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Multitemperature models are widely used in the aerospace community to model atmo-
spheric entry ows. In this paper, we propose a general description of the internal energy
excitation of a molecular gas in thermal nonequilibrium by distinguishing between slow
and fast collisions. A multiscale Chapman-Enskog method is used to study thermalization
and derive Euler equations of conservation of mass, momentum, translational energy and
internal energy. As opposed to conventional perturbation methods, the fast collision oper-
ator is expanded in the small parameter used to de�ne the threshold for the net energy for
fast collisions. We show that the role of the fast collisions is to thermalize the translational
and internal energy modes, whereas the role of the slow collisions is to contribute to the
thermal relaxation of the translational and internal energy modes.

I. Introduction

Kinetic theory is a powerful tool to derive macroscopic conservation equations for complex multiphysics
systems, such as atmospheric entry plasmas. It also allows to link the transport uxes to the interaction

potentials that govern the collisions taking place among the gas particles. For instance, the transport uxes
(di�usion of mass, momentum, and energy) found in the Navier-Stokes equations are related to macroscopic
forces (electric �eld, gradients of pressure, temperature, velocity, and species concentrations) by proportion-
ality coe�cients called transport properties (di�usion coe�cients, thermal di�usion ratios, viscosity, and
thermal conductivity). Relevant collision integrals constitute the set of data for the transport properties.
Closure of the macroscopic conservation equations is realized by computing the collision integrals at the
microscopic level, based on either the interaction potentials or the cross-sections obtained from experimental
measurements and ab initio calculations. In the case of chemically reacting ows with internal degrees of
freedom, the expressions for the chemical production terms and energy exchange terms can also be derived
from a microscopic approach.

Multitemperature models are widely used in the aerospace community to model atmospheric entry
ows.2,7 These models have been developed based on experimental data obtained in ight and also in
high-enthalpy facilities representative of speci�c ight conditions, such as in arc-jet and shock-tube windtun-
nels.17 These ows are in strong nonequilibrium and the models developed contain ad-hoc terms valid only
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for some dedicated applications. In this paper, we propose a general description of the internal energy exci-
tation of a molecular gas in thermal nonequilibrium based on kinetic theory. This work is part of a broader
e�ort that aims at developing new models based on microscopic theory and applying them to macroscopic
scale in computational uid dynamics codes.11,12,14,19 The basic principles of kinetic theory based on the
Boltzmann equation have been generalized by Waldman, Wang Chang and Uhlenbeek5,6, 15 to gases with
internal degrees of freedom. Deviation from thermo-chemical nonequilibrium in molecular ows has been
studied later, for instance by Nagnibeda and Kustova16 and Brun.1 In strong nonequilibrium ows, the char-
acteristic times for gas dynamics and relaxation processes become comparable, and therefore, the equations
for macroscopic parameters of the ow should be coupled to the equations for physico-chemical kinetics.16 A
di�culty is to derive a proper scaling for the Boltzmann equation, that accounts for the di�erent relaxation
times. An elegant approach based on a dimensional analysis has been proposed by Petit and Darrozes18 for
the translational relaxation processes between the electrons and heavy particles in a plasma. The resulting
scaling a�ects no only the di�erents terms of the streaming and collision operators of the kinetic equations,
but also the collision operators themselves and the collisional invariants.8 Degond and Lucquin4 have ex-
panded the collision operators in terms of the perturbation parameter driving nonequilibrium phenomena,
such as the square root of the electron heavy-particle mass ratio for plasmas in translational nonequilibrium.
When the Knudsen number is small enough, a multiscale Chapman-Enskog expansion method allows to
derive conservation equations for continuum ows. Otherwise, rare�ed gas e�ects can be described by means
of Boltzmann moment systems with a closure assumption such as the Grad method, as shown in a com-
panion paper.13 A similar multiscale approach with expansion of the collision operators in the perturbation
parameter has also been applied to study ionization phenomena.9

In this paper, a multiscale Chapman-Enskog method is proposed for the treatment of internal energy
relaxation in a molecular gas. The co-existence of fast and slow collisions in the system results in thermal
nonequilibrium between the translational and internal energy modes. In section II, the Boltzmann equation is
presented for a gas of identical particles with internal degrees of freedom based on a quasi-classical approach.
The scaling is derived based on a dimensional analysis. The collisions are divided in two categories based on
the magnitude of the net internal energy. For fast collisions, this quantity is assumed to be lower than an
energy threshold equal to a fraction of a characteristic thermal energy for the gas that is controlled by a small
parameter. In section III, the study of the dynamics of a fast binary collision, yields the dependence of the
particle velocities on the perturbation parameter. A lemma allows to split the internal energy of all the levels
into perturbed elastic and inelastic contributions for the fast collisions. We proceed with a Chapman-Enskog
expansion to describe the system based on a continuum approach. The Euler equations are derived with
separate energy equations for the internal energy and kinetic energy. The proofs for the propositions and
lemmas presented are not derived here, the paper objective is to introduce the physical concepts without the
mathematical technicalities. Finally, conclusions review the contributions of the di�erent types of collisions
to the thermalization and thermal relaxation processes.

II. Boltzmann equation

A. Assumptions

The gas is composed of identical particles with internal degrees of freedom. Based on a quasi-classical
approach, one assumes that the particles may have only certain discrete internal energy levels. These levels
are labelled with an index i and the set of indices is denoted by I. Quantity E?i stands for the energy of
level i, and ai, its degeneracy. Dimensional quantities are denoted by the superscript ?. The proposed model
relies on the following set of assumptions:

1. There are no external forces.

2. The reactive collisions are not accounted for.

3. The inert particle interactions are binary encounters modeled by means of a Boltzmann collision
operator: (i; j) 
 (i0; j0), i; j; i0; j0 2 I, where (i; j) and (i0; j0) are ordered pairs of energy levels for
the interacting particles. The net internal energy through the collision is de�ned by the expression
Ei

0j0?
ij = E?i0 + E?j0� E?i � E?j .
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4. The collisions are divided in two categories based on the magnitude of the net internal energy. For
fast collisions, this quantity is assumed to be lower than an energy threshold equal to a fraction of
a characteristic thermal energy for the gas: jEi

0j0?
ij j � "kBT

0, where symbol " is a small parameter.
Quantity T 0 stands for a reference temperature, and kB, Boltzmann’s constant. For slow collisions,
the net internal energy is assumed to satisfy the relation jEi

0j0?
ij j > "kBT

0.

5. The fast collisions are characterized by a reference di�erential cross-section �0. The slow collisions are
assumed to have a reference di�erential cross-section equal to a fraction of the one of the fast collisions:
"�0; this assumption is made to account for the threshold energy that is used to de�ne the lower bound
for the relative kinetic energy.10

6. The macroscopic time scale t0 is assumed to be comparable with the kinetic time scale for fast collisions
�0 divided by ". The macroscopic length scale L0 is based on a reference convective length L0 = v0t0,
where quantity v0 is a reference hydrodynamic velocity.

7. The pseudo Mach number, de�ned as the reference hydrodynamic velocity divided by the thermal
speed, M = v0=V 0, is supposed to be at least of order one.

The Knudsen number is de�ned as Kn = l0=L0, where symbol l0 stands for the mean free path. The
Knudsen number is proportional to ", provided that assumption (6) is satis�ed. Therefore, a continuum
description of the system is deemed to be possible. Finally, the co-existence of fast and slow collisions in the
system results in thermal nonequilibrium.

B. Streaming and collision operators

Following Ferziger and Kaper,5 the collisions between the gas particles are divided in two categories: elastic
and inelastic collisions. Through elastic collisions, the internal energy levels of both particles is conserved

(i; j) 
 (i; j); i; j 2 I:

Through inelastic collisions, the internal energy state of one or both particles is changed

(i; j) 
 (i0; j0); i; j; i0; j02 I; (i0; j0) 6= (i; j):

The value of the net internal energy can span di�erent orders of magnitude. In particular, inelastic collisions
include resonant collisions through which the sum of the internal energy of the particle pair is conserved

Ei
0j0?
ij = 0:

Notice that the kinetic energy of the particle pair is also conserved in this case. The exchange collisions

(i; j) 
 (j; i); i; j 2 I; i 6= j;

are examples of possible resonant inelastic collisions. In general, the exchange of internal levels is not required
for resonant inelastic collisions. Given assumption 4, fast collisions are de�ned based on their net internal
energy that satis�es the relation jEi

0j0?
ij j � "kBT

0. They comprise elastic collisions and resonant inelastic
collisions for which jEi

0j0?
ij j = 0, as well as quasi-resonant inelastic collisions de�ned as the fast collisions with

a non-zero net internal energy.

The velocity distribution function of a particle with an internal energy level i and velocity c?i at time
t? and position x? is denoted by f?i = f?i (t?;x?; c?i ). The temporal evolution of the velocity distribution
function f?i is governed in the phase space by the Boltzmann equation

D?
i (f

?
i ) = J?i (f

?): (1)

The streaming operator is the material derivative in the phase space

D?
i (f

?
i ) = @t?f

?
i + c?i �@x?f?i ; i 2 I;
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expressed here in an inertial reference frame. The collision operator is introduced as

J?i (f
?) =

X
(j;i0;j0)2I3

J
i0j0?
ij (f?i ; f

?
j ); i 2 I; (2)

where the set I3 = I� I� I. The partial collision operator is given by the relation

J
i0j0?
ij (f?i ; f

?
j ) =

Z �
f?i0 f

?
j0
aiaj
ai0aj0

� f?i f?j
�
W i0j0?
ij dc?jdc?i0dc?j0:

Quantity W i0j0?
ij is the transition probability for the direct collision (i; j) ! (i0; j0). Sorting the collisions

based on the magnitude of the total internal energy of the pair of particles, the Boltzmann eq. (22) can be
rewritten as

D?
i (f

?
i ) = JF?i (f?) + JS?i (f?); i 2 I: (3)

The fast collision operator JF?i for elastic collisions and resonant inelastic collisions is introduced as

JF?i (f?) =
X

(j;i0;j0)2Fi

J
i0j0?
ij (f?i ; f

?
j ); i 2 I:

The fast collisions associated with the energy level i 2 I are denoted by the set of triplets for which the net
internal energy is small, i:e:, elastic collisions, as well as resonant and quasi-resonant inelastic collisions,

Fi = f(j; i0; j0) 2 I3 and jEi
0j0?
ij j � "kBT

0g;

The slow collision operator JS?i for non-resonant inelastic collisions, is de�ned as

JS?i (f?) =
X

(j;i0;j0)2Si

J
i0j0?
ij (f?i ; f

?
j ); i 2 I;

where the slow collisions are associated with the complement set of Fi relative to the set I3

Si = f(j; i0; j0) 2 I3 and jEi
0j0?
ij j > "kBT

0g:

C. Collisional invariants

Although the number of particles in each energy level is not conserved in a collision, the total number of
particles (mass), momentum, and total energy are. De�ning the scalar collisional invariants8><>:

 1?
i = m?;

 1+�?
i = m?c?i� ; � 2 f1; 2; 3g;

 5?
i = 1

2m
?c?i �c?i + E?i ;

(4)

the following equality is satis�ed  l?i +  l?j =  l?i0 +  l?j0 , l 2 f1; : : : ; 5g. We introduce the scalar product

hh�?; �?ii? =
X
j2I

Z
�?j� ��j

? dc?j ; (5)

for families �? = (�?i )i2I and �? = (�?i )i2I. The symbol � stands for the fully contracted product in space,
and the symbol � for the conjugate transpose operation. The collision operator J? = (J?i )i2I de�ned in
eq. (2) obeys the following property.

Property II.1 The collision operator J? is orthogonal to the space of collisional invariants, i:e:,

hh l?; J?ii? = 0; for all l 2 f1; : : : ; 5g:
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Number density n0 Thermal speed V 0

Fast-collision di�erential cross-section �0 Fast-collision kinetic time scale �0

Mean free path l0 Macroscopic time scale t0

Temperature T 0 Macroscopic length L0

Mass m0 Hydrodynamic velocity v0

Table 1. Reference dimensional quantities.

The individual contributions to the total energy, i:e:, the kinetic energy 1
2m

?c?i �c?i and the internal energy
E?i , are not conserved through collisions.

The collisional invariants allow to introduce the ow macroscopic quantities mass, momentum, and total
energy, as average microscopic quantities:8><>:

�? = hhf?;  1?ii?;
�?v?� = hhf?;  1+�?ii?; � 2 f1; 2; 3g;
1
2�
?jv?j2 + �?e? + �?E? = hhf?;  5?ii?;

(6)

where the thermal energy is the sum of the translational and internal energy(
�?e? = hhf?; 1

2m
?jc? � v?j2ii?;

�?E? = hhf?; E?ii?:
(7)

D. Dimensional analysis

A sound scaling of the Boltzmann equation can be deduced from a dimensional analysis. Reference quantities,
given in Table 2, are assumed to be common to all the species. At the microscopic scale, a characteristic
number density n0 and di�erential cross-section �0 for fast-collision are introduced. The mean free path is
given by the expression l0 = 1=(n0�0). The thermal speed is obtained by the following expression

V 0 =

r
kBT 0

m0
;

where symbol m0 stands for a characteristic mass. The mean free time is then computed as

�0 =
l0

V 0
:

Assumption (6) states that the macroscopic time scale reads

t0 =
�0

"
:

A macroscopic length scale L0 is also introduced based on a characteristic hydrodynamic velocity:

L0 = v0t0:

The ratio of the two characteristic times is thus

�0

t0
= " = MKn;

where the pseudo Mach number is M = u0=V 0, and the Knudsen number, Kn = l0=L0. The pseudo Mach
number is based on the characteristic ow velocity and the thermal speed, that is an estimate for the speed
of sound. The perturbation parameter is assumed to be small enough, such that a continuum description of
the system is possible, "� 1, the gas is collision dominated.
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Nondimensional variables are based on the reference quantities. They are denoted by dropping the
superscript ?. In particular, one has the following expression for the distribution function, f?i = n0fi =(V 0)3,
and particle velocity, c?i = V 0ci, i 2 I. We investigate the system at the macroscopic time scale, t? = t0t, and
macroscopic length scale, x? = L0x. The streaming operator of the Boltzmann eq. (22) can be expressed as

D?
i (f

?
i ) =

n0

(V 0)3t0
Di(fi ); i 2 I;

where Di(fi ) = @tfi + ci�@xfi . The fast and slow collision operators are given by the expressions

JF?i (f?) =
(n0)2�0

(V 0)2
JFi (f); JS?i (f?) =

(n0)2"�0

(V 0)2
JSi (f); i 2 I;

with the nondimensional operators

JFi (f) =
X

(j;i0;j0)2Fi

J
i0j0

ij (fi ; fj ); JSi (f) =
X

(j;i0;j0)2Si

J
i0j0

ij (fi ; fj ); i 2 I:

The nondimensional partial collision operator is introduced as

J
i0j0

ij (fi ; fj ) =
Z �

fi0fj0
aiaj
ai0aj0

� fi fj
�
W i0j0

ij dcjdci0dcj0:

The reference transition probability is �0=(V 0)5 for fast collisions and "�0=(V 0)5 for slow collisions. Finally,
the nondimensional Boltzmann equation is found to be

Di(fi ) =
1
"
JFi (f) + JSi (f); i 2 I: (8)

The multiscale analysis occurs at three levels: a) In the righ-hand-side of the kinetic eq. 8; b) In the energy
collisional invariant  5

i of eq. (8) for fast collisions; c) In the fast collision operator JFi (f). Slow collisions
are dealt with as usual. Fast collisions require a speci�c treatment presented in the following section. The
net internal energy for collisions is given by the relation jEi

0j0?
ij j = kBT

0jEi
0j0

ij j.

III. Chapman-Enskog method

A. Preliminary results

The study of the dynamics of a fast binary collision, (i; j) 
 (i0; j0) : i; j; i0; j0 2 I and jEi
0j0

ij j � ", yields the
dependence of the particle velocities on the " parameter. For fast collisions, the net internal energy is rescaled
as Ei

0j0

ij = "E
i0j0(1)
ij and the momentum and energy conservation is expressed by means of the relations

mci +mcj = mci0 +mcj0 (9)
1
2mci�ci + 1

2mcj �cj = 1
2mci0�ci0 + 1

2mcj0�cj0 + "E
i0j0(1)
ij : (10)

The velocities after collision are related to their counterpart before collision

ci0 = 1
2 (ci + cj) + 1

2 (jci � cj j2 � 4"Ei
0j0(1)
ij )1=2!; (11)

cj0 = 1
2 (ci + cj)� 1

2 (jci � cj j2 � 4"Ei
0j0(1)
ij )1=2!; (12)

where the direction of the relative velocities after collision in their center of mass is de�ned by

! =
ci0� cj0

jci0� cj0j
:

Equations (13) and (12) allow to derive the following relation for the relative kinetic energy

1
2 jci � cj j2 = 1

2 jci0� cj0j2 + 2"Ei
0j0(1)
ij : (13)
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The relative kinetic energy jci � cj j2=2 is bounded from below by the energy 2"Ei
0j0(1)
ij . This property allows

to justify the reference di�erential cross-section for the fast collisions given in assumption 5.

The following lemma allows to split the internal energy of all the levels into perturbed elastic and inelastic
contributions for the fast collisions.

Lemma III.1 (Perturbed energy for fast collisions) For all energy level i 2 I, let us consider the fast
collisions (i; j) 
 (i0; j0), with (j; i0; j0) 2 Fi = f(j; i0; j0) 2 I3 and jEi

0j0

ij j � "g. There is a perturbed energy
Êi 2 R such that jEi � Êij � C", where C is a constant, and such that for all the fast reactions, the net
perturbed energy vanishes, i:e:, Êi

0j0

ij = 0:

The introduction of perturbed energy levels is crucial to separate the energy collision invariant into fast
collisional invariants and to expand the fast collision operator in the small parameter " used to de�ne the
threshold for the net energy for fast collisions. In turn, it allows for a generalization of the Chapman-Enskog
method to gases with internal degrees of freedom in thermal nonequilibrium. It is important to mention
that, in general, the energy Êi does not correspond to any existing quantum energy level. The fast scalar
collisional invariants are introduced as8>>>><>>>>:

 ̂1
i = m;

 ̂1+�
i = mci� ; � 2 f1; 2; 3g;

 ̂5
i = 1

2mci�ci;

 ̂6
i = Êi:

(14)

Notice that the sum of the ow kinetic energy and translational energy is obtained based on the microscopic
kinetic energy: 1

2�jvj
2 + �e = hhf;  ̂5ii. A perturbation of the macroscopic internal energy is obtained based

on the microscopic perturbed energy: �Ê = hhf;  ̂6ii, with E = Ê +O(")

The collision operator JFi = (JFi )i2I obeys the following property.

Property III.1 The collision operator JF is orthogonal to the space of fast collisional invariants, i:e:,

hh ̂l; JF ii = 0; for all l 2 f1; : : : ; 6g:

The individual contributions to the total energy, i:e:, the kinetic energy and the perturbed internal energy,
are thus separately conserved through fast collisions.

The fast collision operator can be expanded into the " parameter.

Theorem III.1 The fast collision operator JFi (f), i 2 I, can be expanded in the form

JFi (f) =
X

(j;i0;j0)2Fi

J
i0j0(0)
ij (fi ; fj ) + "

X
(j;i0;j0)2Fi

J
i0j0(1)
ij (fi ; fj ) + "2

X
(j;i0;j0)2Fi

J
i0j0(2)
ij (fi ; fj ) +O("3): (15)

Only the quasi-resonant collisions contribute to the terms that are higher than the zero-order term in the
expansion.

The velocities after collision in eqs. (13) can be expanded in the " parameter

ci0 = ~ci0� "
E
i0j0(1)
ij

jci � cj j
! � "2

(Ei
0j0(1)
ij )2

jci � cj j3
! +O("3); (16)

cj0 = ~cj0 + "
E
i0j0(1)
ij

jci � cj j
! + "2

(Ei
0j0(1)
ij )2

jci � cj j3
! +O("3); (17)

where the modi�ed velocities are introduced as there were no net internal energy through the collision

~ci0 = 1
2 (ci + cj) + 1

2 jci � cj j!; (18)
~cj0 = 1

2 (ci + cj)� 1
2 jci � cj j!: (19)
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B. Enskog expansion

We employ an Enskog expansion to derive an approximate solution to the Boltzmann equations (8) by
expanding the velocity distribution functions as

fi = f̂0
i (1 + "�̂i + "2�̂

(2)
i ) +O("3); i 2 I: (20)

and by imposing that the zero-order contribution f̂0
i yields the local macroscopic properties

hhf̂0;  ̂lii = hhf;  ̂lii; l 2 f1; : : : ; 6g: (21)

Using eq. (20), the nondimensional Boltzmann eq. (8) becomes

Di(f̂0
i ) + "Di(f̂0

i �̂i) +O("2) = "�1J
(�1)
i (f̂0) + J

(0)
i (f̂0; �̂) + "J

(1)
i (f̂0; �̂; �̂(2)) +O("2); i 2 I; (22)

where the collision operators at successive orders of the " perturbation parameter are introduced in Ap-
pendix A.

In the Chapman-Enskog method, the gas is described at successive orders of the " parameter as equivalent
to as many time scales. The micro- and macroscopic equations derived at each order are reviewed in Table 2.

Order Time Microscopic Macroscopic
"�1 �0 Equation for f̂0

i , i 2 I Thermalization
"0 t0 Equation for �̂i, i 2 I Euler equations
"1 t0=" Equation for �̂(2)

i , i 2 I Navier-Stokes equations

Table 2. Chapman-Enskog steps.

C. Macroscopic conservation equations

We solve the heavy-particle Boltzmann eq. (22) at order "�1 corresponding to the kinetic time scale
�0. Let us introduce a temperature based on the perturbed internal energy though the implicit relation
Ê(T̂int) =

P
j2I ajÊj exp(�Êj=T̂int)=Q̂, where the perturbed internal partition function is given by the re-

lation Q̂(T̂int) =
P
j2I aj exp(�Êj=T̂int). The gas particle population is shown to thermalize to a quasi-

equilibrium state described by a Maxwell-Boltzmann distribution function in thermal nonequilibrium with
the translational energy at temperature T and the internal energy at temperature T̂int.

Proposition III.1 The zero-order family of distribution functions f̂0 solution to eq. (22) at order "�1, i:e:,
J
(�1)
i (f̂0) = 0, i 2 I, that satis�es the scalar constraints (21), is a family of Maxwell-Boltzmann distribution

functions

f̂0
i = n

� m

2�T

�3=2 ai

Q̂
exp

 
� m

2T
jci � vj2 � Êi

T̂int

!
; i 2 I: (23)

The number density is de�ned as n = �=m. Only the fast collisions contribute to the collision operator
J
(�1)
i (f̂0), i 2 I, the role of the fast collisions is the thermalization of the translational and internal energy

modes.

We derive Euler equations based on the heavy-particle Boltzmann equation (22) at order "0 corresponding
to the macroscopic time scale t0. First, a linearized collision operator is introduced for fast collisions.

Fi(�̂) = � 1

f̂0
i

X
(j;i0;j0)2Fi

h
J
i0j0(0)
ij (f̂0

i �̂i; f̂
0
j ) + J

i0j0(0)
ij (f̂0

i ; f̂
0
j �̂j)

i
i 2 I;

where f̂0
i , i 2 I, is given by eq. (23), for a family �̂ = (�̂i)i2I. The kernel of F is given in the following

property.
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Property III.2 The kernel of the linearized collision operator F is the space of fast collisional invariants,
i:e:,

hh ̂l;Fii = 0; for all l 2 f1; : : : ; 6g:
Furthermore, we de�ne the pressure, as p = nT , and the energy transfered from the translational energy
mode to the internal energy mode at order zero, as

�E0 = hh
� X

(j;i0;j0)2Si

J
i0j0

ij (f̂0
i ; f̂

0
j )
�
i2I
;  ̂5ii

=
X

(j;i0;j0)2Si

T

� i
0j0

ij

"
exp

 
Ei

0j0

ij

T
�
Êi

0j0

ij

T̂int

!
� 1

#
: (24)

Then, the Euler equations are derived in the following proposition.

Proposition III.2 If �̂ is a solution to eq. (22) at order "0, i:e:

f̂0
i Fi(�̂) = �Di(f̂0

i ) + �J(0)
i (f̂0); i 2 I; (25)

where f̂0
i , i 2 I, is given by eq. (23), and if f̂0�̂ = (f̂0

i �̂i)i2I satis�es the constraints

hhf̂0�̂;  ̂lii = 0; l 2 f1; : : : ; 6g; (26)

then, the zero-order conservation equations of mass, momentum, translational energy, and perturbed internal
energy read

@t� + @x�(�v) = 0; (27)
@t(�v) + @x�(�v
v + 1

M2 pI) = 0; (28)

@t( 1
2�jvj

2 + �e) + @x�
�
( 1
2�jvj

2 + �e + p)v
�

= �E0; (29)

@t(�Ê) + @x�(�Êv) = ��E0: (30)

By inspecting eqs. (24) and (29)-(30), the role of the slow collisions becomes clear: they contribute to the
thermal relaxation of the translational and internal energy modes.

IV. Conclusion and future work

In this paper, we have proposed a model for the internal energy excitation of a molecular gas in thermal
nonequilibrium based on kinetic theory. The scaling of the Boltzmann equation is based on a dimensional
analysis. The collisions are divided in two categories based on the magnitude of the net internal energy.
For fast collisions, this quantity is assumed to be lower than an energy threshold equal to a fraction of a
characteristic thermal energy for the gas controlled by a small parameter. The slow collisions are assumed
to have a reference di�erential cross-section equal to a fraction of the one of the fast collisions. The Knudsen
number is assumed to be proportional to this perturbation parameter, allowing for a continuum description
of the system.

A lemma allows to split the internal energy of all the levels into perturbed elastic and inelastic contri-
butions for the fast collisions. The introduction of perturbed energy levels is crucial to separate the energy
collision invariant into fast collisional invariants. As opposed to conventional perturbations methods,1,16 the
fast collision operator is expanded in the small parameter used to de�ne the threshold for the net energy
for fast collisions. The gas particle population is shown to thermalize to a quasi-equilibrium state described
by a Maxwell-Boltzmann distribution function in thermal nonequilibrium with the translational energy tem-
perature and the internal energy temperature. The role of the fast collisions is the thermalization of the
translational and internal energy modes. Euler equations for the conservation of the mass, momentum,
translational energy, and internal energy are also derived. The role of the slow collisions is to contribute to
the thermal relaxation of the translational and internal energy modes.

As future work, we propose to use the Chapman-Enskog method to derive the Navier-Stokes equations
at the �rst order and account consistently for the inelastic contribution of the perturbed energy at the
macroscopic level.
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A. Collision operators

The collision operators at successive orders of the " perturbation parameter are introduced as

J
(�1)
i (f̂0) =

X
(j;i0;j0)2Fi

J
i0j0(0)
ij (f̂0

i ; f̂
0
j );

J
(0)
i (f̂0; �̂) =

X
(j;i0;j0)2Fi

h
J
i0j0(0)
ij (f̂0

i �̂i; f̂
0
j ) + J

i0j0(0)
ij (f̂0

i ; f̂
0
j �̂j)

i
+ �J(0)

i (f̂0);

�J(0)
i (f̂0) =

X
(j;i0;j0)2Fi

J
i0j0(1)
ij (f̂0

i ; f̂
0
j ) +

X
(j;i0;j0)2Si

J
i0j0

ij (f̂0
i ; f̂

0
j );

J
(1)
i (f̂0; �̂; �̂(2)) =

X
(j;i0;j0)2Fi

h
J
i0j0(0)
ij (f̂0

i �̂
(2)
i ; f̂0

j ) + J
i0j0(0)
ij (f̂0

i ; f̂
0
j �̂

(2)
j )
i

+ �J(1)
i (f̂0; �̂);

�J(1)
i (f̂0; �̂) =

X
(j;i0;j0)2Fi

h
J
i0j0(0)
ij (f̂0

i �̂i; f̂
0
j �̂j) + J

i0j0(1)
ij (f̂0

i �̂i; f̂
0
j ) + J

i0j0(1)
ij (f̂0

i ; f̂
0
j �̂j) + J

i0j0(2)
ij (f̂0

i ; f̂
0
j )
i

+
X

(j;i0;j0)2Si

h
J
i0j0

ij (f̂0
i �̂i; f̂

0
j ) + J

i0j0

ij (f̂0
i ; f̂

0
j �̂j)

i
:
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