first restate a classical result about Cholesky decompo-

sition of complex symmetric matrices and next investigate the situation of matrices associated with

the linear systems (1.1). Cholesky decomposition may also be used for large full systems arising from

discretized integral equations [3].

Theorem 2.4. Let A be a complex symmetric matrix such that all principal minors δi, 1 � i � n, are

nonzero. There exists an upper triangular matrix U with diagonal coefficient unity such that

A = UtDU, (2.5)

whereD is the diagonal matrixD = diag(δ1, δ2/δ1, . . . , δn/δn−1).

Proof. Omitted. �

We now apply the preceding proposition to the symmetric complex regular form (2.3) of the trans-

port linear system (1.1).

Proposition 2.5. Keeping the assumptions of Proposition 2.3, the matrix G+∑
1�i�p αivi ⊗ vi can be

decomposed in the form UtDU where U is an upper triangular matrix with diagonal coefficients unity and

D is a diagonal matrix whose diagonal coefficients have a positive real part.

Proof. DenotingA = G+∑
1�i�p αivi ⊗ vi,A = (aij)1�i,j�n, andA

[k] = (aij)1�i,j�k , we have to check

that the submatrix A[k]
is invertible. Assume that A[k]

z[k] = 0 where z[k] ∈ Ck
and define z ∈ Cn

by zi = z[k]
i

if 1 � i � k and zi = 0 otherwise. Then 〈Az, z〉 = 0 and from symmetry 〈Az, z〉 = 〈Az, z〉 +
i〈G′z, z〉whereA = G +∑

1�i�p αivi ⊗ vi is positive definite. Upondecomposing z = x + iy, x, y ∈ Rn
, we

also have 〈Az, z〉 = 〈Ax, x〉 + 〈Ay, y〉 in such a way that z = 0,A[k]
is invertible and δk = det(A[k]

) /= 0.

The matrix U in Theorem 2.4 is constructed as the components in the canonical basis e1, . . . , en
of a family of vectors f1, . . . , fn orthogonal with respect to the bilinear form ϕ associated withA, i.e.,

ϕ(x, y) = (Ax, y) = 〈Ax, ȳ〉, x, y ∈ Cn
. This family is constructed from f1 = e1 and fk = ek +∑

1�i�k−1 αik

ei/δk−1 where αik is the cofactor of aik inA[k]
. This family is such that ϕ(fk , ei) = 0 whenever 1 � i �

k − 1,ϕ(f1, f1) = δ1 = D11, and ϕ(fk , ek) = δk/δk−1 = Dkk .

However,we canalsowrite thatϕ(fk , fk) = ϕ(fk , ek) = ϕ(fk , f̄k) since the conjugate vector f̄k is givenby

f̄1 = f1 for k = 1 and f̄k = ek +∑
1�i�k−1 ᾱikei/δ̄k−1 otherwise, and thus Dkk = (Afk , f̄k) = 〈Afk , fk〉 =

〈Afk , fk〉 + i〈G′fk , fk〉 where A is positive definite. �

3. Stationary iterative algorithms

3.1. Convergence of projected iterative algorithms

We are now interested in solving the constrained singular system (1.1) by stationary iterative tech-

niques. These techniques provide iterates which depend linearly on the right-hand side b, and this

property may be important for some applications.

For agivensplittingG = M−Wand forb ∈ R(G), assuming that the iterationmatrixT = M−1W
is convergent, the iterates (1.3) will converge for any z0. When the matrix G is singular, we have

ρ(T) = 1 sinceTz = z for z ∈ N(G), and neither the iterates {zi; i � 0}nor the limit z∞ are guaranteed

to be in the constrained space C. In order to overcome these difficulties, we will used a projected

iterative scheme [14,7]

z′
i+1 = PTz′

i +PM−1
b, i � 0, (3.1)

where P = PC,N(G) is the projector matrix onto the subspace C along N(G). All the corresponding

iterates {z′
i
; i � 0} then satisfy the constraint z′

i
∈ C. Moreover, in order to obtain an iterative scheme
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with convergence properties valid for any matrix G′ we will include the full imaginary part iG′ ofG in

the splitting matrixM. We will thus use splitting matrices in the form

M = M + iG′, (3.2)

where G = M − W is a splitting of the symmetric positive semi-definite matrix G, so that W = M−
G = W = M − G is a real matrix. In addition, C and N(G) are in the form C = C + iC and N(G) =
N(G) + iN(G) so thatP = PC,N(G) = PC,N(G) = P.

The spectral radius of the iteration matrixPT associated with (3.1) can be estimated by using the

following result of Neumann and Plemmons [22].

Theorem 3.1. LetT be a matrix such that (I −T)� exists, i.e., such that R(I −T) ∩ N(I −T) = {0}. Let
C be a subspace complementary to N(I −T), i.e., such that N(I −T) ⊕C = Cn

, and let also P be the

oblique projector matrix onto the subspaceC along N(I −T). Then we have

ρ(PT) = γ (T). (3.3)

This result (3.3) has also been strengthened and the spectra ofT andPT are essentially the same

[7]. Although the proof in [7] is given in a real framework it directly extends to the complex casemutatis

mutandis.

Theorem 3.2. Keep the assumptions of Theorem 3.1. Then,

σ(PT) =
{
(σ (T)\{1}) ∪ {0}, if N(I −T) /= {0},
σ(T), if N(I −T) = {0}.

Furthermore, the matricesT andP satisfy the relationPT = PTP.

Wenow investigate the convergence andproperties of the projected iterative algorithms (3.1)when

applied to the complex symmetric constrained singular systems (1.1). Note that Keller’s theorem [20]

cannot be applied directly as in the real case [7] sinceG is not Hermitian when G′ is nonzero.

Theorem 3.3. Let G = G + iG′ where G,G′ are real symmetric matrices, G is positive semi-definite and

G′N(G) = 0. Let C ⊂ Rn
be a subspace complementary to N(G) and let C be the complexification of C.

Consider a splitting G = M − W , assume that M is symmetric and that M + W is positive definite, so that

M is also symmetric positive definite. Define M = M + iG′,G = M−W, so that W = W , and T =
M−1W, T = M−1W . LetP = P be the oblique projector matrix onto the subspace C along N(G). Let also

b ∈ R(G), z0 ∈ Cn
, z′

0
= Pz0, and consider for i � 0 the iterates zi+1 = Tzi + M−1b as in (1.3) and z′

i+1
=

PTz′
i
+PM−1b as in (3.1). Then z′

i
= Pzi for all i � 0, the matricesT,PT, T , and PT are convergent,

ρ(T) = ρ(T) = 1 when dim(N(G)) � 1, ρ(PT) = γ (T) < 1, ρ(PT) = γ (T) < 1, and

γ (T) � γ (T), (3.4)

so that the convergence rate is never worse in the case G′ /= 0, and we have the following limits:

lim
i→∞

z′
i = P( lim

i→∞
zi) = a, (3.5)

where a is the unique solution of (1.1). Moreover, for all i � 1, each partial sum

Zi =
∑

0�j�i−1

(PT)jPM−1Pt
(3.6)

is symmetric and limi→∞ Zi = Z where

Z =
∑

0�j<∞
(PT)jPM−1Pt

(3.7)

is the symmetric generalized inverse ofG with prescribed nullspace N(Z) = C⊥ + iC⊥ and range R(Z) =
C = C + iC.
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In the proof of Theorem 3.3 we will use the following lemma whose proof is postponed.

Lemma 3.4. Keeping the assumptions of Theorem 3.3, we have

γ (T) = sup

{ |〈Wx, x〉|
〈Mx, x〉 ; x ∈ Rn

, x /= 0, ∀u ∈ N(G), 〈Mx,u〉 = 0

}
. (3.8)

Proof. By applying Keller’s theorem [20,7] to the splitting G = M − W it is readily seen that thematrix

T is convergent so that from Theorems 3.1 and 3.2 we deduce that γ (T) = ρ(PT) < 1, PT is convergent,

and ρ(T) = 1 when dim(N(G)) � 1.

With respect to T, we first note that 1 ∈ σ(T) when dim(N(G)) � 1 since then G is singular,

N(G) = N(G) + iN(G), andTz = z for any z ∈ N(G). Let now λ ∈ σ(T), λ /= 1, so that there exists z /= 0

with Tz = λz and z /∈ N(G). Upon writing z = x + iy, x, y ∈ Rn
, we have 〈Gz, z〉 = 〈Gx, x〉 + 〈Gy, y〉 and

〈Gz, z〉 = 0 implies x, y ∈ N(G) and z ∈ N(G). Since z /∈ N(G)we have 〈Gz, z〉 > 0 so that 〈Wz, z〉 < 〈Mz, z〉
with 〈Wz, z〉 = 〈Wx, x〉 + 〈Wy, y〉 and 〈Mz, z〉 = 〈Mx, x〉 + 〈My, y〉. Similarly, we know thatM + W is sym-

metric positive definite so that −〈Mz, z〉 < 〈Wz, z〉 and finally |〈Wz, z〉| < 〈Mz, z〉. On the other hand,

sinceTz = λz, upon multiplying byM this identity we obtain thatWz = λMz = λ(M + iG′)z. Taking
the scalar product with z we obtain λ = 〈Wz, z〉/(〈Mz, z〉 + i〈G′z, z〉) so that

|λ| � |〈Wz, z〉|
〈Mz, z〉 < 1 (3.9)

thanks to 〈Mz, z〉 � |〈Mz, z〉 + i〈G′z, z〉| and we have established that γ (T) < 1.

In order to establish that (I −T)� exists, we assume on the contrary that N(I −T) ∩ R(I −T) /= 0.

In this situation, there exists z, z′ ∈ Cn
, z /= 0, z′ /= 0, such thatT(z′) = z + z′ andT(z) = z. This yields

Wz′ = (M + iG′)(z′ + z) and Wz = (M + iG′)z. Since T(z) = z we have z ∈ N(G) + iN(G) so that G′z =
0,Wz = Mz, and

〈Wz′, z〉 = 〈(M + iG′)(z′ + z), z〉 = 〈M(z′ + z), z〉, (3.10)

since 〈G′(z′ + z), z〉 = 〈G′z′, z〉 = 〈z′,G′z〉 = 0 thanks to G′z = 0. Therefore (3.10) implies that 〈Mz′, z〉 +
〈Mz, z〉 = 〈z′,Wz〉 = 〈z′,Mz〉 = 〈Mz′, z〉 and 〈Mz, z〉 = 0 and z = 0 contradicting z /= 0, andT is conver-

gent.

In order to compare the values of γ (T) and γ (T) we now make use of Lemma 3.4. If z ∈ Cn
, z /=

0 is such that Tz = λz with λ /= 1, and if u ∈ Rn
is such that u ∈ N(G) we have Wz = λ(M + iG′)z

andWu = Mu. Therefore, 〈Wz,u〉 = λ〈(M + iG′)z,u〉 = λ〈Mz,u〉 since G′u = 0. SinceW is symmetric we

also have 〈Wz,u〉 = 〈z,Wu〉 = 〈z,Mu〉 = 〈Mz,u〉 and we have thus shown that λ〈Mz,u〉 = 〈Mz,u〉. Since
λ /= 1 we conclude that 〈Mz,u〉 = 0 and thus, upon decomposing z = x + iy, x, y ∈ Rn

, we deduce that

〈Mx,u〉 + i〈My,u〉 = 0 so that finally 〈Mx,u〉 = 〈My,u〉 = 0 for any u ∈ N(G). We can now write from

(3.9)

|λ| � |〈Wz, z〉|
〈Mz, z〉 = |〈Wx, x〉 + 〈Wy, y〉|

〈Mx, x〉 + 〈My, y〉 ,

but since 〈Mx,u〉 = 〈My,u〉 = 0 for any u ∈ N(G) we have |〈Wx, x〉| � γ (T)〈Mx, x〉 and |〈Wy, y〉| � γ (T)

〈My, y〉 so that finally |λ| � γ (T) and this yields γ (T) � γ (T).

Since thematricesT andPT are convergent, we know that both sequences {zi; i � 0} and {z′
i
; i �

0} are convergent. Denoting by z∞ and z′∞ the corresponding limits, we deduce from the relation

zi+1 = Tzi + M−1b that z∞ = Tz∞ +M−1
b. This shows that Gz∞ = b and sincePT = PTP it is

easily established by induction that z′
i
= Pzi, for any i � 0. Therefore, Pz∞ = z′∞ and since GP = G

weobtain thatGz′∞ = Gz∞ = b. Finally, since z′∞ = Pz′∞ wehave z′∞ ∈ C and z′∞ is the unique solution

of the constrained singular system (1.1).

Assume now that z0 = 0 so that z′
0

= 0 and then z′
i
= Zib for any i � 1. We indeed have z′

1
=

PM−1
b = Z1b, and assuming by induction that z′

i
= Zibwe obtain that

z′
i+1 = PTz′

i +PM−1
b = (PTZi +PM−1Pt

)b = Zi+1b,

sinceZi+1 = PTZi +PM−1Pt
. Passing to the limit i → ∞ and thanks to Proposition 2.1we obtain

for any b ∈ R(G) that Zb = ∑
i�0(PT)iPM−1Pt

b so that Z and
∑

i�0(PT)iPM−1Pt
coincide
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over R(G) and C⊥ + iC⊥ and therefore over Cn
. Finally, in order to establish thatZi is symmetric, it is

sufficient to establish that each term (PT)jPM−1Pt
in the series (3.6) is symmetric. However, from

the relation PT = PTP we obtain (PT)jPM−1Pt = PTjM−1Pt
which is symmetric since

T = M−1W andM andW are symmetric. �

Remark 3.5. The projector matrixP = P is needed for the convergence of the series (3.7). Indeed, the

partial sums Zi in (3.6) can be rewritten in the form Zi = P
(∑

0�j�i−1T
jM−1

)
Pt

but the series∑
0�j�i−1T

jM−1
has no limit since

∑
0�j�i−1T

jM−1
(Mu) = iu for u ∈ N(G).

Remark 3.6. UponwritingZi = Zi + iZ ′
i
,whereZi, Z

′
i
∈ Rn,n

,wehaveestablished thatZi andZ
′
i
are sym-

metric and it shouldbe true thatZi is positive semi-definite,Z ′
i
N(Zi) = 0, andN(Zi) = C⊥. This can indeed

be established for thefirst iteratesZ1 = PM−1Pt
andZ2 = PM−1

(M+W)M−1Pt
.More specif-

ically,wefirst note that ifM−1 = A + iA′,A,A′ ∈ Rn,n
, thenwehaveAM − A′G′ = I andAG′ + A′M = 0 so

that AMA + A′MA′ = A and A is positive definite since A = (M + G′M−1G′)−1.We then obtain after some

algebra that Z1 = PAPt and Z2 = P(A + AWA − A′WA′)Pt so that Z2 = P(A(M + W)A + A′(M − W)A′)Pt

and Z1 and Z2 are positive semi-definitewith nullspace C⊥. Since by construction Z ′
1
C⊥ = 0 and Z ′

2
C⊥ =

0we get that Z ′
1
N(Z1) = 0 and Z ′

2
N(Z2) = 0. On the other hand, the next iterates Zi, i � 3, are intricated

expressions involving A,A′, andW .

Remark 3.7. Iterative methods applied to the regular formulation (2.3) usually converge more slowly

than those applied to the singular formulation (1.1) [6]. Moreover, the corresponding iterates do not

generally satisfy the constraint at each step.

Proof of Lemma 3.4. Denote by 〈〈 , 〉〉 the scalar product 〈〈x, y〉〉 = 〈Mx, y〉, x, y ∈ Rn
. With respect to this

scalar product, the matrix T = M−1W is then symmetric since

〈〈Tx, y〉〉 = 〈MTx, y〉 = 〈Wx, y〉 = 〈x,Wy〉 = 〈M−1Mx,Wy〉 = 〈Mx, Ty〉 = 〈〈x, Ty〉〉.
As a direct application of spectral properties of symmetric matrices, we know that T has a complete

set of real eigenvectors orthogonal with respect to 〈〈 , 〉〉. In addition, the eigenspace associated with

the eigenvalue 1 is the eigenspace N(I − T) = N(G), so that

γ (T) = sup

{ |〈〈Tx, x〉〉|
〈〈x, x〉〉 x ∈ Rn

, x /= 0, ∀u ∈ N(G), 〈Mx,u〉 = 0

}
and (3.8) directly follows since 〈〈Tx, x〉〉 = 〈Wx, x〉 and 〈〈x, x〉〉 = 〈Mx, x〉. �

3.2. Calculation of an inverse

Theprojected iterativealgorithm(3.1)defined inSection3.1 can readilybeapplied to solve the linear

systems (1.1) provided that the inverse of the splitting matrix M = M + iG′ can easily be evaluated.

In practical applications, even though the matrix G′ may not be sparse, it generally has the special

structure [16,17]

G′ = PtM′P, (3.11)

whereM′ is diagonal and P = PC,N(G). We will thus assume that the matrixM + iM′ is easily invertible

and investigate the inverse ofM = M + iG′ in terms of the inverse of M + iM′.
We first consider—for the sake of simplicity—the special situation where the nullspaces of G and

G are of dimension 1. In the following proposition, we evaluate the inverse of M + iG′ when M is

symmetric positive definite, N(G) = Ru, C = y⊥ in Rn
, 〈y, u〉 = 1, so that N(G) = Cu C = y⊥ + iy⊥ in

Cn
and the well posedness property N(G) ⊕ C = Rn

holds.
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Proposition 3.8. Assume that M is symmetric positive definite and that G′ ∈ Rn,n
is in the form

G′ = (I − y ⊗ u)M′(I − u ⊗ y),

where y, u ∈ Rn
, 〈y, u〉 = 1, and M′ ∈ Rn,n

is a symmetric matrix. The matrices M + iM′ and M + iG′ are
invertible, 〈(M + iM′)−1y, y〉 /= 0, and we define the matrix E by

E = (M + iM′)−1 − (M + iM′)−1y ⊗ (M + iM′)−1y

〈(M + iM′)−1y, y〉 . (3.12)

Then 〈(M − MEM)u, u〉 /= 0 and the inverse of M + iG′ is given by

(M + iG′)−1 = E + (I − EM)u ⊗ (I − EM)u
〈(M − MEM)u, u〉 . (3.13)

Proof. We introduce for convenience the compact notation P = I − u ⊗ y and Q = I − y ⊗ u in such

a way that G′ = QM′P. It is first easily checked that M + iM′ and M + iG′ are invertible since M is

symmetric positive definite and M′ and G′ are symmetric. Moreover, defining z = (M + iM′)−1y we

have 〈(M + iM′)−1y, y〉 = 〈z, (M + iM′)z〉 = 〈(M − iM′)z, z〉, and upon decomposing z = x + iy, the real

part of 〈(M − iM′)z, z〉 is 〈Mz, z〉 = 〈Mx, x〉 + 〈My, y〉which is nonzero since z is nonzero andM is positive

definite and this shows that 〈(M + iM′)−1y, y〉 /= 0.

The matrix E is thus well defined and denoting F = Q (M + iM′)P = QMP + iG′, E is the generalized

inverse of F with nullspace Cy and range y⊥ + iy⊥, since it is easily checked that EF = I − u ⊗ y and

FE = I − y ⊗ u.
We introduce u′ = (M + iG′)(u − EMu) and u′ is nonzero since M + iG′ is invertible and u − EMu is

nonzero because R(E) = y⊥ + iy⊥ and u /∈ y⊥. We now establish that u′ = 〈(M − MEM)u, u〉y. Indeed,
we first have u′ = Mu − MEMu − iQM′EMu since Pu = 0 and PE = E thanks to E = Et and Ey = 0. This

yields u′ = Mu − Q (M + iM′)EMu − (I − Q )MEMu, and thus

u′ = Mu − Q

(
I − y ⊗ (M + iM′)−1y

〈(M + iM′)−1y, y〉

)
Mu − (I − Q )MEMu.

SinceQy = 0weget u′ = Mu − QMu − (I − Q )MEMu = (I − Q )(Mu − MEMu), and thus u′ = y ⊗ u(Mu −
MEMu) = 〈(M − MEM)u, u〉y and this shows that 〈(M − MEM)u, u〉 /= 0 since u′ is nonzero.

We now decomposeM + iG′ = M + iQM′P = M − QMP + Q (M + iM′)P and evaluate the product of

M + iG′ by the right-hand side of (3.13) by forming(
E + (I − EM)u ⊗ (I − EM)u

〈(M − MEM)u, u〉
)

(M − QMP + Q (M + iM′)P). (3.14)

The first contribution simplifies into E(M − QMP) = E(M − MP) = EM(I − P) = EMu ⊗ y since EQ = E

thanks to Q = I − y ⊗ u and Ey = 0. Moreover

EQ (M + iM′)P = E(M + iM′)P =
(
I − (M + iM′)−1y ⊗ y

〈(M + iM′)−1y, y〉

)
P = P,

sincea ⊗ yP = a ⊗ (Pty) = a ⊗ (Qy) = 0, and thewhole contributionE(M + iG′)finally sumuptoEMu ⊗
y + I − u ⊗ y = I − (u − EMu) ⊗ y. We now form the product

(I − EM)u ⊗ (I − EM)u(M + iG′) = (I − EM)u ⊗ ((M + iG′)(I − EM)u),

and u′ = (M + iG′)(u − EMu) = 〈(M − MEM)u, u〉y so that gathering all terms of the product (3.14) we

obtain I − (u − EMu) ⊗ y + (u − EMu) ⊗ y = I and the proof is complete. �

Wenow consider the general situationwhereN(G) and C⊥ are of dimension p � 1 and are spanned

by basis vectors as in Proposition 2.3.

Proposition 3.9. Assume that M is symmetric positive definite and that G′ ∈ Rn,n
is in the form

G′ =
⎛⎝I −

∑
1�i�p

vi ⊗ ui

⎞⎠M′
⎛⎝I −

∑
1�i�p

ui ⊗ vi

⎞⎠ , (3.15)
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where p � 1,u1, . . . ,up are real independent vectors, v1, . . . , vp are real independent vectors, 〈vi,uj〉 =
δij , 1 � i, j � p, andM′ ∈ Rn,n

is a symmetric matrix. Thematrices M + iM′ andM + iG′ are invertible, and
the matrix (〈(M + iM′)−1vi, vj〉)1�i,j�p is invertible. Upon denoting by (γij)1�i,j�p its inverse, we define the

matrix E by

E = (M + iM′)−1 −
∑

1�i,j�p

γij(M + iM′)−1vi ⊗ (M + iM′)−1vj. (3.16)

Then thematrix (〈(M − MEM)ui,uj〉)1�i,j�p is invertible, and denoting by (μij)1�i,j�p its inverse, the inverse

of M + iG′ is given by

(M + iG′)−1 = E +
∑

1�i,j�p

μij(I − EM)ui ⊗ (I − EM)uj. (3.17)

Proof. We only give a sketch of the proof and denote for convenience P = I −∑
1�i�p ui ⊗ vi and Q =

I −∑
1�i�p vi ⊗ ui so that G′ = QM′P. It is easily checked that M + iM′ and M + iG′ are invertible. The

matrix (〈(M + iM′)−1vi, vj〉)1�i,j�p is also invertible since upon definingwi = (M + iM′)−1vi, 1 � i � p,

we have 〈(M + iM′)−1vi, vj〉 = 〈(M − iM′)wi,wj〉 and the proof is similar to that of Corollary 2.5 since

the real part of the symmetric matrixM − iM′ is positive definite.

The matrix E is shown to be the generalized inverse of Q (M + iM′)P = QMP + iG′ with range C + iC
and nullspace C⊥ + iC⊥ upon simply calculating that Q (M + iM′)PE = Q . In order to establish that the

matrix (〈(M − MEM)ui,uj〉)1�i,j�p is invertible, one first note that

(M + iQM′P)(ui − EMui) =
∑

1�j�p

〈(M − MEM)ui,uj〉vj , 1 � i � p. (3.18)

Thevectorsui − EMui, 1 � i � p, are linearly independant since if thereexistsa linear relation
∑

1�i�p θi
(ui − EMui) = 0, we obtain upon taking the scalar product with vj that θj = 0 since 〈ui, vj〉 = δij ,R(E) ⊂
C + iC, and vj , 1 � j � p, form a basis of C⊥. As a consequence, the vectors (M + iQM′P)(ui − EMui), 1 �
i � p, are independent, and from the relations (3.18) we deduce that (〈(M − MEM)ui,uj〉)1�i,j�p is

invertible. Finally, a direct calculation shows that the right-hand side of (3.17) is the inverse of M +
iQM′P. �

Remark 3.10. Assume that the splittingmatrixM is diagonal and thatG′ is in the form (3.15)where the

matrix M′ is diagonal. Then each iteration of the scheme (1.3) costs n2 + O(n) (complex) flops thanks

to the expression of (3.17) of (M + iQM′P)−1. The main costs are associated with the n2 operations

required by the multiplication of W by a complex vector. Similarly, each iteration of (3.1) requires

approximately the same costs thanks to the decomposition PC,N(G) = I −∑
1�i�p ui ⊗ vi obtained in

Proposition 2.3.

4. Orthogonal residuals algorithms

Conjugate gradients-type methods—used in combination with preconditioning—are among the

most effective iterative procedures for solving Hermitian systems [19,25,18]. Projected conjugate

gradients methods have been introduced in particular to solve real symmetric constrained singular

semi-definite systems [6,7]. For general linear systems, however, one cannot obtain short recurrence

algorithmswhich globallyminimize some error norm over the corresponding Krylov subspaces unless

the matrix has certain rather special spectral properties [8]. Examples of short recurrence algorithms

are CGS or BiCGStab whereas GMRES [27] corresponds to a global error minimization over the Krylov

subspaces.

Complex symmetric systems have received much less attention than real systems even though

symmetric complex systems arise in electromagnetic applications [9,11,12,3]. Special systems with

diagonalpositive imaginarypartshavebeen investigatedbyFreund[11]aswell as theLanczos recursion

and related algorithms [12]. Complex symmetric systems can be solved either in their complex form,
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since it is convenient andbenefits from interestingnumerical properties [12], or in their real equivalent

form upon relying on good preconditioners [2,5].

We investigate in this section projected orthogonal residualsmethods for solving the complex sym-

metric constrained singular systems (1.1). Orthogonal residuals methods are a natural generalization

of conjugate gradient algorithms associated with Arnoldi algorithm [27] as well as with orthogonal

errors methods introduced by Faber and Manteuffel [9]. Orthogonal residuals methods seem natural

for the constrained singular systems (1.1) since they make use of the positivity properties of the real

symmetric part.

The projected orthogonal residualsmethod usually has a better convergence behavior than the pro-

jected stationary method introduced in the previous section and should generally be preferred. How-

ever, the corresponding iterates depend nonlinearly on the right-hand side b because of the quadratic

nature of conjugate gradients-type algorithms, and this prevents its use in some special applications.

4.1. A projected orthogonal residuals algorithm

In this section we investigate a projected orthogonal residuals method for solving the constrained

singular linear systems (1.1). These algorithms correspond to the particular choice B = A in the paper

of Faber and Manteuffel on orthogonal errors methods in such a way that the errors are computable

[9]. We consider again a matrix in the form G = G + iG′ where G,G′ are real symmetric matrices, G is

positive semi-definite and G′N(G) = 0, a vector b ∈ R(G), a subspace C ⊂ Rn
complementary to N(G)

andC the complexification of C.
The orthogonal residuals algorithm can be described as follows [9]. Let z0 ∈ Cn

be an initial guess,

r0 = b −Gz0, and set p0 = r0. If 〈Gp0, p0〉 = 0 then r0 = 0 andwe stop at step 0, and if 〈Gp0, p0〉 /= 0we

set σ0 = 〈r0, p0〉/〈Gp0, p0〉, ν00 = 〈G2
p0, p0〉/〈Gp0, p0〉, andwe define p1 = Gp0 − ν00p0, z1 = z0 + σ0p0,

and r1 = r0 − σ0Gp0. Assume now by induction that for k � 1 we have defined {pi}0�i�k , {zi}0�i�k ,

{ri}0�i�k , with
∏

0�i�k−1 〈Gpi, pi〉 /= 0, ri = b −Gzi, 0 � i � k, and

〈ri, rj〉 = 0, 0 � j < i � k, (4.1)

〈Gpi, pj〉 = 0, 0 � j < i � k, (4.2)

〈ri, pj〉 = 0, 0 � j < i � k, (4.3)

Ki = span(p0, . . . , pi) = span(r0, . . . , ri) = span(r0, . . . ,G
i
r0), 0 � i � k, (4.4)

where dim(Ki) = i + 1 for 0 � i � k − 1. Then 〈Gpk , pk〉 = 0 if and only if rk = 0 and in this situation

we stop at step k, whereas if 〈Gpk , pk〉 /= 0we define the coefficients νkj , 0 � j � k, by solving the linear

system⎛⎜⎜⎜⎝
〈Gp0, p0〉
〈Gp0, p1〉 〈Gp1, p1〉

.

.

.
.
.
.

. . .

〈Gp0, pk〉 〈Gp1, pk〉 . . . 〈Gpk , pk〉

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

νk0
νk1
.
.
.

νkk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
〈G2

pk , p0〉
〈G2

pk , p1〉
.
.
.

〈G2
pk , pk〉

⎞⎟⎟⎟⎟⎠ , (4.5)

we define σk = 〈rk , pk〉/〈Gpk , pk〉 and we set

pk+1 = Gpk −
∑

0�j�k

νkjpj , zk+1 = zk + σkpk , rk+1 = rk − σkGpk. (4.6)

Theorem 4.1. The orthogonal residuals algorithm is well defined and converges in at most rank(G) steps

towards the unique solution z ofGz = b and z ∈ R(G).

Sincewe are interested in the solution ofGz = bwhich is inC, we now consider a projected version

of the orthogonal residuals algorithm, constructed by using projected directions at each step. More

specifically, we set z′
0

= Pz0, p
′
0

= Pp0, r
′
0

= b −Gz′
0
, and if 〈Gp′

0
, p′

0
〉 = 0 we stop at step 0, whereas

if 〈Gp′
0
, p′

0
〉 /= 0 we define σ ′

0
= 〈r′

0
, p′

0
〉/〈Gp′

0
, p′

0
〉, ν′

00
= 〈G2

p′
0
, p′

0
〉/〈Gp′

0
, p′

0
〉, and p′

1
= PGp′

0
− ν′

00
p′
0
,
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z′
1

= z′
0

+ σ ′
0
p′
0
, and r′

1
= r′

0
− σ ′

0
Gp′

0
.Assumenowby induction that fork � 1wehavedefined {p′

i
}0�i�k ,

{z′
i
}0�i�k , {r′

i
}0�i�k , with

∏
0�i�k−1 〈Gp′

i
, p′

i
〉 /= 0 and r′

i
= b −Gz′

i
, 0 � i � k. Then 〈Gp′

k
, p′

k
〉 = 0 if and

only if r′
k

= 0 and in this situation we stop at step k. On the other hand if 〈Gp′
k
, p′

k
〉 /= 0 we introduce

the solution ν′
k0
, . . . , ν′

kk
of the linear system similar to (4.5) but using the directions {p′

i
}0�i�k instead

of {pi}0�i�k to form the system coefficients, we define as well σ ′
k

= 〈r′
k
, p′

k
〉/〈Gp′

k
, p′

k
〉 and we set

p′
k+1 = PGp′

k −
∑

0�j�k

ν′
kjp

′
j , z′

k+1 = z′
k + σ ′

kp
′
k , r′

k+1 = r′
k − σ ′

kGp′
k. (4.7)

Theorem 4.2. The projected orthogonal residuals algorithm is well defined and converges in at most

rank(G) steps towards the unique solution a of Ga = b and a ∈ C. Moreover, at each step k, we have

r′
k

= rk , z
′
k

= Pzk , p
′
k

= Ppk , σ
′
k

= σk , and ν′
ki

= νki, for 0 � i � k. Finally, we have at step k

K′
i = span(p′

0, . . . , p
′
i) = PKi, Ki = HK′

i, 0 � i � k, (4.8)

whereH = I −∑
1�i,j�p γijui ⊗ uj and (γij)1�i,j�p is the inverse of the matrix (〈ui,uj〉)1�i,j�p.

Proof of Theorems 4.1 and 4.2. Upondecomposing r0 = p0 = x + iy, x, y ∈ Rn
, the realpartof 〈Gp0, p0〉

is given by 〈Gx, x〉 + 〈Gy, y〉 and 〈Gp0, p0〉 = 0 implies that x, y ∈ N(G). However, r0 ∈ N(G)⊥ + iN(G)⊥
so that 〈Gp0, p0〉 = 0 finally implies x, y ∈ N(G) ∩ N(G)⊥ and r0 = 0. Conversely, r0 = 0 obviously im-

plies that 〈Gp0, p0〉 = 0. On the other hand, if 〈Gp0, p0〉 /= 0, we can form p1 = Gp0 − ν00p0, z1 =
z0 + σ0p0, and r1 = r0 − σ0Gp0, with ν00 = 〈G2

p0, p0〉/〈Gp0, p0〉 and σ0 = 〈r0, p0〉/〈Gp0, p0〉 and r1 =
b −G(z0 + σ0p0) = b −Gz1. From the definition of ν00 we have 〈Gp1, p0〉 = 0 and from the defini-

tion of σ0 we obtain 〈r1, p0〉 = 〈r1, r0〉 = 0, and K0 = span(p0) = span(r0) with dim(K0) = 1 since

r0 /= 0. From p1 = Gp0 − μ00p0 we also have Gp0 ∈ span(p0, p1) and p1 ∈ span(p0,Gp0). Similarly

since r1 = r0 − σ0Gp0 and σ0 /= 0 we have r1 ∈ span(r0,Gr0) and Gr0 ∈ span(r0, r1) and all induction

properties at step 1 are established.

Assume now that k steps of the algorithm have been taken. Suppose first that 〈Gpk , pk〉 = 0. Then

it is easily obtained as in the case k = 0 that pk ∈ N(G) = N(G) + iN(G), but we also deduce from (4.4)

that pk ∈ span(r0, . . . , rk) ⊂ R(G) = N(G)⊥ + iN(G)⊥. This shows that pk = 0 and rk ∈ span(p0, . . . , pk−1).

However, since rk is orthogonal to span(p0, . . . , pk−1), we deduce that 〈rk , rk〉 = 0 and the algorithm is

already converged. Conversely, if rk = 0, then pk ∈ span(r0, . . . , rk−1) so that pk ∈ span(p0, . . . , pk−1)

from (4.4) and 〈Gpk , pk〉 = 0.

Supose now that 〈Gpk , pk〉 /= 0, then the scalars νk0, . . . , νkk and σk are well defined and we can

form pk+1, xk+1, rk+1. We note that σk /= 0 since σk = 0 implies that pk is orthogonal to rk , and then

from pk ∈ span(r0, . . . , rk) we obtain pk ∈ span(r0, . . . , rk−1) and pk ∈ span(p0, . . . , pk−1) in such a way

that 〈Gpk , pk〉 = 0. We next have 〈Gpk+1, pi〉 = 0, 0 � i � k, from the definition of the coefficients

νk0, . . . , νkk , and 〈rk+1, pi〉 = 0 by definition of the coefficient σk . The recurrence relations (4.2) and

(4.3) are then obtained at step k + 1 and (4.1) at step k + 1 follows from (4.3) at step k + 1 and (4.4) at

step k. In addition rk+1 = b −Gzk − σkGpk = b −G(zk + σkpk) = b −Gzk+1.

From rk+1 = rk − σGpkwefirstobtain rk+1 ∈ span(r0, . . . ,G
k+1

r0) sincepk ∈ Kk so that span(r0, . . . ,

rk+1) ⊂ span(r0, . . . ,G
k+1

r0). Conversely, since σk /= 0, we have Gpk ∈ span(r0, . . . , rk+1) and if 0 �
i � k − 1,Gpi ∈ GKk−1 ⊂ Kk . This shows GKk ⊂ span(r0, . . . , rk+1) so that span(r0, . . . ,G

k+1
r0) ⊂

span(r0, . . . , rk+1). Similarly, from pk+1 = Gpk −∑
0�j�k νkjpj , we have Gpk ∈ span(p0, . . . , pk+1) and

if 0 � i � k − 1,Gpi ∈ GKk−1 ⊂ Kk , so that GKk ⊂ span(p0, . . . , pk+1) and span(r0, . . . ,G
k+1

r0) ⊂
span(p0, . . . , pk+1). Conversely, sincepi ∈ Kk if 0 � i � k, span(p0, . . . , pk+1) ⊂ span(r0, . . . ,G

k+1
r0)and

we have established (4.4) for k + 1. Finally, we also have dim(Kk) = k + 1 since rk is nonzero and all

induction properties at step k + 1 are established.

We now investigate the projected algorithm and establish by induction that p′
k

= Ppk z′
k

= Pzk

and r′
k

= rk at each step. We first note the relations G = GP = PtG which imply in particular that

for any x, y ∈ Cn
, x′ = Px, y′ = Px, we have 〈Gx, y〉 = 〈Gx′, y〉 = 〈Gx, y′〉 = 〈Gx′, y′〉, and similarly that

〈G2
x, y〉 = 〈G2

x′, y′〉. Now for k = 0 we know by assumption that p′
0

= Pp0 and z′
0

= Pz0 so that r′
0

=
b −Gz′

0
= b −Gz0 = r0 and 〈Gp0, p0〉 = 〈Gp′

0
, p′

0
〉. Therefore 〈Gp′

0
, p′

0
〉 = 0 if and only if r′

0
= 0 and
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then we stop at step 0. When 〈Gp0, p0〉 /= 0 then it is easily checked that ν′
00

= ν00 and σ ′
0

= σ0. Since

p′
1

= PGp′
0

− ν′
00
p′
0
, and z′

1
= z′

0
+ σ ′

0
p′
0
, we obtain that p′

1
= P(Gp′

0
− ν00p0) = Pp1 and z′

1
= P(z0 +

σ0p0) = Pz1 and thus r′
1

= b −GPz1 = r1. Assume now by induction that for k � 1 we have defined

{p′
i
}0�i�k , {z′

i
}0�i�k , {r′

i
}0�i�k , with

∏
0�i�k−1 〈Gp′

i
, p′

i
〉 /= 0, and that p′

i
= Ppi z

′
i
= Pzi and r′

i
= ri for

0 � i � k. Since 〈Gpk , pk〉 = 〈Gp′
k
, p′

k
〉 and r′

k
= rk , 〈Gp′

k
, p′

k
〉 = 0 if and only if r′

k
= 0. On the other hand,

when 〈Gp′
k
, p′

k
〉 /= 0 we define the coefficients ν′

kj
, 0 � j � k, by solving the linear system⎛⎜⎜⎜⎜⎝

〈Gp′
0
, p′

0
〉

〈Gp′
0
, p′

1
〉 〈Gp′

1
, p′

1
〉

.

.

.
.
.
.

. . .

〈Gp′
0
, p′

k
〉 〈Gp′

1
, p′

k
〉 . . . 〈Gp′

k
, p′

k
〉

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ν′
k0

ν′
k1
.
.
.

ν′
kk

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
〈G2

p′
k
, p′

0
〉

〈G2
p′
k
, p′

1
〉

.

.

.

〈G2
p′
k
, p′

k
〉

⎞⎟⎟⎟⎟⎟⎠ (4.9)

and define σ ′
k

= 〈r′
k
, p′

k
〉/〈Gp′

k
, p′

k
〉. However, from the relations p′

i
= Ppi, 0 � i � k, we obtain that

〈Gpi, pj〉 = 〈Gp′
i
, p′

j
〉 and 〈G2

pi, pj〉 = 〈G2
p′
i
, p′

j
〉 in such a way that ν′

kj
= νkj , 0 � j � k, and σ ′

k
= σk . The

relations p′
k+1

= PGp′
k

−∑
0�j�k ν′

kj
p′
j
, z′

k+1
= z′

k
+ σ ′

k
p′
k
, and r′

k+1
= r′

k
− σ ′

k
Gp′

k
then directly yield that

p′
k+1

= Ppk+1, z
′
k+1

= Pzk+1 and r′
k+1

= rk+1, and the relationK′
i = PKi is then obvious. Conversely,

ifp′ = Ppandp ∈ N(G)⊥ + iN(G)⊥, it is easily obtained thatp′ = HpwhereH = I −∑
1�i,j�p γijui ⊗ uj

and (γij)1�i,j�p is the inverse of thematrix (〈ui,uj〉)1�i,j�p, and dim(Ki) = dim(K′
i) = i + 1 for 0 � i �

k − 1. Note that the projected iterates also satisly the properties 〈r′
i
, r′

j
〉 = 0, 〈Gp′

i
, p′

j
〉 = 0, and 〈r′

i
, p′

j
〉 =

0, for 0 � j < i � k, and the projected algorithm can entirely be formulated in terms of projected

quantities. �

4.2. The preconditioned algorithm

We investigate in this section a preconditioned version of the projected orthogonal residuals algo-

rithm. In order to precondition this algorithm, we rewrite the system (1.1) in the form{
B−1GB−∗

(B∗
a) = B−1

b,

B∗
a ∈ B∗C,

(4.10)

whereB is an invertible matrix,B∗
its adjoint andB−∗

the inverse of the adjoint. The preconditioned

algorithm is simply obtained upon writing the natural unpreconditioned algorithm presented in Sec-

tion 4.1 in terms of the new matrix B−1GB−∗
, the new right-hand side B−1

b, the new unknown

B∗
a, with the directions B∗

pi and residuals B−1
ri, and finally by reformulating back the resulting

algorithm in terms of the original system with the help of the Hermitian matrix M = BB∗
. The form

(4.10) seemsnatural since 〈B−1GB−∗
z, z〉 = 〈GB−∗

z,B−∗
z〉 in suchaway that thepositivityproperties

of thematrixG associatedwith (1.1) aremaintainedwith thematrixB−1GB−∗
associatedwith (4.10).

Keeping the assumptions of Section 4.1 and assuming that M ∈ Rn,n
is Hermitian positive defi-

nite, the preconditioned orthogonal residuals algorithm can be described as follows. Let z0 ∈ Cn
be

an initial guess, r0 = b −Gz0, and set p0 = M−1r0. If 〈Gp0, p0〉 = 0 then r0 = 0 and we stop at step

0, and if 〈Gp0, p0〉 /= 0 we set σ0 = 〈r0, p0〉/〈Gp0, p0〉, ν00 = 〈GM−1Gp0, p0〉/〈Gp0, p0〉, and we define

p1 = M−1Gp0 − ν00p0, z1 = z0 + σ0p0, and r1 = r0 − σ0Gp0. Assume now by induction that for k � 1

we have defined {pi}0�i�k , {zi}0�i�k , {ri}0�i�k , with
∏

0�i�k−1 〈Gpi, pi〉 /= 0, ri = b −Gzi, 0 � i � k, and

〈M−1ri, rj〉 = 0, 0 � j < i � k, (4.11)

〈Gpi, pj〉 = 0, 0 � j < i � k, (4.12)

〈ri, pj〉 = 0, 0 � j < i � k, (4.13)

Ki = Mspan(p0, . . . , pi) = span(r0, . . . , ri) = span(r0, . . . , (GM−1)ir0),

0 � i � k, (4.14)
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where dim(Ki) = i + 1 for 0 � i � k − 1. Then 〈Gpk , pk〉 = 0 if and only if rk = 0 and in this situation

we stop at step k, whereas if 〈Gpk , pk〉 /= 0we define the coefficients νkj , 0 � j � k, by solving the linear

system⎛⎜⎜⎜⎝
〈Gp0, p0〉
〈Gp0, p1〉 〈Gp1, p1〉

.

.

.
.
.
.

. . .

〈Gp0, pk〉 〈Gp1, pk〉 . . . 〈Gpk , pk〉

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

νk0
νk1
.
.
.

νkk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
〈GM−1Gpk , p0〉
〈GM−1Gpk , p1〉

.

.

.

〈GM−1Gpk , pk〉

⎞⎟⎟⎟⎟⎠ , (4.15)

we define σk = 〈rk , pk〉/〈Gpk , pk〉 and we set

pk+1 = M−1Gpk −
∑

0�j�k

νkjpj , zk+1 = zk + σkpk , rk+1 = rk − σkGpk. (4.16)

Theorem 4.3. The preconditioned orthogonal residuals algorithm is well defined and converges in at most

rank(G) steps towards the unique solution z ofGz = b and z ∈ R(G).

We now consider a projected version of the preconditioned orthogonal residuals algorithm.We set

z′
0

= Pz0, p
′
0

= PM−1p0, r
′
0

= b −Gz′
0
, and if 〈Gp′

0
, p′

0
〉 = 0 we stop at step 0, whereas if 〈Gp′

0
, p′

0
〉 /=

0 we define σ ′
0

= 〈r′
0
, p′

0
〉/〈Gp′

0
, p′

0
〉, ν′

00
= 〈GM−1Gp′

0
, p′

0
〉/〈Gp′

0
, p′

0
〉, and p′

1
= PM−1Gp′

0
− ν′

00
p′
0
, z′

1
=

z′
0

+ σ ′
0
p′
0
, and r′

1
= r′

0
− σ ′

0
Gp′

0
. Assume now by induction that for k � 1 we have defined {p′

i
}0�i�k ,

{z′
i
}0�i�k , {r′

i
}0�i�k , with

∏
0�i�k−1 〈Gp′

i
, p′

i
〉 /= 0 and r′

i
= b −Gz′

i
, 0 � i � k. Then 〈Gp′

k
, p′

k
〉 = 0 if and

only if r′
k

= 0 and in this situation we stop at step k. On the other hand if 〈Gp′
k
, p′

k
〉 /= 0 we introduce

the solution ν′
k0
, . . . , ν′

kk
of the linear systems similar to (4.15) but using the directions {p′

i
}0�i�k instead

of {pi}0�i�k to form the system coefficients, as well as σ ′
k

= 〈r′
k
, p′

k
〉/〈Gp′

k
, p′

k
〉 and we set

p′
k+1 = PM−1Gp′

k −
∑

0�j�k

ν′
kjp

′
j , z′

k+1 = z′
k + σ ′

kp
′
k , r′

k+1 = r′
k − σ ′

kGp′
k. (4.17)

Theorem 4.4. The projected preconditioned orthogonal residuals algorithm is well defined and converges

in at most rank(G) steps towards the unique solution a ofGa = b and a ∈ C. Moreover, at each step k,we

have r′
k

= rk , z
′
k

= Pzk , p
′
k

= Ppk , σ
′
k

= σk , and ν′
ki

= νki, for 0 � i � k. Finally, we have

K′
i = span(p′

0, . . . , p
′
i) = PM−1Ki, Ki = HK′

i, 0 � i � k, (4.18)

where H = I −∑
1�i,j�p γijui ⊗ Muj and (γij)1�i,j�p is the inverse of the matrix (〈Mui,uj〉)1�i,j�p and

dim(Ki) = dim(K′
i) = i + 1 for 0 � i � k − 1.

Proof of Theorems 4.3 and 4.4. The proof is similar to that of the unpreconditioned algorithm. �

Remark 4.5. In order to precondition the orthogonal residuals algorithm one may also consider the

following reformulation of (1.1){
B−1GB−1

(Ba) = B−1
b,

Ba ∈ BC,
(4.19)

whereB is an invertible matrix. The corresponding iterative scheme is more complex than the algo-

rithm associated with (4.10) and can be written in terms of the matricesM = BB∗
, M̃ = BB and Õ =

BB−∗
. Thecoefficientof the linear systemare 〈Õ−1Gpk , pj〉andtheright-handsides 〈Õ−1GM̃−1Gpk , pj〉.

At step k the orthogonal relations are 〈M−1ri, rj〉 = 0, 〈Õ−1Gpi, pj〉 = 0, 〈Õ−1ri, pj〉 = 0, for 0 � j < i � k.

The new directions are defined from the relations pk+1 = M̃−1Gpk −∑
0�j�k νkjpj . This algorithm is

not guarantee to converge unlessB is such that 〈Õ−1Gz, z〉 = 0 implies that z ∈ N(G) and 〈M̃−1z, z〉 = 0

implies that z = 0. Last but not least, the corresponding iterates defined with the projected directions

generally do not correspond to the projected iterates. WhenB is Hermitian, we have Õ = I, M̃ = M and

we recover the simpler algorithm introduced in Theorem 4.3.
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5. Application to magnetized multicomponent transport

5.1. Transport coefficients in partially ionized gas mixtures

Theequationsgoverningpartially ionizedgasmixtures in thepresenceof a strongmagneticfield can

be derived from the kinetic theory of dilute gases and express the conservation of mass, momentum,

andenergy [10,16,17]. These equations contain the terms for transport fluxes, that is, the viscous tensor,

the species diffusion velocities, and the heat flux vector, which are non-isotropic under the influence

of themagnetic field. In this paper, we discuss the species diffusion velocities Vi, 1 � i � ns, which are

vectors of R3
, where ns is the number of species in the mixture. We denote by B the magnetic field,

assumed to be nonzero, by B = ‖B‖ its norm and byB the corresponding unitary vectorB = B/B.

Upon neglecting thermal diffusion—for the sake of simplicity—the species diffusion velocities can

be written in the form

Vi = −
∑

1�j�ns

(D
‖
ij
d

‖
j

+ D⊥
ij d

⊥
j + D�

ij
d�
j

), 1 � i � ns, (5.1)

where dj is the diffusion driving force of the jth species dj = (∇pj − ρjfj)/p̄ and

d
‖
j

= 〈dj ,B〉B, d⊥
j = dj − d

‖
j
, d�

j
= B ∧ dj

denote the corresponding parallel, perpendicular and transverse vectors. In these expressions, D‖ =
(D

‖
ij
)1�i,j�ns ,D

⊥ = (D⊥
ij
)1�i,j�ns and D� = (D�

ij
)1�i,j�ns denote the diffusion matrices parallel, perpen-

dicular and transverse to the magnetic field, ∇ the space derivative operator, pj the partial pressure

of the jth species, p̄ = ∑
1�j�ns pj the total pressure, ρj the partial density of the jth species, fj the

force per unit mass acting on the jth species, and ∧ the vector product. We also denote by yj the mass

fraction of the jth species yj = ρj/(
∑

1�l�ns ρl), by y the mass fractions vector y = (y1, . . . , ysn), and by T

the temperature.

The diffusion matrices D‖,D⊥, and D�, are functions of the variables (T , p̄, y1, . . . , ysn,B). However,

these coefficients are not explicitly given by the kinetic theory. Their evaluation requires solving lin-

ear systems derived from orthogonal polynomial expansions of the species perturbed distribution

functions [10,16,17]. The size of these systems is typically n ≈ rns where r ∈ {1, 2, 3} and the number

of species in the mixture ns is generally in the range 10 � ns � 100—although very large chemi-

cal mechanisms involving several of hundreds of reactive species 100 � ns � 1000 are sometimes

encountered. The resulting size of the transport linear systems is thus between 10 � n � 300 and

solving these linear systems by direct methods may become computationally expensive keeping in

mind that transport properties have to be evaluated at each computational cell in space and time.

Iterative techniques therefore constitute an appealing alternative and themathematical andnumerical

theory of iterative algorithms for solving the transport linear systems in nonionized mixtures [6,7,15]

has been generalized to the situation of ionized mixtures in strong magnetic fields [16,17].

In the next section we discuss the first order diffusion matrices in a multicomponent gas mixture

of ns components. We assume in the following that ns � 3 and that the variables (T , p̄, y1, . . . , ysn,B)

are given positive quantities. We also assume that themass fractions satisfy the natural normalization

condition
∑

1�i�ns yi = 1.

5.2. Application to diffusion matrices

The transport linear systems associated with the evaluation of the diffusion matrices D‖,D⊥, and
D�, are the following ns systems of size n = ns indexed by l, 1 � l � ns,{

�al,1 = bl ,

al,1 ∈ y⊥,

{
(� + i�′

)al,2 = bl ,

al,2 ∈ y⊥ + iy⊥,
(5.2)

where�,�′ ∈ Rns ,ns
and al,1, bl , y ∈ Rns

and al,2 ∈ Cns
[10,16,17]. The coefficients of thematrices� and

�′
/B are functions of the state variables (T , p̄, y1, . . . , ysn) which usually have complex expressions and
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are omitted. The real part � is thus independent of B but the imaginary part �′
is proportional to the

intensity of the magnetic field B. Once the solutions of the transport linear systems (5.2) are obtained,

the diffusion coefficients are evaluated from

D
‖
kl

= al,1
k
, D⊥

kl + iD�
kl

= al,2
k

. (5.3)

The vectors al,1, 1 � l � ns, are therefore the column vectors of the diffusionmatrixD‖, and the vectors

al,2, 1 � l � ns, are the column vectors of the diffusion matrix D⊥ + iD�.
In the framework of the kinetic theory of gases, where the transport linear systems arise from

variational procedures, the authors have established the following properties for the matrices �,�′
,

and the vectors y, u, and bl , 1 � l � ns, when ns � 3 [6,17] :

• (�1) � is symmetric positive semi-definite.

• (�2) N(�) = Ru where u = (1, . . . , 1).

• (�3) 〈y, u〉 = 1.

• (�4) bl
k

= δlk − yk , 1 � k, l � ns.

• (�5) 2diag(�) − � is symmetric positive definite.

• (�6) �′ = (I − y ⊗ u)M′(I − u ⊗ y).

• (�7)M′ is a diagonal matrix.

In the situation of first order diffusion matrices, the properties (�1)–(�7) can directly be deduced

from the special structure of �,�′
, and of the vectors y, u, and bl , 1 � l � ns, and the matrix � is a

singular M-Matrix [6,7,23]. From the properties (�1)–(�7) we can now establish that the transport

linear systems are well posed as well as several properties of the diffusion matrices.

Proposition 5.1. Assume that the matrices �,�′
, and the vectors y, u, and bl , 1 � l � ns, satisfy the prop-

erties (�1)–(�7). Then the ns systems (5.2) arewell posed, thematrix D‖ is symmetric and is the generalized

inverse of � with prescribed range y⊥ and prescribed nullspace Ry, whereas the matrix D⊥ + iD� is sym-

metric and is the generalized inverse of � + i�′
with prescribed range y⊥ + iy⊥ and nullspace Cy. The

matrices D‖ and D⊥ are symmetric positive semi-definite and N(D‖) = N(D⊥) = Ry. In addition, the diffu-

sion matrices can be evaluated from D‖ = (� + αy ⊗ y)−1 − (1/α)u ⊗ u and D⊥ + iD� = (� + i�′ + αy ⊗
y)−1 − (1/α)u ⊗ u where α > 0 is arbitrary.

Proof. The proof is similar to that of the unmagnetized case thanks to Propositions 2.3 and 2.1 and

since bl ∈ R(�) = u⊥ and we refer to Ern and Giovangigli [7] for more details. �

Projected stationary iterative techniques as well as projected orthogonal residuals methods can

be used to solve the constrained singular systems associated with the species diffusion coefficients

(5.2). Iterative techniques for the real transport linear systems associated with D‖ are similar to that

of nonionized mixtures and have been investigated comprehensively [14,6,7]. We thus only discuss

in the following the evaluation by iterative techniques of the complex matrix D⊥ + iD� by solving the

corresponding constrained linear systems (5.2). As a direct application of Theorem 3.3 we obtain an

asymptotic expansion for D⊥ + iD�.

Theorem 5.2. Let �,�′ ∈ Rns ,ns
be matrices, and y, u ∈ Rns

, bl ∈ Rns
, 1 � l � ns, be vectors satisfying

the properties (�1)–(�7) and let M = diag(M1, . . . ,M
s
n) be such that Mk � �kk , 1 � k � ns. Consider the

splittings � = M − W and � + i�′ = M−W, where M = M + i�′
, the iteration matrices T = M−1W ,

and T = M−1W, and let P = P = I − u ⊗ y denote the oblique projector matrix onto y⊥ along Ru. Let

zl
0

∈ Rn
, z′l

0
= Pzl

0
, and consider for i � 0 and 1 � l � ns the iterates zl

i+1
= Tzl

i
+ M−1bl and z′l

i+1
=

PTz′l
i

+PM−1
bl. Then z′l

i
= Pzl

i
for all i � 0, the matrices T ,T, PT and PT are convergent, ρ(T) =

ρ(T) = 1, γ (T) = ρ(PT) < 1, γ (T) = ρ(PT) < 1, γ (T) � γ (T), and we have the following limits:

lim
i→∞

z′l
i = P

(
lim
i→∞

zli

)
= al,2, 1 � l � ns, (5.4)
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where al,2 is the unique solution of the (right) linear system of (5.2).Moreover, for i � 1, the matrix iterates

(D⊥ + iD�)[i] =
∑

0�j�i−1

(PT)jPM−1Pt
(5.5)

are symmetric, and converge as i → ∞ towards D⊥ + iD�, and we have the convergent asymptotic expan-

sion

D⊥ + iD� =
∑

0�j<∞
(PT)jPM−1Pt

.

The interest of these algorithms is that they perform well whatever the intensity of the magnetic

field B since the completematrix i�′
has been taken into account in the splittingmatrixM = M + i�′

.

Theydonotperformwell, however, independentlyof the ionizationdegreeandconvergence ratesdete-

riorate as ionization levels increaseas investigatedbyGarcíaMuñ in theunmagnetizedcase [13,17]. The

first approximation
(
D⊥ + iD�

)[1] = PM−1Pt
generalizes the Hirschfelder-Curtiss approximation

with a mass corrector [24,14,15] to the magnetized case. Upon using Proposition 3.8 and Pu = 0 we

obtain the explicit formula

(D⊥ + iD�)[1] = E + EMu ⊗ EMu
〈(M − MEM)u, u〉 , (5.6)

where E = (M + iM′)−1 − (M + iM′)−1y ⊗ (M + iM′)−1y/
〈
(M + iM′)−1y, y

〉
. The second order approxi-

mation can further be written

(D⊥ + iD�)[2] = (D⊥ + iD�)[1] +PT(D⊥ + iD�)[1] (5.7)

andyields amore accurate approximation. SinceM−1
is a rank twoperturbationof thediagonalmatrix

(M + iM′)−1, both iterates
(
D⊥ + iD�

)[1]
and

(
D⊥ + iD�

)[2]
are evaluatedwithinO(ns2)operations. The

corresponding real parts D⊥[1] and D⊥[2] are shown to be positive semi-definite with nullspace Ry.

Remark 5.3. When only the diffusion velocities are required—and not the diffusion coefficient matri-

ces—a complex form of the Stefan–Maxwell equations can be solved by using orthogonal residuals

algorithms [17]. These equations are in the form

− (� + i�′
)(V⊥ − iV�) = d⊥ − id� − y

∑
1�l�ns

(d⊥
l − id�

l
) (5.8)

and must be solved with the constraint V⊥ − iV� ∈ y⊥ + iy⊥, where V� = (V�
1
, . . . ,V�

ns ), d
� = (d�

1
, . . . ,

d�
ns ), � ∈ {‖,⊥,�}. Only the diffusion velocities are required when an explicit time marching technique

is use to compute a multicomponent flow for instance.
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