SCATTERING THEORY ON GEOMETRICALLY FINITE QUOTIENTS
WITH RATIONAL CUSPS

COLIN GUILLARMOU

ABSTRACT. We study Eisenstein functions and scattering operator on geometrically finite hy-
perbolic manifolds with infinite volume and rational non-maximal rank cusps. For both we
prove the meromorphic extension and we show that the scattering operator belongs to a cer-
tain class of pseudo-differential operators on the conformal infinity which is a manifold with
fibred boundaries. Then we obtain results relating Q-curvature of the boundary, scattering
operator at energy n and renormalized volume.

On montre le prolongement méromorphe des fonctions d’Eisenstein et de 'opérateur de
diffusion sur les variétés hyperboliques géométriquement finie, de volume infini, dont les cusps
de rang non-maximal sont rationnels. Dans ce cas, 'opérateur de diffusion appartient a
une certaine classe d’opérateur pseudo-differentiel sur ’infini conforme, qui est une variété
avec bord fibré. Enfin on obtient quelques résultats reliant QQ-courbure de ’infini conforme,
operateur de diffusion & energie n et volume renormalisé.

1. INTRODUCTION AND RESULTS

The purpose of this work is to study the Eisenstein functions and scattering operator on a
class of geometrically finite hyperbolic quotients I'\H"*! with non-maximal rank cusps. As a
consequence, we investigate relations between the conformal geometry of the boundary (which
is non-compact) and the scattering operator, in the spirit of Graham-Zworski’s work on asymp-
totically Einstein manifolds [7].

Such problems involving spectral and scattering theory on geometrically finite hyperbolic quo-
tients have been studied probably since Selberg and lead to many important results. However,
most of the results known are obtained when the group has no parabolic elements of non-maximal
rank, in other words when the quotient X = I'\H"*! has no cusps of non-maximal rank. As far
as we know, the only results concerning meromorphic extension of the resolvent or scattering
operator for this cases were due, until recently, to Froese-Hislop-Perry [3] in dimension 3. How-
ever, Bunke and Olbrich [1] deal in a preprint with the meromorphic extension of the scattering
operator in all generality using a very different approach; in particular they do not study the
(pseudo-differential) structure of this operator. We lead the reader to the introduction of [8] for
a more detailed review of works touching meromorphic extension of the resolvent for the Lapla-
cian through the essential spectrum, resonances (i.e. the poles of this extension), meromorphic
continuation of Eisenstein functions and scattering operator for geometrically finite hyperbolic
manifolds, though we do not claim to be complete about references therein.

We consider an infinite volume hyperbolic quotient X := I'\H"*! where T is a discrete group
of isometries of H"*! which admits a fundamental domain with finitely many sides, X is said
geometrically finite, and such that each parabolic subgroup of I' does not contain irrational
rotation. For exemple, this last condition is always satisfied in dimension n +1 = 3 and, in
general, can be reduced to the case where each parabolic subgroup is conjugate to a lattice of
translations in R™ (in the model H"*! = (0, c0) x R™), possibly by passing to a finite cover, thus
resolvent, scattering operator and Eisenberg functions are obtained as a finite sum on the cover.
Similarly, elliptic elements of I' can also be excluded by passing to a finite cover, X is then a
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smooth manifold, and since the presence of maximal-rank cusps do not add difficulties, we will
avoid them for simplicity of exposition. The Laplacian on such manifolds have been studied by
Froese-Hislop-Perry [3] in dimension 3 and by Perry [23] in higher dimension. The manifold X
equipped with the hyperbolic metric is complete and the spectrum of the Laplacian Ax splits
into continuous spectrum [%, o) and a finite number of L? eigenvalues included in (0, %) which
form the point spectrum op,(Ax) (see Lax-Phillips [14]). In [8] we proved that the modified
resolvent
R\ = (Ax —An—\)~*

extends from {R(A) > %} to C meromorphically with poles of finite multiplicity (i.e. the rank of
the polar part in the Laurent expansion at each pole is finite) from L2, (X) to L}, (X), these
poles are called resonances.

In the present work, we define a Poisson operator, FEisenstein functions, a scattering operator
and we show that they extend meromorphically to C. To explain the main Theorems, we recall
briefly the structure at infinity of the manifold X but in any case, we lead to reader to Section 2
of Mazzeo-Phillips [19] for a comprehensive description of geometrically finite quotients I'\H"**
(see also [2, 23, 8]). The first approach is to see X as the interior of a smooth compact manifold
with boundary X. If p is a boundary defining function of the boundary dX and if g is the
hyperbolic metric on X, then p2g extends as a smooth non-negative tensor on X which is a metric
outside some submanifolds of the boundary X where it becomes degenerate. Each one of these
submanifolds arises from a cusp point of X, i.e. a fixed point at infinity of H**! for a parabolic
subgroup of I', and is diffeomorphic to a k-dimensional torus T* if the parabolic subgroup has
rank k. If we note ¢ the union of these submanifolds, B = X \ ¢ is a non-compact manifold
which can be thought as the infinity of X; actually B = T'\Q2 where Q@ C S™ is the domain
of discontinuity of I'. By blowing-up these submanifolds in X, this gives a manifold X, with
corners of codimension 2 which is the compactification of X defined by Mazzeo-Phillips [19] in the
general case. The topological boundary of X, splits into two kind of smooth hypersurfaces with
boundaries, the regular ones whose union is a compactification B of B and the cusp ones which
are diffeomorphic to Sifk x Tk S_’f_*k being an n — k dimensional half-sphere with boundary.
It turns out that B has ends diffeomorphic to (Rp =%\ {|y| < 1}) x T*, each end arising from
a rank-k parabolic subgroup of I fixing a point at infinity of H"*!. The compactification B of
B corresponds to the radial compactification in the y variable in each end thus B is a fibred
boundary manifold in the sense of Mazzeo-Melrose [18], the fibrations being the projections

Sn—k—l % Tk _ Sn—k—l.

When equipped with the metric hg := p?g|p, (B, ho) is conformal to an ‘exact ®-type metric’
near its infinity as defined in [18], the conformal factor decreasing enough to make the volume
of B finite - the vanishing rate is even stronger than the fibred cusp metrics (see Figure 1 for
illustration).

We construct Poisson and scattering operators P(A), S(A) by solving a Poisson problem in a
way similar to that introduced on Euclidean manifolds by Melrose and on many other settings by
various authors (see [21] for review). However, in view of the sensible structure of the metric near
the cusps ¢, it appears that P()), S(A) do not act naturally on C*°(9X) but much on subspaces

related to this structure. We then define the subalgebra C22.(X) of C*°(X) of functions which

acc -

are asymptotically constant in the cusps, these are the f € C°°(X) such that
Z(fle) =0, Z((X1...Xnf)lc)=0

for all smooth vector fields X;,..., Xy on X (VN € N) and all smooth vector fields Z on c.
In other words, these are the functions whose restrictions at the cusp submanifolds are locally
constant and similarly for all derivatives. It is actually possible to find a boundary defining
function p in this subalgebra. Then the volume form dvol, of g can be expressed by p " IR g
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for a function R. which is smooth positive in X \ ¢ with R? € Cg5.(X) vanishing at order

2k at each k-dimensional component of ¢ and where pg is a smooth volume density on X.
The functions R. and p are not uniquely determined but we show that the set R;1C2 (X) is

acc

independent of the choice of R?, p in C2.(X) (but it certainly depends on the metric). Then

we define C2 (0X) and R;1C2.(0X) by restriction of C2%,(X) and R;71C2.(X) at 0X and

7 acc acc acc acc
B = 0X \ ¢ (here we use the same notation for R, and its restriction R.|5x). For any boundary

defining function p € Cg2.(X), one can define the Poisson operator P(A) by showing that if
R(A) > % and A ¢ 3+ N, then for all f € R;'C2.(0X) there exists a unique solution P(X)f of

the following Poisson problem

(Ax = A(n=A)PA)f =0
P = p"AF(N ) + 0 G )
F(X f),G(\ f) € RZICE(X)
EQ Plo=0 =1

The construction of the solution is a consequence of an indicial equation for Ax and the precise
mapping property of the extended resolvent

R(\) : C®(X) — p*R; 1O, (X).

where C°°(X) is the set of functions in C°°(X) vanishing at all order at X.
Next we analyze Eisenstein functions. The metric hg induces an L?(B) Hilbert space on B
and we prove

Theorem 1.1. If R(\;w;w') denotes the Schwartz kernel of the modified resolvent, the Fisen-
stein function

E(\bw') = 1imb[p(w)7>‘R()\;w;w')], be Byw' € X

is a smooth function on B x X if X\ is not a resonance. There exists C > 1 such that for all
N > 0 it is the Schwartz kernel of a meromorphic operator

E\) : pNL*(X) — L*(B)

in R(A) > § — C~IN with poles of finite multiplicity, satisfying P(\) = (2A — n)'E(\) on
R71C,(0X). Emcept possibly at {\;R(A) < Z,A(n — A) € opp(Ax)}, the set of poles of E(X)
coincide with the set of resonances.

Using the asymptotic expression of P(\)f, the scattering operator is then defined (with the
same notations) by

acc

f - F()‘vf)|p:()

For R(\) = %, S(A) can be extended to L*(B) as a unitary operator and it gives, in a sense,
a parametrization of the absolutely continuous spectrum of Ax. Then, we prove the follow-
ing result which is expressed in more details in Theorem 6.5, Lemma 6.1, Corollary 6.3 and

Proposition 7.1:

S(/\):{ R71CE,(0X) — RI'CE.(0X)

Theorem 1.2. The scattering operator S(\) extends meromorphically to C as a family of
pseudo-differential operators in the full ®-calculus on the manifold with fibred boundary B in
the sense of Mazzeo-Melrose [18]. In {R(\) < 5,A(n — A) & 0,,(Ax)}, Ao is a pole of S(A) if
and only if Ao is a resonance and it has finite multiplicity. In {R(X) > 5}, S(A\) has only first
order poles whose residue is

G Vil sl SV =24 iicN
Resy,S(\) = G-t 4t Fro=5+7.J€
’ I, ifho¢ 2+N

where Pj is the j-th GJMS conformal Laplacian of [6] on (B, ho) and II\, is an operator with
rank dimkerp2(Ax — Ao(n — Ag)).
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Note that the GJMS conformal Laplacians P; in [6] are well-defined for all j if n > 3 (resp.
for j <1 if n = 2) if the manifold is locally conformally flat (it is actually done in the compact
setting but they can be extended for non-compact manifolds by using the same local expression
in the curvature tensor), which is the case for B.

In last part, we prove some results similar to Graham-Zworski theorems in [7] for this class of

manifolds. By changing the boundary defining function p = e“p € C> (X) (with w € C2,(X))
we obtain a metric ho =p g| B = ey on B conformal to hg (where wg = w|p), this induces a
subconformal class [hg]acc of ho on the boundary B. If we replace p by p in Poisson problem, this
defines different Poisson and scattering operators P(N), S(A) and by uniqueness, S()) is related to
S(A) by the covariant rule S(\) = e~ 0 S(\)e(® V<o thus S(\) depends only on the conformal
representative kg and S (M), this makes the scattering operator a conformally covariant operator
with respect to the subconformal class [hglacc. Similarly ﬁj is related to P; by the covariant rule
Pj = e*(%Jrj)Wone(%*j)wo'

If n is even, one can use the operators P; to define Branson’s Q-curvature of hy on B and we
show

Theorem 1.3. Let n be even, then for any choice of p, the Q-curvature of ho = pg|p on the
boundary B satisfies
(122"
(5 —1)!
Moreover it has a conormal behaviour of order —n at OB, is in L*(B, dvoly,) and
o
Y Y Q d’UOlh =L
(g -1 Jp 0
where L is the log term, independent of p, appearing in the expansion of the volume

volx ({p > €}) ~ coe™" + -+ + cp_o€e ? + Llog(e ") + V 4 o(1).

Q= S(n)1.

To conclude, we deduce from Theorem 1.3 and the fact that every geometrically finite 3-
manifolds satisfy our assumptions (since there is no rotational part in this case by lack of di-
mension),

Corollary 1.4. If X = I'\H? is a geometrically finite hyperbolic manifold, its renormalized
volume s
L = —mx(B) = —mx(9X) = —27x(X)

where x (o) means Euler characteristic.

This gives a generalization in dimension 3 of Epstein’s formula [22] for the renormalized vol-
ume of a convex co-compact hyperbolic manifold. These results show a certain continuity when
a convex co-compact group degenerates to a cusp case.

The case of irrational cusps is more technically involved and it is not clear if such precise
results can be obtained, at least the meromorphic extension of the resolvent will probably be
carried out in a following paper. It is also important to add that this analysis could be used to
study the divisors of Selberg’s zeta function as Patterson-Perry [22] did for convex co-compact
hyperbolic manifolds.

The paper is organized as follows: we first introduce in section 2 the geometric setting, discuss
the compactification X of the manifold X and analyze its infinity B; then in section 3 we de-
fine the class of pseudo-differential operator on B which contains the scattering operator and in
section 4 we study the mapping properties and the structure of the resolvent for the Laplacian.
In section 5, we construct the Poisson operator and Eisenstein functions using section 4 and in
section 6 we define and describe the scattering operator. To conclude we investigate the relation
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between the conformal geometry of B and the scattering theory on X.

Along the paper, we will identify operators with their Schwartz kernel and we consider opera-
tors acting on functions for simplicity of exposition though the correct approach would be to use
half-densities. Consequently the kernels of pseudo-differential operators have to be understood
as tensorized by appropriate half-densities.

Aknowledgements: We thank Rafe Mazzeo, Robin Graham and Jared Wunsch for helpful
discussions. This work was written at Purdue University but we are also grateful to the Mathe-
matics Department of Nantes where it was completed. Research is partially supported by NSF
grant DMS0500788.

2. GEOMETRY OF THE MANIFOLD

2.1. Assumptions on the group. We describe here with more details the assumptions about
the cusps discussed roughly in the introduction; we strongly use Section 2 of Mazzeo-Phillips
[19]. Let I a discrete subgroup of orientation preserving isometries of the hyperbolic space H" 1.
Recall that T acts also on the natural compactification H" ™! = {m € R"™1;||m|| < 1} of H"+!
and on its boundary S™; an element « is called hyperbolic if it fixes exactly two points on S™
and no point in H"*!, parabolic if it fixes one point on S™ and no point in H"**!, then 7 is
elliptic if it fixes a point of H"*!. If I contains elliptic elements, there exists a subgroup I'g
of finite index of T' without elliptic elements thus X is finitely covered by I'o\H"*!, the latter
being a smooth manifold. Since we study resolvent of the Laplacian and other related objects,
we can always pass to a finite cover without difficulties: objects on X can indeed be obtained by
summing on a finite set objects on the finite cover. Thus we exclude elliptic elements in I'. We
suppose that I' is geometrically finite, which means here that it admits a fundamental domain
F with finitely many sides. Each fixed point p € S™ of a parabolic element of T is called a cusp
point, and for each cusp point p, let I, be the subgoup of I fixing p. Actually I', contains only
parabolic elements and it can be shown that there is a I', invariant neighbourhood U, of p such
that I'\(F N U,) is isometric to a neighbourhood of p in I',)\(¥ N U,). The subgroup I', has a
maximal free abelian subgoup I', with rank k, the rank of the cusp p is defined to be the integer
k. We suppose that k£ < n — 1 for each p since this case is well known in term of scattering
theory. Using now conjugation, it suffices to look at the case where p = oo in the upper half
model H" ! = R x R™. Section 2 of [19] (the arguments come from Thurston’s lecture notes)
shows that there is an affine subspace R*¥ € R™ globally fixed by ', on which I, acts as a group
of k translations. This allows to see that every v € ', acts as

v(y,z) = (Ry, Az + b) on R’y‘_k_l o RF

for some A € O(k),R € O(n —k — 1) and b € R*; elements in T, have A = Id. There is
a flat compact manifold N = I'.o\R* such that I'.o\R" is a flat vector bundle with basis N
and T* := T'\,\R* such that I';,\R" is a flat bundle over T*. We assume that the holonomy
representation of these bundles I' — O(n — k — 1) has finite image, so that all rotations R
have rational angle pm/q for some p,q € N. Then there is a finite cover of this bundle which is
Tk x R"=k, T* being a flat torus, and it suffices to study the case where each rotation R is the
identity.

2.2. Neighbourhoods of infinity, models. From previous discussions and assumptions on
the cusps and using [2, 23, 8] we obtain a covering of the manifold X by model charts. There
exists a compact K of X such that X \ K is covered by a finite number of charts isometric to
either a regular neighbourhood (M, g,-) or a rank-k cusp neighbourhood (Mj, gi) where
M, = {(z,y) € (0,00) x R™ 2 + [y* < 1,}, g, = 27 %(dz” + dy?),
My, = {(x,y,2) € (0,00) x R"F x T*; 22 4 |y> > 1},  gr = 27 2(d2® + dy* + dz?)
for k=1,...,n— 1 with (T*,dz?) a k-dimensional flat torus.



6 COLIN GUILLARMOU

Note that we could allow maximal rank cusps as in [8] without difficulties but since these
cases are well-known, we restrict ourselves to the non-maximal rank cusps cases for simplicity
of exposition. We will make as if there was only one neighbourhood of each type to simplify the
notations, we then note I,., (Ix)x the corresponding chart isometries. One can also choose the
covering such that I, LM)N Ij_l(M ;) = 0 for k # j, possibly by adding regular neighbourhoods.

The model M}, can be considered as a subset of the quotient X = I‘;.C\]HI”Jrl of H**! by a
rank-k parabolic subgroup I'y, of I' which fixes a single point at infinity of H**!. Indeed, modulo
conjugation by an isometry, one can suppose that the fixed point is the point at infinity of H?*!
in the half-space model (0,00) x R™. T’y can then be considered as a lattice of k independent
translations acting on R™, therefore it is the image of the lattice Z* by a map Ay € GLy(R) and
the flat torus T% := I';\R* is well defined. Then X}, is isometric to R} x R’;*k x Tk equipped
with the metric
dz? + dy? + dz>

22
sz being the flat metric on a k-dimensional torus 7%. Therefore M, is the subset of X} with
22+ |y|? > 1. As a matter of fact it will be often useful to consider RT x R"~* as the n — k + 1-
dimensional hyperbolic space H" ™~ k+1 Hence X}, can be compactified into the compact manifold
with boundary X = H?~*+1 x T* where H***! is the ball {|w| < 1} in R*“**1. Then

T
PR

gk =

pr(z,y, z) == = (2cosh(dgn—r+1(2,y;1,0))) "

is a natural boundary defining function in Xy (90X = {pr = 0} and dpy # 0 on 0X}). Let us
define the new coordinates

< —Y
2.1 L ——
24 FEE T P
which induce an isometry from (My, gx) to

{(t,u,z) € (0,00) x R* ™% x T*: 42 4 |u? < 1}
equipped with the metric
dt? + du?® + (1% + [u]?)?d2?
tQ
and p(t,u) = pr(z,y). These coordinates can be thought as compactification coordinates for
My, since t and u extend smoothly to X \ {# = y = 0}. The infinity of X in the chart Mj
is then given by {pr = 0} or equivalently {¢ = 0}. Also we will call cusp submanifold the
submanifold {¢ = v = 0} of X, it will be noted ¢ and we remark that ¢, ~ co x TF ~ T*
in X;, where oo is the point at infinity in the half- space model of H"™ k41 We also have
My = {w € Xg;t(w)? + |u(w)|? < 1} which is a subset of X} and we will denote
My, = {w € Xp; t*(w) + [u(w)* < 1}.

At last we define the manifold

(2.2)

which can be viewed as (X \ ¢x) N {z = 0}.

~ The model M, is simpler and can be considered as a subset of H"t!. We define as before
M, = {(z,y) € [0,00) x R"; 2% + |y|* < 1}.

n—1

There exist some smooth functions x, X", x',...,x" ! on respectively X, M,, My, ..., Mu_1
which, through the isometric charts I, I, ..., I, satisfy

I*XT+ZIX +x =
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with x having compact support in X. Note that it is possible to choose x* which does not
depend on the variable z € T*.

For what follows we will consider My, M,., My, M, as neighbourhoods in X instead of using
the notations I, ' (My), ;71 (M,.)...

2.3. Compactification, volume densities. Using the previous discussion, one obtains a com-
pactification of X as a smooth compact manifold with boundary X. Moreover, with no loss of
generality one can choose a boundary defining function p which is equal to the function ¢ in each
neighbourhood Mj,. The boundary 0X is covered by some charts B, ..., B,_1, B, induced by
Ml, ey Mn—la MT by taking

By, := M, N 90X ~ {(u,z) € R" % x T* |u> < 1}
By =M, N0X ~{y e R™ |y]* <1}.

From the discussion above, we see that the metric on X can be expressed by

H
9g=—
2

with H a smooth non-negative symmetric 2-tensor on X which degenerates at the cusps sub-
manifolds (ck)g=1,...n—1. Let us define ¢ := (Ugcx) C 0X C X, and B := 90X \ ¢, then the
restriction

(2.3) ho := H|p = (p°9)|5

is a smooth metric on the non-compact manifold B.

We will also need to use functions representing the distance to the cusps submanifolds as
follows: for k = 1,...,n — 1, let 7., be a continuous non-negative function in X, smooth and
positive in X \ ¢ which satisfies

Tii(rey) = V2 + [uf?

in M}, and is equal to 1 in M; when j # k. Then we define the functions

n—1 n—1
(2.4) re i= H Tews, Re:i= H(rck)k
k=1 k=1

on X and we will also denote by Te,, Te and R, their restriction to 0X. It can easily be checked
that B equipped with the metric kg of (2.3) has a volume density dvoly, which is of the form

(2.5) dvoly, = R?puyx

with 1155 a smooth non-vanishing density (volume density) on 9X. Similarly the volume density
dvol, on X can be expressed by

(2.6) dvoly, = p " 'R2pug

for a smooth volume density gy on X. In what follows, we will write L?(X) and L%(B) for the
Hilbert spaces of square integrable functions on X and B with respect to the volume densities
dvol, and dvolp,,.

2.4. Class of functions. For a compact manifold M with boundary OM , we denote by COO(M )
the set of smooth functions on M which vanish at all orders at M. Its topological dual is the set

of extendible distribution on M, denoted C~°°(M) (note that a correct definition would include
density bundles).

There will be a special set of smooth functions on X, X which will play an important role for
what follows, these are the functions which are “asymptotically constant in the cusp variables”.
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To give a precise definition we begin by introducing the sets C(T'X), €(T0X) and C(Tc) of
smooth vector fields on X, 90X, c. Then we set

C2(X):={feC®X);VXy,...,Xn € C(TX),YZ € C(Te), Z(f|c) =0,Z(X1... Xnf|c) =0}

acc

and C22,(0X), C2.(Xy), C2.(0X}y) are defined similarly by replacing X by 0X, Xz, 9X. These
functions are constant on each cusp submanifold ¢; and their derivatives too. In local coordinates
(t,u, z) near the cusp ¢ = {t = u = 0}, one can check by a Taylor expansion at (0,0,2) € c

and Borel Lemma that a function f € C$5.(X) can be decomposed locally as a sum
(2.7) Flt,u,2) = fo(t,u) + O((t + [u*)*) = fo(t,u) + O(r)
for some f; smooth. We remark the following properties, the proofs of which are straightforward:

Lemma 2.1. The set C2,(X) is a subalgebra of C*°(X) which is stable under the action of

— acc
C(TX), and stable by composition with smooth real functions.

Observe also that 2 and R2 defined by (2.4) are in C2,(X). Actually this implies that if

p € C (X) is a boundary defining function of X and R2 € €2 (X) is a non-negative function
vanihing at order 2k at each ¢; such that dvol, = p~" ' R2fig for a smooth volume form on X,
then

p=Fip, Rl=FR] jix="Fpux
for some functions Fi, Fy € C2.(X) and F3 € C®(X) satisfying F; " 'FyF3 = 1 and F} > 0,

F3 > 0. Then necessarily F3 € C2,(X) and F» > 0 which shows that R;7'C.(X) =

R;1C2 (X) and this space does not depend on the choices of p, R2 in €22, (X). Actually

acc

the map f — f |dvolg|% naturally identifies R;!C°°(X) with the space of smooth half-densities
— 1
C*>(X,T2) defined in the 0-calculus of Mazzeo-Melrose [17] (depending only on the C* struc-
= — — 1
ture of X) and the space R;1CSS (X) could then be considered as a subspace of C*°(X,T'2)

acc
(depending on the metric) if we worked with densities.

We also define the set of smooth functions on X}, (resp. X) vanishing at all order at the cusps
CP(X) = {f € C°(X);VX1,..., XN € C(TX), fle = 0,(X1... Xnf)|e = 0}
and C2(9X),0°(0X}), C°(0X}) similarly. Remark that there is a natural identification
C=(0X) «— C=(B)
if B is defined as the blow-up of 9X around c. By similar arguments, the spaces Cae.(9X),
C(0X), R;1C2.(0X) can be defined (here we note again R, instead of R.|g) an they coincide

acc

with the restriction of C22,(X), C°(X), and R;'C2.(X) at B=0X \ c.

acc acc
To conclude this part, remark the following inclusions

C>®(X) Cc CX(X) c 0=, (X).
and the same for their restriction at B.

2.5. Model form for the metric. To use the same ideas than for asymptotically hyperbolic
manifolds, we need to choose boundary defining functions of X in X which induce product
decompositions of the metric near infinity. The different choices of boundary defining functions
induce a conformal class of smooth tensors on 9X which are metrics on B, this is the conformal
class [ho] of ho := p*glyx. However, in view of the presence of the cusps, we need to consider
the following smaller class of conformal metrics on B

[holace := {fho; f >0 € C2,(0X)}.
Lemma 2.2. For all hy € [ho]ace, there exists a boundary defining function p € C2°,(X) of X

A(J/CC

in X such that |dp| 2y —1 € C>=(X) in a collar neighbourhood of dX and p*g|p = ho. Moreover,
p is uniquely determined modulo C™ (X) by hy.
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Proof: for hy € [hg], the construction of a boundary defining function p = pe which satisfies
|dp|s2g = 1 and p?g|p = hyg is equivalent to solving the PDE

1- |dp|2p2g

(2.8) 2(V2gp) (W) + pldwl>, = ;

with initial condition w|yx = wo where hy = e?hg (see [4, Lem. 2.1]). The construction of
a solution is possible in regular neighbourhoods M, and is unique since the equation is non-
characteristic there. In My, we write the equation in coordinates and this gives

200w +t ((Ow)? + [0uw]? + (£ + [uf*) ~2[02w[*) =0

in view of the form of the metric (2.2) there (recall that p = ¢ in M}). Taking this equation at
t = 0, we see that d;w|;—o = 0 and by differentiating it N times with respect to ¢ and setting
t = 0 we see by induction that all the values & w|;—o in {u # 0} are determined by wl|,—¢ for
j < N+ 1. In particular when j is odd this is 0 (see again [4] for a similar study). Since
wy € C2,(0X), we can write it locally under the form (2.7) which shows by induction that
dlwli—g € C.(0X); the essential arguments to use are that the singular term in the equation is
killed by |0,w| = O((¢? + |u|?)>°) and the properties of C22 (0X) discussed previously. By using
Borel lemma, we can construct a smooth function w in a neighbourhood of X in X with those
derivatives, thus w satisfies (2.8) modulo O(p>°) and this proves that there exists a function p
which satisfies the Lemma, the uniqueness of its Taylor expansion with respect to p at 9X is

clear from the construction. O

We will now use this function to obtain a certain model form of the metric near X. Using
again the same arguments than [4, 9], it suffices to consider the collar neighbourhood [0, €)s x X
of 9X induced by the flow ¢ (m) of the gradient V 2,/ with initial condition ¢g(m) = m for
m € 0X, that is the diffeomorphism

@ : (s,m) — @s(m)

from [0,€) x X to its image. We consider the function w constructed in the proof of previous
Lemma (thus p = pe®) and since 9sp(ps(m)) =1+ O(p>) =14 O(s*°), we deduce

p=se ¥ +0(s>).
Now, we remark that the identity |V 2,552, = 1 + O(s*) implies that s?g can be expressed by
s2p* g = ds® + h(s) + O(s™)

in [0,€) x X where h(s) is a smooth family of tensors on dX which are positive for s > 0,
with fL(O) = hg positive on B. We have seen in the proof of last Lemma that, in My, w is
an even function of p = ¢, thus s is an odd function of ¢ and ¢ is an odd function of s. Let
(v,¢) € R"* x T* some coordinates on X near cx. We have ¢g(v,¢) = (v,¢) and using the
form (2.2) of g

te™ v
———0,w.0,
(€ + ul?)? =

then the function ¢(s, v, () = ¢s(v,() can be locally written near ¢ (in coordinates (t,u, z))

0s0s(v,¢) = Vjegp = e “(1 + t0;w)0; + te™“ Oyw.0y +

(2.9) o(s,v,() = (t:se*“—l—tl,u:v—i—sul,z:C—i—szl)

t1 € C®(X), ueCx

acc

(X), =21 € CX(X).
Using that w is even in s and ¢t odd in s, it is straightforward to verify that u, z are even in s.
We deduce that locally

(2.10) dt =11(s,v,ds,dv) + O(r®), du=Ils(s,v,ds,dv) +O0(r), dz=d(+ Or).
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for some smooth tensors l1, 2, even in s. We want now to write the metric g in these coordinates
(s,v,¢). By looking at the expression (2.2) and using (2.9), (2.10) with the properties of C$5.(X)
discussed in previous section, we obtain that

(2.11) h(s) = hyi(s,v,dv) + ha(s, v, z,dv,dC) + e2*r2d¢? + O(s™)

where hq, hg are smooth tensors, even in s, such that hy = O(r2°). Since p — s = O(p™), we
can replace s by p in (2.11) and we have the same expression for the metric. Now in a regular
neighbourhood M,., there exists coordinates (z,y) € (0,€) x R™ such that g = x72(dz? + dy?),

thus by writing p = ze? for some 6 smooth, we have by mimicking last Lemma that (from (2.8))
20,0 + 2((0:0)* + 0,0/*) = O(z™)

with 0],—o = 0y satisfying ho = e2%0dy?. Exactly as before for M}, this gives that p is odd in z,
thus x is odd in s and y even in s, which easily implies that ﬁ(s) has an even Taylor expansion
in s at s=0.

This discussion proves that there exists a collar neighbourhood (0,¢€); x X of X in X such
that

dp* + h(p)
9= "=

(2.12) 3

+0(™)

for a smooth family of symmetric tensors ﬁ(ﬁ) on X with an even Taylor expansion in p at
p = 0, positive for p > 0, fL(O) = hg being positive on B and with the local expression (2.11)
near the cusps cx. Actually, the evenness of the metric in p is a consequence of the constant
curvature of X and is studied in detail in [9] for asymptotically hyperbolic manifolds.

Is is quite direct and similar to a result of Graham [4] to check that for two functions pi, p2
satisfying Lemma 2.2, then for all j € N

2j . 2j «
5pfl)2|a)’( =0, 5p§ﬂ1|a)’( =0
which will be useful to define renormalized volume in an invariant way.

There is however a very special case of boundary defining function p which can be chosen to
put the metric into a simpler form. It is obtained by taking p = t in the neighbourhood M, of
the cusp ¢, and extending it to a neighbourhood of X so that it satisfies |dp| s2g = 1 in this
neighbourhood and p%g|s5x = ho. To prove the existence of such an extension, it suffices to go
back to the proof of Lemma 2.2 and we see that this amounts to solve the PDE (2.8) without the
error term O(p>°) and with initial condition w|yg = 0. Since the equation is non-characteristic
out of the cusp ¢, there exists a unique solution w in some neighbourhood {p < €,é < r.} (for
some §,€ > 0) of the boundary 0X avoiding the cusp ¢, and it is clear that w = 0 satisfies the
equation in Mj,.

For what follows, we will often work with this boundary defining functions p and by convention
we will note it p, forgetting the previous choice of function p. Then we have in some collar
neighbourhood (0,¢€), x X of X

dp*> +h
g = (p)

(2.13) p

for some smooth family of symmetric tensors h(p) on X, depending smoothly on p, positive for
p > 0, with h(0) = hg positive on B and satisfying

hp) = du® + (p* + |uf*)*dz?

in each M.
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2.6. Geometry of B. To study the scattering operator and to define the class of pseudo-
differential operators which contains it, we can consider the manifold B as the union of a compact
manifold &, (covered by the charts B,.) and n — 1 ends &4, ..., &, with & diffeomorphic to

{(y,2) ER"F x T* |y >1} C ¥}, = R" % x T*.

For simplicity, we will consider & as this last subset of Y. By using the radial compactification
in the y variable in each end £, we see that the manifold B compactifies in a smooth compact
manifold with boundary B, the boundary dB being a disjoint union on k = 1,...,n — 1 of
products 9&j, := Sk~ x Tk A boundary defining function of 9€ is given by v = 7., = 7. =
ly|~! and r. is a boundary defining function of dB. Note that 9B # 0X but dB is actually the
blow-up of X around the cusps submanifolds ci,...,c,_1. The structure of the compactified
manifold B near 0&y, is [0,1), x &) and J€;, is a fibred boundary in the sense that there is a
fibration (this is the projection here)

(2.14) b SVTRL Ty, — snTRL

The metric hy on B is not exactly a fibred cusp metric since too much decreasing at infinity
ho = dv? + v2dw?® + v*dz2.

¢ *ho

conformal to hg since this is the flat metric dy? + dz? on each end &;. Note that 7L0 in (0,1), x
Sn—k=1 x Tk is

For following purposes, it is also quite natural to consider B with the metric ﬁo =

~ dv? dw?

which is an “exact ®-metric” in the sense of Mazzeo-Melrose [18]. The volume induced by the
metric hg on B is finite whereas the volume of B with the metric hg is not finite.

3. PSEUDO-DIFFERENTIAL OPERATORS AT INFINITY

There is a natural way to define pseudo-differential operators on B using the euclidean struc-
ture Qf eagh end &;. Regall first from Schwartz theorem that for any continuous 1ine7ar operator
A : C®(B) — C~°°(B) there exists a unique extendible distribution ¢ € C*(B x B) (we
dropped the density factor for simplicty), called Schwartz kernel, such that

(A0,9) = (e, 0 ® ¢), Vo,¥ € C=(B).
Thus we will identify Schwartz kernel with its associated operator. We can define the space
U™l B) of pseudo-differential operators of order (m,l) € R? as the set of linear operators

(3.1) A:C®(B) — C~(B)

such that in each compact coordinate patch on B (those are the B, of previous section), A has
a distributional Schwartz kernel of the type

(32) Afwsw) = [0l g
with a(w, ) a symbol in the coordinate patch, i.e. a(w,§) is smooth and
10207 a(w, &)] < Cap(1+ (€)™,

whereas on the end €, with coordinates w = (y, z) € R"~* x T*_ the distributional kernel of A
is of the form (3.2) but with a(w; &) smooth and satisfying

1050207 aly, 2,6)| < Ca,p(1+ Jyl) =1L+ g™ 11,

It is not hard to check the mapping property (3.1). One can also define classical (or polyhomo-
geneous) pseudo-differential operators of order m, ! € C as operators in WR(™)-R(1)(B) with the
symbol in (3.2) satisfying (for all k)

aly, z,€) = lyl~'lel™allyl " y/lyl, 2, €] €/1€) - for [ > 1
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The manifold 6X

the cusp ¢ = St

& The manifold B
D

Do

B with the metric hg

FIGURE 1. The infinity B of the quotient X = I'\H? where I is a Schottky
group gluing D3 «— D4 and Dy «— Dy; B is a manifold with fibred boundary.

for some @ € C>([0,1) x S**=1 x T# x [0,1) x §**~1), we will use the notation ¥"*(B). In
each end &, this corresponds in a sense to the class of pseudo-differential treated by Hormander
in the y € R"* variable (or the Scattering Calculus of Melrose [21]) but with the additional
compact variable z € T*. In particular, an operator A € ¥™!(B) can be defined in term of its
distributional kernel lifted from B x B to a blown-up version of this product. This is a standard
way due to Melrose to describe in details the various singularities of the kernel: we always have
the usual conormal singularity at the diagonal of X x X (like in the compact setting) but for non-
compact manifolds, it is important to include informations in the symbol about the behaviour
at infinity, these can be interpreted as conormal singularities for the kernel on the boundaries
of the compactification X x X (boundary of the compactification = infinity of the manifold).
Since singularities with different nature intesects at the diagonal of the corner X x 90X, it is
convenient to define a bigger manifold, the blow-up, where the kernel is more readable.

The blow-up here is slightly different from that of Scattering Calculus, it is in a sense the
scattering blow-up defined in [21] but only in y variable. This blow-up corresponding to manifolds
with fibred boundaries is explained in generality by Mazzeo-Melrose in [18], it is achieved in
two essential steps. The principle is to start with the manifold with corners X x X and to
construct a larger manifold with corners where the phase of (3.2) defines a smooth submanifold
(“the diagonal”) intersecting transversally the boundary of this larger manifold at only one
hypersurface.
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For what follows, we will use part of the notations of [18]. The manifold B x B has 2n — 2
boundary hypersurfaces Ly = 0&, x B, R = B x 9&;, for k = 1,...,n — 1 and we have
LrnkL; =0if j # k, the same with R and finally L, N R; = 0&, x JE; is a corner of
codimension 2. We need to define the first blow-up of B x B by taking the “b”blow-up

B Xp B = [B X 3;681 X 881; .. .;68,1,1 X 8871,1]
which means that we blow-up successively each corner 9&;, x 9&, of & x &, C B x B. This is
done by replacing in B x B the submanifold 9&;, x O, by its spherical normal interior pointing
bundle in B x B. The blow-down map is denoted
ﬂb:BXbB%BXB.
The manifold B x; B has 3n — 3 boundary hypersurfaces, the first 2n — 2 are the top and bottom
faces
=B (B x0€&), Tj =080, xB), k=1,...,n—1.
The new ones are called front faces (¥} )g=1,...n—1 for the b blow-up and F), is the spherical
normal interior pointing bundle of 9€ x €, in B x B and is mapped by 3, on 0 x 9€. Note
that F), is diffeomorphic to [—1, 1], x € x OE);, using the function 7 = Z;—Z: (see Melrose [20]),
thus we will identify them.

The closure Dy, := ﬁl;l(DB) of the diagonal Dg of B x B meets the boundary of B x; B only
at the (interior of the) hypersurfaces &}, and it does transversally at a submanifold denoted 9D,
The blow-up of B x;, B along dD;, would give the blow-up associated to the Scattering Calculus
but it turns out that the second kind of blow-up we need for our purpose are the successive
blow-ups of B x; B along the submanifolds

O, = {(0,m,m’) € F, = [—1,1]; x Ok x OEk; pr(m) = (M)},
with ¢ the fibration of (2.14), this gives the manifold with corners
B x¢ B:=[Bx,B;®1;...;®,_41].
The blow-down maps are
Bxe B2 By, BLYBXxB, foi=Pobos.
The boundaries of B x¢ B are the top and bottom faces
Br = B3 (B x 0B}), T =P (0B, x B)

the front faces of the b blow-up

Fi = Bamp(F7 \ k)
and the front face of the ® blow-up is the normal spherical interior pointing bundle of ®; in
B x, B _ _

Ik := SNL(Py; B xp B).

We will denote by pg,, p8,, pF,, p7, some functions which define the respective hypersurfaces:

{p7, =0} =Tk, {pz,=0}=Bk, {ps,=0}=F, {ps, =0} =7

The closure Dg := (35" (Dp) meets the topological boundary of B x g B only at (the interior of)
the hypersurfaces Jj, and it does transversally. One can thus define (using extension through the
boundary hypersurface) the set I™(B x¢ B; Dg) of distributions classically conormal of order
m to the submanifold Dg.

The important point is that 3 is a one-to-one map between C*°(B x B) and C*°(B x ¢ B), this
induces a one-to-one map between their respective duals, which allows to indentify continuous
operators (3.1) with their Schwartz kernel lifted to B x¢ B. With this identification, we define
the space

Uipl(B) := {K € ph, I'"™(B x¢ B; Dg);Vk, K = 0 at Fx, Ty, By}
for m,l € C, where = means equality of Taylor series. This forms the (classical) “small ®-
calculus” and it is not difficult to check that \I/Z”’l(B) = \Ilgl’l(B) with the notations introduced
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Dg
Tk

N

P

By

FIGURE 2. The blow-up of ®;, in B x; B

before for the standard pseudo-differential operators on B. We sketch the proof of the sense
vH(B) ¢ ¥™L(B). Recall that

cl
/!
V= |y|717w = _7U/ = |y|/7wl = _,7272
|y /|

give some local coordinates near the corner € x €, on B x B and

!/

5= 20w, 2 with ] = |of] = 1

give some coordinates on B x; B near the front face ¥, (valid out of B}), in particular ®; =
{V=0s=Lw=uw} IfAc \Ilg’l(B), the expression (3.2) with w = (y,2),w’ = (¢/,2’) can
be put in these coordinates

(33) Afw;w') = / TN OG0 2y 6 ) dEdSe.
It can be checked that <t —wj, wj,v', 2, 2" for i = 1,...,n —k give some coordinates near Fj, N @y,

and ®; = {% —w' = 0}. The functions (w; — sw;)/(sv’) lift under g to some functions Wj
which are smooth near Ji \ (Jx N Fi) and we have near Dg NI

De={Wy=-=W,_p=0;2=2"}, Jp={'=0}
in coordinates W := (W1y,..., Wy_),w',v', 2, 2" with ), wf = 1. This gives in (3.3)

!
Alws ') = /ez(W.ﬁlJr(zfz Mz)a(W i %72;51752)6151(552

with {W = 0} = Dg. This last expression shows that A(w;w’) has a classical conormal singu-
larity at Dg of order m. Near the front face Ji, that is when v' — 0, then v’_la(W;C“’/ ,2;€) is a
smooth function near Dg NJj. Using other systems of coordinates covering J; NFy, one easily see
that 05 (A) vanishes at all order at Fj, (using integration by parts in oscillating integrals and the
“polynomial growth” of a(w,&) in |w|) and that pj_klﬁg,(A) € I"™(B xg B;Dg). The vanishing
of (3.3) at {v/ = 0;|w — sw'| > €;1 > s} comes by integration by parts and shows the vanishing
of 03 (A) at all order at the boundaries near F N Ty and the behaviour near Fi N By, is similar.
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Finally the vanishing at T and By far from Fy is again a consequence of non-stationary phase
(3.2).
The converse W5"'(B) C \IJZ”(B) is essentially similar.

Now one can define the “full ®-calculus” by considering the set of operators (identifying lifted
kernels and operators)

(3.4) vt B) =By + [ (e )PP C™(B x4 B)

F=33,7,B
k=1,...n—1

E={E(T),E(B1),E(%1),E[1),..., E(Tn-1), E(Bpn-1), E(Fn-1), E(Jn_1)}, E(Fr)eC
i.e. we allow some classically conormal singularities at all faces. For operators we deal with,
the conormal singularity at the front faces J; will be of the same order for both terms, that
is | = E(J) = - = E(Jy_1), hence we will write ¥3"*(B) instead of W""*(B). Finally, a
subclass with much more regularity will appear as error terms in the expression of the scattering
operator, those are operators with kernels of the form

H(rck)a’“(r’ck)bka(aX x 0X).

k
where ag, by € C and 7, (w,w') := re, (w), 7l (w,w') :=re, (w'). Recall again that 0X can be
viewed as the smooth compact manifold without boundary obtained from B by collapsing each
€ =~ SR 5 Tk 10 ¢, (0€)) = cx ~ T".

Actually, since we forgot the density factors for the kernels, the orders of such pseudo-
differential operators depend on the density we use to pair two fonctions in C°°(B), thus it
will be necessary to precise it.

4. RESOLVENT

In this section we analyze the meromorphic extension of the modified resolvent
R(\) == (Ax —A(n—X))!

and more precisely the necessary informations we shall need to define Eisenstein functions,
Poisson operator and scattering operator. The meromorphic extension of the resolvent is proved
in [8] by parametrix construction. Using also spectral theorem, this can be summarized as
follows:

Theorem 4.1. There exists C > 1 such that for all N > 0, the modified resolvent R(X) on X
extends meromorphically with poles of finite multiplicity from {R(X) > 5} to {R(A) > & —CN}
with values in the bounded operators from p™ L?(X) to p~NL?(X). The only poles of R()\) in
{R(X) > §} are first order poles at each Ao such that \o(n — Xo) € 0pp(Ax) and with residue

Resy, RO = (X —n) 7' Y ¢y ® ¢, d5 € PR Coei(X) € L(X)
j=1

where (¢;)j=1,...r 15 an orthonormal basis of kerp2(Ax — Xo(n — Ao)).

Actually the form of ¢; is a consequence of (4.20) which will be proved in this section.

To construct the Poisson operator, we need more precise information about the mapping
properties of R(\) and about its Schwartz kernel structure near infinity. One of the main points
is to analyze the Schwartz kernel of the meromorphic extension of the resolvent

Rx, (A) = (Ax, = An =)~

for the Laplacian Ay, on the model spaces X = ['x\H"*!, and its mapping properties.
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Recall that X is a compact manifold with boundary 0X, hence X x X is a manifold with
corners on which we define the functions

(41) ,O(U), U)/) = ,O(U)), p/(’LU,’LU/) = p(w/)a RC(U), U)/) = RC(U)), R/c(’LU,’LU/) = RC(U/)'
Since p, R, are well defined on M}, via Iy, the functions (4.1) can also be defined on My x Mj.
Lemma 4.2. Let 0,0 € C=(X},) be functions with support in My and constant near cy, then
the extended resolvent Rx, (\) satisfies

(4.2) ORx, (N0 : C(Xy) — p*R;71C.(Xy)

for A ¢ (% —Np) if n —k+1 is odd and for X € C otherwise. If moreover 6,0' are chosen
satisfying supp(f) Ncy = 0 and 66’ = 0 then

(4.3) 0 Rx, (N0 € p*p RI1C®(X), x Xi), O0Rx, (N0 € p*p R C®(Xy x X»)

Proof: clearly, it is enough to show the lemma with 6, ' which are independent of the variable
z € T*. We recall from [8] that the explicit formula for the resolvent on X}, can be obtained by
Fourier analysis on the z € T* variable, Rx, (\) admits a meromorphic continuation to C and
its Schwartz kernel can be written

(4.4) Rx,(N) = Y e“mC="R, ()

mezZk

for \ ¢ (g —Np) if n — k+ 1 is odd and for A € C otherwise, with

(4.5) RN xyy;a',y') = Ck/ e * Rynn (N2, y, 232y, 0)dz

Rk
where Cj, is a constant, Ryn+1()\) is the kernel of the resolvent of the Laplacian on H"*! and
wm = 27 (A; " )m. Note that R,,(\) can be considered as an operator -a resolvent- on H"*+1,
We have seen in [8] that if

zx’

2 12 2 2
= r‘i=ly— +axt 427, d:=
T 2 |22 ly — 9|

zx’
2
1

=) with a conormal

then for all N € NU oo there exists a function Fi(A,7) smooth in 7 € [0, 5

singularity at 7 = § such that
N—
Rygner (N z,y, 2274/, 0) = 7 a; (N T + 2N v (N, T)

Jj=0

=

for some «;(A) meromorphic in A (with only poles at —Nj if n + 1 is even) and if N = oo,
Fo (A, 7) = 0 and the sum converges locally uniformly if 7 # % (see also [12] and [23, Appendix
AJ). Thus by a change of variable w = z/r in (4.5), one has as in [8, Sect. 3.1]

N-1

2\—1
(W6) RN =@ 3 @I F () + TN [ i vt |27

d
Py

§=0
with
Fja(u) i= Chy (N5 Ky e gi(ul), Fja(0) == Dy (M)
K(z) = [, cosh(st)e™* cosh(t) gt being modified Bessel function, C, ;(\) some holomorphic func-
tions and Dy, ;(\) some meromorphic functions in C with only first order poles at & —Ng if n—k+1

is even (in fact we have Ro(\) = (z2”)% Rygn—rs1 (A — £)). The sum (4.6) with N = oo is locally
uniformly convergent in {d < 3,0 < r}.
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We first show (4.3) using these explicit formulae. We will better use the compactification
coordinates (¢,u) on My, the functions r and d become
! 2 t'2 a2
(47) d= I J L e L S
lu—w'|? + 82+t (2 =+ [u) (" + [u'[?)

On the support of ORx, (\)¢’ we have 12+t + |u — /|2 > e and d < 1 — ¢ for some € > 0 since
00’ = 0, thus (4.6) with N = oo is absolutely convergent there and r — +o0o when 2 + |u|? — 0,
that is when we approach the cusp submanifold ¢; with respect to variables (¢, u). Since Bessel’s
function K,(z) = K_s(z) and all its derivatives with respect to  vanish exponentially when
r — 00, the kernel

> Ry (Ve Dy
m#0

is in pAp’ARC_lCO"({Xk \ cx} x X) and can be extended to X3 x Xj with
ST R (N ) € A A0 (X x Xy)
m##0

vanishing at all order at (¢, x Xj) U (X x cx). Note that we have used that p =t in M. For
the term Ry(A), it is clear, using (4.6) and (4.7) that

ORo (N0 € p* o R, C®(X), x X)

which concludes the proof of (4.3) using the symmetry of the resolvent kernel.

The property (4.2) is more technical since it involves the singularity of Rx,(A) near the
diagonal. Let f € C*(Xy), with support in M. We first study for m # 0 the function
OR,, (N0 fr in My, where f,, = (f, e *)q, is the m-th Fourier mode on T* of f. We clearly
have f,,, € C=(H"~*+1) with

VI €N, |0% ] < Catlwm|™
with C,; uniform in m. For simplicity, we consider (4.6) with N = 0 and decompose
Fo(A,7) = x(M)Fo(A, 1) + (1 = x(7)) Fo(A, 7) =: Foi (A7) + Fo2 (A, 7)
with x a C§°(]0,1/4)) which is equal to 1 near 7 = 0. The integral
O(t,uw)0' (', u’)rkd)‘/ e rem (1 4 2)2) " Ey 1 (N, d(1 + |2)?) ) dz
Rn—k
is well defined for () > % and is equal by integration by parts to

2\—1
efi'rwm.zAi\/' <F071()‘7d(1 + |Z| ) )) dz

(4.8)  ky:= 9(’5’U)al(b‘l,u')(r|wm|)*2Nrkd>\/

L+ =P

for all N > 0. In view of the smoothness of Fy1(\,7) for 7 € RT, it is straightforward to see
that the integrand in (4.8) satisfies

N (Fo,l(A,d(l +12%)7)
: (14 [z[>)*
and is a smooth function of d for A € C\ —Ny, now integrable with respect to z € R* if
R(A\) + N > £ Now since f, (', u') = O'™), we have in H"=*+1 x Fn—k+1
107:,(d/6)0° | < Capalwm| ™ 107,d0° fru| < Capilwm|™
10770 fin] < Capa(8 + Jul?)~OHD 2l |7 102, (1 /82 + ul2)0F fin| < Caypilwm] ™

by looking at the expression of d,r in (4.7). For A ¢ —Nj fixed, we take N > 2|R())|, this
proves that

>‘ < CN(l + |Z|2)—§R(A)—N

N2 [uf2) M Ay fr ()TN W 2) 2 dt du

ank«#l



18 COLIN GUILLARMOU

is CN in (t,u) € H***! for 2M < N and all its derivatives of order a with |a| < N are
bounded by CZ,N|wm|_l for all I, N,m. Thus for M fixed, by taking N — oo we see that this
function is smooth in H"~**+! and its derivatives are rapidly decreasing in |w,,|.

We now have to deal with the integral kernel

Ko = 0(t, u)9'(t',u')rkd>‘/ e Tem (1 4 22) "M Fy o (N, d(1 + |2)*) 71 )dz
Rn—k
and we will show that

() = /Hn—k+1 Koo fo (WY TR 4 2) % dt du!
satisfies
(4.9) frn € CEMET), |02, f] < Calwom| ™"
First remark that, since d < 3, we have 1 — x(d(1 + |2|?)™!) = 0 if |z| > C for some C > 0

depending on y. We use the change of variables s = t/t/,v = (u— ')/t in this last integral. By
elementary computations, it turns out that

d = (2 cosh(dgn—r+1(t, u; v, u/)))fl = (2 cosh(dgn-#+1(1, Ogn—&; s, U)))71

but Fp2(\,d(1 + |2]?)~!) is supported in {d > €} for some € > 0 depending on x thus it is
supported in {(s,v) € K} where K is a euclidean ball included in H"~**! (thus a compact of
H"—*+1). Moreover in the variables (t,u, s, v),

t t )
ko = 0(t, u)H’(—, u— —v)rde/ e rem (1 4 |2]2) A Fo.a (A, d(1 + |22) 7 d2gs
s S |z]<C

and all its derivatives with respect to (t,u) are in L*(K, s dsdz), this fact is proved by Perry
[23, Appendix] and is a direct consequence of the conormal singularity of Fy(A, 7) at 7 = % And

from the expression of r, we see that the derivatives of r or order a are bounded by Cyt=1~l¢l
for (t,u,s,v) € H"*+! x K. We deduce that

2\ %

) s~ tdsdv

Jortn (o ) () ()

is in C°°(H"**1) since f,,(t,u) = O(t*°) and K is compact. In addition, its derivatives of order
a are clearly bounded by Cy j|w,| ™! for all o, l. We have thus proved (4.9) and that

3" Ru(Nem =) f € A0 ().
m#0

It remains now to study 6 Rg(A\)0’ fo where fo := (f, 1) is the zeroth Fourier term of f. But
recall from [8] that Ro()\) acting on H"**1 is nothing more than the hyperbolic resolvent

U — —-v
S

Ro(Ast,ust'u') < i )gR ()\ F tyust! u’)
3 Uy Us = n—k+1 — 5wt .
’ () ) ) T2
for A ¢ (£ —Ng) if n —k+ 1 is odd and for A € C otherwise. Using the analysis of [17], we
directly obtain that

ORo(N)0' fo € p*RIIC(H" ™M) € p*RITCEEL(X5)

where the inclusion means: consider the function on X} as constant with respect to z € T*. As
a conclusion (4.2) is proved and the proof of the lemma is achieved too, at least for A\ ¢ —Nj.
The points at —Nj can in fact be treated by taking N > 0 large in (4.6) and essentially the same
arguments than for N = 0. O

Now we briefly review the construction of a parametrix for R(A) in [8, Prop 3.1 and 3.5] which
can be continued to infinite order (at least formally, the problem of convergence will be discussed
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later). This is obtained by localizing in the neighbourhoods near infinity M} and M,. One can
construct some operators €& (\) on My, (k=1,...,n—1) and €% ()\) on M, such that

(Aag = An = A)EL(A) = X" + K5 (),
(Anr, = A = A)EL(A) = x" + KL (V)
with K% ()), K% () having smooth Schwartz kernels KX (\;w,w’) and X7 (\;w,w’)) which
vanish at all order when p(w) — 0.
The first step of the parametrix construction of €X (1)) is to take a smooth function x% with
support in M}, which is equal to 1 in {22 + |y|> > 4} such that x%x* = x* and 1 — x} can be
chosen as a product (see the construction in [8])

(4.10) L= X1 (#,y,2) = VL (y)or(w)
independent of the variable on T*; then set

Eg()‘) = X]ZRXk ()‘)ka Kg()‘) = [AXIC7X]Z]RXI¢ ()‘)Xk
and we obtain (Apr, — A(n —A))EE(N) = x¥ + KF(\) as a first parametrix in the neighbourhood
M, of X in X. The next steps of the construction in [8, Prop.3.1] involve only some operators
with Schwartz kernels of the same type than K}(\) but with additional decay at 0X x X in
X x X. The part of the parametrix on M,. is done as in the work of Guillopé-Zworski [12] (and
more generally [17]) by using at first step

Eg()\) = XERHTL+1 ()\)XT, Kg(/\) = [AH"‘*’l;XE]RH"‘H ()\)XT

with a function x7 which is equal to 1 on the support of x" and which can be expressed as a
product x7 (z,y) = ¢} (x)¢} (y) in M,. The other steps of the construction in M, do not make
more singular kernels than K (\) appear.

The previous lemma allows to deduce the following

Proposition 4.3. Let 0,0’ € C°>°(X) constant near ¢ and such that supp(0')Ne = 0 and 60’ = 0.
Then for \ not a resonance we have

IR\ € R o prC®(X x X), 0RO € R, 'p o C(X x X)
and R(X) has the mapping property
(4.11) R(\) : C=(X) — R;1prC.(X).

Proof: if we carefully look at the expression of Ko () following [8, Prop. 3.1 and 3.5] and
we use previous lemma, it is not difficult to check that

(4.12) (1) KE (N (I € p=p " RLTHO®(X x X)),

(4.13) (L)* K (N (I)s € p2pC(X x X).

The second statement is essentially well-known (see [8, 12] for instance) and is a direct conse-
quence of the explicit formula of Ryn+1(A). To prove the first one, we essentially use Lemma 4.2.
It is not difficult to check (see again [8]) that [Ax,,x%] is a first order operator with smooth
coefficients supported in {1 < 2? + |y|?> < 4,0 < z} and vanishing at second order at z = 0.
Using the compactification coordinates (¢,u) of (2.1), it is also a first order operator with smooth
coefficients supported in {e < t? + |y|? < 1,0 < ¢} for some € > 0 and vanishing at second order
at t = 0, moreover its support does not intersect the support of x*. Therefore, using (4.3) in
Lemma 4.2 we easily deduce that

(4.14) (L) [ A, X5 R, X (k) € P20 RO (X x X).

Now the iterative construction of [8, Prop. 3.1] corresponds to capture the Taylor expansion of
this term at p = 0 and the remaining error terms at each step are like (4.14) but with more decay
in p; this finally implies (4.12). The terms appearing in the expression of €% () in [8, Prop. 3.1],
are thus x’szk x* plus some operators whose Schwartz kernels are in p)‘+2p'>‘R’cflC°° (X5 x Xk).
Therefore X ()\) satisfies exactly the same properties than Rx, (A) described in Lemma 4.2.
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By standard pseudo-differential calculus on compact manifolds we can obtain the compact
part of the parametrix £%_(A) so that

(Ax = An = N))EL(N) = x + KL (V)

with K?_()\) having a smooth kernel with compact support in X x X and €’_()) being a pseudo-
differential operator of order —2 supported in a compact set of X x X.
Thus we obtain

with
(V) =EN+ D (L) €N o),
a=1,...n—1,r
KooV =Ko+ D, (a) KGN La)
a=1,...n—1,r
Using Lemma 4.2, (4.12), (4.13) and the explicit formulae of the regular terms in €7_(\) in [8, 12]
it is straightforward to see that

(4.15) Koo(N) € p=p R.7IC™(X x X)

(4.16) 08c(NO € R 0%(X x X), 08N € p*p/ RO (X x X).

Moreover using Lemma 4.2 for the mapping properties of the cusps terms and [7, Prop. 3.1] for
the mapping properties of the regular terms, we have

(4.17) Eo(N) : C®(X) = pP*RIICZ.(X).
We can then write
(4.18) R(A) = Exu(A) = Eco (W) K oo (A) + Eoo(AN) Koo (M) (1 + fKoo()\))_lﬂCoo(/\)

and (14 Xo(N))™t =1+ F(A) with
FQ) = =Koo(A) = Koo (N F(A).

This proves that F(\) is Hilbert-Schmidt on p™ L?(X) for R(A) > 251 and N large, since Koo (A)
is. Using that p" R, ™" is bounded, the composition Koo (A)F(A)Kso () has a Schwartz kernel in
the same class than Koo (A) (and Ko (A)? t00). In view of its construction, we see that the range
of Ko (A) is composed of functions with support in X \ ¢, thus we can find a smooth function
0" € C>=(X) with supp(#’) Nc¢c = 0 such that 'Koo(\) = Koo(A). Thus if 6 is a function in
C*°(X) such that @ = 1 near ¢ and 60’ = 0 we have from (4.16), (4.15) that

(4.19) 000 (N Koo (N) € p*p " RIIRLT O (X x X).
Now we can for example use Mazzeo’s composition results in [15] to deal with the regular terms
(€10 + (1) EL (N (I)) Koo (N) € P (X % X).
Then (1 — 0)(Ix)*€E (M) (1)« Koo (N) can be studied exactly with the same method than for the
proof of (4.2) in Lemma 4.2 and we see that
(1= 0) (1) €5 (N (T)e Koo (A) € p*p RO (X % X)
and we conclude, using (4.19), that
€a(NKo(N) € P*pRIIRLIC™(X x X)

and the same holds for €., (M)XK (A)(1 + F (X)X (A). We have completed the proof in view of
(4.18) and the symmetry of the resolvent kernel.
Moreover we have also proved that

(4.20) R(A) = €xc(A) € (pp")M(RRL) T C=(X x X).
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The mapping property of R(}) is then easily deduced from (4.18) and (4.17) since X(A) maps
pNL23(X) to C*(X) if N > |R()\)| in view of the form (4.15) of its kernel. O

Remark: we did not study the convergence problem of the infinite order parametrix € (\)
but to avoid this problem, it suffices to take the parametrix €y () of [8] for large N and the
same proof actually would show the same results for R(\) but with C* regularity for some
M > N — CIR(N)| (with C > 0) instead of C*° regularity. Since it is true for all N, we get the
same results.

5. POISSON OPERATOR, EISENSTEIN FUNCTION

5.1. Poisson operator. Using the product decomposition of the metric in Lemma 2.2, an in-
dicial equation for the Laplacian and the mapping property of the resolvent, we can construct a
Poisson operator following the method of Graham-Zworski [7].

Actually, we now work with the special boundary defining function p but every other choice

of boundary defining function p € C3.(X) defined in Lemma 2.2 would induce an equivalent

(but not the same) construction for the Poisson operator. We will simply add the necessary
arguments when the generalization is not transparent.

With the metric under the form (2.13), the Laplacian is

(5.1) Ax = (o0, + iy — STe(h™(p) D, (p))0*By + 9B
In the neighbourhood Mj of the cusp ¢ this gives
Ax = —(p0,)? + npd, — 2k(p* + |ul*) " p0, + p*Anp)
with h(p) = du® + (p® + |u|?)%2dz?® a metric on {0 < |u| < 1} x T¥, and by an elementary
computation we obtain
(5.2) RAXRY = —(pd,)? +npd, + p*(Ay + (p* + |u*) 2A,)

where A,, A, are the flat Laplacians on R?~* T*. Similarly with a function p of Lemma 2.2 we
have

Ax = —(p0)? + s — 5Teh ™ (5).05h(3)F*05 + 7 Dy + OG5,
and in coordinates (p, v, () near cg, we see from (2.11) that
RAxR. = —(p05)* +npds + Pr + Po+ p*e”*r 1 A¢ + O(p™)
for some differential operators
Py = Pi(p, v, *0p, pBu),  Po = Pa(p,v, ¢, pdu, pOc) = O(r°)

of order 2, with P, (resp. Pp) having smooth coefficents on X (resp. smooth outside c;). By
making the same change of coordinates (2.9) in (5.2), it would give some differential operators
with smooth coeflicients at ¢, except the term with A thus P; has to be smooth at cy.

We now use Graham-Zworski’s construction [7] and we refer the reader to their paper for
additional details. If f € C25.(0X) we deduce from (5.1) and (5.2) the indicial equation in

{p<e}
(5.3)  (Ax = A =N)p" MR —j2A —n— )" MRS € ptTMIHIRIICR(X).

Here, the key fact is that the singular term r_*A, applied to f € Cor (9X) gives a functions in
C°(X) by (2.7). Therefore for all f € R;71CS.(0X) one can construct by induction and Borel

acc

lemma (see again [7]) a function ®(\)f € p" AR;1C,(X) for A € C\ §(n + N) such that

acc

(Ax = A(n = A)eA)f € C=(X), p "N f|p=0 = /.
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By construction, we have the formal Taylor expansion

(5.4) QNS =p" > pYeiaPinf, Vf € C(0X)
j=0

where P;  is a differential operator on B which is polynomial in A and
TA—2-7)
= (o2

G = Vo
Now we can set for A ¢ (n+ N) and A not a resonance
(5.5) P =2 f = RA)(Ax = A(n = A)2(A)f
which satisfies
(Ax — Al — \)P(N)f =0
PN =p"E\ f) + G, f)
F(\ f),G\ f) € RMOX.(X)
E lp=0=f
using Proposition 4.3. We have defined a family of operators

PN : RN Ceo(0X) — p" MRINCRA(X) + p R Cee(X)

and we will now prove the uniqueness of an operator satisfying (5.6) in {®(A) > % }. The principle
is the same than in [7]: if #(X) > &, A not a resonance and P () f, P2(A) f are two solutions
of (5.6), then the previous indicial equation shows that P1(A)f — Pa(A)f € p*R;1C=(X) but
this function is in L?(X) using (2.6) so this must be 0; to treat the case R(\) = %, we use a
boundary pairing Lemma like Proposition 3.2 of [7]:

(5.6)

Lemma 5.1. Fori=1,2, let u; = p" *F; + p*G; some functions satisfying
(Ax — An—N)u; =r; € C°(X)
with F;,G; € R7'C>(X), then we have for R(\) = % and X # %

/X (w75 — 1173) dvoly = (2A — n) /B (Fil5Fal5 — G |5Caln) dvoln,
Proof: we apply Green Lemma in X, = {p > €}
(5.7) /X (u1m2 — ugr) dvoly = e‘"“/ (1012 — U20pu1) dvoly(e
and we will take tlie limit as € — 0. Using the as;r;ptotics of uq,uy we get
10tz — w20,u; = (2A —n)p" N1 Fy — G1Ga) + p"(G10,G2 — G20,G1 + F10,Fs — 50, Fy).

Recall from (2.5) that dvol,) = Re(€)?p1gx with Re(€) = (Ju?> +€%)7 in the neighbourhood By,
of the cusp submanifold ¢, so the only terms in the right hand side of (5.7) for which the limit
are not apparent are

€ / (G10,G2 — G20,G1) dvoly(e), € / (F10,F; — F20,Fy) dvolye.
p=¢ P

=€

The study of both terms when € — 0 is the same and can be clearly reduced to the limit of
(5.8) / / G (e, u, 2)edGa(e, u, 2)([u)® + €2)*dugn-rdzpn
Tk J|u|<1

when € — 0, G;(p, u, z) being the function G; in the coordinates of the neighbourhood By, of cy.
Using that on G; € R, *C°°(X), it suffices to show that the limit of

/ D[l + ) F]([ul? + ) % dugo_
Ju|<1
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is 0 when € — 0 to prove that the limit of (5.8) is 0. Now this last integral is equal to
1 0o
C/ E(r? &)kl < Ce/ (1+r*)"tdr
0 0
for a constant C, this finally proves the lemma. O

Now using this lemma with us = R(n — Ay for ¢ € C>°(X) and u; = P1(N)f — Po(\)f this
proves that (uy, @) = 0 for all ¢ € C°°(X), thus u; = 0. As a conclusion, we have

Proposition 5.2. For R(\) > 2, A ¢ $(n+ No), A(n — \) € 0p,(Ax) there exists a unique
linear operator
P : R1C(0X) — p" ARICE(X) + p R O%(X)

analytic in X\ and solution of the Poisson problem (5.6). It is given by (5.5) and called Poisson
operator.

By (5.5) it admits a meromorphic continuation with poles of finite multiplicity to C\ 2 (n+N).

5.2. Eisenstein functions. In this part, we define Eisenstein functions as a weighted restric-
tion of the Schwartz kernel of the resolvent at B x X and we prove that they are the Schwartz
kernel of the transpose of the Poisson operator.

As a consequence of Proposition 4.3 and (4.20) we first obtain the

Corollary 5.3. The Eisenstein function E(\) := (p~*R(\))|Bxx is well defined, meromorphic
in A € C and satisfies

(5.9) E()\) € R.7'C™(0X x X).

Moreover, if Emoa(X) is the ‘model Eisenstein function’ defined by
Emoa(N) = (p € (V) Bxx

then

(5.10) E(N) = Emoa(\) € p M (R.RL)1C™(0X x X).

Let Ex, (\) be the Eisenstein function for the model space X}, obtained from (4.4) and (4.6)
(recall that p =1t = 7737y With our choice in Lemma 2.2)

A i 5
Ex,(Niy, 22y, 2) = [yl e r 2R N et BT By S (rfwn)
meZk

for y # 0, where by convention r = (|y — y/|> + 2/%)2 denotes here the restriction of r to 2 = 0.
In the compactification coordinates (¢,u) of (2.1) this gives

(5.11)  Ex,(\ju,z;t',u/,2") = AP 2R S 7 o /2) A Z eom =) By | (rlwpm))
mezZk
and r is expressed in these coordinates by
B t/2 + |u _ u/|2
Jul2(® + [/ [?)
Similarly let Egn+1()\) be the Eisenstein function on H"*!
T 50()\) a'?
2A=n)TA = 3) (Jy — y/|> + 2"2)*
Using the construction of the parametrix for the resolvent, we can deduce an expression for
the model Eisenstein function

(5.14) BnoaN) = D (ta) BoaN)Ta)-

a=1,...n—1,r

(5.12) r2

(5.13) By (Ny2',y) =
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with ¢ := Is|p=0 and in My, M,
Efnod()‘; Y, z; U)/) = ¢§(9)Exk ()‘7 Y, z; U}/)Xk(w/),

(5.15) mod(Xs 3 W) = VL ()70 () 7 B (s 50 ) ().
with p(x,y) = zv-(y) + O(z) in M, for some positive smooth function ~, in B, and ¢¢ defined
in (4.10).

We show that the Eisenstein functions can be viewed as a Schwartz distributional kernel of
an operator, that we also denote E()), mapping C*°(X) to C~°°(B), actually with weighted L?
continuity results.

Lemma 5.4. There exists C > 1 such that for |[R(X\) — 2| < C7'N,
E\) : pNL*(X) — L*(B)

is a meromorphic family of Hilbert-Schmidt operators with poles of finite multiplicity, included in
the set of resonances. Moreover for () < 0 and X not a resonance, (b, w) — p(w) " E(\; by w)
is a continuous function on B x (X \ ¢).

Proof: the terms E(A) — Epod(X) and (¢p)*E7 (A (Ir)« in E(X) clearly satisfy those two

properties, we thus only have to deal with E¥ _,()\) in Xj. From (5.11) and (5.12) we have
t/%()\)+N(|u U+ t/2)§7%(>\

)
T > 1Foalriwnl)

meZF
When 7|wp,| > 1, the classical estimate |K,(z)] < Ce= %) for R(z) > 1 (with C' > 0 depending
on s) on Mac Donald’s function shows that |Fy (r|wm|)| < e=¢"l“ml thus
> IRoatlen)l <Crt <o
|wm|>1/7
where C' depends on A. Therefore we get for N > 4|R(N)]
/%(A)+N(|u _ ul|2 + t/2)§7%(>\)

'Y Ex, (A, 250!, 2)| <

Jul*u

N
(5.16) |t Ex, (\)] < CF'* Jul Fu'| 7 + Y Foalrlwml).

/|k
|wm|<1/7

Jul*u
Now for r|wy,| < 1 we use the definition (6.4) of Mac Donald function K,(z) to decompose
Fox(r|wm|) under the form

Foa(rlwm]) = e(N)(@_x s (P wm?) + 227 |wm |2 oy _x (1 |wm *))

with p,(2z) smooth on = € [0,00) and ¢(\) constant depending on A. The term coming from
©_xyk is treated exactly as before (the part with r|w,| > 1) and for the term coming from
Pr_k We have

RO—K|, (12w |2 Cr=F 4 r2RN=26) ifR(N) - £ <0
2 (el or-y (" lm )1 < { Cr* it R(\) — £ >0

|wm |<1/7
for some C' > 0 depending on |A|. In view of (5.16), we conclude that for N > 4|R())| + 2k

)¢ Ex, (\)(I).| < Cp'* BB,
and this function is in L?(B x X) if N is large enough using (2.6) (here R, denotes the restriction
of R. to B x X). The meromorphic property and the finiteness of the poles multiplicity comes
from the discussion before the Lemma, using the formulae for the model Eisenstein functions
and the fact that the poles of the resolvent have finite multiplicity.

The second statement of the Lemma is essentially treated in the same way. Using that for

R(A) <0

r PR A (rwm]) = e (M oy Lk (P wml?) + lwm [P oy (P |wm )
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is continuous in (u,t,u') € {u # 0,u' # 0,t'* + |[u/|? < 1,|u| < 1} (the power in r~2*** being
negative) and that the sum Y r=2***Fy \(r|w,,|) is locally uniformly convergent in the same
set by previous estimates, we deduce that ¢’ _/\Exk (A u, z;t',4’, 2') is also continous there and
this achieves the proof. O

The transpose 'E()) is then well-defined from from L2(3) top~NL? (X) for some N depending
on X and its kernel is E(X; w, b). Let ¢ € C>(X) and f € C2°(0X) ~ C*°(B), then for R(\) = %
we use Lemma 5.1, identity R(\) = 'R(\) = R(n — \)* and Lemma 5.4 to deduce

/ P(PA)f) dvol, = (2A— n)/ f(pPA"R(n — N)g)|p dvolp,
X B

(2) —n) /B F(r RO)@)| 5 dvoln,

@r=m) [ FEN)) dvoly,
B
which proves
Lemma 5.5. The Schwartz kernel of P(X\) is (2A —n)E(X;w;b) € C*(X x B).

This also implies that P(\) admits a meromorphic continuation to C with poles of finite
multiplicity, and in particular it is analytic in {§()\) > £} except a finite number of poles at
points Ao such that Ag(n—Xo) € 0p,y(Ax). By mimicking the proof of Graham-Zworski [7, Prop.
3.5] it is straightforward to see that, for f € R;1C5%.(0X), P(% + k) [ has log(p) terms in the
asymptotic expansion and it is the unique solution of the problem

(Ax — & +E)P(2 +k)f =0

(5.17) P(5 +k)f =p2 FFL(f) + p2 T log(p)Gr(f)
' Fi(f),Gr(f) € R7'C(X)
Fk(f)|p:0 =f

The Eisenstein functions are linked to the spectral projectors (via Stone’s formula) of Ax in
the following sense

Proposition 5.6. If R(\) = 5 and X\ # § then
(5.18) R\ w;w') — R(n — Njwyw') = (n— 2)\)/ E(\;b;w' ) E(n — X\; byw) dvoly, (b)
B

where h = (p?>g)|g. Moreover there exists C > 1 such that for N large, we have
RA\) —R(n—)\) =2\ —n)'E(n — N E())
in the strip [R(\)| < C~YN as operators from pNL*(X) to p~NL*(X).
Proof: the proof of (5.18) contains nothing more than the proof of Theorem 1.3 of [3] or
Proposition 2.1 of [11] in a simpler case. Note that the convergence of the integral in (5.18) is

insured by (5.9) and (2.5). The second part of the Proposition is a consequence of the mapping
properties of R(A), E(X) proved before. O

Combined with Lemma 5.4, this relation implies that F(\) and R(\) have same poles, except
possibly at the points A such that A(n — A) € opp(Ax).

6. SCATTERING OPERATOR

Using notations of (5.6), we can define the scattering operator as the linear operator

S(A):{ RIC2(0X) — RIC2(5X)

acc acc

(6.1) —~  GODIs
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for R(A) > %, A ¢ 3(n+N) and X not a resonance. With (5.5), one obtains a meromorphic

continuation of S()\) to C. Like P()), the scattering operator certainly depends on the choice
of boundary defining function (here p), but any other choice p = e“p € C.(X) of Lemma 2.2
induces an equivalent construction and two corresponding scattering operators S(\) and S(\)
are related by the covariant rule

S(A) = e M 0S(N)elm Vw0 Wy = wlyx,

this is a trivial consequence of uniqueness of solution of Poisson problem. Therefore it suffices
in this section to deal with the special boundary defining function p.

From Lemma 5.5, (5.5) and (6.1), we deduce that for f € C>°(8X) ~ C°°(B) and R(\) < 0
62) SO = lmp (@A~ m)EO)S — B = (22— n) o™ (B )

which is well defined in view of the continuity of E(A;b; w’) proved in Lemma 5.4. As a conse-
quence the distributional kernel of S(\) on B is

SGBY) = (20— n) Tim (p(w') P E(sbiw))
which can be rewritten using the symmetry of the resolvent kernel as the restriction

(6.3) SO = @A = n)(p 0 T RO |p=p=o

for $(A\) < 0 and A not resonance. Moreover we deduce from (4.20) that
SO = (70 o (V)| p=p=0 € RZ'R,T'C™(0X x 0X)

which is easily seen to be compact on L?*(B) in view of (2.5), and this term extends meromor-
phically to C with poles of finite multiplicity.

We want to study the structure of the extendible distribution (6.3) on B x B, which continues
meromorphically to C; it suffices actually to describe the singular part (p=*p'~ )‘800()\))| p=p'=0
of S(A). To analyze this singular part of S(\) in the neighbourhood of the cusp submanifolds, it
turns out to be more convenient to work in the neighbourhood M}, with the coordinates (z,y, 2)
than in their compactified version (¢, u, z). Indeed we w111 see that, up to conformal factors, the
scattering operator for the model X = I'y\H"*! is A ~% Where again Y, = R"* x T* with
the flat metric. This is what Froese-Hislop-Perry used i 1n [3] in dimension 3.

Using Fourier transform in the (y,z) variable on X} we see that the Laplacian on X is
transformed into the one dimensional operator

P, = —20; + (n — 1)20, + 2*|m ?
with &, = (£, ws,). We easily deduce that the resolvent can be expressed by
Rx, (N w,w") (xz") Z/ Em-y=y'2— Z)Ggm(/\xx)df
meZ R =k

Ge,,(Nsa,2") = Kooz (|€nl2) -z (|6ml2") H (2 — 2) + Ka— 2 (|&n|2") -2 (|€n|2) H (2" — @)
with H the Heaviside function, (w;w’) = (x,y, z;2’,y’,2’) the coordinates on Xj x X} and
1,(z), K, () the modified Bessel functions. Therefore using that p = 77> and

2 v V » 2 _ v
T O, K) = g ()~ Lf2)

as z — 0, we obtain for #(\) < 0 (using {p =0} = {x =0} on B)

(6.4) 1,(2) =

_|y |2>\277>\ i - (y—y ,z—2" -z
05) Ex0y i) = mrpead 3 [ e 0o el P (6l
2 me7Z n-

w\:
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and
SXk()VyaZ;yIazl) = (2)\—n)[p( )7)\EXk()"y/ Z/'{E Y, 2 )]|w:0
n— (E )\ 1' —y' 2=z —-n
= 2 2y |2*Z/ Sl g, A dg
( o 5 meZ

where this last sum-integral is understood (by splitting the term with w,, = 0 and the terms
with wy, # 0) as the function on R’;*k x TF x RZT’C x TF

P TT0 - i
F(E—)\) |y y| 2>\+k+ Z/ etm-(y—v',2 z)|€m|2>\ n e
? m##0

which is continuous on {y # 0,3’ # 0}. This last function continues meromorphically to A € C
in the distribution sense thus
(6.6)

Smod(Ns ¥, 239, 2") = (o y) Epoa(Ny, 232, 2 )]lomo = UL (1) Sx Ny 239 2 W ()
continues meromorphically to C as a distribution. Note that the measure dvoly, on Y is

dvoly, = |y|~*"dydz.

-

To work on Y, = R? ™% x TF with the natural measure dydz corresponding to the flat metric ho,
we have to multiply the kernel of Sx, (A) by |y|~"|y’| ™, thus (6.6) can be rewritten, acting on
L2(Yy,, dydz)

n I'(2 -\
(6.7) S (V) = O [y AT Ty 79k with ¢()) 1= 2"_”(27,1)-
r(A—-3)
Note that it has poles at A = 5 + j (with j € N) with residue the differential operator on Y3
k ( 1)j+12 2 27 27,1,k 2
Resz 1(Smoa(A)) = W%&M A |y| P* on L7 (Y, dydz).

For the singularity of the kernel of S(\) in the regular neighbourhood B, on L?(B,,dvoly,)
(to see it acting on L2(Br,dvolﬁo) it suffices to multiply the kernel by (r.r.)") we define the
model scattering operator using (5.13)

_ 7 2T(\
Stmt1 (N3 y) == (2A —n)[2’ AEHnH()\; ;2 Y] |er=0 = 7(n)|y — /|7
'(A—3)
and we get from (5.15)
Y ()Y (')

6.8)  SroaNuiy) = [, y") EloaNsyi sy |er—o = St (N Y3y,

Yo (1) My (')A

which continues meromorphically to C with poles at 5 + j (with j integers) and residue

1)i+12-2
Resy s (Spoa(V) = 02T ¥ A
3G = 1!
With notations of (6.8), (6.6) we can now define the model scattering operator
(69) Smod()\) = Z (Lot)* gwd()‘)(La)*

a=1,...n—1,r
and we have
S(A) = S* (A € R7IR.TIC®(0X x 0X)
which is a compact operator on L?(B). From this study, it is straightforward to check that S(\)
is a bounded operators on L?(B) in {R(\) < 2} (and A not resonance).

We summarize this discussion in the following



28 COLIN GUILLARMOU

Lemma 6.1. S(\) is meromorphic in C as an operator acting on R;1C (X)), with Schwartz
kernel the meromorphic continuation from {f(\) < 0} to C of the dzstmbutwn

(X =) (™ RA))pxs € €72 (X x X)),
Its poles in {R(\) < 5} are included in the set of resonances and have finite multiplicity, whereas
the poles in {R(X) > §} are first order poles with residue

(_1)14’12*21

Resy,S() ={ — ag=or 11t =547 j€N
I, if o ¢ 5+N

where Pj is the differential operator on (B, ho) with principal symbol oo(P;) = |€ | , defined by
_ e,
gl =1t

and 11y, is a finite-rank operator with Schwartz kernel 2j ((pp') = Resx,R(X)) |Bxp satisfying
rank I, = dimkerr2(Ax — Ao(n — Ao)).

[Resz 1 jp *®(N)]]p=0 =

Proof: the meromorphic property of S(\) and its Schwartz kernel have been discussed, the
statement about the poles outside {R()\) < 4} is also clear by (5.5) . For the case of a pole Ag
with R(Ag) > &, the proof is the same than [7, Prop 3.6]. The fact about the rank of II, is
quite straightforward by mimicking the proof of [10, Th. 1.1]: we only need the indicial equation
(5.3) and that there is no solution of (Ax — Ag(n — Ao))u = 0 with v € C°°(X), this last fact
being already proved by Mazzeo [16]. O

Note that this Lemma also holds for any boundary defining function p € C.(X). The oper-
ators P; will be discussed in next section.

We now give functional relations for Eisenstein functions and scattering operator:

Proposition 6.2. If R(\) < 0, we have for w € X, V' € B,
BV w / SO B3 0)E(n — A: by w) dvoln, (b)

and there exists C' > 1 such that for N large the meromorphic identity
(6.10) EX)=—-S\NE(n -\
holds true in the strip —C™'N < R(X\) < % as operators from pNL?(X) to L*(B).
Proof: if for w € X fixed and R()\) < 0 we multiply (5.18) by p(w’)™ and take the limit
w’ — b € B, then we obtain the first result using the symmetry of the resolvent kernel (which

also induces the symmetry of the kernel of S(A)). The next part is just a meromorphic continu-
ation using mapping properties of E(A) and S(\). O

We deduce easily from this Proposition and Proposition 5.6 the

Corollary 6.3. If A is such that R(Ao) < 2, Mo(n — Ao) € opp(Ax) and S(X) holomorphic at
Ao, then Ag is not a resonance.

72;

Here is another inmportant property of S(\):
Proposition 6.4. For R(\) = %, S()\) is invertible on L?(B) and we have
SA)t=8(n—-X)=850\)"

Proof: the unitarity of S()\) on the critical line comes directly from the density of C*(B) C
C (0X) in L*(B) and Lemma 5.1 whereas the equation S(\)~! = S(n — )) is a consequence

acc

of the definition of S(\) and again the density of C22.(0X) in L%(B). O

acc
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We give a description of the scattering operator as a pseudo differential in the class defined
in Section 3 and characterized by the type of singularity of its Schwartz kernel on the blown-up
manifold B x¢ B.

Theorem 6.5. Let A & 5 + N and X not a resonance, then with definition (3.4), the scattering
operator S(A) is a ®-pseudo-differential operator on B of order

S(\) € U EX(B) 4+ (R.R.) ' C™(8X x 8X)
with respect to volume density dvoly,, where for k=1,...,n—1
Ex(Fk) = =2\ =k, Ex(Jx) = —4),  Ex(Tk) = Ex(Bx) = —k.

Proof: for technical reasons, we begin by working with the density dvolz0 and it will suffice
to multiply by the correct factors at the end. If n € C§°([0, 00)) is a function which is equal to
1 in a small neighbourhood of 0, we can decompose (6.7) as

—n -z A—z n
Stoa(N) = CVE I (n(A)AF + (1= n(av))AY, ) vty
on L?(Yy,dydz). The first term has a kernel

Tl B (R (ST

which is smooth for y, 3’ in R"~* and since it is the Fourier transform of a distribution classically
conormal to 0, it is straightforward to check that it can be expressed by

(6.11) GEWYE )P Y P RV Jy — o)

with F)(z) smooth on [0, 00) and having an expansion

o0
(6.12) Fx(z) ~ 2725y " a;(N)a

j=0
when 2 — oo. To describe the singularity of this kernel on the manifold B, we use near infinity
the polar coordinates v = |y| ™', w = y/|y|, v’ = |¢/|',w’ = ¢'/|y’|. Since |y —y'| = |2 — 2| we

deduce that the kernel (6.11)

712

w w

w
o v’ v

wh

’
)¢k(%)U72A+nU/*2>\+TLFA 1+

v

First, it is clearly smooth in B x B. By lifting | — |, v,v' on B x4 B we have that

(6.13) Bo™ | 4/1+

P3P, 05, € C(B xa B)

does not vanish on Fy, By, T and

(6.14) Ba” (0o, 552032 € O(B xa B)

does not vanish on Ty, By, Fi, Jx. From this and (6.12) it is straightforward to check that
—n A—F —-n n— n— — — M YOO [ D D,

(6:15) WLyl (A Ay PRy € (prpm, )" oy, T OB X o B).

.
To deal with the term % |y|?*~"(1 — n(Ayk))A;\,IjgwﬂyP)‘_”, we first analyze the operator
AR = E P T (L + Ay )N EgEfy A

For that we can begin to use a partition of unity (6;); associated to a covering by some euclidian
ball on T* and some functions 0, € C5°(T*) such that 6/ = 1 on the support of ;, then it is
standard to see that for s € C\ [0, c0)

(6.16) (Ayr +1—5)7"1 =ZOQ(ARn +1—5)"0; + k(s)
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K(s) = (Ayre +1—5) 7" Y [AL, 0] (Age + 1 — 5)7'0;.

The kernel k(s;y, z;y', 2’) of k(s) can be written as the composition
(6.17)  K(s;y,239",2") = (Ay, +1— 8)”/ wi(s;y —y' 2 — 2 ra(siy =y, 2/, 2" dy'd?
Yi
with
aa(s5Y.2)i= Y [ ORI L g )
meEZ R =k
Iig(s;y/ _ y//7 Z/, Z”) — Z[Az',gé(zl)](A]Rn + 1— S)_l(y/, Z/; y//7 Z”)oi(z//).
Since for some € > 0 we have [A,/, 0;(2")]0;(2") = 0 for |z — 2"| < e, it suffices to use the explicit
formula of the resolvent kernel of Ag» with Bessel functions to see that xo(s) is smooth and
satisfies the estimate

|0Y 1 Likia(s;Y, 2 2" < Chexp(=Co/R(5)(1 + |[Y]2))

for R(s) > 4 and some constant Cy, > 0. The kernel x1(s) is continuous and uniformly bounded

if p is large enough, moreover it satisfies for all N > 0 the estimate
|09 ka(s:Y, Z)] < Can (14 Y)Y

for some constant C, v > 0. Therefore, using all these estimates and change of variables
Yy =wu+yin (6.17), it is straightforward to check that x(s;w;w’) is smooth and satisfies the
estimate for all N > 0

(6.18) 102 ti(sw;0)| < Cowe™ CeREO (1 |y —y/) 7N,

for some constant Cy, n, CY, > 0 and using the notation w = (y, z),w’ = (v, 2’).
Let T" be the oriented contour in C defined by

1 - 1 P
L={5+re'fi00>r>0bU{gre " #:0 <r < oo}

As a consequence of (6.16) and using Cauchy formula, the kernel of A(\) is (with the notation
w=(y,2),w = (7))
AN w;w') = A (s w,w') + As( N w;yw'),

Ar(\wiw') = 9F )|y )y P ZG;(Z)Gi(z’)/ 6w (1 4 g B e,

n

As(Njwiw') = %(y)Iylz*’"wk(y')ly'lz*’"/FSA’%F»(S;w;w’)dS-

To analyze A;()), we use the polar coordinates v = |y|~!,w = y/|y|, v’ = [¢/|7 !, = '/|y'| in

the y, 3y variables and we have w —w’ = (& — £, z — 2/) which vanishes only (and at first order)

on the lifted interior diagonal Dg of B xg B. From the Fourier representation of Aj (s;w;w’),
we deduce that A (s;w;w’) is a distribution which is polyhomogeneous conormal to Dg of order
2)\—n, vanishes at all order on the boundaries Ty, By, F1 of B x B and has a conormal singularity
of order —4\ + 2n at Jj, (this last one coming from the term |y|>*~"|y/|**~™ as before):

By A1(N) € p; PP (B x¢ B Da).

The behaviour of Az(\) comes directly from (6.18) using the polar coordinates and (6.13) and
(6.14) as before: we see that

BaAz(N) € p3p%, P, 3, N T"C™ (B x¢ B)
thus
(6.19) BaA(N) € py AT P2 (B xg B; D).
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For N > R()\) — 5, we have

Staa(N) = c)VE " (n(2,) A5
with

n
2

+ (14 Ay ) 4+ (14 Ay V(L + Ay, ) ) pbly 2 #

o(x) = ﬂfiN((l —n(x —1))(x — 1)>‘*% —(1- n(m))af‘*%)

which is a symbol in (0,00) of order A — & — N — 1 in the sense that it has a support in [¢, 00)
for some € > 0, it is smooth and satisfies
0hp(a)] < Y1 + 2PN E TN
Hence following the method of Helffer-Robert [13], we have
— M 14+ Ay, )¢

where M|p](s) is the Mellin transform of ¢ defined by

M) = [ (e

@(1 + AYk) =

and which is rapidly decreasing on iR. From the previous study of (1 + Ay, )*~% and using
Mellin’s transform, we deduce that if B(A) is the operator

B(A) == 9Ly (14 Ay )N o(1 4 Ay )t [y
then its kernel satisfies

B\ w;w') = Bi(\wyw') + Ba(A;w;w')

Buww') = wE @Rl P S () [ V(1 + €
(L4 AN [P

57% . /
57 M[(p](s)/T k(T w,w")drds.

Bo(Aywiw') = yf () ly[ 0 () |y P
I

In view of the estimate (6.18) on x(7;w;w’) and its smoothness, we easily obtain that the kernel

By(\;w;w'), when lifted on B x ¢ B, has exactly the same properties than As(\;w,w’). For the
term B (A; w;w’) we can proceed as for A;(\;w,w’) and it finally shows that

6(1)*3()\) c pjfkfl)\+2nI2)\fnfl(B X o B,D(I))

Combined with (6.15), (6.19), this proves the Theorem after multiplying by the lift of (r.r.)™"
to return with the correct density. O

—1i00

Remark: As a consequence, we can obtain quite general mapping properties for S(A) (i.e. the
actions of S()\) on extendible distributions on B conormal to B) using general theory for those
operators, see for exemple Vaillant [26, Section 2.2].

7. CONFORMAL THEORY ON THE BOUNDARY

As explained by Graham-Zworski [7], there is a strong connection between scattering theory
on Einstein conformally compact manifolds (in particular convex co-compact hyperbolic quo-
tients) and conformal theory of its boundary. We check here that similar results hold in this
degenerate case.

First recall from Lemma 2.2 that for any ho = €2ohg € [holace, there exists a boundary
defining function p = e*p € C2.(X), unique up to C*°(X), such that w|y g = wp and which put
the metric under the almost product form (2.12). This gives a way to identify special boundary

defining functions of Lemma 2.2 with representatives of the subconformal class [holacc. Moreover
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we saw that the scattering operators S(A), S (M) obtained by solving Poisson problem respectively
with p and p (i.e. for conformal representatives ho and hg) are related by

(7.1) S\ f = e 0§ (N)emNwof,

In this sense, S(\) is a conformally covariant operator and by looking at the residues we have
the rule

A~ _n_

P = e(—3 j)“’OPje(%*j)wo

which also makes this differential operator being conformally covariant.

Let us now give a few words about conformal GJMS Laplacians. In [6], Graham-Jenne-
Manson-sparling defined, on any n-th dimensional Riemannian compact manifold (M, hg), a
family of “natural” conformally covariant differential operators (P;); with principal symbol Aflo.
We call P; the j-th GJMS Laplacian. They are defined for j € N if n is odd and for j < n/2
integer if n is even and natural in the sense that they can be written in terms of covariant
derivatives and curvature of hy and conformally covariant in the sense that the operator Pj
obtained with the same expression than P; but with a conformal metric izo = 2“0 hy is related
to P; by the identity

pj - e*(%Jrj)wopje(%*j)wO_

Moreover P; is Yamabe’s Laplacian and P, is Paneitz operator. If hg is locally conformally flat
and n > 2 is even, it is also proved in [6] that the P; can be constructed without obstruction for
any j € N, this is the case in particular of the conformal infinity of a convex co-compact hyper-
bolic quotients. Note that, since the expression of P; is local with respect to the metric, these
operators can also be defined on non-compact Riemannian manifolds. Graham and Zworski [7]
show that on asymptotically Einstein manifolds (X, g) of dimension n+ 1 (with X the conformal
closure), the residue Resz ;S (M) of the scattering operator obtained by solving Poisson problem
with boundary defining function x is P; on the conformal infinity (0X,2%g|ox) for any j integer
if n is odd (resp. for j < % if n is even). Actually, we learnt from Robin Graham that this also
holds for any j if n > 2 is even and if (X, ¢g) has negative constant curvature outside a compact
set, where in this case the conformal infinity is locally conformally flat. The reason, given in [5],
which makes this special case working is that there is no obstruction to construct a hyperbolic
conformally compact metric g on (0, €], x M with conformal infinity (M ~ {x = 0}, hg) for any
(M, hg) locally conformally flat compact manifold, and actually g is necessary given by

1
(7.2) g=2"2%(dx?® + hg — 2°P + x4(ZPh51P))

where P = (n —2)7}(Ric — (2n — 2) "1 Khg) is the Schouten tensor of hg, with K, Ric the scalar
and Ricci curvatures of hg. This is a consequence of the constant curvature equation.

Since in our case the metric on X = I'\H"*! is also hyperbolic, the curvature equation (which
is local!) implies again that the tensor h(p) in (2.12) has all its Taylor expansion with respect
to p at p = 0 determined by hg = h(0) if n > 2: the expression of h(p) is explicit and, like (7.2),

R 1 .
h(p) = ho — p*P + p*(;Phy ' P)

with P is the Schouten tensor of fLO.

If n > 2, we saw that the expression of Resx» 1 ;S() is obtained from the construction of ®(\)
exactly like in the convex co-compact case (the construction is local in term of ﬁ(ﬁ) thus in term
of hg). By equivalence of the construction of ®()\) in [7] and in our case, we obtain the

Proposition 7.1. The operator P; of Lemma 6.1 is the j-th conformal GJMS Laplacian defined
in [6] on locally conformally flat compact manifolds in the sense that it has the same local
expression in term of the metric hy.
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As in the work of Graham-Zworski [7], there is a way to recover the Q-curvature from the
scattering operator when n is even. Indeed the construction of the function ®(\) being entirely
local, the arguments of Graham-Zworski show that, with P;  defined in (5.4), then P; 31 can
be defined as a smooth function on B and satisfies

Pial=(n—2)@;x
with @; » a smooth function on B depending polynomially on A. Then one can define

(73) Q = Q%,n

and this function on B can be expressed in a natural way in function of the Riemannian tensor hg
and its covariant derivatives, with the same local expression Branson’s (Q-curvature on compact
manifold and for n = 2 it is the scalar curvature of hg. Moreover if BO = 2%} conformal to
ho, it is well-known (see for instance [7]) that its associated @-curvature is

(7.4) Q= e " (Q + Pywo).

We would like to show, like 7], that @ can be expressed by a constant time S(n)1 where S(n)1
has to be defined. It turns out from our previous analysis that if all cusps have even rank,

then R, € C2 (X) and thus S(A\)1 € R;71C2,(X). When a cusp has odd rank, we can use the

Schwartz kernel of P(\) and S()\) to deﬁne P(N)1 and S(M)1.

Theorem 7.2. For \ in a neighbourhood of n then S(A\)1 is an extendible distribution on B
depending holomorphically on \ and satisfying

Mie ] r?0>(B)+ R, Ci (0X).

k odd
Moreover the Q-curvature defined in (7.3) satisfies
P) 2 n
(7.5) Q= ( ) S(n)l.

Proof: the fact that S(A)1 can be meromorphlcally defined is an easy consequence of the
expression of S(\) near the cusp submanifolds in (6.7) since only the zeroth-Fourier term plays
arole in S¥ _,(\)1. The function 1 on L?(B) = L*(B, dvoly,) becomes 7" in L?(B, dvol;, ) then

Sk (M1 is the function

cE @)y A 2 (g 2k (1)

which, by using the variable u = —y/|y|?, can be seen to be

(7.6) el ~E (—u/|u2) AT (Jul " (—u/[uf?)).

This is clearly an element of R, 1C°°(0X) if k is even since |u|¥9)(—u/|u|?) is a smooth compactly
supported function in R"~*. Now if k is odd, this last function has a classical conormal singularity
at u = 0 of order k thus it is straigthforward to see via Fourier transform that (7.6) has an
expansion of the form

o0
"3 fiCu/ )l
i=0
for some f; smooth. Moreover S(A)1 is holomorphic near A = n since the residue Pz of S())
at n is a differential operator with no constant term (see [7]). We have proved first part of the
Proposition since the other terms in the expression of S(\)1 are clearly functions in R, 1C>(X).

To prove (7.5), we will use the same kind of arguments than [7, Th. 2]. We will show that
for A # n near n and ¢ € C>°(9X)

(7.7) /8 @A m)o(m) dvoly, (m) =
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w3

p" A ijcj)\/?(Pj)\l)quvolho +p / (S(\)1)¢ dvoly, + O(p"*7)
= X X

with O(p"+%) holomorphic at A = n and conFPo,n = 1, and we will show that P(n)1 = 1. This

implies (7.5) in the extendible distribution sense on B by taking the limit A — n in (7.7), ¢; A Pj »

being holomorphic at A = n.

Let €o > 0 and for all € € (0, ¢9] we define f. € C°(8X) which is equal to 1 in {r. > 2¢} and
0 in some small neighbourhood {r. < e} of ¢. We can also suppose that f. does not depend on
z € T* by taking € > 0 small and we define fy := 1 which is the pointwise limit of f. as € — 0.
Then we know from (5.4), (5.5) and the definition of S(\) that for A\ near n

(r8) POV =" Y piesaPinfe+ PSS+ O H)
7=0

for all € € (0, €o] (but not € = 0) and the O(p™*+2) is holomorphic in A = n since (cin)j<ny2, P(N)
are holomorphic and Res,S(A) = Res,(c, /2,3 Pn/2,2). One way to compute P(\)f for f = f.
with € € [0, €] is to use

PO . (w) = (2) — n) /B B b w) £ (b) dvoln, (b)

with the local representations (5.10). The terms involving E” (\) are standard and we have
an expansion for X\ # n but near n

wl3

19 [ BraOsbi) f(0) dvol, () € 5" 30 p O (0X) + pCX(0X) + 0" )
j=0

continuous in € € [0, €9] and the O(p"*+2) holomorphic in A = n. Now to deal with the term
[ Bhausbw)1.0) dvol 0
B

we use the fact that f. are independent of z € T* thus only the zeroth-Fourier coefficient in
Ex, (\) play a role and, using the formula of Ex, (A) in (5.11) or (6.5), we are lead to study the
function

He : (t,u) — |ul*t / = YR (/) fo

in {t? 4 |ul> < 1}. Let F.(v') = ¢k (—u'/|v|) f.(u)|u'|F and ¢ € C®(8X) with support in
{|u|* < 1}. Then for ¢ > 0,¢ > 0 we use Fourier transform in u € R*~* to get
(7.10)

/ H, (t, u)d(u, 2)dudz = d( / / P EEE Ky (HEDT(E) O F(Dlul*) (€, 2)déd=
Rr—k JTk R—k JTk

where K (z) is the modified Bessel function, d(\) is analytic and F means Fourier transform
in variable u. If € > 0 or k even, then F. is a smooth compactly supported function in R*~*
whereas if € = 0, Fy has a classical conormal singularity of order k at v = 0 thus its Fourier
transform in u is a polyhomogeneous symbol of order —n in € € R*F:

(7.11) F(E)E) ~ €17 1€ 70,(/kel), 0y € C=(sm k)

=0
and we deduce that (7.10) extends continuously to € € [0, €g]. In any case, we can use (6.4) and
the definition

o (i)j

I\(z) = (5)'\ j:ZO ],F()\i—]m
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to prove that (7.10) has an asymptotic expansion of the form

w3

(7.12) S ay (A / olul (AT F.) dvoln, + £*b(\) / olulF(AYE B dvolp, + O(t"+)
3=0

for A # n near n and where (a;(A));j<z and O(t"+2) are holomorphic at n and an/2(A), b(N)

have a first order pole at n. This proves with (7.9) that for A # n but near n, € € [0, €] and

¢ € C*(0X), the function

p— | (PON)S)(p,m)é(m) dvoly,(m)

ax
has an expansion of the form

3

2

o p* / f5a0 dvolp, +p / 50 dvoly, + O(p"*2)
0X

where f7 ,, g5 are some smooth functions in B and extendible distributions on B and the O(p"*2)
is holomorphic at A = n. Moreover it is important to note that all terms are continuous in
€ € [0, €] in view of the rapid decreasing of ¢ in the cusp. For € > 0, the expansion in (7.8)
shows that, in the distribution sense,

f;A = cj,)\Pj,)\fe g; = S()‘)fe
Thus for A # n fixed near n, we can take the limit as € — 0 in the distribution sense and using

the continuity of P(\), P; » and the fact that S(A)1 is the limit in the extendible distribution
topology of S(X)fe, we get (7.7) since we also have ¢ Py » = 1 by construction of ®(\).

It remains to check that P(n)l = 1. It clearly suffices to show that
(7.13) (P(n)1) — 1 € L*(X)

since P(n)1 and 1 are both solutions of Axu = 0 and 0 is not an L? eigenvalue of Ax. Let
J =[] be the integer part of 5. Then it is easy to check that there exist f; € C2°(0X) such
that

/ o (1 by w) dvolp, (b Zfrp € L*(X

We now consider (7.10) with A = n and we split the mtegral in two parts I1, Is corresponding to
{t|¢] < 1} and {t|¢] > 1}. Setting £ = rw with r = |{|, changing the variable R = ¢r and using
(7.11) and |K,,/2(z)| < e7¢% for z > 1 in I yields

|I] < tk/ / R e “B|F(p|ul* )( w, 2)|R"* " YdRdwdz
Sn—k—1 JTk

n+k
I¢llz2(5)-

To deal with I; we use for z € (0,1)

IN

K o(2 ZanJ + M(z) with M(z) = O(z7*1)
and the change of variables R = rt to deduce the expansion
I = XJ:tj /¢|u|*’€ff dvol,, + R1 — Ry
for some f”C € C*(B) _

) and
—n+k R n—k—1
=t M(R )?(FO)( w)F(o|ulk )( w,z)R dRdwdz,
Sn— k—1 Tk
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J )
Ry = fn+k§:ajtj/ / / RJ’&”(FO)(EW)?(@W)(EW,z)R”*’C*ldewdz
j:0 1 Sn—k—1 JTk t t

Since M(R) € L%((0,1), R**71dR) and R~ € L?((1,00), R""*~1dR) for j < J we can use
(7.11) to obtain
ntk
|R1| + |Re| < Ot = ||9]]L2(5)-
We deduce from these estimates that there exist some f; € C°°(B) such that

J
Pn)1 =Y fip' € L(X).
j=0
To get (7.13) and conclude the proof of the Proposition, is suffices to remark that fo = 1 by
taking the limit A\ — n in (7.7) and to check that f; =0 for j = 2,...,J. But this last identity
is an easy consequence of the indicial equation Ax(p? f;) — j(n — j)p? f; € pPP1C>(B). O

If we change the conformal representative fLO = e2Wopg € [ho]aces let p = e¥p be the associated
boundary defining function obtained by Lemma 2.2 (unique modulo C*°(X)) with w|gx = wo,
then the related scattering operator S(A) satisfies

S(n)1 = e~ ™o (S(n)l + %P%wo)

in view of (7.1). Thus with (7.4) we deduce that identity (7.5) still holds with a different choice
of conformal representative for the associated scattering operator.

On X one can deﬁng a renormalized volume when n is even, like for asymptotically Einstein
manifolds [4, 7]. Let ho be a conformal representative in [holacc and let p € C2.(X) be the
boundary defining function of Lemma 2.2 uniquely defined modulo C*(X), which puts the

metric under the form A
dp? + h(p oo . -
9= L 0G), i) = i,

h(p) is a smooth family of metrics on B, with an even Taylor expansion at p = 0. Let us consider

I(e) := / dvoly
p>e

for € > 0 small.

Lemma 7.3. As ¢ — 0, we have the expansion

n

2
I(e) ~ Z aje " 272 4 Llog(e ')+ V + o(1)

j=1
for some aj, L,V € R where L (resp. V) does not depend on the choice of representative
ho € [holace if n is even (resp. n is odd).

Proof: the existence of the expansion for p = p (i.e. ho = ho) is quite direct and the general
case is relatively similar using expression (2.11). Define the density

[ det(h(p)) : R

on [0, €] x X, then dv(p) has a Taylor expansion at p = 0 (and out of ¢) of the form

p* g + O(p"2))

‘Mw\:

dv(p) = dp dvol;, (1 +

=1
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where vg; are smooth functions on B = 9X \ ¢. We return to the expression of ﬁ(ﬁ) near cg,
detailed in (2.11) and (2.9):

h(s) = ha(s,v,dv) + ha(s,v, 2z, dv, dC) + €% (5272 + |u|?)2d¢? + O(r)
where u,w € C2.(X) even in s, u|s—g = v and hy = O(r%°) = O((s% + |[v]?)>°). We see that near

acc (&
¢k there exists a(s, v, () smooth, even in s, such that «(0,v,{) =1 and

d 2,—2w 2\k
ols) _ a(s,v,@)—(s e+ Juf) ds =1+ [v|~?* ngis2

dvol;,_ |v|2k

for some fo; € C*°(0X), where we used that k is integer. Thus we have the expansion

(7.14) dv(p) = (L+ Y p*vai)dp dvol;, + O(RZ?p")dp dvol;,

‘Mwm

=1

with vy; € R;2C>(9X). Integrating dv(p) on {ey > p > €} gives the searched expansion for
I(e) since each vy; is in L(0X, dvolj, ). We also clearly have

L:/ vy, dvoly, .
X 0

To prove independence of L if n is even (and V' if n is odd) with respect to the choice of boundary
defining function (or conformal representative) considered in Lemma (2.2), it suffices to mimick
the same proof than in [4, Th. 3.1], the essential argument being that for any choice of boundary
defining function p of Lemma 2.2, p is an odd function of p in the sense that aﬁjﬁ =0. (]

We conclude by a result similar to Graham-Zworski’s Theorem relating integral of @ with
renormalized volume L

Theorem 7.4. The Q curvature on B is in L'(B, dvol,,) and we have

21 n
(71'_7_1/ Q d’UOlhO—L

Proof: the proof is essentially similar to the proof of [7, Th. 2] but the expansions have to
be done “again some function ¢ € C>°(9X)” in the spirit of the proof of Proposition 7.2. Let
€0 > 0, x € C3°([0,€0)) which is equal to 1 on [0, €0/2] and let ¢ € C°(8X). We now define the
function ¥ (p,b) = x(p)¢(b) in the collar neighbourhood of the boundary (0,€p), x 0X, we set
uy := P(AN)1 and we will use the notation “pf” for “finite part as e — 0”. Using Green Formula
as in [7, Prop. 3.3] we check that for A # n but near n

(7.15) pf/> (Jdux|* = A(n—\)u3) dvol, = —n/B(S()\)l)qS dvolho—%pf/> us Ax (1) dvoly.
p>€ p>€

But following line by line the proof of [7, Th. 2] and using the expansion (7.14) of the volume
form as p — 0, it is straightforward to see that

pf/ (Jdux* = A(n — N)u3 ) dvol, = / Hy¢ dvoly,
p>e€ B

for some function Hy € C*°(B) depending continuously of A in a complex ball containing n, and
such that H, = —Zuv, with v, defined in (7.14). Since v, € L'(B,dvoly,), this gives

i Jmn pf | (dusf? = An ~ X)u ) dvol, = 3L
¢—1A—n p>e 2

But from 7.5, we have

o (—1)#2n
lim 1 1 Iy = 222
e B v B(SW ) dvoln, miz -1 Jp
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thus it remains to deal with the last term in (7.15). First observe that Ax(x¢) = ¢Ax(x) +
XAx (¢) and that Ax(x) has compact support in X thus

pf/ uiquX(X) dvol, = /Xu§¢AX(X) dvoly.
p>€

Using that uy — 1 when A — n and Green formula, we deduce that

¢—1A—n

lim lim U§\¢AX (x) dvoly, = qlblrnl/ ¢Ax(x) dvoly = 0.
—1lJ/x

Now from (5.1) we have AX(QS) = p*Ap(p)(¢) and let us take for some small § > 0, ¢ = ¢s
depending only on r. and which is equal to 1 in {r, > 26} and 0 in {r. < §}. Recall that r. is
a function which is equal to |u| in the neighbourhood By = {(u,z) € R"7* x Tk |u| < 1} of ¢
in X and we will write, by abuse of notation, . for the function |u| on (0,¢€p), x By. We will
show that
€0
(7.16) lim lim pf/ / wxp” " Ay (65) dvoly(ydp =0
€ B

6—0A—n

and the Theorem will be proved. Since xy = 1 near p = 0, we can suppose, using again Green
formula, that x = 1 in (7.16). In view of the assumptions on ¢s it suffices the work in neigh-
bourhoods (0, €9), x {|u| < 26} x Tk C Mj, of ¢ where the metric h(p) on B has the form

(7.17) h(p) = dr? +r2d6? + (r2 + p?)?dz?,  with 7. = |u|,0 := u/|u|.
Again from the proof of Theorem 2 in [7], we have for A # n

wla

(7.18) ud = p? 1+ Z (= Nupap® +uz Ap™) + p"S(A)L + O((n — \)p"* )

p=1
with up y holomorphic in A and smooth in B, u» , = —S(n)l and the big O depends on é.
Moreover using (7.12) with € = 0 (Fy = |u|® = r¥ near ¢;), we see that in {r. < 26}
(7.19) Up \ = dp 1, 2P
for some constants dp, » holomorphic in A. Since ¢s has compact support, observe by Green
formula that

(7.20) / Ah(p) (¢s) dVOlh(p) = 0.
B

Thus it remains to compute the finite part of [ (u3 — p?"=2*)p™" LA, (¢5) dvoly(,dp. For
that we use (7.17) and (7.14) to see that near ¢

dVO].h : m) —k—n4+1—2j—2m n+k—2l—
(T21)  Bu(00) o P = D ejumup® TG, (2, ()
0 Ji,l,meNg

for some constants ¢; ;. Then we multiply the expansion (7.18) of u3 — p?"~2* by (7.21) and
obtain
(u3 = PP ) Ap ) (95) dvoly () = O((n — A)p™) dvolp,+
(TL _ )\) Z p2(m+l+p+j+n7)\)up,>\cjmlkr k—n+1-2j— 2ma ( 7z+lcf2lflarC (¢6)) dVOlho.

j,lgln,p
P§§ -1

Multiplying this by p~"*!, integrating on p € (e, ¢p) and computing the finite part as € — 0, it
is straightforward to check that we obtain near

pf/ / 2n 2>‘ Ah( )(¢5) dVOlh(p) = O(TL — )\)—l—

> Cj7m,l,de’A/ rg FTIHITRITINER G, (r TR0, (65)) dvoln,.
B

m+l+p+j—ffl
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where we have also used (7.19). We thus take A\ = n and we have to prove that

lim r;’f*”“*%*?m*??arc (rg“@*?l*la” (¢s)) dvolp, =0
5—0 B

when m + 1 +p+j = % — 1. But writing dvol,, = 72" !dr.df near ¢; and choosing ¢s(rc) =

¢(rc/d) for some ¢ such that supp(9, ¢) C [1,2], this is reduced to the limit of

25
/ (r¥+16=2 4 rk5—Ydr,
5
when § — 0 and this is 0. The proof is achieved. (I

Note that the result still holds by changing the conformal representative ho = e2*0h since
by (7.4), the self-adjointness of P,/ and P, /51 = 0, we have

/ Q dvol;, = / (Q + Pruwp) dvoly, = / Q dvolp,.
B B B

As a corollary of this theorem we prove that the renormalized volume of X is the Euler char-
acteristic of X.

Proof of Corollary 1.4: in this case where n + 1 = 3, the @) curvature is Gauss curvature on
the boundary B. Thus it suffices to use Gauss-Bonnet theorem on the manifold with boundary
{re > ¢} in B, with the fact that B is a finite volume manifold with ends isometric to

1, 2 4 102
» ©)re 0% ¢ c
((0,€)p, x Sg;dr? + red6?)

and we easily obtain the result when & — 0 since the integral of the geodesic curvature on
{re = 6} tends to 0. This gives that [, Q dvol,, = 27x(B) and the result L = mx(B) is de-
duced from Theorem 7.4. It is easy to check that 0X is obtained from B by gluing two by
two the circles of the boundary of B, thus x(B) = x(0X) and since n + 1 is odd, we have

2x(X) = x(0X). O

With Figure 1, there is an intuitive interpretation of this result since by taking D3 and D4 not
tangent but e-close, we are in the convex co-compact case and we know from Graham-Zworski
[7] that the integral of the curvature Q. is the renormalized volume, thus by Epstein formula
this is —mx(B.) where B, is the boundary (compact) of the convex co-compact manifold. The
curvature @, and the measure p. on the boundary depend continuously on € € [0, €y), one could
use Lebesgue theorem after checking a uniform bound of the integral of Q.pe. At last we see
that B, is a 1-genus torus, like the compactification B of the limit B = lim._.¢ B..
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