SCATTERING AND INVERSE SCATTERING ON ACH MANIFOLDS

COLIN GUILLARMOU AND ANTONIO SA BARRETO

ABSTRACT. We study scattering and inverse scattering theories for asymptotically complex
hyperbolic manifolds. We show the existence of the scattering operator as a meromorphic
family of operators in the Heisenberg calculus on the boundary, which is a contact manifold
with a pseudohermitian structure. Then we define the radiation fields as in the real asymp-
totically hyperbolic case, and reconstruct the scattering operator from those fields. As an
application we show that the manifold, including its topology and the metric, are determined
up to invariants by the scattering matrix at all energies.

1. INTRODUCTION

Scattering theory and inverse problems for real asymptotically hyperbolic manifold have been
extensively studied, see for example [15, 19, 20, 27, 34, 35, 40] and references cited there. The
purpose of this work is to extend to asymptotically complex hyperbolic manifolds, ACH in
short, several results in scattering and inverse scattering which are known for real asymptotically
hyperbolic manifolds,

The class of ACH manifolds studied here was introduced by Epstein, Melrose and Mendoza
[8], and it contains certain quotients of the complex hyperbolic space by discrete groups, as
well as smooth pseudo-convex domains in C*t! equipped with a Kéahler metric of Bergman
type. More recently similar classes of manifolds have also been considered by Biquard [5] and
Biquard-Herzlich [6].

Before discussing asymptotically complex hyperbolic manifolds, we recall certain facts and
results about real asymptotically hyperbolic manifolds, which we believe are helpful to under-
stand the complex case. An (n + 1)-dimensional non-compact manifold X equipped with a C*°
Riemannian metric g is called asymptotically hyperbolic if it compactifies into a C*° manifold
X with boundary 90X, and if p is a defining function of the boundary 60X, p%g is a C*> met-
ric which is non-degenerate up to X, and moreover if |dp|,2, = 1 at X. It can be shown,
see [14], that (X, g) is asymptotically hyperbolic if and only if there exists a diffeomorphism
¥ :[0,€); x 0X — U C X with ({0} x X) = X such that

_dt* + h(t)
= v
where h(t), t € [0, €) is a smooth 1-parameter family of C*° metrics on 9X. The function p := v),t
is a boundary defining function in X near X, which can be extended smoothly to X. Note that
the boundary represents the geometric infinity of X, as does the sphere S™ for the hyperbolic
space H™ 1,

The spectrum of A,, the Laplacian of (X, g) was studied in [34]; it consists of a finite pure
point spectrum op,(A), which is the set of L*(X) eigenvalues, and an absolutely continuous
spectrum o,.(A) satisfying

Tac(A) = [n?/4,00) and opp(A) C (0,n%/4).

(1.1) Vg
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The resolvent
R(\) = (Ag —A(n—A) 7",

which is a bounded operator in L?(X), for R(A) > %, has a finite meromorphic extension to
C\ (n—1)/2 — Ny, where Ny = Nsup{0}, as a map from C§°(X) — C*°(X), see [34, 18]. The
poles of R()\) are called resonances. Here, and throughout the paper, we call a family of operators
finite-meromorphic if it is meromorphic, i.e. it has a finite Laurent expansion at each point, and
the rank of the polar part at a pole has finite rank. The finite meromorphic continuation of
R(\) to the entire complex plane exists if and only if h(t) has an even Taylor expansion at ¢t = 0.
If h(t) is not even, R(\) might have essential singularities at the points (n —1)/2 — Ny, see [18].

It has been shown in [15, 27] that for R(\) = n/2, I(\) # 0, and any f € C*(9X), there
exists a unique uy € C°°(X) satisfying

(Ag —A(n—A))ur=0
such that near 90X
ux=p" N+ M e +0(ETY, fo=f, fr € CF(0X).

Omne can use this to define the scattering operator S(A), for R(A) = n/2, F(A) # 0, as a

generalized Dirichlet-to-Neumann map
S(A) : C®(0X) — C™(0X)
fr—f+

Like the Dirichlet-to-Neumann map, S(A) is an elliptic pseudo-differential operator, but of
order 2\ — n. It extends meromorphically to C. The first author recently studied Krein theory
in even dimension manifolds by introducing a generalized determinant of S(A) and applied it to
analyze the Selberg zeta function for certain quotient of hyperbolic space by discrete groups of
isometries, in continuation of work by Patterson-Perry [37]. The second author studied inverse
problems using S(A). He first proved with Joshi [27] that S()) for X fixed determines the Taylor
expansion of h(t) in (1.1), then more recently he proved in [40] that the map A — S(\) determines
the whole manifold up to global isometry.

We give a precise definition of what we call an asymptotically complex hyperbolic metric in
Section 3, but we will briefly explain this notion before stating our results. We consider a
non-compact Riemannian manifold (X, g) that compactifies into X smooth with boundary 0.X.
We assume that the boundary admits a contact form ©y and an almost complex structure
J : ker ©g — ker ©¢ such that dO¢(., J.) is symmetric positive definite on ker ©¢. The associated
Reeb vector field Ty is the one which satisfies

©0(Tp) =1 and dOy(Ty, JZ) = 0 for any Z € ker Oy.
The parabolic dilation M, on TOX = ker Og @ RT} is defined by
My (V +tTy) = pV + p*tTy, V € kerOg,t € R.

We say that (X, g) is ACH if there exists a diffeomorphism ¢ : [0,¢€), x 0X — ¢([0,¢€),x0X) C X
such that ¢({0} x 0X) = 0X and
2 2 2
67g = 4dp® + d;ao(., J.) n GTS - pQ, = 4dp —;h(p)
p p p

for some symmetric tensors Q, on 90X satisfying M*Q, € C>([0,¢), x 8X,5*(T*9X)). We
call such a ¢ a product decomposition and we say that g is even at order 2k if h='(p) has
only even powers in its Taylor expansion at p = 0 at order 2k, here h=!(p) is the metric
dual to h(p) on T*0X. We will show that the latter is independent of ¢. Note that if p is
any boundary defining function in X, then p*glyg = €**°©2 for some wy € C°(9X), thus
we have more naturally a conformal class of 1-form [©¢] on the boundary induced by g. We
call the boundary X equipped with (Qg,.J) a pseudo-hermitian structure and its conformal
class ([©¢], J) a conformal pseudo-hermitian structure. On such a manifold, one can define the
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class ¥ (0X) of Heisenberg pseudo-differential operators associated to the contact distribution
ker ©g and its related principal symbol, see [9,739, 7] and Subsection 4.3 below. We can define
the “parabolically homogeneous norm” on T0X:

Bl

IV lne := (90( )? + d@o(v JV) )
and the metric hg = M:(p h(p))lp=0 = dOo(., ) + ©3.

As in the real asymptotically hyperbolic manifolds, the spectrum of the Laplacian A, of an
ACH manifold (X, g) consists of an absolutely continuous part and the pure point spectrum
satisfying

(1.2) Tac(Ag) = [(n+1)%/4,00) and o, (A,) C (0, (n + 1)%/4),
where o,,(Ay) is a finite set of eigenvalues. The resolvent
n+1
5
is meromorphic, and Epstein, Melrose and Mendoza [8] proved that it has a finite-meromorphic

R\ == (A, = A(n+1-X)"t e L(LA(X)), RO >

extension to C\ (PoU—Ny), where Py := %1/2 — %No, as a family of pseudo-differential operators
in a certain calculus. If we assume that g is even at order 2k, k € Ny, it will be shown that Pg
may be replaced by Py := %/24‘5 — %NO.

As in the real case, we use this strong result to show that for any A with R(\) = (n+1)/2,
and 3(\) # 0, and for any f € C°°(0X), there exists a unique uy € C*(X) satisfying

(Ag—A(n+1—=X)uy =0,
such that near 9X
uy = p" TN P L O, o=, [y € C%(0X).
We then define the scattering operator
S(A\) : C*(0X) — C>™(0X)
fr—F+
This operator depends on the first derivative of p at X, and thus equivalently on the con-

formal representative in [©¢]. For another choice p = e“p of boundary defining function with
w € C*(X), we clearly have the conformal covariance

S(A) = e 20 5(N)e2 I Nwo = w5
The structure of the operator S(\) is established in

Theorem 1.1. Let (X,g) be an ACH manifold which is even at order 2k, k € N, then the
scattering operator S(A) extends to C\ (—No U Pr) as a meromorphic family of conformally
covariant operators in the class of the Heisenberg pseudodifferential operators \114/\ An+1) (0X),
which is unitary on L*(0X,dvolp,) when R(A) = 2L and S(N) # 0. The prmczpal symbol of
S(A) is

22+1
m(SON(E) = en oAy (V )

where ¢,, € C depends only onn and F denotes Fourier transform from TOX to T*0X. Moreover,
S(N) is finite-meromorphic in C\ (—=Nog U P U (n+ 1 — Pg)) and has at most poles of order 1
at each \g := ”TH + %k with k € N, the residue of which is a Heisenberg differential operator in
\I/’éo (0X) plus a finite rank projector appearing if and only if \y(n—1—\g) € 0pp(Ag). Moreover
at Aok, we have

Resx,, S(\) =

k
S(T) [I(=As+i(k +1-20)Tp) mod W& (0X)
l:l
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where Ay, Ty are the horizontal sublaplacian and the Reeb vector field of (0X, 0y, J).

We also deduce from [19] an explicit formula between finite-multiplicity poles of S()) (scat-
tering poles) and finite multiplicity poles of R()\) (resonances) in Proposition 6.5 and show that
essential singularities for S(A) and R()\) can occur at (n + 1/2 — Ny)/2 if the metric has no
evenness property, see Proposition 6.7.

The proof that S(A), R(A) = 2L, S(X) # 0, is a pseudodifferential operator in the Heisenberg
calculus is sketched by Melrose in [36]. The novelties in this theorem are the computation of
the principal symbol of S(\), its meromorphic continuation, and the analysis of the poles. In
the case where the manifold X is a strictly pseudoconvex domain of C™*! equipped with an
approximate Einstein Ké&hler metric, the relationship between the residues Resy,, S(A\) and the
Gover-Graham operators of [12] is announced in [24].

We also study the scattering theory from a dynamical view point as in the Lax-Phillips theory.
We define the radiation fields, show that they give unitary translation representations of the wave
group which can be used to define the scattering matrix (6.1) from the wave equation.

The Cauchy problem for the wave equation

2
(Df—Ag—(”zl)>u(t,z)_omR+xx

u(O,z) = f1(2)7 Dtu(ovz) = fQ(Z)a i, f2 € CSO(X)

has smooth solutions u € C° (R4 x X), we consider the behavior of u at infinity along some
bicharacteristics and prove

(1.3)

Theorem 1.2. Let z = (p,2') € [0,¢) xX be some coordinates given by a product decomposition
¢ as above. Let u(t,z) be the solution of (1.3) near 0X, then

vy (p,8,2') = p " tu(s — 2logp, p, 2') € C*°([0,¢€) x R x 0X).
We define the forward radiation field as the operator
Ry 1 CF(X) x CF(X) — C(R x 9X),
0
(f1, f2) — %14(0’3,2/)-

Similarly one can show that v_(p, s,2") := p~ " tu(s + log p, p, z') is smooth on [0,€) x R x X
and we can define the backward radiation field by R_(f1, f2) := 0sv_(0, s, 2').

Let HY(X) = {f € L*(X);|df|, € L*(X)} and let B, := Hao(H'(X) x L*(X)) where 1L, is
the orthogonal projection from L?*(X) onto the space of absolute continuity of A,. The space
E.. is a Hilbert space when equipped with the norm ||.||g defined by

1 7’L+1 2
wo, w3 ::5/ (ot = 24
X

(1.4)

|wol? + |w1]?) dvol,.
Then we show

Theorem 1.3. The forward and backward radiation fields Ry extend to isometric isomorphisms
from E, to L*(R x 80X, drdvoly,). Moreover, the map defined by

(1.5) §: =R, R~ : L*(R x 90X, drdvol,,) — L*(R x 0X, drdvoly,)

is unitary and is a convolution operator in s, and conjugating it with Fourier transform in s we
have

F8F1(\) = —S(N).

The operator 8§ in (1.5) is the dynamical definition of the scattering operator. Next, using
these tools, and after proving a localization result for the support of functions f € L2 (X) for
which R4 (0, f) =0in s € (—o00, s9) (a “support theorem” in the sense of Helgason [22, 23] and
Lax-Phillips [29]), we are able to prove the following result on inverse scattering:
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Theorem 1.4. Let (X1,q1),(X2,92) be two ACH manifolds with the same boundary M :=
0X1 = 0Xa, and equipped with the same conformal class of contact forms [Og 1] = [O¢2]. Let
S1(A) and Sa(\) be the corresponding scattering operators associated to a conformal representa-
tive ©g € [Og,1]. If S1(A) = S2(A) on {R(N) = ZEL, SN 5 0}, then there exists a diffeomorphism
®: X, — Xy such that ® =1d on M and ®*gs = g;.

The method we use is very close to that introduced by the second author [40] in the asymp-
totically hyperbolic case, which was inspired by the boundary control theory of Belishev [3].

The paper is organized as follows: In Section 1, we consider the model case of the complex
hyperbolic space Hg+17 then we discuss the geometry of ACH manifolds near infinity in Section
2. We review the ©-calculus of Epstein-Melrose-Mendoza [8] on X, and define the Heisenberg
calculus on 90X (these are the “natural” classes of pseudo-differential operators associated to the
geometric structure) in Section 4, and we analyze the Poisson and the scattering operators in
Section 6. The next sections consist in defining radiation fields (Section 7), prove their relation
with scattering operator (Section 8), the support Theorem (Section 10) and the inverse problem
(Section 11). We conclude with a technical appendix.

Acknowledgement We thank D. Geller, R. Graham, P. Greiner, M. Olbrich and R. Ponge
for helpful discussions.

2. THE MODEL CASE OF H{ ™

2.1. Hg‘“ and the Heisenberg group H,,. The hyperbolic complex space of complex dimen-
sion n + 1 is denoted by Hg ™, it is the unit ball B! = {z € C"*1;|2| < 1} equipped with
the Kéhler metric gy := —4001og(p) where p := 1 — |z|?. Note that p is a boundary defining
function of the closed complex ball. The holomorphic curvature is —1 and this metric is called
the Bergman metric. Another model of ]HI”+1 is given by {z € C"t1Q(z, 2) > 0} where Q is

(2.1) Q(z,2) = —% 21— Z1) sz
j>1

and the boundary (the sphere S?"*1) is a compactification of the Heisenberg group

1
H, :={z€C""Q(z,2) =0} = {(R(z1), = |w|*,w); (z1,w) € C"T} ~ R x C" ~ R+,

2 |
thus HZ ™' ~ (0,00) x H,,. The variable u := R(z1) is the one lying in R and we have a contact
form on H,, given by
P = du+ y.dx — x.dy,
where w = x + iy € C* = R™ + {R". The functions
po = Q(z,z)%, u="RN(z), weC”
give coordinates on (0,00) x H,, ~ ]H[g+1 and the Bergman metric with holomorphic curvature
—1 is given in this model by
4d + 2|dw|?
I |dw| + .

I P

The Heisenberg group H,, is a Lie group with the law

(2.2)

(uyw)g, (v, W) = (u+u —S(wd),w+w),

1

the origin is 0 and the inverse (u,w)™ = (—u, —w). A basis for the Lie algebra h,, of H,, is given

by the left invariant vector fields

1
(2.3) Xj = 50, —ui00), Yy = 50, + w00, T =0

7
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The map (u,w) € R x C" = uT + 3, R(w;)X; + S(w;)Y; identifies H, with h,,, and the group
law becomes

W, W = (D(W + W) — d®(W,W)T + meer o (W + W),

where Tyer ¢ is the projection on ker & parallel to T'.

The complex hyperbolic space has a Lie group structure, this is actually a semi-direct product
of the multiplicative group ((0,00), x) with (H,,.u,). We introduce the parabolic dilation
Ms(po,u,w) = (8po,6%u,dw) on (0,00) x H,, (here § > 0), then the group law on Hpt' ~
(0,00) x Hy, is

(24) (p()v W)'Hg*l (p67 W/) = (popéa Wn, M), (W/))

and we have for this law (po, W)™ = (py*, =M ol W). Tt is easy to check that the corresponding
Lie algebra has a basis

(2.5) £00s s P80us o X1, poXn, poY1, -y poYn,

which is orthonormal with respect to the metric gg. This algebra will be denoted by q>T0]H[8+1,
to agree with the notation used in the next sections. Observe also that these vectors and the
metric gy are homogeneous of degree 0 under the parabolic dilation Ms.

2.2. The Resolvent kernel for Hngl. The spectrum of the Bergman Laplacian Ay of Hngl

is absolutely continuous and equal to o(Ag,) = [M7 00), this leads to study the modified

1
resolvent
R(s) = (Ayy —s(n+1— s))*1

which is bounded on L2(Hg™, dvoly,), provided R(s) > 24l The Schwartz kernel of R(s)
has been computed by Epstein-Melrose-Mendoza [8] and admits a meromorphic continuation to
C, with poles at —Nj of finite multiplicity (contrary to what is written in [8]). By symmetry

arguments, this kernel R(s; z;2’) is expressed as a function of the Bergman distance of dg, (z; 2’).

We have
o (520} _ 1@
2 (Q(z,2)Q(¢', )2
where @ is defined in (2.1). Using a polar decomposition around the diagonal, the kernel
R(s;z,2') is obtained as a solution of an hypergeometric ODE, exactly like in the real case,
and is given by

L'(s)®
I'(2s —n)
4p3p}”

/ ng(Z; Z/) 2
r(z;2') :== ( cosh | =—— = 71 )
2 (u— v + S(w.o"))? 4+ (0§ + b~ + 5lw — w'|?)?

with ¢, constant depending on n and 5Fj is a hypergeometric function (see [2]), we also used
the formula

R(s;z,2") = ¢, r(z;2')°2F (s, 8,25 —n;r(z;2')), where

(2.6)

—1 1 1
Qz,#) = S (u—u'+ @) + 5 () + 967 (2) + 5l — ).

A change of variables shows that if an operator K has a distributional Schwartz kernel which
is of the form k(r(z,2')), in other words, it depends only on dg, (2, 2’), then K is a convolution
operator with respect to the group law on Hg“:

B 442 1\ 2" dpdtdz
) Kfipoue)= [ k:(M(HuuW)Q)f((po,u,m.Hgﬂ(u,t,z) )t

where p~ldudtdz is a right invariant mesure. The resolvent kernel (2.6) is of this form (s is a
parameter), so the action of the operator R(s) on a function is given by (2.7).
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Remark: We see that the poles at —m € —Nj have residue

Q(Z,Z/)‘Qm_Qk(Q(Z,Z)Q(Z/,Z/)>k

Pp = amar*™™ = (Q(2,2)Q(Z,2) ™™ Y ami
k=0 k=0

for some a,, i, € C. But clearly P, has finite rank since it is a polynomial times Q(z, 2) "™ Q(z', ") ~™.
So the poles are of finite multiplicity.

3. ASYMPTOTICALLY COMPLEX HYPERBOLIC MANIFOLDS

3.1. © metrics. We start by describing the O structures of Epstein-Melrose-Mendoza [8], which
generalize Bergman type metrics on pseudoconvex domains, as well as quotients F\]I—]IZC”'1 of Hg“
by convex co-compact groups of isometries.

Let X = X UOX be a smooth 2n + 2-dimensional compact manifold with boundary dX and
let © € C*®(0X,T*X) be a smooth 1-form on OX such that if i : 9X — X is the inclusion, then
Op := i*O does not vanish on 9X. According to the terminology of [39], the boundary X has
the structure of a Heisenberg manifold equipped with the subbundle ker ©.

We first recall a few definitions introduced in [8]. If p is a boundary defining function of 9X,
we define the Lie subalgebra Vg of C*°(X,TX) by the condition

VeVe « Ve pC™(X,TX),0(V) € p?C>®(X),

where © € C°(X,T*X) is any smooth extension of ©. It is shown in [8] that Ve only depends
on the conformal class of ©. Let T, N,Yi,...,Ys, be a smooth local frame in X near a point
p € 0X such that

Span(N,Y1,...,Ya,) Cker®, Span(T,Yi,...,Ys,) C TOX, dp(N)=0O(T)=1.

Then any V € Vg can be written near p as

2n

(3.1) V=apN +bp°T + > cipYi, a,b,c; € C¥(X)
i=1

and

(32) pNa p2T7 th v 7/7Y2n

form a basis of Vg over C>°(X) near p. The Lie algebra Vg is the set of smooth sections of a vector
bundle over TX, we denote by ®TX this bundle. Let F, be the set of vector fields vanishing
at p if p € X or the set of vector fields of the form (3.1) satisfying a(p) = b(p) = ¢i(p) = 0 if
p € 0X. The fibre ©T,X at p € X can be defined by T, X = Vg /F,. If p € 0X, ®T,X is a
Lie algebra, and any vector v € ©T, X can be represented as
2n
v =apN + bp’T + ZcipY;, a,b,c; € R.

i=1
The dual bundle ®T* X of ®T'X has for local basis near p € X the dual basis to (3.2)

dp © a1 @

geeey

p’ p? p P
A ©-metric is a smooth positive symmetric 2-tensor on ©T* X
g€ C®(X,8%(°T" X)),

We are interested in the special cases of ©-metrics for which Epstein, Melrose and Mendoza [8]
proved the meromorphic extension of the resolvent. We begin by the first assumption, which
allows one to find particular boundary defining functions.
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3.2. Model boundary defining functions. Let g be a ©-metric, it thus restricts to a standard
metric in the interior X. If p is a boundary defining function, we can define the vector field
X, € Vo as the dual of dp/p via the metric g, i.e. g(X,,v) = p~tdp(v) for any v € ®TX, this
is a smooth non-vanishing section of ®T'X. It is clear that in X, we have

vA°e p= Vip _ Xp

2
p p

which extends to a non-vanishing vector in C>*(X,TX) transverse to dX since dp(X,/p) =
ldp/p|Z # 0 on OX (here V means gradient). We first assume that

H1 X, = 1 on 0X
( ) | /3|g 2

and it is easy to check that this condition does not depend on p. The restriction ptg|psx is
conformal to the tensor ©2, which leads to the definition of the conformal class [O].

Lemma 3.1. Let €200 € [Og] with wo € C>(0X), then there exists a unique, up to Cee(X),
boundary defining function p of 0X such that |X,|, = 1/2 in a neighbourhood of 0X and

Pi9lrox = e O3,
Proof: If z is a boundary defining function we search for a function w € C >(X) such that
p = e“x satisfies | X,|2 = |dp/p|2 = 1/4 near 9X. This can be rewritten under the form

Xz(w) 4 |dw|§ . 1/47 |Xz|§
x x x '

Since |dw|? = O(2?), |X4|g = 1/2 at = = 0, this is a first order non-linear PDE with smooth
coefficients, and it is easy to check that it is non-characteristic since X, /x is transverse toﬁ)f( .
By prescribing the value w|,—9 = wp, we obtain a unique solution in a neighbourhood of 9X. O

(3.3) 2

Such a boundary defining function will be called a model boundary defining function. Let ¢,
be the flow of the vector field 4X,/p, we consider the diffeomorphism

¢.{ 0,6) x X —  ¢([0,€) x 9X) C X
' (t.y) — b1 (y)

Then p(¢:(y)) =t and for any Z € TOX

4 at(Z
¢*g(0r, 0r) = 2’ ¢*g(0, Z) = % =0.

We will write t = p and X, = pd, for what follows and we call this diffeomorphism a prod-
uct decomposition near 0X. Note also that ©(9,) = 0 since pd, € Vo. With this product
decomposition, the metric g has the form

_ 4dp* + h(p)
2

in (0,¢€), x 0X with h(p) a family of metrics on TOX for p # 0 and such that h(p)/p? €
C>(0X,S5%(®°T*X)) depending smoothly on p € [0, ¢). B

We will say that the metric is even if h(p)~!, as a metric on T*9X has an even Taylor
expansion at p = 0 in the product decomposition. It is straightforward to see that this condition
is invariant with respect to the choice of model boundary defining function p (i.e. of product
decomposition), for instance from the proof of Lemma 2.1 in [18] where the PDE is replaced in

our case by (3.3). Indeed, if = is a model boundary defining function and p = e“z another one,
w has to satisfy (3.3), that is

(3.4)

20w + z((@xw)Z + \dwﬁ(x)) =0
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and the evenness of the Taylor expansion of \dw|}2L(I) at © = 0 was all that we needed in [18].

Note that evenness at order 2k can also be defined invariantly by requiring 8? +1h=1(0) = 0 for
all j < k (see again [18] for similar definition in the real case).

3.3. Additional assumptions. Following [8], we define for p € X the one-dimensional sub-
space of @TpX
Ky, :={V € p’C>*(X,TX)}/F,
and the 2n dimensional subspace
K1, :={V €Ve;V = pW, W tangent to 0X}/F).

The subspace K4 is a two-step nilpotent Lie algebra which is the fibre over p of the tangent
Lie bundle defined in [39]. We denote by Ki, Ky the bundles over 9X whose fibre at p are
K, p,Kap. Nearp € 0X, let (Y1,...,Ya,) be a local basis of ker g C TOX and T € TOX such
that ©¢(T) = 1, this give a local basis of TX. A basis of K, is given by the class of p*T
mod F),, whereas (pYi,...,pYan, pQT) mod F), gives a basis of K ,. This easily shows that K>
is included in the centre of Kj.

Let us denote K; = ker(p~'dp) the subbundle of ®TX, it is isomorphic to TOX over p # 0
and equal to K; over p = 0. Thus the choice of a function p (or product decomposition of 9X)
induces orthogonal decompositions for g (outside {p = 0} for the first one)

TX ~RJ, ®TIX, °TX ~Rpd,® K.

Using this decomposition, we extend ©¢ on R, ® T' 0X to be constant with respect to p, and
such that ©¢(8,) = 0, in particular Oy is extended by ¢*© at {p = 0}. Then p~20 is a smooth
section of ©T*X and ker Oo, ker(p~20¢) are respective subbundle of TOX 7I~(1. We have an
isomorphism of vector bundles

" (TOX /ker ©g) D ker Oy — K,
' (s Ty ®Y)) —  (pspY + p?T mod Fy) ’

where Y, T' are smooth local sections of T'([0, €),, x 0X), constant with respect to p, such that Y €
ker O, Y (p) = Y, and T(p) = T, mod ker ©g. Via 1., the form Oy on (T0X/ker Oy) & ker O
is mapped onto the form p=20y on K;. The subbundle (T0X/ker ©p) is mapped onto Ko
by ¢ and ker ©g onto the bundle ker(p=20g). Similarly the 2-form d@0|ker o, is mapped onto
(p~ d@o)\ker(p 2g,)- A local choice of vector T transversal to ker ©¢ in TOX in a neighbourhood
Uy of p € 0X fixes a vector p>T transversal to ker(p~20y), thus a representative vector P ’T)ox
of Ks, and a local basis p~ay, ..., p~Lag, for the annihilator (ker(p=200))* of Rp?T in K} (i.c.
the dual of ker(p=20g)) can be chosen.

In view of this discussion, we have that p~2h(p) € C*([0,¢) x 9X, S2(K})) and we can write

near a point p € 0X

h(p) 62 o ® qy a; ® O
3.5 — af + _— b;
(35) = Z p Z po

7,7=1 =1

for some functions a, b;, c;; € C°°(X). Note also that a|,—¢ is globally defined and can be taken
to be 1 by changing the conformal representative of [O].
Let us denote by g, the metric on ©7, X, in terms of (3.4) and (3.5), this is

d o i i ®06
(3.6) —4L+—+Z °‘®O‘J+Zb i ® B0,

3
3,j=1 =1 P

The assumptions of [8] on the metric correspond to the minimal assumptions for which g, is
isometric to the complex hyperbolic metric. The second assumption made in [8] is that

(H2) Oy is a contact form on 90X
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which means that d© is non-degenerate on ker ©y. The next hypothesis is that for the orthog-
onal decomposition K , = Ky, @ Ly, for g, the map
) { L, — eTpX
U7~ 1092
is the identity. Since L, is spanned by some Z; = Zj lijpY; + k;p*T mod F, the assumption
clearly reduces to k; = 0 since p?T mod F, commutes with any elements of K, ,, therefore
L, = (ker(©¢/p?*))p. Then by orthogonality of the decomposition, this means that b;(p) = 0, i.e.

(H3)  ker (%) 1, K.

The last assumption of [8] is

OH) 2 d©g B CH
(H4) 3Je End(ker (F)),J = ~Tdand <52, 1) =g on ker <?) c K
which, using the bundle isomorphism 1, is actually equivalent to the following
(H4) 3 J € End(ker ©g), J? = —Id and dOq(., J.) = p*glxer o

where the restriction p?gliere, is the metric on the bundle ker © C THX whose value on fiber
(ker ©p),, is the limit lim;_q t2 (@*9) (t.p)-

3.4. Asymptotically complex hyperbolic manifolds. An aymptotically complex hyperbolic
manifold, or ACH manifold, is a non-compact Riemannian manifold (X,g) such that there
exists a smooth compact manifold with boundary X which compactifies X, equipped with a
O-structure, such that g is a ©-metric satisfying assumptions (H1) to (H4).

In view of the above discussion there exists a product decomposition (0,€), x X near the
boundary where the metric can be expressed by

4dp® + h(p)
9= —>5
p
with h(p) a smooth family of metrics on 9X for p # 0 such that
M) O3 dOul., )

(3.7)

(3.8) st e §eO0N(X, S*(°T* X)).
The form O induces the metric hy and the volume density on 0X
(3.9) ho := ©% 4+ dOq(., J.), dvoly, = |0y A dOY|.

By choosing a different representative Oy = e*00y, it is easy to check that the corresponding
metric is hy = 2003 + e“0dO(., J.) and the volume form is dvol; = e(mtwodvoly, . Tt is then
natural to call the pair ([©¢], J) a conformal pseudohermitian structure on 9X.

In view of the assumptions on ©q for an ACH manifold, there exists a smooth global vector
field, denoted by Ty, tangent to X such that Oy(Tp) = 1 and dOy(Tp,Y) = 0 for every
Y € ker O; this is Reeb’s vector field. With the notation of (3.7), we can define
(3.10) k(p) = M”p};(p)

where Mj : TOX — TOX is the dilation Ms(tTy + V) := 6%tTy + 6V if V € ker ©p, t € R and
Ty is Reeb’s vector field. Observe that k(p) is a smooth family of metrics on X up to p = 0,
k(0) = ho and the volume form is dvoly = p~2"~2dpdvol,,) = p~>">dpdvoly,).

)

Remark: An ACH manifold in the sense of Biquard-Herzlich [6] is quite similar to our setting,
the difference lies in the term g of (3.8): for them, g = O(p?) for some § > 0 and § does not have a
polyhomogeneous expansion at the boundary, whereas in our case the metric is polyhomogeneous
but we can allow terms of order O(p~3) in the © direction, for instance.
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4. HEISENBERG PSEUDO-DIFFERENTIAL OPERATORS

4.1. © calculus. We denote by Diffj (X) the set of differential operators of order m which are
locally polynomial functions (with coefficients in C°°(X)) of vector fields of Vg, i.e the envelop-
ping algebra of Vg. The Laplacian of a ©-metric is an operator in Diﬁ"?_)(X ). In [8], the authors
construct a class of pseudo-differential operators W (X) on X which is large enough to capture
the resolvent (A, — z)~'. It is defined in term of distributional kernel lifted on a parabolic
blown-up version of X x X

We define the blow-up (or stretched product) X2 following Epstein-Melrose-Mendoza [8] we
refer the reader to sections 5,6,7 of [8] for more details. Let wg, 7y, be the right and left projections
of X x X onto X, and for a choice of boundary defining function p in X, we denote

pi=mLp, p = TR

Let A be the diagonal in X x X, A its boundary, and let S C N*(0A) be the line subbundle
of the conormal bundle of A in T*(X x X) spanned by 750 — 750. We denote by X2 :=
[X x X;0A,S] the S-parabolic blow-up of X x X around JA. This means that we construct
a larger manifold than X x X by replacing OA by the S-parabolically spherical normal interior
pointing bundle in X x X:

X3 := (X x X\ 0A)USNg L 0A

where SNg  means the bundle over JA such that each fiber is the quotient of the interior
pointing normal bundle (without the 0 section) N;OA\{0A} of 9A C X x X by the equivalence
law

(4.1) (u,2) ~ (U, 2") <= 30 >0,(u,2) = Ms(u/,2) := (6, 6%2")

after decomposing N;OA = S @ S’ for SY annihilator of S and S’ a complementary space. The
complementary space has to be taken a certain way so that the total space is invariant under
the dilation Ms of (4.1), but this can be done (see [8, Sec. 6]). We call SNg _+OA the front face
and denote it ff, we define the blow-down map

ﬁXé—?XXX

to be the identity outside ff and the projection on the base on ff grecal} ff is a bundle). We can
put a topology and smooth structure on X2 by taking those of X x X far from dA via 8 and
near ff, one can use a choice of normal fibration

f:U—=V, floa=1d, df =Idon N,0A

where U (resp. V) is a small neighbourhood of the submanifold A in N;IA viewed as zero
section (resp. X x X), and transport the topology and smooth structure of [N,;9A;0A, S|
through f after we have defined them on this space as follows: homogeneous functions of non-
negative integer order in Ny OA\JA with respect to dilation My lift under 5* f 1% to well defined
functions on 8~1(V), the topology is the weakest such that these are continuous functions, the
smooth structure is that generated by these homogeneous functions. This is proved in [8] to be
invariant with respect to choices of f,5’ as a smooth manifold with corners. The manifold X%
has three boundary hypersurfaces, the front face ff, the right boundary rb and the left boundary
Ib (cl means closure)

=571 (o =01\ 04)), Tbi=cl(57({p =0} 0A))

we denote by pg, pib, prb some corresponding boundary defining function, for instance one can
take pip = B*(p)/ps, prv = B(p')/ps if pg is a chosen boundary defining function for ff.
If one has a coordinate system (p,u,z) with (u,z) local coordinates on 0X such that @y =
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du +y.dr — z.dy is in Darboux form and z = (z,y) € R" x R", denoting the same with prime
for left factor on X x X, then
1 /

2 2 1 11272 2) % P P
pit = ((p +07+ Sl = 27) +u) s Pbi= T, ppi=—, =, w=
2 o 14i P?f V2p

are “local coordinates” near the front face.

U z—2z

If S is the subspace of the conormal bundle N*9A of A C X x X spanned by 75 g — 750,
then we can define similarly 0X xeo X = [0X x X;0A, §] the S parabolic blow-up of 0X x X
along A, we let 3 be the blow-down map. Finally the blow-up X2 = [0X x 0X;0A, Sp) is
defined the same way if Sy is the subspace of the conormal bundle N*0A of A C 90X x 90X
spanned by 77 ©¢ — 13060, the blow-down map is denoted (5.

Next we define the full class of ©-pseudodifferential operator W% (X) as in Section 12 of [8].
An operator A € pgff\I/gE“:’E"b ()_{ ) with (s, Eg, Eq, Ex,) € C* if its Schwartz kernel lifts under
(B to a distribution k4 on X Xg X such that

KA € ppn" Pt O (X8) + pg*0° (A, X3)
where J*(A,, X xg X) means the set of classically conormal distribution of order s to the interior
diagonal
A, = cl(ﬁfl(A \ aA))
and vanishing at all order at all other boundary faces than ff. This is well-defined since A, meets
the boundary of X2 only at ff (in the interior of ff). We also define ¥¥F'(X) to be the set of
operators with Schwartz kernel in pZp/® (X x X).

4.2. The Normal operator. If we look at the model case of Hg“, it is clear that the Lie
algebra ®Ty X (the boundary point is 0 € H,,) is canonically isomorphic to the Lie algebra of the
group Hg“ with the law (2.4), which is the reason of the notation for this last Lie algebra in
Section 1.

For p € 80X, consider X,, := {dp > 0} C T, X the inward pointing part of T,X, then ©T,X
acts on C*°(X,) as follows. On a neighbourhood U, C X of p, we first define the dilation

My s TX|y, = TXs,, Ms(V) = 5(dp(V)3, + Trer 0, (V) ) + 6200(V) T

where miero, is the projection on ker ©g parallel to Typ,0,. Let V(p) € @Tp)_( such that
(p~tdp)(V(p)) > 0, let V € Vg whose value at p is V(p), and set V'(p) = lims_,o M3V which
is a well defined smooth vector field on X, homogeneous of degree 0 with respect to Ms and
depending only on V(p). Then the map
{ °T,X — C®(X,TX,)

Vip) — V'(p) ’
realizes @TPX as a Lie algebra of smooth vector fields on X, left invariant for the group action
on X, generated by @TpX, this action on X, being

(4.2)

(4.3) Vo,V i=dp(V)dp(V')0p+ (@o(V+Mdp(v')V/)*d®o(W, Mdp(V/)W’)>T0+W+Mdp(v')W'

W = Tker ©¢ (V)7 W/ = Tker ©q (V/)
with neutral e, := d,. The value of the left-invariant vectors on X, at e, identifies T, X, with
the Lie algebra ©T}, X of X, as usual. Using

O0([Y (p), Z(p)]) = —dOo(Y (p), Z(p)) = p*glkere, (Y (0), JZ(p)), Y (p), Z(p) € (ker Oy)y,
with assumption (H4’), there exists an orthonormal basis (X{,...,X],Y/,...,Y}) of (ker ©),
with respect to p?g|ier@,such that JX! = —Y/. The set (Hg“)o = {dpg > 0} C TOHSH is
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clearly identified as a group with Hg“ and the group action on X, is isomorphic to the law
(2.4) of HE™! through A, : X, — (HE™)o ~ HE™ defined by

i=1

=1

using notations of Section 2. This gives for each p € X an isometric Lie algebra isomorphism
(°T, X, gp) — (*ToHLT!, go) given by (dAp)e, = A, (actually the linear extension of A4, to T, X)
such that A7® = ©.

The normal operator N, is the map from the envelopping algebra Diffg(X) of Vg to the
envelopping algebra D(®T,X) of ©T,X induced by the projection V' — V(p) from Diffe(X)
to ©T,X. Then for A € Diffg(X), N,(A) acts by convolution as a left invariant differential
operator on X, by (4.2). The normal operator can be considered as an operator on Hg“ by
conjugating (A, 1)*VAif V e °T,X.

The metric g, on ®T, X ~ T, X, induces a left-invariant metric on X,, and it is easy to check
that this is the metric obtained by lims_o Mjg. A computation leads to

1 9  n+1

1@%)+——w%—f%@f+fM@)

Np(Ag> = Agp == 9

where Ay(p) is the horizontal sublaplacian on 90X, equipped with the Reeb field Ty(p) and the
contact distribution (ker ©¢),. Using conjugation with A, this is the complex hyperbolic Lapla-
cian on HEH.

If we look at the action of vector fields in Vg lifted through §*n} on X é, this action restricts
smoothly on each fiber of the front face ff;, to be the left invariant action of @TpX on X, with
an identification between ff, and X,,. First set X, := {dp > 0} C T, X, then

ff, = (X, x X,)/T,,08) \ {0}) /My

M; being a parabolic dilation in N;‘ OA induced by the kernel of 75,0 — 77 © and a choice of
transversal, here 75,To — 7} Tp. If s,u,v — s0, + uTp + v with ©g(v) = 0 are coordinates on X'p
then the change of coordinates (s,u,v;s’,u/,v') — (s,t =u—u',z = v —v';,u/,v") gives an
isomorphism of X, x X,, and we have T, ,0A = {s =t =z =" = 0} thus

ff, = (X, x [0,00)) \ {0}) /Mg, Mj(s.t,258') i= (65, 6%, 623 35

with {0} = {s =t = 2 = s/ = 0}. Setting |z|> := dOy(z, Jz), the identification of ff, with the
quarter of sphere pg := ((s% + s"2 + |2|2/2)2 4 12)3 = 1 gives the smooth structure of manifold
with corners and the functions pyp := s/pg, pib = §'/pg are boundary defining functions for
left and right faces. If we fix s’ = 1, we have an identification between X, and the interior of
ff, given by “stereographic projection” with pole p;, = 1 for the parabolic dilation, these are
projective coordinates of ff;,. We then have in this model of ff,

S 1

4.4 - o = .
W TR et T @ e )

A vectorin V, € @TPX , value at p of a vector field V' € Vg, acts as a homogeneous (for M) left
invariant vector field on X,,, thus on ff,, by the dilated limit (4.2). This left invariant field acting
on X, is N,(V) but this is also the restriction of 5*7%V to the interior of ff,,. It is proved in [8]
that a vector field V' € Vg actually lifts smoothly to X% under 3*7}, tangent to any boundary
hypersurface.
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4.3. Heisenberg pseudo-differential operators on Heisenberg manifolds. The space of
Heisenberg pseudo-differential operators is defined in [7] (see also the monograph of Ponge [39])
but the approach we will use is that of Epstein-Melrose-Mendoza [9] since it is more naturally
adapted to our case. In [9] they define the class U@ (9X) of classical Heisenberg pseudodiffer-
ential operators of order m by the structure of their Schwartz kernel.

Let M be a compact manifold of dimension n equipped with a one-dimensional subbundle
L =RO, C T*M. one defines “T" M to be the parabolic compactification of T*M with respect
to L, this is a smooth manifold with boundary and let ¢ be a boundary defining function. A
Heisenberg classical symbol of order m is a function in q’mC’OO(LT*M). If A is the diagonal
of M x M, we denote by NA the normal bundle of A in M x M and there is a canonical
Fourier transform of compactly supported distributions in each fiber and a neihgbourhood of
the diagonal in M x M can be identified to a neighbourhood of the zero section of NA. Note also
that I : V — (1V,—1V) identifies T, M with a subspace of T, M & T, M cannonicaly isomorphic
with NV, A. A choice of metric h yields the Riemann-Weyl fibration W : U C TM — M x M

W (2, V) — (exph(5V), expl(—5V))

where U is a neighbourhood of the zero section, we define by (m,7) = W~! and ¢ := Wo 7!
normal fibration I(U) C NA — M x M. An operator A is in W@ (M) if its Schwartz kernel &
is smooth outside the diagonal and can be written near the diagonal under the form

@5 k(my) = (20" / TN (m(a,y),E)dE, o € p O (VT M),
m(ey)

The principal symbol is the class oo :=¢ ¢~C®(*T"M)/q~ " 1C>(LT"M) of . Epstein-

Melrose-Mendoza [9] proves that both definitions do not depend on the choice of h.

We can now define S to be the span of 7300 — 77600 in N*A. We let Méo =M x M;A,S]
be the parabolic blow-up of M x M around A in direction S, pg be a boundary defining function
of the front face ff and S the blow-down map. Let Y := [NA;A,S] and By the associated
blow-down map, Y and M(E)O have same front face and 8 = [y on this face. Moreover ¥ = Id on
A, 1, =1d on NA and ¢ lifts smoothly (by taking the identity on ff) as a local diffeomorphism
1; Y — Méo near A by construction of the blow-up smooth structure. Moreover the way that
1 is constructed (by Riemann-Weyl fibration) implies the important identity

(4.6) dip =1d on ff.
Let pg(y), pg be boundary defining function for respectively ff C Y and ff C Méo, then for any

s € C, functions in pfC>° (Mg ) defined near ff lift under ¢ to functions in Pir(yyC(Y) and the
spaces
P C= (V)0 C=(Y),  phC™(M3,) /ot C=(M3,)

do not depend on pg(yy, pr and are in one to one correspondance (these are conormal densities
to ff) which does not depend on the choice of Riemann-Weyl fibration in view of (4.6). Now if
K e Py C(Y) for s € C\(—n—1-N), then k := By . K has an expansion near 0 in each fibre in
k ~ ", k; with k; homogeneous of order s+i with respect to the parabolic dilation in the fiber and
can thus be written like (4.5) for o € ¢~*~"~1C°°(“T" M) the inverse Fourier transform of fy , K
in the fibres (Fourier transform keeps parabolic homogeneity). Choosing pg(yy homogeneous of
order 1 in the fibre, a term K € pg(y)C’oo(Y)/pf;(“;)C’oo(Y) can be uniquely represented by a
homogeneous distribution of order s with respect to the parabolic dilation in the fibre by taking

(4.7) Pty Py ) s,

its Fourier transform thus defines an element oo € ¢~*~"*~'C®(*T"M)/q—*"C>(*T" M) in-
dependent on the choice of homogeneous pg(yy and Riemann-Weyl fibration, i.e. the principal
symbol. But if K € p*C> (Mg, ) then (4.6) insures that (4.7) is also equal to Py (P K st
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(understood in normal coordinates ff x [0,00) ) if K = QZ*K and pg = J*pﬁ(y), then the
principal symbol of the operator is

o0(, ) = T, a8y (Pivr) (o K)ln. ) = Froas I By (pivr (oK), )

where F means Fourier transform.

Notice that the Fourier transform on tangent and cotangent bundle needs to be given a density
to be well defined, this is for instance the case if one has a metric on M. Note also that the
definitions of g (M) being local, the metric h for the Riemann-Weyl fibration can be locally
taken to be flat. Finally we remark that the contact form ©g and the almost-complex structure
J on its kernel induce a metric on M by (3.9 and a Reeb vector field Ty fixing a representative
for the parabolic blow-ups.

5. THE LAPLACIAN, ITS RESOLVENT AND THE POISSON OPERATOR

We use the form (3.7) of the metric in the product decomposition [0,¢€), x 9X of X and the
dilated metric k(p) defined in (3.10). We first write the Laplacian near infinity using this model
form of the metric

1 n+1 1
(5.1) 8y = 100, + "0, 4 280 + 20, 105 K1),
where |k| := | det k(p)|, this gives
1 2, (n+1) a2 | 2 2
(5.2) Ay = —Z(pap) t p0, — p*Ty + p°Ay + pP, P € Diffg(X)

where Ay is the horizontal sub-laplacian on (0.X, 0y, J).

The horizontal sublaplacian on a pseudohermitian structure (M, ©y, J) introduced in [42, 16, 30]
is Ay = djdy where dy = T(ker ©)-d, With d the usual differential and 7(ier@,)+ the orthognal
projection from 7™M onto the annihilator of the orthogonal of ker ©y C T'M with respect to the
metric hg = ©2 + dO(., J.). The adjoint is also taken with respect to hg.

Remark: If the metric is even at order 2k as defined in Subsection 3.2, then V() f is even in
p at order 2k as well as the divergence divy )X = divy(,) X for any X € TOX. Finally we have
|det k(p)| = p?| det h(p)| which is then even in p at order 2k + 2, this clearly proves that (5.1)
is (in local coordinates near X) an operator of the form Q(p,y; pdp, d,) where Q(x,y; D) is a
family of polynomial in D with an even Taylor expansion at = 0 at order 2k.

5.1. The Resolvent. The Laplacian A, has essential spectrum oes(Ag) = [("Zl)z,oo) and

possibly a finite set o,,(Ay) of eigenvalues in (0, %) Let us set for k € Ny

n+1/2 1
Py = k- N
k 2 2 05

then Epstein, Melrose and Mendoza [8] proved the

Theorem 5.1. On an asymptotically complex hyperbolic manifold whose metric is even at order
2k, the modified resolvent of the Laplacian

RO\ = (A, —An+1-X)"!

extends from {R(A) > 2L} to C\ (=No U Py) as a finite-meromorphic family of operators in
the ©-calculus: for A not a pole, we have

R()\) c mé2,2)\,2)\()?) + \IIZA,QA(X'), R()\) . COO(X) N p2)\OOC(X)

The poles are called resonances and we denote by R the set of resonances.

Remark: in [8], the property of metrics even at order 2k is only discussed for k = oo, but this
can be checked in general from their construction (see also [17] for a similar analysis in the real
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asymptotically hyperbolic case).

We define the multiplicity of a resonance Ay by
(5.3) m(Xo) == rank(ResA:,\O((Q)\ - 1)R(>\)))
which in turn is equivalent to the rank of the polar part of R(\) at Ag.

5.2. The Poisson Operator. Using the form (5.1) of the Laplacian and the structure of the
resolvent, we are able to define the Poisson operator:

Proposition 5.2. Suppose the metric is even at order 2k and let A satisfy R(\) > "TH, Aé¢
(2 + k+ IN) and A(n+ 1= X) € 0,(A,). Then for each fo € C*(9X) there exists a unique
function F(\, fo), linear in fo, solving the problem

(Ag = An+1=X)F(A fo) =0

F(X, fo) = p?" TN FL(A, fo) + p*Fa(A, fo)

Fi(X, fo) € C*(X)

Fi(A fo)lax = fo

with F1(X, fo) having an even Taylor expansion at p =0 at order 2k in a product decomposition

near 0X . The Poisson operator defined by
C>®(0X) — C>(X)
P :
) { fo —  F(\ fo)
extends finite-meromorphically to C\ (—No U Py).

(5.4)

Proof: The proof is similar to the proof of Graham-Zworski [15] in the asymptotically hyper-
bolic case. We first deduce from (5.2) the indicial equation for fo € C*°(M) and j € Ny

2p* (" 1=NH fo ()
ier—n-1-4/2) "

Then we can construct a meromorphic function ®(\) € p?(* 1= (X) with at most first order
poles at ”TH + iN such that

(Ag = A +1=2)2(X, fo) = O(p™), p 2" NO(N, fo)lox = fo.
We thus define
(5.6) P(X)fo=®(\, fo) = RIA)(Ag — A(n+1—X)®(A, fo)

which satisfies the required conditions. However we have to prove uniqueness of an operator

satisfying (5.4), this is obtained easily using the indicial equation when ®(\) > 2tL and using a

Green formula at infinity if R(A) = 241 (see [15] for details) :

(5:5) (&g =Aln+1-2) 2OFI=NEI fo () + O(pA RO I

Lemma 5.3. Let R(\) = ”TH and u; = p*"HNE 4+ p2AG;y for some Fi, Gy € C(X) and

i =1,2. If u; satisfies i := (A, — A(n+1—\)u; € C®(X) fori=1,2, then
[ 7 —wamydol, = @A =n=1) | (FiloxPilax =~ GaloxChlox ) duob.
Proof: we write Green’s formula in {p > €}
/p>€(u1r2 — uoT7)dvoly = %672’”71 /p_e(ulaqu — U0,u1) dvoly(y).

Using dvoly,(,) = p~'dvol,, + O(1) and the asymptotics of u; gives
00,7 — Tyur = (@A — 1 — D (Filox Falox — GiloxTalox) + O(p™+?)
which implies the Lemma by taking the limit as ¢ — 0. O
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Then the first part of the proposition is deduced classically from this Lemma and formula
(5.6) extends clearly meromorphically to C\ (=NoUP; U(n+1—Py)) using Theorem 5.1, which
proves the meromorphic extension of P(A). The points (n + 1/2)/2 + j/2 are not singularities if
j < 2k since by evenness of the metric at order 2k and the remark following (5.2), the function
p 2 H1=NP( )\, fy) can be constructed to have even Taylor expansion at order 2k at p = 0, see
[18] where it is done in greater details for the real asymptotically hyperbolic case.

From the proof of proposition 3.5 in [15], we also deduce that P()\) : C°°(9X) — C*(X), is
analytic at each

11
(5.7) AM:”; + 4k keN

if Ap(n+1— ) & opp(Ay), and P(Ag) fo can be defined as the unique solution of

(Ag — /\k(ﬂ + 1— )\k))?(Ak)fO =0

P(Ae)fo = 2T B (fo) 4 p*** og(p)Gi(fo)
Fy(fo), Gk(fo) € C=(X)

Fi.(fo)lox = fo

and we are done. O

(5.8)

Actually the Poisson operator was constructed in Section 15 of [8] by its Schwartz kernel as a
weighted restriction of the resolvent kernel at the boundary face rb(X2). The Schwartz kernel
of P(\) is

(5.9) PO = (BB (0 P ROV )

for some smooth positive function ¢(\) € C*(X x 9X). Actually one can use Lemma 5.3 as
in [15, Prop. 3.9] to check the same result, which gives the value ¢(A) = (2A —n —1). Using
Theorem 5.1, we deduce that

(5.10) B0 T RO € pfog C (X x0 0X) + B (02 C™ (X x 0X)).

A property that we will use later is the relation between the spectral measure and the Poisson
operator, the proof of which is an easy application of Green’s formula, and essentially similar to
the real asymptotically hyperbolic case (see [38, 21, 18]):

Lemma 5.4. If the metric is even at order 2k, we have for \;n — A ¢ RU Py,
R(\;m,m') —Rn+1—Xm,m')=2\—n—1)"" P(\;m,y)P(n— X;m/, y)dvolp, (y)
0X
6. THE SCATTERING OPERATOR
From the Poisson operator, we can define the scattering operator for R(\) > ”T'H and \ ¢
(RU 2 + IN) by
C>®0X) —  C>®(0X)
6.1 S(A):
(61) D18 R vy <
where F(], f) is defined by (5.4). Since P()\) extends finite meromorphically to C\ (—NoUPy) if

the metric is even at order 2k by Proposition 5.2, we deduce that S()) continues meromorphically
in C\ (—No U Py)

SO = =(P P RO)(Bg = An+ 1= 2@, ) ) p=o-
The rank at a pole A = s is finite if s ¢ —Ng U P}, U (2L + {N) and in {R(A) > 21}, the same
arguments as in [15, Prop. 3.6] show that S()) has at most first order poles with residue

I1, if s ¢ 24 4+ IN

Res;S(N) = { M, —pr ifs— A
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with II; a finite rank operator with Schwartz kernel

(6.2) 7y = (25 =1 = 1) (') *Res RN ) lp=pro

and py, is a differential operator on X defined by

(6.3) pj = Resy, p;j(A), where ®(A, fo) ~ Z PP =N+ p;(A) fo-
Jj€Ng

It is straightforward to see from the construction of ®(\) and (5.2) that p;()) is a differential
operator on 0X, actually a Heisenberg differential operator, the Heisenberg principal symbol
Opr(P2x(A)) of pax(A) can be obtained by the induction formula

—Appor(N) + Tgpar—2(N)
ErDEA—n—-1-k-1)

Since [Ay, Ty € \IJ%O (0X) and we are interested only in the principal symbol, it suffices to deal
as if Ay, Ty were complex numbers. Observing that pog () is holomorphic at (n+2+k +Ny) /2,
one can consider

Qi) =

po(A) =1, p2(A) = =Dy, pars2(N) = mod U (9X).

T2A —n—1)k!
T2A—n—1-k)

p2(N), () =1, @(\) =4,
which then satisfies

Gr+2(A) = —Apgar(N) + k(2 —n — 1 — k)qugk_g(A)

and such that poj, = ((k—1)!k!2) "1 gor (A2r). But this last term gog (o) is computed by Graham
[13, Sec. 1] and is equal to

k
ok (A2k) = H =Dy +i(k+1—20)Tp).
=1

We have thus proved

Proposition 6.1. The scattering operator S()) is a finite meromorphic family of operators on
C>(0X) in C\ (-NgU P, U (n+1—P) U (2 + IN)) and meromorphic in C\ (—No U Py).
In {R(\) > 2L} S(X) has at most first order poles with residue

11, if s ¢ " + 4N
Res,S() = { Iy, —pe  ifs=Xe

with I is the finite rank operator defined in (6.2) and py, is the Heisenberg differential operator
on 0X defined in (6.3) and such that

k

! H(—Ab +i(k+1—20)Ty) mod U (0X).
=1

(6-4) P2k = 5k — 1)1k)

Note that S(A) depends on the boundary defining function p and a different choice p = e“p
(i.e. a different conformal representative contact form e?*©g with wg = w|yx) gives a scattering
operator S(A) and residues py (when A(n +1 —X) € o)) conformally related to S(A), px

Sv()\) _ 672)\44;0 S()\)62(n+17)\)w0’ ﬁk — ef(n+1+k/2)wopk6(n+17k/2)w0
The definition of S(A) and Lemma 5.3 directly imply (see [15, Sec. 3]) that

n+1
2

where the adjoint is taken with respect to measure dvol,, on X and the left identity extends
meromorphically in C\ (3Z U P, U (n+1— Py)).

(6.5) SO)L=Sn—A) =S5(\), RO =

We have a direct relation between resolvent and scattering operator:
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Proposition 6.2. For X\ such that S(\) exists, its Schwartz kernel is

S(A) = (2x = n=1)Ba. (B*((p0") > R(N)) b -
The right-hand side is a meromorphic family of distributions on X in C\ —Ng U Py with first
order poles at (n+ 14+ N)/2U (n+ 1 — Py) if the metric is even at order 2k.

Proof: For R(\) < 0, we clearly have that
SOVS = il (PO)S = 0\ )] = lim[p~ > POV ).
Using (5.9) and (5.10) for R(\) < 0 gives
p" PP € B(pg ' C= (X xo 0X)) C CF(X x X \ dA) N CO(X x 8X)
thus by taking the limit

S()\)f(b):/ lim (p(m) =22 P(\;m, b)) f(b') dvoly, (V')

ax m—b
we deduce that the kernel of S()\) is B, (3" (p~2*P(\))|) for R(\) < 0, this gives the result
in a half plane by using again (5.9). To extend it in the complex plane, we need to check that
a distribution of the form pf_f4>‘F>\ with Fy € C°°(0X xg 0X) meromorphic extends meromor-
phically to C. But this is a classical fact which can be proved as in the normal blow-up case
(classical pseudo-differential operators) by Taylor expansion at the front face of the parabolic
blow-up, we lead the reader to the Appendix where we describe it. This leads to first order poles
at ”TH + iN whose residue are differential operators. O

For ©¢ fixed, we have an induced metric ho on 0X (see (3.9)), and thus an orthogonal
decomposition T0X = RTp @ ker ©g and 770X = ROq & (ROg)*L. We define the Heisenberg
norm on 70X

lellne := (O0(6)? + Jd00(e, J€)7)"

The Fourier transform of |[{]|* if s € C is a meromorphic family, with poles at N, of homogeneous
distributions of order —s—2n—2 on T*0X = ROy & (RO)* with respect to the parabolic dilation
Mg(t@o +u) = 5%tO + du, with u L Oyg.

Theorem 6.3. The scattering operator S(\) is, for A & RU iZ, a pseudo-differential operator
in the Heisenberg class

S(A) € TH 2D (5%,

0

and the principal symbol of S(N) is
22)\+1F A
(SN = en gy LV 52

Proof: we use [9] definition of ¥§ (0X) (that we recalled in Subsection 4.3) and the first
property is a consequence of Proposition 6.2 and discussions in Subsection 4.3.

To compute the principal symbol, we work locally near a point (p,p) of the diagonal 9A
in the boundary and follow Subsection 4.3; we set M = 0X and define the bundle Y :=
[NOA(M?);0A, Sp] where Sy = 7500 — 1300, NOA(M?) is the normal bundle of the di-
agonal in M x M, and suppose pg(y is a boundary defining function of the front face ff(Y") of ¥’
which is homogeneous with respect to the parabolic dilation induced by Sy and the Reeb field
To. We also use M3 := [M x M;8A, Sp], denote by Off its front face (remark that Off = ff(Y"))
and denote by (3 the blow-down map. Consider also a Riemann-Weyl fibration ¢ : NA — M 2,
near A which lifts smoothly to ¢ : Y — Mg)o (recall the fibration gives the smooth structure to
the blow-up). Finally we set pag := s pe(y)- The main singularity so()) of S()) is given by the
homogeneous distribution on NOA(M?)

(6.6) 50X = pig s (0ERAESODlon) = (2A = 1 = o (088" (o) RO e lon
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and the symbol is the Fourier transform of 35, (s0(A)) in the fibers of NOA ~ T9X. Recall that
the manifold MJ_ is canonically identified with (X xe, X) NrbN1lb. Now suppose that pg is
a boundary defining function of the front face ff of X X @, X such that pglin, = pag. Define
b = p/pg and pu, = p'/pg, they are defining functions of 1b and rb, we thus get

[p586" ((pp") "2 RON)) [ibrwn) o = ((prop1n) ™2 B* RON) |sntbres = ((Pc’)rbpé)lb)_Q/\N(R()\))> |arbnatb

where Orb := rb N ff, dlb := b N ff, pory = pwvle, pob = pwle and N(R(N)) is the normal
operator of R()\). Near a point p € M, we take Darboux coordinates (u,w) € R x R?", that
is 0, = Tp and ©g = du — (x.dy — y.dzx) if w = (z,y) € R™ x R", they induce coordinates
(p,u,w; p',u’',w') near (p,p) in X x X. f T+ X = {dp > 0} C TX, we have the normal fibration
o: T+X|M®R8p/ - XxX
o o 1 1, 1 1
o: (u,w,sap +5'0, + tTo +z.3w) — (s,u+ 5t,w+ 5% 8, U — it,w — iz)

which restricts to TM — M x M as a (local near p) Riemann-Weyl fibration associated to a
flat metric, and it induces the fibration ¢ since T+ X |y & R,/ is canonically isomorphic to the
normal bundle NOA(X x X). The fibration ¢ lifts to the parabolic blow-ups around A to give

the smooth stucture of X3. Following Section 4.2, the choice of homogeneous boundary defining
function pg of the front face ff of the blow-up [NOA(X x X);0A, S| can be taken to be

1 1
o 1= ((32 + 572 + §|z|2)2 + t2) L with |2 = dOy(2', J2), 2 =z — Oy(2)Tp.

Now we observe that
Np(Ay = A+ 1= NN, (ROV) =6,
and the normal operator of A, is Ay on (X,,g,), we deduce from (2.6),(2.7) and the group
isomorphism A, that the convolution kernel is
r()?

Ny(R(N)) (38,, +tTo + Z%‘X{ + wi+nYi') = cnmr(s, tw) o F (AN 2\ — n;7(s, t,w)),
i=1

452 dy (s,t,wiey)\\ >
t — _ ‘h 9p » Uy TP
(s t,w) 2+ (1+s2 1 %|w|2)2 (cos (2

with X/, Y/ an orthonormal basis of eigenvectors of J for hg in ker ©g. Thus we conclude from

17 K2

(6.6), (4.4) and pgyy = (t* + |w[*/4)7 that

2 2 -2
(6.7) so(A;p, t,w) = cn(2X —n — 1)5(2)1:(_)\31) (tQ + iw|4) .

The principal symbol is its Fourier transform in the fibre T,,0X of these parabolically homoge-
neous distributions, it is studied in great details by Geller [10], we refer the reader to his work. OJ

From Proposition 6.2, Lemma 5.4 and (5.10) we deduce (see [21, 18] for the proof in the real
case)

Lemma 6.4. For A such that P(n — X), P(\), S(X\) exist, we have the identity
P(A)=P(n+1-X)S(N).
Following Ponge [39, Sec. 5.5], one can construct a (“coefficiented”) complex power
L) :==e¢(N) (1 +L)*

where
rex—n-—1)

L= ZZ:Z“ Span(Zl,...,Zm) :keI'@O, C(A) = m

=1
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for some m > 2n, then if the metric is even at order 2k, the operator

n+1

SO ::L(—)\Jr

JEEVAEY ”“)

is a finite-meromorphic (thus Fredholm) family in C\ (P U(n +1 — Px) U (n + 1 — N)/2) in
U, (0X) thus of bounded operators on L?(9X) by [39, Prop. 3.1.8]. It is actually holomorphic
at (n+ 1+N)/2 because of the multiplication by Gamma factors in S(A) that kill the first order
poles of S(A) there. The Heisenberg principal symbol of par = [(A — A2k)S(N)]|a=rse — My, IS
given in (6.4) and is shown by Ponge [39, Sec. 3.5] to be invertible if Aoy, & n+ 1+ N, thus poy, is
Fredholm if Aoy, ¢ n+1+N. This implies that g()\gk) is Fredholm on L2(9X) for these Ay, since
(L+1)* are invertible. Then using Gohberg-Sigal theory [11] and the fact that S(A) is invertible
in a small pointed disc centered at Agx, one obtains directly from g()\)_l = S(n+1— ) that
§()\) is finite meromorphic in a small disc containing n + 1 — Agi, if n 4+ 1 — Ay, ¢ —Np and we
can define (as in [19, 37] for the real case) the multiplicity of a pole of finite multiplicity of S(\)
to be

(6.8)  v(Xo) := —Tr Resy=x, (OxS(A)S™1(N)) = —Tr Resa—, (Ox(c(\)S(A)(c(N)S(A) 1),

the second identity being easily checked by cyclicity of the trace (see [37, Lem. 5.1]). Note that
(o) is not necessarily finite at Ay € —Ng since S()) is not a priori Fredholm at n+ 1 — Ag then,
and S (A) is not a priori finite meromorphic at —Ny. Actually it can be proved that it can not
be finite meromorphic and that the psi for Aox € n + 1 4+ Ny have infinite dimensional kernel,
this is easy to check for the model HE“. This issue and relation with resonances multiplicity at
these points will probably be carried out elsewhere.

Then the method of [19] based on Gohberg-Sigal theory, Lemma 6.4, Lemma 5.4 and Propo-
sition 6.2 can be applied verbatim to obtain

Proposition 6.5. If g is even at order 2k, if \g € {R(A\) < (n+1)/2} \ (Pr U —Np) then we
have

v(Ao) = m(Ao) + Uppp1-w)/2(Ao) dim kerp4(nT+1_)\O) for Ado(n+1—Xg) & opp(Ay)

v(Xo) =m(Xo) —m(n+1—2Xy) for Ao ¢ %(n—&-l—N).

The only non-apparent result we need to apply the proof of [19, Th. 1.1] is the following
unique continuation result dues to Vasy and Wunsch [44]:

Lemma 6.6. Let (X, g) be an ACH manifold, and let u € C>=(X) satisfy (Ag—A(n+1-\))u = 0,
A € R in a neighborhood 2 of 0X, then u =0 in Q. In particular, if Q = X, u=0.

This is a consequence of Lemma 2.3 of [44], after observing that our manifold has bounded
geometry and a product decomposition [0,00) x X outside some compact set with metric
g = dr® + a(r) for some 1-parameter of metrics a(r) on X, sastisfying uniform positivity of
second fundamental form

—0ra”t(r) > at(r),

here a~!(r) is the dual metric to a(r) on T*9X. We should point out that the analogue result
for conformally compact manifolds was proved by Mazzeo [33].

We also remark that the method of [18] can be used to prove possible essential singularity for
the scattering operator (thus for the resolvent) at w:

Proposition 6.7. For each k € Ny, there are examples of ACH manifolds for which n + 1 —

Aok = %/Q_k is an essential singularity of S(\).
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Proof: Let us consider for simplicity &k = 0 and A\i(n+1— A1) € opp(4,), the other cases are

not more complicated (see [18]), note also that it suffices to consider S(A) instead of S(A). A
quick analysis using (6.2), Subsection 5.2 and (5.1) shows that the residue of S(\) at n+1— XAy
is (modulo finite rank smoothing operator)
n+1—-2A
Py == Resx=pt+1-1,5() = —Tl(ap log [k(p)|)] p=o0-

Then this operator can be injective on L?(0X) and any Sobolev space, it suffices actually to
choose the metric so that this is the Identity (which is easy to do). Then S(\) would have a
pole of order 1 whose residue P; is injective on L?(0X). Suppose that S()) is meromorphic at
n+1— Aq, i.e. has a Laurent expansion at A =n+1 — \;

0
SN =D SiA-n-1+M)+0A-n—1+X), peNy
i=—p
for some S;. Then since S(n+1—A)S(A\) = S(n+1—A)S(\) = Id and
SA) =AM =X)"'PL+0M\—X) near Ay,

we deduce by injectivity of Py that S; = 0 for i = —p,...,0. But the term Sy can also be
obtained by a contour integral (C' is a circle around n + 1 — Ay of radius ¢)

o S(A)
o 1
S()—(Zﬂ'l) /64—/\—n—1+/\1d>\

thus this is an operator in W@ (0X) with principal symbol given by

Tpr(50) = opr (L(Al - 1)) 0 0pr(S(A))|a=n+1-2, © Opr (L()\l -z —Qi_ 1))

where o denotes the composition for Heisenberg principal symbols (see [9, 39]). But using
Theorem 6.3

n+1 gn+4(ntl/2y2 o n+1
opr(S0) :Upr<L(_>‘1+ ))O(Cn#?\/ﬂﬁ(anHg 1))°Jpr(L(_)‘1+ ))v
2 I'(—3) 2
which is not 0 since the middle one is not 0, thus a contradiction. O

7. THE RADIATION FIELDS

In this section we study the scattering theory developed in the previous sections from a dy-
namical view point as in the Lax-Phillips theory. We define the forward and backward radiation
fields, show that they give unitary translation representations of the wave group, and that they
can be used to define the scattering matrix (6.1) in terms of the wave equation. The analogue
study of the radiation fields for asymptotically hyperbolic manifolds was carried out in [40] .

We start by considering the Cauchy problem for the wave equation

2
(Df—Ag—(”zl)>u(t,z)_omR+xX

u(oaz) = fl(z)v Dt’U,(O,Z) = f2(z)7 i, f2 € CSO(X)

It is well known that u € C*®° (R4 x X). We are interested in understanding the behavior of u
at infinity along some bicharacteristics.

(7.1)

Theorem 7.1. Let p be a boundary defining function which gives a product decomposition X =
[0,€) x OX for which (5.2) holds in a collar neighborhood of 0X, and denote X > z = (p,2') €
[0,€) x OX. Let u(t, z) satisfy (7.1). Then

v(p,s,2') == p " tu(s — 2log p, p, 2') € C°°([0,¢€) x R x 9X).
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Proof. This is very similar to the proof of Theorem 2.1 of [40]. Without loss of generality, we
will assume that f; = 0. Let

(7.2) Q=p "2 (D? — Ay + W) ptt

4
Using (5.1) and setting s = t + 2log p, we have

1 n+1 1
(7.3) Q= 0,(0s + Zpap) = pAp(p) + TA + §A(285 + p0,)

with A := 9,(log|k|). Setting v(p, s,2’) := p~ " tu(s — 2log p, p, z), (7.1) becomes
Qv = 0.
v(p,2logp,z) =0, d.v(p,2logp,z) = p~ "~ fa(p, 2).
From the standard regularity theory for the wave equation, we know that v is smooth for
p > 0. The main point of the theorem is to show that v is C*° up to p = 0. There are several

ways of proving this, and we will choose a method that will establish energy estimates which
will be needed in section 9.1. For that purpose we make the following change of variables

(7.4)

(7.5) s=4dlogv, p=pv.
Let

V(p, v, z) = v(pr,4logv, z).
In coordinates (7.5) equation (7.4) is given by
<i5u3u — WV Ap () + nTH
V(g p2) = 0, (9,V) (s s 2) = (1) 7" fapi?, 2),

From Darboux’s theorem for contact forms, see for example Theorem 5.5 of [31], we know that
for small enough U there exists local coordinates z = (u,x,y), T = (T1, ., Zn), ¥ = (Y15, Yn),
u € R, near any point zp € 0X such that

1
o) At 1o A, + ua,,)> V=0,

@0 =du+ Z (yjdl'j - .deyj) .

j=1

Let X; and Y; be the vector fields defined by

1 1
ﬁ(ax] — Y ﬁ(ayj + zjau)v
and Z; = X, (resp. Z; =Y,_y) for j < n (resp. j > n) which forms a basis of ker 9. We denote
by Ty = To(p) the Reeb vector field of (O, k(p)). Note that Ay, is a differential operator on
dX with derivatives in Zj, (uv)?dy, since p?Ay,) is in Diffg, (X).
We want to differentiate equation (7.6) with respect to the vector fields X; and Y; and 9,.
We first recall that

(7.8) (X5, Xi] =[Y;, Y] =0, [Z;,0.] =0, [X;,Yi] =010y
Therefore we find that
[X2,Y;] = 2X;0u, [V X;]=—2Y;0u, [0u,23]=1(02,2;]=0.

727

(7.7 X; = Ou), Y=

Differentiating (7.6) and letting U; be the vector whose transpose is
Uf = (V. X1V, Xy VNIV, YV 00V,

we deduce that there exists a (2n + 2) x (2n + 2) matrix of first order differential operator B
and functions C, D, E of (u,v, z) with smooth coefficients such that

1
(7.9) ((Zaﬂay AN + @wB(Zy, ..., Zon, jwdy) + Cvd, + Dud, + E) U, =0,
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and p = 1. In general we find that if U, are the vectors (with size N = N(p)) consisting of all
derivatives of V' of order p > 1 with respect to the vector fields X, Y; and %, then we get (7.9)
with B,C, D, E some N x N matrices with smooth coefficients.

Notice that the operators in (7.9) are smooth up to {u = 0} U {r = 0} and therefore can be
extended smoothly to the neighborhood {|u| < \/mo} U {|v| < \/7}. We then prove

Lemma 7.2. For T >0, let Q = [0,T] x [0,T] x 0X. Let V(u,v,y) be a N x 1 vector, smooth
in u>0, v >0, satisfying the system (7.9) with
1

(7.10) ((Za“a” — pwAp)ld+ pwB(Zy, . .., Zan, pwoy) + Cv0, + Dud,, + E)V -0, and
Vi psy) = [l ), (0uV) (s 1:y) = o y), >0,

where B,C, D, E are N x N matrices with smooth coefficients in {|u| < T, |v| < T,z € 0X} with
B having for coefficients some first order differential operators in (Z;);, pwd,. If the data fi
and fo are such that

T T
(7.11) / /7 (ulfi? + u3|Vhf1|i) dvol,(z)dp < o0, / /7 plf2]? dvoly(2)dp < oo,
0 0X 0 0X
then for small T,

/ [|VI?+ pv(p+ v)|[V"VI7 + pl0.V 2+ v]0, V] dvoly(z)dudy <
Q
(7.12) .
0/ /8 (AP + w1 fol? + 619" A1) (1, 2) dvoli(2)dp

0o Jox
Proof. The proof is essentially the same as Lemma 4.1 of [40], we just emphasize the differences

and we refer the reader to that paper for details. We denote Z = (Z1,. .., Za2,) the set of vector
fields and we begin by multiplying the system (7.10) by ug—‘; — u%—‘lf, this gives

(7.13)
Lo 1 2 o ohy2) pd | _ Lig-d 1 2 2 ohis 2 ) (p]d
S k720 | OV + v VIV K2 | = SIRT20u | { v 10 VIT +vps VIV ) [RIZ | +

Z divy, (,uu(uauV - V&,V)Vth) +Q (V7 o, V,vo,V, uwZV, V2,u28uV) =0,
k

where @ is a quadratic form with smooth coefficients and divy is the divergence with respect to
metric k(p) on X, which is easily seen to be also the divergence for h(p).

If (Z;); is a local orthonormal basis of ker O for h(p) (thus for k(p)) and if Ty = To(p) is
again the Reeb field of (g, k(p)), then

(7.14) V'V = STIZVE + 2@ (o) ToVE,  alp) = 1+ O(p)

is a smooth function up to p = 0. Let s, Q; and ), p, be the domains defined by
95:[5aT]X[5aT]XaX7 ng{(ﬂ,lﬁz)eﬁé; v > p}, and
Qop ={(u,v,2) €Q, a<p<v<b}

Integrating in 2, 7, using the compactness of X, the divergence theorem, and that the first
term in brackets in (7.13) is positive, we find that for 7" small, there is a constant C' such that

T
/ /7 KV|3VV‘2+VH2|VhV|%>] (o, v, 2) dVOlk(Z)dI/+/ |Q| dvoli(z)dvdpu
a JoX

Qa7

T
SC/t/iM%W“w@”F+ﬁW”ﬁMmmwde@@~
@ o0X

Doing the same in the region €25 g gives

(7.15)
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(7.16) _/56 /35( K/J |3;LV|2 + /~L1/2|VhV\%)} (1, B, z) dvoly(z)du + /QM |Q| dvolk(2)dvdu

B
: C/(; /;,X (1O VI + pld V2 + 1PNV (s pey) dvoli(z)dp.
Next we integrate (7.15) in « € [§,T] and (7.16) in 8 € [, T] and add the results to get

/+ (,ul/(u +V)|[V'V2 4+ u |8#V|2 +v |81,V|2) dvoly (z)dudv+

Q

T T

(7.17) / / |Q| dvoly(z)dudvda —|—/ / |Q| dvolg(z)dudvds <
) Qa1 1 Qs

T
C(T—(S)/ / <u|8MV\2 +u3|Vthi) (s 11, 2) dvoly,(2)dpe.
§ o0X

All terms of @, except for those in |V|2, are trivially bounded by the terms in the first integral,
and thus they can be absorbed in first integral by choosing T small enough. To bound the
integral of |V/|? in QF it suffices to copy word by word the method in Lemma 4.1 of [40] and
choose T small. This gives

(7.18)

T T
/ |V|? dvoly(2)dudy + / / [V|? dvolg (2)dudvda + / / |V| dvoly(2)dudvd3 <
Qf 5 JQar 5§ JQs

T
CT/ u|8MV|2(u,1/,z) dvolk(z)dudV—FC’/ / V12 (py t, 2) dvoly(2)dp
Qf § Jox

Now taking T small and § — 0 in (7.17), (7.18), this gives (7.12) in the region above the diagonal
after using the initial condition. Observing that the operator in (7.10) and the estimate (7.12)
remain the same after switching 1 and v, this estimate also holds in the region below the diagonal.
This ends the proof of the Lemma. O

Now we apply the Lemma 7.2 to prove Theorem 7.1. The goal is to prove that for fo smooth
and compactly supported, the solution to (7.1) is smooth up to {p = 0}. We know by the finite
speed of propagation that v is supported in s > C for some C € R. The change of variables
(7.5) is smooth in this region and we work in coordinates (u, ). We will show that V(u, v, z) is
smooth up to {p =0} U {r = 0}.

We first apply Lemma 7.2 to the special case of equation (7.6), noticing that in this case V'
is a function instead of a vector. The data on {u = v} is given by (7.6), so the last integral on
the right hand side of (7.12) is equal to

T
/ /7 =272 fo(u?, y)1? dvoly(2)dp S/ | f2[*dvoly <[ fall72(x)-
0 0X p<T

Thus the last integral on the right hand side of (7.12) is bounded by the square of the norm of
f2 in L*(X,dvol,) and

(7.19) /Q [IVI? 4+ po(p+v)|V"V I + 10, VI? + v]0,VI?] dvoly(z)dudy < C’||f2||2Lg(X).

Now we want to obtain such energy estimates for the derivatives of V. We begin by analyzing
the derivatives of V' with respect to the vector fields X, ¥; and % and we differentiate equation
(7.6) with respect to them. We get a system of equations given by (7.9). So we conclude in
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particular that
/ UL + 110, UL 2 + 010, UL 2 + o (g + )| VAULE. dvoly(2)dpudy <
(7.20) Q
C (el 2 + IV il o) ) -
Using the commutators (7.8), the fact that (Z;);, 8, form a local basis of TOX near zq, and that
the initial data is smooth with compact support, (7.19) and (7.20) guarantee that
V and 99V € L*(Q), |a| = 1.

Using this argument repeatedly, we conclude that V is smooth in the variables z € 9X with
values in L?(Q) with respect to (u,v), that is

(7.21) 0%V e L*(Q), ¥V a e N",
and we also have
(7.22) > / [109V ) + 0,02V |? + 18,02V |?] dvoly(z)dpdy < oo, ¥ k € N™.
laj<k <
As in [40, Th. 2.1], we can use the equation that W := |k|7V satisfies to obtain information

about the derivatives of V' with respect to u and v. The proof is not different of that of Theorem
2.1 in [40], we refer the reader to it, after noticing that Eq. (4.23) there becomes in our case

1
(7.23) (46,,8M — W Ap () + /u/F(/u/)> W =0,

where W := [k|3V and F = AVYPR |k|3] is a smooth differential operator of first order which,

in local coordinates, has only derivatives on the vector fields Z;, 0,, as above. This concludes the

proof of Theorem 7.1. O
With v defined in Theorem 7.1, the map

Ry : CF(X) x CF(X) — C(R x 9X)

0
(fla fQ) — %’U(Ov 5, Z,)

will be called the forward radiation field. We remark that this definition depends on the choice
of p, which in turn depends on the choice of the conformal representative in [©g]. The backward
radiation field can be defined in a similar fashion by considering the behavior of the solutions to
(7.1) as t — —oo. Let u be the solution to (7.1), one can show that

v_(p,s,2') = p~" (s + 2log p, p, 2') € C([0,€) x R x X)),

(7.24)

and define
R_:CP(X) x C°(X) — C°(R x 9X)

7.
( 25) (flva) U %U—«)’S’Z/)

8. THE RADIATION FIELDS AND THE SCATTERING MATRIX

This section can be compared to section 5 of [40]: we describe relation between the radiation
fields, the Poisson operator and the scattering operator. As mentioned in subsection 5.1, the
spectrum of the Laplacian o(A) was studied by Epstein and Melrose and Mendoza [8], and
consists of a finite pure point spectrum o, (A,), which is the set of L?(X) eigenvalues, and an
absolutely continuous spectrum o,.(A,) satisfying

(8.1) Tac(Dg) = {(”Zl)zoo) and oy (A,) C <o, (”21)2)
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This gives a decomposition
2 _ 72 2
L (X) _Lpp(X)®Lac(X)7

where L2 (X) is the finite dimensional space spanned by the eigenfunctions and L7 (X) is the
space of absolute continuity, which is the orthogonal complement of Lgp(X ).

2 2 (nzl)z + 02;
which corrfsponds to A = 2l 4ig If S0 # 0, then @—i—o? g [@, 00), while if o < — 241
then w + 0% ¢ [0,00). The eigenvalues of A, are of finite multiplicity and are described by

points on the line Ro = 0 and —”T'H < Jo < 0. The spectral theorem gives that the resolvent

(8.2)

The choice of the spectral parameter which adapts well to the wave equation is

n+1
2 )

4

and it was shown in [8] that it can be meromorphically continued to C\ %(% +Np) as an operator
acting on appropriate spaces.
Let

1 1)? o
R(n;r +i0) = <Ag _ (1) _0—2) : L*(X) — L*(X), provided So < —

Hp(X)={(fi,f2): fi, fo€ L*(X), and dfi € L*(X)},
and for wg,w; € C§°(X), we define the energy of w = (wg, w1) by

1 +1)?
(53) il =5 [ (1dwol? = 5 + o) avol,
X

where |dwg|, denotes the length of the co-vector with respect to the metric induced by g on
T*X. Note that ||w]||% is only positive when wg € L2 (X), and only then it defines a norm. Let

Mo : L2 (X) — L2.(X)
be the corresponding projector and
Eopo(X) =1, (Hg(X)) = The range of the projector I, acting on Hg(X),

E..(X) is a Hilbert space equipped with the norm (8.3).
Integration by parts shows that if u(t, z) satisfies (7.4), then

|| (u(t, ®), Dyu(t,®)) ||z = [| (u(0, ®), Dyu(0, ))&

The map W (t) defined by
W(t): Cg°(X) x Cg°(X) — Cg°(X) x C5°(X)

W(t) (f1, f2) = (u(t, 2), Dyu(t,2)), t€eR
induces a strongly continuous group of unitary operators that commutes with IT,

W(t) : Eae(X) — Eac(X), teR.

By changing t < t — 7, one has that R4 satisfy
(8.5) Ry o (W(r)f)(s,y) =Ref(s+7y), T€ER.

So Theorem 7.1 shows that Ry are “twisted” tranﬂation representations of the group W (¢)
in the sense of Lax and Phillips. That is, if one sets Ry (f)(s,y) = Ry f(—s,y), then

(8.6) Ry (W(7)) = T- R4,

where T denotes right translation by 7 in the s variable. Moreover we will prove

(8.4)

Theorem 8.1. The maps R4 induce isometric isomorphisms
Ry : Bae(X) — L3R x 0X),

where L?(R x 0X) = L?(R x 0X,ds dvoly,) is defined with respect to hg fized in (3.9) by the
choice of boundary defining function p used to define R4.
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The proof of Theorem 8.1 will be divided into two lemmas. The first one is
Lemma 8.2. Let f = (f1, f2) € O (X) N Eae(X). Then Ry f(s,y) € L2(R x 0X) and
IR+ fllL2®xox) < 212
Moreover, the maps Ry extend from (CG°(X) x C§° (X)) N Eac(X) by continuity to maps
Ry : Epe(X) — L*(R x 0X).
Proof. The proof of this is a straightforward modification of the proof of Proposition 6.4 of
[40] together with an application of Corollary 6.3 of [40]. O

Next we have to show that operators R, are unitary and onto. To do that we work on the
Fourier transform side and we resort to two observations. The first just follows from taking the
partial Fourier transform in the variable s.

Lemma 8.3. Let Ry be the radiation fields defined in (7.24) and (7.25). Then

. TR (1, J2)(0,2) = — P ("= +io) (ofs — f2)
TR (1, f2))(0:2) = P ("= — o) (0fi — fo)

where F denotes the partial Fourier transform in the variable s, and 'P is the transpose of the
Poisson operator defined in Proposition 5.2.

Proof. To see that one needs to observe that

T (10 f)(0r2) = (57 Heion(" L io) o - 1)

and

p=0

)
p=0

FO (1) (o) = (57 oo n( L io)a i~ 1)

This proof follows that of equation (6.4) of [40]. But these operators are the transpose of the
forward and backward Poisson operators defined in Proposition 5.4. This proves the lemma. O

Proof of Theorem 8.1. The second observation is an application of Lemma 5.4 with this
spectral parameter, i.e.

1 1
R(n;— +ia;m,m’)—R(n_2|_ —ia;m7m’):

1 1
,Zia/ P(n+ Jria;m,z)P(n+ —icr;m',z) dvolp, (%)
0Xx 2 2

(8.8)

This and Stone’s theorem show, as in [21, Prop. 2.2], that the transpose of Poisson operator

tp("gl iw) L 02 (X) — C=(RE x 9X),

n+1 n+1

¢ — tP(T :l:ia)d)(a,z) = /XP<

extends by continuity to

+ ia;m,z)d)(m) dvoly(m), o >0

1 _
tP(”;L n ia) D L2 (X) — LX(RE; L2(9X, dvoly, ), (27)~do)
1 1)2 1
satisfying tP(L ; + ia) Ay = (7(71 _Z ) + 02)tP(L ; + ia)

and ‘P gives a surjective isometry between these spaces. Theorem 8.1 is then a straightforward
application of these results. See the proof Theorem 5.1 in [40]. O

(8.9)
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We deduce from Theorem 8.1 that the dynamical scattering operator

(5.10) §:L*(R x 0X) — L*(R x 0X)
8.10
§ =R, oR?

is unitary in L?(0X x R), and in view of (8.6), it commutes with translations. This implies that
the Schwartz kernel S(s,y, s’,y’) of § satisfies

S(Sa Y, S/ay/) =3 (8 - 3/7 y?y/) )

and thus is a convolution operator. The scattering matriz is defined by conjugating 8 with the
partial Fourier transform in the s variable

A=3F8F L.

A is a unitary operator in L2(R x dX) and, since § acts as a convolution in the variable s, A is
a multiplication in the variable A, i.e. it satisfies

(8.11) AF(o,y) = A(o;z,2")F(0,2") dvolp, ().
0X
We also have

Theorem 8.4. With p given by (3.8) and o # 0, the Schwartz kernel of the map S(“£* + i)
defined by (6.1), is equal to —A(o; z,2"), defined in (8.11).

Proof. This follows from (8.7) and (8.9) and the fact that

("™ Ly i) : I*(0X) — [*(2X)

is the unitary operator that intertwines P ("7“ + z'a) and P (”'2"1 — ia) , in the sense that

n+1 n+1 n+1
P(Fy +io) = P(F5= —io)s(55 +io).
5 + io 5 io ]S 5 + io

We end this section with a Lemma which will be useful later.

Lemma 8.5. Let F € L?(R x 0X), and let F* be the function defined by F*(s,z) = F(—s,z),
then there exists a function f € L2.(X) such that F = R.(0, f) if and only if

F =8F".
Similarly = R_(0, f) if and only if

F* =8§8F.
Proof. Suppose that ' = R;(0, f). Notice that the solution u of the Cauchy problem (7.1
with data (0, f) is odd in t. Therefore, if vy (s,p,2) = p " lu(s — 2logp,p,z), and v_ =
p " Lu(s+2logp, p, 2), then vy (—s, p, 2) = —v_(s, p, z). Hence (9504 )(—s, p, z) = Osv_(s, p, 2).
Therefore F(s,z) = R4 (0, f)(s,z) = R_(0, f)(—s, z). This implies that F* = R_(0, f) and hence
(0,f) =R"'F*. So F =R, (0, f) = R, R_'F*.

To prove the converse observe that if F' = R, (g, f), then F = R (g,0) + R (0, f) = Fy + F5.

If F=8F*, then F = 8F} + 8F;. From the discussion above 8F3 = F», and one can prove in a
similar way that Fy = —8F}. This shows that F; = 0 and by (8.9) g = 0. O

Definition 8.6. With the notation of Lemma 8.5, we define the following Hilbert spaces
(8.12) M/ ={FcL?Rx09X): F=8F*}, and M" = {F € L>(R x 9X) : F* = §F}.
These are the range of (f1, f2) € Eac — R4(0, f2) by Lemma 8.5.
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9. THE SUPPORT THEOREM
The goal of this section is to prove

Theorem 9.1. Let f € L2.(X) and suppose that R4 (0, f)(s,2") =0 for s < sg < 0. Then f is
supported in p > e%/2.

The proof of this result is divided into two lemmas:

Lemma 9.2. Suppose that f € L2.(X) and that R.(0, f)(s,2") = 0 for s < sg < 0, then there
exists po > 0 such that f is supported in p > py.

Lemma 9.3. Suppose that f € C§°(X) and that R4 (0, f)(s,2') =0 for s < sg < 0, then f is
supported in p > /2.

Suppose these two lemmas have been proved. We now prove Theorem 9.1

Proof. We first observe that if ¢ € §(R) and F is the Fourier transform in s, then it follows from
(8.9)

2
doTR0. ) = TR 008, — P ) e 12 (x),
If ¢ € C§°(R) is even then there exists 1 € §(R) such that Fp(o) = 1(0?). Therefore
2
0.) 6 R0, 1) = R (0,08 - P p)
Since 02%¢ x R, (0, f) € L>(R x 0X), k = 1,2, ..., then
2 2
(8~ Py, - O e p2n),

. (DY . T . . . _ (n+1)? 0o
Since (A, — =) is elliptic in the interior, it follows that (A, — =) f € C°(X).

Let f € L2.(X) be such that F(s,2') = R, (0, f)(s,2") = 0 for s < s < 0. Let ¢ € C§°(R) be
even and supported in |s| < 1 and [ ¢(s) ds = 1. Let ¢c(s) = € '¢(s/e) and F. = ¢, * F, then
F, is supported in s > sy — €. On the other hand, in view of (9.1) there is f. € L2_(X) such that
R4 (0, fo) = Fe. In view of Lemma 9.2 f. is compactly supported. On the other hand, since f. is

smooth, Lemma 9.3 guarantees that f. is supported in p > e Letting € — 0 it follows that
f is supported in p > e/, O

Now we prove Lemma 9.3.
Proof of Lemma 9.3. Suppose the initial data is supported in p > pg. By finite speed of
propagation the solution to (7.4) is equal to zero in the region

(9.2) {4log p —2log pg < s < 2log po}-

We have shown that the solution to Equation 7.4 with compactly supported initial data is
smooth up to p = 0. By assumption we know that %(O, s,2') =0 if s < s9. One can then show
that this implies that v(p, s,2’) vanishes to infinite order at p = 0 provided s < sg. Therefore
we deduce from (9.2) that the solution v to (7.4) can be extended as v = 0 in the region
{p <0} U{s < 2logpo}. Now we want to use a uniqueness theorem that would allow us to
show that v = 0 in a neighborhood of the set {s = log pg, p = 0} x 9X. The result we need is a
particular case of a Theorem due to Alinhac, Theorem 1.1.1 of [1]. From the discussion above
v =0 in the region {p + s — 2log pg < 0} and is supported in the wedge {p > 0} U {s > log po}.
That is, If we let ¢ = p+ s — 2log pg, then v = 0 if ¢ < 0, and the support of v intersects the
surface {¢ = 0} in a compact set. We will verify that the hypotheses of this theorem are satisfied
in this case.
The principal symbol of the operator @ in (7.4) is

1 2
q=—T0 = 1pT" —pp
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where (1,0,&,m,v) is the dual to (p, s, z,y,u), and p = p(p, x,y,u,&,n,v), is the symbol of the
Laplacian Ay . It follows from (5.2) and (7.7) that one can choose local coordinates (,y,u)
near a point on zg = (g, Yo, uo) € 0X such that

(9.3) p=Y W& —y)(nj +xv) + p°v” + p’p1 + O(p°),
where p; does not depend on v, and k¥ is a positive definite matrix. It is important to observe
that p is elliptic if p #£ 0.

The Hamilton vector field of ¢ is

1 1
H,=-70s—00,— 5;)755 + (p + p0pp + 4T2> 0r — pHp,

where I, is the Hamilton vector field of p with respect to the tangential variables, and it does
not have derivatives in s and p, o or 7.
Let ¢ = s+ p — 2log po, and let {f, g} = Hyg be the Poisson bracket between f and g, then

(9.4) {¢,0} =Hyp=—7—0 — %pr

So, for p small,

We also have

1 1 1 1
H3¢ = 507 + ngQ — 172 -1+ §P)(P + ppp).
Then, for p small,
1 1
(9.6) 4=Hyo=0= Hip =77~ (1+ p)p = (1+5)p0pp <0,

since —pd,p < p, which is a consequence of

—pd,(p*v?) = =2pv* <0, |pd,p1| < p
for small p. We want to analyze the set A = {q = Hy¢ = H7¢ = 0} C T*(R x X) near p = 0.

Combining the equations defining A, and the ellipticity of p for p > 0, one concludes that, for
small p,

(9.7) A={q=H,p=H2=0}={p=0=7=p=0}.
In local coordinates near a point zg € 0X where (9.3) is valid
(9.8) A={p=0=71=0, & =yv, n; = —a,v},
and therefore it is a smooth submanifold. It also follows from (9.3) that
(9.9) dp=0 on A.

One can check that the symbol e given by
(9.10) e= —%Hggb + E(Hq¢)2 > 0 and is transversally elliptic to A.
Finally, notice that

Hig 4 =—(1+ %p)ap — 05 — %T@T,

and so
(9.11) Hyq.4y s transversal to  A.

So the following conditions are satisfied near any point (0,2 log pg, 20) € {p = 0,s = 2log pp} :
(9.5), (9.6) hold, A is a smooth submanifold, (9.9), (9.10) and (9.11) are true. Moreover, v
is supported in the wedge {p > 0} N {s > 2logpo}, so the intersection of {¢ = 0} with the
support of v is compact. Then it follows from Theorem 1.1.1 of [1] that v = 0 in a neighborhood
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of the point (0,2 log po, Zo, Yo, uo). Using the compactness of X, we conclude that v = 0 in a
neighborhood of the set {p = 0,s = 2log po}.

Thus we conclude that there exist § > 0 and € > 0 such that v(p,s,2z) =0if p <¢,2logp < s <
2log pp + ¢ and z € 9X. Now we translate this back to the ¢ variable and the solution u to (7.1).
Since t = s —2log p, this implies that « = 0 in the region {p <€, t >0, t+2logp < 2logpo+4d}.
In particular u = 0 if {p <€, 0 <t < 2logpy + § — 2loge}. The hypotheses of Lemma 9.3
say that the initial data of (7.1) is of the form f; = 0 and fo = f € C§°(X). In particular the
solution u is odd. So in fact

u =0 in the region {p < e, |t| < log(p2e’e2)}.

By the definition of the function p, the distance from a point (p,2’) € X, p > €, to the set
{p = €} is equal to 2log(pe1).
Now Tataru’s theorem in [43] shows that

Dru(0,p, ') = f(p, ') = 0, if 2log(pe™") < log(pRe’e ).

Therefore f = 0 in the set {p < ppe? }.

Now we repeat the argument and conclude that f = 0 in {p < poe%}, 0" > . This process
cannot stop until we reach the set {p = e }. This proves the lemma.

Now we prove Lemma 9.2.

Proof of Lemma 9.2. To extract information about the behavior of v as p — 0 and s — —o0
we need to work with the compactified equation (7.6). In fact we will work with (7.23) which
does not have first order derivatives in g and v. This is very similar to the proof of Lemma 7.2
of [40].

By (9.1), we can assume that the initial data f € C°°(X). Therefore, by standard regularity for
solutions to the wave equation, the solution W to (7.23) is smooth in the region {u > 0,v > 0}.
First we will show that, as a distribution, W vanishes to infinite order at {u = 0} U {v = 0}.
If we knew that W were smooth up to {# = 0} U {v = 0}, then Theorem 1.1.2 of [1] would
guarantee that W = 0 near { = v = 0} and this would imply in particular that the initial data
is supported away from p = 0. However, we do not know this in principle, and we will use the
fact that R4 (0, f) =01in s < s to show that this is true in a neighborhood of {y = v = 0}.

The first step is to show that W which is defined in (0,7, x (0,7, x 0X, has an extension

W e H*((-T,T) x (=T, T); H 2(8X)), for all k € N,

which satisfies (7.23). The proof of this fact is identical to the proof of the analogous case done
in [40], the only ingredient needed here are the energy estimates from Lemma 7.2.

Since we cannot apply Alinhac’s theorem directly, we need to verify that the regularity of V'
given by (7.2) is enough for the methods of [1] to work. We first prove the a Carleman estimate.
Let u be a smooth function of its arguments that vanishes to infinite order at {u = 0} U{r = 0}
and is supported near a point gy € 0X. Let

1
(9.12) Pu = (48,,(% — Ay + ,uuF(;w)) u
Let u = (u+v)7v and let Pyv = (u+v)" Y P(p+ v)"v. Then
Ty =1 gl
Puyv=P Oy + 0,
R e e TR

Let Qp = [T, T] x [-T,T] x 0X, let (f,g), denote the L?(£2) inner product of f and g, and let
L1l = 1If|r2(e)- Therefore

1y = 1P+ ol + 47 0+ el
(9.13) ’
FaR((P + Z(Ll 5))2 g (u7+ SO+ 0)0).
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We integrate by parts to compute 2%((P + 47(523;1))2 ), 4(u+t/) (0, v+ 0,)v). It has four terms. Let

¥ ={u=T}, X9 ={v =T} For T is small, we have

20,00, (4 ) D+ 0)0) = el + 1) 70l P+ e+ v) 0,0
(9.14) -
(1 + )7 @+ 0, )el 2

%<f;wAhv, (1 + 1)1 0, +9,)v) > f%/ pv(p 4 v) V| dvd voly, —
(9.15) ., =
Z/ pv(p+ v) V|2 dl/dvothr HthH2
P
(9.16)
2w Fro, (a4 v) 7 O+ 0, )0) = =T IVATIV I[P = ZIVAT (4 v) 7 @+ 9,)ol|? =

=Y nwhan2 Y —1 2
T = 211+ 1) 0+ Aol

The last term has a negative part and we need to be more careful with it. It is equal to

(9.17)
O k)20 0t ) B+ 0)) = 0D / (4 0) @+ 0,)|of? dudvdvoly, =

2 — 1 [ 2(y—1
M/ (w4 v) 2w dvdvoly +M/ (e +v)7*|o]* dpd voly +
16 ol 16 32

2(y — 1
%/ (i +0) " (1 = (s + )2 A) o] dudvdvoly .
Qr

When v > 1, we have for small T,

(9.18)

-1
8

392 (v - 1)

(4 2) 20, (4 0) 7 O+ O)v) 2 =5

/ (1 + v) | dudvdvoly, .
Qr

When v < 1, we can say that for 7" small (1 + v)?|A| < 1 and hence

M«u +v) 720, (u+v) O, + Do) 2 i /Z (14 )2 Jo]* dvd vol, —

16
(1 —7)
16

9.19
(9.19) 157

_ 973 _
/2(H+V) 3lof? dVdV01h+37||(M+V) 2Pl|lP = ==+ v)2[oll]?
2

Putting together equations (9.13) through (9.17) we get that, for v < 1,

2
vy 2 y(1—7) _
|PW||2+/21 <4H+V ‘th| +716 (n+v) 3v|2> dvdvolp, +

2 1—

(9.20) /z <ZM'L_L:V ’th|2 + 7(167)(u+u)3|v|2> dudvoly, >
2

42

9 +0 2 9773 o2 1597 2112 + Vil |2
10+ 0)7 1@ + D)ol + 1+ )20l = =l 0) 2ol + 511970l

32

We want to get rid of the term — 157 ||( + v)~2v||? which appears above. To do that we use
Hardy’s inequality, which in this case says that ||(u +v) =10, + 0,)v|[* > 9]|(x + v) 20| % So
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we get that
[| P. v||2—|—/ T ‘thf—l—w(u—&—y)_g\ﬂz dvdvolp, +
K s, \4p+v 16
2
9.21 Y g2, A=) =31,12) dudvol, >
(9.21) /22 <4u+u|v o|” + 16 (b4 v)">|v] udvoly, >

T+ )7 B+ B0l + LG+ )20l + L9

96 e 32 32 '

And for v > 1, we have

||P,yv|\2+/ T |ty dudvothr/ T\t dpdvoly, >

(922) 214/,L+1/ 224/’L+V

373 (v — 1)
16

Using that v = (u +v) ", and P, = (p+v)""P(u + v)Y we obtain, for vy < 1,

(9.23)
mu+WﬂPmF+/

¥

2
g - - gl
1ol + )7 O+ )0l + 1+ )20 + S 119"l

21— .
(p+v)™> (7 et |th|2 + %(N* V)3u|2> dvdvolp, +

2 1—
/2 (n+v)™> (Z,uu:z/ ’th|2 + U(u + u)_3|u2> dudvoly, >
72 2 1 2 ’
o1+ 2) (00 +00) (u 4 v) " +
and for v > 1,

(9.24)

- 2 b —2y MV h, |2 N -2 h, |2
[|(1+ v) ™7 Pul +/214( +v) 7m|v ul dVdVOlh+/2:24M+V(H+V) 7|V*0|” dudvol, >

9 —2—~, 12 . 7 —vorh, 112
L1+ 0) P 4 e )

372 (v - 1)
16

Now we want to apply this to W which is the solution to (7.23). To do that we have to
regularize W. Let zg € X and let Uy be a neighborhood of z. Let 1 € C§°(Up) with ¥(zg) = 1.
Let x € C5°(R™), x(0) =1 and [ x = 1. Let xs(-) = 6 "x(-/d), and let us = xs * (¢W). Then
we can apply (9.23) and (9.24) to us. Now we want to let § — 0. This is done, as usual, by using
Friedrich’s lemma, see for example Theorem 2.4.3 of [26].

To do that we need to know that the left hand side of (9.23) is finite for some v > 0. Since
w+v >T on Xy and X, it follows that (u+ v)™Y <T~7. Since PW = 0, we can use estimates
(7.2), (7.15) and (7.16) to deduce that

2
gl - - e v -
Tl + )7 O+ 0 (p+v) ul” + Ol R 7 S I

/ v ‘th|2 do < oo and / lul? do < 00, j=1,2.
J Ej

So the surface integrals are finite. Next we need to know that ||(u + v) "7 Pus|| < C for some
v > 0, for all 4. The regularization of us is only in the tangential variables. Pus = [urAp, Xs5%].
Again using the energy estimates (7.2) we deduce that ||(x+v) ™7 Pus|| < C if v = 3. So we can
take the limit and conclude that (9.23) holds with v = 1/2 and u = ¢)W. Then we get that the
necessary estimates hold for v = % and we can apply (9.24) with v = % The same argument
then gives the estimate with v = g Then a bootstrapping argument shows that (9.24) holds for
W, and all 7. Now a standard partition of unity argument and use of such a Carleman estimate
gives W = 0 in Qp for T small. We refer the reader to [40] for more details. O

The following are consequences of the support theorem which is the key step in the recon-
struction of the manifold from the scattering matrix.



SCATTERING AND INVERSE SCATTERING ON ACH MANIFOLDS 35

Lemma 9.4. Let Ry be the forward an backward radiation fields defined above. Let a > 0 be
small. Then

M/ (a) ==

(R0, f); feL*(X), f=0 ifp<a}={F € L*Rx0X): F=8F* F =0 ifs<2loga}
Mb(a) ==

{R_(0,f);f€L*X), f=0 ifp<a}={F € L’ Rx0X): F*=8F,F =0 if s > —2loga}

Proof. From Lemma (8.5) F' = R(0, f) if and only if F' = SF™*. The support theorem guarantees
that F' =0 for s < 2loga if and only if f is supported in p > a. O

The following lemma will be very important in the reconstruction of the manifold

Lemma 9.5. Let M/ and M" be the spaces defined in (8.12). Let
7 (a) : MY — MY (a)

(9.25) b b b

I°(a) : M” — M°(a)

be the orthogonal projections. Then for any a € R, 117 (a) and 11°(a) are determined by the
scattering matriz.

Moreover, there exists 6 > 0 such that if a € [0,9) and if xq is the characteristic function of
the set {p > a}, then, if (X, g) has no eigenvalues,

(926) Hf(a):R+ (07 f) = jQJr(Ov Xaf)a Hb(a):R* (07 f) =R (07 Xaf)'
If (X, g) has eigenvalues there exist a continuous family of finite rank operators T(a) such that
(9.27) T (@)R4(0,]) = R (0, xa(I + T(@))[), M (@)R-(0,f) = R-(0, xa(I +T(a))]).

Proof. Since the spaces M7, M7 (a), M? and M?(a) are determined by the scattering matrix, the
first part is immediate.

Since 1 (a)R4 (0, f) is supported in s > 2loga, the support theorem guarantees that there
exists f, € L2.(X) supported in p > a such that

I (a)R (0, f) = Ry (0, fa)-
Let g € L2.(X) supported in p > a, then
(I ()R 4 (0, £), R4-(0,9)) = (far 9) = (£, 9)-
Then
(9.28) (fo—f,9) =0 g € L2.(X), supported in p > a.

If (X, g) has no eigenvalues, then L2 (X) = L?(X). In this case we conclude that f, = xaf.

Now suppose there are eigenvalues, and let {¢;,7 = 1,2,..,N} be the set of orthonormal
eigenfunctions. In this case we can only deduce that in p > a, f, — f = Zj ¢j(a, f)o;. In other
words,

N
fa=xa(f+> _cia, £))).

j=1
Since f, € L2.(X), (fa, #;) = 0, and so we have

N
(9.20) (a1 + 3 (@ F){Xat, 6x) = 0.

j=1

Since {¢;}}_, is an orthonormal set, there are ¢;(0, f) solving the system (9.29) for a = 0.
Therefore there exists § > 0 such that if a € [0, d], there exist ¢;(a, f) solving (9.29). It is clear
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that the constants c¢;(a, f) depend linearly on f. Therefore the operator f — Z;vzl cjla, f)o;
is linear and of finite rank. This is the operator T'(a)f. O

10. THE INVERSE PROBLEM

In this section we will prove Theorem 1.4. The proof is based on the boundary control theory
of Belishev, and the key point is the support theorem proved in section 9.

First note that the result in Theorem 6.3 about the principal symbol of S(A) implies that the
pseudo-hermitian structure on 9X are the same for (X, g;) and (X, g2) if S1(\) = Sa2(A\) and
S1(A), S2(A) are defined from the same conformal representative of [©g]. Thus the dilation M,
defined in Subsection 3.4 are the same for both metrics, as well as the metrics hg = ©3+dOq (., J.).

We begin with the following lemma, which easily follows from the construction in Subsection
3.2,

Lemma 10.1. Let (X;,g1) be ACH manifolds satisfying the hypotheses of Theorem 1.4. For
J = 1,2, there exist diffeomorphisms 1; : [0,€), x M — 1;([0,€) x M) C X; with 1;(0,y) =y
and

. 4dp?® + hj(p v
Vig; = pQ'j()a M, (p 2hj(P))|p:0 = ho
for some smooth family of metrics hj(p) on M in p € (0,€) and such that M;(p_zhj(p)) are
smooth metrics on M depending smoothly on p € [0, €).

The next step is to prove

Proposition 10.2. For j = 1,2, let (X;,g;) be ACH manifolds satisfying the hypotheses of
Theorem 1.4, and let hj(p) given by Lemma 10.1. Then there exists § € (0,€) such that hy(p) =

ha(p) for p € [0,9).
Proof. Let F € M" be such that 0?*F € L*(R x 0X), for all k € N. Let a € R, a < 0. Let
F =R,(0, f). Then, f is C*, and by Lemma 9.5
R™MIP(a)F = (0, xof), if there are no eigenvalues
R™MI%(a)F = (0, xo(I 4+ T(a))f), if there are eigenvalues.
Therefore
RLRTMIP(a) F = ST1%(a)F = Ry (0, xof), if there are no eigenvalues

10.1
(10.1) Ry R (a)F = 81°(a) F = Ry (0, xa(I + T(a))f), if there are eigenvalues

The left hand side of each equation of (10.1) is determined by the scattering matrix. Therefore
so is the right hand side. The initial data is singular at p = a, and this singularity will travel to
the boundary as ¢t — oo. We want to find the singularity of R4 (0, xof) or R(0, xo(I + T(a))f)
at s = 2loga.

This can be done exactly as in the proof of Lemma 8.9 of [40], and we find that for a € [0,0/4],
with 0 given by Lemma 9.5

(10.2)

k[ (a, 2)
[k[4(0, 2)
smoother terms if there are no eigenvalues

S’ (a)F(s,2) = Ry (0, xaf)(s,2) = %cf"*lf(a, 2) (s —2log a)i—i—

k[ (a, 2)

% (s —2loga)l+
BHOE A

SII*(a)F (s, 2) = R (0, xa(I +T(a)) f) (s, 2) = %a_"_l(f +T(a))f(a,2)

smoother terms if there are eigenvalues
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Doing the same with F replaced by 92F we find that

2
ST (0)02F (5. 2) = R (0, a2 — 010

Lo ((a DR N @)
5 (180 = ) 09 e s 2ot +

smoother terms if there are no eigenvalues

)f)(s,2) =

(10.3) 4 1)7
S (@)02F (s,2) = R (0, xa(1 + T(@)(8 "1 s ) =
1 —n-—1 _ (n+1)2 a.z |]€|%(G,,Z) s—2loca 0
o0+ 7)) (8, = PR ) (09 e o - 2togat +

smoother terms if there are eigenvalues

Now consider the manifolds (X7, g1) and (X3, g2) satisfying the hypotheses of Theorem 1.4. Let
0, f;) = R:}jF. Since 81 = 89, then, if there are no eigenvalues,

Fila, 2) k1|3 (a, 2)[k1|75(0,2) = fala, 2)|ka|% (a, 2)|ka|7(0, 2), and

(@ = 550 (@l 0.9

~ (40 - 250 @kl @ 2l 0.2

Therefore substituting the first equation in the second, we get

n 2 1 1
(@ = 50 ) @kl a2l 0.2

n+1)2 1., _1 1 _1
= (B0 = P2 (Al 1hal ) ) (@)l a2kl 0.2
and since fi is arbitrary and |k1| = |k2| on M = 0X; by assumptions, this implies that hi(p) =

ha(p) for p € [0,9).
When there are eigenvalues, we have the following

(I +Ti(a) fi(a, 2) k1|7 (a, 2) k1|50, 2) = (I + Ta(a)) f2(a, 2) k2| T (a, 2) k2| 5 (0, 2), and
1+ 716 (@~ CEEA) 02 2 0.2) =

(I +Tz(a)) ((Ag2 - “Z”)fz) (a: 2)la | (a, 2) k2| 740, 2).

Hence, proceeding as in the case of no eigenvalues, we obtain

n 2 1 1
(@ = 50 ) @kl 2l 0.2

n 2 N . _
— (@0 = ") @l @ 2lkal 0.2) + T a2,

where T is an operator of finite rank.

The difference between the term on the left hand side of this equation and the first term of
the right hand side is a differential operator, while the second term on the right hand side is an
operator of finite rank. Therefore, the differential operators must be equal. So T' = 0, and we
argue as above to conclude that |k| = |k2| and Ay, = Ay, and this implies that hq(p) = ha(p)

for p € [0,9). O
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Proposition 10.2 shows that there exist € > 0 and a smooth diffeomorphism
U: M x|[0,e) — M x [0,¢€)
¥*(g2) = g1.

To extend the diffeomorphism ¥ to the manifolds X; and X, and prove Theorem 1.4 one follows
the construction of section 8 of [40]; the only new ingredient which is necessary in this case is
Lemma 6.6, which, as mentioned before, is an application of Lemma 2.3 of [44].

The idea of the construction from [40] is to prove that the knowledge of the scattering matrix
at all energies, and the metric in a collar neighborhood of the boundary {p < €}, which was
already obtained in Lemma 10.1, determine the graph of the Calderén projector of the operators
A, — 0% — %, for every o # 0, in the domain {p > €}.

If particular this determir;es all the Neumann eigenvalues and the traces of the respective

(n+1)

4,

(10.4)

eigenfunctions of A, on {p = €}, except possibly finitely many, in case if this operator

has L? eigenfunctions in X. Therefore Theorem 1.4 follows from the results of [3, 4, 28].

11. APPENDIX
We give a short proof of the meromorphic extension of parabolically homogeneous distribu-
tions on H,, = R; x R:;"
uA(t2) = (12 + 217, R <0
to A € C. It is very similar to the usual homogeneous distribution cases (see [25, Th. 3.2.4]).
Lemma 11.1. The family of parabolically homogenous distributions uy on H, exrtends mermor-

phically to X € C with only poles at each A\, = "T'H + %k with k € N, the residue of which is a
distribution of order 2k supported at 0.

Proof: we consider the action of uy again f € C§°(H,), it is clear that (xuy, f) is analytic
in C for any x € C§°(H,,) such that x = 0 near 0. For the part near 0, we use the parabolic
coordinates

(R,u,w) € (0,00) x Q — (R*u, Rw) € H, \ {0}, @ :={(u,w) € R xR*™;u? + |w|* =1}.
If v € R" — O(v) € S?"1 is a parameterisation of the 2n — 1 dimensional sphere minus a point,
then 1
(u,v) € (=1,1) x R™ — (u, (1 — u?)160(v))
parameterizes each half of () and
Wyt (Ryu,v) — (R2u, £R(1 — u?)36(v))

can be used as changes of variable to compute

/H (1= x(t,2))ur(t, 2) f(t, z)dtdz.

The Lebesgue measure pulls back to R?"*1G(u?)dRdudfgzn+1 (v) with G(u) := (u+(1—u)?)(1—
u)2 1. Then taking x with support in {R < 1} and depending only on R, we have to integrate

11
/ / / RM2n+l(q x(R))f(Rzu, +R(1 - uz)%Q)G(UQ)deudesznﬂ.
0 —1J82n—-1
Then a Taylor expansion of % f at R = 0 gives for any N € N (using multi-index «)

f(RQu, R(1 - u2)%e) = 3 (@i R (1 u2) 9782 £(0,0) + O(RN)
2i+|a| <N
and integration of R4 2n+1+2i+lal(1 — y(R)) in (0,1) extends meromophically to C with pole
at A = w, residue is clearly a distribution supported at 0. Remark that for |a| odd,
the residue involves the integral of % on S?"*!, which is easily seen to be 0 by using change of
variable § — —6. Note also that the residue of (uy, f) at Ay is expressed in terms of derivatives
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02 f(0,0) with |a| = 2k plus lower order derivatives, i.e. the principal term does not contain 92*
derivatives. 0O
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