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Abstract. Following joint work with Dyatlov [DyGu], we describe the semi-classical
measures associated with generalized plane waves for metric perturbation of Rd,
under the condition that the geodesic flow has trapped set K of Liouville measure 0.

1. Introduction

Semi-classical measures associated to (approximate) high frequency solutions of el-

liptic or hyperbolic equations have been studied in many different settings. They

describe the concentration in phase space of these solutions. To fix the ideas, let

(uh)h→0 be a sequence of L2 functions on a d-dimensional Riemannian compact mani-

fold (M, g), such that ||uh||L2 = 1. We say that a measure µ on the cotangent bundle

T ∗M is a semi-classical measure associated to uh if for any pseudo differential operator

A ∈ Ψ0(M) of order 0, one has

〈Auh, uh〉L2 →
∫
S∗M

σ(A)dµ, as h→ 0.

where σ(A) is the principal symbol of A. One natural question to understand eigen-

functions of the Laplacian for large eigenvalues is to consider semi-classical measures

associated to uhj satisfying (h2
j∆g − 1)uhj = 0 and ||uhj ||L2 = 1, with hj → 0 as

j → ∞. Except in particular cases, describing the semi-classical measures of such

eigenfunctions is very difficult. However, when the geodesic flow is ergodic on S∗M ,

this reflects in semi-classical measures: it was shown by Schnirelman [Sh], Zelditch

[Ze87] and Colin de Verdière [CdV] that for any orthonormal basis (ej)j∈N of eigen-

functions of the Laplacian with eigenvalues h−2
j , there exists a density one subsequence

(ejk) that converges microlocally to the Liouville measure µL on S∗M . A more precise

statement is possible to obtain (see [HeMaRo] or [DyGu, Appendix D]):

hd−1
∑

h−1≤zj≤h−1+1

∣∣∣∣〈Oph(a)ej, ej〉L2 − 1

µL(S∗M)

∫
S∗M

a dµL

∣∣∣∣→ 0 as h→ 0 (1.1)

where Oph is a semi-classical quantization mapping semi-classical symbols to semi-

classical pseudo-differential operators.
1
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For many non-compact manifolds, there are in general much more eigenfunctions

for the Laplacian than in the compact setting, however those are not L2. In scattering

theory, the two natural families of eigenfunctions are the generalized (or distorted)

plane waves and the resonant states. On Rd, the plane waves are simply

E(z; ξ,m) := eizξ.m, m ∈ Rd, ξ ∈ Sd−1, z > 0

and they solve (∆−z2)E(z; ξ, ·) = 0. Semi-classically, i.e. setting z = λ/h for λ close to

1, they can be rewritten as Eh(λ; ξ) = E(z/h; ξ, ·) and they solve (h2∆−λ2)Eh(λ; ξ) =

0. A simple stationary phase argument shows that they are microlocally concentrated

on the Lagrangian Lξ := {(m,λξ) ∈ T ∗M ;m ∈ M}: if a is a compactly supported

symbol and the quantization is chosen so that Oph(a) has compact Schwartz kernel,

then as h→ 0

〈Oph(a)Eh(λ; ξ), Eh(λ, ξ)〉 =

∫
Rd
a(m,λξ)dm+O(h). (1.2)

Let us now take the case of compact elliptic perturbations of the flat Laplacian, say

for instance that (M, g) is a Riemannian manifold which contains a compact region

N so that (M \ N, g) is isometric to (Rd \ B(0, R0), geucl). For any λ ∈ (1/2, 2),

the semiclassical Laplacian h2∆g associated to (M, g) has a family of eigenfunctions

Eh(λ; ξ,m) which are, in M \N , of the form

Eh(λ; ξ,m) = ei
λ
h
ξ.m + Einc(λ; ξ,m)

where Einc is incoming in the sense that it satisfies a Sommerfeld radiation condition

near infinity, or equivalently, that it lies in the image of C∞0 (Rd) under the free (in-

coming) resolvent R0(λ/h) of the Laplacian on the Euclidean space Rd. These Eh
are called generalized plane waves. Resonant states are more complicated, due to the

fact that they correspond to eigenfunctions of a non self-adjoint problem, we shall not

discuss their semiclassical limits here.

In this short note, we will explain the idea of [DyGu] to describe the semiclassical

measures of Eh(λ; ξ). Before we give the statement, we recall that the trapped set

K ∈ S∗M of the geodesic flow is the set of points (m, ν) ∈ S∗M such that the geodesic

(gt(m, ν))t∈R lies entirely in some compact subset of S∗M . Here gt detotes the geodesic

flow on S∗M or T ∗M .

Theorem 1. Let (M, g) be a Riemannian manifold for which there exists a compact

set N so that (M \N, g) is isometric to (Rd \B(0, R0), geucl) for some R0 > 0. Suppose

that the trapped set has Liouville measure µL(K) = 0. For Lebesgue almost every

ξ ∈ Sd−1, there exists a Radon measure µξ on S∗M such that for each compactly

supported h-semiclassical pseudodifferential operator A ∈ Ψ0(M), we have as h→ 0,

1

h

∫ 1+h

1

∫
Sd−1

∣∣∣〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) −
∫
S∗M

σ(A) dµξ

∣∣∣ dξdλ→ 0. (1.3)
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The measure µξ is invariant under the geodesic flow on S∗M , and it is defined by∫
S∗M

a dµξ := lim
t→+∞

∫
M\N

a ◦ g−t(m, ξ)dm.

where we identify S∗(M \N) with (Rd \B(0, R0))×Sd−1. It disintegrates the Liouville

measure in the sense for the natural measure dξ on Sd−1, then∫
Sd−1

µξ dξ = µL. (1.4)

This result states that for almost any direction ξ ∈ Sd−1, the generalized plane wave

directed by ξ microlocally converges to µξ in average in frequency in windows of semi-

classical size O(h) (or equivalently classical windows of frequency of size O(1)). In

spirit, this can be compared to the quantum ergodicity statement of (1.2). In [DyGu,

Th. 2], we actually get estimates for the speed of convergence in terms of the volume

in phase space of points staying for roughly | log h| time near the trapped set. When

the trapped set is partially uniformly hyperbolic for the flow, this gives a power of h

for the speed of convergence.

An application of the above result (with the speed of convergence) is a local Weyl law

with several terms expansions. We shall not discuss it here, but we give a particular

case of this (see [DyGu, Th. 3] for a general statement).

Theorem 2. Let (M, g) be as in Theorem 1 and assume that the curvature of g is −1

near the projection of the trapped set K on M . Let 2δ+ 1 be the Hausdorff dimension

of K ⊂ S∗M . Then there exist differential operators Lj of order 2j on T ∗M , with

L0 = 1, such that for each compactly supported zeroth order classical symbol a, we

have for each s > 0 and N ∈ N such that N > d− δ

Tr(Oph(a) 1l[0,s](h
2∆)) = (2πh)−d

N∑
j=0

hj
∫
p≤s

Lja dµω +O
(
h−δ−

)
(1.5)

where µω is the standard volume form on T ∗M , p is the principal symbol of ∆g and

1l[0,s](h
2∆) denotes the spectral projector of h2∆g onto the frequency window [0, s]. The

remainder is uniform in s when s varies in a compact subset of (0,∞).

2. Proof of Theorem 1

We shall use some tools in semi-classical analysis, we thus refer to [Ma, Zw] for

basics of semi-classical calculus and quantization.

Generalized plane waves.We start with the construction of the generalized plane

waves. The continuous spectrum of the Laplacian ∆g associated to the metric g is the
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half-line [0,∞). We will take the resolvent of h2∆g to be the L2-bounded operator

Rh(λ) := (h2∆− λ2)−1 in Im(λ) < 0.

The resolvent admits a continuous extension to {λ 6= 0, Im(λ) ≤ 0} as a bounded

operator from L2
comp to L2

loc (this is called limiting absorbtion principle), and when

λ > 0 we call Rh(λ) the incoming resolvent, while Rh(−λ) is the outgoing resolvent

We define r to be a smooth function on M , equal to |m| in {m ∈M \N ; |m| > 2R0}
and equal to 1 in N , where we used the Euclidean coordinate in M \N induced by the

isometry between M \N and Rd \ B(0, R0). Following for instance Melrose [Me], the

generalized plane wave is defined for ξ ∈ Sd−1 by

Eh(λ; ξ,m) := 2iλh
(2πh

iλ

) d−1
2

lim
r→∞

[r
d−1
2 e

iλr
h Rh(λ;m, rξ)], (2.1)

where Rh(λ;m,m′) is the Schwartz kernel of Rh(λ) and rξ ∈ N . As a function of

(m, ξ) ∈ M × Sd−1, it is smooth and solves (h2∆ − λ2)Eh(λ, ξ) = 0 in M where

Eh(λ, ξ) := Eh(λ; ξ, ·). In the case of Rd it is given by the usual plane wave ei
λ
h
ξ.m. An

alternative expression for Eh in M can be found as follows: set E0
h(λ; ξ,m) := ei

λ
h
ξ.m,

let (1−χ0) ∈ C∞0 (M) with χ0 = 1 on r ≥ 1/ε and supp(∇χ0) ⊂ {r ∈ [ 1
2ε
, 1
ε
]} for some

small ε > 0; then we claim that

Eh(λ; ξ,m) = χ0(m)E0
h(λ; ξ,m) + E1

h(λ; ξ), (2.2)

where

E1
h(λ; ξ) := −Rh(λ)Fh(λ; ξ), Fh(λ, ξ) = (h2∆− λ2)(χ0E

0
h(λ, ξ)) = [h2∆, χ0]E0

h(λ, ξ).

(2.3)

Note that we can apply Rh(λ) to Fh(λ, ξ) ∈ C∞0 (M); in fact, suppFh ⊂ {ε < 1
r
< 2ε}.

The proof of (2.2) is easy.

Relation between plane wave and spectral projectors. One has Eh(λ;m, ξ) =

Eh(−λ;m, ξ) since Rh(λ)∗ = R(−λ) for λ ∈ R, and the decomposition of the spectral

measure in terms of these functions is given as follows: by Stone formula, the spectral

measure of h2∆ is given by

dΠh(λ) =
iλ

π
(Rh(λ)−Rh(−λ)) dλ for λ ∈ (0,∞) (2.4)

in the sense that F (h2∆) =
∫∞

0
F (λ2)dΠh(λ) for any bounded function F . Using

Green’s formula in balls or radius going to ∞, one can show that

dΠh(λ;m,m′) = λn(2πh)−d
∫

Sd−1

Eh(λ;m, ξ)Eh(λ,m′, ξ) dξdλ (2.5)

where dξ corresponds to the standard volume form on the sphere.
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Estimates on the local norms of Eh. As we see from their construction, the

norm ||Eh||L2(K0) on a compact set K0 ⊂ M is related to the norm of the truncated

incoming resolvent χ1Rh(λ)χ2 where χj ∈ C∞0 (M). In general, Burq [Bu] proved that

||χ1Rh(λ)χ2||L2→L2 = O(eC/h), 0 < h < h0

for some C > 0, and when the metric is non trapping one obtains O(h−1) instead.

When the trapped set is non-empty, it is in general difficult to obtain polynomial

bounds in h.

Let χ ∈ C∞0 (M). Then we claim that χΠ[1,1+h] is a Hilbert–Schmidt operator and

there exists a global constant C such that for each bounded operator A : L2(M) →
L2(M), we have (|| · ||HS denotes Hilbert-Schmidt norm)

h−1‖AχEh(λ, ξ)‖2
L2
m,ξ,λ(M×Sd−1×[1,1+h]) ≤ Chd−1‖AχΠ[1,1+h]‖2

HS. (2.6)

From this, we can prove that if A ∈ Ψ0(M) is a compactly supported semi-classical

pseudo-differential operator, the functions AEh are bounded in L2 on average in the

following sense: there exists a constant C independent of A such that for any h > 0

h−1‖AEh(λ, ξ)‖2
L2
m,ξ,λ(M×Sd−1×[1,1+h]) ≤ C‖σ(A)‖2

L2(S∗M) +O(h). (2.7)

The L2 norm of σ(A) on the energy surface S∗M is with respect to the Liouville

measure µL. The bound (2.6) follows rather directly from the expression (2.5) of

the spectral measure in terms of Eh(λ, ξ) and the identity Tr(BB∗) = ||B||2HS for B

Hilbert-Schmidt. The bound (2.7) is a bit more involved. We won’t give details (see

Lemma 3.11 in [DyGu] for instance), but essentially the argument is to prove that for

ϕ ∈ C∞0 (R) equal to 1 near 0, the operator ϕ((h2∆g − 1)/h) is a semi-classical Fourier

Integral Operator, then we bound ||AΠ[1,1+h]A
∗||HS by C||χϕ((h2∆g − 1)/h)χ||HS, and

this amounts to estimate the L2(M×M) norm of the Schwartz kernel: from its integral

representation as a Lagrangian distribution, this reduces to h
1−d
2 times the L2 norm of

σ(A) on the energy surface S∗M up to lower order terms in h.

Wave-front sets. We will only work with semi-classical pseudo-differential oper-

ators with compactly supported Schwartz kernel in M ×M . For us, a semi-classical

symbol of order k will be a compactly supported in m function a(m, ν;h) on T ∗M such

that

∀α, β, |∂αm∂βν a(m, ν;h)| ≤ Cα,β〈ν〉k−|β|.

The microsupport or wave-front set WFh(A) of a semi-classical pseudo-differential

operator can be defined as follows. We denote by T
∗
M the radial compactification in

the fibers of T ∗M , this amounts to glue a sphere bundle isomorphic to S∗M at fiber

infinity |ν| = ∞; open neighbourhoods of a point (m,µ) at fiber infinity are simply

given by conic neighbourhoods with angle near µ ∈ Sd−1. A point (m0, ν0) ∈ T
∗
M
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does not belong to WFh(A) if there exists a neighbourhood V of (m0, ν0) such that A

can be written under the form

A = Oph(a) + A′, |∂αm∂βν a(m, ν)| = O(h∞〈ν〉−∞) in V, KA′ ∈ h∞C∞0 (M ×M)

for all α, β and where KA′ is the Schwartz kernel of A′. Let uh ∈ H−Lcomp(M) for some

L ≥ 0 such that for any compact set K0, ||uh||H−L(K0) = O(h−L
′
) for some L′ (we say

that uh is h-tempered in that case). We define the wave-front set WFh(uh) to be the

complement of the set of points (m, ν) ∈ T ∗M such that there is a neighbourhood V of

(m, ν) for which ||Auh||L2 = O(h∞) for all semi-classical pseudo-differential operators

A microsupported in V .

The wave front set of χ0E
0
h(λ; ξ) is straightforward to obtain by simple stationary

phase, it is given by a Lagrangian

WFh(χ0E
0
h(λ; ξ)) = {(m,λξ) ∈ T ∗M ;m ∈ supp(χ0)}

and χE0
h(λ; ξ) is called a semi-classical Lagrangian distribution. The wave front set of

E1
h(λ; ξ) is more difficult to obtain, but we can still use some propagation of singularities

properties of the incoming resolvent Rh(λ). We can show the following statement.

Define

Wξ := {(m, ξ) ∈ T ∗M ;m ∈ supp(∇χ0)}, Ẽ1
h(λ; ξ) :=

E1
h(λ; ξ)

1 + ||Eh(λ, ξ)||L2(r<ε−1)

.

First Ẽ1
h(λ, ξ) is h-tempered in the sense that for any compact set K0 ⊂ M , there

exists CK0 such that ||Ẽ1
h(λ, ξ)||L2(K0) ≤ CK0 . Secondly,

(m,λν) ∈WFh(Ẽ
1
h(λ, ξ)) =⇒

{
(m, ν) ∈ S∗M and

gt(m, ν)t→+∞ 6→ ∞ or ∃t ≥ 0, gt(m, ν) ∈ Wξ.
(2.8)

To show this, we can use the free resolvent R0
h(λ) on Rd: if χ1 ∈ C∞(M) equal 1 in

r > ε−1, supported inside M \N , we write (Fh is defined in (2.3))

χ1E
1
h(λ; ξ) = −R0

h(λ)F 0
h (λ; ξ), F 0

h (λ, ξ) := Fh(λ; ξ)− [h2∆, χ1]E1
h(λ; ξ) (2.9)

which holds since E1
h(λ, ξ) is incoming at infinity. For any χ ∈ C∞0 (M \ N), one has

||χR0
h(λ)χ|| = O(h−1) as a map from the semi-classical Sobolev space H−1

h (M) to

L2(M), and ||F 0
h (λ, ξ)||H−1

h (M) = O(h(1 + ||Eh||L2(r<ε−1)), thus Ẽ1
h(λ, ξ) is h-tempered.

The (m, ν) ∈ S∗M statement in (2.8) comes from ellipticity. The second state-

ment is an application of the classical propagation of singularities and the follow-

ing property for the incoming free resolvent R0
h(λ): if f is a compactly supported

h-tempered family of distributions, then if (m′, ν ′) ∈ WF(R0
h(λ)f), there exists t ≥ 0

such that gt(m′, ν ′) ∈ supp(f). This implies that if (m, ν) ∈ WFh(Ẽ
1
h(λ, ξ)) and

(∪t≥0g
t(m, ν)) ∩Wξ = ∅, then gt(m, ν) is trapped in forward time.
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End of the proof. Since u(m) = Eh(λ;m, ξ) solves (h2∆g−λ2)u = 0, then by using

the fact that the propagator U(t) = eith∆/2 is a Fourier Integral Operator associated

to geodesic flow, we obtain that

χEh(λ; ξ) = χe−itz/(2h)U(t)χtEh(λ; ξ) +O(h∞‖Eh(λ; ξ)‖L2(Kt))

where χ ∈ C∞0 (M) and for t ∈ R, χt ∈ C∞0 (M) is supported in the interior of a

compact set Kt ⊂M and satisfies (dg denotes Riemannian distance on M)

dg(suppχ, supp(1− χt)) > |t|. (2.10)

Therefore, for A ∈ Ψ0(M) compactly supported and χ ∈ C∞0 (M) such that χAχ = A

〈AEh(λ; ξ), Eh(λ; ξ)〉 = 〈U(−t)AU(t)χtEh(λ; ξ), χtEh(λ; ξ)〉+O(h∞‖Eh(λ; ξ)‖2
L2(Kt)

).

By Egorov’s theorem, for each t (independent of h), there exists a compactly supported

operator At ∈ Ψ0(M) such that

U(t)AU(−t) = At +O(h∞)L2→L2 . (2.11)

Moreover, WFh(A
t) ⊂ g−t(WFh(A)) and σ(At) = σ(A) ◦ gt +O(h). We get

〈AEh(λ; ξ), Eh(λ; ξ)〉 = 〈A−tχtEh(λ; ξ), χtEh(λ; ξ)〉+O(h∞‖Eh(λ; ξ)‖2
L2(Kt)

).

For some r0 large, let ϕ ∈ C∞0 ({r < 2r0}) be equal to 1 in a large region {r ≤ r0}
containing N and supp(∇χ0), and we split

χtA−tχt = A0 + A1, A0 := ϕχtA−tχt, A1 := (1− ϕ)χtA−tχt.

This yields

〈AEh(λ; ξ), Eh(λ; ξ)〉 =〈A1χ0E
0
h(λ; ξ), χ0E

0
h(λ; ξ)〉+ 〈A0Eh(λ; ξ), Eh(λ; ξ)〉

+ 〈A1χ0E
0
h(λ; ξ), E1

h(λ; ξ)〉+ 〈A1E
1
h(λ; ξ), χ0E

0
h(λ; ξ)〉

+O(h∞‖Eh(λ; ξ)‖2
L2(Kt)

).

(2.12)

Taking first h→ 0 and then t→ +∞, the first term in the right hand side will give the

limiting measure by using the fact that E0
h is a Lagrangian distribution; the second

term will be estimated using (2.7) after averaging in (λ, ξ), and we will show using

propagation of singularities that the last 3 terms will not contribute to the limit h→ 0

as they are O(h∞‖Eh(λ; ξ)‖2
L2(Kt)

) (thus by averaging in (λ, ξ) they become an O(h∞)

by (2.7)). Indeed, we have since A0 has compact support in some {r ≤ 2r0},

|〈A0Eh(λ; ξ), Eh(λ; ξ)〉| ≤ ||A0Eh(λ; ξ)||L2(M)||Eh(λ; ξ)||L2({r≤2r0})

and integrating in λ ∈ [1, 1 + h], ξ ∈ Sd−1, we get for h small by (2.7)

1

h

∫ 1+h

1

∫
Sd−1

|〈A0Eh(λ; ξ), Eh(λ; ξ)〉|2dξdλ ≤ C||σ(A0)||2L2(S∗M) +O(h).
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The principal symbol of A0 is ϕχtσ(A) ◦ g−t, and by the assumption that the trapped

set has Liouville measure 0, we get

lim
t→+∞

lim
h→0

1

h

∫ 1+h

1

∫
Sd−1

|〈A0Eh(λ; ξ), Eh(λ; ξ)〉|2dξdλ = 0. (2.13)

When integrated in ξ, λ, the last term in (2.12) is an O(h∞), uniformly for t in a

compact set (independent of h), by using (2.7). To deal with the terms in the second

line of (2.12), we use wavefront sets: since ||E0
h(λ; ξ)||L2(Kt) ≤ Ct for some constant Ct

depending only on t, we write

|〈χ0E
0
h(λ; ξ), A1E

1
h(λ; ξ)〉| ≤ Ct||A1E

1
h(λ; ξ)||L2(M)

and we will show that ||A1E
1
h(λ; ξ)||L2(M) = O(h∞||Eh(λ, ξ)||L2(Kt)). Since WFh(A1) ⊂

{(m, ν) ∈ T ∗M ;ϕ(m) 6= 1, g−t(m, ν) ∈ supp(σ(A))} and ϕ(m) = 1 on a large region

containing supp(∇χ0)∪N , we see that for a point (m, ν) in the wave-front set of A1, the

geodesic gt(m, ν) for t ≥ 0 escape to infinity without entering Wξ: indeed the regions

S∗M ∩ {r < r0} are geodesically convex and since supp(σ(A)) ∪Wξ ⊂ {r < r0}, the

condition σ(A)(g−t(m, ν)) 6= 0 with ϕ(m) 6= 1 implies that gt(m, ν) ⊂ {r ≥ r0} for all

t ≥ 0. Consequently, by (2.8), a point (m, ν) ∈WFh(A1) cannot be in WFh(Ẽ
1
h(λ; ξ))

and we deduce that

|〈χ0E
0
h(λ; ξ), A1E

1
h(λ; ξ)〉| = O(h∞||Eh(λ, ξ)||L2(r<ε−1))

Integrating in ξ ∈ Sd−1 and in λ ∈ [1, 1+h] this becomes an O(h∞) by (2.7). The same

argument works for 〈A1χ0E
0
h(λ; ξ), E1

h(λ; ξ)〉 by writing it as 〈χ0E
0
h(λ; ξ), A∗1E

1
h(λ; ξ)〉

and using that the wave-front set of A∗1 is that of A1.

As a conclusion, we have obtained

lim
t→0

lim
h→0

1

h

∫ 1+h

1

∫
Sd−1

|〈AEh(λ; ξ), Eh(λ; ξ)〉 − 〈A1χ0E
0
h(λ; ξ), χ0E

0
h(λ; ξ)〉|dξdλ = 0.

Since now E0
h(λ, ξ) is an explicit Lagrangian semiclassical distribution (just a plane

wave), we immediatly get by stationary phase

〈A1χ0E
0
h(λ; ξ), χ0E

0
h(λ; ξ)〉 =

∫
M

χ2
0(1− ϕ)(m)σ(A)(g−t(m, ξ))dm+O(h)

where the remainder is uniform for t in a compact interval independent of h. One

easily sees that

a ∈ C0(S∗M) 7→ lim
t→+∞

∫
M

χ2
0(m)(1− ϕ(m))a(g−t(m, ξ))dm

= lim
t→+∞

∫
M\N

a(g−t(m, ξ))dm

defines a Radon measure on S∗M , supported on the closure of the set of points (m, ν)

for which the forward geodesics gt(m, ν) is of the form (m0 + (t− t0)ξ, ξ) for all t ≥ t0
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wherem0 is a point inM\N and t0 ≥ 0. This achieves the proof of Theorem 1. The fact

that the Louville measure disintegrates into µL =
∫
Sd−1 µξdξ is quite straightforward

using the assumption that the trapped set has Liouville measure 0.
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absence de résonance au voisinage du réel. Acta Math. 180 (1998), no. 1, 1–29.

[CdV] Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys.
102(1985), no. 3, 497–502.

[DyGu] S. Dyatlov, C. Guillarmou, Microlocal limits of plane waves and Eisenstein functions,
arXiv:1204.1305.

[HeMaRo] B. Helffer, A. Martinez, and D. Robert, Ergodicité en limite semi-classique, Comm. Math.
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