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Abstract. In this paper, we give a sharp spectral characterization of conformally com-
pact Einstein manifolds with conformal infinity of positive Yamabe type in dimension
n+ 1 > 2. More precisely, we prove that the largest real scattering pole of a conformally
compact Einstein manifold (X, g) is less than n

2 − 1 if and only if the conformal infinity
of (X, g) is of positive Yamabe type. If this positivity is satisfied, we also show that the
Green function of the fractional conformal Laplacian P (α) on the conformal infinity is
non-negative for all α ∈ [0, 2].

1. Introduction

Let Γ be a convex co-compact group without torsion of orientation preserving isometries
of the (n + 1)-dimensional real hyperbolic space Hn+1, and let Ω(Γ) ⊂ Sn the domain of
discontinuity of Γ. Then the hyperbolic manifold X := Γ\Hn+1 is conformally compact
with a conformal infinity M which is locally conformally flat and given by the compact
quotient M = Γ\Ω(Γ) when we view the elements of Γ as Möbius transformation acting on
the closed unit ball of Rn+1. In [23], Schoen and Yau proved that the Hausdorff dimension
δΓ of the limit set Λ(Γ) = Sn \ Ω(Γ) of the group Γ is less than n

2
− 1 if the conformal

infinity Γ\Ω(Γ) is of positive Yamabe type (we say that a conformal manifold is of positive
Yamabe type if and only if there is a Riemannian metric in its conformal class whose scalar
curvature is positive). Later it was proved in [17] that the converse also holds. Sullivan
[24] and Patterson [18] also proved that the Poincaré exponent of the group Γ is equal to
δΓ. Moreover, in [20], Perry showed that the largest real scattering pole of Γ\Hn+1 is given
by the Poincaré exponent s = δ(Γ) (see also [9] for a characterization of δ(Γ) in terms of
first resonance). Therefore, in this context, we know that the largest real scattering pole
of Γ\Hn+1 is less than n

2
− 1 if and only if the conformal infinity Γ\Ω(Γ) is of positive

Yamabe type. This result which relates the conformal geometry of the infinity Γ\Ω(Γ) to
the spectral property of the conformally compact hyperbolic manifold Γ\Hn+1 has been
very intriguing.

Later in [12], Lee made a clever use of the positive generalized eigenfunctions to de-

duce that there is no L2 eigenvalues in (0, n
2

4
) on (n+ 1)-dimensional conformally compact

Einstein manifolds X with conformal infinity of nonnegative Yamabe type. However, the
particular case of hyperbolic convex co-compact quotients mentionned above shows that
the absence of L2 eigenvalues does not imply the positivity of the Yamabe type of the con-
formal infinity (the L2-eigenvalues would be scattering poles in (n

2
, n)). A simple explicit
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example is just obtained by taking the quotient of H3 by a Fuchsian group Γ, giving rise
to an infinite volume hyperbolic cylinder with section the Riemann surface Γ\H2. In the
introduction of [12], Lee asked what would be a sharp spectral condition for a conformally
compact Einstein manifold to have a conformal infinity of positive Yamabe type. Con-
sidering the hyperbolic cases mentionned above, it is then natural to ask wether the fact
that the largest real scattering pole is less than n

2
− 1 on conformally compact Einstein

manifolds is equivalent to positivity of Yamabe type of the conformal infinity. In the spirit
of the work of Lee [12], we are able to give such a spectral characterization of conformally
compact Einstein manifolds with conformal infinity of positive Yamabe type.

Let us first introduce some notations and state our main theorem precisely. Suppose
that X is an (n+1)-dimensional smooth manifold with boundary ∂X = M . A metric g on
X is said to be conformally compact if, for a smooth defining function x of the boundary
M in X, x2g extends smoothly as a Riemannian metric to the closure X̄. A conformally
compact metric g is complete, has infinite volume, and induces naturally a conformal class
of metrics [ĝ] = [x2g|TM ] (here x ranges over the smooth boudary defining functions).
As shown in [13], the sectional curvature of a conformally compact metric converges to
−|dx|2x2g when approaching the boundary M . Hence a metric g on X is naturally said to

be asymptotically hyperbolic (AH in short) if it is conformally compact and the sectional
curvatures converge to −1 at the boundary. A conformally compact Einstein manifold
(X, g) is an AH manifold such that Ric(g) = −ng.

If (X, g) is an AH manifold, we know (cf. [6, 4]) that for any representative ĝ ∈ [ĝ], there
is a unique geodesic defining function x of ∂X associated to the representative ĝ such that
the metric g has the geodesic normal form near the boundary

(1) g = x−2(dx2 + gx)

where gx is a one-parameter smooth family of Riemannian metrics on M with ĝ = ĝ. In
Mazzeo [13] and Mazzeo-Melrose [15], it is shown that the spectrum of the (non-negative)
Laplacian ∆g acting on functions on an AH manifold (X, g) consists of the union of a finite

set σp(∆g) ⊂ (0, n
2

4
) of L2-eigenvalues, and a half-line of continuous spectrum [n

2

4
,+∞).

Recently, Joshi-Sa Baretto [11] and Graham-Zworski [7] (building on [15, 10, 21]), intro-
duced the scattering operators S(s) on AH manifolds. For any s ∈ C such that

Re(s) ≥ n

2
, s(n− s) /∈ σp(∆g), s /∈ n

2
+

N
2
,

and f ∈ C∞(∂X), there is a unique solution v to the equation

(2) (∆g − s(n− s))v = 0

on X which can be decomposed as follows

(3) v = Fxn−s +Gxs, with F,G ∈ C∞(X̄) and F |∂X = f.
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The scattering operator is the linear operator defined on C∞(∂X) by

(4) S(s)f = G|x=0.

If the metric gx has an even Taylor expansion at x = 0 in powers of x, it is shown in
[7] (see [8] for the analysis of the points in (n + 1)/2 − N) that S(s) has a meromorphic
continuation to the complex plane as a family of pseudo-differential operators of complex
order 2s−n on ∂X. These results extend the analysis of [10, 19, 21] on hyperbolic manifold
Γ\Hn+1 to the AH class. It is proved in [7] that S(s) has first order poles at n

2
+ N, the

residues of which are the GJMS conformally covariant Laplacian on (∂X, [ĥ]) constructed
in [5] if g is asymptotically Einstein. For our purpose, it is more convenient to consider
the renormalized scattering operator

(5) P (α) := 2α
Γ(α

2
)

Γ(−α
2
)
S(
n+ α

2
).

Those P (α) at regular points are conformally covariant α-powers of the Laplacian, they
are self-adjoint when α is real and unitary when Re(α) = 0, moreover P (2) is the Yamabe
operator of the boundary if the bulk space X is (asymptotically) Einstein. We thus call
P (α) the fractional conformal Laplacian for obvious reason. The first real scattering pole
is defined to be the largest real number s such that α = 2s− n is a pole of P (α).

Theorem 1.1. Let (X, g) be a conformally compact Einstein manifold of dimension n+1 >
3. The first real scattering pole is less than n

2
−1 if and only if its conformal infinity (M, [ĝ])

is of positive Yamabe type.

We can also show that

Theorem 1.2. Let (X, g) be a conformally compact Einstein manifold of dimension n+1 >
3 with conformal infinity of positive Yamabe type. Then, for all α ∈ (0, 2], P (α) satisfies
(a) the first eigenvalue is positive;
(b) P (α)1 is positive for any choice of representative ĝ of the conformal infinity with
positive scalar curvature;
(c) the first eigenspace is generated by a single positive function;
(d) its Green function is nonnegative.

Remark 1.3. 1) In both cases, it will be clear from the proof that we actually only need to
assume that

Ric(g) ≥ −ng
and that gx defined in (1) has the asymptotic form near the boundary

gx = ĝ − 2x2

n− 2

(
Ric(ĝ)− R̂

2(n− 1)
ĝ
)

+O(x3)

where ĝ is a metric on ∂X, Ric(ĝ) is its Ricci curvature tensor and R̂ its scalar curvature.
Metric with this asymptotic ‘weakly Einstein’ structure are discussed by Mazzeo-Pacard
[16].
2) Although we do not discuss this here, the smoothness assumption of gx up to the boundary
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is not necessary, and a restricted smoothness assumption Ck,α(X̄) for some k ≥ 3 could
rather easily be obtained without much modification.
3) It is well known that those four properties in Theorem 1.2 all hold for the conformal
Laplacian P (2). However, when α ∈ (0, 2), P (α) is a pseudo-differential operator (non-
local) and it is interesting to see that these four properties continue to hold then.

Our proof is essentially based on the maximum principle and the existence of a positive
supersolution for ∆g−s(n−s). To construct this supersolution, we use a special boundary
defining function constructed by Lee [12], which has the advantage of being a positive
generalized (non L2) eigenfunction. We shall recall some basic facts about conformally
compact Einstein manifolds in the next section. Then in Section 3 we prove Theorem 1.1.
Since the proof is rather simple we will carry out some basic calculations for the expansions
of F for the convenience of the reader. Finally in Section 4 we prove Theorem 1.2. The
crucial issue will be the nonnegativity of the Green function.

2. Positive generalized eigenfunctions

In this Section, we first lay out basic facts about conformally compact Einstein manifolds,
then we recall the construction of positive generalized eigenfunctions, following [12, 1, 22].
Let (X, g) be a conformally compact Einstein manifold with conformal infinity (M, [ĝ]). Is
is shown in [6, 4], that for any representative ĝ ∈ [ĝ], there is a unique geodesic defining
function x such that the metric has the geodesic normal form

(6) g = x−2(dx2 + gx)

near the boundary. Using this form and considering a Taylor expansion of gx at x = 0,
Einstein’s equations turn into a system which can be solved asymptotically (see [2, 4]).
One finds that, when n is odd, the metric has an expansion

(7) gx = ĝ + g(2)x2 + even powers in x + g(n−1)xn−1 + g(n)xn +O(xn+1),

and, when n is even,

(8) gx = ĝ + g(2)x2 + even powers in x + hxn log x+ g(n)xn +O(xn+2).

When n is odd, g(2i) for 2i < n are formally determined by the local geometry of (M, ĝ)
and g(n) is trace free and nonlocal. When n is even, g(2i) for 2i < n, h and the trace of
g(n) are determined by the local geometry of (Mn, ĝ), h is trace free, and trace free part
of g(n) is formally undetermined. Acually, for the purpose of this paper, we only need to
assume that

(9) g(2) = − 2

n− 2

(
Ric(ĝ)− R̂

2(n− 1)
ĝ
)
,

where Ric(ĝ) is the Ricci curvature tensor of ĝ and R̂ is the scalar curvature of ĝ. The
following positive generalized eigenfunction was first constructed and used by Lee [12]. Its
importance in the results of [22, 1] is also worth mentioning. From Lemma 5.2 in [12], we
have
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Lemma 2.1. Let (X, g) be a conformally compact Einstein manifold and assume that ĝ is a
representative in [ĝ] of the conformal infinity (Mn, [ĝ]) and let x be the associated geodesic
boundary defining function. Then there is a unique positive generalized eigenfunction u
solving

(∆g + n+ 1)u = 0

with expansion at the boundary

(10) u =
1

x
+

R̂

4n(n− 1)
x+O(x2).

The important observation by Lee [12] (see also an interesting interpretation of such
observation in [22, 1]) is that the gradient of u is controlled by u:

Lemma 2.2. Suppose that, in addition to the assumptions in Lemma 2.1, the scalar cur-
vature satisfies R̂ ≥ 0. Then one has

(11) |∇gu|2g < u2 in X

Proof. The proof is done in Proposition 4.2 of [12]. We repeat it for the the convenience
of the reader. First the estimate near the boundary

(12) u2 − |∇gu|2 =
R̂

n(n− 1)
+ o(1)

follows from the construction of generalized eigenfunctions in Graham-Zworski [7], then an
easy computation using ∆gu = −(n+ 1)u gives

(13) ∆g(u
2 − |∇gu|2g) = 2〈(Ricg + n)du, du〉g + 2

∣∣∣ ∆gu

n+ 1
g +∇2

gu
∣∣∣2
g

which is non-negative if Ric(g) ≥ −ng. From the strong maximum principle, u2 − |∇u|2g
attains its minimum on ∂X and only on ∂X, or else is constant. But by (12), the minimum
on ∂X is non-negative, so |∇gu|2g ≤ u2. If u2 − |∇gu|2 is a positive constant, the proof is

clearly finished, so it remains to show that u2 can not be identically equal to |∇gu|2. If it
were the case, an easy computation would give that, for s > n/2 and φ := u−s,

∆gφ = −sφ∆gu

u
− s(s+ 1)φ

|∇gu|2

u2
= s(n− s)φ

but since clearly φ ∈ L2, it contradicts the result of [12] showing that there is no L2-
eigenvalues in (0, n2/4). �

We remark that for the above two lemmas to hold, we only need to assume that Ric(g) ≥
−ng and the expansion (7) and (8) hold up to second order with g(2) given by (9).
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3. Proof of Theorem 1.1

We present a proof of Theorem 1.1 in this section. First we restate the result of Lee [12]
in terms of scattering pole as follows:

Theorem 3.1. Let (X, g) be a conformally compact Einstein manifold of dimension n+1 >
3 with conformal infinity of nonnegative Yamabe type. Then the first scattering pole is less
than or equal to n

2
.

Here we used the identification of poles of P (2s− n) and poles of the resolvent R(s) :=
(∆g − s(n− s))−1 in Re(s) > n/2 (see for instance [19, Lemma 4.13]). Hence to push the
first scattering pole down to n

2
− 1, we first show that the scattering operator is regular

at n
2
. For this purpose, we review some of the spectral analysis on AH manifolds. By the

result of Mazzeo-Melrose [15, 8], the resolvent of Laplacian R(s) is bounded on L2(X) for

s ∈ C, Re(s) > n/2, s(n− s) /∈ σp(∆g),

and admits a meromorphic continuation to C as an operator mapping the space Ċ∞(X̄) of
smooth functions on X̄ vanishing to infinite order at ∂X to the space xsC∞(X̄). Moreover
the poles of R(s), called resonances, are such that the polar part of the Laurent expansion
of R(s) is a finite rank operator. We first observe

Lemma 3.2. The resolvent R(s) is analytic at n
2

if and only if there is no function v ∈
x
n
2C∞(X̄) such that (∆g − n2/4)v = 0.

Proof. It is rather straightforward to see that Lemma 4.9 of Patterson-Perry [19] extends
to our case, i.e. only a first order pole is possible for R(s) at n

2
. Indeed, by spectral theory

n
2

can only be a pole of order at most 2. If it is of order 2, then n2/4 is an L2 eigenvalue for
∆g and the coefficient of order (s− n

2
)−2 is a finite rank projector on the L2-eigenspace. The

analysis of [15] (see the proof of Prop 3.3 in [8] for details) shows that the corresponding
L2 normalized eigenvectors (vk)k=1,...,K would be in x

n
2C∞(X̄), but to be in L2(X), this

implies actually that vk ∈ x
n
2

+1C∞(X̄) and by the indicial equation near ∂X,

(∆g − n2/4)xjf(y) = −(j − n/2)2f(y) +O(xj+1), ∀f ∈ C∞(∂X)

which implies vk = O(x∞). But Mazzeo’s unique continuation theorem [14] shows that
then vk = 0 for all k. Then n

2
can only be a pole of order 1 of R(s), in which case the

residue of R(s) is finite rank with range in ker(∆g − n2

4
) ∩ xn2C∞(X̄). Conversely assume

that R(s) is analytic at n
2

and that there is an u ∈ x
n
2C∞(X̄) in ker(∆g − n2/4) with

leading asymptotic u ∼ x
n
2 f0(y) as x→ 0. Then by Graham-Zworski [7], we can construct

for a smooth family in Re(s) = n/2 of solutions us ∈ xn−sC∞(X̄) + xsC∞(X̄) such that
un/2 = u,

(∆g − s(n− s))us = 0,

and

us = xn−s(f0 + x2zs) + xs(S(s)f0 + x2ws)
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where S(s) is the scattering operator, zs, ws are smooth functions on X̄ depending smoothly
on s on the line Re(s) = n/2; notice from [7] that us can be taken to be of the form

us := xn−sΦ(s)−R(s)(∆g − s(n− s))(xn−sΦ(s))

where Φ(s) ∈ C∞(X̄) is smooth in s on the line Re(s) = n/2 and such that xn/2Φ(n/2) = u
and (∆g − s(n − s))(xn−sΦ(s)) = O(x∞). Since we assumed R(s) analytic at s = n/2,
then taking the limit as s→ n/2 gives u = x

n
2 (f0 +S(n/2)f0 +O(x2)), which implies that

S(n/2)f0 = 0, but this is not possible since S(s) is unitary on the line Re(s) = n/2 (for
instance by Section 3 of [7]). Thus the proof is complete. �

To show that the resolvent at n
2

is analytic, we refine slightly Lee’s argument.

Lemma 3.3. Let (X, g) be a conformally compact Einstein manifold of dimension n+ 1 >
3, with a conformal infinity of nonnegative Yamabe type. Let k > 0 and consider

(14) φ = (ku)−
n
2 log(ku),

where u is the positive generalized eigenfunction in Lemma 2.1 associated with a choice of
ĝ of nonnegative scalar curvature. Then if k is chosen large enough, we have

(15) ∆gφ >
n2

4
φ in X.

Proof. This is a simple calculation:

∆gφ = −n
2
φ

∆gu

u
− n

2
(
n

2
+ 1)φ

|∇gu|2g
u2

+ (ku)−
n
2 ((n+ 1)

|∇gu|2g
u2

+
∆gu

u
)

=
n2

4
φ+

n(n+ 2)

4
φ(1−

|∇gu|2g
u2

)− (n+ 1)(ku)−
n
2 (1−

|∇gu|2g
u2

)

=
n2

4
φ+ (ku)−

n
2 (1−

|∇gu|2g
u2

)(
n(n+ 2)

4
log(ku)− (n+ 1))

>
n2

4
φ,

in X provided

log(ku) >
4(n+ 1)

n(n+ 2)
.

Here we have used (11) of the previous section. �

Theorem 3.4. Let (X, g) be a conformally compact Einstein manifold of dimension n+1 >
3, with conformal infinity of nonnegative Yamabe type. Then the resolvent R(λ) is regular
at n

2
and S(n

2
) = −Id.
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Proof. By Lemma 3.2, we simply need to prove that there is no nontrivial function v
solving

(∆g −
n2

4
)v = 0 in X

with
v = Fx

n
2

for some smooth F ∈ C∞(X̄). A straightforward computation gives

(16)

∆g
v

φ
=

∆gv

φ
− 2〈∇gv,∇g

1

φ
〉g − v

∆gφ

φ2
− v

2|∇gφ|2g
φ3

= −(
∆gφ

φ
− n2

4
)
v

φ
+ 2
∇gφ

φ
· ∇g

v

φ
,

where φ is defined in (14) in Lemma 3.3. Now, by considering the asymptotic behaviour
of φ and v at the boundary, we easily see that

v

φ
→ 0

when approaching the boundary. Hence, if there is a negative interior minimum for v/φ
at p ∈ X, the term ∇g(v/φ) vanishes at p in (16), but since −((∆g − n2/4)φ)/φ > 0 in X,
we deduce that ∆g(v/φ) is positive near p, and this is not possible by applying the strong
maximum principle in a small disc around p. We thus have

v ≥ 0 on X.

The same argument with an interior maximum shows that v ≤ 0 and thus v = 0. To see
S(n

2
) = −Id in this case, the proof of Lemma 4.3 in [8] can be applied to our case mutatis

mutandis: it shows that the scattering operator at n/2 is given by

S(n/2) = −(Id− 2P0)

where P0 is a projector with respect to L2(M, dvolĝ) on the vector space

V := {(x−
n
2 u)|∂X̄ ;u ∈ Range(Resn

2
R(λ))}.

In particular from Lemma 3.2, we obtain S(n
2
) = −Id. �

So far we have improved Theorem 3.1 of Lee and obtained that the first scattering pole
is less than n

2
. To push further we need to show that the scattering operator S(s) for all

s ∈ (n
2
, n

2
+ 1) has no kernel. Indeed, from the work of Joshi-Sa Barreto [11] (see [7, 19] for

the constant curvature case), we know that P̃ (s) := (1 + ∆ĝ)
−s/4P (2s−n)(1 + ∆ĝ)

−s/4 is a
family of bounded Fredholm operators on L2(∂X̄, dvolĝ) and the theory of Gohberg-Sigal
[3] can be used to deduce that, by the meromorphic functional equation (e.g. see section
3 in [7])

S(s)S(n− s) = Id,

the operator P̃ (2s − n) has a pole at s0 ∈ {Re(s) ≤ n/2} if and only if P̃ (n − 2s0) has a
non-zero kernel, or equivalently P (2s − n) has a pole at s0 if and only if P̃ (n − 2s0) has
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non-zero kernel. Thus this corresponds to prove that for s ∈ (n
2
, n

2
+1), there is no solution

to the Poisson equation

(17) (∆g − s(n− s))v = 0 in X

with
v ∈ xn−sC∞(X̄).

This can be compared to the result of Lee did [12]: he proved that there is no nontrivial
solution to the same equation with

v = xsF for some F ∈ C∞(X̄)

and some s ∈ (n
2
, n

2
+ 1). We now define the function

(18) ψ := u−(n−s).

By (10), we have

(19) ψ = xn−s − (n− s)R̂
4n(n− 1)

xn+2−s +O(xn+2−s).

It is also an easy calculation similar to (15) (see also [12] for the case ψ = u−s) to see that
for s ∈ (n

2
, n

2
+ 1)

(20) ∆gψ > s(n− s)ψ in X.

In order to show that the kernel of S(s) is 0 for s ∈ (n
2
, n

2
+ 1), we need to find the second

term in the expansion of F ∈ C∞(X̄) at the boundary (recall v = xn−sF is a solution of
(17)). This can be found for instance in [7], but we will give some details for the convenience
of the reader since it is rather straightforward. Recall that, in the product decomposition
(0, ε)x ×M near the boundary, we have for any smooth function f defined on (M, ĝ) and
any z ∈ R

∆g(fx
z) =− fxn+1

√
det gx

∂x(x
1−n
√

det gx∂xx
z)− xz+2

√
det gx

∂α(
√

det gxg
αβ
x ∂βf)

=z(n− z)fxz − z

2
fxz+1Trĝ(∂xgx) + xz+2∆ĝf + o(xz+2),

(21)

where ∆ĝ is the Laplacian of (M, ĝ). Hence, since

Trĝ(∂xgx) = − R̂

(n− 1)
x+O(x3)

from (9), we have

(∆g − s(n− s))(fxn−s) = (
(n− s)R̂
2(n− 1)

f + ∆ĝf)xn−s+2 + o(xn−s+2)

and

(∆g − s(n− s))(hxn−s+2) = ((n− s+ 2)(s− 2)− s(n− s))hxn−s+2 + o(sn−s+2)

= −2(n+ 2− 2s)hxn−s+2 + o(xn−s+2).
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Therefore we have

(22) F = f +
1

2(n+ 2− 2s)

((n− s)R̂f
2(n− 1)

+ ∆ĝf
)
x2 + o(x2).

Lemma 3.5. Let (X, g) be a conformally compact Einstein manifold of dimension n+ 1 >
3, with conformal infinity of positive Yamabe type, and suppose that h is a solution to

S(s)h = 0

on M for some s ∈ (n
2
, n

2
+ 1). Then h must vanish on M .

Proof. First of all, the statement here is independent of the choice of representative in
[ĝ]. We then choose a representative ĝ whose scalar curvature is positive at every point
on M . Assume that h is non identically 0, we may assume with no loss of generality that
the maximum of h is 1 and is achieved at p0 ∈M . Then we consider the solution v to the
Poisson equation

(∆g − s(n− s))v = 0

on X with the expansion

v = Fxn−s +Gxs

where F |x=0 = h. Hence, combining (20) and the identity

(23) ∆g
v

ψ
= −

(∆gψ

ψ
− s(n− s)

) v
ψ

+ 2
∇gψ

ψ
· ∇g

v

ψ
,

similar to (16), we deduce from the maximum principle (exactly like in the proof of Theorem
3.4) that v/ψ can not have an interior positive maximum in X. The function v/ψ extends
continuously to X̄ and since its maximum over the boundary is equal to 1, it is clear that
v ≤ ψ on X. From (22), we have

(24) v(x, p0) = xn−s +
1

2(n+ 2− 2s)

((n− s)R̂
2(n− 1)

+ ∆ĝh(p0)
)
xn−s+2 + o(xn−s+2).

Recall that p0 is a maximum point for h on M , which implies that ∆ĝh(p0) ≥ 0. Compar-
ing (19) and (24) near p0, we obtain a contradiction with the fact that v ≤ ψ. �

It is obvious that Theorem 3.4 and Lemma 3.5 imply that, for a conformally compact
Einstein manifold with conformal infinity of positive Yamabe type, the first scattering pole
is less than n

2
− 1. On the other hand, if we know that the first scattering pole on an AH

manifold is less than n
2
− 1, then we have P (0) = Id and so the operator P (α) remains

positive for all α ∈ [0, 2]. In particular, the Yamabe operator P (2) is positive and then
it is well known that the conformal infinity is of positive Yamabe type. This achieves the
proof of Theorem 1.1.
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4. Proof of Theorem 1.2

Statement (a) in Theorem 1.2 is a simple consequence of Theorem 1.1. Since

P (0) = Id

and

P (2) = ∆ĝ +
n− 2

4(n− 1)
R̂

both with positive first eigenvalue, and P (α) for α ∈ (0, 2) has no kernel, the first eigen-
value of P (α) has to be positive for all α ∈ (0, 2).

Statement (b) follows easily from the arguments used in the proof of Theorem 1.1. Let
us give a short proof in the

Proposition 4.1. Let (X, g) be a conformally compact Einstein manifold of dimension
n + 1 > 3. Suppose that a representative ĝ of the conformal infinity has positive scalar
curvature on M . Then Pĝ(α)1 is positive for all α ∈ [0, 2], where Pĝ denotes the operator
P (α) defined using ĝ for conformal representative in the conformal infinity.

Proof. Let v be the solution to the Poisson equation

(∆g − s(n− s))v = 0 in X

with
v = Fxn−s +Gxs, F,G ∈ C∞(X̄)

and expansions

(25) F = 1 +
(n− s)R̂

4(n+ 2− 2s)(n− 1)
x2 + o(x2), G = S(s)1 +O(x2),

where
α = 2s− n ∈ (0, 2).

Let ψ be the positive supersolution of ∆ − s(n − s) defined in (18), then using (23), we
derive from the maximum principle (exactly like in the proof of Theorem 1.1) that

v < ψ

in X. Then, from the expansion (19) and (25), we first conclude that S(s)1 has to be
non-positive on M for s ∈ (n

2
, n

2
+ 1) since v−ψ = xsS(s)1 + o(xs). Now if S(s)1 vanishes

at a point p ∈ M , we can consider again the asymptotics (19) and (25) along the line

{y = p;x < ε} and by positivity of R̂(p) we obtain a contradiction with v < ψ for x small
enough. We thus conclude that Pĝ(α)1 > 0 everywhere on M for all α ∈ (0, 2). On the
other hand, Pĝ(α)1 > 0 holds at 0 and 2 obviously. This ends the proof. �

Though, for the differential operator P (2), the positivity of the first eigenvalue implies
the other three properties due to the maximum principle, it is not so straightforward
for pseudo-differential operators like P (α) for α ∈ (0, 2). Of course, the crucial issue
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is the nonnegativity of the Green function of the pseudo-differential operators P (α), or
equivalently the non-positivity of the Green function of the scattering operator S(s) for
s ∈ (n

2
, n

2
+ 1).

By [15], outside the diagonal the Schwartz kernel R(s;m,m′) of the resolvent R(s) =
(∆g − s(n− s))−1 has the regularity

R(s;m,m′) ∈ (xx′)sC∞(X̄ × X̄ \ diagX̄).

Consider the Eisenstein function E(s) ∈ C∞(X × ∂X̄) defined for s 6= n/2 and s not a
pole of R(s) by

E(s;m, y′) := (2s− n)[x′
−s
R(s;m,x′, y′)]x′=0, m ∈ X, y′ ∈ ∂X̄

it solves the equation (for all y′ fixed in ∂X̄)

(∆g − s(n− s))E(s; ·, y′) = 0 in X.

From the structure of the resolvent above, we see that for y′ fixed in ∂X̄, the function
m → E(s;m, y′) is in xsC∞(X̄ \ {y′}). Moreover (see [11] or [7]), the leading behavior of
E(s;x, y, y′) as x→ 0 (and for y 6= y′) is given by

E(s;x, y, y′) = xs(S(s; y, y′) +O(x))

where S(s; y, y′) is the Schwartz kernel of S(s).
For s ∈ (n/2, n/2 + 1) such that S(s) is invertible, the Green kernel of S(s) is given by

S(n− s; y, y′) by the functional equation S(s)S(n− s) = Id (see again [7]). The behavior
of S(n− s; y, y′) as y → y′ is analyzed in [11] (see the Proof of Theorem 1.1 in [11] for the
computation of the principal symbol of S(s)).

Lemma 4.1. The leading asymptotic behavior of S(s; y, y′) at the diagonal is given by

S(s; y, y′) =
π−

n
2 Γ(s)

Γ(s− n
2
)
(dĝ(y, y

′))−2s +O((dĝ(y, y
′))−2s+1)

where dĝ(·, ·) denote the distance for the metric ĝ on ∂X. In particular for s ∈ (n/2, n/2 +
1), one has Γ(n/2 − s) < 0 so S(n − s; y, y′) tends to −∞ at the diagonal {y = y′} of
∂X × ∂X.

With the above understanding of the Green function S(n − s; y, y′) of the scattering
operator S(s) for s ∈ (n

2
, n

2
+ 1) we know that the corresponding Eisenstein function

E(n− s) solves
(∆g − s(n− s))E(n− s) = 0 in X

with the expansion
(26)

E(n− s;x, y, y′) = xn−s
(
S(n− s; y, y′)

+
x2

2(n+ 2− 2s)
(
(n− s)R̂
2(n− 1)

S(n− s; y, y′)−∆ĝS(n− s; y, y′))

+ o(x2)
)
,
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near the boundary, y 6= y′, and where y′ ∈ ∂X̄ is fixed, when g is at least asymptotically
Einstein up to the second order. Let us first deduce the following Lemmas, which will be
useful later.

Lemma 4.2. Let (X, g) be a conformally compact Einstein manifold of dimension n+1 > 3
with conformal infinity of positive Yamabe type. Then the integral kernel S(n− s; y, y′) is
non-positive for all y, y′ ∈ ∂X̄ and s ∈ (n

2
, n

2
+ 1).

Proof. The proof runs similarly to the proof of Lemma 3.5 except that S(n − s; y, y′) for
a fixed y′ ∈ ∂X̄ and s ∈ (n

2
, n

2
+ 1) is not bounded from below according to Lemma 4.1. �

Lemma 4.3. Let s ∈ (n
2
, n

2
−1), then for all fixed y ∈ ∂X, the set {y′ ∈ ∂X;S(n−s; y, y′) =

0} has empty interior in ∂X.

Proof. Assume S(n−s; y, y′) = 0 for some fixed y ∈ ∂X and y′ in an open set U ⊂ ∂X, then
by the indicial equation (21) we deduce easily that E(n−s;x, y, y′) = O(x∞) for y ∈ U and
by Mazzeo’s unique continuation theorem [14] this would imply that E(n− s;x, y, y′) = 0,
which is not possible. �

As a consequence of Lemma 4.2 we have

Proposition 4.2. Let (X, g) be a conformally compact Einstein manifold of dimension
n + 1 > 3, with conformal infinity of positive Yamabe type. Then, for each α ∈ (0, 2), the
first eigenspace of P (α) is spanned by a single positive function.

Proof. We first produce a positive eigenfunction for P (α) and α ∈ (0, 2). Since each P (α)
for α ∈ (0, 2) is invertible and with nonnegative Green function given by P (−α) (thanks
to the functional equation P (α)P (−α) = Id) , we look for the eigenfunction of P (−α) as
to maximize

(27)

∫
M
fP (−α)fdvolĝ∫
M
|f |2dvolĝ

.

By Lemma 4.2, we know that

(28) |P (−α)f | ≤ P (−α)|f |,
hence ∫

M
fP (−α)fdvolĝ∫
M
|f |2 dvolĝ

≤
∫
M
|f |P (−α)|f |dvolĝ∫
M
|f |2dvolĝ

.

Therefore there is a nonnegative function f ≥ 0 which is the first eigenfunction

(29) P (α)f = λ(α)f.

It is then easily seen that f has to be positive, again due to Lemma 4.2. Namely, if f(y) = 0
and P (−α; y, y′) is the Green function of P (α), then,

0 = f(y) = λ(α)

∫
M

P (−α; y, y′)f(y′)dvolĝ(y
′),
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which implies f ≡ 0. Next we show that, if h is another eigenfunction of P (α) with
eigenvalue λ(α), then the ratio h

f
has to be a constant on M . We shall use the confor-

mal covariance property of the regularized scattering operator. Let us denote Pe2ω ĝ(α)
the operator P (α) defined using the conformal representative e2ωĝ ∈ [ĝ] instead of ĝ, or
equivalently using the boundary defining function eωx. Then we have by the conformal
covariance of P (α)

(30) P
u

4
n−α ĝ

(α) = u−
n+α
n−αPĝ(α)u,

for any positive function u on M . Hence
(31)

P
f

4
n−α ĝ

(α)
h

f
= f−

n+α
n−αPĝ(α)h = f−

n+α
n−αλ(α)h = f−

n+α
n−α (Pĝ(α)f) · h

f
= (P

f
4

n−α ĝ
(α)1) · h

f
,

where

P
f

4
n−α ĝ

(α)1 = λ(α)f−
2α
n−α > 0.

Let P
f

4
n−α ĝ

(−α; y, y′) ≥ 0 be the Green function of P
f

4
n−α ĝ

(α). Then

(32)
h

f
(y) =

∫
M

P
f

4
n−α ĝ

(−α; y, y′)((P
f

4
n−α ĝ

(α)1) · h
f

)(y′)dvol
f

4
n−α ĝ

(y′).

Using that ∫
M

P
f

4
n−α ĝ

(−α; y, y′)(P
f

4
n−α ĝ

(α)1)(y′)dvol
f

4
n−α ĝ

(y′) = 1,

we deduce from (32)

0 =

∫
M

P
f

4
n−α ĝ

(−α; y, y′)(P
f

4
n−α ĝ

(α)1)(y′)
[h
f

(y)− h

f
(y′)
]
dvol

f
4

n−α ĝ
(y′).

Since the Green kernel P
f

4
n−α ĝ

(−α; y, y′) and (P
f

4
n−α ĝ

(α)1)(y′) are respectively non-negative

and positive by (b) and (d) of Theorem 1.1, we deduce that for all y ∈ ∂X, h
f
(y) = h

f
(y′)

for all y′ 6= y such that P
f

4
n−α ĝ

(−α; y, y′)(P
f

4
n−α ĝ

(α)1)(y′) 6= 0. But from Lemma 4.3, we

know that for each y, this set is dense in ∂X. By continuity of h and f (which follows from
ellipticity of P (α)), we can conclude that h = f . Thus the proof is complete. �

Acknowledgement. Both authors thank the Institute for Advanced Study in Prince-
ton where this work was done, in particular C.G. was partially supported there by NSF
fellowship No. DMS-0635607. We are also grateful to the anonymous referee for his careful
reading.

References

[1] S.Y. A. Chang, J. Qing and P. Yang, On the topology of conformally compact Einstein 4-manifolds.
Noncompact Problems at the intersection of Geometry, Analysis and Topology; Contemporary Math.
volume 350, 2004, pp 49-61.



SPECTRAL CHARACTERIZATION OF POINCARÉ-EINSTEIN MANIFOLDS 15
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[3] I. Gohberg, E. Sigal, An Operator Generalization of the logarithmic residue theorem and the theorem
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[10] L. Guillopé, M. Zworski, Scattering asymptotics for Riemann surfaces. Ann. Math. 145 (1997), 597-
660.
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