
MICROLOCAL LIMITS OF PLANE WAVES

AND EISENSTEIN FUNCTIONS

SEMYON DYATLOV AND COLIN GUILLARMOU

Abstract. We study microlocal limits of plane waves on noncompact Riemannian mani-

folds (M, g) which are either Euclidean or asymptotically hyperbolic with curvature −1 near

infinity. The plane waves E(z, ξ) are functions on M parametrized by the square root of

energy z and the direction of the wave, ξ, interpreted as a point at infinity. If the trapped

set K for the geodesic flow has Liouville measure zero, we show that, as z → +∞, E(z, ξ)

microlocally converges to a measure µξ, in average on energy intervals of fixed size, [z, z+1],

and in ξ. We express the rate of convergence to the limit in terms of the classical escape

rate of the geodesic flow and its maximal expansion rate — when the flow is Axiom A on

the trapped set, this yields a negative power of z. As an application, we obtain Weyl type

asymptotic expansions for local traces of spectral projectors with a remainder controlled in

terms of the classical escape rate.

For a compact Riemannian manifold (M, g) of dimension d whose geodesic flow is ergodic

with respect to the Liouville measure µL, quantum ergodicity (QE) of eigenfunctions [Sh,

Ze87, CdV] states that any orthonormal basis (ej)j∈N of eigenfunctions of the Laplacian

with eigenvalues z2
j , has a density one subsequence (ejk) that converges microlocally to µL

in the following sense: for each symbol a ∈ C∞(T ∗M) of order zero,

〈Ophjk
(a)ejk , ejk〉L2(M) →

1

µL(S∗M)

∫
S∗M

a dµL. (1.1)

Here S∗M stands for the unit cotangent bundle, Oph(a) denotes the pseudodifferential op-

erator obtained by quantizing a (see Section 3.1), and we put hj = z−1
j . The proof uses the

following integrated form of quantum ergodicity [HeMaRo]:

hd−1
∑

h−1≤zj≤h−1+1

∣∣∣∣〈Oph(a)ej , ej〉L2 −
1

µL(S∗M)

∫
S∗M

a dµL

∣∣∣∣→ 0 as h→ 0. (1.2)

See Appendix D for a short self-contained proof of this result using the methods of this paper.

In the present paper, we consider a non-compact complete Riemannian manifold (M, g)

and show that generalized eigenfunctions of the Laplacian on M known in scattering theory

as distorted plane waves or Eisenstein functions, converge microlocally on average, similarly

to (1.2), with the limiting measure µξ depending on the direction of the plane wave ξ – see

Theorem 1. We also give estimates on the rate of convergence in terms of classical quantities

defined from the geodesic flow on M – see Theorem 2.

Our microlocal convergence of plane waves is similar in spirit to the QE results (1.1)

and (1.2). However, unlike the case of QE where ergodicity of the geodesic flow is essential,

our result is based on a different phenomenon, roughly described as dispersion of plane waves.
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This difference manifests itself in the proofs as follows: instead of averaging an observable

along the geodesic flow as in the standard proof of quantum ergodicity, we propagate it. See

Section 2 for an outline of the proofs of Theorems 1 and 2.

Geometric assumptions near infinity. The manifold M has dimension d = n + 1. For

our results to hold, we need to make several assumptions on the geometry of (M, g) near

infinity and on the spectral decomposition of its Laplacian ∆. They are listed in Section 4

and we check in Sections 6 and 7 that they are satisfied in each of the following two cases:

(1) there exists a compact set K0 ⊂ M such that (M \ g0,K0) is isometric to Rn+1 \
B(0, R0) with the Euclidean metric for some R0 > 0; here B(0, R0) denotes the ball

centered at 0 of radius R0,

(2) (M, g) is an asymptotically hyperbolic manifold in the sense that it admits a smooth

compactification M and there exists a smooth boundary defining function x such

that in a collar neighbourhood of the boundary ∂M , the metric has the form

g =
dx2 + h(x)

x2
. (1.3)

where h(x) is a smooth 1-parameter family of metrics on ∂M for x ∈ [0, ε). We

further assume that g has sectional curvature −1 in a neighbourhood of ∂M .

In case (1), we call (M, g) Euclidean near infinity, while in case (2), we call it hyperbolic near

infinity. Case (2) in particular includes convex co-compact hyperbolic quotients Γ\Hn+1 –

see Appendix A. Other possible geometries are discussed in Section 2.1.

Distorted plane waves/Eisenstein functions. Let ∆ be the (nonnegative) Laplace–

Beltrami operator on M . In the study of the relation between classical dynamics and high

energy behavior it is natural to use the semiclassically rescaled operator h2∆, with h > 0

small parameter tending to zero.

The operator h2∆ has continuous spectrum on a half-line [c0h
2,∞) (here c0 is 0 for the

Euclidean and n2/4 for the hyperbolic case), parametrized by distorted plane waves (or

Eisenstein functions in the hyperbolic case) Eh(λ, ξ) ∈ C∞(M), satisfying for λ ∈ R,

(h2∆− λ2 − c0h
2)Eh(λ, ξ) = 0. (1.4)

Here ξ lies on the boundary ∂M of a compactification M of M . We can think of an element

of ∂M as the direction of escape to infinity for a non-trapped geodesic; then ξ is the direction

of the outgoing part of the plane wave Eh(λ, ξ) at infinity.

For instance, in the case of manifolds Euclidean near infinity, c0 = 0, ∂M = Sn is the

sphere, and for m near infinity,

Eh(λ, ξ;m) = e
iλ
h
ξ·m + Einc,

where Einc is incoming in the sense that it satisfies a Sommerfeld radiation condition, or

equivalently, that it lies in the image of C∞0 (Rn+1) under the free (incoming) resolvent

R0(λ/h) of the Laplacian on the Euclidean space Rn+1. These conditions provide a unique

characterization of Eh(λ, ξ). We can also write Eh(λ, ξ) = E(λ/h, ξ), where E(z, ξ) is the
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nonsemiclassical plane wave, and rewrite the results below in terms of the parameter z, as

in the abstract.

We will freely use the notions of semiclassical analysis as found for example in [Zw], and

reviewed in Section 3. We denote elements of the cotangent bundle T ∗M by (m, ν), where

m ∈M and ν ∈ T ∗mM . The semiclassical principal symbol of h2∆ is equal to p(m, ν) = |ν|2g,
where |ν|g is the length of ν ∈ T ∗mM with respect to the metric g. Therefore, the plane wave

Eh should be concentrated on the unit cotangent bundle (see [Zw, Theorem 5.3])

S∗M := {(m, ν) ∈ T ∗M | |ν|g = 1}.

If gt : T ∗M → T ∗M denotes the geodesic flow, then the Hamiltonian flow of p is etHp = g2t.

Semiclassical limits of Eh when the trapped set has measure zero. In scattering

theory trajectories which never escape to infinity play a special role as they can be observed

only indirectly in asymptotics of plane waves. The incoming tail (resp. outgoing tail) Γ− ⊂
S∗M (resp. Γ+ ⊂ S∗M) of the flow is defined as follows: a point (m, ν) lies in Γ− (resp.

Γ+) if and only if the geodesic gt(m, ν) stays in some compact set for t ≥ 0 (resp. t ≤ 0).

The trapped set K := Γ+ ∩ Γ− is the set of points (m, ν) such that the geodesic gt(m, ν) lies

entirely in some compact subset of S∗M .

Our first result states that if µL(K) = 0, then plane waves Eh(λ, ξ) converge on average

to some measures supported on the closure of the set of trajectories converging to ξ in M :

Theorem 1. Let (M, g) be a Riemannian manifold satisfying the assumptions of Section 4

and suppose that the trapped set has Liouville measure µL(K) = 0. For Lebesgue almost every

ξ ∈ ∂M , there exists a Radon measure µξ on S∗M such that for each compactly supported

h-semiclassical pseudodifferential operator A ∈ Ψ0(M), we have as h→ 0,

h−1

∥∥∥∥〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) −
∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ,λ(∂M×[1,1+h])

→ 0. (1.5)

The measure µξ has support

supp(µξ) ⊂ {(m, ν) ∈ S∗M | lim
t→+∞

gt(m, ν) = ξ}, (1.6)

and disintegrates the Liouville measure in the sense that there exists a smooth measure dξ on

∂M such that, if µL is the Liouville measure generated by
√
p = |ν|g on S∗M , then∫

∂M
µξ dξ = µL. (1.7)

The limiting measure µξ is defined in Section 4.3. Implicit in (1.7) is the statement that

for any bounded Borel S ⊂ S∗M , we have µξ(S) ∈ L1
ξ(∂M).

In the case when WFh(A) ∩ Γ− = ∅ (in particular when g is non-trapping), we actually

have a full expansion of 〈AEh, Eh〉 in powers of h, with remainders bounded in L1
ξ,λ(∂M ×

[1, 1 + h]) – see (5.14).

The now standard argument of Colin de Verdière and Zelditch (see for example the proof

of [Zw, Theorem 15.5]) shows that there exists a family of Borel sets A(h) ⊂ ∂M × [1, 1 + h]
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such that the ratio of the measure of A(h) to the measure of the whole ∂M × [1, 1 + h] goes

to 1 as h→ 0, and for each A ∈ Ψ0(M) as in Theorem 1 with σ(A) independent of h,

〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) →
∫
S∗M

σ(A) dµξ uniformly in (λ, ξ) ∈ A(h). (1.8)

This statement can be viewed as an analogue of the quantum ergodicity fact (1.1), though

as explained above, it is produced by a different phenomenon.

Estimates for the remainder. We next provide a quantitative version of Theorem 1,

namely an estimate of the left-hand side of (1.5). We define the set T (t) of geodesics trapped

for time t > 0 as follows: let K0 be a compact geodesically convex subset of M containing a

neighborhood of the trapped set K, then (see also Section 5.2)

T (t) := {(m, ν) ∈ S∗M | m ∈ K0, g
t(m, ν) ∈ K0}. (1.9)

A quantity which will appear frequently with some parameter Λ > 0 is the following inter-

polated measure

r(h,Λ) := sup
0≤θ≤1

h1−θµL
(
T
(
θΛ−1| log h|

))
, (1.10)

where h > 0 is small. This converges to 0 as h → 0 when µL(K) = 0 and it interpolates

between h (when θ = 0) and the Liouville measure of the set of geodesics that remain trapped

for time Λ−1| log h| (when θ = 1). When the measure µL(T (t)) decays exponentially in t, as

in (1.14), r(h,Λ) can be replaced by simply O(h) + µL(T (Λ−1| log h|)). The O(h) term here

is natural because of the influence of the subprincipal part of the operator A.

We next define the maximal expansion rate as follows (see also (3.17)):

Λmax := lim sup
|t|→+∞

1

|t|
log sup

(m,ν)∈T (t)
‖dgt(m, ν)‖. (1.11)

We can estimate the left-hand side of (1.5) in terms of the (interpolated) measure of the set

of all trajectories trapped for the Ehrenfest time. If we pair with a test function in ξ instead

of taking the L1
ξ norm, then the estimate becomes stronger, corresponding to the set of all

trajectories trapped for twice the Ehrenfest time:

Theorem 2. Let (M, g) be as in Theorem 1. Take Λ0 > Λmax. Then for each compactly

supported h-semiclassical pseudodifferential operator A ∈ Ψ0(M) and for each f ∈ C∞(∂M),

h−1

∥∥∥∥〈AEh, Eh〉 − ∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ,λ(∂M×[1,1+h])

= O(r(h, 2Λ0)), (1.12)

h−1

∥∥∥∥∫
∂M

f(ξ)

(
〈AEh, Eh〉 −

∫
S∗M

σ(A) dµξ

)
dξ

∥∥∥∥
L1
λ([1,1+h])

= O(r(h,Λ0)). (1.13)

The proof of Theorem 2 actually gives an expansion of 〈AEh, Eh〉 in powers of h, with re-

mainder µL(T (Λ−1| log h|)) instead of r(h,Λ) – see (5.35) and the proofs of Propositions 5.11

and 5.13. This full expansion is cumbersome to write down, therefore we only do it for the

trace estimates (1.16) below.
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Remainder in terms of pressure. When the trapped set K has Liouville measure 0 and

is uniformly partially hyperbolic in the sense of Appendix B.1, we estimate using [Yo]

µL(T (t)) = O(et(P (Ju)+ε)), (1.14)

for each ε > 0, where P (Ju) ≤ 0 is the topological pressure of the unstable Jacobian – see

Appendix B.1. When K is a hyperbolic basic set (Axiom A flow), then P (Ju) < 0 by [BoRu],

and the remainders in (1.12) and (1.13) are then polynomial in h:

r(h,Λ) = O(h+ h−(P (Ju)+ε)/Λ),

and one can get rid of ε here by slightly changing Λ0. In the special case where g has constant

sectional curvature −1 near K, the bounds in (1.12) and (1.13) become O(h + h(n−δ)/2−)

and O(h + hn−δ−), respectively, where K has Hausdorff dimension dimH(K) = 2δ + 1. See

Appendix B.2 for details.

In all cases, if K is nonempty, then it has Minkowski dimension at least 1; since gt/2(T (t))

contains an e−Λ0t/2 sized neighborhood of K, we have

µL
(
T ((2Λ0)−1| log h|)

)
& hn/2, µL

(
T (Λ−1

0 | log h|)
)
& hn. (1.15)

Local Weyl asymptotics for spectral projectors. It is possible to express the spectral

measure of h2∆ in terms of the distorted plane waves (see (4.5)), and using (1.13), we obtain

an expansion in powers of h for local traces of spectral projectors up to an explicit remainder.

We only write it here for the case where the flow is partially uniformly hyperbolic with

P (Ju) < 0, but a more general result with the Liouville measure of T (Λ−1
0 | log h|) holds –

see Theorem 4 in Section 5.3. Below, we fix a quantization procedure Oph on M mapping

compactly supported symbols to compactly supported operators.

Theorem 3. Let (M, g) be as in Theorem 1, let Λ0 > Λmax and assume that the trapped set

K is uniformly partially hyperbolic with µL(K) = 0 and that the topological pressure P (Ju)

of the unstable Jacobian on K is negative. Then there exist differential operators1 Lj of

order 2j on T ∗M , with L0 = 1, such that for each compactly supported zeroth order classical

symbol a, we have for each s > 0 and N ∈ N

Tr(Oph(a) 1l[0,s](h
2∆)) = (2πh)−n−1

N∑
j=0

hj
∫

|ν|2g≤s

Lja dµω + h−nO
(
h
−P (Ju)

Λ0 + hN
)

(1.16)

where µω is the standard volume form on T ∗M and 1l[0,s](h
2∆) denotes the spectral projector

of h2∆ onto the frequency window [0, s]. The remainder is uniform in s when s varies in a

compact subset of (0,∞).

In particular, if g has constant sectional curvature −1 near K and the Hausdorff dimension

of K is given by 2δ+ 1, then the remainder in (1.16) becomes O(h−δ−), for N large enough.

Applications. In a separate paper [DyGu], we show that Theorem 3 implies new asymp-

totics for the spectral shift function (or scattering phase) with remainders in terms of P (Ju)

1In this paper, the symbols Lj will denote different operators in different propositions.
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when the trapped set has Liouville measure 0 and the manifold is Euclidean near infinity

with uniformly partially hyperbolic geodesic flow near K.

Previous works. Let us briefly discuss the history of Quantum Ergodicity (QE) and explain

its relation to the present paper. The original QE statement was proved by Shnirelman [Sh],

Zelditch [Ze87], and Colin de Verdière [CdV] in the microlocal case, by Helffer–Martinez–

Robert [HeMaRo] in the semiclassical case (with the integrated estimate using an O(h)

spectral window like in the present paper, rather than the O(1) window used in the microlocal

case), and by Gérard–Leichtnam [GéLe] and Zelditch–Zworski [ZeZw] for manifolds with

boundary (ergodic billiards). Quantum ergodicity for boundary values and restrictions of

eigenfunctions to hypersurfaces was studied by Hassell–Zelditch [HaZe], Burq [Bu05], Toth–

Zelditch [ToZe10, ToZe11], and by Dyatlov–Zworski [DyZw].

The first result on noncompact manifolds, namely for embedded eigenvalues and Eisenstein

functions on surfaces with cusps, was proved by Zelditch [Ze91]. For the special case of

arithmetic hyperbolic surfaces, a stronger statement of Quantum Unique Ergodicity (QUE),

saying that the whole sequence of eigenstates microlocally converges to the Liouville measure,

was proved by Lindenstrauss [Li] and Soundararajan [So] for Hecke–Maass forms and by Luo–

Sarnak [LuSa] and Jakobson [Ja] for Eisenstein functions. For further information on the

topic, the reader is directed to the recent reviews [No, Sa, Ze09].

As remarked above, our result differs from the above works in that it uses dispersion of

plane waves instead of the ergodicity of the geodesic flow. This dispersion phenomenon was

used to study microlocal limits of plane waves on convex co-compact hyperbolic quotients

satisfying δ < n/2 by Guillarmou–Naud in [GuNa], and on surfaces with cusps at complex

energies by Dyatlov [Dy2]. Both [GuNa] and [Dy2] guarantee microlocal convergence of the

Eisenstein functions that is uniform in λ and ξ, rather than the (weaker) L1
λ,ξ estimates

of the current paper; these statements are formally similar to QUE, while our statement

is formally similar to QE. In [GuNa], uniform in λ and ξ estimates are possible because

Lagrangian states, when propagated by the Schrödinger group U(t), would disperse faster

than they fail to be approximated semiclassically, a phenomenon similar to the one studied

by Nonnenmacher–Zworski [NoZw]. In fact, it is plausible that the result of [GuNa] is true

when the condition δ < n/2 is replaced by the negative pressure condition of [NoZw]. As

for [Dy2], the energy being away from the real line makes the measure corresponding to Eh
exponentially increasing, rather than invariant, along the flow; then the result of propagation

of E0
h by U(t) is multiplied by e−νt for a certain ν > 0, and decays in L2 as t → +∞ (it

is then more correct to say that this paper relies on damping of plane waves rather than

dispersion).

We see that the uniform convergence in [GuNa] and [Dy2] is possible because one has

better control on the propagated Lagrangian states. Such better control is directly related

to having a polynomial bound on the scattering resolvent. In the less restricted situation of

our paper, however, it is not clear if such a bound would hold; therefore, we need to average

in λ and ξ to pass to trace (or, strictly speaking, Hilbert–Schmidt norm) estimates, just as

in the proof of Quantum Ergodicity.
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The expansions for local traces of the spectral measure as in Theorem 3 were studied by

Robert–Tamura [RoTa] for nontrapping perturbations of the Euclidean space, yielding a full

expansion in powers of h in that setting.

2. Outline of the proofs

In this section, we explain the ideas of the proofs of Theorems 1 and 2, in the case of

manifolds Euclidean near infinity. We also describe the structure of the paper.

We start with Theorem 1. Take t > 0; we will use limt→+∞ limh→0 limits, therefore

remainders that decay in h with constants depending on t will be negligible. Since Eh is a

generalized eigenfunction of the Laplacian (1.4), we have

Eh(λ, ξ) = e−itλ
2/(2h)U(t)Eh(λ, ξ). (2.1)

Here U(t) = eith∆/2 is the semiclassical Schrödinger propagator, quantizing the geodesic flow

gt. Since Eh does not lie in L2(M), we cannot apply the operator U(t) to it; however, (2.1)

can be made rigorous, with an O(h∞) error, by using appropriate cutoffs – see Lemma 3.10.

We will not write these cutoffs here for the sake of brevity.

Take a compactly supported and compactly microlocalized semiclassical pseudodifferential

operator A on M ; then by (2.1),

〈AEh, Eh〉 = 〈AU(t)Eh, U(t)Eh〉 = 〈A−tEh, Eh〉, (2.2)

where A−t := U(−t)AU(t) is a pseudodifferential operator with principal symbol σ(A) ◦ g−t.
(It is not compactly supported, but we ignore this issue here.) We now use the following

decomposition of plane waves:

Eh = χ0E
0
h + E1

h, E
0
h = e

iλ
h
ξ·m, E1

h = −Rh(λ)Fh, Fh := (h2∆− λ2)χ0E
0
h.

Here E0
h is the outgoing part of the plane wave, defined in a certain neighborhood of infinity

and solving (1.4) there, while χ0 is a cutoff function equal to 1 near infinity and supported

inside the domain of E0
h; then

Fh = [h2∆, χ0]E0
h

is compactly supported and we can apply to it the semiclassical scattering resolvent Rh(λ).

Note that here Rh(λ) is the incoming resolvent; in particular, it is bounded L2 → L2 for

Imλ < 0. (The situation is more complicated in the case of manifolds hyperbolic near infinity,

in particular the domain of E0
h and the cutoff χ0 will depend on ξ.) For λ = 1 +O(h), the

function Fh is microlocalized inside the set

Wξ := {(m, ν) | m ∈ supp(dχ0), ν = ξ} ⊂ S∗M.

In general, we cannot expect the resolvent Rh(λ) to be polynomially bounded in h, and

thus cannot determine the wavefront set of E1
h. However, we will show the following weaker

propagation of singularities statement: the function

Ẽ1
h(λ, ξ) :=

E1
h(λ, ξ)

1 + ‖Eh(λ, ξ)‖L2(K0)
,
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ϕdχ0

A

ϕdχ0

A−t0 A−t1

Figure 1. A phase space picture of the main argument. The right side of

each picture represents infinity; χ0 = 1 in the lighter shaded region and dχ0 is

supported in the darker shaded region, while ϕ = 1 to the left of the vertical

dashed line. The horizontal dashed lines on the right represent the wavefront

set of Ẽ1
h; they terminate at the solid arrows, which denote the set Wξ.

where K0 ⊂ M is a sufficiently large compact set, is polynomially bounded in h and for

each (m, ν) ∈ WFh(Ẽ1
h), the geodesic gt(m, ν) is either trapped as t → +∞ or passes

through Wξ for some t ≥ 0. For the case of manifolds Euclidean near infinity, this statement

follows directly from the explicit formula for the scattering resolvent on the free Euclidean

space; for manifolds hyperbolic near infinity, we use the microlocal properties of the resolvent

established in [Va11]. See assumption (A6) in Section 4.2, Section 6.2, and Proposition 7.4

for details.

If A and 1−χ0 are both supported in the ball of radius R, let ϕ ∈ C∞0 (M) be independent

of t and equal to 1 in the ball of radius R+ 1. Then we write

A−t = A−t0 +A−t1 , A−t0 := A−tϕ, A−t1 := A−t(1− ϕ).

Now, each (m, ν) ∈WFh(A−t1 ) has the following properties: |m| ≥ R + 1, and for (m′, ν ′) =

g−t(m, ν), |m′| ≤ R. (See Figure 1.) Therefore, the geodesic gs(m, ν) escapes to infinity for

s ≥ 0 and never passes through Wξ; it follows from the discussion of the wavefront set of Ẽ1
h

in the previous paragraph that

‖A−t1 E1
h‖L2 = O(h∞(1 + ‖Eh‖L2(K0))).

Therefore, we can write

〈AEh, Eh〉 = 〈A−t1 χ0E
0
h, χ0E

0
h〉+ 〈A−t0 Eh, Eh〉+O(h∞(1 + ‖Eh‖2L2(K0))). (2.3)

The first term on the right-hand side is explicit, as we have a formula for E0
h; we can calculate

for Lebesgue almost every ξ and λ = 1 +O(h),

lim
t→+∞

lim
h→0
〈A−t1 χ0E

0
h(λ, ξ), χ0E

0
h(λ, ξ)〉 =

∫
S∗M

a dµξ. (2.4)

It then remains to estimate the second and third terms on average in λ and ξ. For this, we

use the relation (4.5) of distorted plane waves to the spectral measure of the Laplacian to
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get for any bounded compactly supported pseudodifferential operator B,

h−1‖BEh(λ, ξ)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

≤ Chn‖B 1l[1,(1+h)2](h
2∆)‖2HS. (2.5)

Here HS denotes the Hilbert–Schmidt norm. One can estimate the right-hand side of (2.5)

uniformly in h – see Lemma 3.11 and the proof of Proposition 4.5. Then h−1‖Eh‖2L2(K0),

when integrated over λ ∈ [1, 1 + h] and ξ, is bounded uniformly in h; this removes the third

term on the right-hand side of (2.3).

Finally, the average in λ, ξ of the second term on the right-hand side of (2.3) can be

bounded, modulo an Ot(h) remainder, by the L2 norm ‖σ(A−t0 )‖L2(S∗M) of the restriction

of the principal symbol of A−t0 to the energy surface S∗M , with respect to the Liouville

measure. Now, σ(A−t0 ) = (σ(A) ◦ g−t)ϕ converges to zero as t → +∞ at any point which

is not trapped in the backwards direction. Since we assumed µL(K) = 0, by the dominated

convergence theorem ‖σ(A−t0 )‖L2(S∗M) converges to zero as t → +∞; this finishes the proof

of Theorem 1.

For the estimate (1.12) in Theorem 2, we need to take t up to the Ehrenfest time:

t = te := Λ−1
0 log(1/h)/2,

replacing the limt→+∞ limh→0 limit in the argument of Theorem 1 by just the limh→0 limit,

but with t depending on h. The operator A−t is then still pseudodifferential, though in a

mildly exotic class. To avoid a quantization procedure uniform at infinity, we give an iterative

argument, propagating A for a fixed time for ∼ log(1/h) steps, applying t-independent cutoffs

and removing the microlocally negligible terms at each step. The proof then works as before,

with the term 〈A−t0 Eh, Eh〉 bounded by the Liouville measure of the support of the full

symbol of A−t0 , which depends on h and is contained in gt(T (t)), where T (t) is defined

in (1.9); this proves (1.12). The interpolated quantity r(h,Λ) from (1.10) appears because

of the subprincipal terms in (2.4).

For (1.13), we have to propagate to twice the Ehrenfest time: t = 2te. The operator A−t

is not pseudodifferential, but we can use (2.1) to write

〈A−t0 Eh, Eh〉 = 〈U(−t/2)AU(t/2) · U(t/2)ϕU(−t/2)Eh, Eh〉. (2.6)

The operators U(−t/2)AU(t/2) and U(t/2)ϕU(−t/2) are both pseudodifferential in a mildly

exotic class; multiplying them, we get a pseudodifferential operator whose full symbol is

supported inside gt/2(T (t)), and thus (2.6) can be estimated by the Liouville measure of this

set, giving the remainder (1.13).

A problem arises when trying to get a rate of convergence in (2.4) for t up to twice the

Ehrenfest time. We are unable to propagate the Lagrangian state E0
h(λ, ξ) pointwise in ξ and

λ for time t, therefore we do not get an L1
ξ estimate in (1.13). However, for f ∈ C∞(∂M)

we can still approximate the integral∫
∂M

f(ξ)〈A−t1 χ0E
0
h, χ0E

0
h〉 dξ (2.7)
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as follows. Define the operator

Π0
f (λ) :=

∫
∂M

f(ξ)(χ0E
0
h(λ, ξ))⊗ (χ0E

0
h(λ, ξ)) dξ.

Here ⊗ denotes the Hilbert tensor product; that is, if u, v ∈ C∞(M), then u ⊗ v is the

operator with the Schwartz kernel

Ku⊗v(m,m
′) = u(m)v(m′). (2.8)

We can show that for X̃ ∈ Ψcomp(M) satisfying certain conditions, X̃Π0
f X̃
∗ is a Fourier

integral operator associated to the canonical relation

{(m, ν;m′, ν ′) | (m, ν) ∈ S∗M, (m′, ν ′) = gs(m, ν) for some s ∈ (−T0, T0)},

for a fixed T0 > 0 depending on X̃. (For comparison, for the spectral measure of h2∆

we would have to formally take all possible values of s, which would destroy any hope on

microlocally approximating it when the geodesic flow is chaotic.) We can then write

X̃Π0
f (λ)X̃∗ = (2πh)n

∫ T0

−T0

e−iλ
2s/(2h)U(s)Bs ds,

where Bs is a smooth family of pseudodifferential operators, compactly supported in s ∈
(−T0, T0) – see Lemma 5.12. We then write the integral (2.7) as

Tr(U(−t)AU(t)(1− ϕ)Π0
f (λ)) = Tr

∫ T0

−T0

e−iλ
2s/(2h)U(−t)AU(t)(1− ϕ)U(s)Bs ds

= Tr

∫ T0

−T0

e−iλ
2s/(2h)U(−t/2)AU(t/2) · U(t/2)(1− ϕ)U(s)BsU(−s− t/2) · U(s) ds.

The operators U(−t/2)AU(t/2) and U(t/2)(1−ϕ)U(s)BsU(−s− t/2) are pseudodifferential

in a mildly exotic class; thus their product is also pseudodifferential and (bearing in mind

that s varies in a bounded set) one gets a microlocal expansion for (2.7) through a local trace

formula for Schrödinger propagators – see Lemma 3.12 and Proposition 5.13.

2.1. Other possible geometric assumptions. Our results should be true for asymptot-

ically hyperbolic manifolds without the constant curvature assumption near infinity. The

main difficulty here is constructing a good semiclassical parametrix for the Eisenstein func-

tion Eh(λ, ξ) near ξ ∈ ∂M ; this can be done by WKB approximation, and the phase is

a Busemann function φξ(m) near ξ, however one would need a good understanding of the

regularity of φξ(m) as m→ ξ. This is in a way related to the high-frequency parametrix of

[MeSBVa] in the non-trapping setting. For the asymptotically Euclidean of asymptotically

conic ends, this might be more complicated as we would need a parametrix of Eh(λ, ξ) in

a large neighbourhood of ξ ∈ ∂M , essentially in a region with closure containing a ball of

radius π/2 in ∂M . In particular, the Lagrangian supporting the semiclassical parametrix of

Eh(λ, ξ) would not a priori be projectable far from ξ, which would make the construction

more technical. We leave these questions for future research.

The convergence result in Theorem 1 should be true in the case where M has a boundary,

for instance M = Rn+1 \ Ω with Ω a piecewise smooth obstacle. In fact, it should be

straightforward to check that the method of proof applies when combined with the idea
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of [ZeZw], based on the fact that the region in phase space near the boundary where the

dynamics is complicated is of Liouville measure 0 (since we assume µL(K) = 0). To get a

good remainder in that setting would be more involved since one would need to care about

the amount of mass of plane waves staying in the regions near the boundary where the

dynamics is complicated, as we propagate up to Ehrenfest time. A reasonable case to start

with is that of strictly convex obstacles.

2.2. Structure of the paper. In Section 3, we review certain notions of semiclassical anal-

ysis and derive several technical lemmata; in particular, in Section 3.2, we review the local

theory of semiclassical Lagrangian distributions and Fourier integral operators and in Sec-

tion 3.3 we study microlocal properties of Schrödinger propagators, including the Hilbert–

Schmidt norm bound (Lemma 3.11). In Section 4, we formulate the general assumptions on

the studied manifolds and derive some immediate corollaries; Section 4.1 contains the geo-

metric assumptions and the definition of the trapped set and Section 4.2 contains the analytic

assumptions on distorted plane waves. In Section 4.3 we construct the limiting measures µξ
and in Section 4.4 we prove averaged estimates on Eisenstein functions.

In Section 5, we give the proofs of our main theorems. Section 5.1 contains the proof

of Theorem 1, Section 5.2 contains the proof of the estimate (1.12) in Theorem 2, while

Section 5.3 contains the proof of the estimate (1.13) in Theorem 2. Section 5.3 also contains

the Tauberian argument proving an expansion of the local trace of a spectral projector

(Theorem 4). Sections 6 and 7 study the Euclidean and hyperbolic near infinity manifolds,

respectively, and show that the general assumptions of Section 4 are satisfied in these cases.

Appendix A provides a formula for the limiting measures in the case of a convex co-compact

hyperbolic quotient, which generalizes the limiting measure of [GuNa] to the case δ ≥ n/2.

Appendix B discusses the classical escape rate, in particular explaining (1.14). Appendix C

gives a self-contained proof of Egorov’s theorem up to the Ehrenfest time (Proposition 3.9).

Finally, Appendix D contains a short proof of (a special case of) quantum ergodicity in

the semiclassical setting, which is simpler than that of [HeMaRo] because it does not rely

on [DuGu, PeRo].

3. Semiclassical preliminaries

In this section, we review the methods of semiclassical analysis needed for our argument.

Most of the constructions listed below are standard: pseudodifferential operators, wavefront

sets, local theory of Fourier integral operators, and Egorov’s theorem. However, Section 3.3

contains the propagation result for generalized eigenfunctions (Lemma 3.10) and a Hilbert–

Schmidt norm estimate in an O(h) spectral window (Lemma 3.11), which the authors were

unable to find in previous literature.

We will also need Egorov’s theorem up to the Ehrenfest time (Proposition 3.9); while

several versions of this fact are available, we could not find a detailed proof for the case of

manifolds and when the Ehrenfest time is defined via the maximal expansion rate of the

flow. For this reason, and also because we insert cutoffs in between the propagators, we give

a proof of Proposition 3.9 in Appendix C.
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3.1. Notation. In this subsection, we briefly review certain notation used in semiclassical

analysis. The reader is referred to [Zw] (especially Chapter 14 on semiclassical calculus on

manifolds) or [DiSj] for a detailed introduction to the subject.

The phase space. Let M be a d-dimensional manifold without boundary. We denote points

in M by the letter m and elements of the cotangent bundle T ∗M by (m, ν), where ν ∈ T ∗mM .

Following [Va11, Section 2], we consider the fiber-radial compactification T
∗
M of T ∗M . The

boundary of T
∗
M , denoted by ∂T

∗
M and called the fiber infinity (unlike [Va11], we do

not use the notation S∗M for fiber infinity — we reserve it for the unit cotangent bundle

{|ν|g = 1} ⊂ T ∗M), is associated with the cosphere bundle over M and the interior of T
∗
M

is associated with T ∗M . Take some smooth inner product on the fibers of T ∗M ; if |ν| is the

norm of a covector (m, ν) ∈ T ∗M generated by this inner product and 〈ν〉 =
√

1 + |ν|2, then

〈ν〉−1 is a boundary defining function on T
∗
M .

We will mostly use compactly microlocalized operators, for which the fiber-radial compact-

ification is not necessary. However, it will come up in the elliptic estimate (Proposition 3.2)

and in the proof of the propagation of singularities result for plane waves on asymptotically

hyperbolic manifolds (Proposition 7.4).

Symbol classes. For any k ∈ R and any ρ ∈ [0, 1/2), we consider the symbol class Skρ (M)

defined as follows: a smooth function a(m, ν;h) on T ∗M × [0, h0) lies in Skρ (M) if and only

if for each compact K ⊂ M and each multiindices α, β, there exists a constant CαβK such

that for h small enough,

sup
m∈K, ν∈T ∗mM

|∂αm∂βν a(m, ν;h)| ≤ CαβKh−ρ(|α|+|β|)〈ν〉k−|β|. (3.1)

These classes are independent of the choice of coordinates on M . Note that we do not fix the

behaviour of the symbols as m → ∞. The important special case is ρ = 0, which includes

the classical symbols studied in [Va11]. The class Sk0 (M), denoted simply by Sk(M), would

be sufficient for the convergence Theorem 1. The classes Skρ with ρ > 0 will be important

for obtaining the remainder estimate of Theorem 2; these classes arise when propagating

symbols in Sk0 for short logarithmic times, as in Proposition 3.9.

Since plane waves are microlocalized on the cosphere bundle, away from the fiber infinity,

we will most often work with the classes Scomp
ρ , consisting of compactly supported functions

satisfying (3.1); we have Scomp
ρ ⊂ Skρ for all k.

Pseudodifferential operators. Following [Zw, Section 14.2], we can define the algebra

Ψk
ρ(M) of pseudodifferential operators with symbols in Skρ (M). (The properties of the sym-

bol classes Skρ required for the construction of [Zw, Section 14.2] are derived as in [Zw,

Section 4.4]; see also [GrSj, Chapter 3].) As before, denote Ψk = Ψk
0. Since our symbols

can grow arbitrarily fast as m → ∞, we do not make any a priori assumptions on the be-

havior of elements of Ψk
ρ near the infinity in M . However, we require that all operators

A ∈ Ψk(M) be properly supported ; namely, the restriction of each of the projection maps

πm, πm′ : M ×M → M to the support of the Schwartz kernel KA(m,m′) of A is a proper

map. Then each element of Ψk(M) acts Hs
h,loc(M) → Hs−k

h,loc(M), where Hs
h,loc(M) denotes
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the space of distributions locally in the semiclassical Sobolev space Hs
h (see for example [Zw,

Section 7.1] for the definition of semiclassical Sobolev spaces).

We have the semiclassical principal symbol map

σ : Ψk
ρ(M)→ Skρ (M)/h1−2ρSk−1

ρ (M)

and its right inverse, a non-canonical quantization map

Oph : Skρ (M)→ Ψk
ρ(M).

The standard operations of pseudodifferential calculus with symbols in Skρ have an O(h1−2ρ)

remainder instead of the O(h) remainder valid for the class Sk0 . More precisely, we have for

A ∈ Ψk
ρ(M) and B ∈ Ψk′

ρ (M),

σ(A∗) = σ(A) +O(h1−2ρ)Sk−1
ρ (M),

σ(AB) = σ(A)σ(B) +O(h1−2ρ)
Sk+k′−1
ρ (M)

,

σ([A,B]) = −ih{σ(A), σ(B)}+O(h2(1−2ρ))
Sk+k′−2
ρ (M)

.

Here {·, ·} stands for the Poisson bracket. The O(·) notation is used in the present paper in

the following way: we write u = Oz(F )X if the norm of the function, or the operator, u in

the functional space X is bounded by the expression F times a constant depending on the

parameter z.

Wavefront sets. If A : C∞(M) → C∞(M) is a properly supported operator, we say

that A = O(h∞)Ψ−∞ if A is smoothing and each of the C∞(M × M) seminorms of its

Schwartz kernel is O(h∞). For each A ∈ Ψk
ρ(M), we have A = Oph(a) + O(h∞)Ψ−∞ for

some a ∈ Skρ (M). Define the semiclassical wavefront set WFh(A) ⊂ T
∗
M of A as follows:

a point (m, ν) ∈ T ∗M does not lie in WFh(A), if there exists a neighborhood U of (m, ν)

in T
∗
M such that each (m, ν)-derivative of a is O(h∞〈ν〉−∞) in U ∩ T ∗M . The notion

of the wavefront set does not depend on the choice of the quantization procedure. We

have WFh(A) = ∅ if and only if A = O(h∞)Ψ−∞ and WFh(A∗) = WFh(A), WFh(AB) ⊂
WFh(A) ∩WFh(B). For A,B ∈ Ψk

ρ(M), we say that A = B microlocally in some open set

U ⊂ T ∗M , if WFh(A−B) ∩ U = ∅.
Operators with compact wavefront sets are called compactly microlocalized ; those are

exactly operators of the form Oph(a) + O(h∞)Ψ−∞ for some a ∈ Scomp
ρ . We denote by

Ψcomp
ρ (M) the class of all compactly microlocalized elements of Ψk

ρ(M); as before, we put

Ψcomp(M) = Ψcomp
0 (M). Compactly microlocalized operators should not be confused with

compactly supported operators; that is, operators whose Schwartz kernels are compactly sup-

ported. That being said, most operators that we use will be both compactly supported and

compactly microlocalized.

We will need a finer notion of microsupport on h-dependent sets, used in the proofs in

Sections 5.2 and 5.3, for example in Proposition 5.9:

Definition 3.1. An operator A ∈ Ψcomp
ρ (M) is said to be microsupported on an h-dependent

family of sets V (h) ⊂ T ∗M , if we can write A = Oph(a)+O(h∞)Ψ−∞, where for each compact
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set K ⊂ T ∗M , each differential operator ∂α on T ∗M , and each N , there exists a constant

CαN such that for h small enough,

sup
(m,ν)∈K\V (h)

|∂αa(m, ν;h)| ≤ CαNhN .

Since the change of variables formula for the full symbol of a pseudodifferential operator

contains an asymptotic expansion in powers of h, consisting of derivatives of the original

symbol, Definition 3.1 does not depend on the choice of the quantization procedure Oph.

Moreover, if A ∈ Ψcomp
ρ is microsupported inside some V (h) and B ∈ Ψk

ρ, then AB, BA,

and A∗ are also microsupported inside V (h). It follows from the definition of the wavefront

set that (m, ν) ∈ T ∗M does not lie in WFh(A) for some A ∈ Ψcomp
ρ , if and only if there

exists an h-independent neighborhood U of (m, ν) such that A is microsupported on the

complement of U . Note however that A need not be microsupported on WFh(A), though it

will be microsupported on any h-independent neighborhood of WFh(A). Finally, it can be

seen by Taylor’s formula that if A ∈ Ψcomp
ρ (M) is microsupported in V (h) and ρ′ > ρ, then

A is also microsupported on the set of all points in V (h) which are at least hρ
′

away from

the complement of V (h).

Ellipticity. For A ∈ Ψk
ρ(M), define its elliptic set ell(A) ⊂ T

∗
M as follows: (m, ν) ∈

ell(A) if and only if there exists a neighborhood U of (m, ν) in T
∗
M and a constant C such

that |σ(A)| ≥ C−1〈ν〉k in U ∩ T ∗M . The following statement is the standard semiclassical

elliptic estimate; see [HöIII, Theorem 18.1.24’] for the closely related microlocal case and for

example [Dy1, Section 2.2] for the semiclassical case.

Proposition 3.2. Assume that P ∈ Ψk
ρ(M), A ∈ Ψk′

ρ (M), and WFh(A) ⊂ ell(P ). Assume

moreover that A is compactly supported. Then there exists a constant C and a function

χ ∈ C∞0 (M) such that for each s ∈ R, each u ∈ Hs
h,loc(M) and each N , we have

‖Au‖Hs
h
≤ C‖χPu‖

Hs+k′−k
h

+O(h∞)‖χu‖H−N .

Moreover, if P is a differential operator, then we can take any χ such that the Schwartz

kernel of A is supported in {χ 6= 0} × {χ 6= 0}.

Semi-classical wave-front sets of distributions. An h-dependent family u(h) ∈ D′(M)

is called h-tempered, if for each open U compactly contained in M , there exist constants C

and N such that

‖u(h)‖H−Nh (U) ≤ Ch
−N . (3.2)

For a tempered distribution u, we say that (m0, ν0) ∈ T ∗M does not lie in the wavefront set

WFh(u), if there exists a neighborhood V (m0, ν0) in T
∗
M such that for each A ∈ Ψ0(M) with

WFh(A) ⊂ V , we have Au = O(h∞)C∞ . By Proposition 3.2, (m0, ν0) 6∈WFh(u) if and only if

there exists compactly supported A ∈ Ψ0(M) elliptic at (m0, ν0) such that Au = O(h∞)C∞ .

The wavefront set of u is a closed subset of T
∗
M ; it is empty if and only if u = O(h∞)C∞(M).

We can also verify that for u tempered and A ∈ Ψk
ρ(M), WFh(Au) ⊂WFh(A) ∩WFh(u).
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3.2. Semiclassical Lagrangian distributions. In this subsection, we review some facts

from the theory of semiclassical Lagrangian distributions. See [GuSt, Chapter 6] or [VũNg,

Section 2.3] for a detailed account, and [HöIV, Section 25.1] or [GrSj, Chapter 11] for the

closely related microlocal case. However, note that we do not attempt to define the prin-

cipal symbols as global invariant geometric objects; this makes the resulting local theory

considerably simpler.

Phase functions. Let M be a manifold without boundary. We denote its dimension by d;

in the convention used in the present paper, d = n + 1. As before, we denote elements of

T ∗M by (m, ν), m ∈ M , ν ∈ T ∗mM . Let ϕ(m, θ) be a smooth real-valued function on some

open subset Uϕ of M ×RL, for some L; we call m base variables and θ oscillatory variables.

We say that ϕ is a (nondegenerate) phase function, if the differentials d(∂θ1ϕ), . . . , d(∂θLϕ)

are linearly independent on the critical set

Cϕ := {(m, θ) | ∂θϕ = 0} ⊂ Uϕ. (3.3)

In this case

Λϕ := {(m, ∂mϕ(m, θ)) | (m, θ) ∈ Cϕ} ⊂ T ∗M

is an (immersed, and we will shrink the domain of ϕ to make it embedded) Lagrangian

submanifold. We say that ϕ generates Λϕ.

Symbols. Let ρ ∈ [0, 1/2). A smooth function a(m, θ;h) is called a compactly supported

symbol of type ρ on Uϕ, if it is supported in some compact h-independent subset of Uϕ, and

for each differential operator ∂α on M × RL, there exists a constant Cα such that

sup
Uϕ

|∂αa| ≤ Cαh−ρ|α|.

Similarly to Section 3.1, we write a ∈ Scomp
ρ (Uϕ). For the convergence Theorem 1, we will

only need the class Scomp := Scomp
0 ; the classes Scomp

ρ for ρ > 0 will be required in the proof

of the remainder estimates of Theorem 2.

Lagrangian distributions. Given a phase function ϕ and a symbol a ∈ Scomp
ρ (Uϕ), consider

the h-dependent family of functions

u(m;h) = h−L/2
∫
RL
eiϕ(m,θ)/ha(m, θ;h) dθ. (3.4)

We call u a Lagrangian distribution of type ρ generated by ϕ. Using the method of non-

stationary phase, we can see that if supp a is contained in some h-independent compact set

K ⊂ Uϕ, then

WFh(u) ⊂ {(m, ∂mϕ(m, θ)) | (m, θ) ∈ Cϕ ∩K} ⊂ Λϕ. (3.5)

The principal symbol of u is the function

σϕ(u) ∈ Scomp
ρ (Λϕ)

defined by the formula

σϕ(u)(m, ∂mϕ(m, θ);h) = a(m, θ;h), (m, θ) ∈ Cϕ. (3.6)
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That σϕ(u) does not depend on the choice of a producing u, up to an O(h1−2ρ) remainder,

will follow from Proposition 3.3 and (3.9). As mentioned above, we will not attempt to define

the principal symbol independently of the choice of ϕ.

Following [GrSj, Chapter 11], we introduce a certain (local) canonical form for Lagrangian

distributions. Fix some local system of coordinates on M (shrinking M to the domain of

this coordinate system and identifying it with a subset of Rd) and consider

ΛF = {(m, ν) | m = −∂νF (ν), ν ∈ UF } ⊂ T ∗M, (3.7)

where F is a smooth real-valued function on some open set UF ⊂ Rd, such that the image

of −∂νF is contained in M . Then ΛF is Lagrangian; in fact, it is generated by the phase

function m · ν + F (ν), with ν the oscillatory variable. One can also prove that each La-

grangian submanifold that does not intersect the zero section locally has the form (3.7) for

an appropriate choice of the coordinate system on M . (We will not have to work with La-

grangians intersecting the zero section in this paper; the corresponding distributions have all

the properties listed below, except that the normal forms (3.4) and (3.14) have to be written

differently.)

If b(ν;h) ∈ Scomp
ρ (UF ) and χ ∈ C∞0 (M) is equal to 1 near −∂νF (supp b), then we can

define a Lagrangian distribution by the following special case of (3.4):

v(m;h) = χ(m)h−d/2
∫
UF

ei(m·ν+F (ν))/hb(ν;h) dν. (3.8)

We need χ to make v ∈ C∞0 (M); however, by (3.5) (or directly by the method of nonstation-

ary phase), if we choose χ differently, then v will change by O(h∞)C∞0 .

If v is given by (3.8), then we can recover the symbol b by the Fourier inversion formula:

eiF (ν)/hb(ν;h) = (2π)−dh−d/2
∫
M
e−im·ν/hv(m;h) dm+O(h∞)S (Rd), (3.9)

here S denotes the space of Schwartz functions. Note that v = O(h∞)C∞0 implies b(ν;h) =

O(h∞)C∞0 . Moreover, if v ∈ C∞0 (M) satisfies (3.9) for some b ∈ Scomp
ρ (UF ), then v is given

by (3.8) modulo O(h∞)C∞0 .

Any Lagrangian distribution can be brought locally into the form (3.8):

Proposition 3.3. Assume that ϕ is a phase function, and the corresponding Lagrangian Λ =

Λϕ can be written in the form (3.7). For a(m, θ;h) ∈ Scomp
ρ (Uϕ) and b(ν;h) ∈ Scomp

ρ (UF ),

denote by ua and vb the functions given by (3.4) and (3.8), respectively. Then:

1. For each a ∈ Scomp
ρ (Uϕ), there exists b ∈ Scomp

ρ (UF ) such that ua = vb + O(h∞)C∞0 .

Moreover, we have the following asymptotic decomposition for b:

b(ν;h) =
∑

0≤j<N
hjLja(m, θ;h) +O(hN(1−2ρ))Scomp

ρ (UF ), (3.10)

where each Lj is a differential operator of order 2j on Uϕ, and (m, θ) ∈ Cϕ is the solution to

the equation (m, ∂mϕ(m, θ)) = (−∂νF (ν), ν). In particular, if σϕ(u) is given by (3.6), then

σϕ(u)(−∂νF (ν), ν;h) = fϕF b(ν;h) +O(h1−2ρ)Scomp
ρ (UF ), (3.11)
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where fϕF is some nonvanishing function depending on ϕ and the choice of the coordinate

system on M . Adding a certain constant to the function F , we can make fϕF independent

of h.

2. For each b ∈ Scomp
ρ (UF ), there exists a ∈ Scomp

ρ (Uϕ) such that vb = ua +O(h∞)C∞0 .

Proof. We follow [GrSj, Chapter 11]. For part 1, we apply the method of stationary phase to

get (3.9) and then use the Fourier inversion formula. For part 2, we take some a0 ∈ Scomp
ρ (Uϕ)

satisfying (3.11) and define ua0 by the formula (3.4) using the symbol a0. Then vb = ua0 +vb1 ,

where vb1 has the form (3.8) with the symbol b1 = O(h1−2ρ). Repeating this process with

vb1 in place of vb, we can write for each N ,

v =
∑

0≤j<N
uaj + vbN ,

where each uaj has the form (3.4) with the symbol aj = O(hj(1−2ρ)), and vbN has the

form (3.8) with the symbol bN = O(hN(1−2ρ)). If a ∼
∑

j aj is an asymptotic sum, then

vb − ua = O(h∞)C∞0 . �

We can now give

Definition 3.4. Let Λ ⊂ T ∗M be an embedded Lagrangian submanifold. We say that an

h-dependent family of functions u(m;h) ∈ C∞0 (M) is a (compactly supported and compactly

microlocalized) Lagrangian distribution of type ρ associated to Λ, if it can be written as a sum

of finitely many functions of the form (3.4), for different phase functions ϕ parametrizing

open subsets of Λ, plus an O(h∞)C∞0 remainder. Denote by Icomp
ρ (Λ) the space of all such

distributions, and put Icomp(Λ) := Icomp
0 (Λ).

We can write any u ∈ Icomp
ρ (Λ) as the sum of Lagrangian distributions associated to a

given finite open covering of WFh(u) in Λ; by Proposition 3.3, u is a sum of functions of the

form (3.8). Moreover, if ϕ is a phase function and u ∈ Icomp
ρ (Λϕ), then u can be written in

the form (3.4) for some symbol a, plus an O(h∞)C∞0 remainder. The symbol σϕ(u), given

by (3.6), is well-defined modulo O(h1−2ρ).

The action of a pseudodifferential operator on a Lagrangian distribution is given by the

following proposition, following from Proposition 3.3 and the method of stationary phase:

Proposition 3.5. Assume that u ∈ Icomp
ρ (Λ) and P ∈ Ψk

ρ(M). Then Pu ∈ Icomp
ρ (Λ).

Moreover,

1. Assume that Λ = Λϕ for some phase function ϕ. Then

σϕ(Pu) = σ(P )|Λϕ · σϕ(u) +O(h1−2ρ)Scomp
ρ (Λ).

2. Assume that Λ = ΛF is given by (3.7) in some coordinate system on M . Let b(ν;h)

and bP (ν;h) be the symbols corresponding to u and Pu, respectively, via (3.8). Let also

P = Oph(p) for some quantization procedure Oph. Then we have the following asymptotic

decomposition for bP :

bP (ν;h) =
∑

0≤j<N
hjLj(p(m, ν

′;h)b(ν;h))|ν′=ν,m=−∂νF (ν) +O(hN(1−2ρ))Scomp
ρ (UF ),
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where each Lj is a differential operator of order 2j on M × UF × UF .

Finally, we give the following estimate of the L2 norm of a Lagrangian distribution, fol-

lowing from the boundedness of the Fourier transform on L2:

Proposition 3.6. Assume that u ∈ Icomp
ρ (ΛF ), where ΛF is given by (3.7). Assume that u

is given by (3.8), with b(ν;h) the corresponding symbol. Then

‖u(m;h)‖L2 ≤ C‖b(ν;h)‖L2(UF ). (3.12)

Here C is a constant independent of h.

Fourier integral operators. A special case of Lagrangian distributions are Fourier integral

operators associated to canonical transformations. Let M,M ′ be two manifolds of the same

dimension d, and let κ be a symplectomorphism from an open subset of T ∗M to an open

subset of T ∗M ′. Consider the Lagrangian

Λκ = {(m, ν;m′,−ν ′) | κ(m, ν) = (m′, ν ′)} ⊂ T ∗M × T ∗M ′ = T ∗(M ×M ′).

A compactly supported operator U : D′(M ′)→ C∞0 (M) is called a (semiclassical) Fourier in-

tegral operator of type ρ associated to κ, if its Schwartz kernelKU (m,m′) lies in h−d/2Icomp
ρ (Λκ).

We write U ∈ Icomp
ρ (κ). Note that we quantize a canonical transformation T ∗M → T ∗M ′

as an operator D′(M ′) → C∞0 (M), in contrast with the standard convention, which would

quantize it as an operator D′(M)→ C∞0 (M ′). The h−d/2 factor is explained as follows: the

normalization for Lagrangian distributions is chosen so that ‖u‖L2 ∼ 1, while the normaliza-

tion for Fourier integral operators is chosen so that ‖U‖L2(M ′)→L2(M) ∼ 1.

After sufficiently shrinking the domain of κ and choosing an appropriate coordinate system

on M ′ (replacing M ′ with the domain of this coordinate system and identifying it with a

subset of Rd), we can find a generating function S(m, ν ′) for κ; that is,

κ(m, ν) = (m′, ν ′) ⇐⇒ ∂mS(m, ν ′) = ν, ∂ν′S(m, ν ′) = m′. (3.13)

Here (m, ν ′) vary in some open set US ⊂ M × Rd. The phase function S(m, ν ′) − m′ · ν ′,
with ν ′ the oscillatory variable, parametrizes Λκ and for U ∈ Icomp

ρ (κ), we can write similarly

to (3.8),

KU (m,m′) = h−dχ(m′)

∫
Rd
e
i
h

(S(m,ν′)−m′·ν′)b(m, ν ′;h) dν ′ +O(h∞)C∞0 , (3.14)

for some symbol b ∈ Scomp
ρ (US) and any χ ∈ C∞0 (M ′) such that χ = 1 near the set

∂ν′S(supp b). The function b is determined uniquely by U modulo O(h∞)Scomp
ρ (US), simi-

larly to (3.9). Note that if κ is the identity map, then S(m, ν ′) = m · ν ′ and we arrive to the

quantization formula for a semiclassical pseudodifferential operator.

Similarly to Proposition 3.5, we have

Proposition 3.7. Assume that U ∈ Icomp
ρ (κ) and P ∈ Ψk

ρ(M
′). Then UP ∈ Icomp

ρ (κ). If

moreover κ is given by (3.13), b(m, ν ′;h) and bP (m, ν ′;h) are the symbols corresponding to
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U and UP , respectively, via (3.14), and P = Oph(p) for some quantization procedure Oph,

then we have the following asymptotic decomposition for bP :

bP (m, ν ′;h) =
∑

0≤j<N
hjLj(p(m

′, ν̃)b(m, ν ′))|ν̃=ν′,m′=∂ν′S(m,ν′) +O(hN(1−2ρ))Scomp
ρ (US).

Here each Lj is a differential operator of order 2j on M ′ × Rd × US. In particular,

bP (m, ν ′;h) = p(∂ν′S(m, ν ′), ν ′;h)b(m, ν ′;h) +O(h1−2ρ)Scomp
ρ (US).

A similar statement is true for an operator of the form PU , where P ∈ Ψk
ρ(M); the terms

of the asymptotic decomposition have the form hjLj(p(m̃, ν)b(m, ν ′)), where we take m̃ = m

and ν = ∂mS(m, ν ′).

3.3. Schrödinger propagators. In this subsection, we assume that (M, g) is a complete

Riemannian manifold and ∆ = ∆g is the corresponding (nonnegative) Laplace–Beltrami

operator. Let p be the semiclassical principal symbol of h2∆ ∈ Ψ2(M); we have p(m, ν) =

|ν|2g, where |ν|g is the norm of the covector ν ∈ T ∗mM induced by g. We use the notation

S∗M = p−1(1) ⊂ T ∗M

for the unit cotangent bundle. The geodesic flow gt on T ∗M is related to the Hamiltonian

flow etHp of p by the formula gt = etHp/2. Note that gt is a canonical transformation.

The operator ∆ is essentially self-adjoint on L2(M) by [Ch] and its domain is given by the

Friedrichs extension. Let

U(t) = eith∆/2 = e
it
h

(h2∆/2)

be the semiclassical Schrödinger propagator; it is a unitary operator on L2(M). The basic

microlocal properties of U(t) are given by the following

Proposition 3.8. For each t ∈ R,

1. (Egorov’s Theorem) For each compactly supported A ∈ Ψcomp
ρ (M), there exists com-

pactly supported At ∈ Ψcomp
ρ (M) such that

U(t)AU(−t) = At +O(h∞)L2→L2 . (3.15)

Moreover, WFh(At) ⊂ g−t(WFh(A)) and σ(At) = σ(A) ◦ gt +O(h1−2ρ).

2. (Microlocalization) The operator U(t) is microlocalized on the graph of g−t in the

following sense: if A,B ∈ Ψk
ρ(M) are compactly supported, at least one of them is compactly

microlocalized, and

gt(WFh(A)) ∩WFh(B) = ∅, (3.16)

then AU(t)B = O(h∞)L2→L2.

3. (Parametrix) If A ∈ Ψcomp(M) is compactly supported, then U(t)A is the sum of a

compactly microlocalized Fourier integral operator (of type 0) associated to gt, as defined in

Section 3.2, and an O(h∞)L2→L2 remainder.

The proofs are standard; part 1 can be found in [Zw, Theorem 11.1] (with the mildly exotic

classes Ψcomp
ρ handled as in Appendix C), part 2 follows directly from part 1, and part 3 is

proved similarly to [Zw, Theorem 10.3]. The operator U(t)A quantizes gt, not g−t, because
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of the convention adopted in Section 3.2 that a canonical transformation T ∗M → T ∗M ′ is

quantized as an operator D′(M ′)→ C∞0 (M).

Egorov’s theorem until the Ehrenfest time. Proposition 3.8 is valid for bounded times

t; as t → ∞, the constants in the estimates for the corresponding symbols will blow up.

However, it is still possible to prove Egorov’s Theorem for t bounded by a certain multiple of

log(1/h), called the Ehrenfest time. To define this time, we fix an open bounded geodesically

convex set U ⊂M and define the maximal expansion rate

Λmax := lim sup
|t|→∞

1

|t|
log sup

m∈U, |ν|g=1,

gt(m,ν)∈U

‖dgt(m, ν)‖. (3.17)

Here ‖dgt(m, ν)‖ is the operator norm of the differential

dgt(m, ν) : T(m,ν)T
∗M → Tgt(m,ν)T

∗M

with respect to any given smooth norm on the fibers of T (T ∗M) (e.g. the norm induced by

the metric g).

Since we will work on a noncompact manifold, we introduce cutoffs into the corresponding

propagators:

Proposition 3.9. Assume that X1, X2 ∈ Ψ0(M) satisfy ‖Xj‖L2→L2 ≤ 1 + O(h) and are

compactly supported inside U . Let εe > 0 and take Λ0,Λ
′
0 > 0 such that

Λ0 > Λ′0 > (1 + 2εe)Λmax.

Fix t0 ∈ R. Then for each integer

l ∈ [0, log(1/h)/(2|t0|Λ0)], (3.18)

and each compactly supported A ∈ Ψcomp(M) with

WFh(A) ⊂ Eεe := {1− εe ≤ |ν|g ≤ 1 + εe},

the compactly supported operator

A(l) := (X2U(t0))lA(U(−t0)X1)l

lies in Ψcomp
ρl (M), modulo an O(h∞)L2→L2 remainder, with

ρl = l|t0|Λ′0/ log(1/h) < 1/2. (3.19)

Moreover, the Scomp
ρl seminorms of the full symbol of A(l) are bounded uniformly in l, in the

following sense: the order k derivatives of this symbol are bounded by Ch−kρl, where C is a

constant independent of h and l. The principal symbol of A(l) is

σ(A(l)) = (σ(A) ◦ glt0)
l−1∏
j=0

(σ(X1)σ(X2)) ◦ gjt0 +O(h1−2ρl).

The wavefront set of A(l), for l > 0, is contained in WFh(X1) ∩WFh(X2) ∩ Eεe. Finally, if

UA and UX are open sets such that WFh(A) ⊂ UA and WFh(X1) ∩WFh(X2) ⊂ UX , then
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A(l) is microsupported, in the sense of Definition 3.1, inside the set

V (l) := g−lt0(UA) ∩
l−1⋂
j=0

g−jt0(UX).

The set V (l) does not depend on h directly, however it depends on l, which is allowed to

depend on h, and our microlocal vanishing statement is uniform in l.

Proposition 3.9 is the main technical tool of obtaining the polynomial remainder bound

of Theorem 2; it is also the reason why the classes Ψcomp
ρ appear. Its proof, following the

methods of [AnNo, Section 5.2] and [Zw, Theorem 11.12], is given in Appendix C. We do not

impose any restrictions on the set U at this point, however in our actual argument it will

have to contain a neighborhood of the trapped set – see the beginning of Section 5.2.

Propagating generalized eigenfunctions. The following fact, similar to [Dy2, Proposi-

tion 3.3], will be used to propagate the Eisenstein functions by the group U(t):

Lemma 3.10. Assume that u ∈ C∞(M) solves the equation

(h2∆− z)u = 0, |1− z| ≤ Ch.

Let χ ∈ C∞0 (M); take t ∈ R and assume that χt ∈ C∞0 (M) is supported in the interior of a

compact set Kt ⊂M and satisfies

dg(suppχ, supp(1− χt)) > |t|. (3.20)

Here dg denotes Riemannian distance on M . Then

χu = χe−itz/(2h)U(t)χtu+O(h∞‖u‖L2(Kt))L2(M).

Proof. Without loss of generality, we assume that t ≥ 0. For 0 ≤ s ≤ t, define

us = χ(u− e−isz/(2h)U(s)χtu).

We need to prove that

‖ut‖L2 = O(h∞)‖u‖L2(Kt). (3.21)

Since χ = χχt, we have u0 = 0; next,

2hDsus = −χe−isz/(2h)U(s)(h2∆− z)χtu

= −e−isz/(2h)χU(s)[h2∆, χt]u.

Let B ∈ Ψcomp be compactly supported inside Kt × Kt, equal to the identity microlocally

near suppχt ∩ S∗M , but microlocalized in a small enough neighborhood of S∗M so that

by (3.20),

gs(suppχ) ∩WFh(B) ∩ supp(1− χt) = ∅.
Note that WFh([h2∆, χt]) ⊂ supp(1− χt). Then by part 2 of Proposition 3.8,

‖χU(s)[h2∆, χt]Bu‖L2 = O(h∞)‖u‖L2(Kt), 0 ≤ s ≤ t. (3.22)

Moreover, by Proposition 3.2

‖χU(s)[h2∆, χt](1−B)u‖L2 = O(h∞)‖u‖L2(Kt). (3.23)
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Combining (3.22) and (3.23), we get ‖∂sus‖L2 = O(h∞)‖u‖L2(Kt); it remains to integrate in

s to get (3.21). �

Hilbert–Schmidt norm estimates. We now prove Hilbert–Schmidt norm estimates for the

product of a pseudodifferential operator with a spectral projector. (See [HöIII, Section 19.1]

for the properties of Hilbert–Schmidt and trace class operators.) To simplify notation, we

consider a spectral interval of size h centered at λ = 1; similar statement is true for the

interval [λ+ c1h, λ+ c2h] with λ > 0, replacing S∗M by λS∗M .

Lemma 3.11. Fix c1, c2 ∈ R and let 1l[1+c1h,1+c2h](h
2∆) be defined by means of spectral

theory. Assume that A ∈ Ψcomp
ρ (M) is compactly supported. Then

h(d−1)/2‖ 1l[1+c1h,1+c2h](h
2∆)A‖HS ≤ C‖σ(A)‖L2(S∗M) +O(h1−2ρ). (3.24)

Here C is a constant independent of A (if WFh(A) is contained in a fixed compact set),

however the constant in O(h1−2ρ) depends on A. We take the L2 norm of σ(A) on the

energy surface S∗M with respect to the Liouville measure µL.

Moreover, if WFh(A) is microsupported, in the sense of Definition 3.1, in some h-dependent

family of sets V (h) ⊂ T ∗M , then

h(d−1)/2‖ 1l[1+c1h,1+c2h](h
2∆)A‖HS ≤ CµL(V (h) ∩ S∗M)1/2 +O(h∞). (3.25)

Here µL(V (h)∩S∗M) denotes the volume of V (h)∩S∗M with respect to the Liouville measure

on S∗M and the constant C depends on a certain Scomp
ρ -seminorm of the full symbol of A.

Proof. Take a function χ ∈ S (R) such that χ̂ is compactly supported in some interval

(−T, T ) and χ does not vanish on [c1, c2] (for example, take nonzero ψ ∈ C∞0 (R) with ψ ≥ 0,

then |ψ̂| > 0 in an interval [c1ε, c2ε]; set χ(x) := ψ̂(εx)). Then

1l[1+c1h,1+c2h](h
2∆) = Zχ((h2∆− 1)/h),

where Z is a certain function of h2∆ and it is bounded on L2(M) uniformly in h. It then

suffices to estimate the Hilbert–Schmidt norm of

B = h(d−1)/2χ((h2∆− 1)/h)A = (2π)−1h(d−1)/2

∫ T

−T
χ̂(t)e−it/hU(2t)Adt.

Let A0 ∈ Ψcomp
0 (M) be compactly supported and equal to the identity microlocally near

WFh(A). By part 3 of Proposition 3.8, for each t we have

U(2t)A0 = U2t +R2t,

where U2t ∈ Icomp(g2t) is a compactly supported Fourier integral operator and R2t =

O(h∞)L2→L2 . Then

(U(2t)− U2t)A = O(h∞)HS. (3.26)

Indeed, we can write the left-hand side of (3.26) as the sum of R2tA and U(2t)(1 − A0)A;

it remains to note that R2t = O(h∞)L2→L2 , ‖A‖HS is polynomially bounded in h, and

‖(1−A0)A‖HS = O(h∞).

By (3.26), we can replace U(2t) by U2t in the definition of B. Now, the Hilbert–Schmidt

norm of B is equal to the L2(M×M) norm of its Schwartz kernel KB. Using the local normal
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form (3.14) for Fourier integral operators, we can write KB, up to an O(h∞)C∞0 remainder

and an appropriate cutoff in the m′ variable, as a finite sum of expressions of the form (in a

fixed coordinate system on M)

h−(d+1)/2

∫ T

−T

∫
Rd
ei(S(m,ν′;2t)−m′·ν′−t)/hb(m, ν ′, t;h) dν ′dt. (3.27)

Here S(m, ν ′; 2t) is a generating function for g2t and b is a certain symbol in Scomp
ρ . Moreover,

b admits an asymptotic expansion in terms of the full symbol of A, by Proposition 3.7. The

fact that S and b can be choosen to depend smoothly on t follows from the proof of part 3

of Proposition 3.8.

We can deduce from (3.13) that

g2t(m, ν) = (m′, ν ′) =⇒ ∂t(S(m, ν ′; 2t)) = p(m, ν). (3.28)

The equation (3.28) is true for the particular generating function constructed in the proof of

part 3 of Proposition 3.8. One can add any function of t to the function S and still obtain

a generating function of g2t; however, the amplitude b with respect to the new generating

function will no longer be a symbol, as its derivatives in t will not be bounded uniformly in

h. It follows from (3.28) that the function

Φ(m,m′, ν ′, t) = S(m, ν ′; 2t)−m′ · ν ′ − t

is a nondegenerate phase function (with m,m′ as base variables and ν ′, t as the oscillatory

variables) and generates the (immersed) Lagrangian

Λ = {(m, ν;m′,−ν ′) | p(m, ν) = 1, ∃t ∈ (−T, T ) : g2t(m, ν) = (m′, ν ′)}.

Then (3.27) lies in Icomp
ρ (Λ). By the local normal form (3.8) of a Lagrangian distribution,

we can write (3.27), up to an O(h∞)C∞0 remainder and an appropriate cutoff in the (m,m′)

variables, as the sum of finitely many expressions of the form

h−d
∫
R2d

ei(m·ν+m′·ν′+F (ν,ν′))/hb̃(ν, ν ′;h) dνdν ′, (3.29)

where F parametrizes some open subset of Λ by (3.7) and b̃ is a symbol in Scomp
ρ . By

Proposition 3.7 and Proposition 3.3, we see that the symbol b̃ has the following asymptotic

expansion in terms of the full symbol a of A:

b̃(ν, ν ′;h) =
∑

0≤j<N
hjLja(m′, ν ′;h) +O(hN(1−2ρ))Scomp

ρ
, (3.30)

where each Lj is a differential operator of order 2j and m,m′ are given by the relation

(m, ν,m′,−ν ′) ∈ Λ; in particular, (m′, ν ′) ∈ S∗M .

We now use Proposition 3.6 to estimate the L2 norm of (3.29); as B is, modulo O(h∞)HS,

a sum of operators with Schwartz kernels of the form (3.29), this would give an estimate on

the Hilbert–Schmidt norm of B. For (3.24), we can write b̃(ν, ν ′;h) as a multiple of a(m′, ν ′)

plus an O(h1−2ρ) remainder and note that (m′, ν ′) always lies in S∗M . For (3.25), we use

that b̃ = O(h∞) outside of the preimage of V (h) under the map (ν, ν ′) 7→ (m′, ν ′), and that

sup |b̃| can be estimated by a certain Scomp
ρ -seminorm of a. �
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Local traces of integrated Schrödinger propagators. We give the following version of

the Schrödinger propagator trace formula in the case where there are no contributions from

closed geodesics:

Lemma 3.12. Assume that M is a d-dimensional complete Riemannian manifold and Bs
is a family of compactly supported pseudodifferential operators in Ψcomp

ρ (M), smooth and

compactly supported in s ∈ (−T0, T0), where T0 > 0 is fixed. Assume also that all Bs are

microsupported, in the sense of Definition 3.1, in some h-dependent family of bounded sets

V (h) ⊂ T ∗M , and the following nonreturning condition holds:

(m, ν) ∈ V (h), |s| < T0 =⇒ d((m, ν), gs(m, ν)) ≥ C−1|s|hρ. (3.31)

Here C is some constant and d denotes some smooth distance function on T ∗M . Let Bs =

Oph(b(s))+O(h∞)Ψ−∞ for some family of symbols b(s,m, ν) and some quantization procedure

Oph. Then for each N and each λ > 0, we have the trace expansion

(2πh)d−1

∫ T0

−T0

e−iλ
2s/(2h) Tr(U(s)Bs) ds

=
∑

0≤j<N
hj
∫
S∗M

Ljb(0,m, λν) dµL(m, ν) +O(hN(1−2ρ))C∞λ ,
(3.32)

where µL is the Liouville measure and each Lj is a differential operator of order 2j on

T ∗M(m,ν) × (−T0, T0)s, independent of Bs and depending smoothly on λ. In particular,

L0 = λd−2.

Proof. As in the proof of Lemma 3.11, we can reduce to computing the trace of the operator

with the Schwartz kernel (in some fixed local coordinates)

K(m,m′) = (2πh)−1

∫ T0

−T0

∫
Rd
e
i
h

(S(m,ν′;s)−m′·ν′−λ2s/2)b̃(m, ν ′, s;h) dν ′ds,

where S(m, ν ′; s) is a local generating function for gs in the sense of (3.13) and b̃(m, ν ′, s;h)

is a certain symbol in Sρ having an asymptotic expansion in terms of the jet of bs at the

point (∂ν′S(m, ν ′; s), ν ′). The trace of the corresponding operator is∫
M

K(m,m) dm = (2πh)−1

T0∫
−T0

∫
M×Rd

e
i
h

(S(m,ν′;s)−m·ν′−λ2s/2)b̃(m, ν ′, s;h) dmdν ′ds.

We now use the method of stationary phase. The stationary points of the phase are solutions

to the equations gs(m, ν ′) = (m, ν ′) and |ν ′|g = λ; they occur at s = 0 and may also occur for

λ|s| ≥ ri, where ri > 0 is the injectivity radius of M . For λ|s| ≥ ri/2, we see by (3.31) that

the expression under the integral can be split into two pieces, on one of which the symbol is

O(h∞) and on the other, the differential of the phase function has length at least C−1hρ; by

repeated integration by parts, the latter integral is O(h∞).

It remains to evaluate the contribution of the stationary set {s = 0} ∩ λS∗M . The phase

function is degenerate on these points; however, one can pass to polar coordinates ν ′ = rω,

with |ω|g = 1 and r > 0, and apply the method of stationary phase in the (r, s) variables,
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resulting in the expansion (3.32). See for example the proofs of [Ro, Théorème V-7 and

Proposition V-8] or [RoTa, Lemma 3.1] for details of the computation. �

4. General assumptions

In this section, we list the general geometric assumptions on the manifold M and analytic

assumptions on its Laplacian required for our results to hold. As noted in the introduc-

tion, they are satisfied in particular if outside of a compact set, M is isometric to either

the Euclidean space (studied in Section 6) or an asymptotically hyperbolic space of constant

curvature (studied in Section 7). We also derive some direct consequences of the general

assumptions, including averaged estimates on plane waves and the existence of limiting mea-

sures µξ.

4.1. Geometric assumptions. In this subsection, we specify the geometry of the manifold

M at infinity.

Let us introduce some notation and terminology first. On a complete Riemannian manifold

(M, g) we denote by gt the geodesic flow of the metric g, considered as a map on the cotangent

bundle T ∗M . Any smooth function f on M can be lifted to a function on T ∗M ; denote by

ḟ , f̈ ∈ C∞(T ∗M) the derivatives of f with respect to the geodesic flow:

ḟ(m, ν) := dtf(gt(m, ν))|t=0, f̈(m, ν) := d2
t f(gt(m, ν))|t=0.

We denote by S∗M the unit cotangent bundle {(m, ν) | |ν|g = 1} ⊂ T ∗M .

A boundary defining function on a smooth compact manifold M with boundary is a smooth

function x : M → [0,∞) such that x > 0 on M and x vanishes to first order on ∂M .

We make the following assumptions:

(G1) (M, g) is a complete Riemannian manifold of dimension d = n + 1. Moreover, there

exists a compactification of M , namely a compact manifold with boundary M such

thatM is diffeomorphic to the interior ofM . The boundary ∂M is called the boundary

at infinity ;

(G2) There exists a boundary defining function x on M and a constant ε0 > 0 such that

for any point (m, ν) ∈ S∗M ,

if x(m, ν) ≤ ε0 and ẋ(m, ν) = 0, then ẍ(m, ν) < 0; (4.1)

(G3) For each (m, ν) ∈ S∗M such that x(m) ≤ ε0 and ẋ(m, ν) ≤ 0, the geodesic gt(m, ν)

(projected onto the base space M) converges as t → +∞, in the topology of M , to

some point ξ+∞(m, ν) ∈ ∂M . The function ξ+∞ depends smoothly on (m, ν), and we

extend it naturally (as the limit of the corresponding geodesic) to a smooth function

on S∗M \ Γ−, with Γ− given in Definition 4.1 below;

(G4) There exists an open set U∞ ⊂M × ∂M such that U∞ contains a neighbourhood of

{(ξ, ξ) ∈M × ∂M | ξ ∈ ∂M} and a smooth real-valued function φ(m, ξ) = φξ(m) on

U∞ such that |∂mφξ(m)|g = 1 everywhere and the function

τ(m, ξ) := (m, ∂mφξ(m)) ∈ S∗M, (m, ξ) ∈ U∞, (4.2)
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(m, ν)

(m′, ν′) ξ+∞

Figure 2. Left: an illustration of (G2), showing a forbidden geodesic. Right:

an illustration of (G3). The point (m, ν) does not escape directly in the

forward direction, but the point (m′, ν ′) does.

is a diffeomorphism from U+
∞ onto V +

∞ with inverse given by

τ−1(m, ν) = (m, ξ+∞(m, ν)), (m, ν) ∈ V +
∞

where the sets U+
∞ and V +

∞ are defined by

U+
∞ := {(m, ξ) ∈ U∞ | x(m) ≤ ε0, ẋ(τ(m, ξ)) ≤ 0},

V +
∞ := {(m, ν) ∈ S∗M | x(m) ≤ ε0, ẋ(m, ν) ≤ 0, (m, ξ+∞(m, ν)) ∈ U∞};

(G5) if (m, ν) ∈ V +
∞ , then gt(m, ν) ∈ V +

∞ for all t ≥ 0;

(G6) if ξ ∈ ∂M and m,m′ ∈ M are such that (m, ξ), (m′, ξ) ∈ U+
∞, then ∂ξφξ(m) =

∂ξφξ(m
′) if and only if τ(m, ξ) and τ(m′, ξ) lie on the same geodesic. Moreover, the

matrix ∂m∂ξφξ(m) has rank n.

Escaping trajectories and the trapped set.. We now define the incoming/outgoing tails

Γ± and the trapped set K:

Definition 4.1. Let γ(t) be a unit speed geodesic. We say that it escapes in the forward,

respectively backward, direction, if γ(t) goes to infinity in M as t → +∞, respectively t →
−∞. If γ(t) does not escape in some direction, we call it trapped in this direction. Denote

by Γ+ ⊂ S∗M the union of all geodesics trapped in the backward direction, by Γ− the union of

all geodesics trapped in the forward direction, and put K = Γ+ ∩ Γ−; we call K the trapped

set.

An escaping geodesic could potentially spend a long time in the compact part of the

manifold. It is helpful to consider geodesics that escape in a straightforward way (with the

boundary defining function x decreasing along them); they appeared in assumption (G3) for

instance.

Definition 4.2. We say that (m, ν) ∈ S∗M directly escapes in the forward, respectively

backward, direction, if x(m) ≤ ε0 and ẋ(m, ν) ≤ 0, respectively ẋ(m, ν) ≥ 0. Here ε0 is the

constant from (G2). Denote by DE+, respectively DE−, the set of all points directly escaping

in the forward, respectively backward, direction.
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One can verify that Γ± are closed sets and the trapped set K is compact (see [GéSj,

Appendix]); in fact, since S∗M ∩ {x ≤ ε0} ⊂ DE+ ∪ DE−, we have K ⊂ {x > ε0}.
For the example of M = Rn+1 discussed below, we have Γ± = ∅. The point (m, ν) lies in

DE+ if and only if x(m) ≤ ε0 and m · ν ≥ 0.

Comments on the geometric assumptions.

A basic example to have in mind for a manifold satisfying our assumptions is M = Rn+1

with the radial compactification M being a closed ball and the boundary at infinity ∂M

equal to the sphere Sn. We will often use this example to illustrate the somewhat abstract

assumptions of this section. (A more general version will be considered in Section 6.)

An important corollary of the assumption (G2) is that for ε ≤ ε0, the compact set {x ≥
ε} ⊂ M is geodesically convex ; i.e., if γ(t) is a geodesic and γ(t1), γ(t2) ∈ {x ≥ ε}, then

γ(t) ∈ {x ≥ ε} for t ∈ [t1, t2]. For the example of M = Rn+1, we can take x = (1+|m|−2)−1/2,

where |m| is the Euclidean length ofm ∈ Rd; the corresponding sets {x ≥ ε} are balls centered

at zero.

It also follows from (G2) that for (m, ν) ∈ DE+, the function x(gt(m, ν)) is decreasing for

t ≥ 0. One can show that x(gt(m, ν)) → 0 as t → +∞ and thus gt(m, ν) escapes in the

forward direction; we do not give a proof of this fact as it follows from the more restrictive

assumption (G3). Also, if a geodesic γ(t) escapes in the forward direction, then for t large

enough we have γ(t) ∈ DE+. For M = Rn+1, we have ξ+∞(m, ν) = ν ∈ Sn.

Assumption (G4) means that for m sufficiently close to the infinity, the covectors ν such

that (m, ν) ∈ DE+ are in one-to-one correspondence with the limit points ξ+∞(m, ν), and

the inverse correspondence can be described by a phase function. It follows in particular

from (G4) that for a fixed ξ ∈ ∂M , the set of directly escaping points (m, ν) such that

ξ+∞(m, ν) = ξ and (m, ξ) ∈ U∞ is the intersection of DE+ with the Lagrangian

Λξ := {(m, ∂mφξ(m)) | (m, ξ) ∈ U∞}. (4.3)

In the model case M = Rn+1 we can put for any R > 0, U∞ = {(m, ξ) | |m| > R},
and φξ(m) = m · ξ, so that τ is the canonical map from Rn+1 × Sn to S∗Rn+1. Then

U+
∞ = {(m, ξ) | |m| > R, m · ξ ≥ 0} and V +

∞ = {(m, ν) | |m| ≥ R, m · ν ≥ 0}; the difference

is that U+
∞ is considered as a subset of Rn+1 × Sn, while V +

∞ is considered as a subset of

S∗Rn+1.

The condition (G6) is required in Proposition 5.12. To explain it, note that under the

assumption (G4), if (m, ξ) ∈ U+
∞ and (m(t), ν(t)) = gt(τ(m, ξ)), then

∂tφξ(m(t))|t=0 = ∂mφξ(m) · ∂tm(t)|t=0 = g(∂mφξ(m), ∂mφξ(m)) = 1. (4.4)

Therefore, ∂ξφξ(m) is constant on the geodesic passing through τ(m, ξ).

4.2. Analytic assumptions. In this subsection, we formulate the analytic assumptions

on plane waves. Let M be as in the previous subsection, ∆ be the (nonnegative definite)

Laplace–Beltrami operator on M , and h > 0 be the semiclassical parameter. We make the

following assumptions:
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(A1) There exists c0 ≥ 0 (equal to 0 for the Euclidean and to n2/4 for the hyperbolic case),

such that for each λ > 0, h > 0 and ξ ∈ ∂M , there exists a function, called distorted

plane wave, Eh(λ, ξ;m), smooth in all variables and solving on M the differential

equation (1.4) in m:

(h2∆− c0h
2 − λ2)Eh(λ, ξ; ·) = 0.

Here ξ gives the direction of the plane wave, while λ corresponds to its semiclassical

energy;

(A2) for each 0 < λ1 ≤ λ2, the Schwartz kernel of the semiclassical spectral projector

Π[λ1,λ2] := 1l[λ2
1+c0h2,λ2

2+c0h2](h
2∆)

can be written in the form

Π[λ1,λ2](m,m
′) = (2πh)−n−1

∫ λ2

λ1

λnfΠ(λ/h)

∫
∂M

Eh(λ, ξ;m)Eh(λ, ξ;m′) dξdλ. (4.5)

Here integration in ξ is carried with respect to a certain given volume form dξ on

∂M and fΠ(z) > 0 is a smooth function of z such that |∂kz fΠ(z)| ≤ Ck〈z〉−k for each

k and fΠ(z)→ 1 as z →∞.

We now assume that plane waves admit the decomposition

Eh(λ, ξ;m) = χ0(m; ξ)E0
h(λ, ξ;m) + E1

h(λ, ξ;m), (4.6)

where χ0, E
0
h, E

1
h are respectively a cutoff function, an explicit ‘outgoing’ part of the wave,

and the ‘incoming’ part, satisfying more precisely the following properties:

(A3) χ0(m; ξ) is a function smooth in m ∈ M and ξ ∈ ∂M , supported inside the set U∞
from (G4) and χ0(m, ξ) = 1 for m sufficiently close to ξ;

(A4) E0
h(λ, ξ;m) is a smooth function of λ ∈ R and (m, ξ) ∈ U∞, of the form

E0
h(λ, ξ;m) = e

iλ
h
φξ(m)b0(λ, ξ,m;h), (4.7)

where U∞ and φξ are defined in (G4) and b0 is a classical symbol in h defined for

λ ∈ R and (m, ξ) ∈ U∞; that is, b0 is smooth in all variables, including h, up to

h = 0. We also require that b0(λ, ξ,m; 0) is independent of λ;

(A5) for λ in a fixed compact subset of (0,∞) and ε0 defined in (G2), the function

Ẽ1
h(λ, ξ;m) :=

E1
h(λ, ξ;m)

1 + ‖Eh(λ, ξ;m)‖L2({x≥ε0})
(4.8)

is h-tempered in the sense of (3.2);

(A6) for λ in a fixed compact subset of (0,∞), each ξ ∈ ∂M , and each (m,λν) ∈
WFh(Ẽ1

h(λ, ξ)), we have (m, ν) ∈ S∗M and either the geodesic γ(t) = gt(m, ν) does

not escape in the forward direction (i.e. (m, ν) ∈ Γ−) or there exists t ≥ 0 such that

γ(t) lies in the set

Wξ := {(m, ∂mφξ(m)) | m ∈ supp(∂mχ0)}. (4.9)

The constants in the corresponding estimates (in the definition of the wave front set

of a distribution given in Section 3.1) are uniform in λ and ξ;
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(A7) there exists ε1 ∈ (0, ε0) such that for (m, ν) ∈ S∗M directly escaping in the forward

direction and x(m) ≤ ε1, the point (m, ξ+∞(m, ν)) lies in the set U∞ defined in (G4)

and χ0 = 1 near this point;

(A8) Let τ : U+
∞ → V +

∞ be the diffeomorphism from (G4). Then its Jacobian with respect

to the volume measure dvol(m)dξ on U+
∞ and the Liouville measure on V +

∞ , is equal

to |b0(1, ξ,m; 0)|2, with b0 defined in (A4).

For example, for M = Rn+1 we put c0 = 0, Eh(λ, ξ;m) = eiλξ·m/h and use the standard

volume form on the sphere ∂M = Sn. The equation (4.5) then follows from the Fourier

inversion formula.

Let us informally explain how the decomposition (4.6) is constructed and provide a justi-

fication for assumptions (A3)–(A6), putting for simplicity λ = 1. First of all, (A4) implies

that for any χ ∈ C∞0 (M), χχ0E
0
h, as a function of m, is a Lagrangian distribution associated

to the Lagrangian Λξ from (4.3). In fact, in the cases considered in the present paper, E0
h

solves on its domain the equation (1.4); however, we do not make this assumption here, as in

more complicated cases (such as asymptotically hyperbolic manifolds of variable curvature)

E0
h might only be an approximate solution to (1.4) in a certain sense.

If we assume that E0
h solves (1.4) on its domain, then the function

Fh(λ, ξ;m) = (h2∆− λ2 − c0h
2)(χ0(m)E0

h(λ, ξ;m))

is equal to [h2∆, χ0]E0
h. Since E0

h is a Lagrangian distribution associated to Λξ, the wavefront

set of Fh is contained in Wξ. We will now take E1
h = −Rh(λ)Fh, where Rh(λ) is the incoming

scattering resolvent, a certain right inverse of h2∆−λ2− c0h
2. Moreover, in our cases Rh(λ)

will be microlocally incoming in the weak sense: if we multiply Fh by a (possibly small)

constant to make Rh(λ)Fh bounded polynomially in h, then each point in the wavefront

set of Rh(λ)Fh, when propagated forward by the geodesic flow, will either converge to the

trapped set or pass through WFh(Fh). Thus, the assumption (A6) should be viewed as a

direct consequence of the fact that the scattering resolvent is microlocally incoming and of

propagation of singularities.

The assumption (A7) looks less natural, but will play an essential role in our proofs,

in Propositions 5.2 and 5.5. It holds for both Euclidean and hyperbolic infinities, but for

different reasons. For the hyperbolic infinity, χ0(·; ξ) is equal to 1 in a small neighborhood of

ξ and one can see that for (m, ν) directly escaping in the forward direction and converging

to ξ, the distance from m to ξ in M is O(x(m)). This is not true in the Euclidean case;

however, in that case χ0 is equal to 1 outside of a compact subset of M (that is, near the

whole boundary ∂M , not just near ξ).

The assumption (A8) is required to relate the natural measure arising from the function

E0
h to the Liouville measure. If Eh were equal to E0

h, then this assumption would simply

follow by taking the trace in (4.5) with a compactly supported pseudodifferential operator

and a smooth cutoff function in λ.

4.3. Limiting measures. We now define the family of limiting measures µξ. These mea-

sures result from propagating the natural measure arising from the ‘outgoing’ part E0
h of
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the plane wave, which is supported on the Lagrangian Λξ from (4.3), backwards along the

geodesic flow. In contrast with [Dy2], where the exponential decay of the measure along the

flow ensured its convergence, our measures will only be defined for almost every ξ.

We first define the measure µ̃ξ on S∗M , corresponding to E0
h, as follows: for each compactly

supported continuous function a on S∗M , put∫
S∗M

a dµ̃ξ =

∫
(m,ξ)∈U+

∞

|b0(1, ξ,m; 0)|2a(τ(m, ξ)) dvol(m). (4.10)

The support of µ̃ξ is contained in the Lagrangian Λξ from (4.3) and the integral (4.10)

depends continuously on ξ. We see from (A8) that for any continuous function f on ∂M ,∫
∂M

f(ξ)

∫
S∗M

a(m, ν) dµ̃ξ(m, ν)dξ =

∫
V +
∞

f(ξ+∞(m, ν))a(m, ν) dµL(m, ν). (4.11)

We now want to define the measure µξ by∫
S∗M

a dµξ = lim
t→+∞

∫
S∗M

a ◦ g−t dµ̃ξ, (4.12)

valid for all compactly supported continuous functions a. To show that the limit exists

for almost every ξ (chosen independently of a) and for every a, we will use monotonicity.

By (4.11), (G5), and using the invariance of the function ξ+∞ and the Liouville measure µL
under the geodesic flow, we see that if a and f are nonnegative, then∫

∂M
f(ξ)

∫
S∗M

(a ◦ g−t) dµ̃ξdξ =

∫
g−t(V +

∞)
f(ξ+∞(m, ν))a(m, ν) dµL(m, ν)

is increasing with t. Therefore, for each ξ the integral

Ia,t(ξ) =

∫
S∗M

(a ◦ g−t) dµ̃ξ

is increasing in t for any nonnegative a. Moreover, the integral of Ia,t(ξ) in ξ is bounded by

a t-independent constant, namely by the integral of a by the Liouville measure. Taking a to

be an approximation of the characteristic function of each member of a countable family of

compact sets exhausting S∗M , and using the monotone convergence theorem, we see that

there exists a measure zero set X ⊂ ∂M such that for ξ 6∈ X , we have for each j and for any

compactly supported continuous function a,

lim
t→+∞

∫
S∗M

(a ◦ g−t) dµ̃ξ <∞.

This limit is a continuous functional on the space of continuous compactly supported func-

tions on S∗M ; therefore, there exists unique Borel measure µξ such that (4.12) holds. More-

over, we see that the limit (4.12) is uniform in a, as soon as we fix a compact set containing

supp a and impose a bound on supS∗M |a|. One also sees immediately (1.6), namely that for

compactly supported continuous a,

supp a ∩ ξ−1
+∞(ξ) = ∅ =⇒

∫
S∗M

a dµξ = 0,

as
∫
S∗M (a ◦ g−t) dµ̃ξ = 0 for all t.

We can integrate the measure µξ in ξ, getting back the Liouville measure:
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Proposition 4.3. For each f ∈ C∞(∂M) and each a ∈ C∞0 (S∗M) we have∫
∂M

f(ξ)

∫
S∗M

a(m, ν) dµξ(m, ν)dξ =

∫
S∗M\Γ−

f(ξ+∞(m, ν))a(m, ν) dµL(m, ν). (4.13)

In particular, if µL(Γ−) = 0 (which will always be the case in our theorems, see (5.2)), then∫
µξ dξ is the Liouville measure.

Proof. The left-hand side can be written as

lim
t→+∞

∫
g−t(V +

∞)
f(ξ+∞(m, ν))a(m, ν) dµL(m, ν).

It remains to use the dominated convergence theorem; indeed, the function under the integral

is bounded and compactly supported, we have g−t1(V +
∞) ⊂ g−t2(V +

∞) for t1 < t2, and the

union of g−t(V +
∞) over all t ∈ R is exactly S∗M \ Γ−, as for every geodesic γ(t) escaping in

the forward direction and for t large enough, the point γ(t) is directly escaping in the forward

direction and (γ(t), ξ+∞(γ(t))) ∈ U∞. �

Finally, the following lemma will be useful to relate our measure µξ to the one obtained

from E0
h in the proofs of Theorems 1 and 2:

Lemma 4.4. Let ξ 6∈ X , so that µξ is well-defined. Let a be a compactly supported continuous

function on S∗M .

1. µξ is invariant under the geodesic flow: for each t ∈ R,∫
S∗M

a ◦ gt dµξ =

∫
S∗M

a dµξ. (4.14)

2. If supp a ⊂ DE+ ∩ {x ≤ ε1}, where DE+ is given by Definition 4.2 and ε1 is defined

in (A7), then∫
(m,ξ)∈U∞

|b0(1, ξ,m; 0)χ0(m; ξ)|2a(m, ∂mφξ(m)) dvol(m) =

∫
S∗M

a dµξ. (4.15)

Proof. 1. Follows immediately from the definition (4.12).

2. First of all, note that for m in the support of the function a(m, ∂mφξ(m)), we have

(m, ξ) ∈ U+
∞ and χ0(m; ξ) = 1 by (A7); therefore, the left-hand side of (4.15) becomes the

integral of a over the measure µ̃ξ defined in (4.10). By (4.12), it is enough to show that for

t ≥ 0, ∫
S∗M

a ◦ g−t dµ̃ξ =

∫
S∗M

a dµ̃ξ.

For that, it is enough to show that for each f ∈ C∞0 (∂M),∫
∂M

f(ξ)

∫
S∗M

a ◦ g−t dµ̃ξ =

∫
∂M

∫
S∗M

a dµ̃ξ.

Using (4.11), we rewrite this as∫
g−t(V +

∞)
f(ξ+∞)a dµL =

∫
V +
∞

f(ξ+∞)a dµL.
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This is true as supp a ⊂ V +
∞ ⊂ g−t(V +

∞). �

4.4. Averaged estimates on plane waves. One of the principal tools of the present paper

are microlocal estimates on the plane waves Eh(λ, ξ) on average in λ, ξ, where λ takes values

in a size h interval. They are direct consequences of (4.5) and the Hilbert–Schmidt norm

estimate (3.24). More precisely, restricting to the case λ = 1 +O(h) for simplicity, we have

the following

Proposition 4.5. Let χ ∈ C∞0 (M). Then:

1. χΠ[1,1+h] is a Hilbert–Schmidt operator and there exists a global constant C such that

for each bounded operator A : L2(M)→ L2(M), we have

h−1‖Aχ(m)Eh(λ, ξ;m)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

≤ Chn‖AχΠ[1,1+h]‖2HS. (4.16)

2. The functions χEh are bounded in L2 on average in the following sense: there exists a

constant C(χ) such that for any h,

h−1‖χ(m)Eh(λ, ξ;m)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

≤ C(χ). (4.17)

The h−1 prefactor in both cases is due to the fact that we are integrating over an interval

of size h in λ.

Proof. 1. It follows immediately from (4.5) that

h−1

∫ 1+h

1
fΠ(λ/h)λn

∫
∂M

(χEh(λ, ξ))⊗ (χEh(λ, ξ)) dξdλ = (2π)n+1hnχΠ[1,1+h]χ̄. (4.18)

Here ⊗ denotes the Hilbert tensor product, defined in (2.8). The integral on the left-hand

side converges in the trace class norm, as the Schwartz kernels of the integrated operators

are smooth and compactly supported. Therefore, χΠ[1,1+h]χ̄ is trace class. Since

χΠ[1,1+h]χ̄ = (χΠ[1,1+h])(χΠ[1,1+h])
∗,

we see that χΠ[1,1+h] is a Hilbert–Schmidt operator. Now, multiplying both sides of (4.18)

by A on the left and A∗ on the right and taking the trace, we get

h−1‖λn/2fΠ(λ/h)1/2Aχ(m)Eh(λ, ξ;m)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

= (2π)n+1hn Tr((AχΠ[1,1+h])(AχΠ[1,1+h])
∗)

= (2π)n+1hn‖AχΠ[1,1+h]‖2HS.

(4.19)

2. We would like to use Lemma 3.11 to estimate ‖χΠ[1,1+h]‖HS (we can put χ on the other

side of the projector in (3.24) by taking the adjoint), however this is not directly possible as

χ is not compactly microlocalized. We thus use that Eh solve the equation (1.4), writing by

the elliptic parametrix construction (same as for the proof of Proposition 3.2)

χ = B +Qλ(h2∆− λ2 − c0h
2) +Rλ (4.20)

for λ ∈ [1, 1+h], where B ∈ Ψcomp(M), Qλ ∈ Ψ−2(M), and Rλ ∈ h∞Ψ−∞(M) are compactly

supported and B is independent of λ and equal to χ microlocally near S∗M . We can also
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assume that Qλ and Rλ are smooth in λ. Now, we substitute (4.20) into the left-hand side

of (4.17) and use the triangle inequality. By (4.16), the term featuring B is bounded by a

constant times hn‖BΠ[1,1+h]‖2HS, which is bounded uniformly in h by Lemma 3.11. The term

featuring Qλ is zero by (1.4).

Finally, we show that the term featuring Rλ is O(h∞). This does not follow immediately

from (4.16), as the operator Rλ depends on λ. We use the following variant of (4.19): for

λ̃ ∈ [1, 1 + h],

h−1‖λn/2fΠ(λ/h)1/2Rλ̃Eh(λ)‖2
L2
m,ξ,λ(M×∂M×[1,λ̃])

= (2π)n+1hn‖Rλ̃Π[1,λ̃]‖
2
HS.

Differentiating in λ̃, we get

(2π)n+1hn∂λ‖Rλ̃Π[1,λ̃]‖
2
HS = h−1‖λ̃n/2fΠ(λ̃/h)1/2Rλ̃Eh(λ̃)‖2L2(m,ξ)(M×∂M)+

2h−1 Re〈λn/2fΠ(λ/h)1/2(∂λ̃Rλ̃)Eh(λ), λn/2fΠ(λ/h)1/2Rλ̃Eh(λ)〉L2
m,ξ,λ(M×∂M×[1,λ̃]).

We now integrate in λ̃ from 1 to 1 + h. The integral of the left-hand side is bounded by

a constant times hn‖R1+h‖2HS = O(h∞). The integral of the first term on the right-hand

side is the quantity we are estimating. Finally, the second term on the right-hand side is

bounded by a constant times hn|Tr((∂λ̃Rλ̃)Π[1,1+h]R
∗
λ̃
)|, which is O(h∞) uniformly in λ̃, as

the Hilbert–Schmidt norms of both Rλ̃ and ∂λ̃Rλ̃ are O(h∞). �

5. Proofs

5.1. Proof of Theorem 1. In this section, we prove the convergence Theorem 1 under the

following assumption:

µL(K) = 0, (5.1)

where µL denotes the Liouville measure on S∗M and K is the trapped set. First of all, note

that (5.1) implies

µL(Γ±) = 0. (5.2)

Indeed, fix ε ∈ (0, ε0), where ε0 is defined in (G2), and take the set Γε+ = Γ+ ∩ {x ≥ ε}. For

(m, ν) ∈ Γ+ ∩ {x = ε}, we have ẋ(m, ν) < 0; indeed, otherwise (m, ν) directly escapes in the

backward direction and thus cannot lie in Γ+. It follows that g−t(Γε+) ⊂ Γε+ for t ≥ 0. Since

Γε+ is bounded, and µL is invariant under the geodesic flow, we have

µL(Γε+) = lim
t→+∞

µL(g−t(Γε+)) = µL

(⋂
t≥0

g−t(Γε+)

)
= µL(K) = 0.

Letting ε→ 0, we get (5.2).

We next note that the averaged L2 bound (4.17) on Eh on compact sets, together with (1.4)

and the elliptic Proposition 3.2, give the following

Proposition 5.1. Assume that A ∈ Ψ0(M) is compactly supported and WFh(A)∩S∗M = ∅.
Then

h−1‖〈AEh(λ, ξ), Eh(λ, ξ)〉‖L1
ξ,λ(∂M×[1,1+h]) = O(h∞). (5.3)
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Therefore, it is enough to prove (1.5) for a compactly supported A ∈ Ψcomp(M) microlo-

calized in an arbitrarily small neighborhood of S∗M .

Take t > 0; we will calculate limits of the form limt→+∞ limh→0, thus Ot(h∞) expressions

(that is, expressions that are O(h∞) with the constants depending on t) will be negligible.

Take χ ∈ C∞0 (M) indepedendent of t and such that A = χAχ. We first use that Eh is a

generalized eigenfunction of the Laplacian (1.4) and apply Lemma 3.10: for each λ ∈ [1, 1+h]

and each ξ ∈ ∂M ,

χEh = χe−it(λ
2+c0h2)/2hU(t)χtEh +Ot(h∞‖Eh‖L2(Kt))L2 . (5.4)

Here U(t) = eith∆/2 is the semiclassical Schrödinger propagator and χt ∈ C∞0 (M) is sup-

ported in the interior of the compact set Kt ⊂M and satisfies dg(suppχ, supp(1− χt)) > t.

We also assume that |χt| ≤ 1 everywhere and Kt contains {x ≥ ε0}, where ε0 is defined

in (G2). By Proposition 3.8, we can write U(−t)AU(t) = A−t + Ot(h∞)L2→L2 , where

A−t ∈ Ψcomp is compactly supported. Then

〈AEh, Eh〉 = 〈A−tχtEh, χtEh〉+Ot(h∞)‖Eh‖2L2(Kt)
. (5.5)

We will now write

A−t = A−t0 +A−t1 , A−t0 := A−tϕ, A−t1 := A−t(1− ϕ), (5.6)

where the L2 norm of the principal symbol of A−t0 will decay with t and the operator A−t1

will be negligible on E1
h. The function ϕ ∈ C∞0 (M) is taken independent of t and such that

suppχ ⊂ {x > εχ} for some εχ and ϕ = 1 near {x ≥ εχ}. We also require that ϕ = 1 near

{x ≥ ε1}, where ε1 comes from the assumption (A7).

We first show that the terms in (5.5) featuring both A−t1 and E1
h are O(h∞). For that,

we need to show that the trajectories in WFh(A−t1 ) ⊂ supp(1 − ϕ) ∩ gt(suppχ) satisfy the

geometric property shown on Figure 1:

Lemma 5.2. Let t ≥ 0. Assume that (m, ν) ∈ S∗M satisfies m ∈ supp(1 − ϕ), but

g−t(m, ν) ∈ suppχ. Then:

(1) (m, ν) directly escapes in the forward direction, in the sense of Definition 4.2;

(2) for each s ≥ 0, gs(m, ν) does not lie in the set Wξ defined in (4.9), for any ξ ∈ ∂M .

Proof. (1) We have x(m) < ε1 ≤ ε0; therefore, if (m, ν) does not directly escape in the

forward direction, then it directly escapes in the backward direction; this would imply that

x(g−t(m, ν)) is decreasing in t ≥ 0, which is impossible as x(m) < εχ < x(g−t(m, ν)).

(2) The point gs(m, ν) directly escapes in the forward direction and x(gs(m, ν)) < ε1.

If gs(m, ν) ∈ Wξ, then by (G4), ξ = ξ+∞(m, ν), but this is impossible as χ0 = 1 near

(gs(m, ν), ξ+∞(m, ν)) by (A7). �

Combining Lemma 5.2 with the microlocal information we have on E1
h, we get

Proposition 5.3. If Eh = χ0E
0
h + E1

h is the decomposition (4.6), then for each t ≥ 0,

〈AEh, Eh〉 = 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉

+〈A−t0 χtEh, χtEh〉+Ot(h∞(1 + ‖Eh‖2L2(Kt)
)).

(5.7)
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where A−t0 , A−t1 are defined in (5.6).

Proof. By (5.5), it is enough to show that

〈A−t1 χtEh, χtEh〉 − 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 = Ot(h∞(1 + ‖Eh‖2L2(Kt)

)).

Given that ‖χ0E
0
h‖L2(Kt) = O(1), it suffices to prove

‖BχtE1
h‖L2 = Ot(h∞(1 + ‖Eh‖L2(Kt))),

where B is equal to either A−t1 or its adjoint. This in turn follows from

‖BχtẼ1
h‖L2 = Ot(h∞), (5.8)

with Ẽ1
h defined in (4.8). Take (m, ν) ∈WFh(BχtẼ

1
h) ⊂ S∗M . Then by Proposition 3.8,

(m, ν) ∈WFh(B) ⊂WFh(A−t) ∩ supp(1− ϕ) ⊂ gt(WFh(A)) ∩ supp(1− ϕ).

Since WFh(A) ⊂ suppχ, we see that m ∈ supp(1− ϕ) and g−t(m, ν) ∈ suppχ; therefore, by

Lemma 5.2, the geodesic gs(m, ν) escapes in the forward direction and does not pass through

Wξ for s ≥ 0. But then by (A6) the point (m, ν) cannot lie in WFh(Ẽ1
h), a contradiction.

We showed that the wavefront set of BχtẼ
1
h is empty, which implies (5.8). �

We now use the averaged estimate (4.16) and the Hilbert–Schmidt norm estimates from

Section 3.3, to estimate the second term on the right-hand side of (5.7):

Proposition 5.4. There exists a constant C independent of t such that

h−1‖〈A−t0 χtEh, χtEh〉‖L1
ξ,λ(∂M×[1,1+h]) ≤ C‖(σ(A) ◦ g−t)ϕ‖L2(S∗M) +Ot(h). (5.9)

Here ‖a‖L2(S∗M) is the L2 norm of the restriction of a to S∗M with respect to the Liouville

measure.

Proof. Take a real-valued function ϕ1 ∈ C∞0 (M) independent of t such that ϕ1 = 1 near

suppϕ. Then the left-hand side of (5.9) is bounded by

h−1‖〈A−t0 χtEh, ϕ1χtEh〉‖L1
ξ,λ

+ h−1‖〈(1− ϕ1)A−t0 χtEh, χtEh〉‖L1
ξ,λ
,

where the L1, and later L2, norms in ξ, λ are taken over ∂M × [1, 1 + h]. The second term

here is Ot(h∞) by the bound (4.17) and since (1 − ϕ1)A−t0 = Ot(h∞)L2→L2 is compactly

supported. The first term can be estimated by applying the Cauchy–Schwarz inequality first

in m and then in (λ, ξ):

h−1‖〈A−t0 χtEh, ϕ1χtEh〉‖L1
ξ,λ
≤ h−1‖ ‖A−t0 χtEh‖L2(M) · ‖ϕ1χtEh‖L2(M)‖L1

ξ,λ

≤ h−1/2‖A−t0 χtEh‖L2
m,ξ,λ

· h−1/2‖ϕ1χtEh‖L2
m,ξ,λ

.

Now, h−1/2‖ϕ1χtEh‖L2
m,ξ,λ

is bounded (independently of t) uniformly in h by (4.17). As for

h−1/2‖A−t0 χtEh‖L2
m,ξ,λ

, we can estimate it using (4.16) by a constant times

hn/2‖A−t0 χtΠ[1,1+h]‖HS.
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Note that the operator A−t0 χt ∈ Ψcomp is compactly supported and it is compactly microlo-

calized independently of t. It then remains to apply (3.24) (to the adjoint of our operator);

by Proposition 3.8, the principal symbol of A−t0 χt is given by (σ(A) ◦ g−t)ϕ. �

We now use the dynamical assumption that µL(K) = 0. The function (σ(A) ◦ g−t)ϕ
is supported in a t-independent compact set and bounded uniformly in t. Moreover, it

converges to zero pointwise on S∗M \Γ+ as t→ +∞. Therefore, by (5.2) and the dominated

convergence theorem we have (σ(A) ◦ g−t)ϕ → 0 in L2(S∗M), as t → +∞. It then follows

from (5.7) together with the bound (4.17) and from (5.9) that

lim
t→+∞

lim sup
h→0

h−1‖〈AEh, Eh〉 − 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉‖L1

ξ,λ(∂M×[1,1+h]) = 0.

To prove Theorem 1, it now remains to show that

lim
t→+∞

lim sup
h→0

h−1

∥∥∥∥〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 −

∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ(∂M)

= 0 (5.10)

uniformly in λ = 1 +O(h). We first note that by (4.7) the function

χtχ0E
0
h(λ, ξ;m) = e

iλ
h
φξ(m)χt(m)χ0(m, ξ)b0(1, ξ,m; 0) +Ot(h)L2

is a compactly supported Lagrangian distribution associated to the Lagrangian Λξ from (4.3).

Therefore, by Proposition 3.5, we find

A−t1 χtχ0E
0
h(λ, ξ) = e

iλ
h
φξχtχ0b

0(1, ξ,m; 0)σ(A−t1 )(m, ∂mφξ(m)) +Ot(h)L2 . (5.11)

Therefore,

〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 =

∫
M
σ(A−t1 )(m, ∂mφξ(m))|χtχ0b

0(1, ξ,m; 0)|2 dvol(m) +Ot(h).

Now, by Proposition 3.8, σ(A−t1 ) = (σ(A) ◦ g−t)(1 − ϕ). By Lemma 5.2, this function is

supported in DE+∩{x < ε1}, with DE+ from Definition 4.2. Also, χt = 1 near suppσ(A−t1 ).

Then by part 2 of Lemma 4.4,

〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 =

∫
S∗M

(σ(A) ◦ g−t)(1− ϕ) dµξ +Ot(h). (5.12)

Therefore, (5.10) reduces to

lim
t→+∞

∥∥∥∥∫
S∗M

(σ(A) ◦ g−t)(1− ϕ) dµξ −
∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ(∂M)

= 0. (5.13)

By part 1 of Lemma 4.4 and (4.13), we write the norm on the left-hand side of (5.13) as∥∥∥∥∫
S∗M

σ(A)(ϕ ◦ gt) dµξ
∥∥∥∥
L1
ξ(∂M)

≤
∫
S∗M
|σ(A)(ϕ ◦ gt)| dµL.

The expression under the integral on the right-hand side is bounded and compactly supported

uniformly in t and converges to zero pointwise on S∗M \ Γ−; by (5.2) and the dominated

convergence theorem, we get (5.13). This finishes the proof of Theorem 1.
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The nontrapped case. We briefly discuss the situation when WFh(A) ∩ Γ− = ∅. In this

case, for t large enough (depending on A), for any (m, ν) ∈ WFh(A) we have gt(m, ν) 6∈
suppϕ and thus

A−t0 = O(h∞)L2→L2 .

Then by (5.7) and the bound (4.17),

〈AEh, Eh〉 = 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉+O(h∞)L1

ξ,λ(∂M×[1,1+h]).

The quantity 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 is calculated in (5.12) up to O(h). However, since E0

h is

a Lagrangian distribution, one can get by Proposition 3.5 a full expansion of this quantity

in powers of h; this yields

〈AEh(λ, ξ), Eh(λ, ξ)〉 =
∑

0≤j<N
hj
∫
S∗M

Lja dµξ +O(hN+1)L1
ξ,λ(∂M×[1,1+h]), (5.14)

where A = Oph(a) for some symbol a and some quantization procedure Oph and each Lj is

a differential operator of order 2j on T ∗M , with L0 = 1.

5.2. Estimates on the remainder. In this subsection, we prove (1.12) and establish an

approximation fact (Proposition 5.8) used in the proofs of (1.13) and Theorem 4.

Classical escape rate and Ehrenfest time. Let K0 ⊂ M be a compact geodesically

convex set containing a neighborhood of the projection of the trapped set K onto M . As

in (1.9), define the set

T (t) = {(m, ν) ∈ S∗M | m ∈ K0, g
t(m, ν) ∈ K0}.

The choice of K0 does not matter here: if K ′0 ⊂ M is another set with same properties and

T ′(t) is defined using K ′0 in place of K0, then there exists a constant T0 > 0 such that for

each T ≥ T0 and t ≥ 0,

gT (T ′(t+ 2T )) ⊂ T (t). (5.15)

Indeed, assume that (5.15) were false. Then there exists sequences Tj → +∞, tj ≥ 0, and

(mj , νj) ∈ S∗M such that g−Tj (mj , νj) and gtj+Tj (mj , νj) both lie in K ′0, but for each j,

either (1) (mj , νj) 6∈ K0 or (2) gtj (mj , νj) 6∈ K0. We may assume that case (1) holds for all

j; case (2) is handled similarly, reversing the direction of the flow and taking gtj (mj , νj) in

place of (mj , νj). Take ε > 0 such that K ′0 ⊂ {x ≥ ε}; since {x ≥ ε} is geodesically convex

for ε small enough, we have (mj , νj) ∈ {x ≥ ε}. Passing to a subsequence, we can assume

that (mj , νj)→ (m, ν) ∈ S∗M as j → +∞. Now, since g−Tj (mj , νj) ∈ K ′0 and Tj → +∞, we

have (m, ν) ∈ Γ+ (indeed, otherwise there would exist s > 0 such that g−s(m, ν) ∈ {x < ε}
and this would also hold in a neighborhood of (m, ν)). Similarly, since gtj+Tj (mj , νj) ∈ K ′0
and tj + Tj → +∞, we have (m, ν) ∈ Γ−. It follows that (m, ν) ∈ K, which is impossible, as

each (mj , νj) does not lie in K0, which contains a neighborhood of K.

By changing Λ0 slightly and using (5.15), we see that the choice of K0 does not matter

for the validity of (1.12) and (1.13); more precisely, if Λ0 > Λ′0, then r′(h,Λ′0) ≤ Cr(h,Λ0),

where r′ is defined by (1.10) using T ′ in place of T . Also, the maximal expansion rate Λmax

defined in (1.11) does not depend on the choice of K0.
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We now choose a geodesically convex K0 such that its interior contains the supports of

all cutoff functions and compactly supported operators used in the argument below. We will

rely on Proposition 3.9 (with U equal to the interior of K0); we let Λ0 > Λmax and fix εe > 0

and Λ′0 such that Λ0 > Λ′0 > (1 + 2εe)Λmax. Define the Ehrenfest time

te := log(1/h)/(2Λ0). (5.16)

Then when propagating an operator in Ψcomp microlocalized inside

Eεe := {1− εe ≤ |ν|g ≤ 1 + εe} (5.17)

with cutoffs supported inside K0, as in Proposition 3.9, for time t = lt0 ∈ [−te, te], we get a

mildly exotic pseudodifferential operator in Ψcomp
ρe , where

ρe := teΛ
′
0/ log(1/h) = Λ′0/(2Λ0) < 1/2. (5.18)

First decomposition of 〈AEh, Eh〉. By Proposition 5.1, we may assume thatA ∈ Ψcomp(M)

is compactly supported and microlocalized inside the set Eεe defined in (5.17).

We first establish the following decomposition similar to (5.7):

〈AEh, Eh〉 = eilβ〈A(ϕU(t0))lϕEh, Eh〉

+
l∑

j=1

eijβ〈A(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h, Eh〉+O(h∞N (Eh)2),

(5.19)

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. Here l = O(log(1/h)) is a nonnegative integer and

t0 > 0 and ϕ,ϕt0 ∈ C∞0 (M), specified below, are independent of j. The quantity N (Eh),

defined in (5.22), is related to the L2 norm of Eh on a certain compact set, and is bounded

on average by (5.23). The real-valued parameter β is equal to

β = −t0(λ2 + c0h
2)/(2h) (5.20)

and will not play a big role in our argument.

To show (5.19), we start by considering the functions ϕ,ϕ1, ϕ2 ∈ C∞0 (M) such that:

• 0 ≤ ϕ,ϕ1, ϕ2 ≤ 1 everywhere,

• ϕ = 1 near suppϕ2 and ϕ1 = 1 near suppϕ, and

• ϕ2 = 1 both near the support of A and near the set {x ≥ ε1}, with ε1 defined in (A7).

The proof of (5.19) only uses the function ϕ, however the other two functions will be required

for the more precise decomposition (5.35) below.

We now have the following analogue of Lemma 5.2:

Lemma 5.5. There exists t0 ≥ 0 such that if (m, ν) ∈ S∗M satisfies

m ∈ supp(1− ϕ2) and g−t(m, ν) ∈ suppϕ1 for some t ≥ t0, (5.21)

then:

(1) (m, ν) directly escapes in the forward direction;

(2) for each s ≥ 0, gs(m, ν) does not lie in the set Wξ defined in (4.9) for any ξ ∈ ∂M ;

and
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ϕ2 ϕ ϕ1

(m, ν)

g−t(m, ν)

gs(m, ν)

Figure 3. An illustration of Lemma 5.5. The functions ϕ,ϕ1, ϕ2 are sup-

ported to the left of the corresponding dashed lines; the right side of the figure

represents infinity.

(3) for each s ≥ t0, gs(m, ν) 6∈ suppϕ1.

Proof. (1) Let suppϕ1 ⊂ {x ≥ εϕ}. The set DE− ∩ {x ≥ εϕ}, where DE− is specified in

Definition 4.2, is compact; therefore, there exists t0 > 0 such that for t ≥ t0 and (m, ν) ∈
DE− ∩ {x ≥ εϕ}, we have g−t(m, ν) 6∈ suppϕ1.

Now, assume that (m, ν) satisfies (5.21), but it does not directly escape in the forward

direction. Since (m, ν) ∈ supp(1 − ϕ2), we have x(m) ≤ ε0; therefore, (m, ν) ∈ DE−. Then

x(m) ≥ x(g−t(m, ν)) ≥ εϕ; therefore, (m, ν) ∈ DE−∩{x ≥ εϕ}, a contradiction with the fact

that g−t(m, ν) ∈ suppϕ1 and t ≥ t0.

(2) This is proved exactly as part 2 of Lemma 5.2.

(3) It is enough to use part (1), take t0 large enough, and use that the set DE+∩{x ≥ εϕ}
is compact. �

Take t0 from Lemma 5.5. Let ϕt0 ∈ C∞0 (M) be real-valued and satisfy dg(suppϕ1, supp(1−
ϕt0)) > t0. Take a compact set Kt0 ⊂M whose interior contains suppϕt0 . Put

N (Eh) := 1 + ‖Eh‖L2(Kt0 ); (5.22)

this quantity depends on λ and ξ and we know by (4.17) that

h−1‖N (Eh)‖2
L2
ξ,λ(∂M×[1,1+h])

= O(1). (5.23)

By (1.4) and Lemma 3.10, we have similarly to (5.4),

ϕEh = eiβϕU(t0)ϕt0Eh +O(h∞N (Eh))L2 . (5.24)

Here β is given by (5.20). Iterating (5.24) by writing ϕt0 = ϕ + (1 − ϕ)ϕt0 , we get for

l = O(log(1/h)) (or even for l polynomially bounded in h)

ϕEh = eilβ(ϕU(t0))lϕEh +
l∑

j=1

eijβ(ϕU(t0))j(1− ϕ)ϕt0Eh +O(h∞N (Eh))L2 , (5.25)
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uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. Same is true if ϕ is replaced by any function

ϕ′ ∈ C∞0 (M) such that dg(suppϕ′, supp(1 − ϕt0)) > t0. One can also replace U(t0) by

U(−t0).

We now use our knowledge of the wavefront set of Ẽ1
h to prove the following analogue of

Proposition 5.3:

Proposition 5.6. If Eh = χ0E
0
h + E1

h is the decomposition (4.6), then

‖ϕU(t0)(1− ϕ)ϕt0E
1
h‖L2 = O(h∞N (Eh)), (5.26)

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 +h]. Same is true if we replace each instance of ϕ by any

function in the set {ϕ,ϕ1, ϕ2}.

Proof. Recalling the definition (4.8) of Ẽ1
h, we see that (5.26) follows from

‖ϕU(t0)(1− ϕ)ϕt0Ẽ
1
h‖L2 = O(h∞). (5.27)

We now make the following observation: a point (m, ν) ∈ S∗M in the wavefront set of Ẽ1
h

will make an O(h∞) contribution to (5.27) unless m ∈ supp(1−ϕ), but g−t0(m, ν) ∈ suppϕ;

however, by (A6) and Lemma 5.5, in this case (m, ν) 6∈ WFh(Ẽ1
h). To make this argument

rigorous, we can write (bearing in mind that Ẽ1
h is polynomially bounded)

ϕt0Ẽ
1
h = BẼ1

h +O(h∞)L2 ,

where B ∈ Ψcomp is compactly supported and such that

(m, ν) ∈WFh(B) ∩ supp(1− ϕ) =⇒ g−t0(m, ν) 6∈ suppϕ.

Then the operator ϕU(t0)(1 − ϕ)B is O(h∞)L2→L2 by part 2 of Proposition 3.8, which

proves (5.27). �

Using (5.26), we can replace Eh by χ0E
0
h in each term of the sum (5.25):

ϕEh = eilβ(ϕU(t0))lϕEh +
l∑

j=1

eijβ(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h

+O(h∞N (Eh))L2 .

(5.28)

Applying the operator A = ϕAϕ, we get (5.19).

Properties of propagators up to Ehrenfest time. We will now establish certain prop-

erties of the cut off and iterated propagators up to the Ehrenfest time te defined in (5.16), or,

in certain cases, up to twice the Ehrenfest time. The need for these properties arises mostly

because of the cutoffs present in the argument. Define the Ehrenfest index

le := bte/t0c+ 1 ∼ log(1/h). (5.29)

Lemma 5.7. Assume that ϕ′, ϕ′′ ∈ C∞0 (M) satisfy |ϕ′|, |ϕ′′| ≤ 1 everywhere. Let B ∈ Ψcomp

be compactly supported and microlocalized inside the set Eεe defined in (5.17). Then:
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1. If ϕ′′ = 1 near suppϕ′, then for 0 ≤ j ≤ le,

(ϕ′U(±t0))jBU(∓jt0) = (ϕ′U(±t0))jB(U(∓t0)ϕ′′)j +O(h∞)L2→L2 , (5.30)

(U(±t0)ϕ′)jBU(∓jt0) = (U(±t0)ϕ′)jB(ϕ′′U(∓t0))j +O(h∞)L2→L2 . (5.31)

2. If B1, B2 ∈ Ψcomp satisfy same conditions as B and moreover WFh(B1)∩WFh(B2) = ∅,
then for 0 ≤ j ≤ 2le (that is, up to twice the Ehrenfest time)

B1(ϕ′U(±t0))jB(U(∓t0)ϕ′′)jB2 = O(h∞)L2→L2 . (5.32)

Same is true if we replace ϕ′U(±t0) by U(±t0)ϕ′ and/or replace U(∓t0)ϕ′′ by ϕ′′U(∓t0).

3. If ϕ′′ = 1 near suppϕ′ and both ϕ′′ and B are supported at distance more than t0 from

supp(1− ϕt0), then for 0 ≤ j ≤ le (β is defined in (5.20))

e±ijβ(ϕ′U(±t0))jBEh = (ϕ′U(±t0))jB(U(∓t0)ϕ′′)jEh +O(h∞N (Eh))L2 , (5.33)

e±ijβ(U(±t0)ϕ′)jBEh = (U(±t0)ϕ′)jB(ϕ′′U(∓t0))jϕt0Eh +O(h∞N (Eh))L2 . (5.34)

Proof. We will repeatedly use Propositions 3.8 and 3.9 and omit the O(h∞)L2→L2 remainders

present there.

1. We prove (5.30); (5.31) is proved similarly. Assume that the signs are chosen so

that (5.30) features ϕ′U(t0). We argue by induction in j. The case j = 0 is obvious. Now,

assume that (5.30) is true for j − 1 in place of j. Then

(ϕ′U(t0))jBU(−jt0) = ϕ′B′ +O(h∞)L2→L2 ,

where

B′ = U(t0)(ϕ′U(t0))j−1B(U(−t0)ϕ′′)j−1U(−t0)

is a compactly supported operator in Ψcomp
ρe , with ρe defined in (5.18). Since suppϕ′ ∩

supp(1− ϕ′′) = ∅, we have

ϕ′B′ = ϕ′B′ϕ′′ +O(h∞)L2→L2

and (5.30) follows.

2. We again assume that the signs are chosen so that (5.32) features ϕ′U(t0). Write j =

j1+j2, where 0 ≤ j1, j2 ≤ le, and write the left-hand side of (5.32) as U(j1t0)B̃1B̃B̃2U(−j1t0),

where

B̃ = (ϕ′U(t0))j2B(U(−t0)ϕ′′)j2 ,

B̃1 = U(−j1t0)B1(ϕ′U(t0))j1 , B̃2 = (U(−t0)ϕ′′)j1B2U(j1t0).

Now, B̃ is a compactly supported member of Ψcomp
ρe . Same can be said about B̃1 and B̃2,

by applying (5.31) and its adjoint (where the role of ϕ′ is played by either ϕ′ or ϕ′′ and

the role of ϕ′′, by a suitably chosen cutoff function). Moreover, if U1, U2 are bounded open

subsets of T ∗M such that WFh(Bk) ⊂ Uk and U1 ∩ U2 = ∅, then by Proposition 3.9, B̃k is

microsupported, in the sense of Definition 3.1, on the set gj1t0(Uk); since these two sets do

not intersect, we see that B̃1B̃B̃2 = O(h∞)L2→L2 as needed.
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3. We once again fix the sign so that U(t0) stands next to ϕ′. Formally, (5.33) and (5.34)

follow by applying (5.30) and (5.31), respectively, to the identity eijβEh = U(−jt0)Eh. To

make this observation rigorous, we write by Lemma 3.10

eiβBEh = BU(−t0)ϕt0Eh +O(h∞N (Eh))L2 ,

eiβϕ′′Eh = ϕ′′U(−t0)ϕt0Eh +O(h∞N (Eh))L2 .

We now use induction in j. For j = 0, both (5.33) and (5.34) are trivial. Now, assume that

they both hold for j − 1 in place of j. We then write

eijβ(ϕ′U(t0))jBEh

= eiβ(ϕ′U(t0))jB(U(−t0)ϕ′′)j−1Eh +O(h∞N (Eh))L2

= (ϕ′U(t0))jB(U(−t0)ϕ′′)j−1U(−t0)ϕt0Eh +O(h∞N (Eh))L2 .

The operator (ϕ′U(t0))jB(U(−t0)ϕ′′)j−1U(−t0) is a compactly supported element of Ψcomp
ρ ;

moreover, as j ≥ 1, the wavefront set of this operator is contained in suppϕ′. Since ϕ′′ = 1

near suppϕ′, we can replace ϕt0 by ϕ′′ in the last formula, proving (5.33).

We next write

eijβ(U(t0)ϕ′)jBEh = eiβ(U(t0)ϕ′)jB(ϕ′′U(−t0))j−1ϕt0Eh +O(h∞N (Eh))L2 .

However, ϕ′(U(t0)ϕ′)j−1B(ϕ′′U(−t0))j−1 is a compactly supported element of Ψcomp
ρ and its

wavefront set is contained in suppϕ′. Since ϕ′′ = 1 near suppϕ′, we can replace ϕt0 by ϕ′′,

obtaining (5.34):

eijβ(U(t0)ϕ′)jBEh

= eiβ(U(t0)ϕ′)jB(ϕ′′U(−t0))j−1ϕ′′Eh +O(h∞N (Eh))L2

= (U(t0)ϕ′)jB(ϕ′′U(−t0))j−1ϕ′′U(−t0)ϕt0Eh +O(h∞N (Eh))L2 . �

Second decomposition of 〈AEh, Eh〉. We now analyse the terms of (5.19), reducing

〈AEh, Eh〉 to an expression depending on the ‘outgoing’ part E0
h of the plane wave (see (4.6)),

with remainder estimated by the classical escape rate for up to twice the Ehrenfest time:

Proposition 5.8. For 0 ≤ l ≤ 2le,

〈AEh, Eh〉 =

l∑
j=1

〈Ãjχ0E
0
h, χ0E

0
h〉+O

(
hµL(T (lt0)) + h∞

)
L1
ξ,λ(∂M×[1,1+h])

,

Ãj := ϕt0(1− ϕ2)(U(−t0)ϕ1)jA(ϕU(t0))j(1− ϕ)ϕt0 .

(5.35)

Here le is defined in (5.29) and T (t) in (1.9); we keep the O(h∞) remainder to include the

nontrapping case.

We will use Lemma 5.7; since it only applies to pseudodifferential operators microlocalized

inside the set Eεe from (5.17), we take an operator

X0 ∈ Ψcomp(M), WFh(X0) ⊂ Eεe , X0 = 1 near S∗M ∩ suppϕt0 , (5.36)
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compactly supported inside Kt0 . By (1.4) and the elliptic estimate (Proposition 3.2), we

have

ϕt0Eh = X0ϕt0Eh +O(h∞N (Eh))L2 = ϕt0X0Eh +O(h∞N (Eh))L2 . (5.37)

Same is true if we replace Eh by χ0E
0
h, as by (A4) and the fact that |∂mφξ|g = 1, we have

WFh(χ0E
0
h) ⊂ S∗M . We also recall that WFh(A) ⊂ Eεe .

We start the proof of Proposition 5.8 by estimating the first term on the right-hand side

of (5.19) for l up to twice the Ehrenfest time, in terms of the classical escape rate:

Proposition 5.9. There exists a constant C such that for 0 ≤ l ≤ 2le, we have

h−1‖〈A(ϕU(t0))lϕEh, Eh〉‖L1
ξ,λ(∂M×[1,1+h]) ≤ CµL(T (lt0)) +O(h∞). (5.38)

Proof. We write l = l1 + l2, where 0 ≤ l1, l2 ≤ le; then

〈A(ϕU(t0))lϕEh, Eh〉 = 〈(ϕU(t0))l1ϕEh, (U(−t0)ϕ)l2A∗Eh〉.

Now, by (5.33)

eil1β(ϕU(t0))l1ϕEh = eil1β(ϕU(t0))l1X0ϕEh +O(h∞N (Eh))L2

= B1
l Eh +O(h∞N (Eh))L2 ,

where

B1
l = (ϕU(t0))l1X0ϕ(U(−t0)ϕ1)l1 .

Similarly, by (5.34) (recalling that A = ϕAϕ)

e−il2β(U(−t0)ϕ)l2A∗Eh = B2
l Eh +O(h∞N (Eh))L2 ,

where

B2
l = (U(−t0)ϕ)l2A∗(ϕ1U(t0))l2ϕt0 .

Put Bl = (B2
l )∗B1

l ; recalling (5.23), it is then enough to show that

h−1‖〈BlEh, Eh〉‖L1
ξ,λ(∂M×[1,1+h]) ≤ CµL(T (lt0)) +O(h∞). (5.39)

Now, by Proposition 3.9, the operator B1
l is a compactly supported element of Ψcomp

ρe (modulo

an O(h∞)L2→L2 remainder which we will omit), and it is microsupported, in the sense of

Definition 3.1, inside the set g−l1t0({ϕ1 6= 0}) (here we only use that suppϕ ⊂ {ϕ1 6=
0}). Similarly, B2

l ∈ Ψcomp
ρe is microsupported inside gl2t0({ϕ1 6= 0}). Therefore, Bl is

microsupported on the set

Sl = g−l1t0({ϕ1 6= 0}) ∩ gl2t0({ϕ1 6= 0}).

Note also that Bl is compactly supported independently of l.

Now, by taking the convolution of the indicator function of an hρe sized neighborhood of

Sl with an appropriately rescaled cutoff function, we can construct a compactly supported

operator B̃l ∈ Ψcomp
ρe such that Bl = B̃∗l Bl +O(h∞)Ψ−∞ and B̃l is microsupported inside an

O(hρe) sized neighborhood S̃l of Sl. Using (5.16), (5.18), and the estimate on the Lipschitz

constant of the flow given by (3.17), we see that for (m̃, ν̃) ∈ S̃l ∩S∗M , there exists (m, ν) ∈
Sl ∩ S∗M such that d((m̃, ν̃), (m, ν)) ≤ Chρe and for Λ′0 > Λ′′0 > (1 + 2εe)Λmax,

d(gl1t0(m̃, ν̃), gl1t0(m, ν)) ≤ Cel1t0Λ′′0hρe ≤ CeteΛ′′0hρe ≤ Ce−te(Λ′0−Λ′′0 )
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is bounded by some positive power of h. Here d denotes some smooth distance function on

T ∗M . Same is true if we replace gl1t0 with g−l2t0 ; therefore, if the compact set K0 used in

the definition (1.9) of T (t) is chosen large enough, we have

S̃l ∩ S∗M ⊂ gl2t0(T (lt0)). (5.40)

Using the Cauchy–Schwartz inequality and (4.16), we bound the left-hand side of (5.39) by

h−1‖〈BlEh, Eh〉‖L1
ξ,λ
≤ h−1‖〈BlEh, B̃lEh〉‖L1

ξ,λ
+O(h∞)

≤ h−1‖BlEh‖L2(M)L2
ξ,λ
· ‖B̃lEh‖L2(M)L2

ξ,λ
+O(h∞)

≤ C(hn/2‖BlΠ[1,1+h]‖HS)(hn/2‖B̃lΠ[1,1+h]‖HS) +O(h∞).

It remains to use (3.25) (or rather its adjoint). Indeed, both Bl and B̃l are bounded in Ψcomp
ρe

uniformly in l, and they are microsupported in S̃l; therefore, by (5.40)

h−1‖〈BlEh, Eh〉‖L1
ξ,λ
≤ CµL(S̃l ∩ S∗M) +O(h∞) ≤ CµL(T (lt0)) +O(h∞). �

As for the sum in (5.19), we have the following

Proposition 5.10. For 1 ≤ j ≤ 2le, we have

eijβ〈A(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h, Eh〉 = 〈Ãjχ0E

0
h, χ0E

0
h〉+O(h∞N (Eh)2), (5.41)

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h], with Ãj defined in (5.35).

Proof. Since A = ϕAϕ, we can replace Eh by ϕ1Eh on the left-hand side of (5.41). Writing

down (5.25) for ϕ1 in place of ϕ and using ϕ2 in place of ϕ1 in the splitting ϕt0 = ϕ1 + (1−
ϕ1)ϕt0 in the last step, we get

ϕ1Eh = eijβ(ϕ1U(t0))jϕ2Eh + eijβ(ϕ1U(t0))j(1− ϕ2)ϕt0Eh

+

j−1∑
k=1

eikβ(ϕ1U(t0))k(1− ϕ1)ϕt0Eh +O(h∞N (Eh))L2 .
(5.42)

We now substitute (5.42) into the left-hand side of (5.41). The first term gives, after us-

ing (5.37) to replace ϕt0χ0E
0
h by X0ϕt0χ0E

0
h and ϕEh by X0ϕEh

〈A(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h, (ϕ1U(t0))jϕ2Eh〉 = 〈B0χ0E

0
h, Eh〉+O(h∞N (Eh)2),

where

B0 = ϕ2X
∗
0 (U(−t0)ϕ1)jA(ϕU(t0))j(1− ϕ)X0ϕt0 = O(h∞)L2→L2

by (5.32), as suppϕ2 ∩ supp(1− ϕ) = ∅.
Next, we use Proposition 5.6 to write the second term of (5.42) as

eijβ(ϕ1U(t0))j(1− ϕ2)ϕt0χ0E
0
h +O(h∞N (Eh))L2 ;

therefore, this term gives the right-hand side of (5.41).

It remains to estimate the contribution of each term of the sum in (5.42), which we can

write, using (5.37), as ei(j−k)β〈Bkχ0E
0
h, χ0E

0
h〉+O(h∞N (Eh)2), with

Bk = ϕt0X
∗
0 (1− ϕ1)(U(−t0)ϕ1)kA(ϕU(t0))j(1− ϕ)X0ϕt0 .
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We need to show that ‖Bk‖L2→L2 = O(h∞) for 1 ≤ k < j. For that, we consider two cases.

First, assume that k ≤ le. Then we have

ϕt0X
∗
0 (1− ϕ1)(U(−t0)ϕ1)kA(ϕU(t0))kϕ = O(h∞)L2→L2 , (5.43)

as the supports of 1 − ϕ1 and ϕ do not intersect and the operator in between them is a

compactly supported element of Ψcomp
ρe (modulo an O(h∞)L2→L2 remainder which we will

omit). Since Bk is obtained by multiplying the left-hand side of (5.43) on the right by

U(t0)(ϕU(t0))j−1−k(1− ϕ)X0ϕt0 , it is also O(h∞)L2→L2 .

Now, assume that k ≥ le. Take ϕ̃1 ∈ C∞0 (M) equal to 1 near suppϕ1 and such that

|ϕ̃1| ≤ 1 everywhere. We write by (5.30) and its adjoint,

U((k − le)t0)BkU(−(j − le)t0) = B1
kB

2
kB

3
k +O(h∞)L2→L2 ,

B1
k = (ϕ̃1U(t0))k−leϕt0X

∗
0 (1− ϕ1)(U(−t0)ϕ1)k−le ,

B2
k = (U(−t0)ϕ1)leA(ϕU(t0))le ,

B3
k = (ϕU(t0))j−le(1− ϕ)X0ϕt0(U(−t0)ϕ1)j−le .

Now all Bi
k, i = 1, 2, 3, are compactly supported members of Ψcomp

ρe . Let U1, U2 be two

bounded open sets such that supp(ϕt0(1 − ϕ1)) ⊂ U1, suppϕ ⊂ U2, and U1 ∩ U2 = ∅.
Since k − le > j − le and by Proposition 3.9, the operator B1

k is microsupported, in the

sense of Definition 3.1, on the set g−(k−le)t0(U1), while B3
k is microsupported on the set

g−(k−le)t0(U2); since these two sets do not intersect, we get Bk = O(h∞)L2→L2 , finishing the

proof. �

Combining (5.19) with (5.38) and (5.41), we finally get (5.35).

Proof of (1.12). Put l equal to the number le defined in (5.29). By (5.35), it is enough to

approximate the terms 〈Ãjχ0E
0
h, χ0E

0
h〉. This is done by the following proposition, relying on

the Lagrangian structure of E0
h and featuring the interpolated escape rate r(h,Λ) from (1.10):

Proposition 5.11. Put l = le given by (5.29), and r(h,Λ) defined in (1.10). Then the sum

on the right-hand side of (5.35) is approximated as follows:

l∑
j=1

〈Ãjχ0E
0
h, χ0E

0
h〉 =

∫
S∗M

σ(A) dµξ +O(hr(h, 2Λ0))L1
ξ,λ(∂M×[1,1+h]). (5.44)

Proof. By Proposition 3.9, the operator Ãj is compactly supported and lies in Ψcomp
ρj , modulo

an O(h∞)L2→L2 remainder, where

ρj =
jt0
te
ρe, with jt0/te ≤ 1 + o(1)

with te and ρe defined in (5.16) and (5.18), respectively. Next, Ãj is microsupported, in the

sense of Definition 3.1, in the set

Qj := gt0({ϕ1 6= 0}) ∩ gjt0({ϕ1 6= 0}).
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If the set K0 from the definition (1.9) of T (t) is large enough, then Qj ∩S∗M ⊂ gjt0(T (jt0));

by the definition (1.10) of r(h,Λ), we find

h1−jt0/teµL(Qj ∩ S∗M) ≤ r(h, 2Λ0). (5.45)

By (A4) and Proposition 3.5, we have the following analogue of (5.11):

Ãjχ0E
0
h = e

iλ
h
φξχ0b

0(1, ξ,m; 0)σ(Ãj)(m, ∂mφξ(m)) +O(h1−2ρj )L∞ .

Moreover, by part 2 of the same proposition, we see that Ãjχ0E
0
h is O(h∞) outside of the

set of points m ∈ Uξ such that (m, ∂mφξ(m)) ∈ Qj . By Lemma 5.5, σ(Ãj) is supported in

supp(1 − ϕ) ∩ gt0(suppϕ1) ⊂ DE+ ∩ {x < ε1}, with DE+ from Definition 4.2. Using part 2

of Lemma 4.4, we then get

〈Ãjχ0E
0
h, χ0E

0
h〉 =

∫
S∗M

σ(Ãj) dµξ +O(h1−2ρjµξ(Qj)) +O(h∞), (5.46)

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. Now, we write by (5.45) and Proposition 4.3,

l∑
j=1

h1−2ρj‖µξ(Qj)‖L1
ξ

=
l∑

j=1

h1−2ρjµL(Qj ∩ S∗M)

≤ r(h, 2Λ0)

l∑
j=1

h(1−2ρe)jt0/te = r(h, 2Λ0)
l∑

j=1

e−2Λ0(1−2ρe)jt0 ≤ Cr(h, 2Λ0).

It remains to sum up the integrals in (5.46). We have by Proposition 3.9, bearing in mind

that ϕϕ1 = ϕ, (1− ϕ)(1− ϕ2) = 1− ϕ, A = ϕAϕ, and dg(supp(1− ϕt0), suppϕ) > t0,

σ(Ãj) = (σ(A) ◦ g−jt0)(1− ϕ)

j−1∏
k=1

ϕ ◦ g−kt0 .

By part 1 of Lemma 4.4, we write

l∑
j=1

∫
S∗M

σ(Ãj) dµξ =

∫
S∗M

σ(A)

l∑
j=1

(1− ϕ ◦ gjt0)

j−1∏
k=1

ϕ ◦ gkt0 dµξ

=

∫
S∗M

σ(A)
(

1−
l∏

k=1

ϕ ◦ gkt0
)
dµξ.

It remains to note that by Proposition 4.3,∫
∂M

∫
S∗M
|σ(A)|

l∏
k=1

ϕ ◦ gkt0 dµξdξ =

∫
S∗M
|σ(A)|

l∏
k=1

ϕ ◦ gkt0 dµL = O(µL(T (lt0)))

since the expression under the last integral is supported in T (lt0). �
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5.3. Trace estimates. In this subsection, we prove a stronger remainder bound (1.13) for

the case when 〈AEh, Eh〉 is paired with a test function in ξ and obtain an expansion of the

trace of spectral projectors with a fractal remainder – Theorem 4.

Expressing E0
h ⊗ E0

h via Schrödinger propagators. Our argument will be based on

the decomposition (5.35). The remainder in this decomposition is already controlled by

the escape rate at twice the Ehrenfest time te defined in (5.16). However, in the previous

subsection (see Proposition 5.11), we were only able to estimate the sum in (5.35) for l up to

the Ehrenfest index le ∼ te/t0 defined in (5.29). We therefore need a better way of writing

down the Lagrangian states E0
h, when coupled with a test function in ξ, and such a way is

provided by

Lemma 5.12. Let f(ξ) ∈ C∞(∂M) and define for λ ∈ (1/2, 2),

Π0
f (λ) :=

∫
∂M

f(ξ)(χ0E
0
h(λ, ξ))⊗ (χ0E

0
h(λ, ξ)) dξ. (5.47)

Here ⊗ denotes the Hilbert tensor product, see (2.8). Assume that X̃1, X̃2 ∈ Ψcomp(M)

are compactly supported and the projections πS(WFh(X̃j)) of WFh(X̃j) onto S∗M along the

radial rays in the fibers of T ∗M lie inside DE+ ∩{x ≤ ε1}, with DE+ defined in (4.2) and ε1

from (A7). Then

X̃1Π0
f (λ)X̃∗2 = (2πh)n

∫ T0

−T0

e−iλ
2s/(2h)U(s)Bs(λ) ds+O(h∞)L2→L2 ,

where T0 > 0 is independent of h and Bs(λ) ∈ Ψcomp(M) is compactly supported on M ,

smooth and compactly supported in s ∈ (−T0, T0), and smooth in λ. Moreover, if ξ+∞ is the

function defined in (G3), then

σ(B0(1))|S∗M = f(ξ+∞)σ(X̃1X̃
∗
2 ). (5.48)

Proof. We write

X̃1Π0
f (λ)X̃∗2 =

∫
∂M

f(ξ)(X̃1χ0E
0
h(λ, ξ))⊗ (X̃2χ0E

0
h(λ, ξ)) dξ.

By (A4), χ0E
0
h(λ, ξ) is a Lagrangian distribution associated to λ times the Lagrangian Λξ

from (4.3). By Proposition 3.5, we can write

X̃jχ0E
0
h(λ, ξ)(m) = e

iλ
h
φξ(m)bj(λ, ξ,m;h) +O(h∞)C∞0 ,

where φξ is defined in (G4) and bj is a classical symbol in h smooth in λ, ξ,m and com-

pactly supported in m. The symbol bj depends on the operator X̃j ; in fact, we can make

supp bj ⊂ τ−1(πS(WFh(X̃j))), with τ defined in (4.2). We then write the Schwartz kernel of

X̃1Π0
f (λ)X̃∗2 , modulo an O(h∞)C∞0 remainder, as

Π̃(m,m′;λ, h) =

∫
∂M

e
iλ
h

(φξ(m)−φξ(m′))f(ξ)b1(λ, ξ,m;h)b2(λ, ξ;m′, h) dξ. (5.49)

Now, the support of each bj in the (m, ξ) variables lies in the set U+
∞ defined in (G4). The

critical points of the phase λ(φξ(m)−φξ(m′)) are given by ∂ξφξ(m) = ∂ξφξ(m
′); using (G6),
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we see that h−n/2Π̃(m,m′;λ, h) is a Lagrangian distribution associated to the Lagrangian

Λ̃λ := {(m, ν;m′, ν ′) | |ν|g = λ, ∃s ∈ (−T0, T0) : gs(m, ν) = (m′, ν ′)}. (5.50)

Here T0 > 0 is large, but fixed.

Now, take some family Bs(λ) ∈ Ψcomp(M) smooth and compactly supported in s ∈
(−T0, T0) and define the operator

ΠB(λ) := (2πh)n
∫ T0

−T0

e−iλ
2s/(2h)U(s)Bs(λ) ds. (5.51)

Following the proof of Lemma 3.11, we see that h−n/2 times the Schwartz kernel ΠB(m,m′;λ, h)

of ΠB(λ) is, up to an O(h∞)L2→L2 remainder, a compactly supported and compactly microlo-

calized Lagrangian distribution associated to the Lagrangian Λ̃λ. Moreover, the principal

symbol of h−n/2ΠB(m,m′;λ, h) at (m, ν,m′, ν ′) such that gs(m, ν) = (m′, ν ′) is a nonvanish-

ing factor times σ(Bs)(m
′, ν ′). Arguing as in the proof of part 2 of Proposition 3.3, we see

that we can find a family of operators Bs(λ) such that

Π̃(m,m′;λ, h) = ΠB(m,m′;λ, h) +O(h∞)C∞0 .

It remains to check that the family Bs(λ) can be chosen to depend smoothly on λ uniformly

in h (this is not automatic, as multiplication by e
i
h
ψ(λ) for some function ψ destroys this

property, but does not change the Lagrangians where our kernels are microlocalized for each

λ). For that, it is enough to note (by Proposition 3.3) that if we consider h−n/2Π̃ and

h−n/2ΠB as Lagrangian distributions in m,m′, λ, they are associated to the Lagrangian

{(m, ν,m′, ν ′, λ, qλ) | |ν|g = λ, ∃s ∈ (−T0, T0) : gs(m, ν) = (m′, ν ′), qλ = −λs},

where qλ is the momentum corresponding to λ. For Π̃, this is true as when τ(m′, ξ) =

gs(τ(m, ξ)), we have φξ(m) − φξ(m′) = −s by (4.4); for ΠB, this is seen directly from the

parametrization (3.27), keeping in mind the factor e−iλ
2s/(2h) in the definition of ΠB.

Finally, to show the formula (5.48), put λ = 1, take an arbitrary Z ∈ Ψcomp, and compute

the trace

Tr(X̃1Π0
f (1)X̃∗2Z) = (2πh)n

∫ T0

−T0

e−is/(2h) Tr(U(s)Bs(1)Z) ds+O(h∞). (5.52)

The left-hand side of (5.52) can be computed as at the end of Section 5.1, using the limiting

measure µξ; by Proposition 4.3, it is equal to the integral of f(ξ+∞)σ(X̃∗2ZX̃1) over the

Liouville measure on S∗M , plus an O(h) remainder. The right-hand side of (5.52) can be

computed by the trace formula (3.32), and is equal to the integral of B0(1)Z over the Liouville

measure on S∗M , plus an O(h) remainder. Therefore,∫
S∗M

σ(Z)f(ξ+∞)σ(X̃1X̃
∗
2 ) dµL =

∫
S∗M

σ(Z)σ(B0(1)) dµL

for any Z; (5.48) follows. �

Proof of (1.13). By (5.35), it is enough to approximate the sum in this formula up to twice

the Ehrenfest time:
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Proposition 5.13. Fix f ∈ C∞(∂M). Put l = 2le, where le is defined in (5.29), and

consider

Sf (λ) :=

l∑
j=1

∫
∂M

f(ξ)〈Ãjχ0E
0
h(λ, ξ), χ0E

0
h(λ, ξ)〉 dξ. (5.53)

If ξ+∞(m, ν) is the limit of gt(m, ν) as t→ +∞, for (m, ν) ∈ S∗M \Γ− (see (G3)), then for

λ ∈ [1, 1 + h],

Sf (λ) =

∫
S∗M

f(ξ+∞)σ(A) dµL +O(r(h,Λ0)). (5.54)

Here r(h,Λ) is defined in (1.10). Moreover, for each k

sup
λ∈[1,1+h]

|∂kλSf (λ)| ≤ Ckh−kρe , (5.55)

where ρe is defined in (5.18).

Proof. First of all, take a compactly supported operator X̃ ∈ Ψcomp such that WFh(X̃)∩S∗M
lies inside the set DE+ ∩ {x ≤ ε1} and for X0 defined in (5.36),

ϕU(t0)(1− ϕ)ϕt0X0(1− X̃) = O(h∞)L2→L2 ,

ϕ1U(t0)(1− ϕ2)ϕt0X0(1− X̃) = O(h∞)L2→L2 .

Such an operator exists by Lemma 5.5 (it can be easily seen that in part 1 of this lemma,

(m, ν) actually lies in the interior of DE+). Then by (5.37), the definition (5.35) of Ãj , and

Lemma 5.12,

Sf (λ) =
l∑

j=1

∫
∂M

f(ξ)〈ÃjX0X̃χ0E
0
h(λ, ξ), X̃χ0E

0
h(λ, ξ)〉 dξ +O(h∞)

=

l∑
j=1

Tr(ÃjX0X̃Π0
f (λ)X̃∗) +O(h∞)

= (2πh)n
l∑

j=1

∫ T0

−T0

e−iλ
2s/(2h) Tr(ÃjX0U(s)Bs(λ)) ds+O(h∞)

for some fixed T0 > 0 and some family Bs(λ) ∈ Ψcomp smooth in s and λ and compactly

supported in s; we can make Bs microlocalized inside the set Eεe defined in (5.17). We will

henceforth ignore the O(h∞) term.

Now, take 1 ≤ j ≤ l and put j = j1 + j2, where 0 ≤ j1, j2 ≤ le, j2 ≥ 1, and |j1 − j2| ≤ 1.

Using the cyclicity of the trace, we find

Tr(ÃjX0U(s)Bs(λ)) = Tr(U(s)Bj
1B

j
2,s(λ)),

Bj
1 := (U(−t0)ϕ1)j1A(ϕU(t0))j1 ,

Bj
2,s(λ) := (ϕU(t0))j2(1− ϕ)ϕt0X0U(s)Bs(λ)ϕt0(1− ϕ2)(U(−t0)ϕ1)j2U(−s).

Put ρj = (jt0/te)ρe; since j1, j2 ≤ j/2 + 1, by Proposition 3.9 the operator Bj
1 is a compactly

supported element of Ψcomp
ρj/2

(modulo an O(h∞)L2→L2 remainder which we will ignore). Same
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can be said about the operator

Bj
2,s(λ) = (ϕU(t0))j2 · (1− ϕ)ϕt0X0U(s)Bs(λ)ϕt0(1− ϕ2)U(−s) · (U(−t0) · U(s)ϕ1U(−s))j2 .

(The operator U(s)ϕ1U(−s) is not pseudodifferential because ϕ1 is not compactly microlocal-

ized, but this can be easily fixed by taking X̃0 ∈ Ψcomp equal to the identity on a sufficiently

large compact set and replacing U(s)ϕ1U(−s) by U(s)ϕ1X̃0U(−s) in B2,s(λ), with an O(h∞)

error.) Therefore, Bj
1B

j
2,s(λ) also lies in Ψcomp

ρj/2
; moreover, it depends smoothly on s and λ,

uniformly in this operator class. (In principle, we get powers of l ∼ log(1/h) when differ-

entiating in s, due to the (U(−t0) · U(s)ϕ1U(s))j2 term, but they can be absorbed into the

powers of h in the expansion (3.32).)

We now use the trace formula of Lemma 3.12, writing

Sf (λ) = (2πh)n
l∑

j=1

∫ T0

−T0

e−iλs
2/(2h) Tr(U(s)Bj

1B
j
2,s(λ)) ds. (5.56)

The operator B2,s(λ)j is microsupported, in the sense of Definition 3.1, inside the set

g−j2t0({ϕ2 6= 1})∩g−(j2−1)t0({ϕ1 6= 0}); by Lemma 5.5, this set lies inside g−j2t0(DE+) and in

particular does not intersect any closed geodesics, therefore (3.31) holds. The estimate (5.55)

now follows immediately from (3.32). The power h−kρe arises because we integrate over the

energy surface {|ν|g = λ} depending on λ; therefore, ∂kλSf (λ) will involve kth derivatives

of the full symbol of Bj
1B

j
2,s(λ) in the direction transversal to the energy surface, which are

bounded by h−kρj . The sum (5.56) has l ∼ log(1/h) terms; however, our estimate is not

multiplied by log(1/h) because one can see that the sum of Liouville measures of the sets

where these terms are microsupported is bounded.

As for the approximation (5.54), we write (note that we take s = 0 in B2,s)

σ(Bj
1) = (σ(A) ◦ g−j1t0)

j1−1∏
k=1

ϕ ◦ g−kt0 ,

σ(Bj
2,0(λ))|S∗M =

(
(1− ϕ)σ(B0(λ))

)
◦ gj2t0

j2−1∏
k=0

ϕ ◦ gkt0 .

Since the Liouville measure is invariant under the geodesic flow, the contribution of the

principal term of (3.32) to Sf (λ) for λ = 1 is∫
S∗M

σ(A)

l∑
j=1

(
(1− ϕ)σ(B0(λ))

)
◦ gjt0

j−1∏
k=1

ϕ ◦ gkt0 dµL.

Now, by (5.48), σ(B0(1)) = f(ξ+∞) on the support of the integrated expression; recombining

the terms as in the proof of Proposition 5.11, we get the right-hand side of (5.54), with an

µL(T (lt0)) remainder. The subprincipal terms (and also the difference Sf (λ) − Sf (1) for

λ ∈ [1, 1 + h]) are estimated using the bound on the Liouville measure of the set where

Bj
1B

j
2,s is microsupported; arguing as in the proof of Proposition 5.11, we see that they are

bounded by a constant times r(h,Λ0). �
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Expansion of the trace of spectral projectors in powers of h. We now use the

results obtained so far to derive an asymptotic expansion for the trace of the product of

the spectral projector 1l[0,λ2](P (h)) with a compactly supported pseudodifferential operator,

with the remainder depending on the classical escape rate for up to twice the Ehrenfest time.

Here we denote

P (h) := h2(∆− c0), (5.57)

with the constant c0 from (A1). It will also be more convenient for us to use the spectral

parameter s = λ2 in the following corollary and theorem (not to be confused with the time

variable s used in Lemma 5.12).

We start with the following consequence of the decomposition (5.35), the bound (5.54),

and the spectral formula (4.5):

Corollary 5.14. Take Λ0 > Λmax, with Λmax defined in (1.11), and let T (t) be defined

in (1.9). For ε > 0, let ϕ ∈ C∞0 ((1 − ε, 1 + ε)) equal to 1 near [1 − ε/2, 1 + ε/2] and for

s ∈ R, define ϕs := ϕ · 1l(−∞,s]. If ε > 0 is small enough, then for each compactly supported

A ∈ Ψ0(M), there exist some functions Sh(s), Qh(s) and some constants C > 0, Ck > 0 such

that for all s ∈ R and all k ∈ N

Tr
(
Aϕs(P (h))

)
= Sh(s) +Qh(s), |∂ksSh(s)| ≤ Ckh−n−1−k/2,

|Qh(s+ u)−Qh(s)| ≤ Ch−nµL
(
T
(
| log h|

Λ0

))
+O(h∞) for u ∈ [0, h].

(5.58)

Proof. By (4.5),

Tr
(
Aϕs(P (h))

)
= (2πh)−n−1

√
1+ε∫

√
1−ε

λnfΠ(λ/h)ϕs(λ
2)

∫
∂M

〈AEh(λ, ξ), Eh(λ, ξ)〉 dξdλ.

Now, note that the decomposition (5.35) (with l = 2le) is still valid in any O(h) sized interval

inside (
√

1− ε,
√

1 + ε), if ε is small enough. More precisely, if we write

Sh(s) := (2πh)−n−1

√
1+ε∫

√
1−ε

λnfΠ(λ/h)ϕs(λ
2)S1(λ) dλ,

where S1(λ) is defined by (5.53) with f(ξ) ≡ 1, then we have the expansion (5.58) with Qh(s)

satisfying the required bound. To estimate the derivatives of Sh(s), it now suffices to use the

bound (5.54), noting that it is valid for |λ2 − 1| < ε if ε is small enough. �

Using the last corollary, we can show the following trace decomposition with a fractal

remainder:

Theorem 4. Let P (h) be defined in (5.57), let A = Oph(a) ∈ Ψ0(M) be a compactly

supported operator, then there exist some smooth differential operators Lj of order 2j on
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T ∗M , depending on the quantization procedure Oph, with L0 = 1, such that for any compact

interval I ⊂ (0,∞), all s ∈ I, all h > 0 small, and all N ∈ N

Tr
(
A 1l[0,s](P (h))

)
=(2πh)−n−1

N∑
j=0

hj
∫

|ν|2g≤s

Lja dµω + h−nO
(
µL(T (Λ−1

0 | log h|)) + hN
)

where the remainder is uniform in s. Here µω is the standard volume form on T ∗M ; we have

µω = ωn+1
S /(n+ 1)!, where ωS is the symplectic form.

Proof. By rescaling h, it suffices to prove the result for |s−1| ≤ ε/2 where ε > 0 is obtained in

Corollary 5.14, we can thus assume |s− 1| ≤ ε/2. Let ϕs be defined as in Corollary 5.14, and

ψ ∈ C∞0 ((−1 + ε/2, 1− ε/2)) such that ψ + ϕ = 1 on [0, 1 + ε/2]. For s ∈ (1− ε/2, 1 + ε/2),

one has 1l[0,s](P (h)) = ϕs(P (h)) + ψ(P (h)) and it suffices to study the expansion in h of

σA,h(s) and Tr(Aψ(P (h))) where

σA,h(s) := Tr
(
Aϕs(P (h))

)
= Tr

(
Aϕs(P (h))χ

)
. (5.59)

if χ ∈ C∞0 (M) is such that A = χAχ. Since A is compactly supported, one can use the

functional calculus of Helffer–Sjöstrand [DiSj, Chapters 8-9] to deduce that Aψ(P (h))χ ∈
Ψcomp(M) is a compactly supported and microsupported pseudodifferential operator with a

classical symbol2. Its trace thus has a complete expansion in powers of h (see [DiSj, Th 9.6]):

Tr(Aψ(P (h))χ) = (2πh)−n−1
N∑
j=0

hj
∫
T ∗M

L′′ja dµω +O(h−n+N ) (5.60)

where L′′j are some differential operators of order 2j and L′′0a(m, ν) = a(m, ν)ψ(|ν|2g).
Let us now analyze the function σA,h. This is a smooth function of s > 0 by the smoothness

assumption on the Eh(λ, ξ) in λ, it is constant in s for |1−s| > ε, and we know that σA,h(s) =

O(h−n−1) uniformly in s by Lemma 3.11. Let θ(s) ∈ S (R) be a Schwartz function such that

θ̂ ∈ C∞0 (−η, η) for some small η > 0 and θ̂(t) = 1 near t = 0, and let θh(s) = h−1θ(s/h). We

write

σ′A,h(s) := ∂sσA,h(s) = Tr(Aϕ(P (h))dΠs(P (h))χ) ∈ C∞0 ((0,∞))

where dΠs(P (h)) is the spectral measure of P (h). The operator Aϕ(P (h))dΠs(P (h))χ has

a smooth compactly supported kernel and is trace class. We clearly have σ′A,h ? θh ∈ S (R)

and by a simple computation, its semi-classical Fourier transform is given by∫
R
e−i

t
h
sσ′A,h ? θh(s)ds = Tr(Aϕ(P (h))e−i

t
h
P (h))θ̂(t)

and thus

σ′A,h ? θh(s) =
1

2πh

∫
R
ei
s
h
t Tr(Aϕ(P (h))e−i

t
h
P (h))θ̂(t)dt.

2An alternative method in the Euclidean near infinity setting is the functional calculus of Helffer–Robert

[HeRo].
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Now we can apply Lemma 3.12 with Bu = 1
2e
ic0hu/2θ̂(−u/2)Aϕ(P (h)); the condition (3.31) is

satisfied because θ̂ is supported in a small neighborhood of zero. This shows that, as h→ 0,

we have the expansion (locally uniformly in s)

σ′A,h ? θh(s) = (2πh)−n−1
( N∑
j=0

hj
∫
S∗M

L̃jb(m,
√
sν)dµL(m, ν) +O(hN+1)

)
for all N ∈ N, where b is a symbol such that Oph(b) = 1

2Aϕ(P (h))+O(h∞), L̃j are differential

operators of order 2j on T ∗M , smooth in
√
s, with L̃0 = s

n−1
2 . In particular, one has

L̃0b(m,
√
sν) = 1

2s
n−1

2 a(m,
√
sν)ϕ(s|ν|2g). Notice that b is supported in {(m, ν) ∈ T ∗M |

|ν|2g ∈ suppϕ} thus L̃jb(m,
√
sν) is smooth in s ∈ R when (m, ν) ∈ S∗M . Since σA,h(s) is

bounded in s, the convolution σA,h ? θh(s) is well defined (as an element in L∞(R)) and we

have for all N and for all s ≤ 2

σA,h ? θh(s) = (2πh)−n−1
( N∑
j=0

hj
∫ s

0

∫
S∗M

L̃jb(m,
√
uν)dµL(m, ν)du+O(hN+1)

)
.

We are going to show that, uniformly in s ∈ R,

σA,h(s)− σA,h ? θh(s) = O(h∞) +O
(
h−nµL(T (Λ−1

0 | log h|))
)
, (5.61)

using the decomposition

σA,h(s) = Sh(s) +Qh(s)

defined in (5.58). Since ∂sSh(s) is a compactly supported symbol we get by integrating by

parts N times

(1− θ̂(t))
∫
e−i

t
h
s∂sSh(s)ds = (1− θ̂(t))

∫
e−i

t
h
s

(
h

it

)N
∂N+1
s (Sh(s))ds = O

(
hN/4

(1 + |t|)N

)
for all t ∈ R and all N � 1. Thus, taking the Fourier transform we deduce that Sh(s)−Sh ?
θh(s) = O(h∞) uniformly in s. From (5.58), we obtain by induction that for all s, u

|Qh(s+ u)−Qh(s)| ≤ Ch−n
(

1 +
|u|
h

)
µL(T (Λ−1

0 | log h|)) +O(h∞)

then multiplying by θh(−u) and integrating in u, we obtain (5.61).

Given (5.61), we have

σA,h(s) = (2πh)−n−1
N∑
j=0

hj
∫ s

0

∫
S∗M

L̃jb(m,
√
uν)dµL(m, ν)du

+O
(
h−nµL(T (Λ−1

0 | log h|))
)

+O(h−n+N ).

(5.62)

Since the symbol of b is explicitly obtained from a using Moyal product, we can rewrite

this expression with a instead of b and with some new differential operators with the same

properties as L̃j but supported in {|ν|2g ∈ suppϕ}; using polar coordinates S∗M × R+√
u

on

T ∗M , we deduce that there exist some differential operators L′j of order 2j on T ∗M such

that ∫ s

0

∫
S∗M

L̃jb(m,
√
uν)dµL(m, ν)du =

∫
|ν|2g≤s

L′ja(m, ν)dµω(m, ν)
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and L′0a(m, ν) = ϕ(|ν|2g)a(m, ν). Combining this with (5.62) and (5.60), we obtain the desired

result where Lj in the statement of the Theorem corresponds now to L′j + L′′j . �

6. Euclidean near infinity manifolds

In this section, we assume that (M, g) is a complete Riemannian manifold such that there

exists a compact set K0 ⊂M such that for E := M \K0,

(E , g) is isometric to (Rn+1 \B(0, R), geucl)

where R > 0, B(0, R) is the Euclidean ball of center 0 and radius R and geucl is the Euclidean

metric. We will check that all the assumptions of Section 4 are satisfied.

6.1. Geometric assumptions. We let x ∈ C∞(M) be an everywhere positive function

equal to x(m) = |m|−1 in E identified with Rn+1 \ B(0, R), and such that x ≥ R−1 in K0.

(We take it instead of the function (1 + |m|2)−1/2 used in Section 4 for the model case of

Rn+1, to simplify the calculations and since we no longer need smoothness at zero.) We

shall use the polar coordinates m = ω/x in E , where ω ∈ Sn. Assumption (G1) is satisfied

by taking the radial compactification of M , i.e. adding the sphere at infinity: the map

ψ : Rn+1 \ B(0, R) → (0, 1/R) × Sn defined by ψ(m) = (x(m), x(m)m) is a diffeomorphism

and the radial compactification of M is obtained by setting M = M t ∂M where ∂M := Sn,

the smooth structure on M is the same as before on M but we extend it to M by asking

that ψ extends smoothly to the boundary ∂M and ψ(ξ) = (0, ξ) if ξ ∈ ∂M = Sn (see for

instance [Me] for more details). In other words, smooth functions on M are smooth functions

on M with an asymptotic expansion in integer powers of 1/|m| to any order near infinity.

Assumption (G2) is clearly satisfied for ε0 := 1/2R since the trajectories of the geodesic

flow in x ≤ ε0 are simply gt(m, ν) = (m+ tν, ν). A point (m, ν) ∈ S∗M is directly escaping

in the forward direction in the sense of Definition 4.2 if and only if x(m) ≤ ε0 and m · ν ≥ 0.

Now, (G3) is satisfied with ξ+∞(m, ν) = ν for (m, ν) ∈ DE+.

For the assumption (G4), we define

Ũ∞ = {x < ε0} × ∂M ⊂M × ∂M,

φξ(m) = m · ξ, (m, ξ) ∈ U∞.

Then τ : U∞ → S∗M from (4.2) maps each (m, ξ) ∈ (Rn \ B(0, 2R)) × Sn to itself as

an element of S∗(Rn \ B(0, 2R)). Assumptions (G4) and (G5) follow immediately. To see

assumption (G6), we note that for x(m), x(m′) < ε0 and some ξ ∈ Sn, we have ∂ξφξ(m) =

∂ξφξ(m
′) if and only if m−m′ is a multiple of ξ.

6.2. Distorted plane waves and analytic assumptions. We recall a few well known facts

about scattering theory on perturbations of Rn, we refer to [Me] for a geometric approach

and to [MeZw, HaVa] in a more general setting (asymptotically Euclidean case). A plane

wave for the flat Laplacian on Rn+1 is the function, for λ ∈ (1/2, 2),

u(λ;m, ξ) := ce
iλ
h
m·ξ, ξ ∈ Sn, m ∈ Rn+1, c ∈ C. (6.1)
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This is a semiclassical Lagrangian distribution, its oscillating phase has level sets given by

planes orthogonal to ξ. The continuous spectrum of the Laplacian ∆ associated to the metric

g is the half-line [0,∞). We will take the resolvent of h2∆ to be the L2-bounded operator

Rh(λ) := (h2∆− λ2)−1 in Im(λ) < 0.

This admits a continuous extension to {λ 6= 0, Im(λ) ≤ 0} as a bounded operator from L2
comp

to L2
loc. For λ > 0 we call Rh(λ) the incoming resolvent and Rh(−λ) the outgoing resolvent

The distorted plane wave is defined for ξ ∈ Sn (see [MeZw, HaVa]) by

Eh(λ, ξ;m) := 2iλh
(2πh

iλ

)n
2

lim
x′→0

[(x′)−n/2e
iλ
hx′Rh(λ;m, ξ/x′)], (6.2)

where Rh(λ;m,m′) is the Schwartz kernel of Rh(λ) and ξ/x′ ∈ E . This is a smooth func-

tion of (m, ξ) ∈ M × Sn, and in the case of M = Rn+1 it is given by (6.1) with c = 1

(see [Me, Chapter 1]). We shall use the notation Eh(λ, ξ) for the C∞(M) function de-

fined by m 7→ Eh(λ, ξ;m) and we notice that (h2∆ − λ2)Eh(λ, ξ) = 0 in M . One has

Eh(λ;m, ξ) = Eh(−λ;m, ξ) since Rh(λ)∗ = R(−λ) for λ ∈ R, and the decomposition of the

spectral measure in terms of these functions in given as follows: by Stone’s formula, the

semiclassical spectral measure is given by

dΠh(λ) =
iλ

π
(Rh(λ)−Rh(−λ)) dλ for λ ∈ (0,∞) (6.3)

in the sense that F (h2∆) =
∫∞

0 F (λ2)dΠh(λ) for any bounded function F ; by combining this

with the Green’s type formula of [HaVa, Lemma 5.2], we deduce that

dΠh(λ;m,m′) = λn(2πh)−n−1

∫
Sn
Eh(λ;m, ξ)Eh(λ,m′, ξ) dξdλ.

Here dξ corresponds to the standard volume form on the sphere Sn. The assumptions (A1)

and (A2) are then satisfied. In fact, using [HaVa], one can define distorted plane waves and

verify assumptions (A1) and (A2) for the more general case of scattering manifolds.

Outgoing/incoming decomposition. We now construct the decomposition (4.6) of Eh
into the outgoing and incoming parts and verify assumptions (A3)–(A8). Take χ0 ∈ C∞(M)

(thus constant in ξ) supported in {x < ε0} and equal to 1 near {x ≤ ε0/2}, so that assump-

tions (A3) and (A7) hold, where we put ε1 := ε0/2. We next put

E0
h(λ, ξ;m) := e

iλ
h
m·ξ, x(m) < ε0,

so that (A4) holds with b0 ≡ 1 and (A8) follows. We then claim that

Eh = χ0E
0
h + E1

h, (6.4)

where

E1
h := −Rh(λ)Fh, Fh(λ, ξ) = (h2∆− λ2)(χ0E

0
h(λ, ξ)) = [h2∆, χ0]E0

h(λ, ξ).

We can apply Rh(λ) to Fh(λ, ξ) as the latter lies in C∞0 (M); in fact, suppFh ⊂ {ε0/2 < x <

ε0}. To show (6.4), note that the incoming resolvent Rh(−λ) satisfies

Rh(λ)χ1 = χ0R
0
h(λ)χ1 −Rh(λ)[h2∆, χ0]R0

h(λ)χ1
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if χ1 ∈ C∞(M) is such that χ0χ1 = χ1 and R0
h(λ) is the incoming scattering resolvent of the

free semiclassical Laplacian h2∆ on Rn+1 (we use again the isometry E ' Rn+1 \ B(0, R)).

Multiplying the last equation on the right by x−
n
2 e

iλ
hx , taking the Schwartz kernel of the

obtained operators and considering the limit in the second variable along a line with tangent

vector ξ as in (6.2) (using the formula (6.1) with c = 1 for the expression (6.2) for the free

resolvent R0
h(λ)), we obtain (6.4).

Microlocalization of E1
h. It remains to verify assumptions (A5) and (A6). By rescaling h

and using that Eh(λ, ·) depends only on λ/h, we may assume that λ = 1. Fix ξ and take

χ2 ∈ C∞(M) equal to 1 near {x ≤ ε0}, but supported inside E . Then

χ2E
1
h = R0

h(λ)F 0
h , F

0
h := (h2∆− λ2)(χ2E

1
h) = Fh + [h2∆, χ2]E1

h. (6.5)

The function F 0
h is supported inside {x > ε0/2} and

‖F 0
h‖H−1

h
≤ Ch(1 + ‖Eh‖L2({x≥ε0})).

The free resolvent R0
h(λ) is bounded H−1

h,comp → L2
loc with norm O(h−1) by [Bu02, Prop 2.1];

therefore, for each compact set K ⊂M , there exists a constant CK such that

‖E1
h‖L2(K) ≤ CK(1 + ‖Eh‖L2({x≥ε0})).

This shows (A5), namely that the function

Ẽ1
h :=

E1
h

1 + ‖Eh‖L2({x≥ε0})

is h-tempered. To prove (A6), we use semiclassical elliptic estimate and propagation of

singularities (see for example [Va11, Section 4.1]). We have

(h2∆− λ2)Ẽ1
h = −F̃h, F̃h :=

Fh
1 + ‖Eh‖L2({x≥ε0})

.

Now, Fh is a Lagrangian distribution associated to {(m, ξ) | m ∈ supp(dχ0)}; therefore,

WFh(F̃h) ⊂WFh(Fh) ⊂Wξ,

with Wξ ⊂ S∗M defined in (4.9).

Take (m, ν) ∈WFh(Ẽ1
h). By the elliptic estimate, (m, ν) ∈ S∗M . Next, if γ(t) = gt(m, ν),

then by propagation of singularities, either γ(t) ∈ WFh(F̃h) ⊂ Wξ for some t ≥ 0 or γ(t) ∈
WFh(Ẽ1

h) for all t ≥ 0. Now, the free resolvent R0
h(λ) is semiclassically incoming in the

following sense: if f is a compactly supported h-tempered family of distributions, then for

each (m′, ν ′) ∈ WFh(R0
h(λ)f), there exists t ≥ 0 such that gt(m′, ν ′) ∈ supp f . This can

be seen for example from the explicit formulas for R0
h(λ), see [Me]. By (6.5) and since

supp(F 0
h ) ⊂ {x > ε0/2}, we see that for (m′, ν ′) ∈ WFh(Ẽ1

h), we cannot have x(m′) < ε0/2

and m′ · ν ′ ≥ 0. Therefore, if γ(t) 6∈ Wξ for all t ≥ 0, then γ(t) is trapped as t → +∞; this

proves (A6).
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7. Hyperbolic near infinity manifolds

In this section, we verify the assumptions of Section 4 for certain asymptotically hyperbolic

manifolds. Let (M, g) be an (n+1)-dimensional asymptotically hyperbolic manifold as defined

in the introduction. It has a compactification M = M ∪ ∂M and the metric can be written

in the product form (1.3):

g =
dx2 + h(x)

x2

where x is a boundary defining function and h(x) a smooth family of metrics on ∂M defined

near x = 0. The function x putting the metric in the form (1.3) is not unique, and those

functions (thus satisfying |d log(x)|g = 1 near ∂M) are called geodesic boundary defining

functions. The set of such functions parametrizes the conformal class of h(0), as shown

in [GrLe, Lemma 5.2]. The metric is called even if h(x) is an even function of x, this

condition is independent of the choice of geodesic boundary defining function. A choice of

geodesic boundary defining function induces a metric on ∂M by taking h0 = h(0) = x2g|T∂M ,

and therefore one has a Riemannian volume form, denoted dξ, on ∂M induced by the choice

of x. Any other choice x̂ = eωx of boundary defining function induces a volume form

d̂ξ = enω0dξ where ω0 = ω|∂M . (7.1)

We will further assume that M has constant sectional curvature −1 outside of some com-

pact set, even though some of the assumptions of Section 4 hold for general asymptotically

hyperbolic manifolds.

7.1. Geometric assumptions. Let (M, g) be an asymptotically hyperbolic manifold. The

assumption (G1) is satisfied. We are now going to prove a Lemma which implies directly

that the assumptions (G2) and (G3) are satisfied, except that this only proves continuous

dependence of ξ+∞ in (m, ν) in (G3). To prove C1 dependence in a general setting, a bit

more analysis would be required, but we shall later concentrate only on cases with constant

curvature near infinity, in which case the dependence is smooth (see below).

Lemma 7.1. Let (M, g) an asymptotically hyperbolic manifold. Then there exists ε0 > 0

such that the function x satisfies (4.1) and for any unit speed geodesic γ(t) = (m(t), ν(t))

with x(m(0)) ≤ ε0 and ∂tx(m(t))|t=0 ≤ 0, one has the following: ∂tx(m(t)) ≤ 0 for all t ≥ 0

and m(t) converges in the topology of M to some point ξ+∞ ∈ ∂M . More precisely, the

distance with respect to the compactified metric ḡ = x2g between m(t) and ξ+∞ is bounded

by

dḡ(m(t), ξ+∞) ≤ Ct−1.

Proof. Consider coordinates (m, ν) = (x, y; ρdx+ θ · dy) on T ∗M near the boundary ∂M =

{x = 0}. The geodesic flow is the Hamiltonian flow of p/2, where p(m, ν) = x2(ρ2 + |θ|2hm);

if dots denote time derivatives with respect to the geodesic flow, we get

ẋ = ρx2, ρ̇ = −x−1p(m, ν)− x2∂xh(x,y)(θ, θ)/2. (7.2)

Since ∂xh(x,y) is smooth up to x = 0, there exists a constant C such that

|x2∂xh(x,y)(θ, θ)/2| ≤ Cx2h(x,y)(θ, θ) ≤ Cp(m, ν).
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Therefore, there exists ε0 > 0 such that along any unit speed geodesic, we have

x ≤ ε0 =⇒ ρ̇ = −x−1 +O(1) ≤ −x−1/2 < 0. (7.3)

This in particular implies (4.1).

Now, let γ(t) = (x(t), y(t); ρ(t), θ(t)) be a unit speed geodesic and assume that x(0) ≤ ε0

and ẋ(0) ≤ 0. It follows from (4.1) that for t ≥ 0, we have ẋ(t) ≤ 0 and thus x(t) ≤ ε0.

(Indeed, for each s ≥ 0 the minimal value of x(t) on the interval [0, s] has to be achieved at

t = s.) It remains to show that as t→ +∞, x(t) converges to 0 and y(t) converges to some

ξ+∞ ∈ ∂M . For that, note that by (7.3), ρ̇(t) ≤ −ε−1
0 /2 for t ≥ 0; since ẋ(0) ≤ 0, we have

ρ(0) ≤ 0 and thus

ρ(t) ≤ −ε
−1
0

2
t.

Setting u(t) := x(t)−1, we find u̇(t) = −ρ(t) ≥ (ε−1
0 /2)t; therefore,

x(t) ≤ ε0

1 + t2/4
.

In particular, x(t)→ 0 as t→ +∞. Now the equation for ẏ(s) tells us that

ẏi(t) = x

n∑
k=1

hki(x,y)xθk = O(x(t)) = O(t−2)

and therefore |y(t) − y(t′)| ≤ C/t′ for any t > t′ > 0, which implies limt→∞m(t) = ξ∞ for

some ξ∞ ∈ ∂M and |m(t)− ξ∞| = O(1/t). �

The geometric assumption (G4) is a more complicated one, and we will restrict ourselves

to asymptotically hyperbolic manifolds with constant curvature −1 in a neighbourhood of

∂M and x a geodesic boundary defining function. Let ξ ∈ ∂M , then there exists a neigh-

borhood Vξ of ξ in M , and an isometric diffeomorphism ψξ from Vξ ∩M into the following

neighbourhood Vq0 of the north pole q0 in the unit ball B := {m ∈ Rn+1; |m| < 1} equipped

with the hyperbolic metric gHn+1 (the hyperbolic space Hn+1 is B equipped with gHn+1):

Vq0 := {q ∈ B | |q − q0| < 1/4}, gHn+1 = 4
dq2

(1− |q|2)2
(7.4)

where ψξ(ξ) = q0 and | · | denotes the Euclidean length. This statement is proved for instance

in [GuZw, Lemma 3.1]. We shall choose the boundary defining function

x0 = 2
(1− |q|)
(1 + |q|)

(7.5)

on B. Note that we might not be able to find ψξ such that x = ψ∗ξx0. This would be possible

only if the boundary is globally conformally flat and x is chosen so that the metric on ∂M

induced by x2g is flat.

We define for each p ∈ Sn = ∂B the Busemann function on B

φBp (q) = log
(1− |q|2

|q − p|2
)
.
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The geodesic trajectory gt(q, dφBp (q)) generated by the differential dφBp converges (in the

Euclidean ball topology) to p and the Lagrangian manifold

ΛB
p := {(q, dφBp (q)) ∈ S∗Hn+1 | q ∈ B}

is the stable manifold of the geodesic flow associated to p on B. The level sets of φBp are

horospheres based at p. We cover a neighbourhood of ∂M by finitely many Vξj for some

ξj ∈ ∂M and take a partition of unity χj ∈ C∞(∂M) on ∂M with χj supported in Vξj ∩∂M .

Then there exists ε > 0 such that for all j and all ξ ∈ suppχj , the set

Uξ := {m ∈M | dḡ(m, ξ) < ε} (7.6)

lies inside Vξj , where ḡ = x2g is the compactified metric. Put

U∞ := {(m, ξ) ∈M × ∂M | m ∈ Uξ}.

Define the function

φξ(m) :=
∑
j

χj(ξ)φ
B
ψξj (ξ)(ψξj (m)), (m, ξ) ∈ U∞. (7.7)

Since ψξj are isometries, each function φjξ(m) := φBψξj (ξ)(ψξj (m)) is such that dφjξ(m) is the

unit covector which generates the unique geodesic in M starting at m, staying in Uξ for

positive times, and converging to ξ (therefore, the difference of any two functions φjξ for

different j is a function of ξ only). Therefore ∂mφξ(m) =
∑

j χj(ξ)∂mφ
j
ξ(m) is also equal to

this unit covector; (G4) and (G5) follow. The dependence of all objects in m, ξ is smooth

here. Finally, (G6) can be reduced via ψξj to the following statement that can be verified by

a direct computation: if p ∈ Sn and q, q′ ∈ B, then ∂pφ
B
p (q) = ∂pφ

B
p (q′) if and only if q and q′

lie on a geodesic converging to p, and the matrix ∂2
pqφ

B
p (q) has rank n.

7.2. Eisenstein functions and analytic assumptions. Let (M, g) be asymptotically hy-

perbolic. The Laplacian ∆ on (M, g) has absolutely continuous spectrum on [n2/4,∞) and

a possibly non-empty finite set of eigenvalues in (0, n2/4). By [MaMe, Gu], if g is an even

metric3, the resolvent of the Laplacian

R(s) := (∆− s(n− s))−1 defined in the half plane Re(s) > n/2

admits a meromorphic continuation to the whole complex plane C, with poles of finite rank

(i.e. the Laurent expansion at each pole consists of finite rank operators), as a family of

bounded operators

R(s) : xNL2(M)→ x−NL2(M), if Re(s)− n/2 +N > 0,

moreover it has no poles on the line Re(s) = n
2 except possibly s = n

2 , as shown by

Mazzeo [Ma]. Let us fix a geodesic boundary defining function x on M . By [MaMe], the

resolvent integral kernel R(s;m,m′) near the boundary ∂M has an asymptotic expansion

given as follows: for any m ∈M fixed

m′ 7→ R(s;m,m′)x(m′)−s ∈ C∞(M)

3There is a simpler proof by Guillopé-Zworski [GuZw] when the curvature is constant outside a compact

set.
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and similarly for m′ ∈ M fixed and m → ∂M . Since we are interested in high frequency

asymptotics, we will consider the semiclassical rescaled versions

Rh(λ) := h−2R(n/2 + iλ/h),

Notice that the physical region Re s > n/2, in which the resolvent is bounded on L2, corre-

sponds to Imλ > 0, which agrees with our convention for Euclidean case.

Definition 7.2. Let 1/2 ≤ |λ| ≤ 2 and h > 0, then Eisenstein functions are the functions

in C∞(M × ∂M) defined for any fixed ξ ∈ ∂M by the following limit of the resolvent kernel

at infinity

Eh(λ, ξ;m) :=
2iλh

C(λ/h)
lim
m′→ξ

x(m′)−n/2−iλ/hRh(λ;m,m′),

C(z) := 2−iz(2π)−
n
2

Γ(n2 + iz)

Γ(iz)
.

(7.8)

The normalisation constant in (7.8) is like the constant in (6.2) so that in B, Eh(λ) is a

horospherical wave as described below in (7.11). For any ξ ∈ ∂M , we will denote by Eh(λ, ξ)

the function m 7→ Eh(λ, ξ;m), and we observe that they solve (1.4):

(h2(∆− n2/4)− λ2)Eh(λ, ξ) = 0.

One also has Eh(λ, ξ;m) = Eh(−λ, ξ;m) as an easy consequence of Rh(λ)∗ = R(−λ) for

λ ∈ R. From its definition, Eh(λ, ξ) depends on the choice of the boundary defining function

x, but considering such a change we easily see from (7.1) that the density on ∂M

〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) dξ for A ∈ Ψcomp(M) (7.9)

is independent of x.

Let us recall the decomposition of the spectral measure in terms of these functions. By

Stone’s formula, the semiclassical spectral measure is given by

dΠh(λ) =
iλ

π
(Rh(λ)−Rh(−λ)) dλ for λ ∈ (0,∞)

in the sense that F (h2(∆−n2/4)) =
∫∞

0 F (λ2)dΠh(λ) for any bounded function F supported

in (0,∞). Now we can write (see [Gu]) for any m,m′

dΠh(λ;m,m′) =
|C(λ/h)|2

2πh

∫
∂M

Eh(λ, ξ;m)Eh(−λ, ξ;m′)dξ dλ. (7.10)

where (2πh)n|C(λ/h)|2 → λn as h → 0 uniformly in λ ∈ [1/2, 2]. The assumptions (A1)

and (A2) are then satisfied in the general asymptotically hyperbolic case (without asking the

constant curvature near infinity).

Outgoing/incoming decomposition. To check assumptions (A3)–(A8), we give a repre-

sentation of the Eisenstein functions as sums of the ‘outgoing’ part E0
h and the ‘incoming’

part E1
h. We assume constant curvature near infinity in what follows. The expression for
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EB
h (λ) on hyperbolic space Hn+1 viewed as a unit ball B, defined using the boundary defining

function x0 of (7.5), is given by [GuNa, Section 2.2]

EB
h (λ, p; q) =

(1− |q|2

|q − p|2
)n/2+iλ/h

, p ∈ Sn, q ∈ B (7.11)

We thus set E0
h(λ, ξ;m) to be

E0
h(λ, ξ;m) := e(n/2+iλ/h)φξ(m), (7.12)

where φξ is the Busemann function defined in (7.7). Viewing the neighbourhood Uξ as a

subset of one of the Vξj 'ψξj Vq0 where Vq0 ⊂ B is defined in (7.4), the Laplacian in this

hyperbolic chart pulls back to ∆Hn+1 . Since φξ(m) = φBψξj (ξ)(ψξj (m))+cj(ξ) for some function

cj(ξ) independent of m, we directly have in Uξ (Uξ is defined in (7.6))

(h2(∆− n2/4)− λ2)E0
h(λ;m, ξ) = 0.

We let χ0 ∈ C∞(∂M ×M) be a function such that χ(ξ, ·) is supported in Uξ, equal to 1 near

ξ and smooth in x2. Therefore we obtain

Fh(λ, ξ) := (h2(∆− n2/4)− λ2)χ0E
0
h(λ, ξ) = [h2∆, χ0]E0

h(λ, ξ) (7.13)

and we claim that

Fh(λ, ξ) ∈ x
n
2

+2+ iλ
h C∞(M) and ‖x−1Fh(λ, ξ)‖L2(M) = O(h)

uniformly in ξ. Indeed, this is an elementary calculation since from (7.11) we see that

E0
h(λ, ξ) ∈ x

n
2

+iλ
hC∞(M \ {ξ}) and in geodesic normal coordinates near the boundary

[∆, χ0] = −x2(∂2
xχ0)− 2x(∂xχ0)x∂x + x2[∆h(x), χ0] + n(x∂xχ0)− 1

2
Trh(x)(∂xh(x))x2(∂xχ0)

is a first order operator with coefficients vanishing in a neighbourhood of ξ. We thus correct

the error by the incoming resolvent Rh(λ) by setting

Eh(λ, ξ) := χ0E
0
h(λ, ξ) + E1

h(λ, ξ), with E1
h(λ, ξ) := −Rh(λ)Fh(λ, ξ) (7.14)

and this makes sense since for λ ∈ R, Rh(λ) : xαL2(M) → x−αL2(M) for any α > 0 and

Fh ∈ xL2(M). We claim that

Proposition 7.3. The function Eh(λ, ξ) of (7.14) is the Eisenstein function defined in (7.8)

for a certain boundary defining function x.

Proof. Let RB
h(λ) be the resolvent of the hyperbolic space (that is, the incoming right inverse

to h2(∆Hn+1 −n2/4)−λ2) in the ball model and let χ1 ∈ C∞(∂M ×M) be such that χ1(ξ, ·)
is supported in Uξ and χ1χ0 = χ1. Through the pull-back by ψξj (for each j), the operator

RB
h(λ) induces an operator Rjh(λ) on Vξj ; if Uξ ⊂ Vξj , then we have the resolvent identity

Rh(λ)χ1 = χ0R
j
h(λ)χ1 −Rh(λ)[h2∆, χ0]Rjh(λ)χ1 (7.15)

for λ ∈ R, the composition makes sense as a map xαL2 → x−αL2 for any α > 0. Let x

be a boundary defining function, so in Vξj , one has ψ∗ξjx0 = xeωj for some function ωj ∈
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ξ∂M

ε

Figure 4. Illustration of (A7) for the half-plane model of Hn+1: the set of

points on trajectories converging to ξ ∈ ∂Hn+1 with ẋ < 0 and x < ε is the

triangle formed by dashed lines, lying O(ε) close to ξ. For ε small enough,

this triangle lies inside the lighter shaded region, denoting the set {χ0 = 1}.

C∞(∂M∩Vξj ). Then multiplying (7.15) by x−n/2−iλ/h on the right, and taking the restriction

of the Schwartz kernels on M × ∂M , we have

Eh(λ, ξ) = χ0Ẽ
0
h(λ, ξ)−Rh(λ)[h2∆, χ0]Ẽ0

h(λ, ξ)

with Ẽ0
h(λ;m, ξ) = 2iλh

C(λ/h) limm′→ξ(x(m′)−
n
2
−iλ

hRjh(λ;m,m′)) a smooth function of m ∈ Uξ
and C(λ/h) the constant in (7.8). Note that the Schwartz kernels of Rjh and Rkh are the

same on the intersection of their domains, therefore Ẽ0
h does not depend on the choice of

j. Now, since EB
h (λ;m, ξ) in (7.11) is the Eisenstein function on B for the defining function

x0, we deduce that in Uξ ⊂ Vξj , one has Ẽ0
h(λ, ξ;m) = E0

h(λ, ξ;m)e(n
2

+iλ
h

)(ωj(ξ)−cj(ξ)). Here

cj(ξ) = φξ(m) − φBψξj (ξ)(ψξj (m)). Since E0
h(λ;m, ξ) does not vanish, this shows that on

any intersection ∂M ∩ Vξj ∩ Vξk of the cover of ∂M by the open sets Vξj ∩ ∂M , we get

ωj(ξ) − cj(ξ) = ωk(ξ) − ck(ξ) and therefore this defines a global smooth function θ on ∂M .

In its definition, Eh(λ, ξ) only depends on the first jet of x at ∂M and thus modifying x to

be xeθ, this shows the claim. �

It follows that (A3) and (A4) are satisfied, with b0 = e
n
2
φξ(m). Assumption (A8) is then

checked by a direct calculation, with the measure dξ on ∂M corresponding to the choice of

the function x in Proposition 7.3.

Assumption (A7) can be reduced, using the isometries ψξj , to the following statement: if

(q, ν) ∈ S∗Hn+1 is directly escaping in the forward direction and converging to some p ∈ Sn,

then |q − p| ≤ Cx0(q) for some global constant C; the latter statement is verified directly,

see Figure 4.

Microlocalization of E1
h. Finally, assumptions (A5) and (A6) follow, by rescaling h and

using that Eh(λ, ·) is a function of λ/h, from

Proposition 7.4. Let K0 ⊂ M be a compact set containing a neighborhood of the trapped

set. Assume that λ = 1 and define

Ẽ1
h(λ, ξ) =

E1
h(λ, ξ)

1 + ‖Eh(λ, ξ)‖L2(K0)
. (7.16)
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Then:

1. Ẽ1
h(λ, ξ) is h-tempered in the sense of (3.2).

2. The wavefront set WFh(Ẽ1
h) is contained in S∗M .

3. If (m, ν) ∈ S∗M and gt(m, ν) escapes to infinity as t→ +∞ and never passes through

the set

Wξ := {(m, ∂mφξ(m)) | m ∈ supp(∂mχ0)}
for t ≥ 0, then (m, ν) 6∈WFh(Ẽ1

h).

Moreover, the corresponding estimates are uniform in λ ∈ [1/2, 2] and ξ ∈ ∂M .

Proof. We will use the construction of [Va11]. (See also [Va10]; note however that in that

paper L+ and L− switch places compared to the notation of [Va11] that we are using.) Let

M even (called X0,even in [Va11]) be the space M with the smooth structure at the boundary

∂M changed so that x2 is the new boundary defining function. As in [Va11, (3.5)], introduce

the modified Laplacian

P1(λ) := x−2x−s(1 + x2)s/4−n/8(h2∆− s(n− s))(1 + x2)n/8−s/4xs, s := n/2 + iλ/h.

(The conjugation by (1+x2)s/4−n/8 is irrelevant in our case, as s/4−n/8 = iλ/(4h) is purely

imaginary. In [Va11], it is needed to show estimates far away in the physical plane, that

is for Re s � 1.) Note that we change the sign of λ in the conjugation (in the notation

of [Va11], P1(λ) = Pσ with σ = −λ/h); therefore, our resolvent will be semiclassically

incoming, instead of semiclassically outgoing, for λ > 0. The operator P1 is smooth up to

the boundary of M even; as in [Va11, Section 3.5], we embed M even as an open set in a certain

compact manifold without boundary X, and extend P1 to a differential operator in Ψ2(X).

We also consider the semiclassical complex absorbing operator Q(λ) ∈ Ψ2(X) satisfying the

assumptions of [Va11, Section 3.5]; in particular, Q(λ) is supported outside of M even ⊂ X.

Then (P1(λ)− iQ(λ))−1 : C∞(X)→ C∞(X) is a meromorphic family of operators in λ, and

for f ∈ C∞(X), we have (see the proof of [Va11, Theorem 5.1])

xs(1 + x2)n/8−s/4(P1(λ)− iQ(λ))−1f |M = Rh(λ)(1 + x2)n/8−s/4xsx2(f |M ).

Here Rh(λ) is the incoming scattering resolvent on M . In principle, depending on the choice

of Q(λ), the operator (P1(λ)− iQ(λ))−1 could have a pole at λ. However, as R(λ) does not

have a pole for λ ∈ [1/2, 2], the terms in the Laurent expansion of (P1(λ) − iQ(λ))−1 have

to be supported outside of M even and we can ignore them in the analysis.

Let F̂h ∈ C∞(X) be any function such that F̂h = O(h)HN
h

for all N , and

Fh = (1 + x2)n/8−s/4xs+2(F̂h|M ).

Such a function exists as x−sχ0E
0
h ∈ C∞(M even \ ξ), χ0 ∈ C∞(M even), and

Fh = x2+s(1 + x2)n/8−s/4[P1(s), χ0](1 + x2)s/4−n/8x−sE0
h

is supported away from ξ. Define the function Ê1
h ∈ C∞(X) by

Ê1
h = −(P1(λ)− iQ(λ))−1F̂h

1 + ‖Eh(λ, ξ)‖L2(K0)
.
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ξ∂M

Fh

∂T
∗
XL−

Q F̂h

Figure 5. Left: physical space picture of geodesics converging to ξ. The

darker shaded region is the support of dχ0, and thus of Fh. In the lighter

shaded region, χ0 = 1. Right: phase space picture near ξ after the conjugation

of [Va11]. L− is the sink consisting of radial points, Q is the complex absorbing

operator, and the shaded region corresponds to the wavefront set of F̂h. The

vertical line hitting L− is the boundary of M even, while the horizontal line is

the fiber infinity. In both pictures, we mark two points (m, ν) satisfying the

assumption of part 3 of Proposition 7.4 and the forward geodesics starting at

these points.

Then

Ẽ1
h = xs(1 + x2)n/8−s/4Ê1

h|M .
Consider the map ι : T ∗M → T ∗X given by

ι(m, ν) =

(
m, ν − d

(
lnx(m)− 1

4
ln(1 + x(m)2)

))
, m ∈M, ν ∈ T ∗mM ;

then for an h-tempered u ∈ C∞(X),

WFh(xs(1 + x2)n/8−s/4u|M ) = ι−1(WFh(u)).

Then

WFh((P1(λ)− iQ(λ))Ê1
h) ∩ T ∗M ⊂ ι(WFh(Fh)) ⊂ ι(Wξ). (7.17)

Now, as ‖E0
h‖L2(K0) ≤ C and thus ‖E1

h‖L2(K0) ≤ C + ‖Eh‖L2(K0), we have

‖Ê1
h‖L2(K0) ≤ C.

Consider an operator QK ∈ Ψcomp(X) supported in K0 such that σ(QK) ≤ 0 everywhere

and each unit speed geodesic γ(t) either escapes as t → +∞ or passes through the region

{σ(QK) < 0} at some positive time. This is possible since K0 contains a neighborhood of the

trapped set. Then the operator P1(λ)− iQ(λ)− iQK satisfies the semiclassical nontrapping

assumptions [Va11, Section 3.5]; therefore, by the nontrapping estimate [Va11, Theorem 4.8],

‖Ê1
h‖L2(X) ≤ Ch−1‖(P1(λ)− iQ(λ)− iQK)Ê1

h‖L2(X)

≤ Ch−1‖F̂h‖L2(X) + Ch−1‖QKÊ1
h‖L2(X).

However, ‖QKÊ1
h‖ is bounded by ‖Ê1

h‖L2(K0); therefore, ‖Ê1
h‖L2(X) = O(h−1) and in particu-

lar Ê1
h is tempered; it follows that Ẽ1

h is also tempered. This proves part 1 of the proposition;

part 2 follows by ellipticity (note that WFh(Fh) ⊂Wξ ⊂ S∗M).
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Now, assume that (m, ν) ∈ S∗M satisfies the assumption of part 3 of this proposition.

Then it follows directly from (7.17), the analysis of [Va11, Section 2.2], and the definition

of ι, that the Hamiltonian flow line of σ(P1) starting at ι(m, ν) converges to the set L− of

radial points as t → +∞ and does not intersect WFh((P1(λ) − iQ(λ))Ê1
h) for t ≥ 0. In a

fashion similar to the global argument of [Va11, Section 4.4], we combine elliptic regularity

and propagation of singularities (see [Va11, Section 4.1]) with the radial points lemma [Va11,

Proposition 4.5] for L−, to get ι(m, ν) 6∈WFh(Ê1
h). Therefore, (m, ν) 6∈WFh(Ẽ1

h) as required.

�

Appendix A. Limiting measures for hyperbolic quotients

In this appendix, we give an explicit description of the limiting measures µξ in case when

M is a hyperbolic quotient Γ\Hn+1, in terms of the group Γ. This is a particular case of

asymptotically hyperbolic manifolds discussed in Section 7.

A.1. Convex co-compact groups. Let B be the unit ball in Rn+1, and Hn+1 the (n+ 1)-

dimensional hyperbolic space, which we view as B equipped with the constant negative

curvature metric gHn+1 := 4|dm|2/(1 − |m|2)2. The boundary Sn = ∂B is the sphere of

radius 1, which is also the conformal boundary of Hn+1. A convex co-compact group Γ of

isometries of Hn+1 is a discrete group of hyperbolic transformations (i.e., transformations

having 2 disjoint fixed points on B) with a compact convex core, and Γ is not co-compact.

The convex core is the smallest convex subset in Γ\Hn+1, which can be obtained as follows.

The limit set ΛΓ of the group and the discontinuity set ΩΓ are defined by

ΛΓ := {γ(m) ∈ B; γ ∈ Γ} ∩ Sn , ΩΓ := Sn \ ΛΓ (A.1)

where the closure is taken in the closed unit ball B and m ∈ B is any point (the set ΛΓ does

not depend on the choice of m). The group Γ acts on the convex hull of ΛΓ (with respect to

hyperbolic geodesics) and the convex core is the quotient space.

An important quantity is the Hausdorff dimension of ΛΓ

δ := dimH ΛΓ < n (A.2)

which in turn is, by Patterson [Pa] and Sullivan [Su79], the exponent of convergence of

Poincaré series: for any m ∈ B,∑
γ∈Γ

e−sd(m,γm) <∞ ⇐⇒ s > δ; (A.3)

we henceforth denote by d(·, ·) the distance function of the hyperbolic metric on B. Notice

that the series (A.3) is locally uniformly bounded in m ∈ B.

The group Γ acts properly discontinuously on ΩΓ as conformal transformations of the

sphere and the quotient space Γ\ΩΓ is a smooth compact manifold of dimension n. The

quotient

M = Γ\Hn+1

is a smooth non-compact manifold equipped with the hyperbolic metric g induced by gHn+1 ,

and it admits a smooth compactification by setting M = M ∪ (Γ\ΩΓ), i.e. with ∂M = Γ\ΩΓ.
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Then M is an asymptotically hyperbolic manifold in the sense of Section 7, of constant

sectional curvature −1. We shall denote the covering map by

π : B ∪ ΩΓ →M.

We refer the reader to [Ni] for more details and properties of convex co-compact groups.

A.2. Limiting measures in this setting. In constant curvature, it turns out that the

limiting measure µξ exists for all ξ (rather than for Lebesgue almost every ξ as in Section 4.3),

and can be described as a converging sum over the group. We give an expression below, which

is the same as the one obtained in [GuNa] when δ < n/2.

For ξ ∈ Sn, we let φξ be the Busemann function4 on the unit ball B defined by

φξ(m) = log
(1− |m|2

|m− ξ|2
)
.

The map Φ defined by

Φ : B× Sn → S∗Hn+1, Φ : (m, ξ) 7→ (m, ∂mφξ(m)) (A.4)

gives a diffeomorphism between the unit cotangent bundle S∗Hn+1 and B× Sn, and satisfies

Φ∗dµL = enφξ(m) dvolHn+1(m) ∧ dξ, with enφξ(m) =
(1− |m|2

|m− ξ|2
)n
,

if dµL is the Liouville measure (viewed as a volume form on the unit cotangent bundle) and

dξ the canonical measure on Sn. (This is a more general version of (A8) for the considered

case.) Any isometry γ of Hn+1 acts on both spaces by

γ.(m, ν) = (γm, (dγ(m)ν∗)∗), for (m, ν) ∈ S∗Hn+1;

γ.(m, ξ) = (γm, γξ), for (m, ξ) ∈ B× Sn,

where ∗ denotes the map identifying T ∗Hn+1 with THn+1 through the metric. We have

Φ(γ.(m, ξ)) = γ.Φ(m, ξ) and thus Φ descends to a map Γ\(Hn+1×Sn)→ S∗(Γ\Hn+1), which

we also denote by Φ.

The limiting measure µξ in the considered case is given by

Lemma A.1. Let M = Γ\Hn+1 be a quotient of Hn+1 by a convex co-compact group Γ of

isometries, let F be a fundamental domain. Then the measure µπ(ξ) of (4.12) exists for all

ξ ∈ ΩΓ and is described as a converging series by the following expression: if ξ ∈ ΩΓ∩F and

a ∈ C∞0 (S∗M), then∫
M
a dµπ(ξ) =

∫
F

∑
γ∈Γ

a(m, dφγξ(m))en(φγξ(m)+log |dγ(ξ)|) dvolHn+1(m)

where φξ(m) is the Busemann function on B associated to ξ ∈ Sn and |dγ(ξ)| is the Euclidean

norm of dγ(ξ).

4In Section 7, we used the coordinate q ∈ B, p ∈ Sn for certain charts near infinity of M , and the notation

φB
p(q) for the Busemann function on the ball. This was to avoid confusion with the coordinate m, ξ on M,∂M .

We keep in this appendix the notation φξ(m) to match the notation of the general setting of the article.
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Proof. We can view a as a compactly supported function on the unit cotangent bundle S∗F
over a fundamental domain F ⊂ B and we extend a by 0 in S∗Hn+1\S∗F (the resulting

function might not be smooth, but it does not matter here). The flow gt on S∗M is obtained

by projecting down the geodesic flow g̃t of the cover S∗Hn+1. Let ξ ∈ ΩΓ ∩ F , then small

neighbourhoods of π(ξ) in M are isometric through π to small neighbourhoods of ξ in the

unit ball B. By the construction of the decomposition (4.6) for the asymptotically hyperbolic

case in Section 7.2, the function E0
h(λ, π(ξ);π(m)) is equal to e(n/2+iλ/h)φξ(m) for m near ξ

(ξ being fixed) and thus |b0|2 = enφξ(m). One has∫
M
a(g−t(m, dφξ(m)))enφξ(m) dvolM (m) =

∫
F
ã(g̃−tΦ(m, ξ))enφξ(m) dvolHn+1(m)

where ã(m, ν) :=
∑

γ∈Γ a(γ.(m, ν)) is the lift to S∗Hn+1 of the function a on S∗M and

dvolHn+1(m) is the Riemannian measure on Hn+1. Using the map Φ of (A.4), one can define

a map g̃tξ : B→ B by

g̃tΦ(m, ξ) = Φ(g̃tξ(m), ξ),

this is a diffeomorphism which preserves the measure enφξ(m) dvolHn+1 . By [GuNa, Lemma 4],

we have enφξ(γ
−1m) = enφγξ(m)|dγ(ξ)|n, but we also have γ.Φ(m, ξ) = Φ(γm, γξ). Let U+

∞ be

defined in (G4) and put U := {m | (m,π(ξ)) ∈ U+
∞}, then U lies in a small neighborhood of

π(ξ) in M . We can identify U with a small neighbourhood Ũ of ξ in F and we get for µ̃π(ξ)

defined in (4.10),∫
S∗M

(a ◦ g−t) dµ̃π(ξ) =

∫
U
a(g−t(m, dφξ(m)))enφξ(m) dvolM (m)

=

∫
Ũ

∑
γ∈Γ

a(γ.g̃−tΦ(m, ξ))enφξ(m) dvolHn+1(m)

=
∑
γ∈Γ

∫
Ũ
a(Φ(γg̃−tξ m, γξ))enφξ(m) dvolHn+1(m)

=
∑
γ∈Γ

∫
γg̃−tξ (Ũ)

a(m, dφγξ(m))enφξ(γ
−1m) dvolHn+1(m).

(A.5)

We now observe that for all γ ∈ Γ, limt→+∞ 1l
γg̃−tξ Ũ

= 1, since Ũ is a neighbourhood of ξ

in B containing all points directly escaping to ξ. This achieves the proof by recalling the

definition (4.12) of µπ(ξ) and taking the limit in (A.5) and using the dominated convergence

theorem, as there exists C,C ′ > 0 such that for all m in the compact set supp(a)∑
γ∈Γ

enφξ(γ
−1m) =

∑
γ∈Γ

( 1− |γ−1m|
|γ−1m− ξ|2

)n
≤ C sup

m∈supp(a)
e−nd(γ−1m,0) ≤ C ′

by locally uniform (in m) convergence of Poincaré series (A.3) at s = n. �

Appendix B. The escape rate

Let us discuss the classical escape rate in some particular cases, following the work of

Bowen-Ruelle [BoRu], Young [Yo], and Kifer [Ki].
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B.1. Escape rate and the pressure of the unstable Jacobian. We consider (M, g) a

complete non-compact Riemannian manifold which has a compact set K0 ⊂ S∗M which is

geodesically convex, that is any geodesic trajectory in S∗M which leaves K0 never comes

back:

∃t0 < t1, g
t0(m, ν) ∈ K0 and gt1(m, ν) ∈M \K0 =⇒ ∀t ≥ t1, gt(m, ν) ∈M \K0.

We assume that K0 contains a neighborhood of the trapped set K. The examples we consider

are (M, g) which are hyperbolic or Euclidean near infinity, and K0 = S∗M ∩ {x ≥ ε0} with

x, ε0 given in (G2). The trapped set from Definition 4.1 can be written as

K =
⋂
t∈R

gt(K0) =
⋂
j∈Z

gj(K0)

This is a compact maximal invariant set for the flow gt. We define the escape rate as in

[Yo, Ki] by

Q := lim sup
t→∞

1

t
logµL(T (t)),

with µL the Liouville measure and T (t) defined in (1.9). Note that, since K0 is geodesically

convex, we have T (t2) ⊂ T (t1) for 0 ≤ t1 ≤ t2. The escape rate is clearly non-positive.

In this section, we assume that µL(K) = 0 and write Q in terms of the topological

pressure of the flow, under certain dynamical assumptions. More precisely, we assume that

the trapped set K is uniformly partially hyperbolic, in the following sense: there exists εf > 0

and a splitting of T (S∗M) over K into continuous subbundles invariant under the flow

TzS
∗M = Ecsz ⊕ Euz , ∀z ∈ K

such that the dimensions of Eu and Ecs are constant on K and for all ε > 0, there is t0 ∈ R
such that

∀z ∈ K, ∀t ≥ t0,
{
∀v ∈ Euz , |dgtzv| ≥ eεf t|v|,
∀v ∈ Ecsz , |dgtzv| ≤ eεt|v|.

Let Ju be the unstable Jacobian of the flow, defined by

Ju(z) := −∂t(det dgtz|Euz )|t=0

where dgt : Euz → Eugtz
and the determinant is defined using the Sasaki metric for choosing

orthornormal bases in Eu. If µ is a gt-invariant measure on K, one has∫
K
Judµ = −

∫
K

∑
j

Λ+
j dµ

where Λ+
j (z) are the positive Lyapunov exponents at a regular point z ∈ K counted with

multiplicity (regular points are points where the exponents are well defined, and this is

set of full µ-measure by the Oseledec theorem). It is also direct to see that
∫
K J

udµ =

−
∫
K log det(dg1|Eu)dµ.

The topological pressure of a continuous function ϕ : K → R with respect to the flow can

be defined by the variational formula

P (ϕ) := sup
µ∈M(K)

(
hµ(g1) +

∫
K
ϕdµ

)
(B.1)



MICROLOCAL LIMITS OF PLANE WAVES AND EISENSTEIN FUNCTIONS 69

whereM(K) is the set of gt-invariant Borel probability measures and hµ(g1) is the measure

theoretic entropy of the flow at time 1 with respect to µ. In particular P (0) is the topological

entropy of the flow.

A particular case of uniformly partially hyperbolic dynamics is when K is uniformly hy-

perbolic, that is when there is a continuous splitting Ecs = RHp⊕Es into flow direction (Hp

is the vector field generating the geodesic flow) and stable directions Es where for t ≥ t0
∀v ∈ Esz , |dgtzv| ≤ e−εf t|v|.

The set K is called a basic hyperbolic set and the flow is said to be Axiom A when the

periodic orbits of gt on K are dense in K and gt|K is topologically transitive.

It is proved by Young [Yo, Theorem 4] that if K is uniformly partially hyperbolic, then

Q = lim
t→∞

1

t
logµL(T (t)) = P (Ju). (B.2)

In the Axiom A case, the same formula was essentially contained in the work of Bowen-Ruelle

(using the volume lemma [BoRu, Lemma 4.2 and 4.3]). Moreover by [BoRu, Theorem 5],

if the incoming tail Γ− (which is the union of stable manifolds over the trapped set) has

Liouville measure 0, then P (Ju) < 0. Thus we deduce by (5.2)

µL(K) = 0 and gt is Axiom A =⇒ P (Ju) < 0.

Young [Yo, Theorem 4] gives a lower bound Q ≥ P (−
∑

j Λ+
j ) which applies without any

assumption on K (but we are more interested in an upper bound).

B.2. Relation with fractal dimensions in particular cases. Assume first that the met-

ric has constant curvature −1 in a small neighbourhood of the trapped set K (this includes

the case of convex co-compact hyperbolic quotients studied in Appendix A). Then the ge-

odesic flow on S∗M is uniformly hyperbolic on K and has Lyapunov exponents 0 (with

multiplicity 1) and ±1 (each with multiplicity n). Therefore, the maximal expansion rate

Λmax from (1.11) is equal to 1, one has Ju(z) = −n for all z ∈ K, and (see for example [Fa,

Theorem 4])

P (Ju) = htop(K)− n = (dimH(K)− 1)/2− n (B.3)

where htop is the topological entropy of the flow on K, and dimH(K) ∈ (0, n) is the Haus-

dorff dimension of K (which is equal to the Minkowski box dimension in this case). For

convex co-compact hyperbolic quotients Γ\Hn+1 (see Section A for definition), one has by

Sullivan [Su84]

δ := dimH(ΛΓ) = htop(K) (B.4)

where ΛΓ is the limit set of the group Γ defined in (A.1).

If g has negative pinched curvature near the trapped set, then one still has upper and

lower bounds on P (Ju) in terms of htop(K) and the pinching constant. If the trapped set

K is uniformly hyperbolic, it is also shown in [Fa] that dimH(K) ≤ 1 + 2htop(K)/Λmax.

In dimension 2 there is an explicit relation between the Hausdorff dimension dimH(K) and

entropies of certain measures for Axiom A cases: if

au(z) = lim
t→0

1

t
log ‖dgt|Eu‖ > 0, as(z) = lim

t→0

1

t
log ‖Dgt|Eu‖ < 0
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then Pesin–Sadovskaya [PeSa] show the following formula

dimH(K) = 1 + tu + ts, with P (−tuau) = P (−tsas) = 0.

Appendix C. Egorov’s theorem until Ehrenfest time

In this section, we prove Proposition 3.9, following the methods of [BoRo], [AnNo, Sec-

tion 5.2], and [Zw, Theorem 11.12]. Without lack of generality, we assume that t0 > 0.

C.1. Estimating higher derivatives of the flow. First of all, we need to estimate the

derivatives of symbols under propagation for long times. Consider the open set

U1 = {(m, ν) ∈ T ∗M | m ∈ U, 1− 2εe < |ν|g < 1 + 2εe}.

For each k, we fix a norm ‖ · ‖Ck(U1) for the space Ck(U1) of k times differentiable functions

on U1. (The particular choice of the norm does not matter, as long as it does not depend on

t.) The following estimate is an analogue of [AnNo, (5.6)]; we include the proof for the case

of manifolds for the reader’s convenience.

Lemma C.1. Take Λ1 > (1 + 2εe)Λmax. Then for each k, there exists a constant C(k) such

that for each a ∈ C∞0 (U1) and each t ∈ R,

‖a ◦ gt‖Ck(U1) ≤ C(k)ekΛ1|t|‖a‖Ck(U1). (C.1)

Proof. Without loss of generality, we assume that t > 0. We first recall the formula for

derivatives of the composition b ◦ ψ of a function b ∈ C∞(Rd) with a map ψ : Rd → Rd:

∂α(b ◦ ψ) =
∑
α,j

cα,j(∂j1...jmb) ◦ ψ ·
m∏
l=1

∂αlψjl , (C.2)

where cα,j are constants, j1, . . . , jm ∈ {1, . . . , d}, and α1, . . . , αm are nonzero multiindices

whose sum equals α. We see from (C.2) that (C.1) is implied by the following estimate on

the derivatives of the flow gt (required to hold in any coordinate system):

|α| ≤ k =⇒ sup
U1∩g−t(U1)

|∂αgt| ≤ Cαe|α|Λ1t. (C.3)

The converse is also true, which can be seen by substituting cooordinate functions in place

of a in (C.1).

To estimate higher derivatives of the flow, we will need several definitions from differential

geometry. For a vector field X on U1, define its pushforward gt∗X by

X(a ◦ gt) = ((gt∗X)a) ◦ gt, a ∈ C∞(gt(U1)).

Then gt∗X is a vector field on gt(U1). In local coordinates, we have

(gt∗X)j =
∑
l

(X l∂lg
t
j) ◦ g−t.

Note that since gt = exp(tHp/2), where Hp is the Hamiltonian vector field of p, and since

gt∗Hp = Hp, we have

∂tg
t
∗X = −1

2
[Hp, g

t
∗X] = −1

2
gt∗[Hp, X]. (C.4)
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We fix a symmetric affine connection ∇ on T ∗M . For vector fields X and Y , consider the

differential operator ∇2
XY , acting on functions or on vector fields, defined as follows: for a

function f and a vector field Z,

∇2
XY f = XY f − (∇XY )f, ∇2

XY Z = ∇X∇Y Z −∇∇XY Z. (C.5)

In local coordinates, we have (using Einstein’s summation convention)

∇2
XY f = XiY j(∂2

ijf − Γlij∂lf),

(∇2
XY Z)m = XiY j(∂2

ijZ
m + Γmjα∂iZ

α + Γmiα∂jZ
α − Γαij∂αZ

m

+(∂iΓ
m
jα + ΓmiβΓβjα − ΓβijΓ

m
αβ)Zα).

Here Γlij are the Christoffel symbols of the connection ∇. The advantage of ∇2
XY over XY

is that the coefficients of this differential operator at any point depend (bilinearly) only on

the values of X and Y at this point, but not on their derivatives.

We now return to the proof of (C.1). The estimate (C.3) for k = 1 follows directly from

the definition (3.17) of Λmax. It is then enough to assume that (C.3) holds for some k ≥ 1

and prove the estimate (C.1) for k+ 1. It suffices to show that for any two vector fields X,Y

on T ∗M and any a ∈ C∞0 (U1), we have the estimate

‖XY (a ◦ gt)‖Ck−1(U1) ≤ Ce
(k+1)Λ1t‖a‖Ck+1(U1). (C.6)

The left-hand side of (C.6) is equal to ‖(gt∗Xgt∗Y a) ◦ gt‖Ck−1(U1). We first claim that

‖(∇2
gt∗Xg

t
∗Y
a) ◦ gt‖Ck−1(U1) ≤ Ce

(k+1)Λ1t‖a‖Ck+1(U1). (C.7)

Indeed, in local coordinates

(∇2
gt∗Xg

t
∗Y
a) ◦ gt = (Xα∂αg

t
i)(Y

β∂βg
t
j)
(
(∂2
ija− Γlij∂la) ◦ gt

)
. (C.8)

We can now apply (C.2) to get an expression for any derivative of order no more than k− 1

of (C.8). The result will involve derivatives of orders 1, . . . , k of gt, but not its k + 1’st

derivative; therefore, we can apply (C.3) to get (C.7).

Given (C.7) and (C.5), it is enough to show

‖((∇gt∗Xg
t
∗Y )a) ◦ gt‖Ck−1(U1) ≤ Ce

(k+1)Λ1t‖a‖Ck(U1). (C.9)

The vector field ∇gt∗Xg
t
∗Y involves the second derivatives of gt, therefore the left-hand side

of (C.9) depends on the k + 1’st derivatives of gt and we cannot apply (C.3) directly. We

will instead use the method of the proof of [BoRo, Lemma 2.2], computing by (C.4)

∂t(g
−t
∗ (∇gt∗Xg

t
∗Y )) =

1

2
g−t∗ ([Hp,∇gt∗Xg

t
∗Y ]

−∇[Hp,gt∗X]g
t
∗Y −∇gt∗X [Hp, g

t
∗Y ]) =

1

2
g−t∗ Zt,

where Zt is the vector field given by

Zt = ∇2
gt∗Xg

t
∗Y
Hp +R∇(Hp, g

t
∗X)(gt∗Y ).
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Here R∇ is the curvature tensor of the connection ∇. Then

∇gt∗Xg
t
∗Y = gt∗(∇XY ) +

1

2

∫ t

0
gt−s∗ Zs ds. (C.10)

We have
‖(gt∗(∇XY )a) ◦ gt‖Ck−1(U1) = ‖∇XY (a ◦ gt)‖Ck−1(U1)

≤ C‖a ◦ gt‖Ck(U1) ≤ Ce
kΛ1t‖a‖Ck(U1).

It is then enough to handle the integral part of (C.10). The field Zs depends quadratically

on the first derivatives of gs, but does not depend on its higher derivatives; therefore, writing

an expression for Zs in local coordinates similar to (C.8), we get for a ∈ C∞0 (U1),

‖(Zsa) ◦ gs‖Ck−1(U1) ≤ Ce
(k+1)Λ1s‖a‖Ck(U1).

Applying (C.1) for the Ck norm (given by the induction hypothesis) and using the geodesic

convexity of U , we get∫ t

0
‖((gt−s∗ Zs)a) ◦ gt‖Ck−1(U1) ds =

∫ t

0
‖(Zs(a ◦ gt−s)) ◦ gs‖Ck−1(U1) ds

≤ C
∫ t

0
e(k+1)Λ1s‖a ◦ gt−s‖Ck(U1) ds ≤ C

∫ t

0
e(k+1)Λ1sekΛ1(t−s)‖a‖Ck(U1) ds

≤ Ce(k+1)Λ1t‖a‖Ck(U1)

and the proof is finished. �

C.2. Proof of Proposition 3.9. The proof of Proposition 3.9 is based on repeatedly ap-

plying the following corollary of Lemma C.1. The functions b(j) below will be the remainders

in the formula for the commutator [h2∆, A(j)(t)], while the functions c(j) will be the errors

arising from multiplying our operators by X1 and X2.

Proposition C.2. Take Λ1 > (1 + 2εe)Λmax. Fix t0 > 0 and let ϕ ∈ C∞0 (U1) satisfy

|ϕ| ≤ 1. Assume that a0 ∈ C∞(T ∗M) and for each j ≥ 0, b(j)(t) ∈ C∞([0, t0] × T ∗M), and

c(j) ∈ C∞(T ∗M), with support contained in some j-independent compact set. For j ≥ 0,

define a(j) ∈ C∞([0, t0]× T ∗M) inductively as the solutions to the equations

a(0)(0) = a0, a
(j+1)(0) = ϕ · a(j)(t0) + c(j+1);

∂ta
(j)(t) =

1

2
Hpa

(j)(t) + b(j)(t).

Then for each k, and each j, we have (bearing in mind that each a(j) is supported inside

some j-independent compact set and thus its Ck norm is well-defined up to a constant)

sup
t∈[0,t0]

‖a(j)(t)‖Ck(T ∗M) ≤ C(k)
(
ejkΛ1t0‖a0‖Ck

+ max
0≤i≤j

e(j−i)kΛ1t0( sup
t∈[0,t0]

‖b(i)(t)‖Ck + ‖c(i)‖Ck)
)
,

where C(k) is a constant independent of j.
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Proof. We can write

a(j)(t) = a(j)(0) ◦ gt +

∫ t

0
b(j)(s) ◦ gt−s ds.

Since t0 is fixed, it is enough to estimate the derivatives of a(j)(0). Define

ϕ(j) =
∏

0≤m<j
(ϕ ◦ gmt0);

applying the Leibniz rule to ϕ(j), estimating each nontrivial derivative of ϕ◦gmt0 by Lemma C.1,

using that |ϕ| ≤ 1 and absorbing the (polynomial in l) number of different terms in the Leib-

niz formula into the exponential by increasing Λ1 slightly, we get ‖ϕ(j)‖Ck = O(ejkΛ1t0).

Now,

a(j)(0) = ϕ(j) · (a0 ◦ gjt0) +

j−1∑
i=0

ϕ(j−i)
∫ t0

0
b(i)(s) ◦ g(j−i)t0−s ds

+

j∑
i=1

ϕ(j−i) · (c(i) ◦ g(j−i)t0).

Here we put ϕ(0) = 1. We can now apply Lemma C.1 again to get the required estimate. �

We are now ready to prove Proposition 3.9. Fix a quantization procedure Oph on M ; our

symbols will be supported in a certain compact set (in fact, no more than distance t0 to

the set U) and we require that the corresponding operators be compactly supported. Put

Λ1 = Λ′0.

Let l satisfy (3.18). We will construct the operators

A(j)
m (t) = Oph

( ∑
0≤m′≤m

a
(j)
m′ (t)

)
, 0 ≤ t ≤ t0, 0 ≤ j ≤ l, m ≥ 0,

Here the symbols a
(j)
m will be supported in a fixed compact subset of T ∗M and satisfy the

derivative bounds

sup
t∈[0,t0]

‖a(j)
m (t)‖Ck ≤ C(k,m)h(1−2ρj)m−ρjk. (C.11)

with the constants C(k,m) independent on j and ρj defined by (3.19). The operators A
(j)
m (t)

will satisfy the relations

A(0)
m (0) = A+O(h∞)Ψ−∞ ,

A(j+1)
m (0) = X2A

(j)
m (t0)X1 + Oph(c(j)

m ) +O(h∞)Ψ−∞ ,

hDtA
(j)
m (t) =

1

2
[h2∆, A(j)

m (t)] +
h

i
Oph(b(j)m (t)) +O(h∞)Ψ−∞ ,

(C.12)

where the symbols b
(j)
m (t) and c

(j)
m are supported in some fixed compact set and satisfy bounds

sup
t∈[0,t0]

‖b(j)m (t)‖Ck , ‖c(j)
m ‖Ck ≤ C(k,m)h(1−2ρj)(m+1)−ρjk, (C.13)

with the constants C(k,m) again independent on j.
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We construct the symbols a
(j)
m iteratively, by requiring that they solve the equations

a(0)
m (0) = δm0 · a0, a

(j+1)
m (0) = ϕa(j)

m (t0)− c(j)
m−1,

∂ta
(j)
m (t) =

1

2
Hpa

(j)
m (t)− b(j)m−1(t).

Here A = Oph(a0)+O(h∞)Ψ−∞ and we put b
(j)
−1 = c

(j)
−1 = 0. The function ϕ ∈ C∞0 (U1) is equal

to σ(X1)σ(X2)ψ(|ν|), where ψ ∈ C∞0 (1− 2εe, 1 + 2εe) is such that ψ(|ν|) = 1 near WFh(A).

We use the fact that the function |ν| is invariant under the geodesic flow. The estimate (C.11)

follows immediately from (C.13) and Proposition C.2. As for the equations (C.12) and the

bounds (C.13), they follow from (C.11) and the following commutator formula:

[h2∆,Oph(a)] =
h

i
Oph(Hpa) + Oph(b) +O(h∞)Ψ−∞ , b = O(h2−2ρ‖a‖Sρ)Sρ ,

true for any ρ < 1/2 and any a ∈ Scomp
ρ .

Now, consider the asymptotic sums

a(j)(t) ∼
∑
m≥0

a(j)
m (t)

and define the operators A(j)(t) = Oph(a(j)(t)). By (C.12), these operators satisfy

A(0)(0) = A+O(h∞)Ψ−∞ , A
(j+1)(0) = X2A

(j)(t0)X1 +O(h∞)Ψ−∞ ,

hDtA
(j)(t) =

1

2
[h2∆, A(j)(t)] +O(h∞)Ψ−∞ .

We then have

(X2U(t0))lA(U(−t0)X1)l = A(l)(0) +O(h∞)L2→L2 .

It remains to recall that a(l)(0) ∈ Scomp
ρl uniformly in l. The principal symbol and microlocal

vanishing statements follow directly from the procedure we used to construct the symbols

a
(j)
m .

Appendix D. Proof of quantum ergodicity in the semiclassical setting

In this section, we illustrate how our methods yield a proof of the following integrated

quantum ergodicity statement in the semiclassical setting:

Theorem 5. Let (M, g) be a compact Riemannian manifold of dimension d and assume

that the geodesic flow gt on M is ergodic with respect to the Liouville measure µL on the unit

cotangent bundle S∗M . For each h > 0, let (ej)j∈N be an orthonormal basis of eigenfunctions

of h2∆ with eigenvalues λ2
j . Then for each semiclassical pseudodifferential operator A ∈

Ψ0(M), we have

hd−1
∑

λj∈[1,1+h]

∣∣∣∣〈Aej , ej〉L2(M) −
1

µL(S∗M)

∫
S∗M

σ(A) dµL

∣∣∣∣→ 0 as h→ 0. (D.1)
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A more general version of Theorem 5 was proved in [HeMaRo], in particular relying on the

result of [DuGu, PeRo] on o(h) remainders for the Weyl law when the closed geodesics form a

set of measure zero. The purpose of this Appendix is to provide a shorter proof. Theorem 5

is formulated here for the semiclassical Laplacian for simplicity of notation, but it applies

to any self-adjoint semiclassical pseudodifferential operator P (h) with compact resolvent on

a compact manifold, if the Hamiltonian flow of the principal symbol p of P (h) has no fixed

points and is ergodic on the energy surface p−1(0) and we take eigenvalues in the interval

[0, h].

The key component of our proof is the following estimate:

Lemma D.1. Let M be as in Theorem 5. Then for each A ∈ Ψ0(M), we have

hd−1
∑

λj∈[1,1+h]

‖Aej‖2L2(M) ≤ (C‖σ(A)‖L2(S∗M) +O(h))2. (D.2)

Here ‖σ(A)‖L2(S∗M) is the L2 norm of the restriction of σ(A) to S∗M with respect to the

Liouville measure. The constant in O(h) depends on A, but the constant C does not.

Proof. Assume first that A is compactly microlocalized. We can rewrite the left-hand side

of (D.2) as the square of the Hilbert–Schmidt norm of h(d−1)/2AΠ[1,1+h], where Π[1,1+h] =

1l[1,(1+h)2](h
2∆) is a spectral projector. It can then be estimated using the local theory of

semiclassical Fourier integral operators, by (3.24) (applied to the adjoint of the operator in

interest).

To handle the case of a general A, it remains to note that if WFh(A) ∩ S∗M = ∅, then

the left-hand side of (D.2) is O(h∞), as each Aej is O(h∞) by the elliptic estimate (Propo-

sition 3.2; see also the proof of Proposition 4.5). �

Putting A equal to the identity in (D.2), we get the following upper Weyl bound:

#{j | λj ∈ [1, 1 + h]} ≤ Ch1−d. (D.3)

We can now prove Theorem 5. Take A ∈ Ψ0(M); by subtracting a multiple of the identity

operator and applying the ellipticity estimate, we may assume that A is compactly microlo-

calized and ∫
S∗M

σ(A) dµL = 0. (D.4)

Define the quantum average

〈A〉T =
1

T

∫ T

0
U(t)AU(−t) dt.

Here U(t) = eith∆/2 is the semiclassical Schrödinger propagator. By Egorov’s theorem

(Proposition 3.8), for any fixed T the operator 〈A〉T lies in Ψ0, modulo an O(h∞)L2→L2

remainder, and its principal symbol is

σ(〈A〉T ) = 〈σ(A)〉T :=
1

T

∫ T

0
σ(A) ◦ gt dt.
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Note that for each j, we have U(t)ej = eitλj/(2h) and thus 〈〈A〉T ej , ej〉 = 〈Aej , ej〉. Using

Cauchy–Schwarz inequality in j and the bounds (D.2) and (D.3), we get

hd−1
∑

λj∈[1,1+h]

|〈Aej , ej〉| = hd−1
∑

λj∈[1,1+h]

|〈〈A〉T ej , ej〉|

≤ hd−1
∑

λj∈[1,1+h]

‖〈A〉T ej‖L2 ≤ C
(
hd−1

∑
λj∈[1,1+h]

‖〈A〉T ej‖2L2

)1/2

≤ C‖〈σ(A)〉T ‖L2(S∗M) +OT (h).

However, by (D.4) and the von Neumann ergodic theorem [Zw, Theorem 15.1], we have

‖〈σ(A)〉T ‖L2(S∗M) → 0 as T → ∞. Therefore, for each ε > 0 we can choose T large enough

so that the left-hand side of (D.1) is bounded by ε/2 +O(h). Then for h small enough, it is

bounded by ε; since the latter was chosen arbitrarily small, we get (D.1).
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