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Abstract. We study the local regularity of sliding almost minimal sets of dimension 2 in
Rn, bounded by a smooth curve L. These are a good way to model soap films bounded
by a curve, and their definition is similar to Almgren’s. We aim for a local description,
in particular near L and modulo C1+ε diffeomorphisms, of such sets E, but in the present
paper we only obtain a full description when E is close enough to a half plane, a plane or a
union of two half planes bounded by the same line, or a transverse minimal cone of type Y
or T. The main tools are adapted near monotonicity formulae for the density, including for
balls that are not centered on L, and the same sort of construction of competitors as for the
generalization of J. Taylor’s regularity result far from the boundary.

Résumé en Français. On étudie la régularité locale des ensembles presque minimaux de
dimension 2 dans Rn, bordés par une courbe lisse L, et avec une condition glissante de bord
semblable à celle d’Almgren. Ces ensembles semblent le meilleur modèle pour les films de
savon bordés par une courbe. Le but est d’obtenir une description locale de ces ensembles,
en particulier près de L et modulo un difféomorphisme de classe C1+ε. Dans ce papier on
n’obtient une description complète que lorsque E est assez proche d’un demi plan, un plan
ou une union de deux demi plans bordés par la même droite, ou un cône minimal de type Y
ou T transverse à L. Les outils principaux sont des formules de presque monotonie adaptées
pour la densité, y compris pour des boules qui ne sont pas centrées sur L, et la construction
du même genre de compétiteurs que pour la généralisation du résultat de J. Taylor sur la
régularité loin du bord.
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Part I

Description of the results

1 Introduction

The goal of this paper is to start a study of the local behavior of two-dimensional soap
films near a smooth one-dimensional boundary. Our model for soap films, which will be
discussed soon, is given by the notion of “sliding almost minimal sets”. This is not so far
from Almgren’s notion of “restricted set” from [A3], and we would like to obtain along the
boundary a description which is similar to Jean Taylor’s regularity result [Ta] far from the
boundary.

Let us say a few words about the result of J. Taylor that we would like to imitate here.
There are actually two main steps to it, and the first one is a full description of the minimal
cones (with the same definition of minimality as in [A3] and roughly here) of dimension 2 in
R3. These are the planes, the cones of type Y composed of three half planes bounded by a
same line and that make 2π

3
angles along that line, and the cones of type T. A cone of type

T is the cone over the union of the 6 edges of a regular tetrahedron centered at the origin;
see Figure 1. This first part is important because the blow-up limits of any almost minimal
set E at a Lebesgue density point of E is a minimal cone (blow-up limits will be defined
and commented a little more near (18.7)). The second part consists in proving that under
suitable assumptions, all the blow-up limits of E at such a point x0 are equal, and that there
is a small neighborhood of x0 where E is equivalent, through a C1+β diffeomorphism of R3,
to this minimal cone. Thus J. Taylor’s theorem gives a local classification of class C1+β of
the almost minimal sets.

A partial generalization of this result was given in [D3] and [D4], that gives a local
description of almost minimal sets of dimension 2 in Rn, but with two differences. First,
the full list of minimal cones of dimension 2 in Rn, n ≥ 4, is not known; we just have a
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combinatoric description in terms of faces. But also, if X is a blow-up limit of the almost
minimal set E at x0, we only prove the C1+β equivalence of E to X near x0 when X satisfies
an additional property, the full length property. Otherwise, we only get a local biHölder
equivalence. The full length property, which is a metric property of the net of geodesics that
compose X ∩ ∂B(0, 1), is related to an epiperimetric inequality; it is satisfied by the planes
and the cones of type Y and T, but we do not know whether it is true in general, or whether
E is always C1+β equivalent near x0 to any of its blow-up limits at x0, or even whether the
blow-up limit is unique.

Figure 1: A cone of type Y and a cone of type T

1.1 Sliding almost minimal sets

We would like to have similar theorems for almost minimal sets subject to a boundary
constraint along some boundary set L of dimension 1, where we would describe E near
any point x0 ∈ E ∩ L, but we shall only be able to give such a description in some cases.
Before we do this, let us explain some of our definitions relative to almost minimal sets,
the sliding condition, and the sliding Plateau problem.

We give the definitions for arbitrary dimensions and boundaries, because this will not
hurt. In the discussion that follows, L (our boundary) is a given closed subset of Rn,
and d ∈ [1, n] is an integer, the dimension of our sets. Our putative almost minimizers
will be closed sets E ⊂ Rn, with locally finite d-dimensional Hausdorff measure. That is,
Hd(E ∩B(0, R)) < +∞ for R > 0. We start with the notion of competitors.

Definition 1.1. Let E ⊂ Rn be a closed set, and let B = B(x, r) be a closed ball. A
deformation of E in B (with sliding boundary L) is a one parameter family {ϕt}, 0 ≤ t ≤ 1,
of continuous mappings ϕt : E → Rn, such that

(1.1) ϕ(x, t) = ϕt(x) is a continuous function of (x, t) ∈ E × [0, 1],

(1.2) ϕt(x) = x for t = 0 and for x ∈ E \B,

(1.3) ϕt(E ∩B) ⊂ B for 0 ≤ t ≤ 1,
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(1.4) ϕt(x) ∈ L when x ∈ E ∩ L,

and

(1.5) ϕ1 is Lipschitz on E.

A sliding competitor for E in B is a set F = ϕ1(E), where the family {ϕt} is a deformation
of E in B.

This is reasonably close to the initial definitions of Almgren in [A3]; let us comment on
the differences.

Here we are really interested in what happens near the boundary L, but otherwise we
could always take L = ∅, forget about the condition (1.4), and be in the same conditions as
in [A3] or [Ta].

We decided to keep the extra constraint (1.5), because it was put forward by Almgren
and does not hurt. It makes it a tiny bit harder for F to be a sliding competitor, hence a
little easier for E to be an almost minimal set (as defined below), and our regularity theorems
will then be a tiny bit stronger.

In the analogous definition without sliding boundary condition, we took the habit of
defining the ϕt on the whole Rn, but this makes no difference when there is no condition
(1.4), as it would be easy to extend the ϕt from E to Rn. The case when we work in a
complicated domain Ω, and we should require the ϕt to take values in Ω, will not arise in
this paper.

For similar reasons, if we did not have (1.4), we would not need to mention the whole
homotopy {ϕt}, 0 ≤ t ≤ 1, because given ϕ1 we could simply complete the homotopy by
taking ϕt(x) = tϕ1(x) + (1− t)x. Because of (1.4), we need to be a little more careful. Yet,
since most of the time in this paper L will be a line, hence convex, it will often be enough
to construct ϕ1 and complete by convexity.

Definition 1.2. Let U ⊂ Rn be open, let L ⊂ Rn be closed, and let h : (0,+∞) → [0,+∞]
be a gauge function. This just means that h is nondecreasing, and that

(1.6) lim
r→0

h(r) = 0.

A sliding (U,L, h)-almost minimal set (of dimension d) is a set E ⊂ U , which is closed in
U , such that for every compact ball B = B(x, r) ⊂ U ,

(1.7) Hd(E ∩B) < +∞

and more importantly

(1.8) Hd(E ∩B) ≤ Hd(F ∩B) + h(r)rd

for every sliding competitor F of E in B. When h = 0, we say that E is (U,L)-minimal, or
that E is minimal in U , with sliding boundary L.
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See for instance [M] for the definition of the Hausdorff measure Hd. Some simple com-
ments will be useful before we continue. The open set U may be useful to localize the notion,
but U = Rn is already an interesting choice. If U is not convex, an equally good definition
would only require B in (1.8) to be a compact subset of U that is contained in a ball of
radius r; we shall not see the difference here because all our results will be local.

The definition of almost minimal sets by Almgren [A3] and [Ta] is essentially the same as
above, but with L = ∅ and hence no constraint (1.4). There is a slight difference, in the way
we do the accounting in (1.8), with the definition of restricted sets in [A3], or the definition
of quasiminimal sets in [DS3] and further references, which is that here we compare the
measures of E and F , but we could have compared the measures of E ∩W and ϕ1(E ∩W ),
where W =

{
x ∈ E ; ϕ1(x) 6= x

}
. We took what seems to be the simplest definition, but

our results also work with the slightly different way of accounting. We refer to [D3] for more
detail about the alternate definitions in the plain case without boundary, and why the basic
properties that we use are also true with the other definitions. This is then generalized to
the sliding case in [D7].

For the main results of this paper, we will take d = 2, L will be a smooth curve, and
even L will almost always be a line. Most of the time, U , L, and h will be given, and we
shall just say that E is a sliding almost minimal set, or even an almost minimal set, without
further reference to U , L, and h.

As far as the author knows, the notion of sliding almost minimal set was only introduced
(at least explicitly) in [D5] and [D6], even though similar notions existed in the past. This
notion seems to give the best model for soap films attached to a set L. It comes with an
associated Plateau problem: suppose L is compact for simplicity, start with a closed set E0

such that Hd(E0) < +∞, and minimize Hd(E), or a similar functional, among all the sliding
competitors E for E0 (say, in a very large ball). This seems like a natural problem to consider,
and it is nice that different initial sets E0 will often yield different solutions (typically, with
a different topology or combinatorics), as it happens in real life. The fact that the infimum
may be 0 if E0 is not properly attached, or has lower-dimensional competitors, does not
disturb us.

Unfortunately, we do not know whether this Plateau problem always has a solution, but
if it does its minimizers E will be sliding minimal sets, or almost minimal if we minimize a
functional which is different, but not too much, from Hd.

This is one good reason for studying the regularity of sliding almost minimal sets, in
particular near the boundary, but let us mention other ones. First of all, there are a few
other ways to state a Plateau problem, and for which solutions (in some cases if they exist)
are also given by, or associated to, sliding almost minimal sets. For instance, the solutions of
the Reifenberg homological Plateau problem, as in [R], [A2], [Dp], or [Fn1], are sliding almost
minimal sets. But also, the solutions of the similar problems posed in [HP1], [HP2], [DLGM],
[DPDRG1], [DPDRG2], [DPDRG3] or the supports of some size minimizing currents with
homological conditions at the boundary, for instance as in [Dp], are like this. We refer to
[D6] for a little more information on these problems (leading to the interest of sliding almost
minimal sets), and for the proof of sliding minimality for solutions of the Reifenberg problem
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or the support of size minimizing currents.
Next, the author believes that the best way to try to prove existence results for the

sliding Plateau problem alluded to above, or its analogue with size minimizing currents, is
by proving regularity for almost minimal sets. This is not shocking; for the sliding Plateau
problem, for instance, we are often able to produce a good candidate E, as a limit of some
well chosen minimizing sequence, and limiting theorems allow us to prove that E is an
almost minimal set; it then remains to show that E is itself a competitor for E0, and this
will be easier if we have a good control on E. For instance, proving that there is a Lipschitz
retraction defined on a neighborhood of E and which preserves L would be very useful.

Let us also mention that almost minimality is a nicely flexible notion to study. That is, we

may want to minimize a minor variant of the functional Hd(E), such as

ˆ
E

f(x)dHd(x), with

a Hölder function f such that C−1 ≤ f ≤ C, or even

ˆ
E

f(x, TE(x))dHd(x), with functions

f that depend also on the approximate tangent d-plane TE(x) to E at x (in a simple enough
way); minimizers of such functionals are still almost minimal sets, with a gauge function
that depends on the (low) regularity of f , so we may apply the results of this paper to them.
By contrast, it is unlikely that the corresponding varifolds, for instance, have a locally finite
first variation. It is easy to believe that such functionals could be used to model variants of
the soap film problem, even though the author does not have specific examples to show.

So we want to study the local regularity of sliding almost minimal sets. The following
notion of coral (or reduced) set will help simplify the statements.

Definition 1.3. The core of the closed set E (in a given open set U ⊂ Rn) is the closed
support of Hd

|E, i.e.,

(1.9) core(E) =
{
x ∈ E ; Hd(E ∩B(x, r)) > 0 for all r > 0

}
.

We say that E is coral, or reduced, when core(E) = E.

It is not so hard to see that when E is almost minimal, its core is also almost minimal,
and that hence it is enough to reduce our attention to coral almost minimal sets. See
Proposition 3.3 in [D7]. This makes the statements simpler, because we won’t have to worry
about additional thin sets of vanishing measure that could have nearly dense tentacles, for
instance. From now on we shall always assume that all our (sliding) almost minimal sets are
coral, even though we do not always repeat this. Similarly, we exclude the empty set (and
hence sets of vanishing measure) from our discussions, even though it is minimal.

Notice however that we do not say that sets E that minimize functionals, like in the
Plateau problems discussed above, are coral. We just say that their d-dimensional part, or
core, is still minimal, so with some luck we can get a good description of those. For the
rest of E, it is very hard to control it, unless we ask for a more specific way to present
E in a clean way, so that for instance no proper subset of E is a competitor for E. This
last way to see things was the initial way to proceed, in the context of the Mumford-Shah
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functional (hence the name “reduced”), but in some cases it is probably not so easy to pick
a competitor E ′ ⊂ E which is minimal for inclusion, especially if we don’t want to deform it
first; the reduction to coral sets, which we choose to do here, is simpler and does the job.

There does not seem to be too many regularity results on sliding almost minimal sets
near the boundary, especially for d larger than 2. The issue was taken rather brutally in
[D7] (see also a more digestible account in [D5]), where some basic properties were proved
(local Ahlfors regularity, rectifiability, and in some dimensions uniform rectifiability) under
fairly general assumptions. What we will use most in the present paper is a nice collection of
limiting theorems, that we will take from [D7]. For instance, if the sets Ek, k ≥ 0, are coral
(see above) and almost minimal in U with a given gauge function h, and if they converge
(locally for the Hausdorff distance, as will be explained below) to a limit E, then E is almost
minimal with the same gauge function h. In addition,

(1.10) Hd(E ∩ V ) ≤ lim inf
k→+∞

Hd(Ek ∩ V )

for every open set V ⊂ U . This is very useful because it allows many proofs by compactness.
We will recall all these results more precisely when we use them.

It seems difficult to go much further in a general situation, and in particular for d > 2,
so we now turn to more precise regularity results in very specific situations, by which we
mean when d = 2 and L is a simple set. Because we are happy with J. Taylor’s regularity
result from [Ta] when there is no boundary (or equivalently, since this is a local result, far
from the boundary), and in higher ambient dimensions, with its generalization in [D3] and
[D4], we shall concentrate on regularity results near a point of L.

In [Ta2], J. Taylor gives a good description (similar to the regularity result of [Ta]) for
sets of finite perimeter in a bounded domain U (say, with smooth boundary), that minimize
a functional that looks like the perimeter, multiplied by a suitable constant α ∈ (0, 1] on
∂U . This is quite similar to what we want to do here, but she works in a different category.

Much more recently X. Fang [Fn2] started a similar study for sliding minimal sets (thus,
with no more direct constraint on the domains bounded by E) when n = 3, L is a smooth
surface of dimension 2, and E is required to stay on one side of L. He was then able to prove
that near any point x0 ∈ L, E is Hölder-equivalent to a minimal cone. The minimal cones
that show up for this problem are the tangent plane P0 to L at x0, or the union of P0 with
a half plane orthogonal to P0, or the union of P0 and a half set of type Y orthogonal to P0.
More recently, with methods similar to those of [D4], he even proved the more precise C1+ε-
equivalence [Fn3]. Also some variants of this problem, for instance with mixed conditions as
in [Ta2], are likely to be interesting and feasible.

1.2 Towards a classification of singularities

In in the present paper we concentrate on the case of 2-dimensional sets E in (an open set of)
Rn, when the boundary set L is a smooth (at least C1+ε) curve. In fact, we will concentrate
on the simpler case when L is a line, and in Section 38 explain rapidly how to deal with the
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general case. We would have liked a complete description of all the tangent objects (sliding
minimal cones associated to a boundary which is a line), and then a precise local description,
if possible, in the C1+ε category, in terms of the tangent cones. If we had all this, we would
probably get a good existence result too, but as we shall see soon, we still have an important
missing case.

Again there does not seem to be too much available information on this specific classifica-
tion problem. G. Lawlor and F. Morgan give in [LM] a list of expected behaviors of minimal
sets along a boundary which is a curve, which the reader can also find in Figure 13.9.3 (Ten
conjectured types...) of [Mo2]. Compared to the presentation below, there are of course
common points, but also some small differences. Also, K. Brakke gives in [Br] a description
of minimal surfaces bounded by a curve, which will be rapidly discussed below.

We start the presentation of our result with a list of sliding minimal cones.
We start with the case when L = ∅. Recall that when n = 3, we have the full description

completed by [Ta] (but started by Plateau, Lamarle [Lam], and Heppes [He]), which says
that the (coral) minimal cones of dimension 2 in R3 are the planes (also called cones of type
P), and the cones of type Y or T defined above.

In ambient dimensions n ≥ 4, the cones of type P, Y, or T are still minimal, but there
are other ones. The union P1 ∪ P2 of two planes through the origin that are orthogonal to
each other is minimal, and in [Li1], X. Liang showed that this stays true when the two planes
are nearly orthogonal. There is a conjecture of F. Morgan [Mo1] on the precise condition on
the angle of P1 and P2 under which P1 ∪ P2 is minimal; G. Lawlor [Law] proved that this
condition is necessary, but we do not know whether it is sufficient. In [Li2] X. Liang showed
that the product Y × Y of two Y -sets of dimension 1 contained in orthogonal 2-planes is
minimal. But there may be many other ones that we did not guess. Nonetheless [D3] gives a
reasonable description of these cones X, that says that X ∩ ∂B(0, 1) is composed of a finite
number of arcs of great circles with constraints on their length and how they meet. We shall
be more specific about this in Section 2, because we need the description.

Now let L be a line in Rn, which we assume contains the origin. We mentioned all the
cones above, because they are still sliding minimal with the boundary L (there are more
constraints on the competitors, hence the sliding minimality condition is weaker). And so
are their translations (the fact that they are not centered on L does not matter). But the
set of planes that contain L, which we shall denote by P(L), and the set Y(L) of cones of
type Y whose spine is equal to L (or equivalently, which are composed of three half planes
bounded by L), will play a special role, so we give them a name.

In addition to all of these, we know of two more sliding minimal cones, and a possible
third one. We start with the sets of type H, which are just the half planes bounded by L.
That is, we take any 2-plane P that contains L, keep one of the two connected components
of P \ L, and take its closure (i.e., add L back). We will denote by H(L) the collection of
sets of type H bounded by L.

The sets of type V (bounded by L) are the unions V = H1 ∪ H2 of two half planes
H1, H2 ∈ H(L) which make an angle α ∈ [2π

3
, π] with each other along L. This last means

that if ei is the unit vector in Hi that is orthogonal to L, then 〈e1, e2〉 ≤ −1
2
. When α = π,
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we get a plane of P(L). We denote by V(L) the collection of sets of type V bounded by L.
Even though this is not needed for the main results of this paper, we decided to include

in Section 39 a proof of the fact that sets of type H and V are sliding minimal, even with
a possibly larger boundary set L and the variant of Definition 1.1 where we do not require
(1.5), because this was apparently not written before.

The following sets were suggested by X. Liang (in addition to those of [LM] and [Mo2])
as possible sliding minimal cones. Let Q be a cube (in R3), and assume that one of the great
diagonals of Q is contained in L. Then let X denote the (positive) cone over the union of the
edges of Q; X will be called a set of type Q. Some experiments (including, with soap) suggest
that the sets of type Q are sliding minimal, even though we know that they are not plain
minimal (i.e., with no boundary constraint) because of the Plateau-Lamarle-Heppes-Taylor
characterization above. But we do not have a proof of sliding minimality.

Again there may be lots of other sliding minimal cones that we do not know about, but
at least we give in Section 2 a combinatorial description of these cones, similar to the one
we have for plain minimal cones.

We now turn to our tentative classification of singularities. By this we mean a local
description of hopefully every sliding minimal set E, near any point x0 ∈ E ∩ L. Of course
this description will depend on the type of minimal cones X that approximate E on small
balls centered at x0. This may mean, on the blow-up limits of E at x0, but we prefer to
go directly to a quantitative statement with an approximation of E by a minimal cone in a
given ball B(x0, 10r0) ⊂ Rn (we allow any ambient dimension n).

We shall assume, for the following discussion, that

(1.11) E is a coral sliding (B(0, 10r0), L, h)-almost minimal set,

with a gauge function h such that

(1.12) h(r) ≤ Chr
β for 0 < r ≤ 10r0,

for some β ∈ (0, 1] and some constant Ch ≥ 0 such that Chr
β
0 is small enough. Let us say,

(1.13) Chr
β
0 ≤ ε0

for some small ε0 > 0 that we get to choose, depending in particular on n and β.
We further assume that L is a line through the origin; we shall explain in Section 38 that

similar statements hold when L is a curve of class C1+ε which is flat enough in B(0, 10r0),
but let us try to keep things simple here.

Next we assume that 0 ∈ E, and that we have a sliding minimal cone X, also associated
to the sliding boundary L, which is close enough to E in B(0, 10r0). We shall systematically
measure such things with the local normalized variants dx,r of the Hausdorff distance between
sets, defined by

(1.14) dx,r(E,F ) =
1

r
sup

y∈E∩B(x,r)

dist(y, F ) +
1

r
sup

z∈F∩B(x,r)

dist(y, E)
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when E and F are (nonempty, and most of the time closed) sets, x ∈ Rn, and r > 0.
By convention supy∈E∩B(x,r) dist(y, F ) = 0 when E ∩ B(x, r) is empty, and similarly for
supz∈F∩B(x,r) dist(y, E). This distance does not exactly satisfy the triangle inequality, but it
localizes well and is very convenient to use. So we assume that

(1.15) d0,10r0(E,X) ≤ ε0.

We would love to prove that under these assumptions and if ε0 is small enough, E is C1+β1-
equivalent to X near B(0, r0), say. By this we mean that there is a constant β1 > 0 (that
depends only on n, β, and maybe on X) and a C1+β1 diffeomorphism Φ : Rn → Rn, such
that Φ(L) = L, and

(1.16) E ∩B(0, r0) = Φ(X) ∩B(0, r0).

Usually we also require a uniform control on the C1+β1 (uniform) norms of Φ and Φ−1 and
that for some η > 0 that can be chosen as small as we want in advance (and then ε0 will
depend on η),

(1.17) |Φ(x)− x| ≤ ηr0 and (1− η)|x− y| ≤ |Φ(x)− Φ(y)| ≤ (1− η)|x− y| for x, y ∈ Rn,

so that (1.16) is just a little weaker than requiring that E ∩ B(0, r0) ⊂ Φ(X) and Φ(X ∩
B(0, 2r0)) ⊂ E, which we could get with the same proof.

We shall see soon that the situation can be more complicated than this, depending on
the approximating minimal cone X.

We start our discussion with the simplest case when X is a half plane bounded by L. In
this case we have the following perfect analogue of J. Taylor’s theorem in [Ta].

Theorem 1.4. Let E and X ∈ H(L) satisfy the assumptions above, and in particular (1.11),
(1.12), (1.13), and (1.15). If in addition ε0 is small enough, depending on n, Ch, β and η,
then E is C1+β1-equivalent to X near B(0, r0), for some β1 which depends only on n and β.

Let us comment on this statement before we go to more complicated cases. See The-
orem 31.1 for a slightly more general statement and then the proof (given the rest of the
paper). Notice that the C1+β1-equivalence just means that near B(0, r0), E is a C1+β1 surface
bounded by L, and in fact a Lipschitz graph over the half plane X, with a small Lipschitz
constant. It may appear in our statements that we use the Reifenberg parameterization
theorem from [R], or one of its later variants, but here we play in the C1+β1 category, where
this theorem is much easier to prove than in its original, less regular setting. That is, here
it essentially amounts to checking that there is a tangent plane P (x) to x at every point
of E \ L, and that the direction of P (x) is Hölder continuous on E. In later statements, it
would be Hölder continuous on each face of E.

Theorem 1.4 is an extension of Corollary 1.7 on page 344 of [D8], which essentially proves
the same thing with a biHölder equivalence only. The big difference is that we now prove an
additional decay estimate on some quantities that measure closeness to planes or half planes.
We shall discuss the proof ingredients in the next subsection.
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Notice also that Theorem 1.4, and already Corollary 1.7 in [D8]), say something on the
topology of E in B(0, r0): it has no holes or bubbles, and it stays attached to L in the simple
way that one would expect. Plus we have some metric estimates on these properties.

Finally observe that Theorem 1.4 implies a weaker statement with blow-up limits. That
is, if E satisfies (1.11) and (1.12), L is a line through the origin (but a smooth curve would
work too), and if one of the blow-up limits of E at 0 ∈ E is a half plane X ∈ H(L), then E
is C1+β1-equivalent to X in some small ball centered at 0, and in particular E has a tangent
cone (a unique blow-up limit) at 0 equal to X. This is easy to check: just apply the theorem
in a small enough ball, where (1.15) holds.

Our next case is not really new, in the sense that it concerns the same minimal cones
that were known to work away from the boundary. Suppose that X is a plain minimal cone
that satisfies the full length property. By plain, we mean with no boundary condition, or
equivalently with L = ∅, and the full length property is the sufficient condition given in [D4]
for the J. Taylor theorem to be satisfied for X; let us not give the definition for the moment,
but only recall that the cones of P ∪ Y ∪ T (i.e., the cones of type P, Y, and T as above)
satisfy this. We say that a cone X is fully transverse to L when X ∩ L = {0}.

Theorem 1.5. Let X be a plain minimal cone that satisfies the full length property of [D4]
and is fully transverse to L, and suppose that E and X satisfy the assumptions above, and
in particular (1.11), (1.12), (1.13), and (1.15). If in addition ε0 is small enough, depending
on n, Ch, β, X, and η, then E is C1+β1-equivalent to X near B(0, r0), for some β1 which
depends only on n, X, and β, but where we no longer require that Φ(L) = L in the definition
of C1+β1-equivalent.

The dependence on X is through some angles and the full length parameters, but we do
not worry too much about it because in practice we can discretize (i.e., use a finite number
of cones X). See Section 36.1 for a slight extension and the proof, which consists in reducing
to the case when there is no boundary. We cannot require that Φ(L) = L here, because E
could be a set of type T, for instance, with a center very close to 0, but not on L. Other
cases of this type are treated in Section 36, but let us return to the main simple cases.

The last case that works almost perfectly is when X is a generic cone of type V, by which
we mean that the two half planes H1 and H2 that compose X (as in the definition above)
make an angle α ∈ (2π

3
, π), thus excluding planes and what we shall call sharp V-sets.

Theorem 1.6. Theorem 1.4 is still true when X is a generic cone of type V, but now ε0

depends also on the angle of the two half planes Hi ∈ H that compose X.

See Theorem 32.1. Forgetting about the complicated mapping Φ, the conclusion just
means that near B(0, r0), E is composed of two faces F1 and F2 bounded by L, and that
each Fi is a C1+β1 and Lipschitz graph over the corresponding half plane Hi of X, with a
Lipschitz norm which is as small as we want, provided that we take ε0 accordingly small.
In particular the two faces Fi meet “transversally”, with angles that are as close to α as we
want. However, we do not say that Φ is conformal along L, or in simpler terms the angle
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that the two Fi make at x ∈ L is allowed to depend on x, although in a slow, Hölder way.
See Figure 2 for a hint of what E looks like in B(0, r0).

E

L
0

Figure 2: E near a generic cone of type V

As in the case of H, Theorem 1.6 also contains topological information on E that was
not obvious a priori. In fact, the theorem excludes some behaviors that could have been
considered possible, such as the behavior that is described for sharp Y-cones below. Here
the methods of [D8] are no longer enough, because the slow variation of the approximating
minimal cones, which follows from the decay estimates in the present paper, seem to be
needed to exclude these behaviors.

As before, the theorem implies that if E satisfies (1.11) and (1.12) and one of the blow-up
limits of E at 0 ∈ E is a generic cone X of type V, then E is C1+β1-equivalent to X near 0,
and in particular X is the tangent cone to E at 0.

The first case where we get into some (moderate) trouble is when X is a plane that
contains L (and this is why we required X to be transverse in Theorem 1.5). In the present
case E may be attached to L along just about any closed subset of L, and not meet the
rest of L. Along this set, E may have a crease, i.e., have different tangent half planes, as
depicted by Figure 3.

0

E L

U

L
E L

U

E lies above L here

This is also the section of E by a vertical plane

Figure 3: Behavior of E near a plane through L

That is, let X be a plane that contains L, and assume otherwise that E satisfies the
same assumptions as for Theorems 1.4-1.6. We claim that if ε0 is small enough, depending
on n, Ch, β and η, we have the following description of E in B(0, r0). First, there is an
η-Lipschitz function ψ : P → P⊥ such that E ∩ B(0, r0) = Γψ ∩ B(0, r0), where Γψ denotes
the graph of ψ. In addition, ψ is of class C1+β1 on (P ∩ B(0, r0)) \ (E ∩ L), with a uniform
Hölder estimate for ∇ψ on P ∩B(0, r0) \ (E ∩ L) (with the geodesic distance). Thus ψ = 0
on L ∩ E ∩ B(0, r0) ⊂ P , and it has half derivatives from both accesses along E ∩ L, but
that may be slightly different from each other at interior points of E ∩L. And near interior
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points of E ∩ L where ∇ψ had two different limits, E can be described by Theorem 1.6.
See 33.1 for more details.

Notice that here E is topologically the same as P , but not always in the C1 category.
The description above is not shocking. Consider a nice deformation Φ of Rn that moves
points downwards a little, sends the set E depicted in Figure 3 to the plane E ′ = P , and
L to a new boundary L′ that coincides with L on E ∩ L; we know that P is minimal, also
with the sliding boundary L′, and we expect that E = Φ−1(P ) will stay almost minimal if
Φ sufficiently flat. See Figure 4.

0E' L'

UL'
E' L'

U

Here E' still lies above L'

E' = P

Figure 4: The set E ′ = Φ(P ) is minimal because it is a plane

We have the same sort of result when X is cone of type Y or T, and one of the two half
lines (say L+) that compose L \ {0} is contained in the interior of a face of X. In this case,
we have the same description as in the previous case on a small open cone around L+. On
the rest of Rn, we can proceed as in the transverse case above. The argument also works
when X is a sliding minimal cone that satisfies the full length property, where this time the
full length property is as in Definition 4.1 below. See Section 36.2.

Our next case is when X is a sharp V-cone, which means that X = H1 ∪ H2 for some
half planes H1, H2 ∈ H that make a 2π

3
angle. See Theorem 34.1. The difference with the

generic case is that now E can partially detach itself from L, along a curve of Y-points of
E \ L, as suggested by Figure 5.

That is, assume now that X is a sharp V-cone and that the other assumptions of The-
orems 1.4-1.6 are satisfied. We claim that in B(0, r0), we have the following description
of E.

First, there is a curve γ, which is the graph of some function g : L → L⊥ that is both
η-Lipschitz and of class C1+β1 , such that every point of γ ∩ B(0, 2r0) \ L lies in the set EY
of points of E \L that are type Y. This means, points x ∈ E \L where E is tangent to a Y
set. And at points x ∈ γ ∩ B(0, 2r0) ∩ L, x has a tangent cone V (x) ∈ V(L), which may be
generic (at interior points of γ ∩ L), but always with an angle close to 2π

3
. The curve γ will

play the role of a spine for E that splits E ∩B(0, r0) into three faces that we try to describe
now.

Denote by ei, i = 1, 2, the unit vector in Hj that is orthogonal to L, set e3 = −(e1 + e2),
and denote by H3 the half plane bounded by L and pointing in the direction of e3. Thus H1,
H2, and H3 would form a Y-set. Then denote by Pi, 1 ≤ i ≤ 3, the plane that contains Hi,
and by πi the orthogonal projection on Pi. There are three sets Ai, 1 ≤ i ≤ 3, with Ai ⊂ Hi,
and three functions Ψi : Ai → P⊥i which are both η-Lipschitz and of class C1+β1 , so that if
Fi denotes the graph of ψi, then E ∩B(0, r0) = (F1 ∪ F2 ∪ F3) ∩B(0, r0). The two faces F1
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E

L 0
EY

generic V here Sharp V-sets tangent here Thin triangular face

Figure 5: The set E near a sharp V set

and F2 are C1+β1 surfaces bounded by γ, which means in particular that for i = 1, 2, Ai is
the closure of the component of Hi \ πi(γ) that leaves furthest from L. In the simplest case
when γ just leaves L on one side, the face F3 looks like a thin triangular wall that connects
L to EY , but in general it may have infinitely many connected components. The face A3 is
bounded by π3(γ \L) on one side, and by L\γ on the other side, and F3 is bounded by γ \L
on one side, and L \ γ on the other side.

Hopefully this description (together with Figure 5) gives a good idea of what E looks like
near 0. Another way to see it would be to say that E is C1-equivalent to a set of type Y,
but truncated by the line L. This is also why the description above looks logical: we could
deform the set of Figure 5, a little as we suggested in Figure 4, by a nice mapping Φ that
sends E to a subset E ′ of a cone of type Y, but truncated by the curve L′ = Φ(L). It is not
too hard to believe that Φ(E) is minimal with the sliding boundary L′, and that if Φ is nice
enough, E is still sliding almost minimal. See Figure 6.

0
E'Y

L' L'

E'Y

E'

Figure 6: The image E ′ = Φ(E) is probably minimal because it is a truncated Y set

A priori there was a possibility that the sort of behavior described here near sharp V sets
could also happen near generic V sets, or even planes that contain L. This was apparently
suggested in [Br], but we claim that this does not happen.

This was the most interesting case that we can treat for the moment. Notice that this
time E does not even have the same topology as its model X. All this will be discussed a
little more and proved with Theorem 34.1.

Remark 1.7. In the descriptions above, the fact that we consider general sliding almost
minimal sets helped us claim that we probably have the right description, but this hides
the fact that when E is sliding minimal, there is probably some additional rigidity in the
problem, that the author does not understand at all, but that prevents the most complicated
behaviors described above (near planes that contain L and sharp V sets) to occur. That is,
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planes could become V sets and sharp V sets could generate a curve γ of points of type Y
that leaves L, but no complicated hesitating limit sets would occur.

Now we turn to the main case that we do not control, which is when X ∈ Y(L) is a cone
of type Y with a spine equal to Y . Assume that one of the blow-up limits of E at 0 is the
cone X ∈ Y(L), and try to study E near 0.

The cone X has the full length property (as in Definition 4.1; see Theorem 37.1), so we’ll
see in Theorem 22.2 that E has a tangent set of type Y at the origin, but nonetheless we do
not have enough control on balls that are not centered on L, to give a good description of
E near 0. In this case, we expect that E looks like (and in particular has the topology of)
a cone of type Y, but with little creases (like in the case when X was a plane that contains
L) along parts of L, but at this point we cannot exclude other, less beautiful options.

If the author had to guess the behavior of E near 0, he would start from a set Y0 of type
Y, then draw a curve L0 tangent to E at 0, not necessarily entirely drawn on Y0 (but it is
more fun to travel on the various faces of Y0). See the strongly exaggerated Figure 7 (left).
Then he would send Y0 and L0 to E = Φ(Y0) and hope that if Φ is gentle enough, E is still
almost minimal with the sliding boundary L = Φ(L0) depicted grossly by Figure 7 (right).
The second hope is that nothing worse than that ever happens with sliding almost minimal
sets. Figure 8 shows four successive sections of our candidate E, and (below) two sections
that could a priori exist, coming from a more complicated structure of E (but we hope not).
We return to this in Section 35.

L   leaves Y  here0 0

0L
0Y

E leaves L herepossible creases here

L

E

YE

YE
YE

Figure 7: Left: A minimal set Y0 and a boundary curve. Right: The sliding almost minimal
set E = Φ(Y0).

Let us also say why the author believes that this is the main bad case. Of course there
are other cones X for which we have the same problem. For instance, X could be a set of
type T, with a spine that contains a half of L. But such cases should be similar, in the sense
that if we understand the case of X ∈ Y(L), we can probably deal with these other cases by
restricting to cones around a half of L first.

Now there are possibly many other cones X that one should consider, but fortunately the
points x ∈ E∩L where x has an exotic blow-up limit X like this are isolated, so even though
we may not have a very good control on E precisely at those points (especially if X does
not satisfy the full length property), we can probably still get some control, by restricting to
concentric annuli where there is no exotic point. That is, the author believes that X ∈ Y(L)
is the most complicated case because it may happen on a large set. See Section 36.3 for a
slightly longer discussion.
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LEY& EY

L EY

L EY

L

Four vertical sections of E, seen from the right

LEY& EY

L

EY

Two vertical sections of E (unlikely)

Figure 8: Four sections of E and two less probable sections

1.3 Decay for the density excess and approximation by cones

Let us now describe elements of the proofs and estimates that lead to the results above.
In addition to the general regularity results of [D7] that were mentioned above, the key
ingredient in the proofs will be related to the monotonicity of density, or a variant that will
be discussed soon. This is not so different in spirit from what is was done far from the
boundary, in [Ta] and [D4].

Let E be a coral sliding (U,L, h)-almost minimal set, and assume to simplify the discus-
sion that L is a line through the origin. Define, for x ∈ E and r > 0 such that B(x, r) ⊂ U
(we shall not need the other pairs) the density

(1.18) θ(x, r) = r−2H2(E ∩B(x, r)).

The local Ahlfors regularity of E says that C−1 ≤ θ(x, r) ≤ Cr when x ∈ E and B(x, 2r) ⊂
U , and it is proved in [D7] that θ(x, ·) is nondecreasing when x ∈ L and E is sliding minimal.
When x ∈ L and E is merely sliding almost minimal (but h satisfies a Dini condition), θ(x, ·)
is still nearly nondecreasing; see Theorem 28.7 in [D7], quoted as (19.10) below, for a precise
estimate. The basic idea for the proof is the same as in the standard case, which is to
compare E ∩ B(x, r) to the cone (centered at x) over E ∩ ∂B(x, r); the fact that this cone
is a limit of competitors for E is still true here, because the deformations that we generally
use to prove this are radial and L is a cone. This is the reason why we require x to lie in L
for the near monotonicity property; we shall return to this issue below.

Because of the near monotonicity, the limit

(1.19) θ(x) = lim
r→0

θ(x, r)

exists. Our main ingredient for the control of E on balls that are centered on L is a decay
result for the density excess f that we define now. Suppose that 0 ∈ E ∩ L, and set

(1.20) f(r) = θ(x, r)− θ(x) for 0 < r ≤ dist(0,Rn \ U).

Here we say that f decays like a power, as soon as h is small enough and E is close enough
to a good minimal cone.
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Theorem 1.8. Let L be a line through the origin, U an open set in Rn, r1 > 0 such that
B(0, r1) ⊂ U , and E a coral sliding (U,L, h)-almost minimal set, with a gauge function h
such that h(r) ≤ Chr

β for 0 < r ≤ r1. There exist constants ε0 > 0 and a ∈ (0, 1), that
depend only on n and β, such that if in addition Chr

β
1 ≤ ε0 and there is a minimal cone X

(centered at 0), of type P, Y, T, H(L), or V(L), such that

(1.21) H2(X ∩B(0, 1)) = θ(0) := lim
r→0

θ(0, r)

and

(1.22) d0,r1(E,X) ≤ ε0,

then

(1.23) f(r) ≤ 10−10(r/r1)a for 0 ≤ r ≤ r1/2.

Of course 10−10 could be replaced with any small constant, but ε0 would have to be made
even smaller.

In fact, there is a notion of (sliding) full length property for sliding minimal cones, that
will be explained in Section 4 (see in particular Definition 4.1), and Theorem 1.8 remains
valid for any minimal cone X that satisfies this full length property (and satisfies (1.21) and
(1.22) as above). Then ε0, C2, and a depend also on X through its full length parameters.
It just turns out that the standard cones mentioned above all satisfy the full length property
(see Theorem 37.1), so that Theorem 1.8 follows from its generalization, Theorem 22.2 below.
See Section 37 for the final steps of the verification of full length for the standard cones.

Here and below, we just found it easier to say that our constants depend on n, rather
than trying to check whether this is really true.

We like the density excess f because it decays and at the same time controls the geometry
of E. We give the basic consequence here, comment and explain some ideas about the proofs
of both results, and refer to more specific statements later.

Theorem 1.9. Let U , L, h, E, and r0 satisfy the assumptions of the previous statement.
Then there is a cone X0 of type P, Y, T, H(L), or V(L), centered at the origin, such that
H2(X0 ∩B(0, 1)) = θ(0) and

(1.24) d0,r(E,X0) ≤ c(ε0)(r/r1)a/4 for 0 < r ≤ r1.

Here ε0 and a ∈ (0, 1] depend only on n and β, and c(ε0) depends also on ε0, but given n
and β, we can always choose ε0 so small that c(ε0) is as small as we want.

As before, there is a similar statement when X is a full length minimal cone, and then
β3 and c(ε0) depend also on the full length parameters for X; see Theorem 22.2. Both
Theorem 22.2 and Theorems 1.8 and 1.9 will be proved in Section 22 (using the earlier
sections).
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The presentation of Theorems 1.8 and 1.9 as coming one after the other is slightly mis-
leading; for technical reasons we will need to prove the two of them together, event though
there are two main pieces, Proposition 17.2 that brings decay for f and Theorem 19.1 that
gives a geometric control. We will return to this in detail in Section 22. Only a simpler
piece of Theorem 1.8, Corollary 18.2, will be proved directly from the decay estimate in
Proposition 17.2.

Thus E has a unique tangent cone (namely X0) at 0, of density θ(0), and we even have
an estimate on how fast r−1E tends to X0 in the unit ball. Of course X0 may be slightly
different from X, but not so much because they both approximate E well in B(0, r0/2). In
the specific case of Theorem 1.9, it is even of the same type as X, because the types are
determined by a finite number of densities.

In both statements we required the density of X to match the density θ(0) of E; if instead
H2(X ∩ B(0, 1)) > θ(0), and even in the plain case (with no boundary), that fact that the
density θ(0, ρ) may vary a lot between 0 and r0 seems to prevent us from proving any good
quantitative estimate.

The precise assumption that h(r) ≤ Chr
β0 is not vital; a slightly slower decay, like

h(r) ≤ C
[

ln
(

1+r
r

)]−B
for some large B, would be enough to get a roughly similar decay for

f(r) and d0,r(E,X(r)), but we shall skip the computations and refer to a similar statement
in [D4], where the computations were done that we may always copy. Also see Section 38
for a discussion of what happens when L is a smooth curve through the origin, rather than
a line.

We now say a few words about how we intend to prove Theorems 1.8 and 1.9. Let E and
r0 be as in the statements; the estimate (1.23) will follow from a differential inequality like

(1.25) rf ′(r) ≥ af(r)− q(r),

where a > 0 is a small constant that depends on the geometry (including the full length
constants) and q(r) is a small error term that contains the contribution of the gauge function
h. This inequality will be proved for almost every r ≤ r0, say, and then integrated to get
(1.23). See Proposition 17.2 for the statement, and Section 17 for how to derive (1.23) from
that statement.

Notice that the near monotonicity comes from a similar statement with a = 0. This
means that when f(r) > 0, we have to improve on our proof of near monotonicity and save a
quantity comparable to f(r). Recall that for the near monotonicity we essentially compare
E with a cone; we will thus have to find a better competitor than the cone. And indeed
the main construction of the paper will be the construction, for almost every r ≤ r0, of a
new competitor for E, which is at least as good as the cone over E ∩ ∂B(0, r) and even
significantly better if E ∩ ∂B(0, r) is far from “optimal”.

There is one basic case where we can do better than the cone, which is when E ∩
∂B(0, 1) is composed of a simple net of Lipschitz curves with small constants (understand,
small Lipschitz perturbations of geodesics), but which are not geodesics. Then the cone is
composed of small conic pieces that we can see as graphs of homogeneous functions defined
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on triangular sectors, and in this case we can replace these homogeneous functions with
harmonic functions with the same boundary values, and save some surface measure if the
Lipschitz curves are far from geodesics. Here we use the fact that for small Lipschitz graphs,
graphs of harmonic functions are almost as good as minimal surfaces.

The next basic case where we can save some area is when there is a net of curves contained
in E ∩ ∂E that has some good separation properties, but is more complicated than a simple
net of Lipschitz graphs with small constants, like the net of curves suggested above. In
this case, we prove that we can replace E ∩ ∂E with a simpler net, so that we can still
use graphs to construct competitors, and moreover save some area when we compare to the
cone (because the net of Lipschitz curves, even though not entirely contained in E, is also
somewhat shorter).

We combine these two estimates with a third one, which is a little more surprising, and
corresponds to the case when E ∩ ∂B(0, r) is essentially a simple net of geodesics, but not
necessarily arranged with the same angles and positions as K = X∩∂B(0, 1). In this case the
only way we found we could do better than the cone over E∩∂B(0, r) was to use competitors
of deformations of X and the definition of full length, which is the reason why we put it
in the assumptions on X. Fortunately this combinatoric property, which is not unlike the
existence of epiperimetric inequalities that can be found in the work of Reifenberg, Taylor,
and others, is satisfied by the most familiar minimal cones.

The construction of a suitable net of curves, and then of competitors for E, is done in
Sections 5-16, which are then followed by estimates that lead to Theorems 1.8 and 1.9, done
in Sections 17-22.

All this works well, in a way which is similar to what was done in [D4] in particular, and
we get good decay estimates and then approximation by minimal cones, but only for balls
that are centered on L. But for the classification and regularity results, it seems that we also
need a uniform control on balls that are centered a little off L. However, for x ∈ E \ L, the
density function θ(0, r) defined by (1.18) is no longer nondecreasing in general, even when
E is minimal. For instance, E could be a half plane bounded by L and that contains x, in
which case θ(x, r) = π for r ≤ dist(x, L) and limr→+∞ θ(x, r) = π/2.

Because of this, a variant of θ was introduced in [D8], which at least is optimally monotone
in some simple cases. Suppose that 0 ∈ E \ L, and denote by S the shade of L, given by

(1.26) S =
{
y ∈ Rn ; λy ∈ L for some λ ∈ [0, 1]

}
.

The substitute for θ(0, r) is the slightly larger function F defined by

(1.27) F (r) = r−2
[
H2(E ∩B(0, r)) +H2(S ∩B(0, r))

]
.

One of the main points of [D8] is that when E is a sliding minimal set on U ⊃ B(0, r0),
the function F is nondecreasing on [0, r0); see Theorem 1.2 there. Similarly, F is nearly
monotone when E is a sliding almost minimal with a small enough gauge function h.

Thus even though θ(0, r) itself is not always monotone where r ≥ dist(0, L), we add an
increasing term r−2H2(S ∩ B(0, r)) that improves the situation. Of course this property is
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useful also because there are realistic situations where F is constant, so we may believe that
we didn’t add too much. Here are two instances of this. The first one is when E is a half
plane bounded by L (and that contains 0 because we assumed that 0 ∈ E). The second case
is when E a truncated cone of type Y, i.e., when E = Y \ S, where Y ∈ Y(L) is a cone of
type Y centered on 0 and that contains L. In both cases, F (r) is just the (constant) density
of the completed set (a plane or the cone Y ∈ Y).

We shall not use the more general dimension d of E that was allowed in [D8], or the more
general form of L, and this is rather good because this makes the proof somewhat easier.
But we shall use some of the variants or consequences of Theorem 1.2 in [D8], because we
need to know that for sliding almost minimal sets, F is nearly monotone, and that E is close
to a half plane or a truncated cone of type Y through L whenever F is nearly constant. We
shall be more specific later, during the proof.

We now state analogues of Theorems 1.8 and 1.9 for balls centered at 0 ∈ E \L. We shall
only worry here about two cases, when E is close to a half plane or to a V-set in B(0, r0),
and not more complicated sets for which the near monotonicity of F does not really help.

Theorem 1.10. Let L be a line that does not contain the origin, U an open set in Rn,
r0 > dist(0, L) such that B(0, 10r0) ⊂ U , and E a coral sliding (U,L, h)-almost minimal set,
with a gauge function h such that h(r) ≤ Chr

β for 0 < r ≤ 10r0. Also let H denote the
half plane bounded by L that contains the origin. There exist constants ε0 > 0, C4 ≥ 1, and
β4 ∈ (0, β], that depend only on n and β, such that if in addition Chr

β ≤ ε0 and

(1.28) F (3r0) ≤ π + ε0

or

(1.29) d0,3r0(E,H) ≤ ε0,

then

(1.30) F (r1)− π ≤
(2r1

r2

)β4
[F (r2)− π] + C4Chr

β4
1 r

β−β4
2 for 0 ≤ r1 ≤ r2 ≤ r0

and in addition

(1.31) d0,r(E,H) ≤ c(ε0)
( r
r0

)β4/4
+ C4

(
Chr

β
)1/4

for dist(0, L) ≤ r ≤ r0, where c(ε0) can be made as small as we want by choosing ε0 above
small enough (depending on n and β).

Here we do not try to control E in B(0, r) for r < dist(0, L), but this would follow easily
from the regularity far from the boundary, since (1.31) for r = dist(0, L) shows that E lies
close to a plane in B(0, dist(0, L)). See Section 31 for this type of argument.

This is a combination of Theorem 24.1 for (1.30) and Theorem 30.1 for (1.31). In turn
Theorem 24.1 comes from the differential inequality (24.13) in Proposition 24.3, which will
be obtained as before by constructing an appropriate competitor.
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For the next result, recall that V(L) is the set of unions V = H1 ∪ H2 of two half
planes bounded by L and that make an angle at least 2π

3
along L. Also, when 0 /∈ L and

r > dist(0, L), denote by Y(L, r) the set of cones Y of type Y that are centered on 0 and
contain L ∩ B(0, r). Finally, for Y ∈ Y(L, r), denote by Y t the truncated cone Y \ S; the
truncation is not always perfect outside of B(0, r), because the spine of Y may be different
from L, but all we shall care about is the intersection with B(0, r), where we neatly remove
from Y ∩B(0, r) a sector bounded by L and contained in a face of Y .

Theorem 1.11. Let L be a line that does not contain the origin, U an open set in Rn,
r0 > dist(0, L) such that B(0, 10r0) ⊂ U , and E a coral sliding (U,L, h)-almost minimal
set, with a gauge function h such that h(r) ≤ Chr

β for 0 < r ≤ 10r0. There exist constants
ε0 > 0, C5 ≥ 1, and β5 ∈ (0, β], that depend only on n and β, such that if in addition
Chr

β ≤ ε0,

(1.32) F (0) := θ(0, 0) := lim
r→0

θ(0, r) =
3π

2

and

(1.33) d0,2r0(E, V ) ≤ ε0

for some set V ∈ V(L), then

(1.34) F (r1)− 2π

3
≤
(C5r1

r2

)β5
[F (r2)− 2π

3
] + C5Chr

β5
1 r

β−β5
2 for 0 ≤ r1 ≤ r2 ≤ r0

and in addition, for dist(0, L) ≤ r ≤ r0 there is a set Y = Y (r) ∈ Y(Y, r), such that

(1.35) d0,r(E, Y
t) ≤ c(ε0)

( r
r0

)β4/4
+ C4

(
Chr

β
)1/4

.

As before, the constant c(ε0) can be made as small as we want by choosing ε0 small enough
(depending on n and β).

This time (1.34) will come from Theorem 24.2 and (1.35) from Theorem 30.3, and the
differential inequality that leads to Theorem 24.2 will be proved in Proposition 24.4.

The statement looks a little strange because (1.33) seems to authorize a set V ∈ V(L)
with an angle (much) larger than 2π

3
. But in effect, the fact that the density θ(0) of E at the

origin is 3π
2

forbids this, and indeed (1.35) with r = r0 implies that E looks like a truncated
Y-set in B(0, r0). This last is not incompatible with (1.33) (provided that V is almost sharp),
and the reader should also keep in mind that the present situation is most interesting when
dist(0, L) is much smaller than ε0, so that (1.33) only gives a rough idea of what E looks
like in B(0, r0), while (1.35), at least when dist(0, L) ≤ r << r0, is often much more precise.

It seems that we find out that V should be nearly sharp only after the proof, but we
could also have guessed this earlier, by proving (as we will do for the proof of Theorem 1.6,
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for instance) that when E is close enough to a generic V-set, or a plane, there is no point of
type Y in E \ L near L. See Lemma 32.2.

The proof of Theorem 1.11 is in the same spirit as for balls centered on L; some inequalities
are harder to get because of the off-centered balls, and also we were forced to restrict to two
simpler situations (in terms of combinatorics) because otherwise the near monotonicity of
F is too far from optimal. On the other hand the general construction is the same, and the
combinatorics of the net of curves is simpler. In particular there is a notion of full length
here too, which will be adressed in Sections 27 and 28.

We refer to the table of contents for more detail on the plan of the paper.
The author especially wishes to thank the Institut Universitaire de France for its invalu-

able help during the early stages of the preparation of this paper. The pictures were done
with Inkscape.

1.4 Notation that will be used extensively

As usual, C is a generic notation for a constant, often large, and whose value may change
from line to line. Similarly, c is a small positive constant;
B(x, r) is the open Euclidean ball centered at x with radius r > 0;
B = B(0, 1) and S = ∂B(0, 1) are the unit ball and sphere; Br = B(0, r) and Sr = ∂B(0, r);
L is our sliding boundary. Except in Section 38, L is a line, not always through the origin;
E is our sliding (U,L, h)-almost minimal set, with sliding boundary L and gauge function h;
H2 denotes the Hausdorff measure of dimension 2;
θ(x, r) = r−2H2(E ∩B(0, r)) see (1.18); then θ(r) = θ(0, r) = r−2H2(E ∩B(0, r));

F (r) = r−2
[
H2(E ∩ B(0, r)) +H2(S ∩ B(0, r))

]
where S is the shade of L; see (1.26) and

(1.27) or later (23.6);
X is a sliding minimal cone (centered at 0), often the one that approximates E well, and
K = X ∩ ∂B(0, 1);
H = H(L), P, P(L), Y, Y(L), T are special sets of minimal cones, see Subsection 1.2;
dx,r(E,F ) is our normalized local Hausdorff distance between E and F ; see (1.14);
MC(L) is the set of minimal cones with sliding boundary L; see above (2.1);
V = V0 ∪ V1 ∪ V2 is the set of vertices of K = X ∩ ∂B(0, 1) (including artificial ones in V2)
in the standard decomposition of Section 3 (see (3.5));
the arcs Ci, i ∈ I, are the geodesics that compose K in that standard decomposition above;
distS is the geodesic distance on the sphere S,
ρ(a, b) denotes the geodesic from a to b in S (see (3.4));
v(a, b) is the unit vector that gives the direction of ρ(a, b) at a;
η(X) controls the size of the smallest arcs of X, or its distance to points `, see (4.3);
Anglea(x, y) = Angle(v(a, x), v(a, y)) is an angle of geodesics at a; see near (10.12).
τ and D±(τ) (small disks where we do surgery) appear in Section 6
τ4, an extremely small number rather than a constant, appears in (14.2)
τ1 and λ are rapidly discussed in Section 5, but appears in Section 8.
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ε appears in (5.3) to measure the distance to X, then is used all the time. It is chosen
extremely small, at the end of the proof.

2 Minimal cones bounded by a line

In this section we give a description of the sliding minimal cones of dimension 2 in Rn,
associated to a sliding boundary L which is a line through the origin. Even when n = 3,
we do not know the exact list of these minimal cones, but the combinatoric description that
follows will allow us to construct competitors in a fairly unified way. The description here
is similar to the description of plain minimal cones (that is, without a boundary condition)
that was given in [D3], Proposition 14.1, and of course we will use its proof.

So let L ⊂ Rn be a line through the origin. We denote by MC(L) the set of sliding
minimal cones of dimension 2, with sliding boundary L. That is, X ∈ MC(L) if X is a
(reduced) sliding minimal set in Rn, with sliding boundary L, and in addition X is a cone.

Fix X ∈MC(L) and set

(2.1) B = B(0, 1), S = ∂B, and K = X ∩ S;

we want a description of K. Let us give a statement now for future reference. If the reader is
only interested in the small collection of known minimal cones of dimension 2 in R3, he/she
can just have a look at the statement, check that it fits with the obvious decomposition of
the minimal cones in question, and go to the next section.

Proposition 2.1. There is a constant η0 > 0, which depends only on the dimension n,
such that for each sliding minimal cone X with sliding boundary L (i.e., for X ∈ MC(L)),
K = S ∩X is a finite union

(2.2) K =
⋃
j∈J

Cj,

where the Cj, j ∈ J , are either great circles or closed arcs of great circles. The great circles
are disjoint from the rest of K, and even

(2.3) dist(Cj, K \ Cj) ≥ η0

when Cj is a great circle. The arcs of great circles have disjoint interiors, i.e., they can only
meet at a common endpoint. No point of L lies in the interior of one of our arcs of great
circles (otherwise, we cut the arc in two). We also have that

(2.4) H1(Cj) ≥ η0 for j ∈ J , except perhaps when one of the endpoints of Cj lies in L.

In addition, if ` ∈ L∩K and H1(Cj) < η0 for some Cj which admits ` as one of its endpoints,
then there is at most another Ci which admits ` as one of its endpoints, this Ci (if it exists)
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makes an angle larger than 9π
10

with Cj at `, and H1(Ci) ≥ η0.
The arcs Cj are also far from each other, i.e.,

(2.5) dist(Ci,Cj) ≥ η0

for i, j ∈ J such that Ci∩Cj = ∅, i.e., when they do not share an endpoint, but again with the
following possible exception: if there is one one of the exceptional arcs Ck for (2.4) such that
the two endpoints of Ck are also extremities of Ci and Cj respectively. Then instead we only
get that dist(Ci,Cj) = diam(Ck) in general, and dist(Ci,Cj) = min(diam(Ck), diam(C′k)) if
Ci and Cj are both almost half circles and happen to be also separated by an exceptional arc
C′k near the antipodes.
Finally, if i ∈ J , Ci is an arc of circle, and a is one of the endpoints of Ci, then one of the
two following things happens:

(2.6)
a /∈ L, there are exactly two other arcs of great circle Cj and Ck

that meet Ci at a, and they make
2π

3
angles with Ci at a;

(2.7)
a ∈ L and all the other arcs of great circle that meet Ci at a

make angles at least
2π

3
with Ci at a.

We decided to require the arcs of geodesics not to contain a point of L in their interior.
That is, we force the points of K ∩ L to be vertices of our description (that is, when this
is not the case, we just cut the arc at the point of K ∩ L), unless they lie on a full great
circle. But even in this case, we shall later cut the great circles into pieces, and we will cut
at points of L if we can.

The decomposition of Proposition 2.1 will some times be called the natural decomposition
of K. In the next section we will again cut some of the arcs into smaller parts to get what
we’ll call the standard decomposition.

The rest of the section will be devoted to the proof of Proposition 2.1, but we start with
a few comments. By arcs of great circles, we mean geodesic arcs, but a priori they may
be longer than π, although this will probably not happen. That is, the involved circles are
centered at the origin. We write H1(Cj), but we could equally have written length(Cj). In
(2.6), Ci may be the only arc that ends at a ∈ L, or there may be two, or three, but no more.
And when there are three, their directions at a make 2π

3
angles and lie in a same 2-plane

orthogonal to L.
We start the proof of the proposition with a first description of K away from L. We

claim that

(2.8)
Each x ∈ K \ L has a small neighborhood where K coincides with a great circle

or a union of three arcs of great circles that start at x and make
2π

3
angles there,
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by the proof of Proposition 14.1 on page 88 of [D3]. Admittedly that proposition was
announced when K comes from a plain minimal cone (with no sliding boundary condition),
but the first part where we prove the conclusion of (2.8) only uses this information locally.
Since the reader may not recall well how this goes, let us sketch a rapid argument, which
actually uses a little more information but is easier to believe. First let Z be any blow-up
limit of X at x; we know that it is a minimal cone (with no sliding boundary), and since X
is a cone, a simple computation (that will be done soon in a slightly different context) shows
that Z is invariant by translations in the direction of x. When we look at the description
of Z ∩ S given in Proposition 14.1 of [D3], we see that all the great circles involved in this
description are contained in 2-planes that contain x, and it is easy to see that Z ∈ P ∪ Y
(again, read the arguments below if you have a doubt).

Suppose first that Z is a plane; the local regularity result (of [Ta] or [D4]) says that near
x, X is a C1+ε surface, and its tangent plane at x contains the radial direction. It follows
from the implicit function theorem that K is a C1 curve near x, and then we can conclude,
either as in Proposition 14.1 of [D3] (by constructing competitors by hand), or by saying
that in fact (by the regularity theory for elliptic PDE) K is C2 near x, then has vanishing
curvature in the direction of S (because the total mean curvature is zero, and X has no
curvature in the radial direction). Thus K is an arc of great circle in the neighborhood of
x, when x ∈ K \ L and X has a blow-up limit at x which is a plane. The case when Z ∈ Y
follows at once, because the regularity theorem says that near x, K is composed three C1

curves, and we just showed that they are arcs of great circles. They make 2π
3

angles because
Z ∈ Y. This completes our sketch of (2.8).

So we have a nice local description of K away from L, and now we need to see what
happens near a point of K ∩L; we start our study of K near L with a description of sliding
minimal sets of dimension 1.

Lemma 2.2. Let Z be a (reduced) sliding minimal set of dimension 1 in the whole Rn, with
sliding boundary {0}. One possibility is that Z is a line or a a set of type Y (i.e., the union
of three half lines that meet at a point with 2π

3
angles). Otherwise, 0 ∈ Z, and Z is either a

half line with its end at 0, or a set of type V (i.e., the union of two half lines with ends at
0 and that make an angle at least 2π

3
at 0), or a truncated Y (i.e, a line segment [0, a] with

a 6= 0, plus two half lines leaving from a, so that [0, a] and the two half lines make 2π
3

angles
at a.

Let Z be such a minimal set. Away from 0, and for instance by Chapter 10 of [D3], Z
is composed of line segments, that can only meet by sets of three, with angles of 2π

3
, and at

vertices that are isolated in Rn \ {0}.
The argument that follows is obviously too heavy, as some parts could be replaced by

constructions of competitors with line segments, but hopefully it will convince the reader
with less effort.

We may assume that the origin lies in Z, because otherwise Z is a plain minimal set of
dimension 1 (just check the definitions). Those were studied before, and they are lines or sets
of type Y . Then set θ(r) = r−1H1(Z∩B(0, r)); we know, for instance from Section 28 of [D7]
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(but again it is much easier in dimension 1 because we just need to replace with cones over
finite sets) that θ is a nondecreasing function. In addition, because of this and a theorem
about limits (again [D7] is a reference, but in fact Golab’s theorem does the job), any blow-up
limit Z0 of Z at 0 is a sliding minimal cone of constant density θ(0) = limr→0 θ(r). Similarly,
every blow-in limit Z∞ of Z is a sliding minimal cone of constant density θ(∞) = limr→∞ θ(r).
That is, Z0 and Z∞ are finite unions of half lines emanating from 0. In fact they can only be
composed of 1, 2, or 3 half lines, because a simple argument shows that the half lines make
angles ≥ 2π/3 with each other (otherwise, pinch a couple of them near the origin).

Setm = θ(∞); then every blow-in limit limit Z∞ is composed ofm half lines `i, 1 ≤ i ≤ m,
and there are large radii R such that Z ∩ ∂B(0, R) is composed of exactly m points that lie
at distances larger than R from each other. Indeed, notice that Z ∩ ∂B(0, R) has at least
m points for R large, one near each `i, because otherwise we could contract a big piece of Z
near `i; in addition the presence of an additional point too often would make the density of
Z too large. Select such an R, and call xi the point of Z ∩ ∂B(0, R) that lies close to `i.

Set ZR = Z ∩ B(0, R), and let C(0) denote the connected component of 0 in ZR. We
want to show that

(2.9) C(0) contains xi for 1 ≤ i ≤ m.

Let us first assume that C(0) contains none of the xi. For ε > 0 small, denote by Cε(0) the
set of points z ∈ ZR that can be connected to 0 by an ε-chain in ZR, i.e., a finite chain of
points ζj ∈ ZR such that ζ0 = 0, |ζj − ζj−1| ≤ ε for j ≥ 1, and z is the last ζj. Since ZR
is a compact set of finite length, it is easy to see that if for every ε > 0 the point z ∈ ZR
can be connected to 0 by an ε-chain in Zr, then there is a path of finite length in ZR that
goes from 0 to z. See for instance [Fl], or Chapter 30 of [D1]. In other words, C(0) is the
intersection of the Cε(r). Since the Cε(0) are open in ZR and C(0) is closed (for instance
because the Cε(0) are also closed), we get that C(0) = Cε(0) for some ε > 0, and our
assumption implies that Cε(0) does not contain any xi, and hence does not meet Z \B(0, R)
(recall that Cε(0) ⊂ ZR = Z ∩ B(0, R)). By compactness, dist(Cε(0), Z \ B(0, R)) > 0.
We shall now check that this is impossible because it implies the existence of a competitor
Z ′ = ϕ(Z) which is strictly better than Z.

First observe that if ϕ : Z → Rn is Lipschitz, ϕ(x) = x for x ∈ Z \B, and ϕ(0) = 0, then
Z ′ = ϕ(Z) is automatically a competitor for Z, because we can interpolate linearly between
the identity and ϕ to get a one parameter family {ϕt}, and all the mapings ϕt satisfy the
sliding condition ϕt(0) = 0. See Definition 1.1.

Now we define ϕ on Z by ϕ(x) = 0 for x ∈ Cε(0) and ϕt(x) = x on the rest of Z. Notice
that the rest of Z lies at positive distance from Cε(0), so ϕ is Lipschitz. It is easy to see
that Z ′ = ϕ(Z) does better than Z, because we simply removed the measure of Cε(0) which
contains Z ∩ B(0, ε), whose measure is positive because 0 ∈ Z and Z is Ahlfors-regular. So
C(0) contains at least one xi.

Now suppose that (for instance) the connected component C(1) of x1 does not contain 0
or any other xi. Let Cε(1) denote the set of points z ∈ ZR that can be connected to x1 by
an ε-chain in ZR. As before, Cε(1) is both open and closed in ZR, C(1) is the intersection
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of the Cε(1), and for ε small enough Cε(1) does not contain 0 or any other xi and stays at
positive distance from the rest of ZR.

This time we define a competitor Z ′ = ϕ(Z) with a function ϕ such that ϕ(x) = x on
Z \ B(0, R) and on ZR \ Cε(1), and ϕ(x) = x1 on Cε(1). For the verification, first observe
that ϕ(0) = 0 because 0 ∈ ZR \Cε(1), and that it is enough to check the Lipschitz property
of ϕ near x1 (because Cε(1) is far from the rest of ZR). This is easier if we observe that
we could choose R such that near each xi, Z is in fact a line segment that crosses ∂B(0, R)
transversally. Indeed almost every R is like this, because the set of vertices for Z is at most
countable, and by Sard’s theorem (to exclude segments that are tangent to ∂B(0, R)). Now
the Lipschitz property is easy, and it is also clear that Z ′ = ϕ(Z) is better than Z, because
we contract at least a segment to x1.

If (2.9) fails, we are in one of the following situations. Suppose for the sake of definiteness
that C(0) does not contain x1. Recall that it contains some xi ; without loss of generality we
can assume that x2 ∈ C(0). But x1 must be connected to some point, and the only choice
left is x3 (recall that there are at most three xi). Let us now say why this is impossible.
As before, if ε is small enough, the set Cε(0) defined above coincides with C(0), and thus
contains 0 and x2, and the set Cε(1) coincides with C(1) and therefore contains x1 and x3,
but lies at distance at least ε from Cε(0).

We now define ϕ and the competitor Z ′ = ϕ(Z) as follows. As usual, we take ϕ(x) = x
on Z \ B(0, R). On ZR \ Cε(1), we let ϕ coincide with a Lipschitz retraction from B(0, R)
onto the line segment [0, x2]. Finally, on the rest of ZR, that is, on Cε(1), we let ϕ coincide
with a Lipschitz retraction from B(0, R) onto the line segment [x1, x3]. Notice that ϕ(0) = 0
because 0 ∈ ZR \ Cε(1). Again the Lipschitz property of ϕ only needs to be checked near
the xi, where we just need to know that [0, x2] and [x1, x3] are transverse to ∂B(0, R).
Finally, H1(Z ′ ∩ B(0, R)) ≤ H1([0, x2] ∪ [x1, x3]) ≤ R + |x1 − x3| < 29R/10 if R is large
enough, because the xi lie close to the minimal cone Σ∞ and thus almost make angles of
2π/3. On the other hand, H1(Z ∩ B(0, R)) tends to θ(∞)R = 3R when R tends to +∞,
so H1(Z ′ ∩ B(0, R)) < H1(Z ∩ B(0, R)), Z ′ is a better competitor, and this contradiction
proves (2.9).

Now the set ZR contains a connected set that connects 0 and the xi. This implies (because
H1(ZR) < +∞; see again [Fl] or Chapter 30 of [D1]) that there is a simple arc ξ1 in ZR that
goes from 0 to x1. If m ≥ 2, there is also an arc in ZR that goes from x2 to 0; we call ζ2

the first point of this arc (leaving from x2) that lies in ξ1. We call ξ2 the portion of this arc
between x2 and ζ2. Thus ξ2 is essentially disjoint from ξ1, and their union connects 0, x1,
and x2. If m = 3, we also find an arc from x3 to 0, stop it at the first point ζ3 of ξ1 ∪ ξ2, and
thus get a third arc ξ3.

Let us assume that m = 3 (the other cases are simpler). We see that

(2.10) H1(ZR) ≥ H1(ξ1 ∪ ξ2 ∪ ξ3) = H1(ξ1) +H1(ξ2) +H1(ξ3).

Notice that ξ1 ∪ ξ2 ∪ ξ3 is composed of (at most) five essentially disjoint curves that connect
0 and the xi (in the worse case we cut ξ1 in two at ζ2 and ξ2 or one of the two pieces of ξ1

at ζ3); if we replace each of these arcs with a line segment with the same endpoints, we get
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a connected set F such that H1(F ) ≤ H1(ZR), with a strict inequality if ZR 6= F .
Denote by F the class of connected unions of at most five line segments contained in

B(0, R), and that contain 0 and the three xi. Thus F ∈ F . Let F0 ∈ F be such that

(2.11) H1(F0) = inf
G∈F
H1(G) ≤ H1(F ) ≤ H1(ZR).

Existence is not an issue, because there are finitely many combinations of intervals, with
endpoints that lie in the compact set B(0, R).

First suppose that F0 has no vertex in B(0, R) \ {0}, which means that F0 is the inter-
section of B(0, R) with an array of 1, 2, or 3 half lines emanating from 0. These segments
make angles at least 2π/3 at 0, because otherwise we may pinch two of them near 0 and
make F0 shorter. We consider this good and go to the next case.

Suppose next that F0 has exactly one vertex in B(0, R) \ {0}. Call this vertex v, and
observe that the three segments of F0 that leave from v make 2π/3 angles with each other
(otherwise, move v a little and this gives a shorter F0). They either end at points xi ∈
∂B(0, R), or at the origin. Call V0 the union of these three segments; this is a piece of Y -set.

Let us first assume that V0 ends at the three xi. One possibility is that 0 lies in V0.
Then F0 = V0 (no need to add anything), we shall consider that 0 is a vertex F0 is in fact
composed of four segments (three that make a smaller piece of Y -set centered at v, and a
segment [0, xi] opposite to it, and this will be a good enough description. Otherwise, 0 is also
connected to one of the xi (there is no other inside vertex, and v already has three segments
leaving from it). Notice that v lies very close to the origin, because the branches of V0 make
2π
3

angles, and the xi are seen from 0 with angles that are arbitrarily close to 2π/3. This
is impossible, because we could easily make F0 shorter by replacing the long segment [0, xi]
with [0, v], for instance.

Now assume that V0 ends at 0 and, say, x1 and x2. Again, v lies very close to 0. If
m = 2, then F0 = V0 and we declare ourselves happy. Otherwise, m = 3, there is another
segment that goes from x3 to either 0 or x1 or x2 (the other vertex v is already full), and no
more, because F0 is minimal. But x1 (for instance) is impossible, because we would make
F0 shorter by replacing [x3, x1] with the shorter [x3, 0]. So F0 = V0 ∪ [x3, 0], and we like this
case too. Notice that [0, v] and [0, x3] make an angle at least 2π/3 at the origin, because
otherwise we could pinch.

We end our discussion with the case when F0 has (at least) two vertices vj in B(0, R)\{0}.
Let us count vertices and edges to reduce to one possibility. First observe that F0 contains

no cycle since it is minimal. That is, F0 is a tree. It has some vertices of valence 3 (the vj,
and maybe some other), maybe some vertices of valence 2, and some vertices of valence 1
that we call extremities. There are at most 4 extremities, the origin and the xi, because the
other vertices have valence 3. It is easy to see that such a tree has 2 extremities if it has
no vertex of valence 3, 3 extremities if it has one vertex of valence 3, 4 extremities if it has
two vertices of valence 3, and more otherwise (you may remove the vertices of valence 2 to
do this computation). Here we have at least two vertices vi and at most 4 extremities, so in
fact we have exactly 2 vertices vi and 4 extremities, which are 0 and three points xi. That is,
F0 is a simple graph with 5 segments, and after renaming the xi and the vj we may assume

31



that F0 = [0, v1]∪ [x1, v1]∪ [v1, v2]∪ [v2, x2]∪ [v2, x3], with segments that do not meet except
at the vj, and with 2π

3
angles as usual. We are a little less happy with this last case, but

keep it anyway.
In all our cases, we claim that set F0 gives a competitor for Z in B(0, R). That is, due

to the simple shape of F0, we can find a Lipschitz mapping ϕ : B(0, R) → F0, such that
ϕ(z) = z for z ∈ F0, and in particular ϕ(0) = 0. We extend ϕ to Z \ B(0, R) by setting
ϕ(z) = z there. Notice that because near the points xi, Z is composed of a C1 curve which
is transverse to ∂B(0, R), this makes ϕ Lipschitz on Z. We do not care about the Lipschitz
constant, and ϕ is the endpoint of the family {ϕt}, 0 ≤ t ≤ 1, obtained by linear interpolation
with the identity. Thus ϕ(Z) is a sliding competitor for Z in B(0, R) and, since Z is minimal,
H1(Z ∩ B(0, R)) ≤ H1(ϕ(Z ∩ B(0, R)) ≤ H1(F0). Recall that Z ∩ B(0, R) = ZR, so (2.11)
says that in fact H1(ZR) = H1(F0) = H1(F ), and by its proof ZR is actually equal to F
(every curve in the decomposition is a line segment). In addition, F is minimal, so the
discussion above, with F0 = F = ZR, gives a description of F0 = ZR = Z ∩B(0, R).

Notice that all this happens for radii R that we can take as large as we want. Suppose
that we ever encounter the bad case when F0 has five pieces. Then for all the radii R′ larger
than R (and for which the argument works), our description of Z ∩ B(0, R′) coincides in
B(0, R) with the description of Z ∩B(0, R), which means that the two vertices vj are always
the same, and F0 = F0(R′) is just obtained from F0(R) by extending the three branches by
straight lines, past the three xi. Since we can take R′ as large as we want, we see that Z is
the union of the two segments [0, v1] and [v1, v2], plus three half lines, namely the half line
L1 that starts from v1 and goes in the direction of x1, and the two half lines L2 and L3 that
leave from v2 and go in the directions of x2 and x3 respectively.

Denote by ei the direction of Li. Since the blow-in limits of Z are Y -sets, we see that
the three ei make 2π/3 angles with each other. In particular, they lie in a same plane. Now
[v2, v1] makes 2π/3 angles with L2 and L3 at the point v2, so it lies in the same plane P ′

(parallel to P ) that contains L2∪L3. This plane contains L1 too (because it contains v1 and
its direction contains e1), and since L1, [v1, 0], and [v1, v2] also make 2π/3 angles at v1, we
see that 0 ∈ P ′ as well. It is good to know that the picture is done in P ′, because now e2

and e3 are easily seen to make angles of 2π
3
± 2π

6
with e1, a contradiction. So we may assume

that our last bad case never happens for R large.
Our next case is when for some R > 0, F0 is of the form V0∪[0, x3], i.e., a truncated Y -set,

plus a segment that goes roughly in the opposite direction. As before, for every R′ > R for
which we can make the description above, the set F0(R′) extends F0(R). This implies that
Z is a set of type Y , truncated at the origin, plus a half line emanating from 0. The blow-in
limits of Z are unions of three half lines leaving from 0, and since these blow-in limits are
minimal, the three three half lines make 2π/3 angles. That is, Z is a cone of type Y .

Now assume that this never happens, and that there is an R for which F0 = F0(R) is a
truncated Y -set. Then as before we can extend, and Z itself is a truncated Y -set. Similarly,
if F0(R) is composed of radii starting from the origin, and the descriptions above never occur
for any R, we see that Z is a union of 1, 2, or 3 half lines emanating from 0 with the usual
condition that they make angles at least 2π/3 at the origin.
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Thus we have a description of Z which fits what was announced in the statement;
Lemma 2.2 follows.

We deduce from this a description of translation invariant sliding minimal sets of dimen-
sion 2.

Lemma 2.3. Let T be a (reduced) sliding minimal set of dimension 2 in the whole Rn, with
sliding boundary L, and suppose that T is invariant by translations parallel to the line L.
Then T is either a plane, a set of type V (two half planes bounded by L and that make an
angle at least 2π

3
along L), or a set of type Y, parallel to L but not necessarily containing L,

or else a half plane bounded by L (i.e., T ∈ H(L)) or a truncated set of type Y (i.e., a set of
the form (Y \H) ∪ L, where Y ∈ Y has a spine parallel to L, and H ∈ H(L) is a half plane
contained in Y ).

To prove this, write T = L× Z, where Z is a subset of the vector hyperplane P perpen-
dicular to L. We want to show that Z is a one-dimensional minimal set in P , with a sliding
boundary reduced to the origin 0, and then we’ll use Lemma 2.2. This is fairly a standard
argument, so we just sketch the proof and refer to Lemma 2.1 of [Lu1] for a more detailed
argument.

Let ϕ : Z → P be a Lipschitz mapping such that ϕ(x) = x for |x| large, and ϕ(0) = 0
if 0 ∈ Z. This last is enough to take care of the sliding boundary condition. That is, in
principle our competitors are of the form ϕ1(Z), where {ϕt} is a one-parameter family of
continuous functions that satisfy the sliding condition that ϕt(x) ∈ {0} when x ∈ {0} (our
sliding boundary is {0}). But we’ll take ϕt(x) = tϕ(x) + (1 − t)x, and our condition that
ϕ(0) = 0 is enough for the sliding condition.

Let B be a ball such that ϕ(x) = x for x ∈ Z \ B and ϕ(Z ∩ B) ⊂ B. Suppose that, in
contradiction with our claim, we can choose ϕ so that

(2.12) ∆ := H1(ϕ(Z) ∩B)−H1(Z ∩B) = H1(ϕ(Z ∩B))−H1(Z ∩B) < 0.

Let I ⊂ L denote a very long interval and let ψ : I → [0, 1] be a nice cut-off function
on I. For the sake of definiteness, we can identify L with R, take I = [−N − 1, N + 1] for
some large N and choose ψ(y) = max(0,min(1, N + 1 − |y|)) for y ∈ R. Denote by (x, y)
the generic point of Rn, with x ∈ P ' Rn−1 and y ∈ L ' R. A good competitor for T
is f(T ), where f : T → Rn is defined by f(x, y) = (ψ(y)ϕ(x) + (1 − ψ(y))x, y). It is easy
to see that f(T ) is a sliding competitor for T in the rectangular shaped set R = B × I, in
particular because f(x, y) = (x, y) when x = 0 and because it is easy to interpolate between
the identity and f .

The minimality of T says that Hd(T ∩ R) ≤ Hd(f(T ) ∩ R). Set R′ = B × [−N,N ], and
observe that

(2.13) H2(T ∩R′) = H2((Z ∩B)× [−N,N ]) = 2NH1(Z ∩B)

not completely trivially, but because Z is rectifiable. See for instance the computations of
pages 530-531 in [D1], although in a slightly different context. The rectifiability of Z itself
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comes from the rectifiability of T = Z×L; we leave the details. Similarly, the 2-rectifiability
of f(T ∩R′) = (ϕ(Z ∩B))× [−N,N ] (recall that ψ(y) = 1 on [−N,N ]) yields

(2.14) H2(f(T ∩R′)) = H2((ϕ(Z ∩B))× [−N,N ]) = 2NH1(ϕ(Z ∩B)),

so we win 2N∆ from the contribution of R′. We still need to estimate the contribution of
R \ R′. Since ϕ is Lipschitz, H2(f(T ∩ (R \ R′)) ≤ C, where C depends on the Lipschitz
constant for ϕ. It is possibly huge, but it does not depend on N . We take N large, add this
to the estimates from inside of R′, and get the desired contradiction with the minimality of
T .

So Z is a sliding minimal set, Lemma 2.2 gives a good description of Z, and the description
of T = Z × L needed for Lemma 2.3 follows.

When we restrict to cones, Lemma 2.3 yields that (with the notation of Subsection 1.2,
and still assuming that L is a line through the origin)

(2.15)
if T is a sliding minimal cone with sliding boundary L, and T is invariant

by translations parallel to L, then T ∈ H(L) ∪ V(L) ∪ Y(L).

We will often use Lemma 2.3 and (2.15) to control limits of minimal cones, and then
obtain information in the direction of Proposition 2.1. The standard notation for this is the
following. We have a sequence {Xk} of sliding minimal cones associated to the boundary
L (a line through the origin). We select points ak ∈ Kk = Xk ∩ S and radii rk > 0, with
limk→+∞ rk = 0, and consider

(2.16) Yk = r−1
k (Xk − ak).

Notice that 0 ∈ Yk; this allows us to take a subsequence, which we shall still denote the same
way, so that {Yk} converges to a closed set Y , and {ak} converges to a limit a ∈ S. We will
need to know that Y is invariant by translations in the direction of a, i.e., that

(2.17) ξ + ta ∈ Y for ξ ∈ Y and t ∈ R.

Indeed, we can find ξk ∈ Yk, so that ξk tends to ξ. Set ζk = ak + rkξk; then ζk ∈ Xk,
and since Xk is a cone, sζk ∈ Xk for s > 0. Then r−1

k (sζk − ak) ∈ Yk for s > 0. But
r−1
k (sζk − ak) = r−1

k (sak + srkξk − ak) = sξk + (s− 1)r−1
k ak. We apply this with s = 1 + rkt,

get that (1 + rkt)ξk + tak ∈ Yk for k large, take a limit, and get (2.17).
Let zk ∈ L minimize the distance to ak, and notice that Yk is a sliding minimal set, with

respect to the boundary Lk = L− r−1
k ak = L+ r−1

k (zk − ak).
There will be two main cases. The first one is when limk→+∞ r

−1
k dist(ak, L) = +∞, or

equivalently limk→+∞ dist(0, Lk) = +∞. In this case, since Yk is a plain minimal set in
B(0, dist(0, Lk)), then by Theorem 4.1 (and Definition 2.4) in [D2], Y is a minimal set in
Rn, with no sliding boundary condition. Since by (2.17) it is also invariant by translations
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the direction of a, the simpler variant of Lemma 2.3 where there is no boundary constraints
implies that

(2.18) Y is a plane or a set of type Y (possibly not centered at 0).

The other possibility is that dist(0, Lk) = r−1
k dist(ak, L) stays bounded; then, modulo a new

sequence extraction, we may assume that {Lk} converges to a line L∞, which is parallel to L
(and the Lk). Theorem 10.8 or 21.3 in [D7] says that Y is a sliding minimal set, with boundary
L∞, and since Y is still invariant by translations in the direction of a (which happens to be
the direction of L, since a = limk→+∞ ak and dist(ak, L) tends to 0), Lemma 2.3 says that

(2.19)
Y is a plane, a set of type V (bounded by L), a set of type Y (with a spine

parallel to L), or a half plane or a truncated set of type Y.

We return to the proof of Proposition 2.1. The following lemmas will help with the
relative position and length of the arcs Cj that compose K = X ∩ S. We start with a
description of K far from L, which is more precise than what we did near (2.8) because we
give a lower bound for the radius of the good balls.

Lemma 2.4. If η1 is small enough, depending only on n, not on X, then if a is a vertex of
K in the description near (2.8), K ∩ B(a, η1 dist(a, L)) is the union of three geodesics that
leave from a with equal angles of 2π

3
.

We shall prove this with a contradiction and compactness argument. Suppose that the
lemma fails, and let Xk, Lk, Kk = Xk ∩ S, and ak ∈ Kk \Lk provide a counterexample, with
η1(k) = 2−k. By rotation invariance, we may assume that Lk = L stays the same. By (2.8),
there is a neighborhood of ak where Kk is composed of three arcs of geodesic. That is, for
each k we can find r > 0 such that

(2.20) Kk ∩B(ak, r) = (γ1 ∪ γ2 ∪ γ3) ∩B(ak, r)

for some choice of three geodesics γj, 1 ≤ j ≤ 3, that leave from ak, make 2π
3

angles at ak,
and go at least to ∂B(ak, r). Let rk denotes the largest r > 0 such that the representation
(2.20) holds. Since the description of the lemma fails for r = 2−k dist(ak, L), we see that
rk ≤ 2−k dist(ak, L) ≤ 2−k.

Consider Yk = r−1
k (Xk − ak) as above, and replace our sequence with a subsequence for

which Yk tends to a limit Y . Since r−1
k dist(ak, L) ≥ 2k tends to +∞, we see that Y is a

plane or a set of type Y, as in (2.18).
Since by definition of rk (2.20) holds for r = rk/2, we see that Xk has a beautiful

description as a set of type Y in B(ak, rk/3), Yk has a similar description in B(0, 1/3), and
when we take a limit Y we get a cone of type Y (this time centered at 0).

Return to Yk and Xk. Since Yk tends to Y , we get that d0,10(Yk, Y ) tends to 0, or
equivalently d0,10rk(Xk, ak + Y ) = d0,10(Yk, Y ) tends to 0 (see the definition (1.14)). Let us
again be slightly brutal and apply the regularity theorem from [D4]; for k large enough,
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we get that in B(ak, 3rk), Xk is a smooth version of ak + Y , with small C1 constants, to
the point that K ∩ B(ak, 2rk) is, by the implicit function theorem, composed of exactly 3
smooth curves that meet at ak. These smooth curves are arcs of geodesics (by (2.8)) and
this contradicts the definition of rk. Lemma 2.4 follows.

With almost the same proof, we can also get a uniform control of X near ` ∈ L ∩ S,
provided that ` /∈ K.

Lemma 2.5. If η1 is small enough, depending only on n but not on X, and if ` ∈ L∩S \K,
then for each a ∈ K ∩ B(`, 10−1) which is a vertex of K, K ∩ B(a, η1) is the union of three
geodesics that leave from a with equal 2π

3
angles.

The difference is that the size of the ball no longer depends on dist(a, L). We start
the proof the same way. By rotation invariance, it is enough to prove this for a fixed L
and `. Then we proceed by contradiction and suppose that for k ≥ 1, Xk and ak define a
counterexample with η1 = 2−k. We define Yk as before, i.e., let rk be the smallest radius
r such that (2.20) fails, and set Yk = r−1

k (Xk − ak). Notice that rk ≤ 2−k because Xk is a
counterexample.

Switching to a subsequence if needed, we can assume that Yk converges to a limit Y .
Now we claim that Y is a minimal set in Rn, with no sliding boundary condition, but for a
different reason as before.

For our proof of (2.18), we used the fact that L was too far. Here Xk is sliding minimal
in B(ak, 1/2), with a sliding boundary L that could be very close to ak. But Xk does not
meet L in that ball (because we assumed that Kk does not contain `), so we easily deduce
from the definitions that Xk is a (plain) minimal set in B(ak, 1/2). This is because (1.4) is
void here. Then Yk is a plain minimal set in B(0, r−1

k /2), and by Theorem 4.1 in [D2], Y is
a minimal set in Rn. Again we have (2.18), i.e., Y is a plane or a set of type Y.

The rest of the proof is as above: Y is actually a set of type Y with a spine that contains
a, then for k large Xk is so close to rkY +ak in B(ak, 10rk) that it coincides with a C1 version
of that set in B(ak, 2rk). By (2.8), K is composed of three geodesics inside B(ak, 2rk), this
contradicts the definition of rk, and Lemma 2.5 follows.

Lemma 2.6. There is a small η2 > 0, depending on n but not on X, such that if K contains
the point ` ∈ L∩ S, a ∈ K \L is one of the vertices of K \L, and |a− `| ≤ η2, then there is
no other vertex of K in B(`, 10|a− `|) \B(`, 10−1|a− `|).

Once more we prove this by contradiction and compactness. Suppose the lemma fails,
and let Xk, Kk, `k ∈ Lk ∩ Kk, and ak ∈ Kk provide a counterexample with η2 = 2−k.
By rotation invariance we may assume that Lk = L and `k = ` are always the same. Set
rk = |ak− `| ≤ 2−k; thus rk tends to 0 and r−1

k dist(ak, L) tends to 1 (because ak tends to `).
We are in the situation of (2.19), where modulo a sequence extraction Yk = r−1

k (Xk − ak)
tends to a sliding minimal set Y , which is a plane, a set of type Y, a cone of type V, a half
plane, or a truncated Y-set, each time bounded by a half line L∞ parallel to L.
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Recall that ak is a vertex of Kk \L; Lemma 2.4 says that in B(ak, η1rk), Kk is composed
of three geodesics g1, g2, g3 that meet at ak with 120◦ angles. In the same ball, Xk coincides
with the cone Hk over g1∪g2∪g3. Or equivalently, Yk coincides with r−1

k (Hk−ak) in B(0, η1).
Thus Y has a singularity of type Y at the origin, and is a Y-set, possibly truncated, with a
spine parallel to L (because it is invariant by translations in the direction of ` = limk→+∞ ak).

But the contradiction assumption says that Kk has another vertex bk ∈ B(`, 10rk) \
B(`, 10−1rk), and Lemma 2.4 says that in B(bk, η1rk/10), Kk is composed of three geodesics
that meet at bk. In particular, ak lies outside of this ball, hence |bk − ak| ≥ η1rk/10. We

may extract a new subsequence so that b̃k = r−1
k (bk − ak) converges to a limit b̃, and the

same argument as above says that b̃ also lies on the spine (the singular set) of Y , just like

0. But b̃ lies on L⊥ (the hyperplane orthogonal to L), because both ak and bk lie in S and

tend to `, and in addition |̃b− ã| ≥ η1/10 (because |bk − ak| ≥ η1rk/10). This is impossible;
Lemma 2.6 follows.

The same argument says a little more. Let X, K, and a be as in Lemma 2.6. We claim
that not only K ∩ B(a, 9|a−`|

10
) is composed of three geodesics (with no other vertex of K),

but also that (again if η2 is small enough), one of these geodesics makes an angle less than
π/100 with the geodesic ρ(a, `) from a to `.

Indeed, otherwise we proceed as in the proof of Lemma 2.6, with a sequence {Xk} for
which the three geodesics that compose Kk ∩ B(ak, η1rk) make angles at least π/100 with
ρ(ak, `). As before, we can extract a subsequence for which Yk = r−1

k (Xk − ak) tends to
a sliding minimal set Y , which is either a Y-cone with a spine parallel to L, or such a
Y-cone, truncated by a line L∞ parallel to L. Either way, ` ∈ Xk by assumption, so
zk = r−1

k (` − ak) ∈ Yk, and we can extract a subsequence so that z = limk→+∞ zk ∈ Y .
Notice that |z| = 1 because |zk| = 1 since rk = |ak − `|.

It is easy to see that the direction of ρ(ak, `) at ak tends to z. But on the other hand the

directions at ak of the three geodesics that compose Kk ∩ B(a, 9|ak−`|
10

), or equivalently the

directions at 0 of the three geodesics that compose K̃k ∩B(0, 9
10

), with K̃k = r−1
k (Kk − ak),

tend to the unit directions of the faces of Y (intersected by the orthogonal of L). Thus one
of these directions tends to z (because z ∈ Y ), a contradiction with our assumption that
they all make large angles with the direction of ρ(ak, `) (that also tends to z). This proves
our claim.

Let us continue with our assumption that K ∩ L contains a point `. We now claim that

(2.21) K ∩B(`, η2/10) \ L contains at most one vertex.

Indeed, suppose that K ∩ B(`, η2/10) \ L has two vertices a and b. We may assume that
|b−`| ≤ |a−`|. Notice that Lemma 2.6 says that the values of |x−`|, where x ∈ K∩B(`, η2)\L
is a vertex of K, are lacunary, so we may assume that b was chosen so that |b− `| is maximal
once a is chosen. Also, |b− `| ≤ 10−1|a− `| by lemma 2.6.

Set r = |a − `|, B = B(`, 2r), and A = B \ B(`, |b − `|); we now give a description of
K ∩ A. First we have two geodesics g1 and g2 that leave from b, making 120◦ angles with

37



each other and also roughly with ρ(b, `). Because of this, they go away from B(`, |b−`|), i.e.,
they start in A. They stay in K as long as they stay in B and they don’t meet a vertex of
K; since there is only one vertex in A (namely, a), we only have two options (see Figure 9).
Either g1 and g2 both miss a, and then K contains A ∩ (g1 ∪ g2). Or else one of them, say
g2, contains a, and then we only know that K contains A ∩ g1 and ρ(b, a).

We also know that B \ 1
5
B contains three arcs of geodesics γi, that leave from a with 120◦

angles and go all the way to the boundary of B \ 1
5
B (because they don’t meet a vertex).

Altogether, we found a collection of reasonably long geodesics that are contained in K∩B,
either 4 of them (three that make a Y centered at a, plus one leg that leaves from b with a
120◦ angle), or 5 (three that make a Y centered at a, and two other ones that make a disjoint
V ). It is important for the present argument that long means, of diameter at least |`−a|/10,
say. We claim that this is impossible. We proceed by contradiction and compactness as in
the previous lemma, and get a description of the limit Y of a convergent subsequence of
normalizations Yk of counterexamples Xk. As above, Y is a possibly truncated cone of type
Y that is centered at 0 (a normalized limit of the ak) and contains a line L∞ parallel to L.
But then Xk looks a lot in B like the image of Y by a translation and a dilation, and this
does not fit the fact that Kk = Xk ∩ S contains the four or five long geodesics above. This
proves (2.21).
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Figure 9: These arcs of geodesics are contained in K (two cases). On the left, γ3 does not
need to cross g2 because n ≥ 4 is allowed

Let us now check that

(2.22) |a− b| ≥ η1η2

20
when a, b are different vertices of K \ L.

Indeed if dist(a, L) ≥ η2/20, Lemma 2.4 says that |b − a| ≥ η1 dist(a, L) ≥ η1η2/20. If
|a−`| ≤ η2/15 for some ` ∈ K∩L, (2.21) says that |b−`| ≥ η2/10 and hence |a−b| ≥ η2/60.
Finally if |a− `| ≤ η2/15 for some ` ∈ L ∩ S \K, Lemma 2.5 says that |b− a| ≥ η1.

Because of this, K has a finite number of vertices, hence it is composed of a finite number
of geodesic arcs, plus some full great circles. Recall that when an arc C meets L, we consider
the points of K ∩ C as vertices, i.e., we cut C at these points. This gives our decomposition
of K into the Cj, j ∈ J .

38



Before we start the verification of the various properties stated in Proposition 2.1, let us
say two last words about the minimizing properties of K itself. It will be good to know that

(2.23) K is a weak almost minimal set in S, with sliding boundary K ∩ L,

even though we shall also try to provide proofs that do not use this fact. Let us first say
what (2.23) means. The vocabulary comes from Definition 9.1 of [D3], where a similar notion
(without sliding boundary) was used to record some easy properties of K = X ∩ S when
X is a minimal cone, in order to get the description in terms of geodesics that we used for
(2.8). By (2.23) we mean that if f : S→ S is an M -Lipschitz mapping and B(x, r) is a ball
centered on S such that

(2.24) f(y) = y for y ∈ S \B(x, r) and f(S ∩B(x, r)) ⊂ S ∩B(x, r),

and also f(`) = ` for every ` ∈ K ∩ L, then

(2.25) H1(K ∩B(x, r)) ≤ H1(f(K) ∩B(x, r)) + C(1 +M)r2.

The present definition is a little less demanding than Definition 9.1 of [D3], where we also
required (2.25) when f is piecewise M -Lipschitz, but this will be enough for our purposes.
We also use a specific gauge function (namely, Cr, with a C that depends only on the
dimension n) in (2.25), again because this is what we get from the proof. On the other hand,
we added the requirement that f(`) = ` for ` ∈ K ∩ L, to account for the sliding condition
for X.

Now the proof of Proposition 9.4 in [D3] applies to the present situation and shows that
(2.23) holds for every sliding minimal cone X of dimension 2, with boundary L. Our extra
condition is of course used to ensure that the competitors build in [D3] come from one-
parameter families {ϕt} such that ϕt(y) ∈ L when y ∈ X ∩L. The details of Proposition 9.4
in [D3] are easy; we just use any map f as above to construct a competitor for X; however
we find it easier to refer to [D3] rather than doing the verification here. Of course we’ll use
(2.23) a few times to derive a contradiction when needed.

Return to the properties of Proposition 2.1, and let us first check what happens at the
vertices. The fact (2.6) that near each vertex a ∈ K \ L, K consists of three geodesics that
leave from a with 120◦ angles comes from (2.8), and was already used many times. Similarly,
let us check (2.7), which says that when ` ∈ K ∩L, there is a small neighborhood of ` where
K is composed of one, two, or three geodesic arcs that leave from ` and make angles of at
least 120◦.

First, we may restrict to the geodesics that contain `, because there is a finite number of
geodesics, and the ones that don’t contain ` don’t meet some small ball centered at `. The
remaining geodesics all start from ` (because for the other ones we added ` as a vertex), and
is easy to check that they make angles of at least 120◦ at `, because otherwise we may pinch
two of them in a small ball B(`, r), make K sorter by at least r/C, and contradict (2.23).
Alternatively (if you don’t like weak almost minimality), we could say that a blow-up limit
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of X at ` is composed of as many half planes bounded by L as there are geodesics in K near
`, and that make the same angles along L as the geodesics at `; then Lemma 2.3 gives the
desired result.

Next we show that each full great circle in the list of Cj is far from the rest of K, i.e.,
that there is η3 > 0, that depends only on n, such that

(2.26) dist(Cj, K \ Cj) ≥ η3 when Cj is a full great circle of K.

Of course (2.3) will follow from this (we’ll take η0 very small at the end). As usual, we
proceed by contradiction and compactness. So suppose that for each k ≥ 0, (2.26) fails for
η3 = 2−k, and let Kk provide a counterexample. By rotation invariance, we may assume
that L is the same for each K, and our assumption is that we can find a great circle Ck and
a point ak ∈ Kk \ Ck such that dist(ak,Ck) ≤ 2−k.

First observe that Kk \ Ck is closed. Indeed, otherwise we can find some ξ ∈ Ck which is
the limit of a sequence in Kk \ Ck. Then ξ ∈ L (because otherwise this contradicts (2.6));
even that way the two arcs of Ck near ξ make a 180◦ angle at ξ, which by (2.7) excludes
the possibility that other geodesics of K end at ξ. Recall also that K has a finite number of
vertices, a contradiction that shows that Kk \ Ck is closed.

By compactness of Kk \ Ck, we may assume that ak minimizes the distance to Ck (in
K \ Ck). Set rk = dist(ak,Ck); thus 0 < rk ≤ 2−k.

We start with the more interesting case when {r−1
k dist(ak, L)} is a bounded sequence. We

may assume that (out of the two possibilities) there is a fixed ` ∈ L such that r−1
k dist(ak, `) ≤

C. Set Yk = r−1
k (Xk − ak) as usual, take a converging subsequence, denote by Y the limit,

and notice that Y satisfies (2.19). But Xk contains the plane Pk that contains Ck, and which
lies at distance a little smaller than rk from ak (a little smaller because the closest point of

Pk lies a little inside of S); This means that Yk contains P̃k = r−1
k (Pk − ak), which almost

lies at distance 1 from 0; at the limit, Y contains a plane P at distance 1 from the origin.
By (2.19), Y = P ; this is impossible because ak ∈ Kk and hence 0 ∈ Y .

We are left with the case when, modulo a sequence extraction, r−1
k dist(ak, L) tends to

+∞. This time, modulo extraction, Yk = r−1
k (Xk − ak), and tends to a set Y which is a

plane or set of type Y, as in (2.18). As before, dist(P, 0) = 1, which contradicts the fact that
0 ∈ Y because ak ∈ Yk. This last contradiction completes our proof of (2.26), and again,
(2.3) follows.

Next we want to check (2.4). The following will be useful.

Lemma 2.7. If η4 is chosen small enough, the following happens. Suppose that ` ∈ K ∩ L
and a ∈ K \ L are such that |a− `| ≤ η4. Then the geodesic ρ(`, a) is contained in K, there
is at most one other arc γ of K that leaves from `, and (if γ exists) H1(γ) ≥ η2/10 and γ
makes an angle at least 9π

10
with ρ(`, a) at `.

Let ` ∈ K ∩ L and a ∈ K \ L be as in the statement. We know from (2.21) that there
is no other vertex of K in B(`, η2/10), so, except perhaps for the geodesic ρ(`, a) if it lies in
K, all the arcs of K that leave from a or ` are at least η2/20 long.
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Let us first assume that K does not contain ρ(`, a). Then K contains three arcs γi =
ρ(a, bi), 1 ≤ i ≤ 3, of length at least η2/20, that leave from a with 120◦ angles, and also an
arc γ = ρ(`, b), of length least η2/20 too, and that leaves from `. All these arcs are disjoint,
except perhaps for their endpoints, by (2.8) and the definition of our decomposition of K.

Notice that |a− `| ≤ η4, so for η4 small enough, it is not hard to imagine that we could
construct a competitor for K that contradicts the weak almost minimality property (2.23).
See Figure 10 for a hint, but don’t forget that even though γ does not meet the γj, the point
` could be more or less anywhere on the sphere S(a, |` − a|) (and not just in a triangular
sector as the picture suggests) because we allow subsets of Rn, n > 3. Also, we do not
exclude the case when other pieces of K pass by, but this is not a real problem because they
stay at positive distance from the rest of the picture, so our Lipschitz deformation f can be
chosen so that f(x) = x on them, and as alluded to above, (2.23) is also valid for piecewise
M -Lipschitz functions f .
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Figure 10: A replacement fro γi. Scales are not respected

But we shall avoid using (2.23), and instead we will use compactness again. So suppose
that for k ≥ 0, we can find an example Xk, with ` ∈ Kk ∩L = Xk ∩ S∩L, a vertex ak of Kk

such that dk = dist(`, ak) ≤ 2−kη2, three geodesics arcs γi,k ⊂ Kk of length η2/20 that leave
from ak, and a fourth one, γk ⊂ Kk, of length η2/20 too, that leaves from ` and is disjoint
from the others.

Consider Yk = d−1
k (Xk − `), which contains the origin, and as usual take a subsequence

for which Yk converges to a limit Y . Then, by the proof of (2.19), Y is a sliding minimal
cone with boundary L, which is invariant by translations in the direction of L, so it is a
plane or a Y set (through the origin, since ` ∈ Kk), or else a half plane, a V set, or a Y-set
truncated by L.

The geodesics γ̃i,k = d−1
k (γi,k − `) and γ̃k = d−1

k (γk − `) (in the spheres d−1
k (S− `)) tend

to four half lines (maybe at the price of extracting a new subsequence, if you prefer), and
these half lines are contained in Y ∩L⊥. Because of this, there is only one possibility: Y is a
Y-set, that contains L but is centered at the limit ã of the ãk = d−1

k (ak−`); ã lies at distance
1 from L, and the limit γ̃ of the γ̃k = d−1

k (γk − `) is contained in the branch of Y ∩ L⊥ that
contains 0.

Select z ∈ γ̃, at distance 1 from 0 (and hence z = −ã). Then set B = B(z, 10−1), and
notice that Yk converges to Y (or equivalently the plane P that contains the face of Y that
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contains z) in 9B. Then for k large enough, we may apply the standard regularity theorem
to Xk in 8B, and find that in 2B, Xk is a C1 surface, and at the same time a small Lipschitz
graph over P . Set S(k) = d−1

k (S − `); this is a very large sphere, with tangent directions
that tend to L⊥; by the implicit function theorem, Xk ∩ S(k) = d−1

k (Kk − `) is a C1 curve
in 2B, and also a small Lipschitz graph over the line that contains γ̃.

But at the same time d−1
k (Kk − `) contains the two geodesics γ̃k and γ̃i,k (for some i),

which are disjoint and both converge to γ̃ in 2B. This is impossible; we are left with the
other case when K contains ρ(`, a).

In this case, in addition to ρ(`, a), K contains two geodesics ρ1 and ρ2 that leave from
a with 2π

3
angles, and maybe one or two geodesics ρ′j that leave from 0 (again with angles

at least 2π
3

). All these geodesics have lengths at least η2/20 (because there is no vertex of
K nearby where they could stop). A priori there may also be other pieces of K that pass
near `, but all we have to do now is prove that there is at most one ρ′j, and that it goes in a
direction almost opposite to ρ(`, a) at `.

Again it is simpler to prove this by compactness. Suppose not, let Xk provide an example,
with dk = dist(`, ak) ≤ 2−kη2. This means that in addition to ρ(`, ak) and the two geodesics
γi,k that leave from ak with 2π

3
angles and are at least η2/20-long, we have at least one more

geodesic ρk ⊂ K that leaves from 0, is at least η2/20-long, and makes an angle smaller than
9π
10

with the direction of ρ(`, ak) at `. Indeed, if we have two, they make 2π
3

angles with the
direction of ρ(`, ak), which is even worse.

As usual, set Yk = d−1
k (Xk − `), and extract a subsequence for which Yk converges to

a limit Y . The same argument as above shows that Y is a sliding minimal set which is
invariant by translations in the direction of L, then is one of the examples allowed by (2.19),
and because of ρ(`, ak), the γi,k, and γk, is a set of type Y that contains L and is centered
at ã, which lies at distance 1 from L. But the geodesics γ̃k = d−1

k (γk − `) converge (modulo
extraction if the reader wishes) to a half line that makes an angle at most 9π

10
with the

direction of the half line [0, ã), and is contained in Y ; this contradiction completes the proof
of Lemma 2.7.

It looks like we forgot some additional information that we could prove, the fact that in
the situation of Lemma 2.7, there in no other piece of K in B(`, η2/40), but we shall return
to this soon.

We easily deduce (2.4) from the lemma. Let Cj be one of the arcs that compose K, and
suppose that H1(Cj) ≤ η1η2

20
. By (2.22), at least one of its endpoints lies in K ∩ L (call it

`), and by (2.21) the other one (call it a) is the the only point of K ∩ B(`, η2/10) \ L. In
addition, if H1(Cj) ≤ η4, Lemma 2.7 says that there is at most one other arc that leaves
from `, and that it makes an an angle at least 9π

10
with ρ(`, a) at `. This proves (2.4) and the

description of the exceptions, and for this we can choose any constant η0 ≤ η4.

Let us now prove (2.5), first modulo its exception. Suppose that for some η0 < η4/4,
we can find two arcs Ci and Cj, that do not share an endpoint and furthermore are not
connected by one of the exceptions of (2.4), but for which

(2.27) dist(Ci,Cj) ≤ η0.
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We want to derive a contradiction. Let xi ∈ Ci and xj ∈ Cj be such that |xi − xj| ≤ η0.
First assume that we can find endpoints ai of Ci and aj of Cj such that |ai − xi| ≤ η4/4 and
|aj−xj| ≤ η4/4. Then |ai−aj| ≤ 6η4/4, (2.22) says that one of them (say, ai for definiteness)
lies in L. By (2.21), aj is the the only point of K ∩ B(ai, η2/10) \ L. By Lemma 2.7,
ρ(ai, aj) ⊂ K. This contradicts our assumption that Ci and Cj were not connected by one
of the exceptional arcs of length ≤ η4.

So xi, for instance, lies at distance at least η4/4 from both endpoints of Ci.
We are now going to follow the proof of (2.26), and in particular proceed by contradiction.

Suppose that, for all k ≥ 0, we can find a minimal cone Xk, arcs Ci,k and Cj,k for which
(2.27) holds with η0 = 2−k, and also points xi,k ∈ Ci,k and yj,k ∈ Cj,k such that |xi,k − yj,k| =
dist(Ci,Cj), and yet xi,k lies at distance at least η4/4 from both endpoints of Ci. By rotation
invariance, we can work with a fixed L. Set rk = |xi,k − xj,k| = dist(Ci,k,Cj,k) ≤ 2−k.

We first assume that r−1
k dist(xi,k, L) ≤ C, and that there is a fixed ` ∈ S ∩ L such that

|xi,k − `| ≤ 2Crk. Set Yk = r−1
k (Xk − `), and extract a subsequence for which Yk tends

to some Y . Then as usual Y is a minimal set with sliding boundary L, Y is invariant by
translations parallel to L, and Lemma 2.3 gives a description of Y .

Notice that Kk contains an arc of geodesic ρk of length η4/2 centered at xi,k. Let Pk
denote the plane that contains ρk and the origin, and let Dk = Pk ∩B(xi,k, η4/4). We know
that Dk ⊂ Xk, and hence Yk contains D′k = r−1

k (Dk − `), which is a planar disk parallel to
Pk, but centered at x′i,k = r−1

k (xi,k − `), and with a large radius r−1
k η4/4.

Notice that |x′i,k| = r−1
k |xi,k− `| ≤ 2C, hence we may assume that x′i,k has a limit x′, and

that the direction of Pk admits a limit too. Then D′k has a limit, which is a whole plane P ′

centered at a′ (because of the large radius), and in addition P ′ ⊂ Y because D′k ⊂ Yk. By
the description of Lemma 2.3, Y = P ′.

Now consider the point xj,k ∈ Kk. By definitions, dist(xj,k,Ci,k) = rk, and (since Ci,k is
orthogonal to xi,k − xj,k at xi,k and by elementary geometry)

(2.28) dist(xj,k, Dk) ≥ rk/2.

Set x′j,k = r−1
k (xj,k − `); then

(2.29) dist(x′j,k, D
′
k) = r−1

k dist(xj,k, Dk) ≥ 1/2.

As before |x′j,k| = r−1
k |xj,k− `| ≤ 2C+1, so we may assume that x′j,k tends to a limit b. Then

b ∈ Y because x′j,k ∈ Yk for all k, and yet dist(b, P ′) ≥ 1/2 by (2.29). This contradicts the

fact that Y = P ′, and we are left with the case where r−1
k dist(xi,k, L) is unbounded.

In this case, we set Yk = r−1
k (Xk − xi,k), extract a subsequence for which Yk converges

to a limit Y , and notice that Y is minimal, without a sliding boundary condition. We may
also assume that xi,k has a limit x, and then Y is invariant by translations in the direction
of x. Thus Y is a plane or a Y-set.

We proceed as before, find disks Dk ⊂ Xk, then big disks D′k ⊂ Yk, and obtain that Y
contains a plane P ′ (the limit of the D′k). But at the same time, xj,k is far from Ci,k, which
leads to (2.28) and (2.29). Again this is impossible, because Y contains a limit of the x′j,k,
which is at positive distance from P ′.
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This completes our proof of (2.5) with its exception: whenever (2.27) fails, Ci and Cj are
merely separated by a short arc Ck of K. So far we said that H1(Ck) ≤ η4, but we also want
to compute dist(Ci,Cj). Near Ck, the situation is the following. We have the short arc Ck,
with endpoints ` ∈ L and a ∈ K \ L; then Ci and Cj are two geodesic arcs of length at least
η2/20, one leaving from a with a 120◦ angle with Ck, and the other one leaving from ` with
an angle of at least a 120◦ with Ck (we just applied (2.7), but we could even get more by
applying Lemma 2.7).

The standard case is when Ci and Cj are not too long, and merely get away from each
other when they leave Ck; then dist(Ci,Cj) = diam(Ck), and in particular Ck was also an
exception of (2.5), even with the smaller constant η0.

The second case is when they get together again, near the antipode, so as to get within
η0 from each other. Then they are merely separated by another (in fact the only other)
exceptional arc C′k, and of course dist(Ci,Cj) = min(diam(Ck), diam(C′k)).

This completes our discussion of (2.5) with its exceptional case, and we are also finished
with Proposition 2.1.

We end this section with a short remark. Although we proved all our estimates by
compactness, this was mostly out of laziness. It is quite probable that we could get an
explicit bound for η0, but we shall not try to do this here and doubt that it would be
interestingly large.

3 The standard decomposition of K

In this section we define the standard decomposition of a minimal set of dimension 2 in Rn,
with sliding boundary L. This decomposition will be used to construct our main competitors
for the almost minimal set E (in the next sections). The full length property defined in the
next section will use this decomposition as well.

Let L ⊂ Rn be a line, and X be a sliding minimal cone with boundary L. Recall that in
Proposition 2.1 we defined a natural decomposition of K = X ∩ S, into a finite and almost
disjoint collection of sets Cj, j ∈ J , which are either arcs of geodesics, or full great circles,
drawn on S.

We modify this decomposition slightly, to get what we’ll call a standard decomposition
of K. In fact, we just take some pieces Cj and cut them into 2, 3, 4, or 5 pieces, so as to get
arcs of geodesics of length at most π/2. For the full great circles Cj, we just cut them in 4
equal parts, by adding four vertices. If dist(Cj, L) < 1/4, say, let us choose the two points
of Cj that lie closest to L as (two of the) cutting points.

When Cj is just an arc of geodesic and its length is more than π/2, we cut it into sub-
arcs of length between π/4 and π/2. We may use the latitude that we have to choose the
additional vertices as close to the points ` ∈ L ∩ S as possible (when K does not already
contain `), but the author does not recall ever using this possibility after all. For the moment,
we do not care much if Cj is not cut into equal pieces.

Once we cut all the long arcs as we just explained, we get a standard decomposition of
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K. It is usually not unique, but this does not matter. It is again a decomposition of K into
arcs of geodesics Ci, i ∈ I, and we now review some of its properties. First, each Ci is an
arc of geodesic,

(3.1) K =
⋃
i∈I

Ci ,

and

(3.2) the interiors of the Ci, i ∈ I, are disjoint and do not meet L.

Denote by ai and bi the endpoints of Ci. We do not pay attention to which is which, i.e., we
may exchange the names at any time for the convenience of notation, but anyway

(3.3) Ci = ρ(ai, bi),

where ρ(a, b) systematically denotes the closed (shortest) geodesic from a to b in S (when
b 6= −a). We will never take antipodal points, hence ρ(a, b) will be uniquely determined. As
a general rule, ρ will denote a geodesic or a union of geodesics.

Let us use this opportunity to introduce the geodesic distance in S defined by:

(3.4) distS(a, b) = H1(ρ(a, b)) ∈ [0, π];

when a = −b we set distS(a, b) = π.
We denote by V the set of vertices of the standard decomposition, i.e., the collection of

endpoints ai and bi. We write

(3.5) V = V0 ∪ V1 ∪ V2,

where V0 = K ∩ L, V1 is the set of vertices of the natural decomposition that do not lie in
V0, and V2 is the set of vertices that we added to cut some of the initial arcs to make them
shorter, and (for the case of full great circles) that are not points of V0. Thus the three Vi
are disjoint.

We said that the arcs Ci, i ∈ I, only meet at their endpoints, and there are rules about
how they can meet. For ` ∈ V0, there can only be one, two, or three Ci that start from `,
and always with angles ≥ 2π

3
. This comes from (2.7). For a ∈ V1, there are exactly three Ci

that start from a, and they make angles of 2π
3

at a (see (2.6)). Finally, at a ∈ V2, there are
exactly two Ci that start from a, and they make angles of π at a (their tangent half lines lie
in opposite directions); this is clear, we just cut a geodesic at a.

We also control the length of the Ci. The general rule is that

(3.6)
π

4
≤ H1(Ci) ≤

π

2
when at least one of the endpoints of Ci lies in V2;

(3.7) η0 ≤ H1(Ci) ≤
π

2
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when both endpoints of Ci lies in V1; and for ` ∈ V0, (3.7) holds for all the Ci that end at
`, except perhaps one. When this exception happens, there is at most one other arc Ci that
leaves from `, and it makes an angle at least 9π

10
with Ci at `. See below (2.4).

We also have the following consequence of (2.5) and the discussion that follows it. When
i, j ∈ I, are such that Ci and Cj don’t have a common endpoint, the general rule is that

(3.8) dist(Ci,Cj) ≥ η0,

and this may only fail when there is an arc Ck such that diam(Ck) ≤ η0, with one common
endpoint with Ci and one common endpoint with Cj. Since Ci and Cj are now short (as in
(3.7)), the strange special case when Ci and Cj are close at both ends does not happen any
more, and we get the simpler formula dist(Ci,Cj) = diam(Ck). It will also good to know
that for i ∈ I,

(3.9) dist(x,K \ Ci) ≥ min(η0, |x− ai|, |x− bi|) for x ∈ Ci,

where ai and bi still denote the endpoints of Ci. Indeed the distance to the direct neighbors
of Ci is controlled by our angle conditions, and the distance to the other arcs Cj is controlled
by (3.8), except when Ci and Cj are separated by a short arc Ck. But even in this case, (3.9)
follows from the fact that Ci and Cj leave from Ck in directions that make an angle larger
than 2π

3
− π

5
. See below (2.5).

4 The full length condition

Now we define the full length condition, which will be our replacement for the epiperimetric
inequality of Reifenberg. This will be a relatively simple condition on the position of the
geodesics that compose K = X∩S, which will be sufficient for our proof to give good density
decay, and then some regularity, at points of an almost minimal set where X is a blow-up
limit. See Definition 4.1.

Let X be a minimal cone, and choose a standard decomposition of K = X ∩ S, as in
the previous section. We first discuss how to construct perturbations of X by moving the
vertices x ∈ V . We do not want to move them too much, because we want to modify the
structure of K as little as possible, and in order to measure how far we will be allowed to go
we set

(4.1) ηL(X) = min
`∈L∩S\K

dist(`,K) > 0,

(4.2) ηV (X) = min
`∈K∩L

dist(`, V1 ∪ V2) > 0,

and

(4.3) η(X) = 10−1 min(η0, ηL(X), ηV (X)),
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where the absolute constant η0 comes from Proposition 2.1. Notice that when ηV (X) < η0,
it is the diameter of the smallest of the exceptional arcs Ci for (3.7).

The basic tool to generate perturbations of X is the set ΦX(η) of mappings ϕ : V → S
such that

(4.4) |ϕ(x)− x| < η for x ∈ V,

and in fact we will restrict to η < η(X). We want to use the mappings ϕ ∈ ΦX(η) to modify
the geodesics Ci, i ∈ I, and this will be easier when both endpoints of Ci lie in V1 ∪ V2.
Denote by ai and bi the endpoints of Ci, and set

(4.5) I1 =
{
i ∈ I ; ai and bi lie in V1 ∪ V2

}
.

When ϕ ∈ ΦX(η) and i ∈ I1, we simply set

(4.6) ϕ∗(Ci) = ρ(ϕ(ai), ϕ(bi)).

Things are a little more complicated when i ∈ I0 = I \ I1. When i ∈ I0, we use the
convention that bi ∈ V0, and ai /∈ V0. We want to leave more options, so we will need to
append to ϕ some additional information.

Let ` ∈ V0 be given, denote by I(`) ⊂ I0 the set of indices i ∈ I such that ` is an
endpoint of Ci. Also call m(`) ∈ {1, 2, 3} the number of elements of I(`). If m(`) = 1, we
don’t need more information, and in fact we can even forget about ϕ(`), because we set

(4.7) ϕ∗(Ci) = ρ(ϕ(ai), `) when i ∈ I(`), m(`) = 1, and Ci = ρ(ai, `).

When m(`) = 2, we add to ϕ a component ϕ` ∈ {−1, 1}, and we set

(4.8) ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`)) when i ∈ I(`), m(`) = 2, ϕ` = −1, and Ci = ρ(ai, `)

(the free option), and
(4.9)
ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`)) ∪ ρ(ϕ(`), `) when i ∈ I(`), m(`) = 2, ϕ` = 1, and Ci = ρ(ai, `)

(the attached option). In this case, we added the same connecting arc ρ(ϕ(`), `) to the two
ϕ∗(Ci), i ∈ I(`), but this is just to avoid more complicated notation, and we will never count
this arc with multiplicity.

When m(`) = 3, we add a component ϕ` ∈ {−1} ∪ I(`) (i.e., choose the free option or
the attached option, and in this last case choose one of the three Ci that end at `, and set

(4.10) ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`)) when i ∈ I(`), m(`) = 3, ϕ` = −1, and Ci = ρ(ai, `)

(as before, the free option where we just move the center and let the Ci follow). In the last
case when m(`) = 3, and ϕ` = j ∈ I(`), we set

(4.11) ϕ∗(Ci) = ρ(ϕ(ai), `) if i = j
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and, for the two other indices i ∈ I(`) \ {j}

(4.12) ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`)) ∪ ρ(ϕ(`), `).

Again we put the same arc ρ(ϕ(`), `) twice when once would have been enough, and this
time we transformed the union of the three arcs Ci that looks like a Y into a truncated Y
plus an arc, both leaving from `. Notice that when ϕ(`) = `, some of the pictures above get
simpler, and we don’t even need the free option.

Since we may have added coordinates to ϕ, let us denote by Φ+
X(η) the set of enlarged

mappings ϕ. We do not give a different name to ϕ and its extension, so as not to exaggerate
with notation; when we really want to know which one we consider, we will say that ϕ ∈
ΦX(η) or ϕ ∈ Φ+

X(η), but the truth is that we shall work with Φ+
X(η).

For ϕ ∈ Φ+
X(η), we define a perturbation of K by

(4.13) ϕ∗(K) =
⋃
i∈I

ϕ∗(Ci) ⊂ S,

and then a modified cone

(4.14) ϕ∗(X) =
{
tx ; x ∈ ϕ∗(K) and t ∈ [0,+∞)

}
.

With the present definition, it may happen that even after we remove the arcs ρ(`, ϕ(`))
that we counted twice, some of our arcs ϕ∗(Ci) still cross (i.e., meet somewhere else than
their common endpoints). Since we took η < η(X), the arcs of (4.7) don’t do that, so all
the crossing happens near the points of V0.

Let us decide to forbid this, and restrict to the subset Φ+,i
X (η) ⊂ Φ+

X(η) of mappings ϕ for
which this does not happen, i.e., for which the arcs ϕ∗(Ci) are disjoint, except for common
endpoints and for the double occurrence of some ρ(`, ϕ(`)). We will call the mappings
ϕ ∈ Φ+,i

X (η) injective.
The main reason for restricting to injective mappings ϕ is that later in the proof, the only

cones ϕ∗(X) for which we need to use the full length condition below are injective anyway,
so we save ourselves a little bit of unpleasant verification for the full length condition, at
essentially no expense.

We are finally ready to say what we mean by full length.

Definition 4.1. We say that the minimal cone X (with sliding boundary L) satisfies the
full length condition when there is a standard decomposition of K = X∩S and small numbers
η ∈ (0, η(X)) and c > 0 such that for all injective mappings ϕ ∈ Φ+,i

X (η) such that

(4.15) ∆(ϕ) := H1(ϕ∗(K))−H1(K) > 0,

there is a sliding competitor X̃ for ϕ∗(X) in B(0, 1) (see Definition 1.1) such that

(4.16) H2(X̃ ∩B(0, 1)) ≤ H2(ϕ∗(X) ∩B(0, 1))− c∆(ϕ).
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This looks complicated (just as the initial definition of full length for plain minimal cones,
see [D4]), and the only justification for it is that it makes the machine work. At least we shall
be able to check the full length condition on the simple examples that we mostly care about,
and we can always think that the definition is simpler than some notions of epiperimetric
inequalities.

One paradox that may be worth mentioning is that the full length condition only makes
sense once we know that X is minimal. Otherwise, finding X̃ so that (4.16) is just too easy:
use a better competitor of X and deform it a little to fit ϕ∗(X).

Probably choosing a standard decomposition by force, instead of allowing some flexibility
as we did, would not change the notion of full length. But having the choice will allow us to
simplify some computations when we check the full length.

When we choose the free option in the description of ϕ∗(K) near a point ` ∈ K, we
seem to save some area when we omit to add ρ(`, ϕ(`)), but at the same time we allow more
competitors for (4.16), because we don’t necessarily need to check (1.4) near ` any more.
Requiring the condition of Definition 4.1 also for the deformations with the free option seems
to be more stable. Think about the case when X is a plane, which may contain L or just
pass very close to L.

We will have to return to the notion of full length later, and play a little more with the
definitions. First, there may be circumstances where we will need to check the existence of
X̃ only for perturbation that are free (we will also say detached) at one or two of the points
` ∈ V0, typically because anyway the set E that we study is detached from L.

Also, we will need a similar notion of full length when we prove decay estimates, in some
cases, for the functional F of (1.27) adapted to balls that are not centered exactly on L.
This will happen at the end of Section 26, with proofs in Sections 27 and 28.

Finally, instead of requiring the existence of a sliding competitor X̃ such that (4.16)
holds, we will some times be able to manage with a simpler version of this. See the end of
Section 26, and in particular Lemme 26.1.

The cones of type P, Y, T, H, and V, all satisfy the full length property; a good part of
this will be checked in Sections 27 and 28, when we need full length estimates related to F
in the more general case of balls that are not necessarily centered on L, and the remaining
verifications will be done in Section 37. See Theorem 37.1.
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Part II

Density decay for balls centered on L

5 The initial setup and two words about the constants

A very large portion of this paper consists in the construction of some competitors for an
almost minimal set E. In this section we give some notation and our basic assumptions for
the sections that follow.

We work in Rn, and with a reduced (or coral) sliding almost minimal set E of dimension
2, in an open set U that contains B(0, 2r), and with a sliding condition coming from the line
L through the origin. See Definitions 1.2 and 1.3. We shall assume that the gauge function
h is small enough, and more precisely that

(5.1) h(s) ≤ Chs
β for 0 < s ≤ 2r,

where β > 0 and Ch ≥ 0 are constants such that

(5.2) Chr
β ≤ ε,

where ε > 0 is a very small constant that will be chosen much later, to make the argument
work. This is a little more restrictive than what we actually need. For instance taking

h(s) = ε
(

ln(2r/s)
)−b

for some sufficiently large b that depends on n would be enough, by
looking at similar statements in [D4] and checking that they adapt. In what follows, we could
decouple (5.1) from (5.2); in effect, we shall use (5.1) because it implies some nice general
properties for E, like the fact that it has a C1 description far from L, or the existence of
the density θ(x) of (1.19). Then the estimates of the next sections will use (these general
properties, plus) the size of h(2r).

We also assume that

(5.3) d0,2r(E,X) ≤ ε,

where d0,2r is the local Hausdorff distance of (1.14) and X is a sliding minimal cone (centered
at 0), also with a sliding boundary condition coming from L.

Our main task will be to construct, under various assumptions on E and r, some good
competitors for E in the closure of B = B(0, r); then we will use this to get differen-
tial inequalities on a density excess function f(r), in principle associated to the standard
monotonicity formula from [D7], although later on we also want to use a slightly different
monotonicity formula from [D8], with balls that are not centered on L.

We assume some additional properties of E, which will be used in the proof. First assume
that

(5.4) H1(E ∩ ∂B) < +∞.
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This is true for almost every r > 0 such that B(0, r) ⊂ U (for instance by the co-area
formula), so it costs virtually nothing, and will be useful in some proofs. Next we require
some maximal function to be small at r. Define a measure µπ on [0, 2r) by

(5.5) µπ(A) = Hd(E ∩ π−1(A))

for Borel sets A ⊂ [0, 2r), and where π is the radial projection defined by

(5.6) π(z) = |z| for z ∈ Rn.

We require that there is a number C ≥ 0, that may depend wildly on r, such that

(5.7) H2(E ∩ Aξ) ≤ Cξ for 0 < ξ < r, where we set Aξ = B(0, r) \B(0, r − ξ).

That is, we just require the one-sided variant of the Hardy-Littlewood maximal function of
µπ to be finite at the point r. This is like (4.5) in [D4], and we shall see in the proof of
Proposition 17.2 that (5.7) holds for almost every r.

We also require that for every continuous nonnegative function f on Rn,

(5.8) lim
ρ→0

ρ−1

ˆ
t∈(r−ρ,r)

ˆ
E∩∂B(0,t)

f(z)dH1(z)dt =

ˆ
E∩∂B(0,r)

f(z)dH1(z).

This is the same thing as (4.3) in [D4], and it turns out that this is also satisfied for almost
every r > 0. The proof is given in Lemma 4.12 of [D4], and works here as well. So assuming
(5.8) for our standard r costs us nothing.

Starting with the next section, we shall fix E, X, and r as above, and even assume that
r = 1 to simplify the notation. Our general goal is to modify the set E inside of B = B(0, 1)
to get a better competitor if we can.

The construction of the good competitor will keep us busy for Sections 6-16. It will use
a few different constants, and maybe it is the right time to announce in which order they
will be chosen.

We already have a constant η(X), which may be very small (depending on X, and in
particular on the distance between L and some faces or edges of X), but we see it as a
geometric constant.

In Section 6, we introduce a small constant τ , which gives the size of the disks D near
the points of S ∩ L where most of the action will take place.

Then there is a small Lipschitz constant λ, which we use to construct Lipschitz graphs
in Section 8. We will need λ to be small enough (we often use it as a small parameter to
control some angles), and in particular so that the estimates of Section 9 apply.

For a long time, the only constraint on τ will be to be small enough, in particular
compared to η(X) (see (6.3)), but for the estimates in Section 14 to give small enough errors
compared to what we win with the construction of Section 14, we will need τ to be small
enough, depending on λ.
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There will be a short occasion or two, in Section 11, where we briefly use a smaller value
of τ , but this will be explained then. See Lemma 11.1. At the same time, we will use a small
α > 0, which will be chosen in Section 11 and will depend on λ and τ .

There is a small constant τ1 in (8.3), which we may as well take very small, compared to
both λ and τ . But it is not exactly of the same nature as τ .

Our last real constant is ε in (5.3), which will be chosen at the end, extremely small, and
depending on all the constants above.

We mention τ3 (in Proposition 13.1) and τ4 (in Lemma 14.1) for completeness, but they
are extremely small numbers, not constants, as they may depend on the radius r above.

6 A local description of E ∩ S far from L

From now on we fix the line L, the minimal cone X, the reduced almost minimal set E, and
the radius r = 1, as in Section 5.

In this section we first record simple properties of the Ci concerning their distances (see
Lemma 6.1), and then use known local regularity results for plain almost minimal sets (i.e.,
with no sliding boundary condition) to give, at least far from L, a local description of E ∩ S
as a finite union of C1 curves Li that follow the curves Ci of the standard description of K.
The reader may want to check Proposition 6.5 below to convince herself that no real surprise
will come out of this section.

The description of E ∩ S that we’ll give in this section relies on regularity results for
(plain) almost minimal sets. We shall quote [D3] and [D4] for convenience, but when n = 3
we could as well use [Ta]. Also, we proceed this way because we prefer to insist right away
on the places where new difficulties appear (i.e., close to L); with a more complicated version
of the present paper, we would quite probably be able to prove the local regularity of E far
from L at the same time. But this would not really make things simpler: the proof of the
present paper essentially contains the proof in [D4] anyway.

We start with more notation. Recall from Section 3 that the standard decomposition of
K is composed of arcs Ci, i ∈ I, of geodesics, and that ai, bi denote the endpoints of Ci, so
that Ci = ρ(ai, bi). Set

(6.1) I0 =
{
i ∈ I ; Ci meets L

}
=
{
i ∈ I ; ai ∈ L or bi ∈ L

}
.

Also denote by I1 = I \ I0 the set of i ∈ I such that ai, bi ∈ V1 ∪ V2.
In this section will stay at some distance from L. More precisely, denote by `+ and `−

the two points of L ∩ S. Then set

(6.2) D±(τ) = S ∩B(`±, τ) and ∂D±(τ) = S ∩ ∂B(`±, τ)

for τ ≤ η(X). We will use various small numbers τ > 0, to be chosen later, but always such
that

(6.3) τ ≤ 10−3η(X).
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6.1 More about distances between vertices and curves Ci

Before we come to E ∩ S \ (D+(τ)∪D−(τ)), we need some additional information on V and
the Ci.

Lemma 6.1. Let η(X) be as in (4.3). Then

(6.4) H1(Ci) ≥ 10η(X) for i ∈ I,

(6.5) dist(Ci,Cj) ≥ 9η(X) for i, j ∈ I such that Ci ∩ Cj = ∅,

and

(6.6) dist(x,Ci) ≥ 9η(X) when x ∈ V and the arc Ci does not contain x.

We start with a proof of (6.4). When both endpoints of Ci lie on V1∪V2, this follows from
(3.7) and (4.3). Otherwise, diam(Ci) ≥ ηV (X) ≥ 10η(X) by (4.2) and (4.3); (6.4) follows.

Next we check (6.5). Suppose that Ci ∩ Cj = ∅. In general, (6.5) follows from (3.8) and
(4.3), and the only exception, as explained below (3.8), is when Ci and Cj are only separated
by a short arc Ck. Even so, we said below (3.8) that dist(Ci,Cj) = diam(Ck). But (6.4) says
that H1(Ck) ≥ 10η(X), and since we may safely assume that η(X) ≤ η0 is very small, we
get that diam(Ck) ≥ 9η(X), as needed.

Finally let x ∈ V and Ci be as in (6.6). First assume that there is an arc γ of K that
goes from x to Ci; then H1(γ) ≥ 10η(X) by (6.4), hence diam(γ) ≥ 9η(X). In this case
dist(x,Cj) ≥ diam(γ) ≥ 9η(X), because γ and Cj make an angle of at least 120◦ at their
common endpoint.

Assume now that x is not directly connected to Ci, and let Cj be any arc that contains
x; then Ci ∩ Cj = ∅, and dist(x,Cj) ≥ dist(Ci,Cj) ≥ 9η(X) by (6.5); (6.6) and Lemma 6.1
follow.

6.2 A description of E ∩ S near a vertex x ∈ V1

We start our description of E ∩ S with what happens near the vertices of V1. We fix x ∈ V1,
and denote by γ1, γ2, γ3 the three arcs Ci that leave from x. Recall that the γi meet with
120◦ angles, so there is a cone Y (x) ∈ Y, whose spine (understand, singularity set) contains
the line through x, and that contains γ = γ1 ∪ γ2 ∪ γ3. Let us check that

(6.7) K ∩B(x, 9η(X)) = γ ∩B(x, 9η(X)) = Y (x) ∩ S ∩B(x, 9η(X)).

Since γ ⊂ K, for the first identity we just need to check that the only Ci that meet
B(x, 9η(X)) are the γi. This follows from (6.6), because the γi are the only arcs that
contain x. For the second identity, observe that γ ⊂ Y (x) by definition of Y (x); the other
inclusion holds because H1(γi) ≥ 10η(X) by (6.4).

The next description will come from Corollary 12.25 in [D4].
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Lemma 6.2. Suppose that τ ≤ 10−3η(X). If ε is small enough, depending on n and τ , there
is a C1 diffeomorphism Φ : B(x, 20τ)→ Φ(B(x, 20τ)) with the following properties. First

(6.8) |Φ(y)− y| ≤ 10−10τ for y ∈ B(x, 20τ);

(6.9) |DΦ(y)− Id| ≤ 10−2 for y ∈ B(x, 20τ);

(6.10) E ∩B(x, 9τ) = Φ(Y (x) ∩B(x, 20τ)) ∩B(x, 9τ).

Some preparation will be needed before we apply Corollary 12.25 in [D4] to get this.
First observe that because of (4.1)-(4.3), dist(x,S ∩ L) ≥ 10η(X); thus

(6.11) E is a plain almost minimal set in B(x, 9η(X)), with gauge function h(s) = Chs
β

(see (5.1) too). Next we check that E is close to Y (x) near x. First observe that

(6.12) X ∩B(x, 8η(X)) = Y (x) ∩B(x, 8η(X)).

Indeed B(x, 8η(X)) is contained in the cone over S∩B(x, 9η(X)). By (6.7), the two cones X
and Y (x) coincide on S ∩ B(x, 9η(X)); then they also coincides in B(x, 8η(X)), as needed.
It now follows from (5.3) (and if ε is small enough) that

(6.13) dx,8η(X)(E, Y (x)) =
2

8η(X)
d0,2(E,X) ≤ ε

4η(X)

(recall that r = 1 here).
Next we find a point of type Y near x: we claim that there exists x0 ∈ E such that

(6.14) θ(x0) = 3π and |x0 − x| ≤ Cε.

Here the density θ(x0) = limr→0 θ(x0, r) is defined by (1.18) and (1.19), and the first condition
is another way to say that all the blow-up limits of E at x0 lie in Y.

To find x0 we apply Proposition 16.24 in [D3] to E and the small ball B(x, r), where r
will be chosen in a second. Let ε2 denote the small constant in that proposition; we choose
r = 10ε−1

2 ε; most assumptions are satisfied readily (for instance, (5.2) takes care of the size
of the gauge function); the main one is that dx,r(E, Y (x)) ≤ ε2, and it follows from the
second part of (6.13) and our choice of r. The conclusion of Proposition 16.24 in [D3] is that
E∩B(x, 10−2r) contains a point x0 of type Y . This point satisfies (6.14), with C = (10ε2)−1.

We also claim that E is close to Y (x) in measure; actually we shall just need to know
that for each ε1 > 0,

(6.15) H2(E ∩B(x0, 1100τ)) ≤ Hd(Y (x) ∩B(x0, 1100(1 + ε1)τ)) + ε1(1100τ)2.

if ε is small enough. To see this, apply Lemma 16.43 in [D3] to the almost minimal sets
E and Y (x), in the ball B(x0, 1100τ), and with δ = ε1. Since τ ≤ 10−3η(X), (6.11) gives
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ample room to do this. The main assumption, that dx0,11000τ/9(E, Y (x)) be small, follows
from (6.13) if ε is small enough (depending on τ and ε1).

Notice that ρ−2Hd(Y (x)∩B(x0, ρ)) ≤ 3π for all ρ > 0, for instance because the left-hand
side is a nondecreasing function of ρ (recall that Y (x) is a minimal set), and tends to 3π at
∞. Thus (6.15) yields

(6.16) θ(x0, 1100τ) = (1100τ)−2H2(E ∩B(x0, 1100τ)) ≤ 3π + Cε1.

We are now ready to apply Corollary 12.25 in [D4], to the set E−x0 (because the corollary
applies to a ball centered on the set), and with the radius r0 = 10τ .

There are a few assumptions to check. First, (6.11) says that E − x0 is almost minimal
(with no sliding condition) in B(0, 110r0), because τ ≤ 10−3η(X) and by (6.14). Next there
are assumptions on the size of the gauge function, in particular evaluated at r0; these are
satisfied if ε in (5.2) is small enough. Then there is the assumption (12.27) on the distance
from E−x0 to a minimal cone. We now that E−x0 is 2ε-close to Y (x)−x0 (by (6.13)), but
since Corollary 12.25 in [D4] requires a minimal cone centered at the origin and Y (x)−x0 is
centered at x− x0, we translate it by x0− x and get a minimal cone Y = Y (x)− x centered
at 0. Fortunately |x0 − x| is as small as we wish (use (6.14) and take ε small), so Y is as
close to E − x0 as we wish in B(x0, 110r0).

Finally we need to check (12.27); half of it concerns the size of the gauge function and
follows from (5.1)–(5.2), and the other half requires that the density excess f(110r0) be
sufficiently small. With the definitions of [D4] (see (3.5) et (3.2) there),

(6.17) f(110r0) = θ(x, 1100τ)− θ(x0) = (1100τ)−2H2(E ∩B(x0, 1100τ))− 3π,

by definitions and (6.14). This is as small as we want, by (6.16) (we choose ε1 small,
depending on the constants in Corollary 12.25, then take ε small). So we can apply the
corollary.

The conclusion (just applied to r = 10τ ≤ r0) is that there is a C1+β1 diffeomorphism
Ψ : B(0, 20τ) → Ψ(B(0, 20τ)) (for some small β1 > 0 that depends on the β > 0 of (5.1)
and (5.2)) such that

(6.18) Ψ(0) = 0, |Ψ(y)− y| ≤ 10−2τ for y ∈ B(0, 20τ),

and

(6.19) (E − x0) ∩B(0, 10τ) = Ψ(Y ∩B(0, 20τ)) ∩B(0, 10τ).

We take

(6.20) Φ(z) = x0 + Ψ(z − x) for z ∈ B(x, 20τ)

to translate things back; notice that this way

(6.21) Φ(x) = x0 + Ψ(0) = x0.
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Let us see what we get. We start with the good news: Φ is well defined on B(x, 10τ), and
is a C1+β1 diffeomorphism whose image is x0 + Ψ(B(0, 20τ)), which is almost the same as
B(x0, 20τ). Next (6.10) holds, because

(6.22)

E ∩B(x, 9τ) = x0 + [(E − x0) ∩B(x− x0, 9τ)]

= x0 + [Ψ(Y ∩B(0, 20τ)) ∩B(x− x0, 9τ)]

= [x0 + Ψ(Y ∩B(0, 20τ))] ∩B(x, 9τ)

= Φ(x+ Y ∩B(0, 20τ))] ∩B(x, 9τ)

by (6.19). But x+ Y = Y (x), so x+ Y ∩B(0, 20τ) = Y (x) ∩B(x, 20τ); (6.10) follows.
Now (6.18) only yields |Φ(z)−z| ≤ |(x0 +Ψ(z−x)−z| ≤ |x0−x|+ |Ψ(z−x)− (z−x)| ≤

10−2τ + Cε for z ∈ B(x, 20τ), while we announced |Φ(z) − z| ≤ 10−10τ in (6.8). We could
try to reduce the difference and keep same proof by taking r0 = 10−8τ , but it is more honest
to say that the constant 10−2 in Corollary 12.25 can be replaced by any small number we
wish, at the only expense of taking ε much smaller. In the construction of a Reifenberg
parameterization, this amounts to starting to move points only after a certain number of
generations; the price to pay is precisely to force the initial set Y to be close enough to E
so that we still get a good enough approximation at the scale where we really start things.

The second difference is that we announced |DΦ− Id| ≤ 10−2, and Corollary 12.25 only
says that Ψ ∈ C1+β1 . But in fact it is a uniform C1+β1 estimate, which means that we even
get a uniform control on (|y − z|/r)−β1|DΦ(y) − DΦ(z)| for y, z ∈ B(x, 20τ). With this,
a very tight uniform control on |Φ(y) − y| (take it even better than (6.14), since it costs
nothing), and some interpolation, we rather easily get (6.15). Another way to put this is to
notice that the proof of existence for the Reifenberg parameterization also gives a derivative
which is as close to the identity as we want, again if ε is taken small enough. Finally, what
really matters to us is the fact that if y, z lie in B(x, 20τ) and on the same face of E, then the
distance between the directions of the tangent planes to E at y and z is at most 10−3, say.
This is what we prove in [D4], in estimates like Lemma 12.35 and 12.50 (where we can take
ε0 as small as we want), which show that approximate minimal cones vary slowly. Hopefully
the reader will trust one of these arguments; this completes our proof of Lemma 6.2.

Remark 6.3. We can replace the constants 10−10 in (6.8) and 10−2 in (6.9) by any small
number a0 > 0 that we wish, but then ε has to be taken small enough, depending on n
and τ as above, but also on a0. The proof is the same; as explained above, we just need to
know that in Corollary 12.25 of [D4], the mapping Ψ that we get can be required to be close
enough to the identity in C1 norm. Using this remark, we will be given the opportunity of
simplifying our construction slightly at the beginning of Section 13.

Let us now say why Lemma 6.2 also gives a good control on E ∩ S ∩ B(x, 8τ). Some
more notation will be useful. Denote by F1, F2, and F3 denote the three faces of Y (x), and
choose the labels so that Fj is the half plane that contains γj (and is bounded by the spine,
which is the vector line through x). Then (6.10) gives a decomposition of E ∩B(x, 9τ) into
three faces F ′j = B(x, 9τ)∩Φ(Fj ∩B(x, 20τ)), which are intersections with B(x, 9τ) of three
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pieces of C1 surfaces. Each of these surfaces F ′j is also a small Lipschitz graph (over a part
of the plane that contain Fj), by (6.9). Finally we know that the three F ′j meet along a C1

curve (a piece of the image by Φ of the spine of Y (x)), which is also a small Lipschitz curve,
and they meet with 120◦ angles. This is really the description of E near x that we shall use;
the fact that we have a parameterization by Y (x) is of lesser importance.

We shall use the description above in a later section, but for the moment we only care
about its consequence on E∩S. For this we apply the implicit function theorem to each face
F ′j , to get a description of F ′j ∩ S (the zero set of f(z) = |z|2 − 1). The relevant derivative is
the derivative of the distance to the origin, which stays large because F ′j is a small Lipschitz
graph over a plane that is orthogonal to S. Or equivalenty, we could use (6.9) to estimate
the partial derivative of f ◦ Φ in the direction of x. We get that

(6.23) F ′j ∩ S ∩B(x, 9τ) is a C1+β1 curve.

Call this curve Lj. We have a little more information on the Lj. First,

(6.24) the three Lj start from a same point x∗,

which is also the unique point of F ′1 ∩ F ′2 ∩ F ′3 ∩ S (or the only point of Φ(F1 ∩ F2 ∩ F3) that
lies on S, apply the implicit function theorem to that curve).

Next the Lj are small Lipschitz graphs. Let us state this in terms of the oscillation of
their unit tangent direction. For z ∈ Lj, denote by vj(z) a unit tangent vector to Lj at z.
We define v so that it is continuous, and v(x∗) points in the direction of Lj. Also denote by
vj the direction of γj (or K) at x, again going away from x; we claim that

(6.25) |vj(z)− vj| ≤ 30−1 for z ∈ Lj.

Indeed vj(z) lies in the intersection of the hyperplane Hz tangent to z at S, and the tangent
plane Pz to E at z. If y ∈ B(x, 20τ) is the point of Y (x) such that Φ(y) = y, Pz is the image
by DΦ(y) of the plane P that contains Fj. But Fj is orthogonal to Hx at x, and contains
the tangent vector vj, and (6.9) says that |DΦ(y)− Id| ≤ 10−2. Thus Pz is quite close to P ,
Pz ∩Hz is quite close to P ∩Hx, and (6.25) follows.

Notice that, by Remark 6.3 (and if τ is small enough compared to a1), we can also make
sure that

(6.26) |vj(z)− vj| ≤ a1 for z ∈ Lj,

where a1 > 0 is any small number given in advance. That is, Lj is a Lipschitz graph, with
a Lipschitz constant that is as small as we want.

Of course it follows from (6.25) that

(6.27) the three Lj make angles of at least 100◦ at x∗,

because the vj make 120◦ angles. We also want to show that for 1 ≤ j ≤ 3,

(6.28) dx,8τ (Lj, γj) ≤ 10−10τ.
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First let z ∈ γj ∩ B(x, 8τ) be given; by (6.10) we can find y ∈ Y (x) ∩ B(x, 20τ) such that
Φ(y) = z. By (6.8), |y−z| ≤ 10−10τ . Then dist(y,S) ≤ 10−10τ , and y′ = y/|y| lies close to y
and z. Also, y lies on the face Fj (because z ∈ F ′j), and y′ ∈ Fj too. But Fj∩S∩B(x, 9τ) ⊂ γj
(see (6.12) and the definition of γj), so dist(x, γj) ≤ 2 · 10−10τ .

Conversely let y ∈ γj ∩B(x, 8τ) be given. Consider the radial line segment I centered at
y and with length 3 ·10−10τ . By (6.8) its image by Φ crosses S (one extremity in B(0, 1), the
other one outside), so there is a point y′ ∈ I such that Φ(y′) ∈ S. The point z′ = Φ(y′) lies
in F ′j (because y′ ∈ Fj), and of course |z′− z| ≤ 3 · 10−10τ . Hence z′ ∈ Li = S∩F ′j ∩B(x, 9τ)
and (6.28) follows.

It follows directly from (6.8) and the fact that x∗ = Φ(y) for some y ∈ F1 ∪ F2 ∪ F3 that

(6.29) |x∗ − x| ≤ 2 · 10−10τ.

Finally let us record the fact that (6.28) also implies that

(6.30) dx,8τ (K,L1 ∪ L2 ∪ L3) = dx,8τ (γ,L1 ∪ L2 ∪ L3) ≤ 10−10τ,

where the first part comes from (6.7) (recall that γ = γ1∪γ2∪γ3). This completes our rather
precise description of E and E ∩ S near the real vertices x ∈ V1.

6.3 A description of E∩S near a flat point x ∈ E∩S far from L∪V1

Next we want to do something similar near the regular points of K, i.e., the points near
which K is a geodesic of S. This includes the vertices of V2, since we only cut K artificially
there. We take a such a point x and also assume that x lies far enough from L or V1. More
precisely, we take x such that

(6.31) x ∈ K and dist(x, L ∪ V1) ≥ τ.

The constraint on the distance to V1 will not cost us much, since we already have a good
description of E near V1. What will be missing is what happens near L, but of course this
is the main point of the paper.

We fix x ∈ K \ L such that (6.31) holds, and do exactly as in the previous subsection.
Near x, K coincides with an arc of geodesic γ, which we may as well choose maximal. It
could be that γ is composed of two or more successive arcs Ci, i ∈ I, because we cut some
arcs artificially with vertices of V2, one of which may even be close to x.

Denote by P (x) the plane that contains γ. Let us check that if we take τ ≤ η(X),

(6.32) K ∩B(x, τ) = γ ∩B(x, τ) = P (x) ∩ S ∩B(x, τ)

(as in (6.7)). For the first part, we just need to check that every arc Ci that meet B(x, τ) is
contained in γ. Let Cj be the arc of the standard decomposition that contains x. If Ci∩Cj = ∅,
(6.5) says that dist(Ci,Cj) ≥ 9η(X) ≥ 9τ ; this is impossible because dist(x,Ci) ≤ τ . So Cj
meets Ci, and since there is no true vertex of K near x, this means that Ci is part of γ too;
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the first part of (6.32) follows. For the second part we just need to observe that none of the
two branches of γ (when we leave from x) stops before we reach a point of V1∪L. By (6.31),
this does not happen as long as we stay in B(x, τ).

From (6.31) we also deduce that

(6.33) E is a plain almost minimal set in B(x, τ), with gauge function h(s) = Chs
β.

The radius is somewhat smaller than in (6.11), so this will force us to apply the lemmas from
[D3] and [D4] with slightly smaller radii, but otherwise things will be as easy as before. The
analogue of Lemma 6.2 for this case is the following.

Lemma 6.4. If ε is small enough, depending on n and τ , then for x as in (6.31) there is a
C1 diffeomorphism Φ : B(x, 2 · 10−3τ)→ Φ(B(x, 2 · 10−3τ) with the following properties:

(6.34) |Φ(y)− y| ≤ 10−10τ for y ∈ B(x, 2 · 10−3τ);

(6.35) |DΦ(y)− Id| ≤ 10−2 for y ∈ B(x, 2 · 10−3τ);

(6.36) E ∩B(x, 10−3τ) = Φ(P (x) ∪B(x, 2 · 10−3τ)) ∩B(x, 10−3τ).

We skip the proof, which is just the same as for Lemma 6.2. Again notice that there is
nothing special about points x ∈ V2, we do not have singularities of K near these points,
they were just added to simplify some estimates in later sections.

As in Remark 6.3, we can even replace 10−10 in (6.34) and 10−2 in (6.35) with any small
constant a0 decided in advance, but then ε has to depend on a0 too.

By the same discussion as for x ∈ V1 (but simpler because we have no branching),
E ∩ B(x, 10−3τ) is also a small Lipschitz graph over P (x). Then the implicit function
theorem allows us to say (as in (6.23)) that

(6.37) E ∩ S ∩B(x, 9 · 10−4τ) is a C1+β1 curve Lx.

Moreover Lx is a small Lipschitz graph, in the sense that if vx denotes a unit tangent vector
to K at x, and if similarly v(z) denotes a continuous choice of unit tangent vector to Lx at
z ∈ Lx, then the proof of (6.25) also yields

(6.38) |v(z)− vx| ≤ 30−1 for z ∈ Lx or |v(z) + vx| ≤ 30−1 for z ∈ Lx

(if we choose the opposite orientations by mistake). And as before, by choosing ε even
smaller, we can even arrange that

(6.39) |v(z)− vx| ≤ a1 for z ∈ Lx or |v(z) + vx| ≤ a1 for z ∈ Lx

for any given small constant a1 > 0. The analogue of (6.28), namely the fact that

(6.40) dx,8·10−4τ (Lx, γ) = dx,8·10−4τ (Lx, K) ≤ 10−6,
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is proved the same way (the easy first part comes from (6.32)).
In the special case when x ∈ V2, we will need to define a vertex x∗ where we cut Lx in

two. We simply choose x∗ ∈ Lx so that |x∗ − x| is minimal, and by the proof of (6.28), we
get that

(6.41) |x∗ − x| ≤ 10−10τ.

6.4 The desired description of E ∩ S \ [D+(τ) ∪D−(τ)]

We now have a nice description of E ∩ S near all the points of K \ L which lie far from L,
which we put together to get a relatively simple statement. Recall the definition of D±(τ)
(two small spherical balls centered at the points `± of L ∩ S).

Proposition 6.5. For each choice of τ ≤ 10−3η(X), there exists ε > 0 such that if X and
E satisfy the assumptions of Section 5 with r = 1, then we can find C1 curves Li ⊂ S, i ∈ I,
such that

(6.42) E ∩ S \ (D+(τ) ∪D−(τ)) =
⋃
i∈I

Li ,

the curves Li, i ∈ I, are disjoint, except perhaps for their endpoints, and they are related to
the Ci in the following way. For each vertex x ∈ V1 ∪ V2, we can find a point x∗ ∈ E ∩ S,
such that

(6.43) |x∗ − x| ≤ 10−9τ

and, for i ∈ I1, Li is a simple C1 curve in S, with endpoints a∗i and b∗i (the two points x∗

associated to x = ai and x = bi respectively), such that

(6.44) dist(z,Ci) ≤ 10−8τ for z ∈ Li and dist(z,Li) ≤ 10−8τ for z ∈ Ci.

For i ∈ I0, Ci meets ∂D+(τ) ∪ ∂D−(τ) at a single point ci, Li ends at a point c∗i such that

(6.45) |c∗i − ci| ≤ 10−8τ

and, if ai denotes the endpoint of Ci that does not lie on L, Li goes from a∗i to c∗i , and

(6.46) dist(z, ρ(ai, ci)) ≤ 10−8τ for z ∈ Li and dist(z,Li) ≤ 10−8τ for z ∈ ρ(ai, ci).

We already have most of the needed information, but need to make a few remarks to put
things together. Also, the statement above misses some information that we obtained in the
last subsections; we will refer to them concerning E itself and Lipschitz graph properties,
for instance.

Before we put our local arcs together, let us say how we intend to end our curves near
the two points of S ∩ L.
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Let ` ∈ L∩S be given, and first suppose that ` /∈ K. Then dist(`,K) ≥ ηL(X) ≥ 10η(X)
by (4.1) and (4.3), and then

(6.47) B(`, 6η(X)) ∩ (X ∪ E) = ∅,

by (5.3) (and if ε is small enough). In this case we’ll not need to do anything to cut the arcs
of E ∩ S near `.

Next assume that ` ∈ K. Then the set I0(`) of indices i such that Ci (starts or) ends at `
is not empty. The arcs Ci are not too short, because (4.2) and (4.3) say that dist(`, V1∪V2) ≥
10η(X). Hence each of them cuts each sphere ∂B(`, t), t ≤ 5η(X), at a point xi(t). Call
m ∈ {1, 2, 3} the number of elements in I0(`).

We shall restrict to t ∈ [τ, 2τ ] for some τ < 10−3η(X). We claim that if ε > 0 is small
enough (depending on τ and n), then for each choice of t ∈ (τ, 3η(X)) and i ∈ I(`),

(6.48)
∂B(`, t) intersects E ∩ S exactly m times, transversally,

and at points x∗i (t), 1 ≤ i ≤ m, such that |x∗i (t)− xi(t)| ≤ 10−8τ.

This is in fact easy. Lemma 6.4, applied to x = xi(t) ∈ K∩∂B(`, t), shows that E∩S∩B(x, τ)
(or equivalently, Lx) is a small Lipschitz curve with (by (6.16)) a tangent direction which
is almost the same as the direction of K at x. This curve crosses ∂B(`, t) transversally
(in fact, almost perpendicularly). Thus, near the xi(t), we get a unique point x∗i (t) ∈
E ∩ S∩ ∂B(`, t), and |x∗i (t)− xi(t)| ≤ 10−8τ . But there is no other point, because all points
of E ∩B(0, 2) ∩ ∂B(`, t) lie close to X (by (5.3)), hence close to one of the xi(t).

We are now ready to say how we organize the local description of E ∩ S \ B to make
curves Li, i ∈ I. Fix τ ∈ (0, 10−3η(X)]. Also set B = B(`+, τ) ∪ B(`−, τ); we have a nice
local description, in balls centered on K, of Γ = E ∩ S \ B, and by (5.3) the balls with the
same centers and half the radii cover Γ. We cut Γ at the points x∗, x ∈ V1 ∪ V2, and we get
a collection of connected components L which we can also describe: the two endpoints of L
are points x∗, we can use (6.28) or (6.40) to follow K along L, and find out that L stays
close to some Ci, i ∈ I. In addition, if Ci = ρ(ai, bi), L has the endpoints a∗i and b∗i . Or,
when i ∈ I0, one of the endpoint of L is the point x∗i (τ) associated to t = τ as in (6.48).
This completes our proof of Proposition 6.5.

Notice that by (6.48), the spheres ∂B(`, t), t ∈ [τ, 2τ ], also cross the Li, i ∈ I0(`) once
and transversally, at least if ` ∈ V0 = K ∩ L. Otherwise, they don’t touch, by (6.47).

Notice also that the Li also satisfy a version of Lemma 6.1, since they are very close in
distance to the Ci.

Finally observe that we may apply Remark 6.3 and the ensuing comments and get that
each Li is a Lipschitz graph over the geodesic Ci (maybe made a little longer or shorter to
accommodate the endpoints), with a Lipchitz constant that can be taken as small as we
want. The only price to pay is that we have to choose smaller constants τ and ε. We will
have the option to use this to simplify the construction of our competitors, at the beginning
of Section 13.
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7 Connectedness configurations near ` ∈ L ∩ S, and a

first net of curves

In this section and the next ones we fix a point ` ∈ L ∩ S and restrict our attention to the
small spherical disk

(7.1) D = S ∩B(`, τ),

where τ is a small constant, to be chosen later. We shall assume that τ ≤ 10−3η(X), so as
to be able to apply the results of Section 6.

We shall distinguish between a few different cases, depending on the number of points
of E ∩ ∂D and the way E ∩ D connects them to each other and to `, and then we shall
construct a first net of simple curves γ ⊂ E ∩D, with the same basic connecting properties.
We will do this independently for each of the two points of L ∩ S.

The first number that we care about is the number m = m(`) of arcs of K that start
from `. Thus m is the cardinality of the set I0(`) of indices i such that Ci starts from (or
ends at) `. When i ∈ I0(`), we shall systematically denote by ai the other endpoint of Ci.
As a general rule, we shall say that we are in Configuration m when I0(`) has m elements.
We know from (2.7) that 0 ≤ m ≤ 3. But there will be numerous subcases, depending on
connectivity properties.

We start with the easy Configuration 0 when m = 0. In this case, ` is connected to no
vertex of V1 ∪ V2, (4.1) and (4.3) say that dist(`,K) ≥ ηL(X) ≥ 10η(X) ≥ 104τ , and then

(7.2) X ∩B(`, 2τ) = ∅ and E ∩B(`, 2τ) = ∅

(by (5.3)). In this case we shall do nothing in D in this section or the next ones.

In the other cases, let us renumber the curves Ci that touch 0 (or equivalently, the set
I0(`)), and just call them Ci, 1 ≤ i ≤ m.

For 1 ≤ i ≤ m, Proposition 6.5 gives a curve Li ⊂ E, that leaves from a point a∗i that
lies very close to ai (the other endpoint of Ci), and ends at a point of ∂D = S∩∂B(`, τ) that
we called c∗i . Recall from (6.45) that c∗i lies quite close to ci, the point of Ci ∩ ∂D. Also, by
(6.48),

(7.3) E ∩ ∂D =
{
c∗i ; 1 ≤ i ≤ m

}
.

For each x ∈ E ∩D, we denote by H(x) the connected component of x in E ∩D. Also set
Hi = H(c∗i ) for 1 ≤ i ≤ m and H` = H(`).

One case that we particularly like is the case of a hanging curve. We define it as the case
when for some i ≤ m, c∗i is not connected to any of the other special points, i.e., when

(7.4) c∗i /∈ H` ∪
⋃
j 6=i

Hj.
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We refer to this as Configuration H. In this case we are happy, because we will be able
to contract a large piece of E along the piece of E near Li, and this will give estimates that
are quite favorable. Nonetheless we define a set γ by (short) induction.

We define a first set γi = {c∗i }, remove the point c∗i (or equivalently the whole Hi) from
the game, and get a new configuration with m − 1 points. If m = 1, just set γ = γi.
Otherwise, define the net γ′ associated to this smaller configuration (as will be explained in
the next cases), and take γ = γi ∪ γ′. As we shall see, γ′ is contained in the union of the Hj,
j 6= i, so we get a disjoint union. For instance, if we had three hanging curves, γ would be
composed of the three c∗i .

The next simple case is Configuration 1, where m = 1 and H1 = H`. In this case we
choose γ so that

(7.5) γ is a simple curve in E ∩D that goes from c∗1 to `.

The existence of such a curve follows rather easily from the fact that H1 is connected and
contains c∗1 and `, plus (5.4) which says that

(7.6) H1(H1) ≤ H1(E ∩ S) < +∞;

see for instance [Fl], or Chapter 30 of [D1]. Later on we shall replace this curve with a small
Lipschitz curve, and then we shall retract onto it, but for the moment we continue with our
list of cases. Notice that only Configurations H and 1 are possible when m = 1.

Now assume that m = 2, and that we are not in Configuration H. A first option is that
H1 = H2 6= H`, i.e., c∗1 and c∗2 are connected to each other (in E ∩D), but not to `. We shall
call this Configuration 2-. By (7.6) and the same argument as above, we can find γ such
that

(7.7) γ is a simple curve in E ∩D that goes from c∗1 to c∗2.

Notice that ` /∈ γ, because γ ⊂ H1.
The next case, called Configuration 2+, is when H1 = H2 = H`, i.e., our three special

points are connected. First select (as above) a simple curve γ1,2 ⊂ E ∩ D, that goes from
c∗1 to c∗2. Also choose a simple curve γ0 ⊂ ∂D, that goes from ` to c∗1. Finally denote by γ`
the part of γ0 that lies between ` and the first point of γ1,2 that we hit when we start from
` and run in the direction of c∗1. We include both endpoints. It could happen that ` already
lies on γ1,2, and then γ` is reduced to the point `; this is all right too. We set

(7.8) γ = γ1,2 ∪ γ`.

This was our last case when m = 2, since each c∗i is connected to another special point when
we are not in case H. Recall that in case H, either the two curves Li are hanging, and then
we set γ = {c∗1, c∗2} or L2, say, is hanging and H1 = H`, and then we select γ1 ⊂ H1 as in
Configuration 1, and set γ = γ1 ∪ {c∗2}.

Now suppose that m = 3 and we are not in Configuration H. A first possibility, that we
shall call Configuration 3 = 2+1, is that two of the c∗i are connected to each other, but
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not to `, and the third one is connected to ` (hence not to the others). Let us relabel the c∗i ,
if needed, so that in fact

(7.9) H1 = H2 and H3 = H`, but H1 6= H`.

In this case we take

(7.10) γ = γ1,2 ∪ γ`,

where γ1,2 is a simple curve in E ∩ D that goes from c∗1 to c∗2, and γ` is a simple curve in
E ∩D that goes from ` to c∗3. Notice that these two curves are disjoint, since H1 6= H3.

Next we turn to Configuration 3-, where H1 = H2 = H3 6= H`. In this case we select
a simple arc γ1,2 in E ∩D that goes from c∗1 to c∗2 and a simple arc γ3,1 in E ∩D that goes
from c∗3 to c∗1. Then we let γ3 be, as in Configuration 2+, the closed sub-arc of γ3,1 between
c∗3 and the first time we hit γ1,2. We set

(7.11) γ = γ1,2 ∪ γ3;

thus γ is a (possibly degenerate) three-legged spider that connects the c∗i ; it does not contain
`.

We are left with only one case, which we call Configuration 3+, where all the points
are connected, i.e., H1 = H2 = H3 = H`. We define γ1,2 as before, then γ3,1 and γ3 ⊂ γ3,1,
but now also pick a simple arc γ`,1 in E ∩D that goes from ` to c∗1, but only keep the arc γ`
that goes from ` to the first time we hit γ1,2 ∪ γ3. Finally we take

(7.12) γ = γ1,2 ∪ γ3 ∪ γ`

(a three-legged spider with a short leash to `, which again can also be degenerate in different
ways). This is our most complicated case; it will turn out that, later in the proof, we shall
replace γ by a connected set with a slightly simpler shape, but for the moment γ is good
enough.

At this stage, we constructed a net γ ⊂ E ∩ D, with the same connecting properties
(regarding our special points) as E ∩D. We will have to modify this net, though, for a few
concurrent reasons.

The first one is that we may find a significantly shorter net in D, still with the same
connecting properties, but which may not be entirely contained in E. The interest is that
the cone over this new net will have a smaller surface, and then we should be able to use
this new cone to define an interesting competitor. This looks like a good idea, but we need
to show some restraint, and only do this transform when we win enough length (and then
surface for the cone) to compensate for the extra cost that we will need to pay when we
glue together pieces of different surfaces. The ideal thing would be to find a shorter net in
E ∩ S, but this is probably not going to be possible in general, so we’ll have to add small
connecting pieces.
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The second reason is that our construction of competitors (in particular related to the
new curves) will use Lipschitz retractions from a neighborhood of the net to the net. They
will be easier to find if the net has some regularity: we do not want to have to retract on a
curve that almost makes a closed loop. Thus we will like better nets that are composed of
a small number of small Lipschitz curves that meet with large angles and make no loops.

Fortunately, the two reasons go together: if γ makes unnecessarily long connections
(think about a long arc that connects two close points), we may replace some parts of it
with shortcuts, save a nontrivial amount of length, and at the same time increase the chances
for a nice retraction.

There is a third reason for which we like small Lipschitz graphs. One of the main engines
of our proof is the comparison between cones and graphs of harmonic functions. Suppose for
instance that C is the unit circle in a plane P , and that Γ is the graph over C of a Lipschitz
function A : C → P⊥. Let A1 be the homogeneous extension of A (of degree 1), so that the

graph of A1 (call it Γ̂) is also the cone over Γ. Then let Ah denote the harmonic extension

of A to P ∩ B(0, 1), and denote by Σ its graph. We expect that H2(Σ) < H2(Γ̂ ∩ B(0, 1)),
especially if A is far from an affine function, but this is much more pleasant to prove when
A has a small Lipschitz constant, because then we can use expansions of order 2 to estimate
the surface measure. (If Γ is not even a graph, it is much harder to imagine an analogue
of the harmonic graph, and we are a little desperate.) This comparison argument will also
work with the circle replaced by small sectors that we glue to each other, and this is the
reason why we wish to replace our γ with shorter nets of small Lipschitz curves.

8 The standard replacement by a Lipschitz graph

As we just explained, we intend to modify the simple nets γ of the previous section, and
our main tool for this is a construction, which we will take from [D4] but which was not
especially original anyway, that takes a simple curve γ (typically, one piece of the nets above)
and creates a Lipschitz curve Γ with the same endpoints.

The constraints of the game are that we don’t want Γ to be longer than γ, and we only
want to introduce parts of Γ \ γ when we are sure that this will make the curve significantly
shorter, or that we will win something proportional in the next section. We don’t need to
be specific yet, let us just remember that we do not want to change the curve for no reason.

We do the construction in this section, and apply it later. So let γ be a simple curve.
To complicate matters (and in particular parameterizations), γ ⊂ S and we want Γ ⊂ S too.
But we will not be disturbed by antipodal problems, because we will very fast be able to
assume that H1(γ) ≤ 4π

5
.

Let a and b 6= a denote the endpoints of γ. We assume that

(8.1) distS(a, b) := H1(ρ(a, b)) <
3π

4
,

where distS denotes the geodesic distance in the sphere, and ρ = ρ(a, b) is the geodesic with
endpoints a and b.
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So we want to construct a new curve Γ in S, which is a Lipschitz graph over ρ (we shall
explain what this means soon), has the same endpoints a and b, and coincides with g on a
set which is as large as possible.

The main parameter in this construction is a small constant λ < 1, which is essentially
the Lipschitz constant for desired graph Γ. It used to be called η (in [D4]), but we want
to avoid notation conflicts. It is required to be small, depending on the dimension, and the
main reason for this is that we want to be able to apply the results of Section 9. Recall also
that we want to choose τ small, depending on λ, so λ should not depend on τ .

Before we start for real, let us eliminate a simple case. Let τ1 > 0 be small (to be chosen
later, depending on λ). We take

(8.2) Γ = ρ(a, b) when H1(γ) ≥ (1 + τ1)distS(a, b),

and feel happy because although we added a big set, we also saved at least τ1distS(a, b) in
length. This works even if H1(γ) = +∞, but we do not need the information.

From now on we assume that the condition in (8.2) fails, i.e., we assume that

(8.3) length(γ) = H1(γ) < (1 + τ1) distS(a, b),

where the first equality is just a change of notation because γ is simple (see for instance [Fl],
but the truth is that we could use H1 all along).

Set ρ = ρ(a, b) and let P denote the 2-plane that contains ρ (or equivalently a, b, and 0).
We shall often use the fact that because of (8.3),

(8.4) dist(z, ρ) ≤ τ2 distS(a, b) for z ∈ γ,

where τ2 = 10
√
τ1 > τ1 (because τ1 < 1).

It should be said now that (contrary to what we may have implied so far) we do not
always try to make H1(Γ) significantly shorter than γ, but sometimes we want to control
H1(Γ\γ) in terms of something else, the L2-norm of the derivative of a function whose graph
describes Γ. This is because we shall see in the next section that a harmonic replacement of
the cone over Γ will make us save a comparable amount of area.

The argument will be essentially imported from Section 7 of [D4], and we use similar
notation (except that η1 is now called λ). There is a small difference with what was done in
[D4], where for convenience we assumed (in (7.1) there) that length(γ) ≥ 9η0 for some small
geometric constant η0. Here we do not want to assume this, and this will force us to be some
times a little more careful with the normalization; for instance, in [D4] which just required
that length(γ) ≤ distS(a, b) + τ1. Here we assume the stronger (8.3), with an error term of
at most τ1distS(a, b). The necessary modifications, to adapt the construction of [D4], will all
be of that type.

With this in mind, the main assumptions (7.1)-(7.3) in Section 7 of [D4] are satisfied,
by (8.1), (8.3) and (8.4). An important quantity, that we want to use to estimate various
terms, is the length excess

(8.5) ∆L = length(γ)− distS(a, b).
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We now describe the highlights of the construction of [D4]. We let z : I → S de-
note a parameterization of γ by arclength, so that |I| = length(γ), and we write z(t) =
(z1(t), z2(t), v(t)), where the first two coordinates are in P , and v(t) ∈ P⊥. A simple esti-
mate with Fourier series shows that

(8.6)

ˆ
I

|v′(t)|2dt ≤ 14∆L;

see Lemma 7.8 in [D4]; the reader should not worry about normalization here, as even in
[D4] the constant 14 does not depend on η0.

Next write (z1(t), z2(t)) = (w(t) cos θ(t), w(t) sin θ(t), as in (7.5) of [D4] (notice that by
(8.4), (z1(t), z2(t)) stays close to ρ); we also need to know that (if a and b are chosen in
trigonometric order) θ′(t) is rather large on average. To measure this, we define f on I by

(8.7) f(t) = 1 + 2|v(t)|2 − θ′(t)

(as in (7.20) there), observe that f(t) ≥ 0 almost everywhere (see the line below (7.20) there,
which uses the fact that |z′(t)| = 1 almost everywhere), and use (8.6) and (8.5) to show that

(8.8)

ˆ
I

f(t)dt ≤ 30∆L;

see (7.21) in [D4]. We now use a maximal function argument, based on the two estimates
(8.6) and (8.8), to find an open set Z in I (in fact, Z is the set where one of the two maximal
functions f ∗(t) or (v′)∗ is large) with the following two properties. First,

(8.9) |Z| ≤ Cλ−2∆L = Cλ−2( length(γ)− distS(a, b)) ≤ Cλ−2τ1distS(a, b)

as in (7.26) of [D4] (and by (8.5) and (8.3)). Here C is an absolute constant that comes
from the Hardy-Littlewood maximal theorem on I. But also, z has good Lipschitz properties
away from Z, that we shall explain soon.

Write Z as a countable disjoint union of open intervals Ij = (aj, bj), with possibly two
exceptions: if the initial endpoint of I lies in Z, the corresponding interval is of the form
[aj, bj), and if the final endpoint of I lies in Z, then Ij = (aj, bj]. Both things do not happen
at the same time, for the following reason: we shall choose τ1 small, depending on λ, and in
particular, we can make sure that Cλ−2τ1 < 1 in (8.9), so that |Z| < distS(a, b) ≤ |I|.

We come to the good Lipschitz properties. The definition of Z in terms of maximal
functions yields (see (7.33) in [D4])

(8.10) |v(bj)− v(aj)| ≤
λ(bj − aj)

4
and θ(bj)− θ(aj) ≥

bj − aj
2

.

We now construct Γ. We directly define a parameterization z̃ : I → S of Γ. On I \ Z,
we simply keep z̃(t) = z(t), and on each interval Ij, we let z̃ be a parameterization with
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constant speed of the arc of geodesic ρj = ρ(z(aj), z(bj)). Then z̃ is continuous; it is even
1-Lipschitz, because

(8.11) length(ρj) = distS(z(aj), z(bj)) ≤ bj − aj

because z is 1-Lipschitz. Notice also that (as in (7.30) of [D4])

(8.12) Γ has the same endpoints a and b as γ and ρ.

Next we can use (8.10) to show that

(8.13) Γ is a Lipschitz graph with constant ≤ λ.

See (7.32) in [D4], and (7.42) or (7.44) there for definitions in terms of parameterizations,
but for here the simplest is to notice (and take as a definition of Lipschitz curve) that we
have the simpler-to-state property that

(8.14) π⊥(z̃(t)) is a λ-Lipschitz function of π(z̃(t)),

where π and π⊥ denote the orthogonal projections on P and its orthogonal complement; see
(7.45) in [D4]. Notice that

(8.15) H1(Γ) = length(Γ) ≤ length(γ) = H1(γ)

because both curves are simple, and by (8.11); hence

(8.16) H1(Γ \ γ) ≤ H1(γ \ Γ) ≤
∑
j

(bj − aj) ≤ Cλ−2∆L,

by (8.9), and as in (7.31) of [D4].

9 Harmonic graphs usually do better than cones

Let Γ be a small Lipschitz graph over a reasonably short geodesic ρ(a, b) (say, so that (8.1)
holds), and denote by P the vector plane that contains ρ(a, b). Our main example will be
the curve that we constructed in the previous section, starting from γ, but we could use
slightly different Γ. In this section we use Section 8 of [D4] to construct a small Lipschitz
graph over a sector of P , whose area is often significantly smaller than the area of the cone
over Γ. The estimates below will work as soon as a bound λ on the Lipschitz constant is
small enough (depending on n only).

When Γ is a geodesic, the cone over Γ is a plane sector, and we shall not modify anything
in this section, but one could also follow the construction below and find out at the end that
we did nothing. This means that when Γ comes from a curve γ as in the last section, we
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can assume that (8.3) holds (because otherwise γ is a geodesic). The amount of area that
we are able to save will be essentially proportional to the quantity

(9.1) ∆Γ = length(Γ)− distS(a, b) ≤ τ1distS(a, b).

First we define a homogeneous function F , defined on a sector DT of P , and whose graph
coincides in B(0, 1) with the cone over Γ. We start with the sector DT . Choose coordinates
on P so that a = (1, 0) and b = (cosT, sinT ), where T = distS(a, b) <

3π
4

by (8.1). Then set

(9.2) DT =
{

(r cos t, r sin t) ; r ∈ (0, 1) and t ∈ (0, T )
}
.

We assume that we can parameterize Γ in the following way: we can find an λ-Lipschitz
function v : [0, T ]→ P⊥, with v(0) = v(T ) = 0, such that if we set

(9.3) w(t) =
(
1− |v(t)|2

)1/2

and then

(9.4) h(t) = (w(t) cos t, w(t) sin t, v(t)) ∈ P × P⊥

for t ∈ [0, T ], then h is a parameterization of Γ. Thus t ∈ [0, T ] is the angle with the direction
of a of the orthogonal projection on P of the running point.

In the special case when Γ comes from γ as in Section 8, the existence of v is checked
in Remark 8.3 of [D4]. Let us also check that we can find v as above, except maybe only
2λ-Lipschitz, when Γ is a λ-Lipschitz graph over the geodesic ρ(a, b). By definition, this last
means that Γ is a curve in S, from a to b, and that

(9.5) |π⊥(z)− π⊥(z′)| ≤ λ|π(z)− π(z′)|

for z, z′ ∈ Γ. Here we denote by π and π⊥ the orthogonal projections on P and P⊥ re-
spectively. We also write π(z) = weit and π(z′) = w′eit

′
, with w,w′ ≥ 0. Notice that since

π⊥(a) = 0, we see that |π⊥(z)| ≤ 2λ is very small, and (since z ∈ S)

(9.6) w = (1− |π⊥(z)|2)1/2 ≥ (1− 4λ2)1/2 =: ρ0,

with a ρ0 ∈ (0, 1) that is as close to 1 as we want. We deduce from (9.5) and the first part
of (9.6) that

(9.7) |w − w′| ≤ ρ−1
0 λ|π(z)− π(z′)|.

Then since

(9.8) π(z)− π(z′) = weit − w′eit′ = w[eit − eit′ ] + [w − w′]eit′ ,

(9.9) |eit − eit′ | ≥ w|eit − eit′ | ≥ |π(z)− π(z′)| − |w − w′| ≥ (1− ρ−1
0 λ)|π(z)− π(z′)|
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and

(9.10) |eit − eit′| ≤ ρ−1
0

(
|π(z)− π(z′)|+ |w − w′|

)
= ρ−1

0 (1 + ρ−1
0 λ)|π(z)− π(z′)|.

By (9.1), (9.10), and since H1(ρ(a, b)) < 3π
4

by (8.1), eit stays in an arc of circle of length
at most 4π

5
. There is a unique continuous determination of t that comes from inverting eit

on that arc (in a π
2

Lipschitz way), and now (9.9) implies that π(z) is a 2-Lipschitz function
of t. We write this π(z) = ϕ(t). Also π⊥(z) is a Lipschitz function of π(z); we write this
as π⊥(z) = ψ(π(z)). Then set v = ψ ◦ ϕ; we see that v is 2λ-Lipschitz. With our notation,
π⊥(z) = ψ ◦ ϕ(t) = v(t), (9.3) is the same as (9.6), and the fact that (9.4) parameterizes Γ
comes from the fact that

(9.11) z = π(z) + π⊥(z) = weit + ψ ◦ ϕ(t) = (w cos t, w sin t, v(t)).

Return to the construction of Γ. We define F : DT → P⊥ by

(9.12) F (r cos t, r sin t) =
rv(t)

w(t)
for r ≥ 0 and t ∈ [0, T ];

notice that w(t) 6= 0, and even w(t)− 1 stays small, because |v(t)| ≤ λT is small.
Denote by Σ′F the graph of F over DT ; it easily follows from the definitions that Γ ⊂ Σ′F ,

because v(t) = F (w(t) cos t, w(t) sin t).
The function G that we construct has the following properties (see (8.6), (8.7), (8.9) and

(8.10) in [D4]). It is defined on DT , and it coincides with F on the outer ring, i.e.,

(9.13) G(r cos t, r sin t) = F (r cos t, r sin t) for
9

10
≤ r ≤ 1 and t ∈ [0, T ].

We also preserve a small region near the origin, where we may further modify the resulting
surface: there is a small absolute constant κ > 0, for which we take

(9.14) G(r cos t, r sin t) = 0 for 0 ≤ r ≤ 2κ and t ∈ [0, T ]

(see (8.7) in [D4]). Next,

(9.15) G is Cλ-Lipschitz on DT ,

and satisfies the Dirichlet condition

(9.16) G(r cos t, r sin t) = 0 when 0 ≤ r ≤ 1 and t ∈ {0, T}.

Finally, the graph Σ′G of G over DT has a significantly smaller measure

(9.17)
H2(Σ′G) ≤ H2(Σ′F )− 10−4

ˆ T

0

|v′(t)|2dt

≤ H2(Σ′F )− 10−4[ length(Γ)− T ] = H2(Σ′F )− 10−4∆Γ.
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For this one too, the fact that we no longer assume that T ≥ η0 does not interfere (and
indeed our bound in (8.10) of [D4] does not depend on η0). But this is the main place
where we need λ to be small enough, so that the approximation of the area functional by
the Dirichlet energy is precise enough.

We are interested in the intersections with the unit ball B, which we denote by

(9.18) ΣF = Σ′F ∩ B and ΣG = Σ′G ∩ B,

and (9.17) immediately yields

(9.19) H2(ΣG) ≤ H2(ΣF )− 10−4∆Γ = H2(ΣF )− 10−4[ length(Γ)− distS(a, b)]

because (9.13) says that Σ′G = Σ′F outside of B (recall that ||v||∞ ≤ λT is small), and by
(9.1).

In the special case when Γ comes from γ as in Section 8, we can also compare with the
cone

(9.20) X(γ) =
{
tx ; x ∈ γ and 0 ≤ t ≤ 1

}
over γ. Notice that

(9.21) H2(ΣG) =
1

2
length(Γ) and H2(X(γ)) =

1

2
length(γ),

for instance by the area (or co-area) formula. So

H2(X(γ))−H2(ΣG) =
1

2
[ length(γ)− length(Γ)] +H2(ΣF )−H2(ΣG)

≥ 1

2
[ length(γ)− length(Γ)] + 10−4[ length(Γ)− distS(a, b)]

≥ 10−4[ length(γ)− distS(a, b)] = 10−4∆L(9.22)

≥ C(λ)−1[H1(Γ \ γ) +H1(γ \ Γ)],

where we used (8.15) and (8.16), and C(λ) is a constant that depends on λ. As we will see
later, this will often mean that it is worth replacing γ with Γ, because the cost of gluing is
often much smaller than H1(Γ \ γ) +H1(γ \ Γ).

10 Our Lipschitz net Γ: basic rules and easy cases

Recall that in Section 7 we fixed a point ` ∈ L ∩K (when ` /∈ K, D stays far from E and
we decided to do nothing), and we constructed a first net γ of curves in E ∩D.

There are a few different configurations, but each time γ is a union of simple curves in
E ∩D (between one and five of them), and γ contains the points c∗i , 1 ≤ i ≤ m, of E ∩ ∂D.
We extend γ by adding to it the arcs Li. Recall that Li is the arc of E ∩ S that goes from
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c∗i to a∗i , where a∗i is associated to ai as in Proposition 6.5, and ai is the other endpoint of
the arc Ci of K that passes near c∗i . We denote by γ the extended set, i.e., set

(10.1) γ = γ ∪
⋃

1≤i≤m

Li.

We intend to replace γ with a possibly shorter net Γ of Lipschitz graphs, typically con-
structed with the help of Section 8, but before we start with the long list of configurations
and subcases, let us explain the main properties that we want our Lipschitz net to have.

First, Γ should be composed of a small number (in fact, at most 4) of Lipschitz curves
Γj, disjoint except perhaps for their endpoints, and such that

(10.2)
no more than 3 curves Γj ever meet at a common endpoint z,

and when they do they always make angles larger than
π

2
at z.

The statement about angles contains a small abuse of notation, but we shall fix this and say
more precisely what it means near (10.8), when we prove a similar statement for the first
time. This condition will be very useful because later on we want to construct local Lipschitz
retractions near Γ. When there are many curves Γj, we’ll have additional properties that
make this possible, but which would be awkward to state here.

Also, we should say that later on, we shall consider the natural decomposition of γ and
Γ into connected components. That is, we shall consider the component Hi of c∗i in (the
corresponding) D ∩ E, and for each one we will rename it as c ∈ CC (because more than
one i could give the same component c), consider the piece γc of γ which is attached to Hi

(it is connected by construction), and there will naturally be one connected piece Γc of Γ
which corresponds. What we will really use in later sections is more the collection of pieces
Γc than the nets Γ themselves.

We also want a good junction with the rest of E ∩ S. Recall that we started with m
points c∗i ∈ E ∩ ∂D, corresponding to m curves Li that go from c∗i to a∗i . We will make sure
that for each i, there is a unique index j(i) such that Γj(i) ends at a∗i , and moreover (with
the same abuse of notation as above)

(10.3) Γj(i) makes at a∗i an angle larger than
π

2
with all the Li′ , i′ 6= i, that end at a∗i .

Our second demand concerns the size of the modification. We want a good estimate on
the symmetric difference

(10.4) ∆(γ,Γ) = (γ \ Γ) ∪ (Γ \ γ)

in terms of the amount of surface measure that we can win. To measure this, denote by ρj
the geodesic in S with the same endpoints as Γj, and then set

(10.5) ρ = ∪jρj.
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We require that

(10.6) H1(Γ) ≤ H1(γ)

and, for some constant C that depends on λ (but not on τ),

(10.7) H1(∆(γ,Γ)) ≤ C[H1(γ)−H1(Γ)] + C[H1(Γ)−H1(ρ)].

We write (10.7) in this strange way because the two terms on the right-hand side are non-
negative (for the last one, because the Γj are essentially disjoint), so majorising by any
nonnegative combination of the two pieces will be enough. As the reader may have guessed,
we intend to win an area comparable toH1(Γ)−H1(ρ) because we will apply the construction
of Section 9 to all the Γj and by (9.19).

As a last comment before we start, notice that for Configuration H and Configuration
3 = 2+1, γ is composed of disjoint pieces. In this case we shall construct Γ piece by piece
(i.e., independently), and take the union (it will be disjoint too).

Let us now do the construction of Γ in the simplest cases; this will also help us understand
better as it goes. The most interesting case will be Configuration 3+, which will take some
time and is kept for later.

In Configuration 0, we have no γ and we do nothing.

In Configuration 1, (7.5) says that γ is a simple curve from ` to the unique point x∗1 of
E ∩ ∂D, γ is the simple curve obtained by concatenating γ and L1, and it goes from ` to
a∗1. We apply the construction of Section 8 to γ, and get a curve Γ with the same endpoints
` and a∗1. In this case (10.2) is true but pointless (there is only one Γj), (10.6) comes from
(8.15), and (10.7) from the end of (9.22).

So we are only left with (10.3) to check, and at the same time we should say what this
means. Indeed (10.3) seems to assume that Γj(i) has a tangent at a∗1, but we only know that
it is Lipschitz. This is easy to fix, but we need additional definitions and notation.

When v1 and v2 are two unit vectors of Rn, we define the angle Angle(v1, v2) by

(10.8) Angle(v1, v2) ∈ [0, π] and cos( Angle(v1, v2)) = 〈v1, v2〉.

If the simple curve Γ ends at a, we call direction of Γ at a any unit vector v obtained as

(10.9) v = lim
k→+∞

xk − a
|xk − a|

,

where {xk} is a sequence in Γ \ {a} that tends to a. Finally, if Γ1 and Γ2 are two simple
curves that share the endpoint a, we say that

(10.10) Γ1 and Γ2 make an angle at least α at a

when

(10.11)
Angle(v1, v2) ≥ α for every tangent direction v1 of Γ1 at a

and every tangent direction v2 of Γ2 at a.
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We shall also use the following notation concerning geodesic directions and angles. When
a ∈ S and x ∈ S \ {−a}, we denote by v(a, x) the direction at a of the geodesic ρ(a, x) from
a to x. With this we can also compute angles between points: we set

(10.12) Anglea(x, y) = Angle(v(a, x), v(a, y)) ∈ [0, π];

this is the angle that the geodesics ρ(a, x) and ρ(a, y) make at a.

Now we return to (10.3). The proof below will actually work in many other configurations,
with a minor modification that will be explained at the end of the proof.

We shall actually prove it with an angle larger than 7π
12
> π

2
. That is, we shall check that

if j ∈ I is such that j 6= i but a∗i is also an endpoint of Lj, and v2 is the tangent direction
of Lj at a∗i (we know that there is only one, since that curve is C1), then

(10.13) Angle(v1, v2) >
7π

12

whenever v1 is a tangent direction of Γ at a∗i . We first check that

(10.14) |v1 − v(a∗i , `)| ≤ 3λ.

Set a = a∗i to simplify. Recall from (8.13) that Γ is a λ-Lipschitz graph over the geodesic
ρ(a, `) with the same endpoints. Recall from (8.14) that this means that if π and π⊥ denote
the orthogonal projections on the plane P that contains ρ(a, `), and on P⊥ respectively,
then π⊥(z) is a λ-Lipschitz function of π(z) on Γ. Then write our tangent direction of Γ
at a as v1 = limk→+∞wk, where wk = (zk − a)/|zk − a|) for some zk ∈ Γ that tends to a.
We know that |π⊥(zk)| = |π⊥(zk) − π⊥(a)| ≤ λ|π(zk) − π(a)| and hence, since |zk − a| ≥
|π(zk)− π(a)| − |π⊥(zk)− π⊥(a)| ≥ (1− λ)|π(zk)− π(a)|, that

(10.15) |π⊥(wk)| =
|π⊥(zk − a)|
|zk − a|

≤ λ

1− λ
≤ 2λ

if λ is chosen small enough. Then |π⊥(v1)| ≤ 2λ too. Since v1 lies on the tangent hyperplane
to S at a, we get that its projection π(v1) lies in the direction of ρ(a, `) at a and finally (10.14)
follows. In many other configurations, we will still know that Γj(i) is a small Lipschitz graph,
but sometimes over a slightly different geodesic ρ(a∗i , b), where b is quite close to `. Then
(10.14) will follow as above, but maybe with Cλ instead of λ (coming from |v(a∗i , b)−v(a∗i , `)|,
or a slightly larger Lipschitz constant). The rest of the proof will work unchanged.

Notice that |a∗i − ai| ≤ 2 · 10−10τ by (6.29), and distS(ai, `) = H1(Ci) ≥ 10η(X) > 104τ
by (6.4) and (6.3), so we also get that

(10.16) |v(a∗i , `)− v(ai, `)| ≤ 10−10.

Now we consider v2. First assume that ai is a true vertex, i.e., that ai ∈ V1. One of the
arcs of K leaving from ai is Ci = ρ(ai, `), and Cj, the arc of K that lies close to Lj, is another
one. Write Cj = ρ(ai, b); then

(10.17) Angle(v(ai, b), v(ai, `)) =
2π

3
=

8π

12
,
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because it is the angle of Ci and Cj at ai. Now we apply (6.25), to the vertex x = ai and the
point z = a ∈ Lj. With the notation below (6.24), vj(z) = v2 (the direction of Lj at a) and
vj = v(ai, b) (the direction at x = ai of the tangent to Cj = ρ(ai, b)). Thus (6.25) says that

(10.18) |v2 − v(ai, b)| = |vj(z)− vj| ≤ 1/30.

In the present case, our goal (10.13) follows easily from (10.14)-(10.18), but we still need to
treat the case when ai ∈ V2.

We still have (10.14) (for the same reasons) and (10.16) (see below (6.40)). Now there is
only one other Cj leaving from aj, and

(10.19) Angle(v(ai, b), v(ai, `)) = π,

i.e., Cj is a continuation of Ci. We still have (10.18), but this time we apply (6.38), and then
we conclude as above.

This completes our verification of (10.2)-(10.7) in the case of Configuration 1.
Notice that in our proof of (10.3), if instead of ending at ` the curve Γ ends at some

other point x0 ∈ D, then we just need to replace v(a∗i , `) with v(a∗i , x0) in (10.14), and add
|v(a∗i , x0)− v(a∗i , `)| to the error term in (10.16); but

(10.20) |v(a∗i , x0)− v(a∗i , `)| ≤ 2|x0 − `||a∗i − `|−1 ≤ 2τ

8 · 103τ
≤ 1

4000

(see the estimate just above (10.16)); this still gives (10.13) and (10.3).

Our next case is Configuration 2−. In this case γ is a simple curve in E ∩D that goes
from c∗1 to c∗2, and does not contain `. Select a point x0 ∈ γ ∩D, for instance a point that
minimizes the distance to `, and cut γ into two essentially disjoint simple curves γ1 and γ2,
where γi goes from x0 to c∗i . Then extend γi, by adding to it the corresponding arc Li; we
assume that our notation is such that Li is the curve in E ∩ S that contains c∗i . This gives
a curve γi, that goes from x0 to a∗i .

We apply the construction of Section 8 to γi and get a curve Γi with the same endpoints
x0 and a∗i . Then we take Γ = Γ1 ∪ Γ2.

Let us check that

(10.21) the two Γi make an angle larger than 110◦ at x0;

of course (10.2) will follow (the only interior vertex of Γ is x0). We shall merely use the fact
that |x0− `| ≤ τ , even though we could rather easily deduce from (5.3) that γ comes within
10ε of `. We first control the direction of the geodesic ρ(x0, a

∗
i ) over which Γi is a small

Lipschitz graph. Recall from (6.43) that |a∗i − ai| ≤ 10−9τ , while (6.4) and (6.5) imply that
|ai − `| ≥ 9 · 103τ . Thus |x0 − a∗i | ≥ 8 · 103τ and

(10.22)
|v(x0, a

∗
i )− v(`, ai)| ≤ |v(x0, a

∗
i )− v(`, a∗i )|+ |v(`, a∗i )− v(`, ai)|

≤ 2|x0 − `||x0 − a∗i |−1 + 2|a∗i − ai||`− ai|−1 ≤ 10−3.
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We know from (2.7) that Angle(v(`, a1), v(`, a2)) ≥ 2π
3

so (10.22) gives a good control on
Angle(v(x0, a

∗
1), v(x0, a

∗
2)), and (10.21) will follow as soon as we check that for i = 1, 2,

(10.23) Angle(vi, v(x0, a
∗
i )) ≤ 3λ when vi is any tangent direction to Γi at x0.

But this is true, and the proof is the same as for (10.14).
Next we are supposed to check (10.3), but the proof of (10.13) still works in the present

case, as explained near (10.20). Then (10.6) follows from (8.15) (we apply it to each piece,
and then sum), and (10.7) from the end of (9.22) (again sum the two pieces). This completes
our verifications for Configuration 2−.

Now we switch to Configuration 3 = 2 + 1. This will just be a combination of Config-
urations 1 and 2−. Here, possibly after relabelling, γ is composed of an arc γ1,2 that goes
from c∗1 to c∗2, and an arc γ3 from ` to c∗3. We select an origin x0 ∈ γ1,2 ∩D, and in fact the
simplest is to take x0 = c∗1. This way we have three arcs, γ1 = {c∗1}, γ2 = γ1,2, and γ3, which
we extend as before. This gives three arcs, γi, two that leave from x0 = c∗1 and one from
`. Then we apply the construction of Section 8 independently to the three γi and get small
Lipschitz graphs Γi. Finally we set Γ = Γ1 ∪ Γ2 ∪ Γ3.

The curves Γ1 and Γ2 have a common endpoint x0, and by the proof of (10.21) they make
an angle larger than 110◦ at x0. We claim that

(10.24) Γ3 does not meet Γ1 ∪ Γ2.

Let us first check that for i = 1, 2,

(10.25) dist(z, ρ(x0, a
∗
i )) ≤ 2λ|z − x0| for z ∈ Γi.

Let P be that plane that contains ρi = ρ(x0, a
∗
i ), and denote by π and π⊥ the orthogonal

projections on P and its orthogonal complement; by (8.14), π⊥(z) is a λ-Lipschitz function
of π(z) (hence also of z) on Γi. This implies that

(10.26) |π⊥(z)| = |π⊥(z)− π⊥(x0)| ≤ λ|z − x0| for z ∈ Γi.

Next |π(z)| = (1 − |π⊥(z)|2)1/2 is a 2λ-Lipschitz function of π(z) (differentiate f(x) =
(1− x2)1/2 near 1). Now set ξ(z) = π(z)/|π(z)| (a projection on the circle that contains ρi);
then

(10.27)

|ξ(z)− ξ(z′)| ≥ |π(z)− π(z′)|
|π(z)|

− |π(z′)|
∣∣∣ 1

|π(z)|
− 1

|π(z′)|

∣∣∣
≥ |π(z)− π(z′)|

1 + λ|z − x0|
−
∣∣∣ |π(z)| − |π(z′)|

|π(z)|

∣∣∣
≥ |π(z)− π(z′)|

1 + 2λ
− 3λ|π(z)− π(z′)| ≥ (1− 5λ)|π(z)− π(z′)|

by (10.26) and because |z − x0| ≤ 2. This shows that π(z) is a Lipschitz function of ξ(z),
and (since π⊥(z) and hence z are Lipschitz functions of π(z)), we see that z is a Lipschitz
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function of ξ(z). In particular, ξ(z) 6= ξ(z′) when z 6= z′, and this implies that ξ(z) stays
on the geodesic ρi (instead of wandering somewhere else on the circle). Also (we don’t need
this now), we can use ξ(z) ∈ ρi to parameterize Γi in a Lipschitz way. But since ξ(z) ∈ ρi,

(10.28)
dist(z, ρi) ≤ |z − ξ(z)| ≤ |z − π(z)|+ |π(z)− ξ(z)|

= |π⊥(z)|+ (1− |π(z)|) ≤ 2|π⊥(z)| ≤ 2λ|z − x0|

by (10.26). This proves (10.25); the same argument shows that

(10.29) dist(z, ρ(`, a∗3)) ≤ 2λ|z − `| for z ∈ Γ3.

This is where our choice of x0 = c∗1 makes our life more comfortable. Recall from (2.7) that
C1 and C3 make an angle of at least 2π

3
at ` (in the present case, we have 3 curves Ci, so the

angle is in fact 2π
3

). This implies that Angle(v(`, x0), v(`, a∗i )) ≥ 2π
3
− 10−2, say, and then

(10.24) follows rather easily from (10.25) and (10.29) (but we skip the details and instead
encourage the reader to draw a picture).

So our set Γ is composed of two connected pieces, Γ3 and Γ1∪Γ2, which are disjoint (one
could even check that their distance is at least τ/2). They both satisfy (10.2): for Γ3 this
is trivial, and for Γ1 ∪ Γ2 the proof is the same as for Configuration 2−. They also satisfy
(10.3), by the proof of (10.13) and the remark near (10.20). Finally (10.6) and (10.7) are
proved piece by piece, and follow from (8.15) and the end of (9.22), as before.

This completes our verification for Configuration 3 = 2 + 1. Notice however that the net
Γ that we construct is far from optimal: in the present situation, since γ1 and γ2 make an
angle of nearly 120◦ near `, we could easily organize a much more brutal shortcut, and save
a lot of length. But we choose a way which is easier to handle with the same estimates as
in the other cases. The fact that our competitor is not so good will show up later, when we
will see that if our competitor looks like a cone over Γ in a small ball, we can easily improve
on it.

We are almost ready for Configuration H. For each of the hanging curves Li (those for
which c∗i is not connected to ` or any other c∗i ), we kept the curve γi = Li, and the simplest
is to take Γi = Li too. This is, if we are ready to use the fact that if we took τ and ε small
enough, depending on λ, the curve Li is automatically a λ-Lipschitz graph. Otherwise, we
apply the construction of Section 8 to Li, as we did in the previous cases, to get a Lipschitz
graph Γi.

Of course this does not look glorious: we should rather have cut off the whole Li and
saved a lot of length, but this is a way for us to make our construction more uniform. Later
on, we will notice with apparent surprise that we can still cut off the geodesic ρ(c∗i , a

∗
i ) from

a net of geodesics, and save some length, and this will compensate the present laziness.
There still may be one or two c∗j left, that are connected to something. If they are

connected as in Configuration 1, i.e., if there is only one c∗j left and it is connected to `, let
γj be the arc of E ∩D that was selected above, extend it to get an arc γj that goes from `
to a∗j , and let Γj be obtained by applying the construction of Section 8 to γj. Then let Γ be
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the union of Γj with the hanging graphs Γi that we already selected. The proof of (10.24)
still works here and shows that Γj is disjoint from these curves.

When the remaining c∗j are connected as in Configuration 2−, we have one index i and
two indices j, which we label so that i = 3. We construct Γ1 and Γ2 exactly as we did in
Configuration 2−, and set Γ = Γ1 ∪ Γ2 ∪ Γ3. Again Γ1 ∪ Γ2 does not meet Γ3 = L3, by the
proof of (10.24) (and you may find it more convenient to choose x0 = c∗1 as the center of γ
where you cut the curve).

We are left with the case when there is only one hanging c∗i , which we call c∗3, and c∗1
and c∗2 are connected as in Configuration 2+. We did not treat the case of Configuration
2+ yet, but we shall do it later, and there will be no loophole. The construction described
below, performed with the connected set that connects c∗1, c∗2, and `, will give a net of curves
Γ′; then we take Γ = Γ3 ∪ Γ′, the local description (with (10.2) and (10.3)) can be proved
independently for the two pieces, and the fact that Γ′ ∩ Γ3 = ∅ will be true, as in (10.24).
See the remarks below (12.4) and above (12.14).

In all these subcases, we get a disjoint union of curves or nets that satisfy the conditions
(10.2) and (10.3), as in the single configurations and for the same reasons.

Notice that for the first time we get curves that end at a point other than ` ∈ L. This is
not bad in itself; it means that our future competitor is rather poor, but this is all right. In
fact it means that Configuration H will not happen.

Finally, (10.6) and (10.7) are checked piece by piece, with the same estimates as for the
other configurations. This completes our discussion in Configuration H.

The last simple case is Configuration 3-. In this case γ = γ1 ∪ γ2 ∪ γ3, three almost
disjoint curves that start from the same origin x0. We add the corresponding Li and get
curves γi from x0 to the a∗i . Finally γ =

⋃
i γi. We apply the construction of Section 8 and

get three curves Γi, with the same endpoints as the γi. Finally we take Γ = ∪iΓi.
The fact that (10.2) holds, and in fact

(10.30) the three Γi make angles larger than 110◦ at x0,

is proved just like (10.21) above; we could also use the argument that will be given for
Configurations 3+, above (11.24).

As usual (10.3) holds for the same reason as in Configuration 1; see the proof of (10.13)
and the comment near (10.20).

Finally (10.6) follows from (8.15) and (10.7) from the end of (9.22); as before we just
have to add the three estimates for the three Γi. This completes our verification for Config-
uration 3−.

We are left with two more complicated cases, Configurations 2+ and 3+, which we deal
with in the next two sections.
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11 Our net Γ in Configuration 3+

In the two remaining cases, there is a small additional difficulty, due to the fact that the
construction of Section 8 was meant to cut curves and get shorter Lipschitz curves, and
we do not seem to have a corresponding simple construction for 3-legged spiders. Instead
we will distinguish between many cases, and construct different acceptable nets of Lipschitz
curves. Again we want to be prudent, because we do not want to replace large portions of
our spiders if we do not save a comparable amount of surface later. As before, this saving
will also come from comparing cones with harmonic graphs, but often we shall first try to
make H1(γ)−H1(Γ) large.

Thus, rather than trying to make a nice general construction for spiders, we shall use our
construction for curves and try to fix by hand the obvious problems near the center.

In this section we study the case of Configuration 3+, which appears to be the most
complicated. Configuration 2+ will be slightly easier, and will be treated in Section 12.

11.1 Preparation

We start with some notation. Recall that we constructed in Section 7 a net γ, which is a
possibly degenerate spider with three long legs and a short tail γ`. The short tail ends at `,
and the three legs end at points c∗i , 1 ≤ i ≤ 3. Denote by x0 the center of the spider, i.e.,
the point where γ3 meets γ1,2. Also denote by γ1 and γ2, respectively, the arc of γ1,2 between
x0 and c∗1 and c∗2. Thus the three γi are essentially disjoint, and γ = γ` ∪

(⋃3
i=1 γi

)
.

As usual we extend the three legs γi by adding the corresponding curves Li ⊂ E ∩S that
go from the c∗i to the a∗i ; this gives three essentially disjoints simple curves γi ⊂ E ∩ S. We
set

(11.1) γ = γ` ∪
( 3⋃
i=1

γi
)
.

Let us apply the construction of Section 8 to each of the curves γi; we get a Lipschitz
graph Γi with a small constant λ, with the same endpoints x0 and a∗i . Then we set

(11.2) Γ∗ =
3⋃
i=1

Γi .

We like Γ∗ because, as we shall see, it is a nice looking spiral. In Configuration 3-, we decided
to take Γ = Γ∗; here things will not be so simple, because we have to take care of the special
point `. In the mean time, let us derive some simple properties of Γ∗. The next lemma is
also valid in Configuration 3-.

Lemma 11.1. For each small constant α < 1, we can find ε(α) > 0 such that if we take
ε < ε(α) in (5.3), then

(11.3) |x0 − `|+
3∑
i=1

|a∗i − ai| ≤ 2α2τ.
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We state this with quantifiers to avoid any suspicion of loopholes. In practice, we will
apply this with a small constant α > 0, that will be chosen later in this section, depending
on various geometric constants and our choice of λ. And we shall make sure that ε is so
small that (11.3) holds.

Let us apply Proposition 6.5, but with the smaller constant α2τ ; this forces us to take ε
even smaller than before, but this is all right. We get a description of E ∩ S \ (D+(α2τ) ∪
D−(α2τ)) as a union of simple curves L′i, i ∈ I. Of course this description matches the
description that we used for τ (i.e., with the Li); in particular, the vertices x∗ that show up
in (6.43) are the same for α2τ as for τ , even when x ∈ V2, because of the way we chose them
(below (6.40), so that |x∗ − x| is minimal). Thus the part of (11.3) that comes from the ai
follows from (6.43) with α2τ .

Now we concentrate on what happens in the spherical annulus A = S∩B(`, 2τ)\B(`, α2τ).
Here the curves L′i lie at distances at least α2τ/10 from each other (by (6.44) and because
the Ci are far from each other in A); then E ∩ S has no triple point in A, i.e., points like x0

near which E ∩ S is composed of three short simple curves leaving from x0, that are disjoint
except for x0. This proves that x0 ∈ B(`, α2τ), as needed.

We will do lots of little computations with small Lipschitz graphs over geodesics, and the
definition (8.14) that we gave in Section 8 is not so pleasant. Next we observe that when we
restrict to a small enough spherical disks, (8.14) yields a definition of small Lipschitz graphs
that looks a lot like the usual one. Some notation will be useful. Set

(11.4) B1 = S ∩B(x0, λ)

(λ is the scale at which our approximation will start being less good) and, for 1 ≤ i ≤ 3,

(11.5) ei = v(x0, a
∗
i ).

Also denote by Pi the vector plane that contains ρ(x0, a
∗
i ), by P⊥i its orthogonal complement,

by πi and π⊥i the orthogonal projections on Pi and P⊥i , and by pi and p⊥i the orthogonal
projections on the vector lines through ei and x0 respectively. Notice that

(11.6) I = πi + π⊥i = pi + p⊥i + π⊥i .

Recall that

(11.7) Γi is a λ-Lipschitz graph over ρ(x0, a
∗
i ).

By (8.14), this means that (Γi is a curve with the given endpoints and that) on Γi, π
⊥
i (z) is

a λ-Lipschitz function of πi(z). Since πi is 1-Lipschitz, we immediately get that

(11.8) π⊥i is λ-Lipschitz on Γi.

In addition, we claim that

(11.9) p⊥i is
10λ

9
-Lipschitz on B1.
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This is easy, but we prove it anyway. Let z1, z2 ∈ B1 be given; for j = 1, 2, write zj =
p⊥i (zj) + wj, with wj ⊥ x0. Then |wj| ≤ λ (wj is a 1-Lipschitz function of zj, null when
z = x0), |p⊥i (zj)|2 = 1 − |wj|2, and hence 〈x0, zj〉 = (1 − |wj|2)1/2 (it is obviously positive,
since zj is close to x0). Now

(11.10)
|p⊥i (z1)− p⊥i (z2)| = |〈x0, z1 − z2〉| =

∣∣(1− |w1|2)1/2 − (1− |w2|2)1/2
∣∣

≤ 10

9
λ|w1 − w2| ≤

10

9
λ|z1 − z2|

(just notice that the derivative of (1− x2)1/2 is x(1− x2)−1/2 and estimate). So (11.9) holds.
We deduce from (11.6)-(11.9) that for z, z′ ∈ Γi ∩B1,

(11.11) |pi(z)− pi(z′)| ≥ |z− z′| − |p⊥i (z)− p⊥i (z′)| − |π⊥i (z)− π⊥i (z′)| ≥
(

1− 19λ

9

)
|z− z′|,

and so (using (11.6)-(11.9) again)

(11.12) Γi ∩B1 is a 3λ-Lipschitz graph over pi(Γi ∩B1) ⊂ Vect(ei);

the fact that

(11.13) pi(Γi ∩B1) ⊃ [0, 1− 4λ]ei

easily follows from (11.12), the fact that Γi starts from x0 in the direction of ei, and a
continuity argument.

This description of Γ1 ∩ B1 will be easier to use than the initial definition with (8.14).
There is also a converse that we want to record.

Lemma 11.2. Let Γ′ be a curve that goes from x0 to a∗i and coincides with Γi on S \
B(x0, λ/10). Suppose in addition that for some A ∈ [1, 100],

(11.14) Γ′i ∩B1 is a Aλ-Lipschitz graph over pi(Γi ∩B1).

Then Γ′ is a 2Aλ-Lipschitz graph over ρ(x0, a
∗
i ).

We just need to check that on Γ′, π⊥i (z) is a 2Aλ-Lipschitz function of πi(z). This is true
on Γ′ ∩ B1, because the orthogonal projection on the direction perpendicular to ei (call it
p = I − pi) dominates the orthogonal projection π⊥i , so that

(11.15) |π⊥i (z)− π⊥i (z′)| ≤ |p(z)− p(z′)| ≤ Aλ|pi(z)− pi(z′)| ≤ Aλ|πi(z)− πi(z′)|

for z, z′ ∈ Γ′ ∩ B1. We also have this on Γ′ \ B(x0, λ/10), by definition, so we just need to
show that

(11.16) |π⊥i (z)− π⊥i (z′)| ≤ 2Aλ|πi(z)− πi(z′)|
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when z′ ∈ Γ′ ∩B(x0, λ/10) and z ∈ Γ′ \B1 = Γi \B1. By (11.8)

(11.17) |π⊥i (z)− π⊥i (x0)| ≤ λ|z − x0|

so

(11.18) |πi(z)− πi(x0)| ≥ |z − x0| − |π⊥i (z)− π⊥i (x0)| ≥ (1− λ)|z − x0|.

Similarly, (11.15) implies that

(11.19) |π⊥i (z′)− π⊥i (x0)| ≤ Aλ|z′ − x0| ≤ Aλ2/10

and, since

(11.20) |πi(z′)− πi(x0)| ≤ |z′ − x0| ≤ λ/10,

we get that

(11.21)
|πi(z)− πi(z′)| ≥ |πi(z)− πi(x0)| − λ/10 ≥ (1− λ)|z − x0| − λ/10

≥ (1− λ− 1

10
)|z − x0| ≥

8|z − x0|
10

because |z − x0| ≥ λ. In addition

(11.22) |π⊥i (z′)− π⊥i (z)| ≤ λ|z − x0|+ Aλ2/10 ≤ (λ+ Aλ/10)|z − x0|,

and (11.16) follows, because 10
8

(λ+ Aλ/10) ≤ 2Aλ when A ≥ 1.

Let us also record that for 1 ≤ i ≤ 3, ei is quite close to the direction v(`, ai) of Ci at `:

|ei − v(`, ai)| = |v(x0, a
∗
i )− v(`, ai)| ≤ |v(x0, a

∗
i )− v(`, a∗i )|+ |v(`, a∗i )− v(`, ai)|

≤ 2|x0 − `||`− a∗i |−1 + 2|a∗i − ai||`− a∗i |−1 ≤ 4α2τ |`− a∗i |−1

≤ 4α2τ [5η(X)]−1 ≤ 10−3α2(11.23)

by (11.3), then (4.2), (4.3), and (6.3).
It follows from (11.23) and the fact that Γi is a small Lipschitz graph over ρ(x0, a

∗
i ) (or

more directly (11.12)) that

(11.24) the three Γi make angles larger than 110◦ at x0.

Notice that we only used (11.7) here, so (11.24) is also valid in the case of Configuration 3-,
therefore proving (10.30) and completing the discussion for this case.
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11.2 Case A, where we force Γ∗ to be centered at `

We return to Configuration 3+. Even though Γ∗ = ∪iΓi is nice, we shall need to modify
it because we want Γ to contain ` too, and the success of the construction will depend on
various parameters such as the relative position of ` and the Γi.

In this subsection we try to modify Γ∗ in the following simple way: we shall select points
zi ∈ Γi, rather far from the center, and replace the three arcs of Γi between x0 and the zi
with a spider Y centered at ` and composed of geodesic arcs. This will turn out to work well
when

(11.25) H1(γ`) +
3∑
i=1

[H1(γi)−H1(Γi)] ≥ 32λ|x0 − `|.

We call this Case A. Incidentally, the constant 32 is computed backwards to make the proof
work; a mistake in the computations would probably force us to make it larger, but this
would not be bad. Let α > 0 be small (compared to λ), decide to choose ε smaller than ε(α)
from Lemma 11.1, and set

(11.26) r = α−1|x0 − `|, D = S ∩B(x0, r), and ∂D = S ∩ ∂B(x0, r).

The notation is the same as with the disks D± centered at `± above, but this will be a
different spherical disk and sphere. We promise no conflict of notation. Notice that since
|x0 − `| ≤ 2α2τ , we get that r = α−1|x0 − `| ≤ 2ατ and

(11.27) D ⊂ S ∩B(x0, 2ατ) ⊂ B(x0, 10−3λ),

if α is small enough (we could also have relied on τ being small), so we can use the Lipschitz
description (11.12) of Γi∩D. In particular, each Γi meets ∂D exactly once, at a point which
we call zi. Set

(11.28) Γ′′i = Γi ∩D and Γ′′ =
3⋃
i=1

Γ′′i = Γ∗ ∩D.

Thus Γ′′i is the arc of Γi that goes from x0 to zi. Also set

(11.29) Γ′i = Γi \D and Γ′ =
3⋃
i=1

Γ′i = Γ∗ \D

(the exterior part); we want to replace Γ′′ with the spider

(11.30) Y =
3⋃
i=1

ρ(`, zi),

which has the advantage of containing `. So we set

(11.31) Γ̃i = ρ(`, zi) ∪ Γ′i and Γ = Y ∪ Γ′ =
3⋃
i=1

Γ̃i.
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We see Γ as a three-legged spider centered at `, whose legs are the arcs Γ̃i. We want to be
able to apply the results of Section 9 to the Γ̃, so let us check that they are small Lipschitz
graphs.

Lemma 11.3. For 1 ≤ i ≤ 3, Γ̃i is a 8λ-Lipschitz graph over ρ(`, a∗i ).

Of course the difference between λ and 8λ will not prevent us from applying Section 9.
This looks like Lemma 11.2, but we will need to worry a little because we slightly change
one endpoint and the orientation. Fix i; in addition to Pi (the plane that contains ρ(x0, a

∗
i )),

πi, and π⊥i (see below (11.5)), we introduce the plane P i that contains ρ(`, a∗i ) and the
corresponding projections πi and π⊥i . Notice that

(11.32) |v(x0, a
∗
i )− v(`, a∗i )| ≤ 10−3α2

by the proof of (11.23); then

(11.33) ||π⊥i − π⊥i || = ||πi − πi|| ≤ 10−2α2.

We first look outside of the disk D1 = S ∩ B(x0, 10r). There Γ̃i = Γi, and the definition
(8.14) says that

(11.34) |π⊥(z)− π⊥(z′)| ≤ λ|π(z)− π(z′)| ≤ λ|z − z′|

for z, z′ ∈ Γ̃i \D1 and, (if α is small enough compared to λ), (11.33) yields

(11.35) |π⊥(z)− π⊥(z′)| ≤ 2λ|π(z)− π(z′)|.

Next we look inside D2 = S ∩B(x0, 500r). Recall from (11.27) and (11.26) that

(11.36) D1 ⊂ B(x0, λ/2) ⊂ B(`, λ).

On D2, we can use (11.12), which says that Γi ∩D2 is a 3λ-Lipschitz graph over (a part of)
the line through v(x0, a

∗
i ). By (11.32), it is also a 4λ-Lipschitz graph over the line through

v(`, a∗i ). But we modified it, and replaced the arc between x0 and zi with the arc ρ(`, zi).
Let z be any point of ρ(`, zi) and v denote a tangent vector to ρ(`, zi) at z, oriented in the
direction of zi. Then

(11.37) |v−v(`, zi)| ≤ 2|`−zi| ≤ 2|`−x0|+2r ≤ 2(1+α−1)|`−x0| ≤ 4(1+α−1)α2τ < 10−1λ

because zi ∈ ∂D, by (11.26) and (11.3), and if α is small enough. Next

(11.38) |v(`, zi)− v(x0, zi)| ≤ 2|`− x0||x0 − zi|−1 = 2|`− x0|r−1 ≤ 2α < 10−1λ

because r = α−1|`− x0| (by (11.26)),

(11.39) |v(x0, zi)− v(x0, a
∗
i )| ≤ 3λ
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by the Lipschitz description (11.12), and

(11.40) |v(x0, a
∗
i )− v(`, a∗i )| ≤ 2|x0 − `||`− a∗i |−1 ≤ 2|x0 − `|(5η(X))−1 ≤ α2 ≤ 10−1λ

because |x0 − `| + |ai − a∗i | ≤ 2α2τ by (11.3), and |ai − `| ≥ 10η(X) ≥ 104τ by (4.2), (4.3),
and our choice of τ .

Altogether |v− v(`, a∗i )| ≤ 4λ, ρ(`, zi) is a 4λ-Lipschitz graph over the line Vect(v(`, a∗i )),

and since we already know this about Γi ∩ D2, we also get that Γ̃i ∩ D2 is a 4λ-Lipschitz
graph over that line. Now we can apply Lemma 11.2, transposed for curves that start from
` (and, if we want to be precise, with a radius a little smaller than λ for the analogue of B1),

and we get that Γ̃i is a 8λ-Lipschitz graph over ρ(`, a∗i ).

Next we check (10.2)-(10.7) for Γ (which we see as a union of three curves Γ̃i). For (10.2),
we just need to know that the three branches of Y make large angles at `. But if vi denotes
the tangent direction of ρ(`, zi) at `, we know from (11.37)-(11.40) that |vi − v(`, a∗i )| ≤ 4λ.
Since the v(`, ai) make 120◦ angles, we see that

(11.41) the three legs of Y make angles larger than 110◦ at `.

Next we need to check (10.3), i.e. that each Γi makes a large angle with the other curves
Lk that arrive at a∗i . The verification is the same as what we did below (10.12).

Now we turn to the length estimates. First we want to compare H1(Y ) with H1(Γ′′), and
to this effect we shall differentiate

(11.42) f(z) =
3∑
i=1

distS(z, zi)

in the interior of D. First notice that for 1 ≤ i ≤ 3, distS(z, zi) is differentiable on S \ {zi},
with

(11.43) ∇zdistS(z, zi) = −v(z, zi).

Thus

(11.44) |∇f(x0)| =
∣∣ 3∑
i=1

v(x0, zi)
∣∣ =

∣∣ 3∑
i=1

[v(x0, zi)− v(`, ai)]
∣∣

because
∑

i v(`, ai) = 0 (the three Ci make 120◦ angles). But

(11.45) |v(x0, zi)−v(`, ai)| ≤ |v(x0, zi)−v(x0, a
∗
i )|+|v(x0, a

∗
i )−v(`, ai)| ≤ 3λ+10−3α2 ≤ 4λ

by (11.39) and (11.23), so

(11.46) |∇f(x0)| ≤ 12λ.
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Also, v(z, zi) is differentiable, with |∇zv(z, zi)| ≤ |z − zi|−1. For z ∈ ρ(x0, `),

(11.47) |z − x0| ≤ |`− x0| = αr ≤ r/2

by (11.26), so |∇zv(z, zi)| ≤ 2r−1 (because |zi−x0| = r). We sum over i, integrate on a part
of ρ(x0, `), and get that

(11.48) |∇f(x0)−∇f(z)| ≤ 6r−1distS(x0, `).

Then we integrate again on ρ(x0, `) and get that

(11.49)

H1(Y ) = f(`) ≤ f(x0) + distS(x0, `)|∇f(x0)|+ 6r−1distS(x0, `)
2

≤ f(x0) + [12λ+ 6r−1distS(x0, `)]distS(x0, `)

≤ f(x0) + [12λ+ 9α]distS(x0, `) ≤ f(x0) + 13λ|x0 − `|

by (11.46) (11.48)(11.47), and if α is small enough.
Notice that f(x0) ≤ H1(Γ′′), because Γ′′ is composed of three essentially disjoint curves

that go from x0 to the zj (see near (11.28)). Hence

(11.50) H1(Y ) ≤ f(x0) + 13λ|x0 − `| ≤ H1(Γ′′) + 13λ|x0 − `|.

We add the missing piece Γ′, and get

(11.51) H1(Γ) = H1(Γ′) +H1(Y ) ≤ H1(Γ′) +H1(Γ′′) + 13λ|x0 − `| = H1(Γ∗) + 13λ|x0 − `|

by (11.31), (11.28), (11.29), and (11.50). So

(11.52) H1(γ)−H1(Γ) ≥ H1(γ)−H1(Γ∗)− 13λ|x0 − `|.

Recall from (11.1) and (11.2) that

(11.53) H1(γ)−H1(Γ∗) = H1(γ`) +
3∑
i=1

[H1(γi)−H1(Γi)] ≥ 32λ|x0 − `|

because γ` and the γi are disjoint, and the Γj are disjoint, and then by the defining condition
(11.25). We also have that

(11.54) H1(γi)−H1(Γi) ≥ 0

by (8.16), so

(11.55) H1(γ)−H1(Γ∗) ≥ H1(γ`),

and now (11.52), (11.54), and (11.55) yield

H1(γ)−H1(Γ) ≥ 1

4
[H1(γ)−H1(Γ∗)] +

3

4
[H1(γ)−H1(Γ∗)]− 13λ|x0 − `|

≥ 1

4
[H1(γ)−H1(Γ∗)] +

1

8
H1(γ`) +

5

8
[H1(γ)−H1(Γ∗)]− 13λ|x0 − `|

)
≥ 1

4
[H1(γ)−H1(Γ∗)] +

1

8
H1(γ`) + 7λ|x0 − `|.(11.56)
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The three terms are nonnegative, so (11.56) is stronger than (10.6).

We are left with (10.7) to check, i.e.,

(11.57) H1(∆(γ,Γ)) ≤ C[H1(γ)−H1(Γ)] + C[H1(Γ)−H1(ρ)],

where γ is the extended version of our initial net γ (see (10.1)), which is an extended spider
with a short tail, and ρ will be discussed soon. We write

(11.58) ∆(γ,Γ) ⊂ ∆(γ, γ̃) ∪∆(γ̃,Γ∗) ∪∆(Γ∗,Γ)

(all symmetric differences), where γ̃ = γ \ γ` is the spider without its tail (see (11.1)), Γ∗ is
our initial Lipschitz spider with the same ends, and Γ is our final pick (centered at `).

We start with ∆(γ, γ̃) = γ \ γ̃ = γ`. Recall from (11.56) that H1(γ`) ≤ 8[H1(γ)−H1(Γ)],
which is dominated by the right-hand side of (11.57), so this term is all right.

Next we consider ∆(Γ∗,Γ). Since Γ∗ and Γ have the three exterior curves Γ′i in common,
we are left with Y for Γ, and Γ′′ for Γ∗ (see (11.28)-(11.31)); thus

(11.59) H1(∆(Γ∗,Γ)) ≤ H1(Y ) +H1(Γ′′) ≤ 7r +H1(Γ′′).

The simplest case is when H1(Γ′′) ≤ 14r, say. Then

(11.60) H1(∆(Γ∗,Γ)) ≤ 21r = 21α−1|x0 − `| ≤ 3λ−1α−1[H1(γ)−H1(Γ)]

by (11.26) and (11.56), which again is enough for (10.7).
If instead H1(Γ′′) > 14r, we can revise some of our earlier pessimistic estimates, because

(11.61) H1(Y ) ≤ 7r ≤ 1

2
H1(Γ′′)

and then, after adding the exterior part H1(Γ′) to both sides,

(11.62) H1(Γ) ≤ H1(Γ∗)− 1

2
H1(Γ′′).

This is better than what we had before (see (11.51)); it implies that

(11.63) H1(γ)−H1(Γ) ≥ H1(γ)−H1(Γ∗) +
1

2
H1(Γ′′).

We forget the term H1(γ)−H1(Γ∗), which is nonnegative by (11.53), and get that H1(Γ′′) ≤
2[H1(γ)−H1(Γ)]; finally

(11.64) H1(∆(Γ∗,Γ)) ≤ 7r +H1(Γ′′) ≤ 2λ−1α−1[H1(γ)−H1(Γ)]

by (11.59) and the second part of (11.60).
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We are left with the middle term ∆(γ̃,Γ∗) from (11.58). Recall that Γ∗ was obtained by
applying the construction of Section 8 to the three curves γi that compose γ̃ = γ \ γ`. Thus
by (8.16) and (8.5)

(11.65) H1(Γ∗ \ γ̃) ≤ H1(γ̃ \ Γ∗) ≤ C(λ)[H1(Γ∗)−H1(ρ̃)],

where ρ̃ is the union of the three geodesics ρ(x0, a
∗
i ) that we used to construct Γ∗. Hence

(11.66) H1(∆(γ̃,Γ∗)) ≤ C(λ)[H1(Γ∗)−H1(ρ̃)],

which we just need to bound by the right-hand side of (10.7) and (11.57). We already did
this for

(11.67) H1(Γ∗)−H1(Γ) ≤ H1(∆(Γ∗,Γ))

(by (11.64)), and since H1(Γ)−H1(ρ) is a part of the right-hand side of (10.7) and (11.57)
(and the other one is nonnegative by (11.52) and (11.53)), we just need to control H1(ρ)−
H1(ρ̃). Recall that ρ̃ is the union of the geodesics ρ(x0, a

∗
i ) with the same endpoints as the

arcs of the spider Γ∗, while ρ is the union of the geodesics ρ(`, a∗i ) that correspond to the
decomposition of the spider Γ that we want to use. Since H1(ρ(`, a∗i )) ≤ H1(ρ(x0, a

∗
i )) +

distS(`, x0) (a brutal estimate), we see that

(11.68) H1(ρ)−H1(ρ̃) ≤ 3distS(`, x0) ≤ 4|x0 − `| ≤ 4αr ≤ 12λ−1[H1(γ)−H1(Γ)]

by (11.26) and (11.60) or (11.64). This completes our proof of (11.57) and (10.7) and the
verification of (10.2)-(10.7) in Case A; we may now turn to the next case.

11.3 Case B : consequences of the definition on the geometry of γ

Since we are happy in Case A, we shall now assume that its defining condition (11.25) fails,
i.e. that

(11.69) H1(γ`) +
3∑
i=1

[H1(γi)−H1(Γi)] < 32λ|x0 − `|.

We shall call this Case B; see Figure 11 First notice that (11.69) implies that

(11.70) |x1 − `| ≤ H1(γ`) ≤ 32λ|x0 − `|,

where x1 is the point where γ` is attached to γ. Recall that λ is small, so x1 lies relatively
far from x0 (compared to `). Without loss of generality, we can assume that x1 ∈ γ1. The
next lemma says that x1 lies in the expected direction (seen from x0).

Lemma 11.4. The direction of ρ(x0, x1) at x0 is such that

(11.71) |v(x0, x1)− v(x0, a
∗
1)| ≤ 30

√
λ.
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Figure 11: The initial setting for Case B

Here again, 30 is what we get from the proof, but a larger number would still be fine.
Suppose not. Since Γ1 is a λ-Lipschitz graph over ρ(x0, a

∗
1) (and by (11.12) to make things

simpler), x1 ∈ γ1 \ Γ1. Recall how Γ1 was constructed. We started from a parameterization
z : I → S of γ1, selected a certain number of intervals Ij, and replaced γ1 on Ij by the
constant speed parameterization of the geodesic ρj with the same endpoints. See below
(8.10). Here x1 ∈ γ1 \ Γ1, so the parameter t such that x1 = z(t) lies in some Ij. Write
Ij = I, and denote by a and b its endpoints. We choose the names so that z(a) lies between
x0 and x1 on γ1, and hence z(b) lies between x1 and a∗i . Also call γ(a, b) the portion of γ1

between z(a) and z(b). See Figure 12 already.
Thus we replaced γ(a, b) with the geodesic ρ = ρ(z(a), z(b)) in the construction of Γ1.

There was a similar replacement of other arcs of γ1 on other intervals, and of course each
time the length of the geodesic was no longer than the length of the arc of γ it replaced. See
near (8.15). Because of this

(11.72) H1(γ(a, b))−H1(ρ) ≤ H1(γ1)−H1(Γ1) ≤
∑
i

[H1(γi)−H1(Γi)] ≤ 32λ|x0 − `|

because the three numbers H1(γi)−H1(Γi) are nonnegative (by (8.15)) and by (11.69). We
shall now complete this with a lower bound for H1(γ(a, b))−H1(ρ) which yields the desired
contradiction. The computations that follow seem shockingly long to the author, who feels
compelled to do them but hopes the pictures will be convincing enough.

x0 x1

�=�(z(a),z(b)) �1

�(a,b)   �
1

U

Figure 12: The point x1 lies close to ρ because of (11.72)

Set d = |x0 − x1|. Also let p denote the point of ρ that minimizes the distance to x1;
notice that since p ∈ ρ ⊂ Γ1 and Γ1 is a small Lipschitz graph,

(11.73) |v(x0, p)− v(x0, a
∗
1)| ≤ 2λ.
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Then |v(x0, p) − v(x0, x1)| ≥ 30
√
λ − 2λ ≥ 29

√
λ because we assumed (11.71) to fail and if

λ is small enough; hence

(11.74) |p− x1| ≥ 29
√
λd.

We shall first assume that

(11.75) p lies in the interior of ρ;

this is supposed to be the main case, and pictures will be easier to draw. In particular
observe that the geodesic ρ(x1, p) is perpendicular to ρ at p.

We will feel better if we know that all the geometric arguments that follow happen in a
tiny ball, so let us check that

(11.76) x1, z(a), and p all lie in B(x0, 4d) ⊂ B(x0, 12α2τ)

(that is, a very small ball where we can expect curvature to play almost no role).
First we claim that |z(a)− x0| ≤ 2d. Suppose not, and recall that ρ ⊂ Γ1, Γ1 is a small

Lipschitz graph over ρ(x0, a
∗
1), and ρ leaves from z(a) in the direction opposite to x0. Then,

as suggested by Figure 13 (and z(a) should even lie further on the right), z(a) should be the
point of ρ that lies closest to x1, a contradiction with (11.75). So |z(a)− x0| ≤ 2d.

Then |p−x0| ≤ 4d, because otherwise |p−x1| ≥ |p−x0| − |x0−x1| > 3d ≥ |z(a)−x0|+
|x0 − x1| ≥ |z(a)− x1|.

x0

z(a)
z(b)

1x

�(a,b)

�

B(x 
0
,d)

Figure 13: In this case already (and more if |z(a)− x0| ≥ 2d), p = z(a).

Finally the second part of (11.76) holds because d ≤ |x0−`|+|x1−`| ≤ (1+32λ)|x0−`| <
3α2τ by (11.70) and Lemma 11.1; so (11.76) holds.

We will need lower bounds for

(11.77) δa = distS(x1, z(a))− distS(p, z(a)) and δb = distS(x1, z(b))− distS(p, z(b)).

Let us first consider δb. Recall that ρ(x1, p) is perpendicular to ρ at p; we can choose
orthonormal coordinates of Rn where p, z(b), and x1 lie in R3 (so that we won’t even need
to write all the other coordinates), and

(11.78) p = (1, 0, 0), z(b) = (cos sb, sin sb, 0), and x1 = (cos t, 0, sin t),
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where in fact we can take sb = distS(z(b), p) and t = distS(x1, p), maybe at the price of
changing the orientation. Then

(11.79) |x1 − z(b)|2 = | cos sb − cos t|2 + sin2 sb + sin2 t = 2− 2 cos sb cos t.

Here we shall not try to win much, because z(b) may be quite far and then δb small. Let us
just observe that

(11.80)
sb = distS(z(b), p) ≤ distS(a

∗
1, p)

≤ H1(Ci) + distS(a1, a
∗
1) + distS(`, x0) + distS(x0, p) ≤

π

2
+ 25α2τ

because a∗1 is clearly the furthest point of Γ from p, because H1(Ci) ≤ π
2

(see the construction
above (3.1); if we had forced the lengths of the Ci to be a little shorter, we would have a
slightly better estimate now, but π

2
looks natural), then by Lemma 11.1 and (11.76). Notice

that setting t = 0 in (11.79) corresponds to p = x1 and a computation of |p−z(b)|2. If sb ≤ π
2
,

then cos sb ≥ 0 and |x1 − z(b)|2 ≥ |p− z(b)|2 by (11.79) (recall that t = distS(x1, p) ≤ 20α2τ
by (11.76), so cos t > 0). Then δb ≥ 0. Otherwise, even though cos sb < 0, −2 cos sb ≤ 50α2τ
by (11.80) so

(11.81) |p− z(b)|2 − |x1 − z(b)|2 = (−2 cos sb)(1− cos t) ∈ [0, 50α2τt2]

by (11.80) (again recall that t ≤ 20α2τ). In this region where the distances distS(p, z(b)) and
distS(x1, z(b)) are very close to π/2, we can recover them in a 3-Lipschitz way from |p−z(b)|2
and |x1 − z(b)|2; we then deduce from (11.81) that

(11.82) δb ≥ −150α2τt2 ≥ −104α2τd2

because t = distS(x1, p) ≤ 9d by (11.76).
Next we estimate δa. The same computation as for (11.79) yields

(11.83) |x1 − z(a)|2 = | cos sa − cos t|2 + sin2 sa + sin2 t = 2− 2 cos sa cos t,

with sa = distS(p, z(a)). Now both sa and t are small, by (11.76), so there is no sign issue,
and comparing with t = 0 yields

(11.84) |x1 − z(a)|2 − |p− z(a)|2 = 2 cos sa(1− cos t) ≥ t2 cos sa ≥
28t2

29
.

But (11.74) implies that t = distS(x1, p) ≥ 29
√
λd, so (11.84) says that

(11.85) |x1 − z(a)|2 − |p− z(a)|2 ≥ 28 · 29λd2 = 812λd2.

Set α0 = 1
2
distS(z(a), p) and α1 = 1

2
distS(x1, p); thus α0 ≤ α1 by (11.84), |p− z(a)| = 2 sinα0

and |x1 − z(a)| = 2 sinα1, and, by the fundamental theorem of calculus,

(11.86) |x1 − z(a)|2 − |p− z(a)|2 = 2[sin2 α1 − sin2 α0] = 4(α1 − α0) sinα cosα
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for some α ∈ [α0, α1]. In addition α1 ≤ 5d because (11.76) says that |x1 − z(a)| ≤ 8d, so
2 sinα cosα = sin 2α ≤ 2α1 ≤ 10d, and

(11.87)
δa = 2(α1 − α0) = (2 sinα cosα)−1

(
|x1 − z(a)|2 − |p− z(a)|2

)
≥ (10d)−1

(
|x1 − z(a)|2 − |p− z(a)|2

)
≥ 812λd2

10d
≥ 81λd

by (11.77) and (11.85). On the other hand,

(11.88)

δa + δb = distS(x1, z(a)) + distS(x1, z(b))− distS(p, z(a))− distS(p, z(b))

= distS(x1, z(a)) + distS(x1, z(b))− distS(z(a), z(b))

≤ H1(γ(a, b))−H1(ρ) ≤ 32λ|x0 − `| ≤ 32(1− 32λ)−1λd ≤ 33λd

because p lies between z(a) and z(b) on the geodesic ρ = ρ(z(a), z(b)), then because γ(a, b)
goes from z(a) to x1 to z(b), and finally by (11.72) and because (11.70) says that d =
|x0 − x1| ≥ (1− 32λ)|x0 − `|. We get the desired contradiction by comparing this to (11.87)
and (11.82).

We are not quite finished yet, because we still need to deal with the case when (11.75)
fails, i.e, when p = z(a) or z(b). Suppose first that p = z(a), i.e., dist(x1, ρ) = |x1 − z(a)|
(as in Figure 13). We claim that

(11.89) dist(x1, z(b)) ≥ dist(z(a), z(b))− 104α2τd2.

Indeed, letH be the vector hyperplane through z(a) and perpendicular to ρ. Since dist(x1, ρ) =
|x1 − z(a)|, x1 lies on H, or on the other side of H as z(b). Call ξ the intersection of H
with the geodesic ρ(x1, z(b)). Also denote by P the plane that contains ρ. It is easy to see
that dist(ξ, P ) ≤ dist(x1, P ) (the geodesic ρ(x1, z(b)) goes through ξ and ends on ρ); then
dist(ξ, P ) ≤ |x1 − z(a)| (because z(a) ∈ P ). Then, since ξ ∈ H and the geodesic distance is
a monotone function of the Euclidean distance, distS(ξ, z(a)) = distS(ξ, P ) ≤ distS(x1, z(a)).
The proof of (11.82) applies to ξ too, because of the orthogonality that comes from the fact
that ξ ∈ H, and we get that dist(ξ, z(b)) ≥ dist(z(a), z(b))− 104α2τd2, and (11.89) follows
because dist(x1, z(b)) is at least as large. Then

H1(γ(a, b)) ≥ distS(z(a), x1) + distS(x1, z(b)) ≥ 29
√
λd+ distS(x1, z(b))

≥ 29
√
λd+ distS(z(a), z(b))− 105α2τd2 = 29

√
λd+H1(ρ)− 105α2τd2(11.90)

because γ(a, b) goes from z(a) to x1 to z(b), by (11.74) and because p = z(a) and ρ =
ρ(z(a), z(b)), then by (11.89) and because distS is a 10-Lipschitz function of dist in the
current range. This is not compatible with (11.72) (with the same sort of verification as
above).

We are left with the case when p = z(b). We claim that

(11.91) dist(x1, z(a)) ≥ dist(z(a), z(b))− 104α2τd2.
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We prove this as with (11.89), but with z(a) and z(b) exchanged. We arrive to the information
that distS(ξ, z(b)) = distS(ξ, P ) ≤ distS(x1, z(b)). We may now follow the same argument
above, with the proof of (11.82), and get (11.91), but we may also observe that if p = z(b),
then z(b) is not far from x0 and x1, hence the proof of (11.87) also allow us to get rid of the
ugly term−104α2τd2. Anyway, may conclude as in (11.90), and get the desired contradiction.
This completes our proof of Lemma 11.4.

11.4 Construction of Γ in Case B

We stay in Case B (defined by (11.69)), and now we build the net Γ. The general principle
will be the same as in Case A, where we forced Γ∗ to make a small detour through `, but
now everything will happen near x1 and (beause of (11.70)) relatively far from x0. Set

(11.92) r = (100λ)−1|x1 − `|, D = S ∩B(x1, r), and ∂D = S ∩ ∂B(x1, r).

We choose this radius because this way,

(11.93) 100λr = |x1 − `| ≤ 32λ|x0 − `|

by (11.70), hence

(11.94) |x0 − x1| ≥ |x0 − `| − |`− x1| ≥ (1− 32λ)|x0 − `| ≥
(1− 32λ)

32λ
|x1 − `| ≥ 3r

and our construction will not involve Γ2 or Γ3. Indeed, not only does |x0 − x1| > 2r, but
Lemma 11.4, the fact that Γi is a small Lipschitz graph over ρ(x0, a

∗
i ), and (11.24), imply

that

(11.95) dist(Γ2 ∪ Γ3, D) > 2r.

So we leave Γ2 and Γ3 alone, but we change Γ1. Denote by γ4 the arc of γ1 between x0 and
x1, and by γ5 the rest of γ1, i.e., between x1 and a∗1. See Figure 14. Then set γ4 = γ4 and
γ5 = γ5∪L1. Apply the construction of Section 8 to γ4 and γ5; this gives two small Lipschitz
graphs Γ4 and Γ5. Now set γ = ∪5

i=2γi and the analogue of Γ∗ is ∪5
i=2Γi.

Since Γ4 and Γ5 are small Lipschitz graphs starting from x1, they meet ∂D exactly once,
at points which we call z4 and z5 (see Figure 15). Denote by Γ′4 the arc of Γ4 between x0

and z4, and set Γ̃4 = Γ′4 ∪ ρ(z4, `). Similarly, denote by Γ′5 the arc of Γ5 between z5 and a∗1,

and set Γ̃5 = ρ(`, z5) ∪ Γ′5. We shall take

(11.96) Γ = Γ2 ∪ Γ3 ∪ Γ̃4 ∪ Γ̃5,

which is now composed of 6 pieces, but looks a lot like a 3-legged spider with a small detour
organized along one of its legs. See Figure 16.

Our next task consists in checking that this description is right, and that the angles are
large enough.
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Figure 16: Our choice of Γ (this time, with ` below).

Lemma 11.5. The curve Γ̃4 is a 103λ-Lipschitz graph over ρ(x0, `), and Γ̃5 is a 103λ-
Lipschitz graph over ρ(`, a∗1). In addition,

(11.97) Γ̃4 and Γ̃5 make an angle larger than π − 40
√
λ at `.

Let us first consider Γ4. A small advantage of the situation is that by (11.3) and (11.70),

(11.98) x1 and ` both lie in the very small ball B(x0, 3α
2τ),

so the Lipschitz geometry will be simpler. Set e = v(x0, x1); by the proof of (11.12),

(11.99) Γ4 is a 3λ-Lipschitz graph over Vect(e).

94



As for the geodesic piece, notice that

(11.100) |v(z4, x1)− v(z4, `)| ≤ 2|z4 − x1|−1|x1 − `| = 2r−1|x1 − `| ≤ 200λ

by (11.92). Since z4 and x1 lie on Γ4, (11.99) also says that |v(z4, x1) − e| ≤ 4λ, and so
|v(z4, `) − e| ≤ 204λ. In addition, the geodesic ρ(z4, `) is too short to turn much: if v
denotes a tangent direction to ρ(z4, `) (oriented in the direction of `), then |v − v(z4, `)| ≤
distS(z4, `) ≤ 2|z4 − `| ≤ 2r + 2|x1 − `| ≤ 3r ≤ 2|x0 − `| ≤ 4α2τ by (11.93), (11.94), and
(11.3).

Altogether |v − e| ≤ 208λ, and Γ̃4 is a 208λ-Lipschitz graph over Vect(e). Now the easy

part of the proof of Lemma 11.2 says that Γ̃4 is also a 103λ-Lipschitz graph over ρ(x0, `).

Next consider Γ̃5. Here the proof is very similar to what we did for Lemma 11.3, so we
shall skip some details. We first control Γ̃5 outside of D1 = S ∩ B(x1, 10r), and for this
we just copy the proof of Lemma 11.3, with x0 replaced with x1, up to (11.35) included.
Then we look inside D2 = S ∩ B(x1, 500r). We continue as before, but modify slightly the
angle estimates. We start with (11.37); instead we say that when v is a tangent direction to
ρ(`, z5),

(11.101) |v − v(`, z5)| ≤ 2|`− z5| ≤ 2|`− x1|+ 2r ≤ (40λ)−1|`− x1| ≤ λ−1α2τ ≤ λ

again because the geodesic is too short to turn, and by (11.92) and (11.98). Then, instead
of (11.38) and as in (11.100),

(11.102) |v(`, z5)− v(x1, z5)| ≤ 2|`− x1||x1 − z5|−1 = 2r−1|x1 − `| ≤ 200λ,

and (as in (11.39))

(11.103) |v(x1, z5)− v(x1, a
∗
1)| ≤ 3λ

because z5 lies in the small Lipschitz graph Γ5 over ρ(x1, a
∗
1) (and by the analogue of (11.12)).

Finally,

(11.104) |v(x1, a
∗
1)− v(`, a∗1)| ≤ 2|x1 − `||`− a∗1|−1 ≤ 2|x1 − `|(5η(X))−1 ≤ α2 ≤ λ

as in (11.40), and because |x1 − `| ≤ 6α2τ < 6α2 · 10−3η(X) by (11.98) and (6.3). Recall
also that α can be chosen small, depending on λ (see below Lemma 11.1). Altogether
|v− v(`, a∗1)| ≤ 205λ, ρ(`, z1) is a 205λ-Lipschitz graph over the line Vect(v(`, a∗1)). Since we

already know something like this about Γ1∩D2, we also get that Γ̃1∩D2 is a 208λ-Lipschitz
graph over that line. Then we apply the same version of Lemma 11.2, transposed for curves
that start from `, and conclude as in Lemma 11.3.

Now we prove (11.97). Because we already know that Γ4 and Γ5 are 103λ-Lipschitz graphs
starting from `, we just need to show that the two corresponding geodesics leaving from `
are almost opposed. That is, it is enough to prove that

(11.105) |v(x0, `)− v(`, a∗1)| ≤ 35
√
λ,
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say. But |v(x0, `)− v(x0, x1)| ≤ 2|x0− `|−1|x1− `| ≤ 64λ by (11.70), |v(`, a∗1)− v(x0, a
∗
1)| ≤ λ

by (11.40), and |v(x0, x1)− v(x0, a
∗
1)| ≤ 30

√
λ by (11.71); (11.105), (11.97), and Lemma 11.5

follow.

We are ready to check (10.2). For the fact that

(11.106) Γ2, Γ3 and Γ̃4 make angles larger than 100◦ at x0,

we use (11.24) (for the angle of Γ2 and Γ3), and (for the two other angles) the fact that Γ̃4

coincides with Γ4 near x0, the proof of (11.24), and the fact that by Lemma 11.4 the general
direction v(x0, x1) of Γ4 is almost the same as the general direction v(x0, a

∗
1) of Γ1 in (11.24).

Then the angle of Γ̃4 and Γ̃5 is controlled by (11.97), so (10.2) holds. The verification of
(10.3) is the same as usual; the fact that Γ5 comes from x1 rather than x0 does not matter.

Now we prove the length estimates (10.6) and (10.7). First we want to estimate the extra
length for the detour through `, and use the function

(11.107) f(z) = distS(z, z4) + distS(z, z5)

defined on S. We can still use (11.43) to differentiate (away from ±z4 and ±z5), and get that

(11.108) −∇f(z) = v(z, z4) + v(z, z5).

Then

|∇f(x1)| = |v(x1, z4) + v(x1, z5)|
≤ |v(x1, x0) + v(x1, a

∗
1)|+ |v(x1, x0)− v(x1, z4)|+ |v(x1, a

∗
1)− v(x1, z5)|

≤ |v(x1, x0) + v(x1, a
∗
1)|+ 6λ(11.109)

≤ |v(x0, x1)− v(x0, a
∗
1)|+ |v(x0, a

∗
1)− v(x1, a

∗
1)|+ 6λ ≤ 30

√
λ+ 7λ ≤ 35

√
λ

because z4 lies between x0 and x1 on a 3λ-Lipschitz graph, for the same reason for z5, and
by (11.71) and (11.98) (as in (11.40), say). For i = 1, 2, v(z, zi) is differentiable, with
|∇zv(z, zi)| ≤ |z − zi|−1. We shall use this for z ∈ ρ(`, x1). Then

(11.110) |z − x1| ≤ |`− x1| < r/2

by (11.92), so |z− zi| ≥ r/2 (recall that |zi− x1| = r) and |∇zv(z, zi)| ≤ 2r−1. We sum over
i and integrate on ρ(z, x1); this yields

(11.111) |∇f(x1)−∇f(z)| ≤ 2r−1distS(z, x1) ≤ 2r−1distS(`, x1).

We integrate on ρ(x1, `) and get that

(11.112)

f(`) ≤ f(x1) + distS(`, x1)|∇f(x1)|+ 2r−1distS(`, x1)2

≤ f(x1) + [35
√
λ+ 2r−1distS(`, x1)]distS(`, x1)

≤ f(x1) + [35
√
λ+ 300λ]distS(`, x1) ≤ f(x1) + 36

√
λ|`− x1|
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by (11.109) and (11.92). But

(11.113)
H1(Γ̃4 ∪ Γ̃5) = H1(Γ′4) +H1(Γ′5) +H1(ρ(z4, `)) +H1(ρ(`, z5))

= H1(Γ′4) +H1(Γ′5) + f(`)

by definition of the Γ̃i, and

(11.114) H1(Γ4 ∪ Γ5) ≥ H1(Γ′4) +H1(Γ′5) + f(x1)

because Γ4 is composed of Γ′4 and an arc from z4 to x1, and similarly for Γ5, so

(11.115) H1(Γ̃4 ∪ Γ̃5) ≤ H1(Γ4 ∪ Γ5) + f(`)− f(x1) ≤ H1(Γ4 ∪ Γ5) + 36
√
λ|`− x1|.

We add the contributions of Γ2 and Γ3 and get that

(11.116) H1(Γ) ≤ H1
( 5⋃
i=2

Γi

)
+ 36
√
λ|`− x1| ≤ H1

( 5⋃
i=2

γi

)
+ 36
√
λ|`− x1|

by (8.16). But γ = γ` ∪
(
∪5
i=2 γi

)
(an essentially disjoint union), and H1(γ`) ≥ |` − x1|

(because γ` goes from ` to x1), so

(11.117) H1(Γ) ≤ H1(γ)− 1

2
H1(γ`).

This proves (10.6); we are left with (10.7) to check. Before we start, let us record the fact
that

(11.118) r = (100λ)−1|x1 − `| ≤ (100λ)−1H1(γ`)

by (11.92). Next observe that for the symmetric difference ∆(γ,Γ) of (10.4),

(11.119) ∆(γ,Γ) ⊂ γ` ∪
( 5⋃
i=2

∆(γi,Γi)
)
∪ ρ(z4, `) ∪ ρ(z5, `) ∪ Γ′′4 ∪ Γ′′5,

where Γ′′4 is the arc of Γ4 between z4 and x1, and similarly for Γ′′5. Since

(11.120)
H1(γ`) +H1(ρ(z4, `)) +H1(ρ(z5, `)) +H1(Γ′′4) +H1(Γ′′5)

≤ H1(γ`) + 10r ≤ C(λ)H1(γ`) ≤ 2C(λ)[H1(γ)−H1(Γ)]

by (11.118) and (11.117) and the right-hand side of (11.120) is controlled by the right-hand
side of (10.7), we are left with the four ∆(γi,Γi). By (8.16) and (8.5),

(11.121) H1(Γi \ γi) ≤ H1(γi \ Γi) ≤ C(λ)[H1(Γi)−H1(ρi)],

where ρi is the geodesic arc between the endpoints of Γi, 2 ≤ i ≤ 5.
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What we want for (10.7) is
∑5

i=2H1(ρ̃i), where we may keep ρ̃i = ρi for i = 2, 3, but for

i = 4, 5, ρ̃i is the geodesic with the same endpoints as the corresponding arc Γ̃.
We sum (11.121) over i and get that

(11.122)

∑
i

H1(∆(γi,Γi)) ≤ 2C(λ)
∑
i

[H1(Γi)−H1(ρi)]

≤ 2C(λ)
[
H1(Γ)−

∑
i

H1(ρ̃i)
]

+ 2C(λ)(Σ1 + Σ2),

with

(11.123) Σ1 =
5∑
i=2

H1(Γi)−H1(Γ) and Σ2 =
5∑
i=2

[H1(ρ̃i)−H1(ρi)].

Notice that

(11.124) Σ1 =
5∑
i=4

[H1(Γi)−H1(Γ̃i)] ≤ H1(Γ′′4) +H1(Γ′′5) ≤ 2C(λ)[H1(γ)−H1(Γ)]

because H1(Γ) = H1(Γ2)+H1(Γ3)+H1(Γ̃4)+H1(Γ̃4) (since the union in (11.96) is essentially

disjoint), then because the other part of Γi, namely Γ′i, is contained in Γ̃i, and finally by
(11.120). This part is dominated by the right-hand side of (10.7).

As for Σ2, first observe that ρi = ρ̃i when i ∈ {2, 3}. When i ∈ {4, 5}, the difference is
that one endpoint is ` instead of x1. That is,

(11.125) H1(ρ̃4)−H1(ρ4) = H1(ρ(x0, `)−H1(ρ(x0, x1)) ≤ distS(x1, `),

we have a similar estimate for H1(ρ̃5)−H1(ρ5) (just replace x0 with a∗1), and by (11.117)

(11.126) Σ2 ≤ 2distS(x1, `) ≤ 3|x1 − `| ≤ 3H1(γ`) ≤ 6[H1(γ)−H1(Γ)],

which is also dominated by the right-hand side of (10.7). Since the main part of the right-
hand side of (11.122) shows up as H1(Γ)−H1(ρ) in (10.7), we get the desired estimate for
our last term

∑
iH1(∆(γi,Γi)). This completes our proof of (10.7), and the verification of

(10.2)-(10.7) in Case B, the last case for Configuration 3+.

12 The net Γ for Configuration 2+

As was observed at the end of Section 10, we still need to construct Γ in the case of Config-
uration 2+. As for Configuration 3+, we will have two cases, one where we keep the same
center x0, and one where we go directly to `.

Recall that in the present case E ∩ ∂D has only two points c∗i (or else there is a hanging
curve, to be discussed later, but which we ignore for the moment), and γ is composed of a
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simple curve γ1,2 that goes from c∗1 to c∗2, plus a simple curve γ`, possibly reduced to the point
`, that goes from ` to a point of γ1,2. We call this point x0, and denote by γi, i ∈ {1, 2}, the
arc of γ1,2 that goes from x0 to c∗i . We also denote by γi the union of γi and the arc Li ⊂ E
that goes from c∗i to a∗i . Finally set

(12.1) γ = γ` ∪ γ1 ∪ γ2.

We start as in Section 11, apply the construction of Section 8 to the three curves γ1, γ2,
and γ`, and this gives three Lipschitz curves Γ1, Γ2, and Γ3. The simplest case, which we
shall call Case A, is when

(12.2) v(x0, a
∗
1), v(x0, a

∗
2) and v(x0, `) make angles larger than

2π

3
− π

10
with each other.

In this case, we set

(12.3) Γ = Γ1 ∪ Γ2 ∪ Γ3,

and we can check (10.2)-(10.7) right away. There is only one angle condition to check for
(10.2), at x0, and it is satisfied because we claim that

(12.4) the three Γi make angles larger than
π

2
at x0.

The claim follows readily from (12.2) and the Lipschitz graph description of the Γi; see for
instance the proof of (11.24).

If there was also a hanging curve in the configuration, then there are three Ci that leave
from `, they make 120◦ angles there, and the hanging curve is attached to the third point
c∗3 of ∂D. As promised in the description of Configuration H, we add the corresponding Li
(just relabel if needed, and call it L3) to Γ. The graphs Γ1 and Γ2 go essentially straight
in the direction of a∗1 and a∗2, and the same argument as for (10.24) shows that L3 does not
meet Γ1 ∪ Γ2 outside of D. It does not meet Γ1 or Γ2 inside D either, because it does not
get inside D. So L3 does not meet Γ1 ∪ Γ2 ∪ Γ3, and we feel better.

Next (10.3) holds for the same reason as before (see the proof below (10.12)), and we are
left with the length estimates. First of all, (10.6) holds, simply by adding the three estimates
(8.16) coming from the three curves. The symmetric difference Γ∆γ of (10.6) is contained
in the union of the symmetric differences Γ1∆γ1, Γ2∆γ2, and Γ3∆γ`, so (10.7) follows by
adding the three estimates from the end of (9.22).

We may now switch to Case B, which is when (12.2) fails. We shall try a set Γ that goes
more directly through `, without passing through x0; the construction will look like what we
did for Case B of Configuration 3+.

Let α > 0 be a small constant, which is allowed to depend on λ and will be chosen near
the end of the section. We need an analogue of Lemma 11.1, which says that if ε is chosen
small enough in (5.3) (depending on α and τ),

(12.5) |x0 − `|+ |a1 − a∗1|+ |a2 − a∗2| ≤ 2α2τ.
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The proof is the same as for Lemma 11.1, with only two branches coming from the c∗i . The
reader may be worried about the special case when there is a third point c∗3 ∈ D±(τ), that
leads to a hanging curve. But, as long as we stay in the spherical annulus A = S∩B(`, 2τ) \
B(`, α2τ), this third curve L′3 stays far from the other two and does not interfere with the
proof (which, as the reader recalls, consists in saying that we don’t meet a triple point like
x0).

We set (more or less as usual)

(12.6) r = α−1|x0 − `|, D = S ∩B(x0, r), and ∂D = S ∩ ∂B(x0, r)

(compare with (11.26)); notice that r ≤ 2ατ , by (12.5), so it is still very small. Since Γ1 and
Γ2 are small Lipschitz graphs, they meet ∂D exactly once, at points that we call z1 and z2.
Set, for i = 1, 2,

(12.7) Γ′i = Γi \D, Γ′′i = Γi ∩D, and Γ̃i = ρ(`, zi) ∪ Γ′i.

Thus Γ̃i is a curve that goes from ` to a∗i , while Γi goes from x0 to a∗i ; both curves go through
zi. Finally we set

(12.8) Γ = Γ̃1 ∪ Γ̃2,

which we really see as a collection of two graphs. So we want to claim that for i = 1, 2,

(12.9) Γ̃i is a 8λ-Lipschitz graph over ρ(`, a∗i ).

Fortunately, the proof is the same as for Lemma 11.3, so we can skip it. The point is that
since zi and x0 both lie on the small Lipschitz graph Γi, the geodesic ρ(zi, x0) is almost
aligned with Γ′i, and then ρ(zi, `) makes a small angle because (12.6) says that |x0− `| << r.

Next we claim that

(12.10) Γ̃1 and Γ̃2 make an angle larger than
π

2
at `.

We start from the description of Proposition 2.1, which says that C1 and C2 make an angle
at least 2π

3
at ` (see (2.7)). That is,

(12.11) Angle(v(`, a1), v(`, a2)) ≥ 2π

3
.

Let vi be a tangent direction to Γ̃i at `. From (12.9) (and (11.12)) we deduce that

(12.12) |vi − v(`, a∗i )| ≤ 32λ.

In addition,

(12.13) |v(`, a∗i )− v(`, ai)| ≤ 2|ai − a∗i ||`− ai|−1 ≤ 4α2τ(5η(X))−1 ≤ α2 < λ
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by (12.5), (4.2), (4.3), and (6.3), and if α is small enough. Now (12.10) follows from (12.11),
(12.12), and (12.13).

Notice that the description of Γ as a union of small Lipschitz graphs follows from (12.9),
(10.2) (the control on the inside angles) follows from (12.10), and (10.3) holds for the usual
reason (see below (10.12)).

There may also be a hanging curve in the configuration. Then there are three Ci that
leave from `, they make 120◦ angles, and the hanging curve is attached to the third point of
E ∩ ∂D, i.e., c∗3. We add to Γ the corresponding curve L3, and it is good to know that L3

does not meet Γ. This is the case, because the Γ̃i are small Lipschitz graphs over the ρ(`, a∗i )
(by (12.9)), which go away from c∗3 and L3; the proof goes as for (10.24).

So we just need to prove the two usual length estimates. For this we introduce

(12.14) f(z) = distS(z, z1) + distS(z, z2)

and estimate its gradient

(12.15) ∇f(z) = −[v(z, z1) + v(z, z2)].

We need to estimate some angles. Set

(12.16) e1 = v(x0, a
∗
1), e2 = v(x0, a

∗
2), and e3 = v(x0, `).

Observe that for i = 1, 2 and z ∈ ρ(x0, `)

(12.17) |v(z, zi)− v(x0, zi)| ≤ 2|z − x0||x0 − zi|−1 ≤ 2|`− x0|r−1 = 2α

by (12.6), and

(12.18) |v(x0, zi)− ei| = |v(x0, zi)− v(x0, a
∗
i )| ≤ 4λ

because zi ∈ Γi, which is a λ-Lipschitz graph over ρ(x0, a
∗
i ) and by (11.12); then

(12.19) |∇f(z) + e1 + e2| ≤ 12λ

if α is small enough. Next we want to check that

(12.20) 〈e1 + e2,−e3〉 ≤ 1− 10−2.

First observe that for i = 1, 2,

|ei − v(`, ai)| = |v(x0, a
∗
i )− v(`, ai)| ≤ |v(x0, a

∗
i )− v(`, a∗i )|+ |v(`, a∗i )− v(`, ai)|

≤ 2|`− x0||`− a∗i |−1 + α2 ≤ 4α2τ(5η(X))−1 + α2 ≤ 2α2(12.21)

by (12.13), (12.5) (4.2), (4.3), and (6.3). Then by (12.11)

(12.22) Angle(e1, e2) >
2π

3
− 5α2.
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Since (12.2) fails (by definition of Case B), the three vectors e1, e2, e3 do not all make angles
larger than 2π

3
− π

10
. Since this is the case for e1 and e2, we may assume, without loss of

generality, that

(12.23) Angle(e1, e3) ≤ 2π

3
− π

10
.

If (12.20) fails, |e1 + e2| ≥ 1− 10−2. Set θ = 1
2

Angle(e1, e2); then |e1 + e2| = 2 cos θ, hence

(12.24) θ ≤ arccos
(1

2
− 10−2

2

)
≤ π

3
+ 10−2.

Then

Angle(e3, e1 + e2) ≤ Angle(e3, e1) + Angle(e1, e1 + e2)

≤ Angle(e3, e1) + θ ≤ π − π

10
+ 10−2 ≤ π − 2

10
,(12.25)

Angle(−e3, e1 + e2) ≥ 2
10

, and cos( Angle(−e3, e1 + e2)) ≤ 1− 2 · 10−2. Since by (12.22)

(12.26) |e1 + e2| = 2 cos θ ≤ 2 cos
(π

3
− 5α2

2

)
≤ 1 + 10−4,

(12.27) 〈e1+e2,−e3〉 = |e1+e2| cos( Angle(−e3, e1+e2)) ≤ (1+10−4)(1−2·10−2) ≤ 1−10−2

and (12.20) holds after all.
We may now return to the computation of ∇f(z). We integrate on ρ(x0, `) and get that

(12.28)

f(`) = f(x0) +

ˆ
ρ(x0,`)

〈∇f(z), v(z, `)〉 dH1(z)

≤ f(x0) +

ˆ
ρ(x0,`)

[
〈e1 + e2,−v(z, `)〉+ 10λ

]
dH1(z)

≤ f(x0) +

ˆ
ρ(x0,`)

[
〈e1 + e2,−e3〉+ 11λ

]
dH1(z)

by (12.19) and because

(12.29) |v(z, `)− e3| = |v(z, `)− v(x0, `)| ≤ |x0 − `| ≤ 2α2τ <
λ

2

for z ∈ ρ(x0, `), because geodesics do not turn too fast, by (12.5), and if α is small enough.
By (12.20) and the definition (12.14), this yields

distS(`, z1) + distS(`, z2) = f(`) ≤ f(x0) + (1− 10−2 + 11λ)distS(x0, `)

≤ distS(x0, z1) + distS(x0, z2) + (1− 10−3)distS(x0, `)

≤ H1(Γ′′1) +H1(Γ′′2) + (1− 10−3)distS(x0, `)(12.30)
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because Γ′′i precisely goes from x0 to zi (see near (12.7)).
We are about ready for (10.6) and (10.7). Because of (12.1),

(12.31) H1(γ) = H1(γ`) +H1(γ1) +H1(γ2) ≥ H1(γ`) +H1(Γ1) +H1(Γ2)

by (8.16). Besides, by (12.8) and (12.7),

(12.32) H1(Γ) =
2∑
i=1

H1(Γ̃i) =
2∑
i=1

[H1(Γ′i) + distS(x0, zi)]

and, since H1(Γi) = H1(Γ′i) +H1(Γ′′i ), we get that

(12.33)

H1(γ)−H1(Γ) ≥ H1(γ`) +
2∑
i=1

[
H1(Γi)−H1(Γ′i)− distS(x0, zi)

]
= H1(γ`) +

2∑
i=1

[
H1(Γ′′i )− distS(x0, zi)

]
≥ H1(γ`)− (1− 10−3)distS(x0, `) ≥ 10−3H1(γ`) ≥ 10−3|x0 − `|

by (12.8) and (12.7), and because H1(γ`) ≥ distS(x0, `) ≥ |x0 − `|.
This is better than (10.6). For (10.7), first observe that

(12.34) r = α−1|x0 − `| ≤ 103α−1[H1(γ)−H1(Γ)],

which is therefore controlled by the right-hand side of (10.7). We write

(12.35) γ∆Γ ⊂ γ` ∪
( 2⋃
i=1

γi∆Γi
)
∪
( 2⋃
i=1

Γi∆Γ̃i
)
.

The first part is in order, since H1(γ`) ≤ 103[H1(γ)−H1(Γ)] by (12.33). The second one as
well, because

(12.36) H1(Γi∆Γ̃i) ≤ H1(Γ′′i ) +H1(ρ(zi, `)) ≤ 5r,

and by (12.34). We are left with the

(12.37) H1(γi∆Γi) ≤ H1(γi \ Γi) +H1(Γi \ γi) ≤ Cλ−2[H1(Γi)− distS(x0, a
∗
i )]

by (8.16) and (8.5) (recall that Γi goes from a∗i to x0). In turn H1(Γi) ≤ H1(Γ̃i) + 2r and
distS(`, a

∗
i ) ≤ distS(x0, a

∗
i ) + 2r, so

(12.38) H1(Γi)− distS(x0, a
∗
i ) ≤ H1(Γ̃i)− distS(`, a

∗
i ) + 4r,

which is also controlled by the right-hand side of (10.7). This completes the verifications in
Case B of Configuration 2+. We finally constructed the Lipschitz net Γ in all cases.
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13 Lipschitz projections near E ∩ S
In Sections 10-12 we started from a net γ of curves in E ∩ S, in fact near a point ` ∈ K ∩L,
and constructed a corresponding net Γ of Lipschitz curves on S.

We did this for each `, and in some cases (Configurations H and 3 = 2+1) independently
for the two or three configurations present near `. For the other curves Li, the ones for which
both endpoints of Ci lie in V1 ∪ V2 = V \ V0, the simplest is to set Γ = γ = Li.

For this to work well, it will be better to know that the Li that do not get close to L
are λ-Lipschitz graphs over the geodesics with the same endpoints. This is why we made
Remark 6.3 and the similar later ones. If we did not do this, we still would be all right,
but we would need to replace each of these Li with the small Lipschitz curve Γi obtained
from Li by the construction of Section 8. We would also need to check that this replacement
does not alter much the angle conditions (10.3) with the other curves or nets Γ, but nothing
dramatic.

We now let γ∗ denote the union of all the curves γ that we have here, and Γ∗ the union
of all the Γ that we constructed. In the cases (as Configuration 3−) where some points of
K ∩ L do not lie in any constructed Γ, we just add them to Γ∗ as isolated points. Thus Γ∗

can be decomposed into nets of one to four small Lipschitz curves, plus maybe one or two
points of K ∩ L.

In this section we shall build a Lipschitz projection on Γ∗. In fact, the term is a little
inappropriate, because what we are interested in is a collection of Lipschitz mappings, defined
in small neighborhoods of the main connected components of E ∩ S and with values in Γ∗.
Let us explain what we want.

Proposition 13.1. We can find a small number τ3 > 0 and a Lipschitz mapping p, defined
on

(13.1) E+ = E+(τ3) =
{
x ∈ S ; dist(x,E ∩ S) ≤ τ3

}
,

with values in Γ∗, such that

(13.2) |p(x)− x| ≤ 60τ for x ∈ E+ ,

(13.3) p is 30-Lipschitz on E+ ∩B(x, 2τ3)

for each x ∈ E+, and

(13.4) p(`) = ` for ` ∈ K ∩ L.

Here τ in (13.2) is as above, but τ3 and the Lipschitz constant for p may depend very
badly on the set E and the initial radius (here normalized to 1) that we took in Section 5.
So we will need to be careful when we apply the proposition; what will save us is the local
Lipschitz bound (13.3), which will be used to control the measure of the image.
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We cannot hope to get a continuous projection which is defined on the sphere, because
even if n = 3 and Γ∗ is a great circle, there is a topological issue (where do we send the two
poles?). Also, Γ∗ may have more than one connected component, different domains of the
sphere will be sent to different components, and so we count on small gaps in E+, coming
from the fact that E ∩S also is not connected, to patch the various local Lipschitz mappings
that we take.

The distance estimate (13.2) is rather poor (we can expect much better in many cases),
but it will be enough.

Anyway, we shall start our proof with the construction of local Lipschitz projections
defined on relatively large pieces of S, that we will then need to patch together.

We shall use the description of E∩S near the curves Ci that was given in Proposition 6.5;
in particular τ in (13.2) and below is still coming from this proposition, we assume that
τ ≤ 10−3η(X), and the Li are the curves in E ∩ S provided by the proposition.

Recall that we split I into I0 (the indices for which Ci has an endpoint on K ∩ L) and
I1 = I \ I0. When i ∈ I0, we shall denote by `(i) the point of K ∩ L where Ci ends, and by
Di the spherical disk Di = S ∩B(`(i), τ) associated to `(i).

Recall also that when i ∈ I1, the curve Li given by Proposition 6.5 connects two vertices
a∗i and b∗i (that lie close to the vertices ai and bi of Ci), while for i ∈ I0, Li start at a vertex
a∗i but end at a point c∗i of ∂Di.

For i ∈ I we define a region of influence Ri by

(13.5) Ri =
{
z ∈ S ; dist(z,Li) ≤ 10−1τ and dist(z,Li) ≤ dist(z,Lj) for j ∈ I \ {i}

}
.

Then, when i ∈ I1, we define a projection pi such that

(13.6) pi : Ri → Li is 3-Lipschitz,

and

(13.7) |pi(x)− x| ≤ 3 dist(x,Li) < τ for x ∈ Ri,

where the second inequality follows from (13.5). For the moment, this is easy to arrange
because Li is such a nice curve.

Now it could be that Li shares an endpoint a∗ with one or two other Lj, and to avoid
conflicts, we require that when this happens we take

(13.8) pi(z) = a∗ for z ∈ Ri ∩Rj =
{
x ∈ Ri ; dist(z,Li) = dist(z,Lj)

}
.

This is easy to arrange: recall that at a∗, the worse that can happen is that two other Lj
end at a∗, in a nice C1 way and with large angles: see (6.27) (for endpoints in V1) and (6.37)
(for endpoints in V2).

Also, we claim that this is enough to guarantee that if j ∈ I1 \ {i} and if we set p(x) =
pi(x) for x ∈ Ri ∩B(a∗, τ) and p(x) = pj(x) for x ∈ Rj ∩B(a∗, τ), then

(13.9) p is 10-Lipschitz on (Ri ∪Rj) ∩B(a∗, τ).
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The point is that if x ∈ Ri∩B(a∗, τ) and y ∈ Rj∩B(a∗, τ), then there is a path from x to y in
(Ri∪Rj)∩B(a∗, τ), of length at most 10|x−y|, and that goes through some point z ∈ Ri∩Rj.
Then pi(z) = pj(z) = a∗, and the fact that |p(x) − p(y)| ≤ |pi(x) − pi(z)| + |pj(z) − pj(y)|
gives the right estimate.

Notice also that when i, j ∈ I1 are such that Li and Lj do not share an endpoint, then
dist(Ri, Rj) ≥ τ

10
, by (6.44), (6.5), and (6.3). This means that if we set p(z) = pi(z) for

i ∈ I1 and z ∈ Ri, not only the definitions are compatible, but we get a Lipschitz mapping
on ∪i∈I1Ri.

This will take care of most of the sphere, but the most interesting part will be what we
do near the two points of S ∩ L. In fact, only the points of K ∩ L = S ∩ X ∩ L matter,
because if ` ∈ S ∩ L \K, (4.1), (4.3), (6.3), and (5.3) say that neither X nor E gets within
2τ of `.

Let us review a little what we did in Section 7 and add some notation. For each ` ∈ K∩L,
we introduced a small disk D = D`, then we wrote the curves Ci that end at ` as C1, · · ·Cm,
introduced the components Hi of c∗i (the endpoint of Li) in E ∩ D, and then grouped
the Ci by components. Let us denote by CC(`) the set of connected components Hi (we
need a different name, because some different indices i may give the same component). In
Configuration 3 = 2 + 1, for instance, CC(`) has two elements; in Configuration 3+ or 3−,
CC(`) has just one element.

For each c ∈ CC(`), we have a connected set γ = γc, which we eventually completed into
the larger γ = γc, and modified to get a net Γ = Γc. We may need to use the set I(c) of
indices i ∈ I0 such that a∗i ∈ c (or equivalently Hi ⊂ c).

We also complete CC(`): if ` lies in one the components c ∈ CC(`) we keep CC+(`) =
CC(`). Otherwise, we add the special component c` = H` (the component of ` in E ∩ D,
which is disjoint from the other ones), and associate to it the degenerate curves γc` = {`}
and Γc` = {`}. We do the same thing (i.e., add γc` = {`} and Γc` = {`}) if ` does not even
lie in E. Then we set CC+(`) = CC(`) ∪ {c`}.

Also denote by CC the union of the CC(`), ` ∈ K∩L, and CC+ the union of the CC+(`),
` ∈ K ∩L. Finally, if c ∈ CC(`), we set `(c) = ` and Dc = S∩B(`, τ); this is unambiguous,
because a single curve Ci never has both points of S ∩ L as endpoints.

Our next step is the construction of mappings pc, c ∈ CC+. When c is one of the special
components c`, ` ∈ K ∩ L, we have set Γc = {`} and now we take

(13.10) pc`(z) = ` for z ∈ S.

The more interesting case of c ∈ CC is treated in the next lemma.

Lemma 13.2. For c ∈ CC(`), set D(c) = Dc ∪
⋃
i∈I(c) Ri. There is a mapping pc such that

(13.11) pc : D(c)→ Γc is 10-Lipschitz,

(13.12) |pc(x)− x| ≤ 10 dist(x,Γc) for x ∈ D(c),

and, for each i ∈ I(c) and each index j ∈ I such that a∗i is also an endpoint of Lj, (13.8)
holds with a∗ = a∗i .
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Recall that a∗i is the endpoint of Li that lies far from Dc (i.e., which is not c∗i ). Also, all
the indices j ∈ I such that a∗i is also an endpoint of Lj lie in I1 and we already defined p
on the corresponding Rj.

The domain D(c) = Dc ∪
⋃
i∈I(c) Ri is composed of a central disk, which is so small that

it is bilipschitz equivalent to a ball in Rn−1 with a constant close to 1, plus a small number
(between one and three) of appendices that are thin tubes Ri around C1 curves Li, and
leave from D in directions that make large angles. The set Γc itself is a net of at most four
small Lipschitz curves (that make large angles when they meet), and Γc reaches the same
a∗i , i ∈ I(c). In each case, the construction of pc is rather easy, but may be painful to write
explicitly. This is why we shall simply review the different cases that we encounter, and
hopefully the reader will agree that pc is not hard to find.

In the case of Configuration 0 (when there is no curve near `), there is no Γ and we still
do nothing.

When c comes from a configuration of type 1, Γ is a small Lipschitz curve that goes
from ` to a∗i (where i is the only index in I(c)), and projecting on Γ is easy. The additional
condition (13.8) is not hard to get either, and we could easily get a 3-Lipschitz function.

When c is of type H, and we consider one of the hanging curves, recall that we started
from γc = Li, where i ∈ I0 is the index such that the hanging curve contains c∗i , and we kept
Γc = γc = Li. In this case too pc is easy to find.

When c is of type 2−, γc is the union of two simple curves γi that leave from a same
center x0, and Γc is the union of two Lipschitz curves Γi with the same endpoints x0 and a∗i ,
and that make a large angle at x0. Here too pc is easy to construct.

When c comes from a configuration of type 3 = 2 + 1, we combine the types 1 and 2−
above. We don’t even need to know that the two corresponding sets Γc are disjoint, because
we build two independent projections pc on different sets Γc. The fact that the pc share
a piece of their domains of definitions will be compensated by the fact that we will later
restrict the pc to disjoint domains at positive distances from each other.

When c is of type 2+, Γc is either a truncated Y that connects ` to a∗i and a∗j (where
I(c) = {i, j}), or composed of two small Lipschitz graphs from ` to a∗i and a∗j (and thus
make a large angle at `. This case and the next one are just a little harder to treat than the
previous ones, but we shall only comment on the last one because it looks uglier.

When c is of type 3−, Γc is a small Lipschitz spider that goes from a center x0 to the
three relevant a∗i , and is not hard to project on.

Finally, when c comes from a configuration of type 3+, Γc is either a small Lipschitz spider
that goes from ` to the three relevant a∗i (as in Case A), or a slightly more complicated union
of 4 small Lipschitz graphs, coming from case B. As in the previous cases, all the angles
between the curves are larger than π/2.

Let us only explain how we find pc in the apparently most complicated case B of type
3+. Here (see Figure 17) Γc is composed of two long curves Γ2 and Γ3, that connect a center
x0 to exterior points a∗2 and a∗3, a short curve Γ0 (previously composed of a Lipschitz curve
and a piece of geodesic, but we put them together) that goes from x0 to `, and a third long
curve (again originally composed of a geodesic and a piece of curve) Γ1 from ` to a∗1. As in
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the previous cases, all these curves Γi are small Lipschitz graphs over the geodesics ρi with
the same endpoints, and they make large angles where they meet.
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Figure 17: The curve Γ = Γc.

We will cut D(c) into a few simple regions Di(c), and then take a simple definition for
pc on each piece. Set ρ =

⋃3
i=0 ρi, and then

(13.13) D1(c) =
{
x ∈ D(c) ; dist(x, ρ1) ≤ 1

3
dist(x, ρ \ ρ1)

}
.

For i ∈ {2, 3}, choose

(13.14) Di(c) =
{
x ∈ D(c) ; dist(x, ρi) = dist(x, ρ) and dist(x, ρi) ≤

1

3
dist(x, ρ0 ∪ ρ1)

}
,

and finally set D0(c) = D(c) \
⋃3
i=1Di(c). See Figure 18 for a sketch of our four domains

(sitting in the two-dimensional sphere S) when n = 3. The case when n > 3 is not different;
the common boundaries just have a larger dimension, and the three domains Di(c), 0 ≤ i ≤ 2,
now have a (n− 3)-dimensional common boundary that goes through x0 (when n = 4, think
about a curve through x0 that crosses the plane of the picture).
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Figure 18: The domains Di = Di(c).

Notice that the Di(c) cover D(c), and also that for i ∈ {1, 2, 3}, Ri \ D ⊂ Di(c). The
strange choice of a constant 1/3 is to make sure (as in the picture, and because the ρi make
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large angles, as well as the directions of ρ1, ρ2, and ρ3) that D1(c) does not get close to
D2(c)∪D3(c). Because of this, we can find 5-Lipschitz projections pi : Di(c)→ Γi such that
|pi(x)− x| ≤ 2 dist(x,Γi) for x ∈ Di(c),

(13.15) pi(x) = x0 when i ∈ {2, 3, 0} and x ∈ Di(c) ∩Dj(c) for some other j ∈ {2, 3, 0},

and

(13.16) pi(x) = ` when i ∈ {0, 1} and x ∈ D0(c) ∩D1(c).

Of course this would have been hard to arrange if D1(c) ∩ D0(c) had been too close to
D0(c)∩ (D2(c)∪D3(c)), but otherwise it is easy. See Figure 19 for a hint of what the desired
projections should do, and Figure 20 for an equivalent model where the pi could be defined
explicitly. We can also make sure that for 1 ≤ i ≤ 3, pi(x) = a∗i on Ri ∩ Rj, where j is any
index j ∈ I \ {i} such that Li and Lj share the endpoint a∗i .
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Figure 19: How the mappings pi (and hence pc) act.
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Figure 20: The same picture after a small change of variable.

The mapping pc defined by pc(x) = pi(x) for x ∈ Di(c) does the job. In particular,
(13.12) can be arranged on each piece Di(c) separately, and (13.11) is true because when
x ∈ Di(c) and y ∈ Dj(c) for some j 6= i, the shortest path from x to y in D(c) passes
through boundaries where the definitions coincides. That is, if this path γ goes for instance
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from Di(c) to some Dk(c) to Dj(c), it goes through points z ∈ Di(c) ∩ Dk(c) and then
z′ ∈ Dk(c) ∩Di(c), and

|p(x)− p(y)| = |pi(x)− pj(y)| ≤ |pi(x)− pi(z)|+ |pk(z)− pk(z′)|+ |pj(z′)− pj(y)|
≤ 5 length(γ) ≤ 10|x− y|(13.17)

because pi(z) = pk(z), pk(z
′) = pj(z

′), and because the geometry of D(c) is not that compli-
cated. As was announced earlier, the other cases are simpler; Lemma 13.2 follows.

At this point we have defined local projections pi, i ∈ I1 and pc, c ∈ CC+, and now we
should glue them to make the mapping p of Proposition 13.1. The interesting part for the
gluing will be near the points ` ∈ K ∩ L, where we want to attribute the points of E ∩D`

to the various c ∈ CC+(`) (see below (13.9)). For this we need a separation lemma.

Lemma 13.3. We can find a small number τ3 > 0 and closed disjoint sets Tc, c ∈ CC+(`),
such that

(13.18) c ⊂ Tc ⊂ E ∩D for c ∈ CC+(`),

(13.19) E ∩D ⊂
⋃

c∈CC+(`)

Tc ,

and

(13.20) dist(Tc, Tc′) ≥ 10τ3 for c, c′ ∈ CC+(`), c 6= c′.

Again, we can make no claim on the size of τ3. It may be extremely small, and it depends
on E and our earlier choice of radius for S (now normalized to be 1).

This is mostly question of connectedness (say that each component c is the intersection
of the open and closed sets in E ∩D that contain c), but we shall cheat a little and use the
fact that by (5.4),

(13.21) H1(E ∩D) ≤ H1(E ∩ S) < +∞.

We try an argument by hands, with strings of small balls. Set E0 = E ∩D. For each integer
m > 0, we select a set X(m) ⊂ E0 which is maximal under the constraint that |x−y| ≥ 2−m

for x, y ∈ X(m), x 6= y. Thus the balls B(x, 2−m), x ∈ X(m), cover E0. Set

(13.22) X0(m) =
{
x ∈ X(m) ; B(x, 2−m+1) meets some c ∈ CC+(`)

}
,

and X1(m) = X(m) \X0(m).
Declare a point x ∈ X1(m) bad, or useless, if there is a radius r ∈ (2−m, 2−m+1) such

that E0 ∩ ∂B(x, r) = ∅. Denote by Xb(m) ⊂ X1(m) the set of bad points, and set Xg(m) =
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X1(m)\Xb(m). Notice that if x ∈ Xg(m), the radial projection πx defined by πx(z) = |z−x|
maps B(x, 2−m+1) onto a set that contains (2−m, 2−m+1) (otherwise, x ∈ Xb(m)); hence

(13.23) 2−m ≤ H1(πx(E0 ∩B(x, 2−m+1))) ≤ H1(E0 ∩B(x, 2−m+1)).

Because of this, the cardinality of Xg(m) is

(13.24) ](Xg(m)) ≤ 2m
∑

x∈Xg(m)

H1(E0 ∩B(x, 2−m+1)) ≤ C2mH1(E0)

because the B(x, 2−m+1), x ∈ X(m), have bounded covering.
By “m-string”, we shall mean a finite sequence of points xk ∈ X0(m) ∪Xg(m), 0 ≤ k ≤

kmax, such that, if we set Bk = B(xk, 2
−m+2) for 0 ≤ k ≤ kmax, we have that

(13.25) Bk ∩Bk+1 ∩ E0 6= ∅ for 0 ≤ k < kmax.

First suppose that for some choice of ` and m, there is no m-string as above such that
B0 meets some component c ∈ CC+(`) and Bmmax meets some other c′ ∈ CC+(`). In this
case, we can define the Tc as follows. For each x ∈ Xb(m), choose r ∈ (2−m, 2−m+1) such
that E0 ∩ ∂B(x, r) = ∅ and set Bx = B(x, r); then set

(13.26) Eb = E0 ∩
⋃

x∈Xb(m)

Bx.

This set is both open and closed in E0, because each Bx is. In fact, for each x ∈ Xb(m) there
is a minuscule τ(x) > 0 such that

(13.27) dist(E0 ∩Bx, E0 \Bx) ≥ τ(x).

Next, for c ∈ CC+(`), we denote by T (c) the set of points y ∈ E0 \Eb that can be connected
to c by an m-string. This last means that we can find an m-string as above, such that B0

meets c and Bkmax contains x. The sets T (c), c ∈ CC+(`), are disjoint, because if T (c) meets
T (c′), then there is an m-string that connects some point of c to some point of c′. They are
also closed, because each T (c) is in fact a finite union of sets (E0 \ Eb) ∩ Bk, and we made
sure to take closed balls Bk. Similarly, if we denote by T∞ the set of points of E0 \ Eb that
cannot be connected to any c ∈ CC+(`) by an m-string, this set is also the union of the
B(x, 2m+2), x ∈ Xg(m) that meets it, and it is closed and disjoint of the others.

Finally, each T (c) contains the corresponding c. Indeed, let y ∈ c be given. We know that
the balls B(x, 2m), x ∈ X(m), cover E0, so we can find x ∈ X(m) such that y ∈ B(x, 2m).
Then x ∈ X0(m), by (13.22), so it not bad. For the same reason, y /∈ Eb, because no ball Bx

meets c. We use the single B(x, 2m+2) to connect y to itself, and this shows that y ∈ T (c).
Now set Tc = T (c) for every component c except one, and Tc = T (c) ∪ Eb ∪ T∞ for the

last one. It is a little nicer to choose the special component c` = H` as the last one, if
c` ∈ CC+(`), because this way pc sends the whole Tc to `. But really it does not matter.
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The Tc are disjoint and closed by construction. They cover E0 by construction too, and
of course they lie at positive distances from each other, so (13.20) holds for some τ3 > 0.
Thus the lemma holds in this case.

We are left with the case when for some ` and all choices of m, we can find two different
components c, c′ ∈ CC+(`) that can be connected by an m-string. Since CC+(`) has at
most 4 points, we may assume that for a sequence of m that goes to +∞, the components
c and c′ are the same. Choose an m-string that connects c to c′, with a minimal number
of elements. Then the same ball Bk does not appear twice in the sequence (otherwise, drop
all the intermediate balls), and similarly B0 is the only ball that meets c and Bkmax is the
only Bk that meets c′. All the other Bk are thus centered at points xk ∈ Xg(m), and so
kmax ≤ C2m + 1, by (13.24).

For 0 ≤ k ≤ kmax − 1, connect xk to xk+1 by a line segment. This gives a curve Γm,
that goes from c to c′. Since |xk+1 − xk| ≤ 2−m+3 because Bk+1 meets Bk, we get that
length(Γm) ≤ 8(C + 2−m). Also, every point of Γm lies within 2−m+3 of E0, because Bk

meets E0.
We can parameterize Γm with a mapping zm : [0, 1] → Γm, in such a way that zm is

9C-Lipschitz; then we can extract a sequence for which the zm converge to a limit z, and
z([0, 1]) is a connected set in E0 that goes from c to c′. This contradiction with the fact
that c and c′ are different components proves that our second case does not happen, and
Lemma 13.3 follows.

We may now return to the construction of a global projection p from the various pi,
i ∈ I1 and pc, c ∈ CC+. We now give a zone of influence to each c ∈ CC+; for i ∈ I1, this
was already done in (13.5).

So fix ` ∈ K ∩ L and c ∈ CC+(`). Set

(13.28) T+
c =

{
x ∈ Dc ; dist(x, Tc) ≤ 3τ3

}
and Rc = T+

c ∪
( ⋃
i∈I(c)

Ri

)
.

Here Ri is still defined by (13.5), and Dc is the disk D associated to the ` ∈ K ∩L such that
c ∈ CC+(`). We should be able to avoid confusion between Ri, with i ∈ I and the larger
Rc, c ∈ CC+. The definition may look a little strange, but away from D, we are happy to
keep

⋃
i∈I(c) Ri, and not more (to avoid complications with the gluing), and in D it is better

to add a small neighborhood of Tc, because we want to cover a small neighborhood of E ∩S.
Our domain of definition will be

(13.29) R+ =
( ⋃
i∈I1

Ri

)
∪
( ⋃
c∈CC+

Rc

)
=
(⋃
i∈I

Ri

)
∪
( ⋃
c∈CC+

T+
c

)
and we want to set

(13.30) p(x) = pi(x) for i ∈ I1 and x ∈ Ri,

and

(13.31) p(x) = pc(x) for c ∈ CC+ and x ∈ Rc ⊂ D(c),
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where the inclusion is easy (compare (13.28) with the first line of Lemma 13.2) and implies
that pc(x) is defined. We need to check that all this is compatible, and produces a Lipschitz
function. We will cut R+ into three regions that overlap, and first check things on each one.

We start with R+(1) =
⋃
i∈I Ri (where we also include I0). Let us first check that

(13.32)

if i, j ∈ I are such that dist(Ri, Rj) ≤
τ

10
, then Li and Lj have a common endpoint a∗.

Suppose i 6= j and dist(Ri, Rj) ≤ 10−1τ . Then dist(Li,Lj) ≤ τ by (13.5), dist(Ci,Cj) ≤ 2τ
by (6.44), and by (6.5) and (6.3) Ci meets Cj. This means that they have a common endpoint,
which we call a.

We can say a bit more. If i or j lies in I1, then dist(a,K∩L) ≥ 10η(X) by (4.1) and (4.3),
and Proposition 6.5 says that Li and Lj have a common endpoint a∗, with |a∗ − a| ≤ 10−9τ
(see (6.43)). Notice that the case when i, j lie in I0 and end at the same ` does not arise,
because in this case

(13.33) dist(Ri, Rj) ≥ dist(Li,Lj)− 2 · 10−1τ ≥ 8 · 10−1τ

because the Lj do not get inside D, start from points c∗i and c∗j such that |c∗i − c∗j | ≥ τ , and
go away in the direction opposite to `. For a proof, use (6.46) and the fact that Ci and Cj
make angles of at least 120◦. The case when i, j ∈ I0 but come from different ` ∈ K ∩ L
goes like when i or j lies in I1; so (13.32) holds.

Because of (13.32) and our precautions (13.8) and below (13.12), not only pi(x) = pj(x)
when x ∈ Ri ∩ Rj, but the proof of (13.9) shows that the mapping p on R+(1) that we
construct in this way is locally Lipschitz, in the sense that

(13.34) p is 30-Lipschitz on R+(1) ∩B for every ball B of radius 10−2τ .

Next we pick ` ∈ K ∩ L and consider

(13.35) R+(2, `) = R+ ∩ A, with A0 = B(`, 2τ) \B(`, 2τ/3).

Let us apply Proposition 6.5, but with the smaller constant τ ′ = τ/3. We get a nice
description of E ∩ S in the complement of B(`, τ ′)∪B(−`, τ ′), but we only care about what
happens on the annulus A = B(`, 3τ) \B(`, τ/3). We get that

(13.36) E ∩ S ∩ A =
⋃
i∈I(`)

L′i ∩ A,

where I(`) is the set of concerned indices i, i.e., those for which ` ∈ Ci, and the L′i are nice
C1 curves that go from ∂B(`, 3τ) to ∂B(`, τ/3).

On A \ B(`, τ), we have two representations of the same set E ∩ A \ B(`, τ), given by
applications of Proposition 6.5 with different values of τ , but which must coincide anyway.
Thus the L′i coincide with the Li on A \ B(`, τ). We may assume that we chose the labels
correctly, so that in fact

(13.37) Li ∩ A \B(`, τ) = L′i ∩ A \B(`, τ) for i ∈ I(`).
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Set γi = L′i ∩ A ∩D. By Proposition 6.5, γi is a C1 curve that starts at c∗i (the only point
of L′i ∩ ∂B(`, τ) = Li ∩ ∂B(`, τ)) and goes to ∂B(`, τ/3). Since each L′i stays close to the
corresponding Ci, we also have that

(13.38) dist(γi, γj) ≥ τ/3 for i, j ∈ I(`), i 6= j.

For each i ∈ I(`), c∗i lies in some component c ∈ CC(`), which we call c(i). Then

(13.39) γi ∩D ⊂ c(i) ⊂ Tc(i)

because L′i ∩ A ∩D is a connected subset of E ∩D that contains c∗i , and by (13.18). Since
the Tc are disjoint and contained in E, and the γi already cover E ∩A ∩D (by (13.36)), we
see that the only Tc that meet A ∩D are the Tc(i), and in addition, for each i

(13.40) Tc(i) ∩ A ∩D =
⋃

j∈I(`);c(j)=c(i)

γj.

Recall from (13.28) that T+
c is just a 3τ3-neighborhood of Tc in D. Then the only T+

c that
meet A0 ∩ D are the T+

c(i), and each T+
c(i) is just the 3τ3-neighborhood in A0 ∩ D of the⋃

j∈I(`);c(j)=c(i) γj.

Now R+(2, `) is the union of at most three pieces R+(2, `, i), i ∈ I(`), where each
R+(2, `, i) is composed of Ri, plus the 3τ3-neighborhood in A0 ∩ D of γi. Each R+(2, `, i)
is contained in a single Rc (and meets no other), hence p is well defined on R+(2, `, i) by
(13.31), and 10-Lipchitz by Lemma 13.2. In addition

(13.41) dist(R+(2, `, i), R+(2, `, j)) ≥ τ/4

by (13.38), so p is also Lipschitz on their union R+(2, `).
We turn to our last sets

(13.42) R+(3, `) = R+ ∩B(`, 4τ/5) ⊂
⋃

c∈CC+

T+
c

by the second part of (13.29) and because the Ri, i ∈ I, never go that far inside D (since
the Li don’t meet B(`, τ)). By (13.20) and (13.28),

(13.43) dist(T+
c , T

+
c′ ) ≥ 4τ3 when c 6= c′,

and p is well defined and 10-Lipchitz on each T+
c (by Lemma 13.2), so p is well defined and

Lipschitz on R+(3, `), and 10-Lipschitz on each open ball of radius 2τ3.

At this point we have a coherent definition of p on R+, and proved Lipschitz bounds for
p on the various pieces that compose R+. These pieces have sufficient overlap, so we get
the local Lipschitz property (13.3) required for Proposition 13.1. Then p is automatically
Lipschitz on R+, although perhaps only with the very bad norm τ−1

3 : if x, y ∈ R+, either
|x− y| < 2τ1 and then |p(x)− p(y)| ≤ 20|x− y|, or else |p(x)− p(y)| ≤ 2 ≤ τ−1

1 |x− y|.
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Next we check that the domain E+ promised in Proposition 13.1 is contained in R+.
Let z ∈ E+ be given, and pick x ∈ E ∩ S such that |x − z| ≤ τ3. If x lies in a disk
D` = S ∩ B(`, τ), then (13.19) says that it lies in some Tc, and z ∈ T+

c by (13.28), unless
by bad luck z falls outside of D`. But if this happens, dist(x, ∂B(`, τ)) ≤ τ3, (13.36) and
(13.37) say that dist(x,Li) ≤ 2τ3 for some i ∈ I(`), and then z ∈ Ri. In both cases, z ∈ R+

(see (13.29)). The other case is when x lies in no D`. Then it lies very close to some Li (by
Proposition 6.5), and then z ∈ Ri ⊂ R+ by (13.5) and (13.29). So E+ ⊂ R+.

Next we check (13.2). Let z ∈ R+ be given. When z ∈ Ri for some i ∈ I1, (13.2) follows
from (13.30) and (13.7). Otherwise, z ∈ Rc for some c ∈ CC+, and

(13.44) |p(z)− z| = |pc(z)− z| ≤ 10 dist(z,Γc)

by (13.31) and (13.12). Let ` be such that c ∈ CC+(`). If z ∈ T+
c , then z ∈ D` (see (13.28)),

and dist(z,Γc) ≤ 2τ because every Γc contains at least a point in D`. In this case (13.2)
follows from (13.44).

By (13.28), we are left with the case when z ∈ Ri for some i ∈ I(c), and we still want
to evaluate dist(z,Γc). Let ` be such that c ∈ CC+(`); notice that in fact c ∈ CC(`); the
special components c` that were artificially added don’t come with a set I(c).

We shall now use the fact that for all the components c such that i ∈ I(c), Γc contains
a small Lipschitz graph Γ, over some geodesic ρ = ρ(a∗i , x), and where the other endpoint x
lies in D. This is why we did not remove Li in Configuration H, for instance.

We want to see where Γ is localized. Recall that Γ was constructed by applying Section 8
to a curve γ with the same endpoints. There are a few ways in which γ was chosen, depending
on the configuration, but in all the cases γ was contained in Li ∪ D. In the algorithm of
Section 8, Γ is obtained from γ by replacing some of its sub-arcs with the geodesics with the
same endpoints; because of this,

(13.45) Γ ⊂ Hull(γ) ⊂ Hull(Li ∪D),

where the convex hulls Hull(γ) and Hull(Li∪D) are defined in terms of geodesics in S. There
is no ambiguity about geodesics, because we shall see that Li ∪ D stays quite close to Ci,
which is a geodesic of length at most π/2. More precisely, (6.46) says that dist(x,Ci) ≤ 10−8τ
for x ∈ Li, and since ` is an endpoint of Ci, we deduce from (13.45) that

(13.46) dist(x,Ci) ≤ 2τ for x ∈ Γ.

Let us check that this implies that

(13.47) dist(x,Γ) ≤ 5τ for x ∈ Ci.

Since Γ starts from a∗i (very close to the endpoint ai of Ci, and ends in D, we can assume that
τ < |x− `| < |a∗i − `|. Since Γ is connected, we can find y ∈ Γ such that |y− `| = |x− `|, and
by (13.46) a point z ∈ Ci such that |z−y| ≤ 2τ . Then

∣∣|z−`|−|x−`|∣∣ =
∣∣|z−`|−|y−`|∣∣ ≤ 2τ ,

and hence |z−x| ≤ 3τ because x and z both lie on the geodesic Ci that starts from `. Finally
|y − x| ≤ |y − z|+ |z − x| ≤ 5τ , as needed for (13.47).
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We may now return to z ∈ Ri and chase points. By (13.5), there is a point z1 ∈ Li such
that |z1−z| ≤ 10−1τ . By (6.46), we can find z2 ∈ Ci such that |z2−z1| ≤ 10−8τ . By (13.47),
we can find z3 ∈ Γ such that |z3 − z2| ≤ 5τ . Since Γ ⊂ Γc, we get that

(13.48) dist(z,Γc) ≤ dist(z,Γ) ≤ |z − z3| ≤ 6τ,

and (13.2) follows from (13.44) in this last case as well.

Finally we need to check (13.4). When ` ∈ c for some c ∈ CC(`), we made sure to keep
` ∈ Γc. Then pc(`) = ` by (13.12), and (13.4) follows from (13.31). Otherwise, we added
a special component c` = H` to CC+(`), and took pc`(z) = ` for all z, in particular z = `.
This completes our proof of Proposition 13.1.

14 Our first competitor and the contribution from the

thin gluing annulus

We now have a net γ∗ of curves in E ∩ S, another net Γ∗ of Lipschitz graphs, and (by
Proposition 13.1) a projection p from a neighborhood E+ of E ∩ S to the net Γ∗. We want
to use these to construct a first competitor for E. We use the following lemma to choose
another very small number τ4 > 0.

Lemma 14.1. Set

(14.1) A(t) = B(0, 1) \B(0, 1− t) for 0 < t < 10−1.

We can find τ4 > 0 such that

(14.2)
x

|x|
∈ E+(τ3) for x ∈ E ∩ A(2τ4).

Here E+(τ3) is defined by (13.1), and τ3 was chosen in Proposition 13.1. Of course we
don’t get any uniform control on τ4; we did not even get a uniform control on τ3.

The proof is easy. If we could not find τ4, we would be able to find a sequence of points
xk ∈ E ∩A(2−k), that tends to a limit x∞, but so that xk

|xk|
stays at distance at least τ3 from

E ∩ S. This is impossible because x∞ ∈ E ∩ S.

Let τ4 satisfy the conclusion of the lemma, and take any σ ∈ (0, τ4); we see σ as a small
parameter that we may chose later.

Extend p so that it is homogeneous of degree 0. That is, set

(14.3) p(x) = p(x/|x|) when
x

|x|
∈ E+.

Then, by (14.2), p is well defined (and Lipschitz with a bad norm) on E ∩ A(2τ4).
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We are ready to define a new competitor for E, which we write as

(14.4) F 0 = ϕ0(E),

for some ϕ0 that will be defined soon. The main part of F 0 will be a subset of the cone over
Γ∗. We will not be finished yet, F 0 will need to be further improved. First we set

(14.5) ϕ0(x) = x for x ∈ E \B(0, 1).

On the exterior part of B(0, 1), we use p to contract reasonably slowly on Γ∗. That is, we
set

(14.6) ϕ0(x) =
|x|+ σ − 1

σ
x+

1− |x|
σ

p(x) for x ∈ E ∩ A(σ).

Notice that this makes sense because p(x) is well defined there, and also that the two defi-
nitions yield ϕ0(x) = x on S. On the other sphere,

(14.7) ϕ0(x) = p(x) ∈ Γ∗ ⊂ S for x ∈ E ∩ ∂B(0, 1− σ).

Now we contract very brutally along the cone over Γ∗. Set

(14.8) ϕ0(x) =
|x|+ 2σ − 1

σ
p(x) for x ∈ E ∩ A(2σ) \ A(σ).

Again this is continuous across ∂B(0, 1− σ), and ϕ0(x) = 0 on ∂B(0, 1− 2σ). Thus we can
safely take

(14.9) ϕ0(x) = 0 for x ∈ E ∩B(0, 1− 2σ).

This gives a Lipschitz mapping ϕ0 defined on E; its Lipschitz constant depends on σ, τ4,
and τ3 and may be really huge, so we will be careful not to use this directly in the estimates.
Since we like to define competitors in terms of deformations, we are also led to set

(14.10) ϕ0
t (x) = (1− t)x+ tϕ0(x) for x ∈ E and t ∈ [0, 1],

and check that

(14.11) the ϕ0
t define an acceptable deformation for E in B(0, 1),

as in Definition 1.1. As often, (1.1) and (1.2) are trivial, (1.3) holds because |p(x)| ≤ 1 and
the unit ball is convex, (1.5) holds because ϕ0 is Lipschitz, and the only interesting piece is
the boundary condition (1.4).

Let x ∈ E ∩ L be given. If |x| ≥ 1, ϕt(x) = x by (14.5) and (14.10), and ϕ0
t (x) ∈ L

trivially. If |x| < 1− 2σ, ϕ0(x) = 0 and hence ϕ0
t (x) = (1− t)x ∈ L. So let us assume that

|x| ≥ 1− 2σ ≥ 1/2.
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Set ` = x/|x| ∈ L. We claim that ` ∈ K too. Indeed, otherwise (4.1) and (4.3) say
that dist(`,K) ≥ ηL(X) ≥ 10η(X), but yet dist(x,X) ≤ 2ε by (5.3), hence dist(`,X) ≤
2|x|−1ε ≤ 5ε, a contradiction. So ` ∈ K ∩ L, p(`) = ` by (13.4), and the various formulae
yield ϕ0

t (x) ∈ L; (14.11) follows.

It is amusing that the very brutal part (14.8) works so well. We like it because it allows
us to concentrate on the set E ∩ A(2σ), and essentially disregard any bad behavior that E
may have in a smaller ball. Of course we will still need to know that E is nice on the thin
annulus A(σ), and we shall get part of this with a maximal function argument.

The main part of F 0 ∩B(0, 1) is contained in

(14.12) ΣF (Γ∗) =
{
tx ; t ∈ [0, 1] and x ∈ Γ∗

}
,

the (truncated) cone over Γ∗. Indeed,

(14.13) ϕ0(E ∩B(0, 1− σ)) = {0} ∪ ϕ0(E ∩B(0, 1− σ) \B(0, 1− 2σ)) ⊂ ΣF (Γ∗)

by (14.9), because p(E ∩ A(2σ)) ⊂ p(E+) ⊂ Γ∗ (by Proposition 13.1), and then by (14.8).

In the rest of this section, we control the remaining piece of ϕ0(E ∩ B), which is the set

(14.14) F (σ) = ϕ0(E ∩ A(σ)).

Once this is done, we shall still want to improve on the cone ΣF (Γ∗), and construct other
competitors. But we shall be able to use the next estimates on F (σ) for those too.

We shall leave the dependence on σ explicit in estimates, because we shall need to check
that some of our estimates do not depend on σ, but we set A = A(σ) to save some space.
We want to estimate

(14.15) M(σ) = H2(F (σ)).

In next lemma we use some of the additional properties of our radius r = 1 that we
required in Section 5.

Lemma 14.2. If H1(E ∩ S) < +∞ and the assumption (5.8) holds for r = 1, then

(14.16) lim sup
σ→0

M(σ) ≤ C

ˆ
E∩S

dist(x, p(x))dH1(x).

This lemma is essentially measure-theoretic; then we shall estimate the right-hand side
of (14.16), and this will use the construction of p.

Before we prove this, let us explain roughly why it may be true. We shall use the area
formula to estimate M(σ), but the point is that ϕ0(E ∩A) is like a curtain, composed from
all the segments [x, p(x)]; thus (14.16) looks a little like Fubini’s theorem.

118



The proof is not very complicated, but since it is also done in [C1] (see (9.46) there and
its proof), we only give the great lines. First, we use the rectifiability of E and the area
theorem (Corollary 3.2.20 in [Fe]) to write

(14.17) M(σ) ≤
ˆ
E∩A

Jϕ0(x)dH2(x),

where Jϕ0(x) is the Jacobian of the approximate differential Dϕ0(x) of ϕ0 along E, which is
defined for H2-almost every x ∈ E. Then we estimate the size of Dϕ0(x) on an orthonormal
basis of (v, w) of the approximate tangent plane to E at x. We choose (v, w) so that v is
orthogonal to the radial direction [0, x]; then (14.6) and our local Lipschitz estimate (13.3)
for p yield |Dϕ0(x) · v| ≤ C (we may assume that |x| ≥ 1/2 so that (14.3) is tame, and in
the direction of v the differential of the radial cut-off function in (14.6) vanishes). In the
direction w, we get the estimate

(14.18) |Dϕ0(x) · w| ≤ C + σ−1 cos θ(x)|p(x)− x|,

where θ(x) is the angle of w with the radial direction, or equivalently cos θ(x) = |〈w, x|x|〉|.
Then

(14.19) Jϕ0(x) ≤ |Dϕ0(x) · v| |Dϕ0(x) · w| ≤ C + Cσ−1 cos θ(x)|p(x)− x|.

Then we apply the coarea theorem (3.2.22 in [Fe]), to the mapping h defined by h(x) = |x|,
integrated against the continuous function x→ |p(x)− x|, and get that

(14.20)

ˆ
E∩A
|p(x)− x|Jh(x)dH2(x) =

ˆ
t∈(1−σ,1)

ˆ
E∩∂B(0,t)

|p(x)− x|dH1(x)dt,

with the one-dimensional jacobian Jh = |Dh(x) ·w| = cos θ(x). Thus by (14.17), (14.19) and
(14.20),

(14.21)

M(σ) ≤ C

ˆ
E∩A

[
1 + σ−1 cos θ(x)|p(x)− x|

]
dH2(x)

≤ CH2(E ∩ A) + Cσ−1

ˆ
t∈(1−σ,1)

ˆ
E∩∂B(0,t)

|p(x)− x|dH1(x)dt.

Now we let σ tend to 0. Notice that H2(E ∩ S) = 0 because H1(E ∩ S) < +∞. Next
H2(E∩B(0, 1)\B(0, 1−σ)) tends to 0, because H2(E∩B(0, 1)) < +∞ and by the monotone
convergence theorem (or the definition of a measure). Thus H2(E ∩ A(σ)) tends to 0. The
other term in (14.21) tends to

´
E∩∂B(0,1)

|p(x) − x|dH1(x), by our special assumption (5.8);

(14.16) and Lemma 14.2 follow.

We now estimate the right-hand of (14.16), and proceed as in the end of Section 9 in [C1].
Notice that we are very happy that we have to estimate an integral on E ∩ S (as opposed to
an annulus), because this is precisely the place that we control. We know from (13.2) that

(14.22) dist(x, p(x)) ≤ 60τ for x ∈ E ∩ S,
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but there are lots of points of E ∩ S for which p(x) = x, and which we can take out of the
estimates. First we check that

(14.23) p(x) = x for x ∈
⋃
i∈I1

Li.

Indeed, x ∈ Ri (see the definition (13.5)), and p(x) = pi(x) = x by (13.30) and (13.7). Next
we claim that

(14.24) p(x) = x for x ∈
⋃
c∈CC

(
γc ∩ Γc

)
.

Recall that γc = γc ∪
(⋃

i∈I(c) Li
)

(we add the curves Li that touch the points of c ∩ ∂D).

The arcs Li above are contained in Rc, by (13.28), so p(x) = pc(x) = x when x ∈ Li ∩ Γc,
by (13.31) and (13.12).

We are left with x ∈ γc ∩ Γc. Let us recall why γc ⊂ c. In Sections 10-12, when we
constructed the nets Γ = Γc, we always started from a set γ ⊂ E∩D. This set was connected
and contained at least one point of ∂D; this is how we defined the different configurations.
Then γ is contained in the component c (often called Hi) that contains any point of γ ∩ ∂D.
So γc ⊂ c. In addition, c ⊂ Tc ⊂ T+

c ⊂ Rc by (13.18) and (13.28). Then p(x) = pc(x) by
(13.31), and since x ∈ Γc, (13.44) says that p(x) = x. So (14.24) holds. Thus, in the set

(14.25) γ∗ =
( ⋃
i∈I1

Li
)
∪
( ⋃
c∈CC

γc

)
,

the only part that remains is
⋃
c∈CC [γc \ Γc]. For the rest of E ∩ S, we don’t try anything,

and just keep the set E ∩ S \ γ∗.
Finally, it follows from (14.16) and (14.22) that

(14.26) lim sup
σ→0

M(σ) ≤ Cτ
∑
c∈CC

H1(γc \ Γc) + CτH1(E ∩ S \ γ∗).

We are reasonably happy about this. We consider M(σ) as a loss in the estimates, and we
expect it to be compensated by larger wins. In this respect, E ∩S\γ∗ is a part of E ∩S that
we just dropped to get γ∗, so we will save much more than CτH1(E ∩ S \ γ∗) by removing
it from the picture (when we construct cones), and similarly H1(γc \ Γc) is controlled by
(10.7), and the corresponding term of (14.26) will be compensated by a win of area when
we replace the cone ΣF over Γ∗ with a bunch of harmonic graphs.

15 A second competitor build with harmonic graphs

The competitor F 0 that we constructed in the previous section was just a first attempt,
which still looks a little like the cone over E ∩ S. It is better in some sense, because we got
rid of E ∩ S \ γ∗, but the advantage of replacing γ∗ with Γ∗ is not clear yet.
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In this section we construct our first serious competitor, obtained from F 0 by replacing
parts of ΣF (Γ∗) by better surfaces constructed in Section 9.

Recall that Γ∗ is the union of the Lipschitz nets Γ that were constructed in Sections 10-
12. Since the construction was done by connected components in configurations, our best
description so far is that

(15.1) Γ∗ =
( ⋃
i∈I1

Γi

)
∪
( ⋃
c∈CC+

Γc

)
,

where the notation is the same as in Section 13 (see below (13.9)), and where, if we use
Remark 6.3, we managed to take Γi = Li for i ∈ I1. But we could also have kept things
the way they were at the beginning, but replaced Li by a small Lipschitz Γi with the same
endpoints, obtained as in Section 8.

To save some space, we condense (15.1) into

(15.2) Γ∗ =
⋃

c∈I1∪CC+

Γc.

Then the main part of F 0 ∩ B is the cone

(15.3) ΣF (Γ∗) =
⋃

c∈I1∪CC+

ΣF (Γc),

where ΣF is our standard notation for a cone. Thus, as in (14.12),

(15.4) ΣF (Γc) =
{
tx ; t ∈ [0, 1] and x ∈ Γc

}
.

Recall that the sets Γc are disjoint, except for common endpoints at vertices a∗i .
Now we want a finer decomposition of Γ∗ into single Lipschitz curves, which we shall

write as

(15.5) Γ∗ =
⋃
j∈J∗

Γj

for some new set of indices J∗. Let us say how we do it, so as not to create too much
confusion. When i ∈ I1, we have a single curve Γi = Li; we keep it as it is, just put the
set of indices I1 in J∗ and keep the same curves with the same names. We could also do
this when c ∈ CC and Γc is composed of a single curve, but let us not bother. Instead, for
c ∈ CC, we observe that Γc us composed of at most 4 small Lipschitz graphs Γj, as in the
description of Section 10, and write this as

(15.6) Γc =
⋃

j∈J(c)

Γj.

We also include (the elements of) J(c) in the index set J∗. Finally, there is the case of the
special components c` ∈ CC+ \ CC. If c` is such a component, we took Γc = {`}, it is a
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single degenerate curve, and we also put it in our bag J∗ with the same name. Thus our
new set of indices is

(15.7) J∗ = I1 ∪
( ⋃
c∈CC

J(c)
)
∪ (CC+ \ CC).

But again, we just took all the nets we had, decomposed them into single curves (some times,
just points), and got a bunch of curves Γj. With our new notation, (15.3) becomes

(15.8) ΣF (Γ∗) =
⋃
j∈J∗

ΣF (Γj).

Now we want to replace each ΣF (Γj), j ∈ I1 ∪
⋃
c∈CC J(c), by a better surface ΣG(Γj),

and this is the place where we shall use Section 9.
We start with the case when we change nothing. When j ∈ CC+ \CC, i.e., when j = c`

comes from one of our special components, we just keep

(15.9) ΣG(Γj) = ΣF (Γj) = [0, `],

where the second part comes from the fact that Γc` = {`}.
But we do the modification for all the other Γj, including the Γj, j ∈ I1. In this last case,

Γj does not come from another curve through the construction of Section 8, but (if ε in (5.3)
is small enough), the proof of Proposition 6.5 shows that it still satisfies the assumptions of
Section 9; see Remark 6.3.

The same remark applies to Γj when it comes from Configuration H; in this case we
decided in Section 10 to keep Γj = Lj (i.e., without applying the construction of Section 8
to it), precisely because Proposition 6.5 tells us that it is essentially useless.

So fix j ∈ J∗ \ (CC+ \ CC); recall that Γj is a small Lipschitz graph over some geodesic
ρj, and by changing coordinates in Rn we can assume that

(15.10) ρj =
{

(cos θ, sin θ, 0) ; θ ∈ [0, Tj]
}
⊂ R2 × {0}.

We do not have a lower bound on Tj = length(ρj) as in [D4], but the construction yields
Tj ≤ π

2
+ 2τ , since length(Ci) ≤ π

2
for i ∈ I, and this will be enough.

It may be that Γj is only 103λ-Lipschitz (if it comes from Lemma 11.5), but we shall
assume that λ is so small that the results of Section 9 apply to Γj anyway. Then we get a
new surface ΣG(Γj), with the same boundary as ΣF (Γj), and a few additional properties.
Let us say more and recall a little bit of Section 9 at the same time.

We started from the (infinite positive) cone over Γj, which is the graph of some function
F which is defined on a sector of R2 and naturally homogeneous of degree 1. In fact, we
restricted F to the domain DT of (9.2), and obtained a set Σ′F , which is the graph of F over
DT and contains ΣF = ΣF (Γj).

Then we constructed a new function G on the same domain DT , which is also null on the
segments [0, a] and [0, b], where a and b denote the endpoints of ρj. In addition, G = F on
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DT \B(0, 9/10) (see (9.13)), so that the graph Σ′G coincides with Σ′F in a small neighborhood
of ∂B. So, in some way, Σ′G and Σ′F have the same boundary on B.

Then we set ΣG(Γj) = ΣG = Σ′G ∩ B. Just like ΣF , ΣG is bounded by Γj on ∂B, and by
the two segments [0, a] and [0, b]. Let us say why it is a little better than ΣF .

There is an additional condition (9.14), which implies that for some small constant κ > 0,

(15.11) ΣG(Γj) ∩B(0, κ) = ΣF (ρj) ∩B(0, κ),

where as usual ΣF (ρj) is the cone over ρj; we will use this later, but for this section we do
not care.

Also, G is Cλ-Lipschitz (by (9.15)), so ΣG is not too wild, and the important new
information is that ΣG has less area than ΣF , since (9.19) says that

(15.12) H2(ΣG(Γj)) ≤ H2(ΣF (Γj))− 10−4[ length(Γj)− length(ρj)].

Now we glue the ΣG(Γj) together, and get the set

(15.13) ΣG(Γ∗) =
⋃
j∈J∗

ΣG(Γj).

Our next task is to construct a competitor F 1 whose main piece is contained in ΣG(Γ∗)
rather than ΣF (Γ∗) (compare to (14.13)). For this the simplest is to continue the deformation
that led to F 0, i.e., deform ΣF (Γ∗) into ΣG(Γ∗). We proceed piece by piece, and for each
j ∈ J∗ find a mapping ψj : ΣF (Γj)→ ΣG(Γj).

Fix j ∈ J∗. If Γj comes from one of our special components c`, then ΣG(Γj) = ΣF (Γj) =
[0, `] by (15.9), and we just take ψj(z) = z. So let us assume that Γj is a real curve, either
an Lj, j ∈ I1, or coming from the construction of Section 8.

Choose as above coordinates in Rn so that ρj is, as in (15.10), an arc of circle inside
P = R2. Call π and π⊥ the orthogonal projections on P and its orthogonal complement P⊥,
and otherwise keep the same notation as above. Recall that Σ′F is the graph of F : P → P⊥

over DT , and similarly with Σ′G and G. We define ψj : Σ′F → Σ′G by

(15.14) ψj(z) = π(z) +G(π(z));

in other words, we project along the direction of P⊥. We are only interested in the restriction
of ψi to ΣF (Γj) = ΣF = Σ′F ∩ B. Let us check that

(15.15) ψj(z) = z for z ∈ ∂ΣF (Γj),

where the boundary ∂ΣF (Γj) is composed of the two line segments [0, a] and [0, b] that go
from 0 to the endpoints of ρj, and Σ′F∩∂B. For [0, a] and [0, b], this is just because F = G = 0
on these two segments. For Σ′F ∩ ∂B, we can even see that

(15.16) ψj(z) = z for z ∈ ΣF (Γj) \B
(
0,

99

100

)
,
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because F = G outside of 9
10
B (by (9.13)); of course we also use the fact that ||F ||∞ is small

if λ is small enough, to make sure that the two graphs Σ′F and Σ′G coincide outside of 99
100

B.
So we have mappings ψj : ΣF (Γj)→ ΣG(Γj), and we put them together to get a mapping

ψ : ΣF (Γ∗)→ ΣG(Γ∗). Here we use the fact that the curves Γj only meet at their endpoints,
and with large angles; the result is that the ΣF (Γj) only meet along the segments that go
from 0 to these endpoints, and with the same angles. Since ψj(z) = z along these segments,
we get that ψ is well defined, and even Lipschitz (because each piece is Lipschitz). We do
not care if the Lipschitz constant is large (typically, if two of the Γj get close to each other
somewhere else than the common endpoints), so we shall not try to check that this does not
happen. Similarly, we shall not try to show that the sets ΣG(Γj) are disjoint; they probably
are, but our argument does not need this. Finally let us observe that because of (15.16),

(15.17) ψ(z) = z for z ∈ ΣF (Γ∗) \B
(
0,

99

100

)
.

Our second competitor is F 1 = ϕ1(E), where ϕ1 is defined by

(15.18) ϕ1(x) = ϕ0(x) for x ∈ E \B(0, 1− σ)

and

(15.19) ϕ1(x) = ψ ◦ ϕ0(x) for x ∈ E ∩B(0, 1− σ).

This last part makes sense, because ϕ0(x) ∈ ΣF (Γ∗) for x ∈ E ∩B(0, 1− σ) (by (14.13)).
Let us check that ϕ1 is Lipschitz on E. The only potential problem is across ∂B(0, 1−σ).

Recall from (14.7) that ϕ0(x) ∈ Γ∗ ⊂ S for x ∈ E ∩ ∂B(0, 1− σ), so we can find σ′ > σ such
that |ϕ0(x)| > 99

100
for ∈ E ∩ \B(0, 1− σ′). Then (15.19) actually yields

(15.20) ϕ1(x) = ϕ0(x) for x ∈ E ∩B(0, 1− σ) \B(0, 1− σ′),

so there is an annulus where the two definitions coincide, and ϕ1 is Lipschitz. We can of
course define a one parameter family {ϕ1

t}, 0 ≤ t ≤ 1, by linear interpolation, as we did in
(14.10), and, as before, the fact that

(15.21) the ϕ1
t , 0 ≤ t ≤ 1, define an acceptable deformation for E in B(0, 1)

will follow as soon as we check the boundary constraint, i.e., that

(15.22) ϕ1
t (x) ∈ L for x ∈ E ∩ L.

When |x| ≥ 1−σ, ϕ1
t (x) = ϕ0

t (x), and we already checked this. When |x| < 1−2σ, ϕ0(x) = 0
by (14.9), and then ϕ1(x) = 0 and ϕ1

t (x) = (1 − t)x ∈ L. We are left with the case when
x ∈ A(2σ)\A(σ). We already checked below (14.11) that ` = x/|x| lies in K ∩L. By (13.4),
p(`) = `. By (14.8), ϕ0(x) = α` for some α ∈ [0, 1].

Now there are two cases. If ` lies in one of our special components c = c`, then ΣF (Γc) =
ΣG(Γc) = [0, `], and we took ψj(z) = z on ΣF (Γc) (where j is the element of J∗ that comes
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from c`). Otherwise, ` lies in one of the regular components c ∈ CC(`). In this case, which
comes from Configuration 1, 2+, 3 = 2+1, or 3+, we made sure to include ` in the Lipschitz
net Γc, not only as a point, but as a vertex. This means that ` is actually an endpoint of
one of our curves Γj, j ∈ J∗, and by (15.15) ψ(z) = z on [0, `]. Thus ϕ1(x) = ϕ0(x) = α` by
(15.19), and ϕ1

t (x) ∈ L by the analogue of (14.10) for the ϕ1
t ; (15.22) and (15.21) follow.

With the terminology of Definition 1.1, F 1 is a sliding competitor for E in B (in fact our
first interesting competitor), and since E is a sliding almost minimal set, Definition 1.2 says
that (1.8) holds for F 1. That is,

(15.23) H2(E ∩ B) ≤ Hd(F 1 ∩ B) + h(1) ≤ Hd(F 1 ∩ B) + ε

by (5.1) and (5.2). Now we cut F 1 ∩ B into pieces. First observe that

(15.24) F 1 ∩ B = ϕ1(E ∩ B)

because ϕ1(x) = ϕ0(x) = x for x ∈ E \B (by (15.18) and (14.5)). We start with an exterior
part which is the same as before; that is,

(15.25) ϕ1(E ∩ B \B(0, 1− σ)) = ϕ0(E ∩ B \B(0, 1− σ)) = ϕ0(E ∩ A(σ)) = F (σ)

by (15.18), (14.1) and (14.14). The size of this part will be estimated by (14.15) and (14.26).
We are left with

(15.26) ϕ1(E ∩B(0, 1− σ)) ⊂ ψ(ϕ0(E ∩B(0, 1− σ))) ⊂ ψ(ΣF (Γ∗)) ⊂ ΣG(Γ∗),

by (15.19), (14.13), and the definition of ψ. We shall thus need to estimate H2(ΣG(Γ∗)). We
start with an easier estimate for the cone ΣF (Γ∗). We claim that

(15.27) H2(ΣF (Γ∗)) =
∑
j∈J∗
H2(ΣF (Γj)) =

1

2

∑
j∈J∗
H1(Γj) =

1

2
H1(Γ∗) =

1

2

∑
c∈I1∪CC

H1(Γc).

The first equality is true because the union is disjoint, except for segments that come from
the endpoints of the Γj. For the second part, the simplest is to use the area formula. Let
z : I → Γj denote a parameterization of Γj by arclength. Then we have a parameterization
of ΣF (Γj) by (t, x) ∈ [0, 1] × I → tz(x) ∈ ΣF (Γj) (compare with the definition (15.2) if
needed). The area formula says that

(15.28) H2(ΣF (Γj)) =

ˆ
[0,1]×I

J(t, x)dxdt,

where J is the appropriate Jacobian. Since z takes values in the sphere, a simple computation
says that J(t, x) = t; then

(15.29)

ˆ
[0,1]×I

J(t, x)dxdt =

ˆ
[0,1]×I

tdxdt =
|I|
2

=
length(Γj)

2
,

125



as needed. The third identity comes from (15.5) (the Γj are essentially disjoint), and in
the last one we used (15.7), regrouped indices j ∈ J(c) for c ∈ CC, and simply dropped
the exceptional sets Γc` coming from CC+ \ CC, because they are singletons {`} with no
H1-measure.

With the present notation, (10.6) says that H1(Γc) ≤ H1(γc) for c ∈ CC; since we do
not want to forget too fast what we win, set

(15.30) ∆1 =
∑
i∈I1

[H1(Li)−H1(Γi)] +
∑
c∈CC

[H1(γc)−H1(Γc)],

where we observe that all the terms are nonnegative. With the presentation we chose (using
Remark 6.3 and then taking Γi = Li for i ∈ I1), the first terms disappear; if we had chosen
the other option where Γi is obtained from Li by the method of Section 8, they would exist
but would not harm (by (8.16)). Then

(15.31)

∑
c∈I1∪CC

H1(Γc) =
∑
i∈I1

H1(Γi) +
∑
c∈CC

H1(Γc)

≤
∑
i∈I1

H1(Li) +
∑
c∈CC

H1(γc)−∆1 = H1(γ∗)−∆1

because Γi = Li for i ∈ I1, by (14.25), and because the union in (14.25) is essentially disjoint.
Notice that γ∗ ⊂ E ∩ S by construction, so we will really save H1(E ∩ S \ γ∗) here. In the
mean time, we return to (15.27) and get that

(15.32) H2(ΣF (Γ∗)) =
1

2

∑
c∈I1∪CC

H1(Γc) ≤
1

2
H1(γ∗)− ∆1

2
.

Next we record what we win in (15.12). Set

(15.33) ∆2 =
∑
j∈J∗

[ length(Γj − length(ρj)] ≥ 0;

then by (15.12)

(15.34) H2(ΣG(Γ∗))−H2(ΣF (Γ∗)) ≤
∑
j∈J∗
H2(ΣG(Γj))−H2(ΣF (Γj)) ≤ −10−4∆2,

and

H2(E ∩ B) ≤ H2(F 1 ∩ B) + h(1) ≤ H2(F (σ)) +H2(ΣG(Γ∗)) + h(1)

≤ M(σ) + [H2(ΣG(Γ∗))−H2(ΣF (Γ∗))] +
1

2
H1(γ∗)− ∆1

2
+ h(1)

≤ M(σ) +
1

2
H1(γ∗)− ∆1

2
− 10−4∆2 + h(1)(15.35)
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by the first part of (15.23), (15.24), (15.25), and (15.26), then (14.15), (15.32), and (15.34).
Next we estimate M(σ). Let ε′ be a very small number, to be chosen later. We may now

choose σ very small, such that

(15.36) M(σ) ≤ ε′ + lim sup
σ→0

M(σ) ≤ ε′ + Cτ
∑
c∈CC

H1(γc \ Γc) + CτH1(E ∩ S \ γ∗),

where the second estimate comes from (14.26). For each c ∈ CC, γc \ Γc is contained in the
symmetric difference ∆(γc,Γc) that shows up in (10.4). Then by (10.7)

(15.37)

∑
c∈CC

H1(γc \ Γc) ≤
∑
c∈CC

H1(∆(γc,Γc))

≤ C(λ)
∑
c∈CC

[H1(γc)−H1(Γc)] + [H1(Γc)−H1(ρc)]

where the notation has been adapted, and ρc = ∪j∈J(c)ρj, by (10.5) and the notation of
(15.6); also see the definition of ρj above (15.10). In the first sum we recognize ∆1 from
(15.30), and for the second sum we notice that

(15.38) H1(Γc)−H1(ρc) =
∑
j∈J(c)

[H1(Γj)−H1(ρj)]

because Γc is the disjoint union of the Γj, j ∈ J(c) (see (15.6)), and the ρj also are disjoint
(again by construction, by the same proof). We recognize a partial sum of ∆2; thus (15.36)
and (15.37) yield

(15.39) M(σ) ≤ C ′(λ)τ(∆1 + ∆2) + CτH1(E ∩ S \ γ∗) + ε′.

For the second term, we we just observe that since γ∗ ⊂ E ∩ S,

(15.40) H1(E ∩ S) = H1(γ∗) +H1(E ∩ S \ γ∗).

Now comes the main relation between τ and λ: we require τ to be so small, depending on
λ, that C ′(λ)τ ≤ 10−5, and Cτ < 1/4 for the second term; this way both terms of (15.39)
are eaten and (15.35) yields

(15.41)
H2(E ∩ B) ≤ 1

2
H1(γ∗) + CτH1(E ∩ S \ γ∗)− ∆1

2
− 10−5∆2 + h(1) + ε′

≤ 1

2
H1(E ∩ S)− 1

4
H1(E ∩ S \ γ∗)− ∆1

2
− 10−5∆2 + h(1) + ε′.

We kept ε′ obediently, but since it can be taken arbitrarily small, we may now drop it from
(15.41). We want a more concise version of this, so let us reorganize some of the terms. We
start with

(15.42)

H1(γ∗)−H1(Γ∗) =
∑
i∈I1

H1(Li) +
∑
c∈CC

H1(γc)−
∑

c∈I1∪CC

H1(Γc)

=
∑
i∈I1

[H1(Li)−H1(Γi)] +
∑
c∈CC

[H1(γc)−H1(Γc)] = ∆1
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by (14.25), the end of (15.27), and (15.30). Next we introduce the geodesic net

(15.43) ρ∗ =
⋃
j∈J∗

ρj ;

these curves are essentially disjoint (by the same proof as for the Γj); we possibly included
one or two degenerate curves {`}. In terms of estimates, these degenerate curves will not
count, so we may also have dropped them too. But for the moment we keep them. Anyway,

(15.44) H1(Γ∗)−H1(ρ∗) =
∑
j∈J∗

[H1(Γj)−H1(ρj)] = ∆2

by (15.5), because the Γj are also essentially disjoint, and by (15.33). By (15.40) and this,

(15.45) H1(E∩S)−H1(ρ∗) = H1(E∩S\γ∗)+H1(γ∗)−H1(ρ∗) = H1(E∩S\γ∗)+∆1 +∆2

and (15.41) implies that

(15.46) H2(E ∩ B) ≤ 1

2
H1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)] + h(1).

We can be confident that this will lead to reasonable differential inequalities in some cases,
because it looks a lot like (9.69) in [D4]. But we also expect, because this is what happens
in [D4], that it will not be great in some other cases, and this is the reason why we introduce
a last competitor F 2 in the next section, which uses the full length property. Modulo
computations that will be done below, the estimate above shows that the most delicate case
is probably when H1(E ∩ S)−H1(ρ∗) is very small, i.e., when E ∩ S actually looks a lot like
a collection of geodesics ρj. The point of the full length property is somehow to take care of
this situation, at least at the level of definitions.

16 A third competitor that uses the full length

As was discussed near (9.70) in [D4] (and we propose to trust this for the moment), (15.46)
will give good differential inequalities when

(16.1) H1(ρ∗) ≤ 2H2(X ∩ B).

Otherwise, we shall need to improve (15.46) a little bit, by a quantity which is roughly
proportional to

(16.2) ∆L =
[
H1(ρ∗)− 2H2(X ∩ B)

]
+

= max
(
0,H1(ρ∗)− 2H2(X ∩ B)

)
.

In this section we assume that

(16.3) X has the full length property,
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improve our second competitor in the small tip near the origin, and use this show that under
the assumptions of Section 5 and if ε in (5.3) is chosen small enough,

(16.4) H2(E ∩ B) ≤ 1

2
H1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)]− C−1∆L + h(1).

This will be our main comparison estimate, the one that leads to nice differential inequalities.
The constant C in (16.4) depends on X, in particular through η(X) in (4.3) and the small
constants η and c in the full length property. Also, ε will need to be small, depending on
our usual constants λ and τ , but also the small η in the full length property.

Notice that when (16.1) holds, (16.4) is just the same as (15.46); thus we can assume
that (16.1) fails.

We start from (15.11), which says that for j ∈ J∗, ΣG(Γj) coincides with the cone ΣF (ρj)
in a small ball B(0, κ). We use (15.13) to take the union, and get that

(16.5) ΣG(Γ∗) ∩B(0, κ) = ΣF (ρ∗) ∩B(0, κ);

we shall see later that (15.24)-(15.26) give the same description for F 1 ∩ B(0, κ). Here κ is
the small absolute constant of (9.14).

We shall start our discussion by assuming that

(16.6) ρ∗ = ϕ∗(K) for some ϕ ∈ Φ+
X(η),

for some η > 0 which is small enough for us to apply the full length property (16.3). This
is not always the case, but we shall first assume (16.6), prove our main estimate, and then
return and take care of the differences. Set X1 = ϕ∗(X) (the full cone over ϕ∗(K)). Notice
that since (16.6) implies that

(16.7) ΣF (ρ∗) = ϕ∗(X) ∩ B = X1 ∩ B,

we can try to use competitors for X1 to improve ΣF (ρ∗), ΣG(Γ∗), and then F 1. Observe also
that ϕ is “injective”, i.e., ϕ ∈ Φ+,i

X (η), because the arcs ρj that compose it (as in (15.43))
only meet at their common endpoints. The quantity ∆(ϕ) of (4.15) is

(16.8) ∆(ϕ) = H1(ϕ∗(K))−H1(K) = H1(ρ∗)−H1(K) = H1(ρ∗)− 2H1(X ∩B) = ∆L > 0

by the proof of the second part of (15.27), the definition (16.2), and because (16.1) fails. So
we are in postion to apply our assumption (16.3). Definition 4.1 says that there is a sliding

competitor X̃ for X1 in B(0, 1) such that (4.16) holds. By Definition 1.1, there is a one
parameter family of functions gt : X1 → Rn (we change the name because ϕ is already used),

such that (1.1)-(1.5) hold with B = B(0, 1), and for which X̃ = g1(X1).
We want to use the gt to construct a competitor F 2 for F 1, and by the same token for E.

Initially, the mappings gt are only defined on X1, but we can extend gt to X1∪ (Rn \B(0, 2))
by setting

(16.9) gt(x) = x for x ∈ Rn \B(0, 2).
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This gives mappings gt that are still continuous, by (1.2), and such that gt(x) ∈ L when
x ∈ L (by (1.4)). Also, g1 is Lipschitz (by (1.5)). We set

(16.10) ϕ2(x) =
κ

2
g1(2κ−1ϕ1(x)) for x ∈ E.

Let us check that ϕ2 is well defined. Notice that we can use (16.9) as soon as |ϕ1(x)| ≥ κ.
For x ∈ E \ B, ϕ1(x) = ϕ0(x) = x by (15.18) and (14.5), we can use (16.9), and we get

that ϕ2(x) = x.
For x ∈ A(σ) = B \ B(0, 1 − σ), ϕ1(x) = ϕ0(x) by (15.18), and ϕ0(x) ∈ [x, p(x)] by

(14.6). Since p(x) = p(x/|x|) by (14.3) and p(x/|x|) ∈ S ∩ B(x/|x|, 60τ) by (13.2), we see
that |ϕ1(x)| > 1/2 > κ, and we can apply (16.9) again. In this case

(16.11) ϕ2(x) = ϕ0(x) ∈ F (σ),

by (14.14). We are left with the case when x ∈ E ∩ B(0, 1 − σ). In this case, (15.26) says
that ϕ1(x) ∈ ΣG(Γ∗). If |ϕ1(x)| ≥ κ, we use (16.9) and we get that

(16.12) ϕ2(x) = ϕ1(x) ∈ ΣG(Γ∗) \B(0, κ).

Otherwise, if |ϕ1(x)| < κ,

(16.13) ϕ1(x) ∈ ΣG(Γ∗) ∩B(0, κ) = ΣF (ρ∗) ∩B(0, κ) = X1 ∩B(0, κ)

by (16.5) and (16.7),

(16.14) 2κ−1ϕ1(x) ∈ X1 ∩B(0, 2)

because X1 is a cone, and this allows us to use the initial definition of g1 in (16.10). We get
that

(16.15) ϕ2(x) =
κ

2
g1(2κ−1ϕ1(x)) ∈ κ

2
g1(X1 ∩B(0, 2)).

So ϕ2 is well defined.
The fact that ϕ2 is Lipschitz comes directly from the definitions (in particular, the fact

that the extended g1 is Lipschitz); it is easy to find a one-parameter family {ϕ2
t} that has ϕ2

as its endpoint, and as before the simplest is to use a formula like (14.10) and the convexity
of B, the boundary property (1.4) holds because g1(L) ⊂ L (and L is convex), as usual, so
F 2 = ϕ2(E) is a sliding competitor for E in B. Thus Definition 1.2 yields

(16.16) H2(E ∩ B) ≤ H2(F 2 ∩ B) + h(1)

(as in (15.23)). Now

(16.17) F 2 ∩ B ⊂ F (σ) ∪
[
ΣG(Γ∗) \B(0, κ)

]
∪
[κ

2
g1(X1 ∩B(0, 2))

]
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by the discussion above and (16.11)-(16.13). We cut the last set in two. If z ∈ X1∩B(0, 2)\B,

then g1(z) = z by (1.2) for g1 (i.e., the fact that X̃ is a competitor for X1 in B); then

(16.18)
κ

2
g1(z) =

κz

2
∈ X1 ∩B(0, κ) \B(0, κ/2) = ΣG(Γ∗) ∩B(0, κ) \B(0, κ/2)

by (16.13). If instead z ∈ X1 ∩ B, then

(16.19)
κ

2
g1(z) ∈ κ

2
g1(X1 ∩ B) =

κ

2
X̃ ∩ B

because g1(z) = z for z ∈ X1 \B and g1(X1 ∩B) ⊂ B by (1.2) and (1.3). Thus (16.17) yields

(16.20) F 2 ∩B ⊂ F (σ) ∪
[
ΣG(Γ∗) \B(0, κ/2)

]
∪ κ

2
X̃ ∩ B

and

H2(F 2 ∩B) ≤ H2(F (σ)) +H2(ΣG(Γ∗))−H2(ΣG(Γ∗) ∩B(0, κ/2)) +H2(
κ

2
X̃ ∩ B)

≤ H2(F (σ)) +H2(ΣG(Γ∗))−H2(X1 ∩B(0, κ/2)) +H2(
κ

2
X̃ ∩ B)

≤ H2(F (σ)) +H2(ΣG(Γ∗)) +
κ2

4
[−H2(X1 ∩ B) +H2(X̃ ∩ B)](16.21)

≤ H2(F (σ)) +H2(ΣG(Γ∗))− cκ2∆(ϕ)

4

by (16.13) and (4.16). This is the same estimate as we had for F 1, at the end of the first line
of (15.35), except that we saved an extra cκ2∆(ϕ)/4. Then we continue the computations
exactly as in Section 15, and get that

(16.22) H2(E ∩ B) ≤ 1

2
H1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)]− cκ2∆L

4
+ h(1)

instead of (15.46), and where ∆L is given by (16.2). This proves the desired estimate (16.4),
with C−1 = cκ2/4, but only in the case when when (16.6) holds.

Let us now discuss the reasons why (16.6) may fail, and what to do then. The problem
is with some of the configurations of Section 7, which may not always produce nets ρj that
follow the description of Section 3.

First assume that for some ` ∈ K ∩ L, Configuration H shows up in our construction of
Γ∗ near `. We intend to show that we do not even need the full length condition to find
better competitors for X1 and E, because we can contract a hanging curve in ρ∗.

Recall that when E ∩ S contains a hanging curve that starts from c∗i , we kept the cor-
responding curve Li both in γc and Γc, where c ∈ CC is the component that contains c∗i .
The geodesic ρi = ρ(a∗i , c

∗
i ) with the same endpoints as Γc is contained in ρ∗. Let us identify

i with the only index j ∈ J(c), so that ρi shows up with the same name in the union of
(15.43). Notice that its endpoint c∗i is still hanging in ρ∗, which means that it does not lie
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in any other ρj, j ∈ J∗ \ {i}. Set ρ′i = ρi \ {ai}; then ρ′i does not meet any other ρj, and this
means that the mapping f : ρ∗ → ρ∗ \ ρ′j defined by f(z) = z for z ∈ ρ∗ \ ρ′j and f(z) = a∗i
for z ∈ ρ∗i is Lipschitz (recall that the ρj that meet ρi at a∗i make large angles with ρi there).

Let us use f to define a nice competitor for the cone over ρ∗. Set X2 =
{
tz ; z ∈

ρ∗ and t ≥ 0
}

and define g : X2 ∪ (Rn \ B)→ Rn by

(16.23) g(x) = x for x ∈ Rn \ B,

(16.24) g(tz) = 2(1− t)tf(z) + (2t− 1)tz for z ∈ ρ∗ and
1

2
≤ t ≤ 1,

where we choose the coefficients so that g(tz) = tz = z when t = 1, and g(tz) = tf(z) when
t = 1/2, and finally

(16.25) g(tz) = tf(z) for z ∈ ρ∗ and t ≤ 1

2
.

Let X1 be the (full positive) cone over ρ∗ (just as in (16.7)), and set X̃ = g(X1). Let us

check that X̃ is a sliding competitor for X1 in B. Of course we use g, and the one parameter
family naturally associated with it, defined by gs(x) = sg(x) + (1 − s)x; the usual simple
estimates (1.1), (1.2), and (1.6) hold because g is Lipschitz, (1.3) holds because B is convex,
and (1.4) holds because the only place where g(x) 6= x is the cone over ρ′j, which does not
meet L because ρj starts at c∗j ∈ ∂D, and goes in the direction of a∗i which is away from `.

Next X̃ = g(X1) is contained in X1, but inside B(0, 1/2) the cone over ρ′j is missing. Thus

(16.26)
H2(X̃ ∩ B) ≤ H2(X1 ∩ B)−H2(ΣF (ρ′j) ∩B(0, 1/2))

= H2(X1 ∩ B)− 1

8
H1(ρ′j) ≤ H2(X1 ∩ B)− η(X)

because distS(c
∗
j , a
∗
j) ≥ 8η(X) by (4.2), (4.3), (6.3), and (6.43). This is even better than the

information we obtained from (16.6) and (16.3): the proof of (16.22) yields

(16.27) H2(E ∩ B) ≤ 1

2
H1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)]− η(X) + h(1),

without even having to assume that (16.1) fails. Notice that the constant ∆L in (16.2) is
bounded by H1(ρ∗) ≤ 2H1(K) (if η is small enough in the definition of full length), so (16.27)
is stronger than (16.4), and we are happy in this case.

A second case when (16.6) fails is when we encounter Configuration 3 = 2 + 1 in the
construction of Sections 10-12. Recall that in this case we chose a center x0, in fact x0 = c∗1
because this was simpler, then the corresponding Γ was composed of three Lipschitz curves,
one leaving from ` and two leaving from x0 = c∗1. At the end of the game, near `, ρ∗ is
composed of three geodesics ρ(c∗1, a

∗
1), ρ(c∗1, a

∗
2), and ρ(`, a∗3). More precisely, we claim that

(16.28) ρ∗ ∩B(`, 9η(X)) = [ρ(c∗1, a
∗
1) ∪ ρ(c∗1, a

∗
2) ∪ ρ(`, a∗3)] ∩B(`, 9η(X)).
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Indeed, all the other ρj, j ∈ J∗ such that meet B(`, 9η(X)) have to come from curves Lj,
j ∈ I1 (the other option, that they would come from curves that come from −D, is impossible
because our curves are not too long). But in this case (6.43) says that the two endpoints of
Lj lie quite close to Cj, so does the geodesic ρj with the same endpoints, and (16.23) follows
from the fact that dist(Ci, `) ≥ 10η(X). This last fact is true, by (2.5) and (4.3), or the
description of the counterexamples that follows (2.5), plus the fact that the diameter of any
exceptional arc Ck for (2.4) (so, that Ck ends at ` or −`) is controlled by (4.2).

In this case, we can find a sliding competitor X̃ for X1 in B, a little bit like the one given
by g in (16.23)-(16.24), except that (instead of just removing it progressively as above) we
deform the union ρ(c∗1, a

∗
1)∪ ρ(c∗1, a

∗
2) into a shorter arc with the same endpoints, such as the

union ρ(x1, a
∗
1)∪ρ(x1, a

∗
2), for some x1 that is a little closer to a∗1 and a∗2. The reason why we

can easily find x1 is that, since the three Ci, 1 ≤ i ≤ 3, make 120◦ angles at `, the geodesics
ρ1 and ρ2 make an angle smaller than 130◦ at c∗1. Notice also that ρ(x1, a

∗
1) ∪ ρ(x1, a

∗
2) does

not meet ρ(`, a∗3) either, which is comforting even though it is not needed.

Now we claim that because of this we can find a sliding competitor X̃ for X1 in B, such
that

(16.29) H2(X̃ ∩B) ≤ H2(X1 ∩B)− C−1η(X),

where C is a geometric constant; the verification is rather easy (but a little long), and we
skip it. The interested reader may find more or less the same argument in [D4], and slightly
more elaborate versions, with three branches instead of two, in Section 27, starting below
(27.5).

Now (16.29) is nearly as good as (16.26); so, when Configuration 3 = 2 + 1 shows up in
the construction, we can still prove that

(16.30) H2(E ∩ B) ≤ 1

2
H1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)]− C−1η(X) + h(1),

still regardless of whether (16.1) holds or not. As before, this estimate is better than (16.4)
because ∆L ≤ C.

Now let us assume that Configurations H and 3 = 2 + 1 do not occur. We have a last
case where (16.6) may fail. Recall that when some ` ∈ V0 does not lie in the net of curves
that we constructed, we added an element c` to CC(`), to get the extended CC+(`), and we
also added the point ` to ρ∗. Denote by V ′0 the set of (at most two) points ` that we added
this way, by L′ the (full) positive cone over V ′0 , and also set ρ′ = ρ∗ \ L′. Finally denote by
X ′1 the (full) positive cone over ρ′.

First observe that ρ′ satisfies (16.6) (if ε is small enough, as before); this is the reason
why we added the free option in the definition of Φ+

X(η) in Section 3. So we can apply the

full length condition, and we get a sliding competitor X̃ ′ for X ′1 in the ball B. Let {g′t}
denote the associated one parameter family of mappings. The g′t are defined on X ′1, and we
want an extension of g′1 to the full X1 = X ′1 ∪ L′. [As was noticed before, we only need g1

here, we always compute the one parameter extensions at the end.]
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Set a = g1(0), it is not clear that a = 0, but at least a ∈ L ∩ B, by (1.3) and (1.4).
Extend g1 to L′, so that it is Lipschitz on L′, with g1(0) = a, g1(x) = x for x ∈ L′ \ B, and
g1(L′∩B) ⊂ L′∩B. This gives a mapping g1, now defined on X1, and we want to check that
it is Lipschitz.

Clearly it is enough to control |g′1(x) − g1(y)| when x ∈ X ′1 and y ∈ L′. Write x = tz,
with t ≥ 0 and z ∈ ρ′; by construction dist(z, L′) > α for some (possibly very small) α > 0
that depends on ρ∗ and L′; then |x − y| ≥ αt. If |y| ≤ 2t, we say that |g′1(x) − g1(y)| ≤
|g′1(x)− g1(0)|+ |g1(0)− g1(y)| ≤ C1|x|+C2|y| ≤ (C1 + 2C2)t ≤ (C1 + 2C2)α−1|x− y|, which
may be very bad but is enough. Otherwise, |x− y| ≥ |y|/2 and we just need to change the
end of the estimate.

So g1 is Lipschitz, g1(L ∩ X1) ⊂ L by construction, and we can use the same linear
interpolation trick as in (14.10) to construct a one parameter family of mappings that shows

that X̃ = g1(X1) is a sliding competitor for X1 in B. Now H2(L′) = 0, so H2(X1 ∩ B) =

H2(X ′1 ∩ B) and (when we take take the Lipschitz images by g1) H2(X̃ ∩ B) = H2(X̃ ′ ∩ B).

In other words, we still have (4.16) for X1 and X̃ ′, and we may conclude as in the main case.
This completes our verification of (16.4).

We end this section with a small cosmetic modification of (16.4). Set

(16.31) α = α(X) = min(10−5, C−1),

where C is as in (16.4), and observe that in (16.4) the two main correction terms are non-
positive. That is, ∆L ≥ 0 by (16.2), and H1(E ∩ S) ≥ H1(ρ∗) by (15.45) and earlier parts of
the proof. Then (16.4) implies that

H2(E ∩ B) ≤ 1

2
H1(E ∩ S)− α[H1(E ∩ S)−H1(ρ∗)]− α∆L + h(1)

≤ 1

2
H1(E ∩ S)− α[H1(E ∩ S)−H1(ρ∗)]− α[H1(ρ∗)− 2H2(X ∩ B)] + h(1)

=
1

2
H1(E ∩ S)− α[H1(E ∩ S)− 2H2(X ∩ B)] + h(1)(16.32)

by (16.2).

17 Density excess and a differential inequality

Our next goal is to transform our main estimate (16.4) into a differential inequality, and
then we will integrate it on intervals to get decay estimates for a density excess f(r).

In this section we fix an open set U of Rn that contains the origin and a line L through
the origin, and we consider a reduced sliding almost minimal set E of dimension 2 in U , with
sliding boundary L. We shall restrict to radii r ∈ (0, r0), where r0 is so small that

(17.1) B(0, 2r0) ⊂ U.
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As in Section 5, we shall assume that the gauge function h (in the definition of sliding
minimal sets) is such that

(17.2) h(s) ≤ Chs
β for 0 < s < 2r0

for some constants Ch ≥ 0 and β > 0.
We shall also give ourselves a fixed number θ0 > 0 and consider the density θ and the

density excess f defined on (0, 2r0) by

(17.3) θ(r) = r−2H2(E ∩B(0, r)) and f(r) = θ(r)− θ0.

In practice, we will take for θ0 the density of E at the origin, i.e.,

(17.4) θ0 = lim
r→0

θ(r)

(which exists, as mentioned near (1.19)), but let us not require this for the moment. We
start with differentiability properties that don’t use much.

Lemma 17.1. Let E satisfy the assumptions above. Set

(17.5) v(r) = H2(E ∩B(0, r)) for 0 < r < 2r0.

Then v is differentiable almost everywhere on (0, 2r0). Also, if b is a C1 function on (0, 2r0),
the product bv is also differentiable almost everywhere on (0, 2r0), with (bv)′ = bv′ + b′v
almost everywhere. In addition,

(17.6) (bv)(r2) ≥ (bv)(r1) +

ˆ r2

r1

(bv)′(r)dr for 0 < r1 ≤ r2 < r0.

The simplest is to refer to Lemma 5.1 in [D4], but anyway this is not hard: v is nonde-
creasing, so it is differentiable almost everywhere; it also has a distribution derivative µ, and
v′dx ≤ dµ. This proves (17.6) for b = 1. For general b, the differentiability of the product
is easy to prove by hand, and (17.6) is proved with a soft integration by parts (i.e., apply
Fubini’s theorem to the right integral).

Lemma 17.1 shows that θ and f in (17.3) are differentiable almost-everywhere on (0, 2r0);
next we want to use the previous sections to derive differential inequalities for f , and after
this we’ll get some decay for f .

Before we state our main differential inequality, we introduce some notation concerning
minimal cones and the full length condition. We work with n and L fixed, as above. Denote
by MC(L) the set of minimal cones in Rn with sliding boundary L (as above (2.1)). To
each cone X ∈ MC(L), we associate a standard decomposition as in Section 3, and then a
geometric constant η(X) as in (4.3). It is fairly easy to see that when η(X) is fairly small, it
does not depend on our choice of standard decomposition, but it would not matter if it did.

Next denote by FL(L) the set of cones X ∈ MC(L) that also satisfy the full length
property. To X ∈ FL(L) we also associate as in Definition 4.1 two small constants η > 0
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and c > 0, which we call the full length constants for X. For each choice of positive constants
cfl, ηfl, and ηg, with ηfl < ηg < 10−2, say, we shall denote by FL(L, cfl, ηfl, ηg) the set of
cones X ∈ FL(L), which admit a geometric constant η(X) ≥ ηg and full length constants
c ≥ cfl and η ≥ ηfl. We also associate to this choice a small number ε(cfl, ηfl, ηg), which we
choose so that the construction and results of Sections 5-16 are valid as soon as (5.1)-(5.8)
are satisfied with ε ≤ ε(cfl, ηfl, ηg), and the constant α(cfl, ηfl, ηg) that we get in (16.32)
when this happens.

The new assumptions for the next proposition are that for almost each radius r ∈
(0, r0), we can find some constants cfl(r), ηfl(r), and ηg(r), and a minimal cone X(r) ∈
FL(L, cfl(r), ηfl(r), ηg(r)), with the following properties. First

(17.7) d0,2r(E,X(r)) ≤ ε(cfl(r), ηfl(r), ηg(r))

(a local Hausdorff distance, as in (1.14)), where ε(cfl(r), ηfl(r), ηg(r)) is the small constant
that we get from the previous sections. We also require that

(17.8) Chr
β
0 ≤ ε(cfl(r), ηfl(r), ηg(r)).

As the reader may have noticed, we are just copying the assumptions of Section 5. Our
result will be better if we have a good control on the density

(17.9) θ(X(r)) = H2(X(r) ∩B(0, 1))

of the minimal cone X(r); for the moment let us just assume that we have a number q(r) ≥ 0
such that

(17.10) θ(X(r)) ≤ θ0 + q(r) for 0 < r < r0.

In fact, for our simple applications, we will simply have θ(X(r)) = θ0 and q(r) = 0. We
do not need to assume that q is small, but Proposition 17.2 below will be hard to apply
otherwise.

It is important to let the minimal cone X(r) depend on r, even in the good cases where
we take θ0 = limr→0 θ(r) as in (17.4) and require θ(X(r)) = θ0. The point is that the X(r)
could be various blow-up limits of E at 0; we do not want to assume that they are all the
same, we want to get this as a conclusion.

Similarly, it would be tempting to require that all the X(r) lie in a same FL(L, cfl, ηfl, ηg),
but we may have more trouble finding the cones X(r). We find it more flexible to allow some
cones X(r) to have different geometric constants η(X(r)), for instance. We shall see in the
next section how to choose the X(r) in some simple cases.

Proposition 17.2. Let E satisfy the assumptions above (that is, (17.1), (17.2), (17.7),
(17.8), and (17.10). Then

(17.11) rf ′(r) ≥ 4α

(1− 2α)
f(r)− 3(h(r) + 2αq(r)) for almost every r ∈ (0, r0),

where α = α(cfl, ηfl, ηg) is the small constant that is associated to cfl(r), ηfl(r), and ηg(r)
as in (16.31).
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Let us prove the proposition. It turns out that we already did the hard work; the proof
will be derived softly from the previous sections. The first thing we have to do is check
that the assumptions of Section 5 are satisfied (now, without the renormalization r = 1)
for almost every r ∈ r0. The three first assumptions (5.1)-(5.3) were just copied above.
Next, (5.4), the fact that H1(E ∩ ∂B(0, r)) < +∞ is true almost-everywhere, holds because
H2(E ∩ B(0, s)) < +∞ for 0 < s < r0. Since E is rectifiable, we can deduce this from the
coarea formula, but in fact the estimate that we need here is just is the easy part, which can
be obtained directly with a covering lemma.

We said earlier that (5.7) is just requiring that the one-sided Hardy-Littlewood maximal
function of the measure µπ of (5.5) is finite at the point r, and since µπ is a finite measure,
the fact that this is true almost everywhere (and even with weak integral estimates on C) is
a direct consequence of the weak L1 Hardy-Littlewood estimate; see the first pages of [St].

We are left with (5.8), which requires maximal function estimates like (5.7), but also
some manipulation and a density argument; fortunately the proof is done in Lemma 4.12 of
[D4], and applies here.

So we can use the estimates of the previous sections, and (16.32) holds for almost every
r ∈ (0, r0). Written with the variable r, the correct homogeneity, the notation Sr = ∂B(0, r),
and with α = α(cfl, ηfl, ηg), it says that

rθ(r) := r−1H2(E ∩B(0, r)) ≤ r−1H2(E ∩B(0, r))

≤ 1

2
H1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rH2(X(r) ∩B(0, 1))] + rh(r)

=
1

2
H1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rθ(X(r))] + rh(r)

=
1

2
H1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rθ0] + 2αr[θ(X(r))− θ0] + rh(r)(17.12)

≤ 1

2
H1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rθ0] + r(2αq(r) + h(r))

by (17.9) and (17.10). Next write H1(E ∩ Sr) = 2rx(r) for the duration of the computation.
We claim that (with v as in (17.5))

(17.13) v′(r) ≥ H1(E ∩ Sr) = 2rx(r)

almost everywhere on (0, r0); for a rapid proof with heavy material, apply the co-area formula
to E and the function x → |x|; for a slow one, see (5.8) in [D4]. Recall that since f(r) =
r−2v(r)−θ0 by (17.3), Lemma 17.1 says that f also is differentiable almost everywhere, with

(17.14) rf ′(r) = r−1v′(r)− 2r−2v(r) ≥ 2x(r)− 2r−2v(r)

by (17.13). Recall that by (17.12),

(17.15) r−1v(r) = rθ(r) ≤ rx(r)− α[2rx(r)− 2rθ0] + r(2αq(r) + h(r)).

That is,

(17.16) rx(r)(1− 2α) ≥ r−1v(r)− 2αrθ0 − r(2αq(r) + h(r))
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or equivalently

(17.17) x(r) ≥ v(r)

(1− 2α)r2
− 2αθ0

1− 2α
− 2αq(r) + h(r)

1− 2α
.

Then we return to (17.14), replace, and get that

(17.18)

rf ′(r) ≥ 2x(r)− 2r−2v(r)

≥ −2r−2v(r) +
2v(r)

(1− 2α)r2
− 4αθ0

1− 2α
− 2(2αq(r) + h(r))

1− 2α

≥ 4αv(r)

(1− 2α)r2
− 4αθ0

1− 2α
− 2(2αq(r) + h(r))

1− 2α

=
4αθ(r)

(1− 2α)
− 4αθ0

1− 2α
− 2(2αq(r) + h(r))

1− 2α

≥ 4α

(1− 2α)
f(r)− 3(2αq(r) + h(r))

by (17.3) and because α is small (see (16.31)) and q(r) ≥ 0. This proves (17.11); the
proposition follows.

We now make some additional comments on Proposition 17.2 and then show how it may
imply decay estimates; the true examples are in the next sections.

We decided not to require that θ0 is given by (17.4), or that the cones X(r) have a density
equal to θ0, but this will be our main example.

The proposition is also valid on an interval. That is, if E is a reduced sliding almost
minimal set (relative to L) in a domain U that contains B(0, 2r0), if (17.2) holds, and if the
assumptions (17.7)-(17.10) hold on an interval (r00, r0), then (17.11) holds on (r00, r0) too.
The proof is the same.

The differential inequality (17.11) is not hard to integrate. Let E and r0 be as in Propo-
sition 17.2, and suppose in addition that the constants cfl(r), ηfl(r), and ηg(r) are such
that

(17.19) α(cfl(r), ηfl(r), ηg(r)) ≥ α for almost every 0 < r < r0

for some α > 0 that does not depend on r. Then set

(17.20) a =
4α

1− 2α

and consider the auxiliary function g(r) = r−af(r); (17.11) says that

(17.21) g′(r) = −ar−a−1f(r) + r−af ′(r) ≥ −3r−a−1(h(r) + 2αq(r)),

which we interpret as saying that g is nearly nondecreasing. And indeed, Lemma 17.1 says
that for 0 < r1 ≤ r2 < r0,

(17.22) g(r2) ≥ g(r1)− 3

ˆ r2

r1

(h(r) + 2αq(r))
dr

ra+1
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or equivalently (since we are more often interested in letting r1 tend to 0),

(17.23) f(r1) = ra1g(r1) ≤
(r1

r2

)a
f(r2) + 3ra1

ˆ r2

r1

(h(r) + 2αq(r))
dr

ra+1
.

If the right-hand side cooperates, this says that f(r1) decays at some speed when r1 tends
to 0. For instance, if

(17.24) h(r) + q(r) ≤ Crb for some b < a

(to simplify the computation), we get that near 0,

(17.25) f(r1) ≤
(r1

r2

)a
f(r2) + Crb1

with a constant C that depends on a and b, but not on r2.
This will be good when we get it, and we will see examples in the next section. Then we

will not be finished, because it will be much better to show that some significant geometric
quantities, rather than f alone, decay near the origin. This will be the object of Part C (i.e.,
Sections 19-22).

18 Compactness, blow-up limits, and decay for f

In this section we fix the dimension n, the line L through the origin, a sliding almost minimal
set E that contains 0, and we use the compactness of the set MC(L) of sliding minimal cones
(with respect to L) to prove that if in addition to the usual assumptions, all the blow-up
limits of E at 0 satisfy the full length property, then the assumptions of Section 17 are
satisfied for r0 small. See Proposition 18.1 for the ensuing statement.

So we fix n, L, a radius r1 > 0, and a closed set E in B(0, r1), and assume that

(18.1)
E is a reduced sliding almost minimal set in B(0, r1),

with boundary condition coming from L,

with a gauge function h such that

(18.2) h(r) ≤ Chr
β for 0 < r ≤ r1

for some constants Ch ≥ 0, β > 0. Also we assume that

(18.3) 0 ∈ E ∩ L.

Let us say a few words about MC(L) before we discuss the blow-up limits of E at 0,
and then state the main result of this section. So far we have a definition of local Hausdorff
convergence on closed subsets of Rn, which is defined with the local Hausdorff distances dx,r
of (1.14), and for which {Xk} converges to X if limk→+∞ dx,r(Xk, X) = 0 for every choice of
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x ∈ Rn and r > 0, or equivalently for x = 0 and every r > 0. But since MC(L) is composed
of cones, d0,1(X,X ′) = d0,r(X,X

′) for X,X ′ ∈ MC(L) and r > 0, and it is enough to use
the “distance function”

(18.4)
d0,1(X,X ′) = sup

{
dist(x,X ′) ; x ∈ X ∩B(0, 1)}

+ sup
{

dist(x′, X) ; x′ ∈ X ′ ∩B(0, 1)},

for X,X ′ ∈MC(L). It is easy to see that d0,1(X,X ′) is also equivalent to the usual Hausdorff
distance between K = X ∩ S and K ′ = X ′ ∩ S, defined by

(18.5) dcH(X,X ′) := dH(K,K ′) = sup
{

dist(x,K ′) ; x ∈ K}+ sup
{

dist(x′, K ′) ; x′ ∈ K ′}.

The small advantage of this is that it is well known that dcH is a distance (i.e., in particular
the triangular inequality holds with the constant 1) on the set of closed cones, and that some
simple facts are very well known in this context. We shall use the fact that, with either of
these distances,

(18.6) MC(L) is a compact set.

Given the fact that the set of closed subset of S, with the Hausdorff distance dH, is compact,
this simply amounts to checking that if X is the limit of the sequence {Xk} in MC(L), then
X ∈MC(L) too. This is not trivial, but follows at once from Theorem 10.8 in [D7].

Let us also recall some simple facts about blow-up limits. Let E be as above, and denote
by X the set of blow-up limits of E at 0. Recall that X is the collection of sets X such that

(18.7) X = lim
k→+∞

r−1
k E

for some sequence {rk} of positive numbers that tends to 0. Recall also that this means that
limk→+∞ d0,R(X, r−1

k E) = 0 for every R > 0, with d0,R as in (1.14). Let us say why

(18.8) X is a closed subset of MC(L).

The fact that if X ∈ X , then X is a sliding minimal cone is Corollary 29.53 in [D7]; we even
get that the density of X is

(18.9) H2(X ∩B(0, 1)) = lim
r→0

r−2H2(E ∩B(0, r))

(where the limit exist by near monotonicity of r−2H2(E ∩ B(0, r)), as in Theorem 28.7 of
[D7]). So we just need to show that X is closed.

SupposeX is the limit inMC(L) of the sequence {Xj} in X , and writeXj = limk→+∞ r
−1
j,kE

for some sequence {rj,k}, k ≥ 0, that tends to 0. By standard manipulations of se-
quence extraction, we can find a sequence {k(j)}, j ≥ 0, such that rj,k(j) tends to 0 and
X = limj→+∞ r

−1
j,k(j)E. That is, X ∈ X ; (18.8) follows.

We are ready to state the main result of this section.
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Proposition 18.1. Let the sliding minimal set E satisfy the assumptions (18.1), (18.2), and
(18.3). Suppose in addition that

(18.10) every blow-up limit of E at 0 satisfies the full length condition.

Then we can find a ∈ (0, 1) and a radius r0 ∈ (0, r1] such that

(18.11) rf ′(r) ≥ af(r)− 3h(r) for 0 < r < r0,

where f(r) is still defined by (17.3), but with

(18.12) θ0 = lim
r→0

r−2H2(E ∩B(0, r))

as in (17.4).

Recall from Lemma 17.1 that we already knew that f is differentiable almost everywhere
on (0, r0), and that we can partially recover the variations of f from f ′. We will see how to
use this after the proof.

The proof will use Proposition 17.2 and a small compactness argument on MC(L). For
each X ∈ X , the definition of full length gives a small constant c = c(X) and a small radius
η = ηfl(X) ∈ (0, η(X)) such that (4.16) holds for every injective deformation parameter
ϕ ∈ Φ+,i

X (η) that satisfies (4.15) (see Definition 4.1). Then the construction of Sections 5-16
also gives a small constant ε(X), such that if the assumptions of Section 5, and in particular
(5.2) and (5.3), are satisfied with ε = ε(X), we get the main conclusion (16.32), with some
small constant α = α(X). With the notation of the previous section, ε(X) = ε(cfl, ηfl, ηg)
and α(X) = α(cfl, ηfl, ηg), where ηg = η(X), ηfl = ηfl(X), and cfl = c(X); this notation has
the advantage of making it plain that ε(X) and α(X) depend only on the constants above.
We define a small ball VX in MC(L) by

(18.13) VX =
{
Y ∈MC(L) ; dcH(X, Y ) < 10−1ε(X))

}
.

Now X is a closed set in the compact MC(L), so there is a finite set X0 ⊂ X , such that the
VX , X ∈ X0, cover X . In other words,

(18.14) for Y ∈ X we can find X ∈ X0 such that dcH(X, Y ) < 10−1ε(X).

We also need to know that

(18.15) lim
r→0

{
inf
X∈X

d0,3r(E,X)
}

= 0.

Suppose not. Then there is an ε > 0 and a sequence {rk}, that tends to 0, such that
d0,3rk(E,X) ≥ ε for all k. We may replace {rk} with a subsequence, for which the sets
Ek = r−1

k E converge, locally for the Hausdorff distance, but on the whole Rn, to a closed
set X. By definitions, X ∈ X , and by (18.8), X is a sliding minimal cone. But the local
convergence says that d0,3(Ek, X) tends to 0, which contradicts the definition of rk.
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Set ε0 = infX∈X0 ε(X), and let r0 be such that

(18.16) 0 < r0 <
r1

3
and Chr0 ≤ 10−1ε0,

where Ch is the same constant as in (18.2), and

(18.17) inf
X∈X

d0,3r(E,X) ≤ 10−1ε0 for 0 < r < r0.

We want to show that r0 satisfies all the assumptions of Proposition 17.2 with U = B(0, r1).
This is clear for (17.1) and (17.2). For the other assumptions, we fix r ∈ (0, r0) and we want
to find a cone X(r). But (18.17) gives a cone X ∈ X such that d0,2r(E,X) ≤ 10−1ε0, and
then (18.14) yields an X(r) ∈ X0 such that dcH(X(r), X) < 10−1ε(X(r)). We take ηg(r) =
η(X(r)), ηfl(r) = ηfl(X(r)), and cfl(r) = c(X(r)), and then ε(cflX(r), ηflX(r), ηgX(r)) =
ε(X(r)) and α(cflX(r), ηflX(r), ηgX(r)) = α(X(r)) by the definitions above.

Then we need to check (17.7), i.e., that d0,2r(E,X(r)) ≤ ε(X(r)), and this easily follows
from the definitions of X and X(r), plus the fact that ε0 ≤ ε(X(r)) since X(r) ∈ X0. Next
(17.8) holds by (18.16), and (17.10) holds, with q(r) = 0, because X(r) ∈ X and by (18.9).
We apply Proposition 17.2 and get (17.11), with q(r) = 0 and α = α(X). But the same
proof would also yield (17.11) with the constant

(18.18) α = inf
X∈X0

α(X) > 0.

So we get (18.11) with a = 4α
1−2α

. We prefer to say things like this, because formally we do
not know that (17.11) with some α implies (17.11) with any smaller α; even here with our
special choice of θ0 = limr→0 θ(r), we do not know for sure that f(r) ≥ 0, because we only
know that θ(r) is almost monotone. On the other hand, if f(r) ≤ 0, we should be happy
anyway, because the goal of all the story is to show that f(r) is small (but don’t worry, we
don’t need this remark). This completes the proof of Proposition 18.1.

Let us comment on Proposition 18.1. We had to be slightly careful, because with the
proof above the constants ε in (5.2) and (5.3) depend not only on the full length constant c
for X, but also on the more geometric constants η(X) and ηfl(X); so we don’t want to use
cones X(r) that come extremely close to L ∩ S without actually meeting it, for instance.

Our proof of Proposition 18.1 relies on compactness, but in concrete cases, the covering
of X by balls VX can be obtained explicitly (and then we get a better control on the constant
C). Suppose for instance that θ0 = limr→0 θ(r) is equal to 3π/2; then X is contained in the
set of cones X ∈ MC(L) such that θ(X) = 3π/2. If in addition n = 3, say, we know that
X is exclusively composed of cones of type Y. Now some of them contain L in their spine,
others don’t but contain half of L in one of their faces, and some meet L only at 0. Given
r > 0 as above, and if X ∈ X approximates E well in B(0, 3r), we choose to take X(r) = X
if X is of the first type, but otherwise we will replace X with an X(r) of the first type if its
spine is very close to L, and an X(r) of the second type if half of L is very close to some
face of X, but the other one is reasonably far from X. In this case, the full length property
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is proved in Section 37 below. Of course this concrete way of proving Proposition 18.1 is
harder to do when we don’t know well the list of minimal cones of density θ0, not to mention
the fact that we cannot be sure that they satisfy the full length property.

Once we have (18.11), with a constant a > 0 that does not depend on r, but only on X ,
we can use Lemma 17.1 to integrate it and get the decay estimate (17.22). Here q(r) = 0,
so we get that for 0 < r < s < r0,

(18.19) r−af(r) ≤ s−af(s) + 3

ˆ s

r

h(r)dr

ra+1
≤ s−af(s) + 3Ch

ˆ s

r

rβ−a−1dr.

We may as well assume that a < β (in fact, a depends on β, we expect it to be very small,
and anyway we can always make it smaller); then (18.19) yields

(18.20) r−af(r) ≤ s−af(s) +
3Ch
β − a

sβ−adr for 0 < r < s < r0.

This is good: for s ∈ (0, r0) fixed, this means that f decays like ra near 0.

We end this section with a corollary of the discussion above.

Corollary 18.2. Let E satisfy (18.1)-(18.3), let θ0 be as in (18.12), and define f by (17.3).
If

(18.21) every blow-up limit of E at 0 satisfies the full length condition,

there exist a constant a > 0 and numbers r0 > 0 and C ≥ 0 such that

(18.22) f(r) ≤ Cra for 0 < r < r0.

The constant a depends only on n and a full length constant coming from the family of
blow-up limits of E at 0. But r0 and C depend on the specific situation (and in particular
E).

Indeed, the assumptions of Proposition 18.1 are satisfied, so we can find r0 > 0 and
a ∈ (0, 1) (that depends on the class X of blow-up limits of E at 0, in particular through
the full length constants of a finite number of cones used for a covering) such that (18.11)
holds. The estimate (18.22) now follows from (18.20) (we just dropped the more explicit
computation of constants) and the discussion that leads to it.

We would like to say that the assumption (18.21) holds automatically when θ0 ≤ 3π
2

, but
for this we would need to know that

(18.23) if X ∈MC(L) and θ(X) ≤ 3π

2
, then X ∈ H ∪ V ∪ Y,

where H, V, and Y are as below Subsection 1.2 and define the same cones as in Theorem 1.8.
This looks reasonable, but the author did not find a simple proof. But see Lemma 23.2

for the simpler special case when θ(X) ≤ π+εn. As soon as we can prove (18.23), we observe
that if θ0 ≤ 3π

2
, (18.23) says that every blow-up limit of E at 0 lies in H ∪ V ∪ Y, hence

satisfies the full length property by Theorem 37.1, and we can apply Corollary 18.2.
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Remark 18.3. There will be a better statement, Corollary 22.1, where we only assume that
some blow-up limit of E at 0 satisfies the full length condition, but it will be harder to prove,
because we need to be able to find good approximating cones Z(r) at all the scales r < r0,
so that we can apply Proposition 17.2. For this we will need the approximation results of
the next part.
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Part III

Approximation by cones for balls
centered on L

19 The density excess controls the distance to a cone

In this part we still consider balls centered at 0 ∈ E∩L, assume that the density excess f(r)
is small, and use this to obtain geometric information on E, and in particular its Hausdorff
distance to minimal cones, first on most spheres, and then on thicker annuli. The rough idea
is that if f(r) is small, it cannot vary much between r/2 and r, hence f ′(ρ) is often small on
[r/2, r], and the proof of the differential inequality (18.11) will allow us to control various
quantities when f ′(ρ) is small.

We are given a reduced sliding almost minimal set E of dimension 2, in an open set
U ⊂ Rn which contains the origin, with a sliding condition that comes from the line L
through 0 and a small enough gauge function h. We suppose that 0 ∈ E, set

(19.1) θ0 = lim
t→0

t−2H2(E ∩B(0, t))

as in (17.4) (we shall soon remind the reader of why it exists when h is small enough), and

(19.2) f(r) = θ(r)− θ0 = r−2H2(E ∩B(0, r))− θ0

for r < dist(0,Rn \U) (as in (17.3)). We want to show that f(r) controls the local Hausdorff
distance from E to small modifications of minimal cones. We will roughly proceed as in
Section 11 of [D4], where we established this for two-dimensional almost minimal sets with
no sliding boundary condition.

We start with a discussion of the list of modifications of minimal cones that we allow,
and how we measure the distances.

Let us first consider a fixed minimal cone X, and use the (in fact, any) standard decom-
position of K = X ∩ ∂B(0, 1) into arcs of circles Ci, i ∈ I, that was described in Section 3.
We consider deformations of K, which we construct as for the definition of the full length
condition near Definition 4.1. That is, we select a small constant η > 0 (for instance choose
any number smaller than η(X) in (4.3); the actual choice won’t matter), and we define the
extended class Φ+

X(η) of enlarged mappings ϕ, as near (4.12). Most of the information of ϕ
is a mapping defined on the set of endpoints of the Ci, which says where we send each one,
but ϕ also contains some information relative to the way we glue the pieces near vertices of
L∩ S. For each ϕ ∈ Φ+

X(η) we define a set ϕ∗(K), which is the deformation of K associated
to ϕ, and the cone ϕ∗(X) over ϕ∗(K). Recall that modulo some small modifications of the
protocole near the points of L ∩ S, ϕ∗(K) is obtained by replacing each arc Ci = ρ(ai, bi) of
K by the arc ρ(ϕ(ai), ϕ(bi)).
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Let us denote by Z(X, η) the set of cones Z = ϕ∗(X), where ϕ ∈ Φ+
X(η). These are not

exactly minimal cones, because the angles between the Ci, for instance, may have changed a
bit, but they are close to X if η is small enough (which we can assume). For some estimates,
it may be interesting to measure how far they are from being minimal, so we introduce a
number α(Z) which records this. In Section 11 of [D4], we have used a partial measurement
of minimality based on the angles made by the geodesics that compose Z; here we find it more
pleasant not to describe these angles (the distances of the edges to L should also be taken
into account), and measure the lack of minimality more directly (but less geometrically).
For Z ∈ Z(X, η), set

(19.3) α(Z) = inf
{
H2(Z ∩B)−H2(Z̃ ∩B) ; Z̃ is a sliding competitor for Z in B

}
,

where B = B(0, 1) and the notion of sliding competitor in B(0, 1) is explained in Defini-
tion 1.1.

We also want to allow X to vary, so we let X denote a class of sliding minimal cones
centered at the origin; for instance, we shall use
(19.4)
X (θ0) =

{
X ; X is a reduced sliding minimal cone centered at 0, with H2(X ∩B) = θ0

}
.

Then we fix a small number η > 0 and set

(19.5) βX ,η(E, r) = inf
{
d0,r(E,Z) + α(Z)1/4 ; Z ∈ Z(X, η) for some X ∈ X

}
,

where the local distance d0,r is still as in (1.14), and we put a power 1/4 to simplify the
statement of the next theorem without losing too much information (notice that with this
definition, βX ,η(E, r) tends to be larger).

The next result summarize what we want to do in the next sections. We state it in a
normalized ball to simplify some expressions (such as the precise form of (19.6)).

Theorem 19.1. Let E be a sliding almost minimal set in an open set U ⊂ Rn which contains
B(0, 400), with sliding conditions coming from the line L through the origin, and with a gauge
function h such that

(19.6) h(t) ≤ C0t
β0 for 0 < t < 400

for some constants β0 ∈ (0, 1] and C0 ≥ 0. Suppose θ0 is as in (19.1), let η > 0 be given,
and let X = X (θ0) be as in (19.4). Assume that C0 is small enough, depending on n, η, and
θ0. Then

(19.7) βX ,η(E, 1) ≤ C
[
f(200) +

ˆ 400

0

h(t)dt

t

]1/4

,

where f is as in (19.2), and the constant C depends only on β0, C0, θ0, η, and n.
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See Theorem 11.4 in [D4] for the analogous statement away from the boundary. The
power 1/4 is certainly not optimal, and the same sort of contortion as in [D4] should probably
lead to the power 1/3. See the end of the proof of Lemma 21.2 for this. But 1/3 is probably
not optimal either, and 1/2 would sound more right; we know that in the proof below
(and without the possible improvement on Lemma 21.2), we will probably lose something
significant when we go from isolated estimates on spheres to a global estimate on the ball.
Similarly, we noted a dependence on θ0, because this is the way that we shall prove things,
but probably a more clever argument would allow us to get rid of this.

Here we decided to assume a geometric decay in (19.6), but a weaker condition (probably
a Dini condition) would be enough. We decided for a complicated way to state (19.6), where
C has some dependence on the constants C0 and β0, but where we allow the possibility that´ 400

0
h(t)dt
t

is smaller than suggested by (19.5) and then we get a better estimate.
Notice that since we proved in the earlier sections that f(r) often decays like a power

of r, the theorem will imply a similar decay of βX ,η(E, r). For the moment, we allow the
reference minimal cone X in the computation of βX ,η(E, r) to vary with r, but once we get
a power decay, we will know that we can take for X any blow-up limit of E at 0, and this
will imply the uniqueness of the blow-up limit in question. But in the mean time it is better
to allow X to vary. On the opposite side, we could have allowed X to be the whole class of
minimal cones, but then (19.7) would have been less precise.

Before we start the proof (which will take some time), let us record that it is enough to
prove (19.7) when

(19.8) f(200) +

ˆ 400

0

h(t)dt

t
≤ ε1,

where the very small constant ε1 > 0 will be chosen later (depending on n, θ0 and η). Indeed,
if (19.8) fails, then (19.7) holds with C = 2ε−1

1 (try for X a bow-up limit of E at the origin,
and observe that d0,r(E,X) ≤ 2). So let us assume that (19.8) holds.

The following lemma will allow us to use the same construction of competitors as in the
previous section.

Lemma 19.2. Let τ1 > 0 be small. If (19.8) hold for a small enough ε1 > 0 (that depends
also on θ0 and n), we can find a minimal cone X ∈ X (θ0) such that

(19.9) d0,180(E,X) ≤ τ1.

So let E be as in the theorem, and assume (19.8). We want to show that because of
(19.8), the density θ(r) = r−2H2(E ∩B(0, r)) is nearly constant near 0, and then use this to
show that E looks a lot like a minimal cone in B(0, 180).

We start with the near monotonicity of θ. Recall from Theorem 28.7 in [D7] that there
is a constant αn, which here depends only on n (because the geometry of L is simple), such
that

(19.10) θ(r)exp
(
αn

ˆ r

0

h(2t)dt

t

)
is nondecreasing on (0, 200).
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Then (19.1) and (19.8) imply that

(19.11) θ(r) ≥ θ0 exp
(
− αn

ˆ r

0

h(2t)dt

t

)
≥ θ0 e

−αnε1 for 0 < r ≤ 200

(where the endpoint r = 200 is obtained by taking a limit), so that

(19.12) θ0e
−αnε1 ≤ θ(200) = θ0 + f(200) ≤ θ0 + ε1

by (19.2) and (19.8). We deduce from this and (19.10) again that

(19.13) θ(r) ≤ eαnε1θ(200) ≤ eαnε1 [θ0 + ε1] for 0 < r < 200.

Let us now apply an almost constant density result from [D7] to say that E looks like
a minimal cone. Let τ > 0 be small, to be chosen soon, and let ε > 0 be associated
to τ as in Proposition 30.19 in [D7]. We want to apply that proposition to E and the
radii r2 = r0 = 200. The bilipschitz assumption on the boundary L (up to (30.20) in
[D7]) is trivially satisfied, (30.21) holds if ε1 is small enough and because (19.8) controls
h(300), and the more important near constant density assumption (30.22) holds because
θ(r2) = θ(200) ≤ θ0 + ε1 while θ(r) ≥ e−αnε1θ0 for 0 < r < 10−3r0.

By Proposition 30.19 in [D7], there is a sliding minimal cone T such that

(19.14) d0,190(E, T ) ≤ 2τ,

(see (30.24) and (30.24) there), and

(19.15) |H2(E ∩B(0, r))−H2(T ∩B(0, r))| ≤ 2002τ for 0 ≤ r ≤ 190

(see (30.26)). We apply this to r = 190, then use (19.11) and (19.13) to estimate θ(r), and
get that

(19.16)
|H2(T ∩B(0, 1))− θ0| ≤ |θ(190)− θ0|+ (200/190)2τ

≤ [eαnε1 − 1]θ0 + 2ε1 + (200/190)2τ ≤ 2τ

if ε1 is small enough.
We cannot use X = T in the lemma, because the density H2(T ∩B(0, 1)) may be a little

different from θ0. So we shall use (19.16) and a compactness argument to find X ∈ X (θ0)
that is very close to T , and then deduce (19.9) from (19.14).

We claim that for all small τ1 > 0, we can choose τ > 0 such that if T is a sliding minimal
cone such that (19.16) holds, then there is a minimal cone X ∈ X (θ0) such that

(19.17) d0,1(X,T ) ≤ τ1

4
.

Indeed, otherwise there is a sequence {Tk} of sliding minimal cones such that Tk satisfies
(19.16) with τ = 2−k, and yet d0,1(X,Tk) >

τ1
4

for X ∈ X (θ0). We can extract a subsequence
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(which we still denote the same way), for which Tk converges to a limit X in local Hausdorff
distance (say, for d0,1, and see the discussion above (18.6) if you are worried about which
notion of convergence). By the compactness property (18.6), or directly by Theorem 10.8 in
[D7], X is a sliding minimal cone.

By Theorem 10.97 in [D7] (the lower semicontinuity of Hd along sequences of quasimin-
imal sets) and Theorem 22.1 in [D7] (the upper semicontinuity along sequences of almost
minimal sets), plus the fact that H2(X ∩ S) = 0, we get that

(19.18) θ0 = lim
k→+∞

H2(Tk ∩B) = H2(X ∩B),

so X ∈ X (θ0) and this contradicts the fact that the Tk were chosen far from X (θ0). This
proves our claim.

We choose τ with this property, also also such that τ ≤ 10−1τ1, apply this to the cone T
of (19.16), and find X ∈ X (θ0) that satisfies (19.17). It is easy to see that X satisfies (19.9);
the lemma follows.

Now we want to apply the construction of Sections 5-16 to find cones Z(r), 0 < r < 180,
that approximate E well on the circles Sr = ∂B(0, r). Since the dependance on X of the
constants τ , and then ε in (5.3) seems to be a little shady at first sight, let us spend some
time discussing these constants.

Remark 19.3. We claim that we can apply the construction of Sections 5-16, with a value
of the various constants ε and τ that depends only on β0, C0, θ0, η, and n.

To see this we shall use the same compactness argument as in Section 18, below (18.12).
To each X ∈ X (θ0) we can associate a standard decomposition as in Section 3 and a small
number η(X) > 0, that satisfies the requirements of Section 3. Let us even choose η(X)
somewhat smaller than the constant η of the statement of Theorem 19.1. This is a brutal way
to make sure that the deformations of X that we construct later will come from ϕ ∈ Φ+

X(η).
Then there is a small number ε(X), that depends on η(X), such that if (5.2) and (5.3)

are satisfied with ε(X), then we can apply the construction of Sections 5-16, except that we
do not intend to assume, or use, the full length property.

Recall from (18.6) that the class MC(L) of sliding minimal cones is compact. The proof
of existence for (19.17) shows that the extra condition H2(X ∩ B) = θ0 that defines X (θ0)
is closed, so X (θ0) ⊂MC(L) is compact too.

For X ∈ X (θ0) define the small ball VX centered at X and with radius 10−5ε(X), es-
sentially as we did in (18.13), except that now we are only interested in VX ∩ X (θ0). By
compactness, we can find a finite family X0 ⊂ X (θ0) such that the sets VX , X ∈ X0, cover
X (θ0).

Then set ε0 = 10−3 infX∈X0 ε(X), and apply Lemma 19.2 with τ1 = ε0. This gives a
small constant ε1, and if (19.8) holds with this ε1, we know that we can find X ∈ X (θ0)
such that d0,180(E,X ′) ≤ ε0. Then X ′ lies in a ball VX , X ∈ X0, and this implies that
d0,180(E,X) ≤ 2ε0 (compare with (18.5), but also note that we can modify the constant 10−5

above as we want). We took ε0 so small because this way

(19.19) d0,2r(E,X) ≤ 180

2r
d0,180(E,X) ≤ ε(X) for 10−2 ≤ r ≤ 90,
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so (5.3) holds for these r. Because of our assumption that C0 is small enough, depending on
n, η, and θ0, we also have (5.2), and so if we want to apply the construction of Sections 5-16
(excluding the full length property) to r, we shall just need to check the conditions (5.4)-(5.8).
We shall see now that they hold for almost every r ∈ [10−2, 90].

Return to the proof of Theorem 19.1. Pick ε1, and then a cone X ∈ X0 = X0(θ0), as in
the remark above. Set

(19.20) v(r) = H2(E ∩B(0, r)) = r2θ(r)

for 0 < r < 200 and denote by R the set of radii r ∈ (10−2, 90) such that θ and v are
differentiable at r,

(19.21) θ′(r) = r−2v′(r)− 2r−3v(r),

(19.22) v′(r) ≥ H1(E ∩ ∂B(0, r))

(which incidentally implies (5.4)), and in addition (5.7) and (5.8) hold. Then

(19.23) H1((10−2, 90) \ R) = 0

by Lemma 17.1, (17.13), the Hardy-Littlewood maximal theorem (see below (17.11)), and
the proof of Lemma 4.12 in [D4] (see below (5.8)). Now each r ∈ R satisfies the constraints
(5.3)-(5.8), and we can apply to it the results of Sections 5-16, excluding those that use the
full length property.

Observe that we shall use the same cone X for all the radii r ∈ R; for smaller values
of r, we could still use the same proof, but we would need to apply Lemma 19.2 to a
different radius, get another cone X ′, and possibly a different type of deformation Z(r) in
the argument below. But we do not need to do this for the moment.

We intend to use the results of the previous sections to get information on E ∩ Sr, where
we set Sr = ∂B(0, r), for r ∈ R. We shall be able to get better estimates when j(r) is small,
where

j(r) = rf ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)

ˆ r

0

h(2t)dt

t

= rθ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)

ˆ r

0

h(2t)dt

t
.(19.24)

We added the constant αn (from (19.11)) because we want to make sure that j(r) ≥ 0.
Indeed, it could be that θ′(r) and f(r) are slightly negative. Nonetheless, it follows from
(19.11) that

(19.25) f(r) = θ(r)− θ0 ≥ θ0

(
exp
(
− αn

ˆ r

0

h(2t)dt

t

)
− 1
)
≥ −θ0αn

ˆ r

0

h(2t)dt

t

150



(because (19.8) says that
´ r

0
h(2t)dt

t
≤ ε1 is small). Similarly, it follows from (19.10) (and in

fact this is the way (19.10) is proved) that for r ∈ R;

(19.26) rf ′(r) = rθ′(r) ≥ −αnθ(r)h(2r) ≥ −2θ0αnh(2r)

by (19.13) and if ε1 is chosen small enough (recall that θ0 ≥ π). Thus

(19.27) j(r) ≥ (rθ′(r))+ + f(r)+ + h(2r) +

ˆ r

0

h(2t)dt

t
for r ∈ R,

with positive parts, which will be simpler to use than (19.24) for some estimates.

Lemma 19.4. For r ∈ R, we can find a compact set γ∗(r) ⊂ E ∩ Sr and a cone Z(r) ∈
Z(X, η) such that

(19.28) H1(E ∩ Sr \ γ∗(r)) ≤ Cj(r)

and

(19.29) sup
z∈Z(r)∩Sr

dist(z, γ∗(r)) + sup
z∈γ∗(r)

dist(z, Z(r) ∩ Sr) ≤ Cr1/2j(r)1/2.

We will see other properties of Z(r) along the way. The constant C in (19.28) depends
on η too, through the choice of η(X) in Remark 19.3. We added r1/2 in (19.29) to show the
homogeneity, but this was not needed because r ∈ R ⊂ (10−2, 90).

Let j0 > 0 be small, to be chosen later. We shall keep in mind that it is enough to prove
the conclusion of the lemma when

(19.30) r ∈ R and j(r) < j0,

where the small constant j0 > 0 will be chosen later, depending also on η. Indeed otherwise
we just take Z(r) = X and γ∗(r) = E ∩ Sr, and the conclusion holds because the Hausdorff
distance between E ∩ Sr and X ∩ Sr is bounded.

So let r ∈ R be given. First notice that

(19.31)
H1(E ∩ Sr) ≤ v′(r) = r2θ′(r) + 2r−1v(r) = r2θ′(r) + 2rθ(r)

= r2f ′(r) + 2rf(r) + 2rθ0 ≤ 2rj(r) + 2rθ0

by (19.22), (19.21), (19.20), because f(r) = θ(r) − θ0, and finally by (19.24) (or rather
(19.27), because of the strange case when f ′(r) < 0).

Recall that for r ∈ R, we can apply Sections 6-16, where we constructed a few competitors
and used them to prove estimates on H2(E ∩B(x, r)). In particular we have (15.46), which
says that if we normalized everything so that r = 1,

(19.32) H2(E ∩B(0, 1)) ≤ 1

2
H1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)] + h(1).
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Here ρ∗ = ρ∗(r) is the net of geodesic that was chosen during the proof; see (15.43).
Let us observe that this estimate was obtained without using the full length property.

It will be all right to use this if we do not want to include estimates on α(Z) in (19.3);
otherwise we will need to correct the estimate as we did in Section 16. This will be done
later, but for the moment we ignore this and work with (19.32). Let us rewrite it without
the normalization by r = 1. We get that for r ∈ R

(19.33) H2(E ∩B(0, r)) ≤ r

2
H1(E ∩ Sr)− 10−5r[H1(E ∩ Sr)−H1(ρ∗(r))] + r2h(r).

The author feels a little better with the powers of r because they give the homogeneity, but
here r ∈ R ⊂ [10−2, 90] so we should not need to worry much. Next we write

(19.34) H1(E ∩ Sr)−H1(ρ∗(r)) = ∆0(r) + ∆1(r) + ∆2(r),

where the ∆i(r) are defined as follows. First

(19.35) ∆0(r) = H1(E ∩ Sr)−H1(γ∗(r)) = H1(E ∩ Sr \ γ∗(r)),

where γ∗(r) is the union of the the curves γ that were constructed in Section 7. The identity
in (19.35) holds because the curves γ are contained in E; also, it could be observed that
the only contribution comes from the two small disks D near the points of L ∩ Sr, because
outside of these disks, E ∩ Sr is composed of nice curves. Next

(19.36) ∆1(r) = H1(γ∗(r))−H1(Γ∗(r)) ≥ 0,

where Γ∗(r) is the union of the Lipschitz graphs Γj that we construct in Sections 8-12; the
fact that ∆1(r) ≥ 0 comes by adding up its analogue for each configuration; see the comment
below (10.7). Notice also that ∆1(r) is like ∆1 in (15.42). Finally

(19.37) ∆2(r) = H1(Γ∗(r))−H1(ρ∗(r)) ≥ 0,

because ρ∗(r) simply consists in replacing each arc Γ of Γ∗ with the geodesic ρ with the same
endpoints; this is the same as ∆2 in (15.44) (and ρ∗ is defined by (15.43)). Thus (19.34) is
essentially the same as (15.45). Also (19.33) can be rewritten as

(19.38) ∆0(r) + ∆1(r) + ∆2(r) ≤ 105
[1

2
H1(E ∩ Sr)− r−1H2(E ∩B(0, r))

]
+ 105rh(r)

and since

H1(E ∩ Sr) ≤ v′(r) = r2θ′(r) + 2r−1v(r) = r2θ′(r) + 2rθ(r)

= r2θ′(r) + 2rf(r) + 2rθ0 ≤ 2rj(r) + 2rθ0(19.39)

by (19.22), (19.21), and (19.27), (19.38) yields

(19.40) ∆0(r) + ∆1(r) + ∆2(r) ≤ 105
[
rj(r) + rθ0 − r−1H2(E ∩B(0, r))

]
+ 105rh(r).
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But

(19.41) r−1H2(E ∩B(0, r)) ≥ rθ(r) ≥ rθ0

(
1− αn

ˆ r

0

h(2t)dt

t

)
by (19.25), so

(19.42) ∆0(r) + ∆1(r) + ∆2(r) ≤ 105r
[
j(r) + θ0αn

ˆ r

0

h(2t)dt

t
+ h(r)

]
≤ 106rj(r)

by (19.24).
This was our basic estimate, but we can try to improve this in the same way as in

Section 16, when we modified the tip of our second competitor to get a third one. There is
a special case when things will be easier, which we want to mention first; this is when (after
the normalization that makes r = 1)

(19.43) ρ∗ = ϕ∗(K) for some ϕ ∈ Φ+
X(η).

This is the same statement as in (16.6), but here η comes from the definition (19.5) and the
statement of Theorem 19.1. Apart from this, we can still discuss as in Section 16.

Assume first that (19.43) holds, and let Z(r) denote the cone over ρ∗(r); that is,

(19.44) Z(r) =
{
λξ ; ξ ∈ ρ∗(r) and λ ∈ [0,+∞)

}
= ϕ∗(X)

by definition of ϕ∗(X), and Z(r) ∈ Z(X, η) by definition of Z(X, η) (see above (19.3)). In
addition, we can modify our first competitor near its tip, exactly as we did below (16.6),
to construct an improved competitor and derive a better estimate than (19.32) (or, if we
renormalize back, (19.33)). Indeed the competitor that we used so far coincides with Z in a
small ball B(0, κr), and we can further replace this tip with the intersection with B(0, κr)
of a competitor for Z in B(0, κr). In Section 16 we used the full length property of X to
find this competitor; here we just use the definition (19.3) of α(Z), which says that we can

find a competitor Z̃ for Z in B(0, κr), such that

(19.45) H2(Z̃ ∩B(0, κr)) ≤ H2(Z ∩B(0, κr))− α(Z)κ2r2

2
.

The construction of the new competitor for E, and in particular the gluing argument, is the

same as in Section 16 (all the way up to (16.22)). Thus we can save an extra α(Z)κ2r2

2
in the

estimate (19.33), and the proof of (19.42), with this extra negative term, also yields

(19.46) α(Z(r)) ≤ Cj(r),

where the dependence of C on κ does not matter, because κ is an absolute constant.
We shall continue with the argument later, but let us now return to the case when

(19.43) fails. As was explained below (16.22), there may be a few different reasons why
this may happen. The first one is when Configuration H shows up in our construction.
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In this case, we showed that, without using the full length condition, we can construct
a new competitor (essentially obtained by contracting a hanging curve), and improve our
estimate (15.46) (the one that was used above to prove (19.32)) by an amount of η(X);
see (16.27). This means that we can subtract η(X) from the right-hand side of (19.32),
or subtract r2η(X) from the right-hand side of (19.33). We claim that this is too much
to win if j(r) is small enough. Indeed recall from (19.34) and the discussion below that
H1(E ∩ Sr)−H1(ρ∗(r)) = ∆0(r) + ∆1(r) + ∆2(r) ≥ 0, hence the improved (19.33) says that

H2(E ∩B(0, r))− r

2
H1(E ∩ Sr) ≤ −10−5r[H1(E ∩ Sr)−H1(ρ∗(r))]− r2η(X) + r2h(r)

≤ −r2η(X) + r2h(r) ≤ −r2η(X) + ε1 ≤ −
1

2
r2η(X)(19.47)

by (19.8) and if ε1 is small enough. Here again we feel good because Remark 19.3 allows
us to use a constant η(X) that depends only on n, θ0 (through a covering of X (θ0)), and η
(because we forced η(X) ≤ η). At the same time

(19.48) H2(E ∩B(0, r)) ≥ r2θ0

(
1− αn

ˆ r

0

h(2t)dt

t

)
≥ r2θ0

(
1− αnε1

)
by (19.41) and (19.8), and

(19.49)
r

2
H1(E ∩ Sr) ≤ r2j(r) + r2θ0

by (19.31); so (19.47) implies that θ0

(
1 − αnε1

)
≤ θ0 + j(r) − 1

2
η(X), which is impossible

when j(r) ≤ j0, if j0 and ε1 are chosen small enough (depending on a lower bound for η(X),
which itself depends on η). This proves that this first case when (19.43) fails does not happen
when (19.30) holds.

The second reason why (19.43) may fail is explained below (16.27); it corresponds to the
occurence of Configuration 3=2+1. In this case too, we constructed (without the help of the
full length) a modification of our second competitor for E, that allows us to save C−1η(X)
in the estimate; see (16.30). This case does not happen either, for the same reasons as for
the previous case.

We are left with the case, described below (16.30), where for some ` ∈ K ∩ L, we added
an element c` to CC(`), to get the extended CC+(`), and we also added the point ` to ρ∗.
If ` was already present in some ρj, j ∈ J∗, we do not even need to worry; otherwise it is an
isolated point of ρ∗ and we remove it. That is, denote by V ′0 the set of (at most two) points
` that we added this way, or equivalently the set of isolated points of ρ∗, and set ρ′ = ρ∗ \V ′0
(with this notation, we still normalize so that r = 1). In this case we change a little the
definition of Z(r), and set

(19.50) Z(r) =
{
λξ ; ξ ∈ ρ′ and λ ∈ [0,+∞)

}
.

Notice that when we have (19.43), this new definition is the same as (19.44), because ρ∗ =
ϕ∗(K) does not have isolated points.
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We checked in Section 16 that ρ′ satisfies (16.6), or in other words that ρ′ = ϕ∗(K) for
some ϕ ∈ Φ+

X(η). Thus Z(r) ∈ Z(X, η) (see the definition above (19.3)). Also, we can use
any competitor for Z(r) in the unit ball to modify the tip of our second candidate, essentially
as in the case when (19.43) holds. The point is to extend the deformation (originally defined
on Z(r)) to the cone over ρ∗, get a competitor for the cone over ρ∗, and glue it to the tip of
our second competitor. The verifications are done below (16.30). This way we also get the
additional estimate (19.46) in this remaining case.

We will still need to check (19.28) and (19.29) with this choice of Z(r); we will do this
at the same time as we do it for the other case. In the mean time, observe that there is
yet another way to improve on our main estimate (19.35), which is to notice that the first
inequality in (19.31) may be strict. That is, set

(19.51) ∆3(r) = v′(r)−H1(E ∩ Sr) ≥ 0.

Notice that (19.33) implies that

(19.52) H2(E ∩B(0, r)) ≤ r

2
H1(E ∩ Sr) + r2h(r)

by (19.34) and because ∆i(r) ≥ 0 for 0 ≤ i ≤ 2. Then

(19.53) H1(E ∩ Sr) = v′(r)−∆3(r) ≤ 2rj(r) + 2rθ0 −∆3(r)

by (19.31), so

(19.54) ∆3(r) ≤ 2rj(r) + 2rθ0−H1(E ∩ Sr) ≤ 2rj(r) + 2rθ0−
2

r
H2(E ∩B(0, r)) + 2rh(r).

Since by (19.41)

(19.55)
1

r
H2(E ∩B(0, r)) ≥ rθ0

(
1− αn

ˆ r

0

h(2t)dt

t

)
,

we see that

(19.56) ∆3(r) ≤ 2rj(r) + 2rαn

ˆ r

0

h(2t)dt

t
+ 2rh(r) ≤ 4rj(r)

by (19.27). This completes the list of our basic estimates on the ∆i(r).

We return to the proof of (19.28) and (19.29) for Z(r). Here we take for γ∗(r) the set rγ∗,
where γ∗ is the set of (14.25), with the normalization by r = 1. Thus H1(E ∩ Sr \ γ∗(r)) =
∆0(r) ≤ 106rj(r) by (19.35) and (19.42), and (19.28) holds.

For (19.29) we first estimate

(19.57) ∆4(r) = H1(Γ∗(r) \ γ∗(r))) +H1(γ∗(r) \ Γ∗(r))),
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where Γ∗(r) = rΓ∗ and Γ∗ is the net of Lipschitz graphs that shows up in (15.1), for instance.
We claim that

(19.58) ∆4(r) ≤ C[∆1(r) + ∆2(r)] ≤ Crj(r).

The last part comes from (19.42). For the first part recall the decompositions

(19.59) γ∗ =
( ⋃
i∈I1

Li
)
∪
( ⋃
c∈CC

γc

)
,

from (14.25) and

(19.60) Γ∗ =
( ⋃
i∈I1

Γi

)
∪
( ⋃
c∈CC+

Γc

)
,

from (15.1). The difference between CC and CC+ is just that maybe for some ` ∈ K ∩ L
we added the trivial component {c`} to CC(`) to get CC+(`); see above (13.10). When
c ∈ CC+ \ CC, we took Γc = {`}, and this does not contribute to the measure of the
symmetric difference. Thus, returning to the normalization with r = 1 and using ∆ to
denote symmetric differences,

(19.61) r−1∆4(r) ≤
∑
i∈I1

H1(∆(Li,Γi)) +
∑
c∈CC

H1(∆(γc,Γc)).

For i ∈ I1, we use the fact that Γi = Li when we dare to apply Remark 6.3, so we get no
contribution, but even if we did not dare, Γi would be obtained from Li by the construction
of Section 8, so (8.16) and (8.5) would yield H1(∆(Li,Γi)) ≤ C[H1(Li)−H1(ρi)], where ρi
is the geodesic with the same endpoints as Li. When we sum we would get a contribution
which is dominated by r−1∆2(r); see (15.44).

For c ∈ CC, we already observed in (15.37) that when we apply (10.7) to each configu-
ration c ∈ CC and then sum, we get that

(19.62)
∑
c∈CC

H1(∆(γc,Γc)) ≤ C(λ)
∑
c∈CC

[H1(γc)−H1(Γc)] + [H1(Γc)−H1(ρc)]

which is then dominated by r−1∆1(r) + r−1∆2(r); see the argument below (15.37), and
compare our definitions with (15.30) and (15.33). This completes our proof of (19.58).

Next we use ∆4(r) to control some distances. Set

(19.63) Γ′ =
( ⋃
i∈I1

Γi

)
∪
( ⋃
c∈CC

Γc

)
,

where the only difference with Γ∗ is that we removed CC+ \ CC from the indices, which
means that we may have removed one or two points ` ∈ K ∩ L from Γ∗. Let us first check
that

(19.64) dist(z,Γ′) ≤ r−1∆4(r) ≤ Cj(r) for z ∈ γ∗.

156



First assume that z ∈ γc for some c ∈ CC; notice that H1(γc) ≥ η(X) because γc meets
∂D = S∩∂B(`, τ) for some ` ∈ K∩L and it reaches out to some other endpoint a∗i (see (7.1),
(10.1), (4.1) and (4.2), and (6.43)). Then, since (19.30) implies that j(r) ≤ j0 < η(X)/C (if
j0 is chosen small enough; recall that by Remark 19.3 we have a lower bound on η(X) that
depends on η and the other usual constants, but not on X), (19.58) implies that γc meets
Γc, and dist(z,Γ∗) ≤ dist(z, γc ∩ Γ∗) ≤ H1(γc \ Γ∗) ≤ ∆4(r) because γc is connected. The
case when z ∈ Li for some i ∈ I1 is treated the same way, because H1(Li) ≥ η(X) too;
(19.64) follows. Conversely,

(19.65) dist(z, γ∗) ≤ r−1∆4(r) ≤ Cj(r) for z ∈ Γ′,

by the same argument as above, but this time using the fact that Γc and Γi are connected
too. So we control the Hausdorff distance between γ∗ and Γ′. We still need to compare Γ′

and ρ′ = r−1(Z(r) ∩ Sr) (see (19.50)).
For each of the Lipschitz curves Γj that compose Γ∗ (this time, with the condensed

notation of (15.5), but avoiding the trivial curves {`} that come from CC+ \ CC), ρj is the
geodesic with the same endpoints, and by Pythagorus (and a tiny bit of spherical geometry,
but recall that the diameter of ρj is less than 11/10, say),

sup
z∈ρj

dist(z,Γj) + sup
z∈Γj

dist(z, ρj) ≤ 10[ length(Γi)− length(ρj)]
1/2 length(ρj)

1/2

≤ Cj(r)1/2 length(ρj)
1/2 ≤ Cj(r)1/2.(19.66)

We take a supremum and get that

(19.67) sup
z∈ρ∗

dist(z,Γ′) + sup
z∈Γ′

dist(z, ρ∗) ≤ Cj(r)1/2.

Now (19.29) follows from (19.67), (19.64), and (19.65). This completes our proof of Lemma 19.4.

20 Where we control the variations of Z(r)

At this stage, we found for most r ∈ R a nice cone Z(r), which approximates E well on
Sr = ∂B(0, r). The next stage is to show that Z(r) varies slowly with r, and for this we
start with a study of some almost radial curves drawn on E, and that cross the annulus

(20.1) A = B(0, 90) \B(0, 10−2).

Let X ∈ X (θ0) be as in the last section, and recall from the discussion over (19.19) that

(20.2) d0,180(E,X) ≤ 2ε0 ≤ 2 · 10−3ε(X).

We shall use again the standard decomposition of X into arcs Cj, j ∈ J , that is given by
Section 3. For each j ∈ J , denote by ∂Cj the boundary of Cj (composed of its two endpoints),
and let

(20.3) C′j =
{
z ∈ Cj ; dist(z, ∂Cj) ≥ 10−1η(X)

}
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denote a slightly smaller arc where we remove a bit of Cj at each end.
Denote by P (j) the 2-plane that contains Cj; we shall think of P (j) as being horizontal.

For each z ∈ C′j, denote by Pz = Pj,z the vector hyperplane that contains z and is orthogonal
to Cj at z; we think of Pz as the vertical hyperplane through z. Also denote by L(z) the half
line through z, and set

(20.4) T (z) =
{
ξ ∈ A ; dist(ξ, Lz) ≤ 104ε0

}
(a thin tube around L(z)),

(20.5) T =
⋃
z∈C′j

T (z)

and

(20.6) Gz = T (z) ∩ Pz ∩ E.

Lemma 20.1. For j ∈ J and z ∈ C′j, the set Gz is a C1 and 1
10

-Lipschitz graph over some
segment of L(z), and it crosses A.

We shall even prove that T (z) ∩ E is a C1 and 1
20

-Lipschitz graph, over a piece of P (j),
and then the Lipschitz description of Gz will follow from the Implicit Function Theorem.

We shall use the interior C1 regularity theorem, that we pick from [D4]. Set τ =
10−5η(X), and let w ∈ L(z)∩A be given. By (20.2) E is 360ε0-close to X in B(w, 10τ), and
we can pick x0 ∈ E such that |x0 − w| ≤ 360ε0.

We want to apply Corollary 12.25 of [D4] to E, in a small ball centered at x0, but there
will be a few assumptions to check. We first take care of the distance to a plane. Observe
that

(20.7) dw,10τ (E,X) ≤ 18

τ
d0,180(E,X) ≤ 36ε0

τ

by (20.2), and because we may safely assume that ε0 is much smaller than η(X) and τ (so
that B(w, 10τ) ⊂ B(0, 180)).

Let us check that X coincides with P (j) near w. Recall from (3.9) that

(20.8) dist(z,K \ Cj) ≥ min(η0, dist(z, ∂Cj)) ≥ 10−1η(X)

by (20.3) and (4.3). Then dist(z,X \ P (j)) ≥ 10−1η(X)/2 (because X is a cone and P (j)
contains the cone over Cj), and by homogeneity

(20.9) dist(w,X \ P (j)) ≥ 10−3η(X)/2 ≥ 50τ.

Conversely, dist(w,P (j) \ X) ≥ 50τ even more easily, because Cj contains a 10−1η(X)-
neighborhood of C′j in P (j) ∩ S by (20.3). Thus (20.7) implies that

(20.10) dw,10τ (E,P (j)) ≤ 36ε0

τ
.
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Let P ′ denotes the 2-plane parallel to P (j) and that contains x0; notice that P ′ lies within
360ε0 of P (j), so we get that

(20.11) dx0,9τ (E,P
′) ≤ 100τ−1ε0,

again with τ−1ε0 as small as we want, and because B(x0, 9τ) ⊂ B(w, 10τ), with some extra
space to take care of the difference between P (j) and P ′.

This will take care of the distance assumption in Corollary 12.25 of [D4]. But we also
have a density requirement, which will be fulfilled because if E is so close to P ′ in B(x0, 9τ),
then its density in B(x0, 8τ) cannot be too large.

More precisely, we want to apply Lemma 16.43 in [D3] to the ball B(x0, ρ), with ρ = 8τ ,
and with a small constant δ that will be chosen soon. For this there are only three things
to check. First, that E is almost minimal in B(x0, 10ρ/9) (without a sliding condition). It
is clear that B(x0, 10ρ/9) ⊂ B(x0, 10τ) ⊂ B(0, 180), so we just need to check that x0 is far
from L. But

dist(z, L ∩ S) ≥ min( dist(z, L ∩ Cj), dist(z,K \ Cj), dist(z, L ∩ S \K))

≥ min( dist(z, ∂Cj), dist(z,K \ Cj), dist(K,L ∩ S \K)) ≥ 10−1η(X)(20.12)

because the interior of Cj does not meet L (by (3.2)), and by (4.1), (4.3), and (20.8). Then
dist(z, L) ≥ 2

30
η(X), and

(20.13) dist(x0, L) ≥ dist(w,L)− 36ε0

τ
≥ 2

30
10−2η(X)− 36ε0

τ
≥ η(X)

2000
≥ 50τ,

and E is (plain) almost minimal even in B(x0, 50τ).
Next h(20ρ/9) should be small enough (again as in (16.44) of [D3]), but this follows

from (19.8) if ε1 is small enough, depending also on δ. Finally, dx0,10ρ/9(E,P ′) should be
small enough (depending on δ), and this follows from (20.11) if ε0 is chosen small enough
(depending on both τ and δ). So we may apply Lemma 16.43 in [D3], and we get that

(20.14) H2(E ∩B(x0, ρ)) ≤ H2(P ′ ∩B(x0, (1 + δ)ρ)) + δρ2 ≤ (1 + 3δ)πρ2.

Because of the near monotonicity of the density t → t−2H2(E ∩ B(x0, t)), we easily deduce
from this that the density of E at x0 is π (because the density is always ≥ π at a point
of E, and the next smallest density is 3π/2, that corresponds to points of type Y). So the
analogue of the density excess for E at x0 is

(20.15) f̃(ρ) = ρ−2H2(E ∩B(x0, ρ))− π ≤ 3δπ

by (20.14). This is the first part of the requirement (12.26) of Corollary 12.25 in [D4], for
the radius r0 = ρ/110 = 8τ/110. We just need to be sure that δ is small enough, depending
on the constant ε1 from [D4].

The second requirement, about the size of h (i.e., in the present case, of C0), follows from
the assumptions of Theorem 19.1. The final requirement is that dx0,100r0(E,P

′) be small
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enough, and follows from (20.11) if ε0 is small enough. Then Corollary 12.25 in [D4] says
that E is C1+β-equivalent to a plane in B(x0, r0), with some additional precisions on the
way it is equivalent, and an exponent β > 0 that could be computed in terms of our various
constants.

In addition to this, and as described at the beginning of Section 6, E ∩B(x0, r0) is also a
Lipschitz graph with small constant (as small as we want, if the constants C0, ε1, and ε0 are
chosen small enough) over a subset of P ′ that contains P ′ ∩ B(x0, r0/2). See the discussion
below (6.22). Thus there is a neighborhood of T where E is a C1, and small Lipschitz, graph
over its projection on P (j); recall that the width of T is smaller than the radius of the balls
where we get a C1 and flat description above, so that we neither get a hole in the projection,
or two layers (we skip some of the details here).

Now we can apply the implicit function theorem and find that E ∩ Pz ∩ B(x0, r0/4) is
a Lipschitz graph over a segment of L(z) that contains L(z) ∩ B(w, r0/8). Recall also that
r0 = 8τ/110 is much larger than the width 104ε0 of T (z). Lemma 19.1 then follows from our
local Lipschitz description of E ∩ Pz near L(z) ∩ A.

We want to relate average flatness estimates for the graphs Gz to the variations of the
density excess f(r) = θ(r) − θ0. The connection will be through the coarea theorem, the
computation of a Jacobian, and the following angle α(x).

For almost every x ∈ E ∩A, E has a tangent plane TE(x) at x (the rectifiability gives an
approximate tangent plane, which would be enough here, but the local Ahlfors regularity, or
more brutally the fact that E is C1 in a neighborhood of almost every point of E \L, give a
true tangent plane). For these x, we denote by α(x) ∈ [0, π/2] the (smallest) angle between
the radial direction (0, x) and a unit vector in TE(x).

We want to show that α(x) is small on average, and this will mean something about the
average regularity of Gz

Lemma 20.2. There is a constant C ≥ 0, that depends only on n, such that

(20.16)

ˆ
x∈E∩A ; cosα(x)>0

[1− cosα(x)] dH2(x) ≤ CE ,

where we set E = f(90) +
´ 180

0
h(r)dr

r
.

Let us apply the coarea formula (i.e., Theorem 3.2.22 in [F]) to some nonnegative mea-
surable function g, on the rectifiable set E ∩B(0, 90), and with the level sets of the function
x→ |x|; this yields

(20.17)

ˆ
E∩B(0,90)

g(x)J(x)dH2(x) =

ˆ 90

0

{ˆ
E∩Sr

g(x)dH1(x)
}
dr,

where J(r) is the appropriate Jacobian. In the present context, a simple computation shows
that J(x) = cosα(x). See (4.13) and (4.14) in[D4] (but this is not so hard to check anyway).
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Let us take g(x) = (cosα(x))−1 when cosα(x) > 0, and g(x) = 0 otherwise, but first
restrict to B(0, r′) \ B(0, r), with 0 < r < r′ < 90; notice that g is integrable on E against
J(x)dH2(x), and by (20.17)

(20.18) v(r′)− v(r) =

ˆ
E∩B(0,r′)\B(0,r)

dH2(x) ≥
ˆ r′

r

{ˆ
E∩Sr

g(x)dH1(x)
}
dr

since g(x)J(x) = g(x) cosα(x) ≤ 1 everywhere. The measurability of the inside integral is
part of the coarea formula. Also, when we divide by r′− r and let r′ tend to r in the formula
above, we get that

(20.19) v′(r) ≥
ˆ
E∩Sr

g(x)dH1(x)

for almost every r ∈ (0, 90) (both sides exist almost everywhere, since both sides of (20.18)
are monotone functions of r and r′). Next, for almost every r ∈ R,

(20.20)

ˆ
E∩Sr

[g(x)− 1]dH1(x) ≤ v′(r)−H1(E ∩ Sr) = ∆3(r) ≤ 4rj(r)

by (20.19), (19.51), and (19.56). We apply the coarea formula in the other direction and get
that

(20.21)

ˆ
r∈(10−2,90)

ˆ
E∩Sr

[g(x)− 1]dH1(x)dr =

ˆ
E∩A

[g(x)− 1] cosα(x)dH2(x),

which is the left-hand side of (20.16) by definition of g (because the set where cosα(x) = 0
does not contribute). To complete the proof, we just need to show that

(20.22)

ˆ
r∈(10−2,90)

rj(r) ≤ CE , with E = f(90) +

ˆ 180

0

h(r)
dr

r
.

Recall from (19.24) that j(r) = rθ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)
´ r

0
h(2t)dt

t
. Since

here r ≤ 90, the last two terms are clearly dominated by the second half of E . For f(r), we
observe that for 0 < r ≤ 90,

(20.23)

f(r) = θ(r)− θ0 ≤ θ(90) exp
(
αn

ˆ 90

0

h(2t)dt

t

)
− θ0

= f(90) + θ(90)
[

exp
(
αn

ˆ 90

0

h(2t)dt

t

)
− 1
]

by the almost monotonicity formula (19.10). We multiply by r ≤ 90, integrate, and get less
than CE . We are left with θ′. Butˆ 90

0

r2θ′(r)dr ≤ 902

ˆ
r∈(0,90);θ′(r)≥0

θ′(r)dr ≤ 902
[ ˆ 90

0

θ′(r)dr −
ˆ
r∈(0,90);θ′(r)<0

θ′(r)dr
]

≤ 902
[
θ(90)− θ0 +

ˆ
r∈(0,90);θ′(r)<0

αnh(2r)
dr

r

]
≤ 902

[
f(90) + αn

ˆ 90

0

h(2r)
dr

r

]
(20.24)
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by Lemma 17.1 and because we know from (19.10) that θ′(r) ≥ −αnr−1h(2r) almost every-
where. This proves (20.22) and Lemma 20.2.

We shall now use Lemma 20.2 to control the variations of the cone Z(r) from the previous
section. Let j ∈ J and z ∈ C′j be given, and let Gz be as in (20.6). Lemma 20.1 says that
for r ∈ (10−2, 90), there is a unique point of Gz ∩ Sr, which we denote by wz(r). Set
ξz(r) = wz(r)/|wz(r)|. Then set

(20.25) δj(z) = sup
{
|ξz(r)− ξz(r′)| ; 10−2 < r, r′ < 90

}
;

let us check that

(20.26)

ˆ
z∈C′j

δj(z)dH1(z) ≤ CE1/2.

First we fix z ∈ C′j and study the variations of ξz(r). By Lemma 20.1, ξz is C1. We want to
show that

(20.27) |ξ′z(r)| ≤ C sinα(wz(r)),

but let us try not to get confused by the various angles. Set x = wz(r), α = α(wz(r)),
e = ξz(r) = x/|x|, denote by T the direction of the tangent plane to E at x, and let v ∈ T
be a unit vector that minimizes the angle with e. Thus 〈v, e〉 = cosα.

Recall from the proof of Lemma 20.1 that near x, E is a Lipschitz graph over P (j)
(the plane that contains Cj) with a constant as small as we want. This means that T is
as close to P (j) as we want. In particular T is not contained in Pz, and we can find a
unit vector a ∈ T , which is orthogonal to Pz. Notice that x ∈ Gz ⊂ Pz, so e ∈ Pz and
dist(v, Pz) ≤ dist(v,Re) = sinα. Since (20.27) is trivial when α ≥ 10−1, we may assume
that α ≤ 10−1 (we could also have proved this too); then, denoting by πz the orthogonal
projection on Pz,

(20.28) |〈v, a〉| = |〈v − πz(v), a〉| ≤ dist(v, Pz) ≤ sinα ≤ 10−1,

the basis (v, a) is nearly orthogonal, and the norm (in T ) of the projection on the direction
of v parallel to a is less than 2.

Denote by w a unit tangent vector to Gz at x; of course w ∈ T , and we can write
w = λv + µa, with |λ| ≤ 2. Recall that we are interested in the angle between w and the
radial direction e. Denote by π⊥ the orthogonal projection on the direction orthogonal to e;
then

(20.29) |π⊥(w)| ≤ |λ||π⊥(v)|+ |µ||π⊥(a)| = |λ||π⊥(v)| ≤ 2|π⊥(v)| = 2 sinα

because a is orthogonal to Pz, hence to e, and by definition of α.
Now we compute ξ′z(r) brutally. Since the derivative of |wz(r)| is 〈wz(r), w′z(r)〉|wz(r)|−1,

(20.30) ξ′z(r) =
w′z(r)

|wz(r)|
− wz(r)〈wz(r), w′z(r)〉

|wz(r)|3
.
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That is,

(20.31) |wz(r)|ξ′z(r) = w′z(r)− wz(r)〈wz(r), w′z(r)〉|wz(r)|−2.

As could be expected, the total contribution of w′z(r) in the direction of wz(r) (or equivalently,
with the notation above, of e) vanishes. Also, |wz(r)| = r; we are left with

(20.32) |rξ′z(r)| = |π⊥(w′z(r))| ≤ 2 sinα|w′z(r)| ≤ 3 sinα

by (20.29) and because Gz is a small Lipschitz graph; (20.27) follows.
We integrate (20.27) on a subinterval of (10−2, 90) and find that

(20.33) δj(z) ≤
ˆ 90

10−2

|ξz(r)′|dr ≤ C

ˆ 90

10−2

sinα(wz(r))dr.

Then we integrate on C′j and get

(20.34)

ˆ
z∈C′j

δj(z)dH1(z) ≤ C

ˆ
z∈C′j

ˆ 90

10−2

sinα(wz(r))drdH1(z).

Now the double integral looks like an integral on a piece of E ∩A. Indeed, denote by Gr(j)
the union of the graphs Gz, z ∈ C′j; that is,

(20.35) Gr(j) = E ∩ A ∩
⋃
z∈C′j

(T (z) ∩ Pz) = E ∩ A ∩ T ∩
⋃
z∈C′j

Pz.

By the proof of Lemma 20.1, Gr(j) is a 1
20

-Lipschitz graph over (a subset of) P (j). In
addition, (20.10) says that it stays as close as we want to P (j), and therefore cosα(w) > 0
on Gr(j). Now (20.34) yields

ˆ
z∈C′j

δj(z)dH1(z) ≤ C

ˆ
w∈Gr(j)

sinα(w)dH2(w) ≤ C
{ˆ

Gr(j)

sin2 α(w)dH2(w)
}1/2

≤ C
{ˆ

w∈E∩A ; cosα(w)>0

[
1− cosα(w)

]
dH2(w)

}1/2

≤ CE1/2(20.36)

by Cauchy-Schwarz, because Gr(j) ⊂
{
w ∈ E ∩ A ; cosα(w) > 0

}
, then sin2 α(w) ≤ 2(1 −

cosα(w)), and by (20.16). This proves (20.26).

Lemma 20.3. Let Z(r), r ∈ R, denote the cone of Section 19. Then

(20.37) d0,1(Z(r), Z(s)) ≤ Cj(r)1/2 + Cj(s)1/2 + CE1/2

for r, s ∈ R.
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Here and below, C is allowed to depend on constants like η(X). It will be enough to
prove (20.37) when

(20.38) j(r) and j(s) are small enough

(depending on η(X) in particular), because otherwise it is trivial. This will allow us to avoid
some unpleasant cases.

First we construct some points. Fix r, s ∈ R, with (20.38), and let an index j ∈ J
be given. By Chebyshev, we can find z1 = z1(j) and z2 = z2(j) ∈ C′j, with the following
properties:

(20.39) dist(z1, z2) ≥ C−1η(X),

(we just use the fact that length(Ci) ≥ 10−1η(X) here)

(20.40) δj(z1) + δj(z2) ≤ CE1/2

(by (20.26), and if we choose C in (20.40) large enough), and, for i = 1, 2 and with the
notation of Lemma 19.4,

(20.41) wzi(r) ∈ γ∗(r) and wzi(s) ∈ γ∗(s).

Let us check that (19.28) allows us to arrange this last condition as well. Recall that wzi(r)
and wzi(s) lie in E∩A∩T , where T is the thin region near the cone over C′j that was defined
in (20.5). On this region, the projection which to a point w associates the point z ∈ C′j such
that w ∈ Pz is C-Lipschitz, and now the exceptional set of z ∈ C′j for which (20.41) fails is
contained in the projection of the union of the bad sets for (19.28); we assume that j(r) is
so small that we have a lot of choices left, and use Chebyshev to get (20.39) and (20.40).

Now we want to use these points to control Z(r), so let us first remind the reader of how
we chose Z(r) and at the same time introduce more notation. Recall from the discussion
below (19.46) that since we may assume that j(r) is small enough, as in (20.38), we may
assume that (19.30) holds. Then there are only two options. The first one is when (19.43)
holds, i.e., when ρ∗(r) = ϕ∗(K) is an acceptable small deformation of K = X ∩ S, and then
we took Z(r) = ϕ∗(X) (the cone over ρ∗(r), or equivalently the corresponding deformation
of X), as in (19.44). The other option is described below (19.49)), where ρ∗(r) has one or
two isolated additional points (vertices of K ∩ S), which we remove from ρ∗ to get ρ′, and
then we take for Z(r) the cone over ρ′, as in (19.50). Let us set ρ′ = ρ∗(r) in the first case
(when (19.43) holds), so that Z(r) is the cone over ρ′ = ρ′(r) in both cases. Of course it will
be enough to control ρ′.

By construction, ρ′ is composed of a collection of geodesics. Most of them are obtained
from an arc Cj, j ∈ J , by moving a tiny bit one or two of its endpoints. Let us write ρ′j the
arc of geodesic that comes like this from Cj. When ` ∈ K ∩ S is one of the two endpoints
of Cj, it may be that the corresponding endpoint of ρ′j is of the form ϕ(`), or just ` itself,
depending on the configurations. Also, it can happen that in addition to the ρ′j, ρ

′ contains
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one or two very short additional arcs, that go from some ` ∈ K ∩S to ϕ(`). For each `, there
is only (at most) one such arc, which we call ρ` = ρ(`, ϕ(`)). Since we do this construction
with both radii r and s, we shall often add this in the notation. Thus Z(r) is the cone over

(20.42) ρ′(r) =
⋃
j∈J

ρ′j(r) ∪
⋃
`

ρ`(r),

where the last union may be empty and concerns at most two vertices ` ∈ K ∩L, and there
is a similar description for ρ′(s).

We want to place each ρ′j(r) by finding two points in it; we will take care of the ρ`(r)
later. We start from the two points wzi(r), i = 1, 2. Since wzi(r) ∈ γ∗(r), (19.29) tells us
that we can find yi(r) = yi(r, j) ∈ Z(r) ∩ Sr such that dist(yi(r, j), wzi(r)) ≤ Cj(r)1/2. We
claim that

(20.43) yi(r, j) ∈ ρ′j(r) for i = 1, 2 and dist(y1(r, j), y2(r, j)) ≥ C−1η(X).

Recall that wzi(r) ∈ E∩T ∩Sr, so wzi(r) lies within 104ε0 << η(X) of the cone over C′j, and
(since j(r) is small by (20.38)) yi(r, j) lies very close too. Since C′j lies at distance at least
η(X)/10 from L∩ S and K \Cj, and at the same time ϕ does not move points much, we see
that yi(r, j) cannot lie in any other ρ′k(r), k ∈ J \{j}, nor any ρ′`(r). That is, yi(r, j) ∈ ρ′j(r).
In addition, the two zi are far from each other (by (20.39)), hence also the wzi(r) and the
yi(r, j). This proves (20.43).

Let ρ̂j(r) denote the great circle in Sr that contains the geodesic ρ′j. Then r−1ρ̂j(r) is the
great circle in S that contains the two points r−1yi(r, j). Similarly define the great circles
ρ̂j(s) (starting from Z(s)), and points yi(s, j) ∈ Z(s) ∩ Ss, and notice that s−1ρ̂j(s) is the
great circle in S that contains the two points s−1yi(s, j). In addition, for i = 1, 2,

|s−1yi(s, j)− r−1yi(r, j)|
≤ s−1|yi(s, j)− wzi(s)|+ |s−1wzi(s)− r−1wzi(r)|+ r−1|wzi(r)− yi(r, j)|
≤ Cj(r)1/2 + |s−1wzi(s)− r−1wzi(r)|+ Cj(s)1/2 ≤ Cj(r)1/2 + CE1/2 + Cj(s)1/2.(20.44)

We deduce from this and (20.43) that

(20.45) dH(r−1ρ̂j(r), s
−1ρ̂j(s)) ≤ Cj(r)1/2 + Cj(s)1/2 + CE1/2 = CE ′,

where the Hausdorff distance dH is defined as in (18.5), and we set E ′ = j(r)1/2+j(s)1/2+E1/2

to save some space. This is good, but we also want to control the position of the endpoints
of the ρ′j(r) and the ρ′j(s), because we want to show that

(20.46) dH(r−1ρ′(r), s−1ρ′(s)) ≤ CE ′.

Indeed, (20.37) will follow from (20.46), since Z(r) is the cone over r−1ρ′(r), and similarly
for Z(s).
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We intend to prove this locally, in balls of radius roughly equal to C−1η(X) and centered
on K. We start away from K ∩L, and first consider balls centered on the vertices of V1 ∪ V2

of our standard decomposition (see the definitions near (3.5)).
Let a0 ∈ V1 ∪ V2 be given, call Cj, Ck, and maybe Cl (that is, if a0 ∈ V1) the two or

three arcs of K that end at a0. By the various definitions, ρ′j(r), ρ
′
k(r), and maybe ρ′l(r) are

arcs of geodesics that end at some point ra(r), with a(r) ∈ S, and a(r) lies very close to a0

(because it is of the form ϕ(a0) for some ϕ ∈ Φ+
X(η), with η much smaller than η(X)). We

have a similar description of ρ′j(s), ρ
′
k(s), and maybe ρ′l(s), with another point a(s) ∈ S.

When a0 ∈ V1, the three Cj, Ck, and Cl make 120◦ angles with each other, and the
position of a(r) is determined, within 10CE ′, as soon as we know the position of the full
circle r−1ρ̂j(r) and its analogues for k and l. The same thing holds for the radius s, and now
(20.45) implies that

(20.47) |a(r)− a(s)| ≤ CE ′.

Once we have this, and by (20.45) again, we easily deduce that

(20.48) da0,10−4η(X)(r
−1ρ′j(r), s

−1ρ′j(s)) ≤ CE ′

and similarly for k and l. Since we are far from the ρ` and by (20.42), we immediately get
that

(20.49) da0,10−4η(X)(r
−1ρ′(r), s−1ρ′(s)) ≤ CE ′.

This is good enough for (20.46), so we may switch to the case when a0 ∈ V2, and we started
from two arcs Cj and Ck that go in opposite directions. In this case, we will not control the
geodesics separately, but we will be able to control the union. That is, we may not know
so precisely where a(r) and a(s) lie (i.e., (20.47) may fail), but nonetheless we claim that
(20.49) still holds, although maybe with a larger constant. Indeed if the angle of ρ̂j(r) and
ρ̂k(r) at ra(r) is at most CE ′, the angle of ρ̂j(s) and ρ̂k(s) at sa(s) is less than CE ′ too,
and in the ball B(a0, 10−4η(X)), r−1ρ′(r) is CE ′-close to r−1ρ̂j(r) (or to r−1ρ̂k(r), since the
two are close to each other). If now the angle of ρj(r) and ρk(r) at ra(r) is roughly λE ′,
with λ large, then the proof of (20.47) merely gives |a(r) − a(s)| ≤ Cλ−1, but we still get
(20.49) because the distance between ρj(r) and ρk(r) (or similarly ρj(s) and ρk(s)) varies by
at most CλE ′ times this distance. Said differently, we look for a Lipschitz graph (for instance
s−1ρ′(s)) composed of two arcs of geodesics, knowing these two geodesics with errors of CE ′;
then we can recover the graph within CE ′ (after deciding which way it branches), which we
can if the geodesics make angles λE ′, with λ large.

This takes care of small balls B(a0, 10−4η(X)) centered on V1 and V2. It is even easier to
show that

(20.50) da0,10−6η(X)(r
−1ρ′(r), s−1ρ′(s)) ≤ CE ′

when a0 ∈ K is such that dist(a0, V0∪V1∪V2) ≥ 10−5η(X), because in the ballB(a0, 10−6η(X)),
r−1ρ′(r) coincides with a single r−1ρ̂j(r), the one for which a0 ∈ Cj. This comes from the
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fact that all the other ρ′j(r) (or ρ′`(r)) are far away, by (3.9)-(4.3) and the fact that we have
a good control on the angles that two arcs ρ′j(r) make when they have a common endpoint.

This takes care of the part of ρ′(r) and ρ′(s) that lives far from V0 = K ∩L, and (20.46)
(and hence also the lemma) will follow if we can prove that for ` ∈ V0,

(20.51) d`,10−4η(X)(r
−1ρ′(r), s−1ρ′(s)) ≤ CE ′.

We will need to distinguish cases, depending on the configurations that we encounter for r
and s. A priori, these two configurations may be different.

We start with the case when K has only one branch near `. Since hanging curves never
occur when j(r) and j(s) are small (recall (20.38)), there is only one curve ρ′j near r`, and
this curve ends at `. The same thing happens for s, and in this case (20.51) is a simple
consequence of (20.45), because we know where the curves stop (and on which side they
are).

Next assume that K has two branches at `. Call the corresponding indices j and k. Then
(again because there is no hanging curve) we can only be in Configuration 2- (treated below
(10.20)) or Configuration 2+ (treated in Section 12).

In the first case, ρ′(r) is composed, near r`, of the two arcs of geodesic ρ′j(r) and ρ′k(r),
and nothing else. They have a common endpoint ra(r), and even though the position of
ρ̂j(r) and ρ̂k(r) does not necessarily determine a(r) with great precision (because ρ′j(r) and
ρ′k(r) may make an angle at ra(r) that is close to π), it still determines the union of ρ′j(r)
and ρ′k(r) with a good enough precision. That is, if both r and s are subject to Configuration
2-, then we have (20.51), by the same proof as for (20.49) when a0 ∈ V2.

When we have Configuration 2+ for r, there are again two cases. We start with the
second one (Case B), because then Γ is composed of just two curves that start from ` (see
near (12.8)), the geodesics ρ′j(r) and ρ′k(r) both start from `, and their position near ` is
easy to deduce from the position of ρ̂j(r) and ρ̂k(r). If this happens both for r and s, we get
(20.51) right away, and even if we have this configuration for r and Configuration 2- for s,
or the other way around, we still get (20.51) for the same reason as in Configuration 2-.

We are left with the case when at least one of the radii, say, r, belongs to Case A of
Configuration 2+. In this case ρ′(r) is composed of three geodesics near `, the usual ρ′j(r)
and ρ′k(r), that end at a common point ra(r), plus the short geodesic ρ′`(r) that goes from
r` to ra(r). In this case these three geodesics make large angles at ra(r) (see (12.2)). In
fact the proof of (12.4) (even simplified) shows that then ρ′j(r), ρ

′
k(r), and ρ′`(r) make angles

larger than 2π
3
− π

9
= 5π

9
at ra(r), and then ρ′j(r) and ρ′k(r) make an angle smaller than

2π − 2 · 5π
9

= 8π
9
< π at ra(r). In this case, we can recover the position of a(r), within the

usual error of CE ′, from the approximate position of the geodesics ρ̂j(r) and ρ̂k(r) (known
within CE ′). In addition, in this case the same proof also shows that Cj and Ck make an
angle smaller than 8π

9
at `, and we can recover the point of intersection sa(s) of ρ′j(s) and

ρ′k(s) with the same sort of precision. Thus, if s is also coming from case A, we get (20.51)
with the initial proof of (20.49).

We are left with the case when r is associated to Case A and s is associated to Case B
or Configuration 2-. Case B is not a problem, because a(s), which is the intersection near
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` of s−1ρ̃j(s) and s−1ρ̃k(s), lies very close to a(r) (which has a similar definition in terms of
r), and at the same time is equal to `, so that the additional geodesic ρ′`(r) is very short and
we still get (20.51). We are left with the case when s belongs to Configuration 2-. But in
the present case Cj and Ck make an angle smaller than 8π

9
at `, and it is easy to see that our

union of curves Γ = Γ1 ∪ Γ2 is not efficient because we may as well cut its edge near `. We
claim that this case (i.e., Configuration 2- with an angle smaller than 8π

9
) does not occur for

s when j(s) is small enough. The proof is the same as for Configuration 3 = 2+1, treated
below (19.49), except that we don’t even need to worry about the extra arc leaving from `.
This completes our proof of (20.51) when there are only two arcs Cj and Ck that leave from
`.

Now may now assume that we have three arcs Ci, Cj, and Ck that touch `. The three
main geodesics ρ′j(r), ρ

′
j(r) and ρ′k(r) make angles nearly equal to 2π

3
near `, so the location

of the intersections of the great circles that contain them is known with good precision. In
terms of Configurations, recall that there is no hanging curve, and that Configuration 3 =
2+1 is also ruled out by the discussion near (19.49). We are thus left with Configuration 3-
(where ρ′(r) is composed of the three geodesics ρ′i(r), ρ

′
j(r), ρ

′
k(r) that all leave from a same

endpoint that we call ra(r) (see near (10.30)), and Configuration 3+, where again we have
have two subcases. In Case A, Γ and then r−1ρ′(r) are three-legged spider centered at ` (see
(11.31), the comment that follows it, and then the discussion above (13.13) that confirms
how we cut Γ and found geodesics).

In Case B, Γ and then and r−1ρ′(r) are authorized to have a fork. That is, they are
composed of one curve that leaves from ` (with the notation of (11.96), the corresponding

piece of Γ is called Γ̃5), a short arc r−1ρ′`(r) (corresponding to Γ̃4 in (11.96)), that goes from
` to some fork point a(r) (corresponding to x0 in Section 12), and then two other curves
that leave from a(r) (corresponding to Γ2 and Γ3 in (11.96)).

If both r and s both correspond to Configuration 3- or Case A, then we have (20.51)
because the positions of a(r) and a(s) can be obtained with the desired precision form the
position of the great circles where they cut. The proof is still the same as for (20.49).

So we may assume that for r we have Case B, and (again without loss of generality)
that a(r) is the common endpoint of r−1ρ′j(r) and r−1ρ′k(r). First assume that s corresponds
to Configuration 3- or Case A. Then a(s), which is the intersection near ` of s−1ρ̂j(s) and
s−1ρ̂k(s), lies within CE ′ of a(r), which is defined similarly, but with s replaced by r (apply
(20.45) as usual). Also, ` lies close to s−1ρ̂i(s) because it lies in r−1ρ̂i(r). Moreover, if we
assume for the sake of the discussion that the tangent of Ci is horizontal at ` and leaves
from ` in the direction of the right, a(r) is roughly aligned with the opposite of r−1ρ′i(r) (see
Lemma 11.5), i.e., lies on the left of `, and then a(s) also lies on the left (or at least, not far
right) of `; hence ` also lies within CE ′ of s−1ρ′i(s) (and not just s−1ρ̂i(s) as we said above).
So r−1(ρ′i(r) ∪ ρ′`(r)) is CE ′-close to s−1ρ′i(s) and we get (20.51) by adding the two other
geodesics.

We may thus assume that s also corresponds to Case B. If ρ′i(s) is also the geodesic of
ρ′(s) that leaves from s`, the intersection a(s) of s−1ρ′j(s) and s−1ρ′k(s) lies close to a(r), as
before, and (20.51) holds as usual. So we may assume that ρ′j(s), say, is the one that starts
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from s`, and a(s) is the common endpoint of s−1ρ′i(s) and s−1ρ′k(s). This is not impossible,
but we shall show that then a(r) and a(s) are both close to `.

By Lemma 11.5, a(r) − ` lies in the direction almost opposite to the direction of Ci
at `; since ra(r) ∈ ρ̂j(r) and ρ̂j(r) runs in a quite different direction, this proves that
dist(`, r−1ρ̂j(r)) ≥ 1

10
|a(r) − `|. On the other hand, s` ∈ ρ′j(s) ⊂ ρ̂j(s), so ` lies CE ′-close

to r−1ρ̂j(r) (by (20.43)) and altogether a(r) lies CE ′-close to `. The same argument (with r
and s exchanged) shows that |a(s)− `| ≤ CE ′; then (20.51) follows as usual: we control the
directions of the geodesics and their origin.

So (20.51) holds in our last case. We have seen earlier that (20.46), and then (20.37),
follow. This completes the proof of Lemma 20.3.

21 We finally get a good approximation by cones

In this section we complete the proof of Theorem 19.1. In the previous sections, we took
E as in that theorem, selected a sliding minimal cone X (see Lemma 19.2), constructed
deformations Z(r) ∈ Z(X, η) of X, r ∈ R (in Lemma 19.4), and proved that they often lie
close to each other (see Lemma 20.3). Now we want to pick one of the cones Z(r) and show
that it is close to E, as needed for Theorem 19.1.

So let us choose a radius r0 ∈ R. We simply use Chebyshev to select r0 ∈ R such that

(21.1) r0 ∈ (1, 2) and j(r0) ≤ 2

ˆ 2

1

j(r)dr ≤ CE ,

where the second inequality comes from (20.22).
Set Z = Z(r0); want to show that E is close to Z in, say, B(0, 2), but it will be simpler to

first take care of the annulus A0 = B(0, 2)\B(0, 10−1); we will worry later about B(0, 10−1),
with an iteration argument. First we check that points of Z ∩ A0 are close to E.

Lemma 21.1. With Z and A0 = B(0, 2) \B(0, 10−1) as above,

(21.2) dist(z, E) ≤ CE1/3 for z ∈ Z ∩ A0.

Let z ∈ Z∩A0 be given, set r = |z|, and pick s ∈ R such that j(s) ≤ E2/3. By Chebyshev,
we can find s so that

(21.3) |s− r| ≤ 2E−2/3

ˆ 90

0

j(r)dr ≤ CE1/3,

by (20.22) again. Set z1 = sr−1z; thus z1 ∈ Z ∩ Ss and |z1 − z| = |s − r| ≤ CE1/3. By
Lemma 20.3 (applied to r0 and s), we can find z2 ∈ Z(s) ∩ Ss such that

(21.4) |z2 − z1| = dist(z1, Z(s)) ≤ 3d0,1(Z,Z(s)) ≤ C(j(r0) + j(s) + E)1/2 ≤ CE1/3.

Then we use Lemma 19.4 and find x ∈ γ∗(s) such that |x − z2| ≤ Cj(s)1/2 ≤ CE1/3. Since
x ∈ γ∗(s) ⊂ E (see the first line of Lemma 19.4), we get that dist(z, E) ≤ |x− z| ≤ CE1/3,
as needed.
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Lemma 21.2. Keep Z and A0 as above; then

(21.5) dist(x, Z) ≤ CE1/4 for x ∈ E ∩ A0.

We first find some points of E for which (21.5) holds. Let x ∈ E be given, and first assume
that r = |x| lies in R, with j(r) ≤ E1/2, and that in addition x ∈ γ∗(r). Then by (19.29),
there is a point z ∈ Z(r) such that dist(x, z) ≤ Cj(r)1/2 ≤ CE1/4. In addition, Lemma 20.3
gives us a point w ∈ Z = Z(r0) such that |w−z| ≤ C[j(r)+j(r0)+E ]1/2 ≤ CE1/4, by (20.37)
and the definition of r0. That is, dist(x, Z) ≤ C0E1/4 for some constant C0 that satisfies the
usual requirements. Next we consider

(21.6) E0 =
{
x ∈ E ∩B(0, 3) \B(0, 10−2) ; dist(x, Z) > C0E1/4

}
.

We want to estimate the measure of E0, and unfortunately we will have to single out the
ugly set

(21.7) Eb =
{
x ∈ E ∩B(0, 3) \B(0, 10−2) ; E has no tangent plane at x or cosα(x) = 0

}
,

which will be treated separately, after we look at

(21.8) E1 =
{
x ∈ E0 \ Eb ; |x| /∈ R or j(|x|) > E1/2

}
and

(21.9) E2 =
{
x ∈ E0 \ (Eb ∪ E1) ; x ∈ E ∩ S|x| \ γ∗(|x|)

}
.

By the discussion above, E0 = Eb ∪ E1 ∪ E2.
We shall now use the coarea formula and Lemma 20.2 to estimate H2(E1∪E2). We write

H2(E0 \ Eb) =

ˆ
E0\Eb

{
[1− cosα(x)] + cosα(x)

}
dH2(x) ≤ CE +

ˆ
E0\Eb

cosα(x)dH2(x)

= CE +

ˆ 3

r=10−2

H1((E0 \ Eb) ∩ Sr)dr

≤ CE +

ˆ 3

r=10−2

H1(E1 ∩ Sr)dr +

ˆ 3

r=10−2

H1(E2 ∩ Sr)dr(21.10)

by (20.16) and (20.17) with g = 1E0\Eb
, and where we recall that J(x) = cosα(x). Next

(21.11)

ˆ 3

r=10−2

H1(E2 ∩ Sr)dr ≤
ˆ 3

r=10−2

H1(E ∩ Sr \ γ∗(r))dr ≤
ˆ 3

r=10−2

j(r)dr ≤ CE

by (21.9), (19.28) and (20.22). Now we estimate
´ 3

r=10−2H1(E1 ∩ Sr)dr. We can drop the
radii r ∈ (10−2, 3) \R, because the corresponding set has vanishing measure by (19.23). We
also restrict to r such that j(r) > E1/2, by (21.8), and notice that since r ∈ R,

H1(E1 ∩ Sr)dr ≤ v′(r) = r2θ′(r) + 2r−1v(r) = r2θ′(r) + 2rθ(r)

= r2θ′(r) + 2rf(r) + 2rθ0 ≤ 2rθ0 + Crj(r)(21.12)
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by (19.22), (19.21), and then (19.27). Thus

(21.13)

ˆ 3

r=10−2

H1(E1 ∩ Sr)dr ≤ θ0

ˆ 3

r=10−2

1j(r)>E1/2 rdr + C

ˆ 3

r=10−2

rj(r) ≤ CE1/2

by (20.22) and Chebyshev. We compare with (21.11) and (21.10) and get that

(21.14) H2(E0 \ Eb) ≤ CE1/2.

Unfortunately, we still have to take care of Eb, where the co-area formula does not seem to
work so well. In fact, if we apply (20.17) with g = 1Eb

, the left-hand side vanishes (because
J(x) = 0 almost everywhere on Eb), and the right-hand side is

(21.15) 0 =

ˆ 90

0

{ˆ
E∩Sr

g(x)dH1(x)
}
dr =

ˆ 90

0

H1(Eb ∩ Sr)dr.

Thus H1(Eb ∩ Sr) = 0 for almost every r, and the contribution of Eb is not seen when we
evaluate the variations of v(r) using the integral of v′ and the estimate (19.22). That is, if we

set Ẽ = E \Er, ṽ(r) = H2(Ẽ ∩B(0, r)), and θ̃(r) = r−2ṽ(r), the proof of near monotonicity

for θ also yields the near monotonicity of θ̃, as in (19.10). It is a little sad that the author is
forcing the reader to trust that the proof of near monotonicity uses nothing else than (19.22);
in [D4] the author gave an other proof that avoids this unpleasant point, but at the same

time is more complicated. Anyway, the near monotonicity for θ̃(r) yields

(21.16) θ̃(90) ≥ θ0exp
(
− αn

ˆ 90

0

h(2t)dt

t

)
≥ θ0 − θ0αn

ˆ 90

0

h(2t)dt

t

by (19.1) (as in (19.11)), and because
´ 90

0
h(2t)dt

t
is small by (19.8). Then θ(90) = θ̃(90) +

90−2H2(Eb) ≥ θ0 + 90−2H2(Eb)− θ0αn
´ 90

0
h(2t)dt

t
, hence

(21.17) f(90) ≥ 90−2H2(Eb)− θ0αn

ˆ 90

0

h(2t)dt

t

or equivalently

(21.18) H2(Eb) ≤ 902f(90) + 902θ0αn

ˆ 90

0

h(2t)dt

t
≤ CE

by the definition of E in Lemma 20.2. With (21.14), this shows that H2(E0) ≤ CE1/2.
Now assume that we can find x ∈ E∩A0 such that dist(x, Z) ≥ 2C1E1/4, where the large

constant C1 > C0 will be chosen soon. Set ρ = C1E1/4; the set E3 = E ∩ B(x, ρ) stays at
distance at least C1E1/4 from Z, and it is also also contained in B(0, 3)\B(0, 10−2) (because
x ∈ A0 = B(0, 2) \ B(0, 10−1) and we may assume that E is arbitrarily small), so E3 ⊂ E0.
On the other hand, the local Ahlfors regularity of E yields H2(E3) ≥ C−1ρ2 = C−1C2

1E1/2,
with a constant of the usual type, and that does not depend on C1; we choose C1 large
enough and get the desired contradiction with our upper bound for H2(E0). This completes
the proof of Lemma 21.2.
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Remark 21.3. In [D4] we obtained a better power, namely 1/3 instead of 1/4. We do
not try to do this here, and send the reader to [D4] instead in the unlikely event where
something like this would be needed. The general idea was not hard: because of Lemma
21.1, we already know that all points of Z ∩ A lie CE1/3-close to E; we also know that E is
reasonably close, in any ball B0 centered on E ∩ A and with radius 10−2, say, to our initial
minimal cone X. The point is to use the fact that, in such a ball (and if we want, due to
the fact that near B0, the cone Z is one step simpler than in the ball centered at the origin),
we have a good description of E in 10−1B0, which we can use to say that it cannot look
like Z, plus a tiny bit that goes away from Z. In the case of [D4], we showed that E is
locally Hölder-equivalent to a cone of type Y or P; here we would use the results of [D8] (or
even this paper with a smaller density θ0) to get a good description of E near a point, that
prevents additional spikes that go away from Z. In both case we use extra flatness instead
of Ahlfors-regularity to get a better control of E at the scale E1/3 rather than E1/4.

We are now ready to prove Theorem 19.1. Our first observation is that if E is as in the
theorem, and we choose a new scale ρ ∈ (0, 1/2), then the new set Eρ = ρ−1E satisfies almost
the same assumptions as E itself. That is, the new gauge function for Eρ is hρ(r) = h(ρr),
and it satisfies (19.6) (even with the slightly smaller constant C0ρ

β0) if h satisfies (19.6). As
for the analogue fρ of f , notice that

(21.19)

fρ(200) = f(200ρ) = θ(200ρ)− θ0 ≤ θ(200)exp
(
αn

ˆ 200

0

h(2t)dt

t

)
− θ0

≤ [f(200) + θ0]
(

1 + 2αn

ˆ 200

0

h(2t)dt

t

)
− θ0 ≤ f(200) + C

ˆ 400

0

h(t)dt

t

because the density at the origin of Eρ is still θ0, and by (19.10). This is essentially as good
as f(200), i.e., when we assume (19.8) for E with a slightly smaller ε1, we also get (19.8) for
Eρ with ε1.

Let us just consider ρk = 2−k, with k ∈ N. For each k, we proceed as above, i.e., select a
minimal cone X = Xρk , then other cones Z(r) = Zρk(r), r ∈ Rρk , then a radius rk ∈ Rρk that
plays the role of r0 above, and finally the cone Z(k) = Zρk(rk) that we used for Lemmas 21.1
and 21.2.

Notice that rk+1 lies in the set Rk that was used for the kth step, that j(rk+1) is actually
the same when we think that rk+1 ∈ Rk or rk+1 ∈ Rk+1, and that we could have used the
same cone Z(k+1) = Zρk+1

(rk+1) as the set Zρk(rk+1). Then by Lemma 20.3 (applied with
choice of Zρk(rk+1)),

(21.20) d0,1(Z(k), Z(k+1)) = d0,1(Zρk(rk), Zρk(rk+1)) ≤ C
(
j(rk) + j(rk+1) + CEk

)1/2

where

(21.21) Ek = f(90ρk) +

ˆ 180ρk

0

h(t)
dt

t
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is the analogue of E at stage k, (see Lemma 20.2). But rk and rk+1 were chosen so that
j(rk) ≤ CEk and j(rk+1) ≤ CEk+1 (see (21.1)), so

(21.22) d0,1(Z(k), Z(k+1)) ≤ C
(
Ek + Ek+1

)1/2
.

Notice that

(21.23) Ek ≤ CEj for 0 ≤ j < k,

by the near monotonicity of f (or θ), with the same proof as for (21.19). We claim that then

(21.24) d0,1(Z(j), Z(k)) ≤ C(k − j)E1/2
j for 0 ≤ j < k.

For instance, if zj ∈ Z(j)∩B(0, 1), (21.22) gives a point zj+1 ∈ Z(j+1) such that |zj+1− zj| ≤
C
(
Ej + Ej+1

)1/2 ≤ CE1/2
j , by (21.23); we may assume that zj+1 ∈ B(0, 1) (because its

projection on B(0, 1) still lies in the cone Z(j+1) and is not twice further. By induction, for

every ` > j we can find z` ∈ Z(l)∩B(0, 1) such that |z`−zj| ≤ C(`− j)E1/2
j ; we stop at ` = k

and get the first half of (21.24). The converse is the same: any point zk ∈ Z(k) ∩ B(0, 1) is

within C
(
Ek + Ek−1

)1/2 ≤ CE1/2
j of Z(k−1) ∩B(0, 1), and so on until we reach Z(j) ∩B(0, 1).

Now it is easy to see that

(21.25) d0,1(E,Z) ≤ CE1/4
1 .

Recall that we chose Z = Z(0). Let x ∈ E ∩ B(0, 1) be given, and choose k so that
2−k−1 ≤ |x| ≤ 2−k. By Lemma 21.2 (applied to Eρk), we can find z ∈ Z(k) such that

|z − ρ−1
k x| ≤ CE1/4

k ≤ CE1/4 (recall that ρk = 2−k). We may as well take z ∈ B(0, 1),
because |ρ−1

k x| ≤ 1 and so the projection of z on B(0, 1) cannot be twice further. Then
by (21.24) (with j = 0) we can find w ∈ Z such that |w − z| ≤ CkE1/2; thus |x − ρkw| =
ρk|ρ−1

k x−w| ≤ C(1 + k)ρkE1/4 ≤ CE1/4 and we get the first half of (21.25). The second half
is done the same way, using (21.24) and then Lemma 21.1.

We already noticed in (19.46) that α(Z) = α(Z(r0)) ≤ Cj(r0) ≤ CE , by (21.1). So we
can use Z to establish (19.7); Theorem 19.1 follows.

22 A partial conclusion and the tangent cone is unique

In this section we stop and think a little about what we have done so far, and prove the
existence of a tangent cone X0 at the origin (i.e., the uniqueness of blow-up limit) in some
circumstances, as well as a good approximation result by X0 in small balls B(0, r).

We shall systematically assume that L is a line through the origin,

(22.1)
E is a reduced sliding almost minimal set in B(0, r1) ⊂ Rn,

with a boundary condition coming from L,
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with a gauge function h such that

(22.2) h(r) ≤ Chr
β for 0 < r ≤ r1

for some constants Ch ≥ 0, β > 0, and r1 > 0. We also assume that

(22.3) 0 ∈ E ∩ L.

Our simplest result is the following.

Corollary 22.1. Let E satisfy (22.1)-(22.3), and suppose in addition that

(22.4) some blow-up limit of E at 0 satisfies the full length condition.

Then E has a unique blow-up limit X0 at 0, and we can find a > 0, r0 ∈ (0, r1), and
C1, C2 ≥ 0 such that

(22.5) f(r) ≤ C1r
a and d0,r(E,X0) ≤ C2r

a/4 for 0 < r < r0,

where as usual

(22.6) f(r) = θ(r)− θ0, with θ(r) = r−2H2(E ∩B(0, r)) and θ0 = lim
t→0

θ(t).

Here a depends only on n and the full length constant for X0 (which turns out to be the
unique blow-up limit), while r0, C1, and C2 may depend wildly on E.

The reader should not pay too much attention to the difference between a and a/4; this
is just how they come in the proof.

This corollary generalizes Corollary 18.2, and will apply automatically when θ0 = limt→0 θ(t)
≤ 3π

2
if we ever prove (18.23), by the full length result of Section 37.

As usual, we prefer to state a more precise result, with more quantifiers, where we start
from the good approximation of E by a full length cone X in a given ball, and get the
existence of a tangent cone X0 and more precise approximation results for X0 in smaller
balls.

Theorem 22.2. Let X be a sliding minimal cone of dimension 2 in Rn, with sliding boundary
condition coming from L, and assume that X satisfies the full length condition. For each
choice of constant β > 0, we can find ε0 > 0, such that if the sliding almost minimal set E
satisfies (22.1)-(22.3), has the same density at 0 as X, i.e.,

(22.7) H2(X ∩B(0, 1)) = lim
r→0

r−2H2(E ∩B(0, r)),

and if in addition we can find ε ∈ (0, ε0] such that

(22.8) Chr
β
1 ≤ ε and d0,r1(E,X) ≤ ε,
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then E has a unique tangent cone X0 at 0,

(22.9) d0,r(E,X0) ≤ c1(ε)
( r
r1

)a/4
for 0 < r < r1,

and, with f as in (22.6),

(22.10) f(r) ≤
(3r

r1

)a
f(r1/3) + C3Chr

β
1

( r
r1

)a
≤ c2(ε)(r/r1)a for 0 < r < r1/3.

Here a > 0, ε0, and C3 depend only on n, β, and X through the geometric constants θ0,
η(X), η, and c associated to X and its full length condition. The constants c1(ε) and c2(ε)
depend also on ε, and tend to 0 (with n, β, η(X), η, and c fixed) when ε tends to 0.

As we shall see at the end of this section, this result is stronger than the combination of
Theorems 1.8 and 1.9, but not as trivially as one could think. We cannot apply Theorem 22.2
brutally because the cones of P, Y, and T, for instance, do not really satisfy the full length
property with uniform constants, since the number η(X) also measures the distance from
` ∈ L \ K to the closest vertex of K, which may be arbitrarily small. We will finesse the
issue by a small covering argument, as we did for Proposition 18.1.

Theorem 22.2 clearly implies Corollary 22.1 (apply it with a full length blow-up limit
X and a small enough radius r1 such that (22.8) holds). In addition to the more precise
estimates, it has an advantage over Corollary 22.1 that we don’t need to compute a blow-
up limit of E; it is enough to approximate E well enough by a full length minimal cone.
However, we still need to know the density of E at 0, because of (22.7). And the small
constant ε0 depends on our choice of X, so we may have to make tough arbitrages between
good approximation and large full length constants.

The sets X and X0 are not related a priori, but the proof will show that X and X0,
in addition to having the same density, are based on the same model. That is, X0 is a
deformation of X as in Definition 4.1.

The general strategy for the proof will be to use Proposition 17.2 to get some decay for
f , and Theorem 19.1 to deduce from the size of f(r) that E lies close to a nice cone. We will
have to do the two things at the same time, because we also need the good approximation
result of Theorem 19.1 to find a nice minimal cone for which (17.7) holds for smaller radii.
That is, we will need to show at the same time that (22.9) and (22.10) hold, for smaller and
smaller radii r.

Before we turn to the proof, let us say that Theorem 22.2 is not enough to give a good
C1 description of E near 0, even when the blow-up limits of E at 0 are simple. Sure enough,
we get a good control on E in every small ball centered at 0, but what about small balls
contained in B(0, r1/10), but centered at other points of E ∩ L, and more importantly at
points of E \ L? If we want to apply something like Reifenberg’s topological disk theorem
to describe E near 0, it seems that we need a uniform control on (the approximation of E
by nice cones in) these ball to get biHölder descriptions, and even a uniform decay to get a
C1, or slightly better than C1, description.
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We managed in [D8] to get enough uniform control on such balls to get a biHölder
description of E near 0 in some specific situations (when E looks a lot like a half plane or
a V-set in B(0, r1)), and in the present paper we want a better control (better than C1),
and slightly more cases. Both here and in [D8], we rely on the near monotonicity of a close
relative of θ, the function F of (1.27), which is adapted to balls that are centered slightly
off L.

This is why we will need to redo a large proportion of the arguments of this part in the
next one, and adapt them to the situation of balls centered on E \L, but unfortunately with
a limited list of approximating minimal cones (or truncated cones). In the mean time we
prove Theorem 22.2, and then the fact that it implies Theorems 1.8 and 1.9.

Proof of Theorem 22.2. Let E and X be as in the statement, and define θ and f
as in (22.6). We want to prove that f decays like a power, and for this we want to use
Proposition 17.2 and integrate the differential inequality that it gives.

So we want to find a cone X(r) such that (17.7) holds, and since we don’t want a mess
with varying full length minimal cones (that we also would have to find anyway), the simplest
will be to keep the same cone X and hope that it works for all radii. This means that we
will have to prove that it stays close to E at small scales, which will be done with the help
of Theorem 19.1.

Anyway, we we want to apply Proposition 17.2 with r0 = r1/2. Let us first check the
easy assumptions: (17.1) holds because of (22.1), and (17.2) follows from (22.2). For (17.8),
we work with the fixed cone X, so (17.8) just requires that Chr

β
0 ≤ ε(X) for some small

constant ε(X), and this follows at once from (22.8). Finally, (17.10) holds with q(r) = 0, by
(22.7). We are left with (17.7). Again we work with the fixed cone X, so (17.7) demands
that

(22.11) d0,2r(E,X) ≤ ε(X);

maybe we will not be able to prove this directly for all r ∈ (0, r1/2), so we define

(22.12) r00 = sup
{
r ∈ (0, r1/2) ; (22.11) fails

}
,

with the convention that r00 = 0 if (22.11) holds for all r ∈ (0, r1/2). Notice however that
since d0,r1(E,X) ≤ ε0 by (22.8), we immediately get that (22.11) holds for r > ε(X)−1ε0r1.
That is,

(22.13) r00 ≤ ε(X)−1ε0r1,

which we can make as small as we wish (compared to r1) by taking ε0 small.
Eventually we shall prove that r00 = 0; in the mean time, set I = (r00, r1/2). Our last

condition (22.11) is only known to hold on I, but fortunately it was observed a few lines after
the proof of Proposition 17.2 that with our weaker assumptions (where (17.7) only holds for
r ∈ I), the conclusion of Proposition 17.2, i.e., the differential inequality (17.11), still holds
for all r ∈ I. This means that

(22.14) rf ′(r) ≥ 4α

(1− 2α)
f(r)− 3h(r) for almost every r ∈ I,
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for a fixed constant α = α(X) (and because q(r) = 0). This differential inequality can be
integrated on I as we did in Section 17, and we get the inequality (17.23), valid for radii in
I. We change notation because r1 is already taken, and get that for r, s ∈ I, r ≤ s,

(22.15)
f(r) ≤

(r
s

)a
f(s) + 3ra

ˆ s

r

h(t)
dt

ta+1
≤
(r
s

)a
f(s) + 3Chr

a

ˆ s

r

rβdr

ra+1

≤
(r
s

)a
f(s) +

6Ch
β

rasβ−a,

where the small positive constant a = 4α
1−2α

from (17.20) depends on n, β and X (as above)
but not on Ch, and then by (18.2) and because we can safely assume that a < β/2.

Let us take s = r1/3. We get that for r ∈ (r00, r1/3),

(22.16) f(r) ≤
(r
s

)a
f(r1/3) +

6Ch
β
sβ
(r
s

)a
≤
(3r

r1

)a
f(r1/3) + CChr

β
1

( r
r1

)a
.

Notice that this is compatible with the first half of (22.10), which therefore will follow as
soon as we prove that r00 = 0.

Let prove the second inequality of (22.10) now. Observe that Chr
β
1 ≤ ε0 by (22.8), so we

only need to show that

(22.17) f(r1/3) ≤ c(ε),

with a constant c(ε) such that limε→+∞ c(ε) = 0.
We deduce this from the fact that d0,r1(E,X) ≤ ε (by (22.8)), with a simple compactness

argument, similar to the proof of Lemma 16.43 in [D3], but based on the limiting arguments
of [D7] because of the sliding condition. The point is that if this failed, we could construct
a sequence of sliding almost minimal sets Ej, and a sequence of sliding minimal cones Xj,
both associated to the boundary L, so that (after a dilation that sends r1 to 1) d0,1(Ej, Xj)
tends to 0 but the densities θj(1/3) = 9H2(Ej∩B(0, 1/3) and H2(Xj∩B(0, 1)) stay far from
each other. Then we would extract convergent sequences, use Theorems 10.97 and 22.1 of
[D7] to control the densities, show that fj(1/3) = 9Hd(Ej ∩ B(0, 1/3)) − Hd(Xj ∩ B(0, 1))
tends to 0, and get the desired contradiction.

For the moment, we only know the first part for r ∈ I, but we still get that

(22.18) f(r) ≤ c
( r
r1

)a
for r ∈ (r00, r1/3),

with c as small as we want. We want to use this, and Proposition 19.1, to control the
geometry of E, in particular in balls that are too small for (22.8) to give good results.

Set rk = 10−3kr1, and apply Proposition 19.1 to the set Ek = r−1
k E. The assumption

(19.6) (with β0 = β) follows at once from (22.2) and we can even take C0 = Chr
β
k ≤ 10−3kβε0

(by (22.8)). So C0 is small, and Proposition 19.1 says that (19.7) holds, i.e.,

(22.19) βX ,η(Ek, 1) ≤ C
[
fk(200) +

ˆ 400

0

hk(t)dt

t

]1/4

,
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with fk(200) = f(200rk) and

(22.20)

ˆ 400

0

hk(t)dt

t
≤
ˆ 400

0

Ch(rkt)
βdt

t
≤ CChr

β
k ≤ Cε010−3kβ

by (22.8) again. We shall restrict our attention to integers k ≥ 2 such that

(22.21) 200rk ≥ r00,

because this way we can apply (22.18) to r = rk and get that

(22.22) βX ,η(Ek, 1) ≤ Cc
( r
r1

)a/4
+ C

(
ε010−3kβ

)1/4 ≤ c1

( r
r1

)a/4
,

again with c1 as small as we want, and because a < β/2 and ε0 is small. By (19.5) this
means that we can find a cone Zk ∈ Z(X, η) such that in particular

(22.23) d0,rk(E,Zk) = d0,1(Ek, Zk) ≤ c1

(rk
r1

)a/4
= c110−3ka/4.

We shall only apply this for k ≥ k0, where k0 will be chosen soon. Notice that for k ≥ k0 +1,

d0,1(Zk, Zk−1) = d0,1/2(Zk, Zk−1) ≤ 2d0,1(Zk, Ek) + 2d0,1(Ek, Zk−1)

= 2d0,1(Zk, Ek) + 2 · 103d0,10−3(Ek, Zk−1)

= 2d0,1(Zk, Ek) + 2 · 103d0,1(Ek−1, Zk−1) ≤ c210−3ka/4,(22.24)

with c2 as small as we want and where for the first line (and similar computations later) we
actually use the fact that our estimates for the normalized distances (that follow) are small,
so that we can chase points inside B(0, 1). For k ≤ k0, we prefer to use the fact that

(22.25) d0,rk(E,X) ≤ 103kd0,r1(E,X) ≤ 103kε ≤ 103kε0

by (22.8). Let us pick k0 so large that

(22.26)
∑
k≥k0

(c1 + c2)10−3ka/4 ≤ 10−5ε(X),

where c1 and c2 come from (22.23) and (22.24) (and we do not care yet whether they are
small or not) and ε(X) comes from (22.11). Also make sure to pick ε0 ≤ 10−3k0−5ε(X), so
that by (22.25)

(22.27) d0,rk0
(E,X) ≤ 103kd0,r1(E,X) ≤ 10−5ε(X)

and, by the same proof as for (22.24),

d0,1(Zk0 , X) = d0,1/2(Zk0 , X) ≤ 2d0,1(Zk0 , Ek0) + 2d0,1(Ek0 , X)

= 2d0,rk0
(Zk0 , E) + 2d0,rk0

(E,X)

≤ 2c110−3k0a/4 + 2 · 103k0ε ≤ 4 · 10−5ε(X)(22.28)
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by (22.23) and (22.25) (and because ε ≤ ε0). We return to (22.23) and get that

d0,rk/2(E,X) = 2d0,rk(E,Zk) + 2d0,rk(Zk, X) ≤ 2c110−3ka/4 + 2d0,1(Zk, X)

≤ 2c110−3ka/4 + 8 · 10−5ε(X) ≤ 10−4ε(X).(22.29)

Hence

(22.30) d0,400rk+1
(E,X) = d0,4rk/10(E,X) ≤ 2d0,rk/2(E,X) ≤ 10−3ε(X).

We are now ready to prove that r00 = 0. Let k0 be as above; because of (22.13), we can
choose ε0 so small that k0 still satisfies (23.24). Let k ≥ k0 be such that (23.24) holds. Then
(22.30) holds too, and says that 200rk+1 > r00 (compare with (22.12) and (22.11)). That is,
we can show by induction that 200rk > r00 for all k, as needed.

As was said earlier, (22.16), and hence (22.10) are now proved for all r < r/3. Now we go
for (22.9). Now every k ≥ k0 satisfies (22.21), and by (22.24) the sequence {Zk} converges
to a limit X0. By (22.23), (22.24), and the same computations as for (22.29)

(22.31) d0,rk/2(E,X0) ≤ 2d0,rk(E,Zk) + 2d0,rk(Zk, X0) ≤ c10−3ka/4 = c
(rk
r1

)a/4
,

with c as small as we want. If 0 < r < rk0/2, we can apply (22.31) to the smallest rk such
that B(0, r) ⊂ B(0, rk/2), and we get that

(22.32) d0,r(E,X0) ≤ 103d0,rk/2(E,X0) ≤ 103c
( r
r1

)a/4
.

Since we can make c arbitrarily small by taking ε small, this takes care of the small radii in
(22.9). As usual, for the large radii we will try to use (22.8). First observe that

d0,1(X0, X) ≤ 2d0,1(X0, Zk0) + 2d0,1(Zk0 , X) ≤ Cc210−3k0a/4 + 2d0,1(Zk0 , X)

≤ Cc210−3k0a/4 + 2c110−3k0a/4 + 4 · 103k0ε = c3

(rk0
r1

)a/4
+ 4 · 103k0ε(22.33)

by (22.24) and (22.28), and where c3 is still as small as we want. Now we deduce from (22.8)
that for rk0/2 ≤ r ≤ r1/2,

d0,r(E,X0) ≤ d0,r(E,X) + 2d0,1(X0, X) ≤ r1

r
d0,r1(E,X) + 2d0,1(X0, X)

≤ r1

r
ε+ 2c3

(rk0
r1

)a/4
+ 8 · 103k0ε ≤ 3c3

( r
r1

)a/4
+ 103k0+1ε(22.34)

where for the first inequality we used again that X and X0 are cones. The first term is all
right for (22.9), and for the second term, notice that

(22.35)
( r
r1

)−a/4
103k0+1ε ≤ 2

(rk0
r1

)−a/4
103k0+1ε = 20

(rk0
r1

)−1−a/4
ε
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is still as small as we want, because k0 was chosen in terms of ε(X), and ε is as small as we
want. This completes the proof of Theorem 22.2.

Proof of Theorems 1.8 and 1.9. In the general case, although Theorems 1.8 and 1.9
correspond to two different estimates (decay for f and good approximation by cones when
f is small), we prove them at the same time. Also, the quantifiers in the statement force
us to get constants that do not depend on how close the spine of an initial approximating
cone to E can get to L, without containing half of it, so we will use the compactness of the
following class of minimal cones.

Denote by X0 the class of minimal cones of type P, Y, T, H(L), or V(L) (the same
as in the statement of Theorems 1.8 and 1.9). Then let n ≥ 3 and β > 0 be given. For
Theorem 1.8 we want to find a small constant ε0 > 0 such that the good estimate (1.23)
holds as soon as E and B(0, r1) satisfy the assumptions. For Theorem 1.9, we would also
give ourselves c > 0 small, and we would need to get (1.24) with c(ε0) < c.

Let L ⊂ Rn be fixed (we can always do this by rotation invariance), and for each X ∈ X0,
observe that X satisfies the full length property (by Theorem 37.1) and denote by ε0(X) the
small constant ε given by Theorem 22.2 (applied so that c1(ε) < c and c2(ε) < 10−10). Then
cover X0, as we did with (18.13), by the small balls

(22.36) VX =
{
Y ∈ X0 ; dcH(X, Y ) < 10−1ε0(X))

}
.

Since X0 is compact, we just need a finite family Y ⊂ X to cover, and we take ε0 =
1
10

min
{
ε0(Y ) ; Y ∈ Y

}
. Let us check that this work. Let E and r1 > 0 satisfy the assump-

tions of Theorem 1.8 or 1.9; then in particular there is a minimal cone X ∈ X0, with the
same density as E (as in (1.21)), and such that d0,r1(E,X) ≤ ε0. Then X ∈ VY for some
Y ∈ Y , and this implies that d0,r1(E,X) ≤ 3ε0 < ε0(Y ). For this, since we find it neater
not to modify the ball where we look, we use the triangle inequality and also the fact that
X and Y are cones.

The other assumptions of Theorem 22.2 are also satisfied (because Y has the same density
as X; we could also have fixed the density of E at 0 (out of a set of four values), and restricted
to cones that have this density); now the conclusions of Theorem 22.2 implies the conclusion
of Theorems 1.8 and 1.9, and this completes the proof of these theorems.
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Part IV

Decay and approximation for balls
centered on E \ L
In this part we still consider a sliding almost minimal set E, with a sliding boundary condition
that comes from a line L, and we generalize some of the results of the previous two parts to
balls that are centered on E \ L.

Our starting point is the near monotonicity of the quantity F of (1.27), which was proved
in [D8]. We show that when E is sufficiently close to a half line, a plane, a set of type V, or a
short truncated cone of type Y, this quantity actually decays like a power. This analogue of
Part II will be done, with the same sort of method, in Sections 23-28. For this we will need
to prove analogues of the full length condition in specific situations, and these computations,
done in Sections 27 and 28, will also be used in Section 37, when we complete the full length
verification for balls centered on L.

In addition, we will show in Section 30 that in the same circumstances as above, F
controls the geometry of E. This will allow us to get good approximation properties of
E in balls that are centered slightly off L, as needed if we want to apply Reifenberg-type
constructions.

Let us just describe a situation where we will obtain something. Suppose that at the unit
scale, E looks like a set of type Y truncated by L, with a spine EY that contains the origin,
runs almost parallel to L, and lies very close to L. At this large scale, E looks essentially
like a V-set, with angle 2π

3
. In very small balls near 0, E looks like a full Y-set. We are

interested in what happens at intermediate scales, and in particular in proving some decay
for quantities that show how well E is approximated by truncated Y-sets. This will be our
way of proving that nothing wild happens between the two extreme scales, and even that
the approximation at the small scale is better than expected.

We will see this sort of situation in the next part, where we use the decay information
from this part to start the desired classification of sliding almost minimal sets near the
boundary.

23 Balls centered on E \ L: preliminaries

In this section we set the stage for a study of decay properties of the adapted density function
F , for balls that are centered on E \L. We will proceed like in the previous sections, except
that the functional F has an additional term and the obvious competitors for E are no longer
cones over E ∩ Sr, but slightly larger sets with an additional triangular piece that allows
retractions on the sets which preserve L.

In this section and the next ones, we assume that L is a line, no longer through the
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origin, and that

(23.1)
E is a reduced sliding almost minimal set (of dimension 2)

in B(0, R), with a boundary condition coming from L,

with a gauge function h such that

(23.2) h(r) ≤ Chr
β for 0 < r ≤ R,

for some constants Ch ≥ 0, β > 0, and R > 0. Also we assume that

(23.3) 0 ∈ E \ L.

The results that will be proved here would still hold when L contains 0, with essentially the
same proof, but there would be no point because in this case the previous part gives us what
we need, and also it will be convenient in some places to discuss things in terms of

(23.4) d0 = dist(0, L) > 0.

Let us review some of the notation and results of [D8]. We shall be interested in balls B(0, r),
0 < r ≤ R. The shade of L (seen from the origin) is

(23.5) S =
{
z ∈ Rn ; λz ∈ L for some λ ∈ [0, 1]

}
.

We keep θ(r) = r−2H2(E ∩B(0, r)) as it was, but now consider

(23.6) F (r) = θ(r) + r−2H2(S ∩B(0, r)) = r−2
[
H2(E ∩B(x0, r)) +H2(S ∩B(0, r))

]
.

Notice that we take the sum, and not the measure of the union.
Let us review the properties of F that we intend to use. First assume more, i.e. that

(23.7)
E is a sliding reduced minimal set in B(0, R) of dimension 2,

with a boundary condition coming from L.

In this case, F is nondecreasing on the interval (0, R). See Theorem 1.2 in [D8].
There are two special cases of sliding minimal sets for which F is constant. The first one

is the half plane H0 bounded by L and that contains the origin; it is easy to see that for H0,
F is constant equal to π (the measure of the shade exactly compensates for the missing half
plane).

The second one is the truncated Y-set Y0, which is Y0 = Y1 \ S, where Y1 is the only
cone of type Y that is centered at 0 and contains L (thus its singular set is parallel to L and
S ⊂ Y1). For this set Y0, F is constant and equal to 3π

2
.

We also have local slightly tilted variants of Y0. If Y1 is a cone of type Y such that
L ∩ B(0, R) is contained in one of the three faces of Y1 (and hence S ∩ B(0, R) is also
contained in that same face, by elementary geometry), Y = Y1 ∩B(0, R) \ S is also a sliding
minimal set in B(0, R) (at least, we claim that this is very probable but we won’t need to
check), and the function F attached to it is constant and equal to 3π

2
on (0, R).

Theorem 1.3 in [D8] gives a nice description of E when (23.7) holds and F is constant
on an interval, but we shall only need the following two specific cases, which give a converse
to the examples above.
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Lemma 23.1. Suppose that (23.7) holds and R > d0 > 0. If F (r) = π for r ∈ (0, R),
then E = H0 ∩ B(0, R). If F (r) = 3π

2
for r ∈ (0, R), then there is a cone Y1 of type Y,

centered at 0, such that L ∩ B(0, R) is contained in one of the three faces of Y1, and for
which E = Y1 ∩B(0, R) \ S.

Notice that we already know, from previous work on the situation with no sliding bound-
ary (probably even before [Ta]), that since F (r) = θ(r) is constant and equal to π or 3π

2

on (0, d0), E coincides with a plane or a cone of type Y on B(0, d0). But let us apply
Theorem 1.3 in [D8], with R0 very small and R1 = R. Recall that “coral” is the same as
“reduced”, so the assumptions are satisfied. Set A = B(0, R1) \ B(0, R0) as in [D8]. Let X
be the positive cone over E ∩A (as in (1.13) there). We get that X is a reduced minimal set
in Rn (that is, with no boundary condition), and that A∩X \S ⊂ E (as in (1.14) there), and
where S is still the shade of L (see (1.9) there)). Thus in B(0, d0) \ B(0, R0), X coincides
with E (by definition of X, X ⊃ E ∩ A), and since F (r) = θ(r) for r < d0, we get that the
density of X is π or 3π

2
, hence X is a plane or a cone of type Y.

It was also observed after the statement of Theorem 1.3 in [D8] that in A, E and X \ S
coincide modulo a set of vanishing H2-measure. They also coincide in B(0, R0): either use
the fact that E is a plane or a Y in B(0, d0), or observe that X cannot depend on R0 and
let R0 tend to 0). That is

(23.8) E ∩B(0, R) = (X \ S) ∩B(0, R), modulo a set of vanishing H2-measure.

Then, for r ∈ (d0, R),

H2(X ∩B(0, r)) = r2H2(X ∩B(0, 1)) = r2F (r) = H2(E ∩B(0, r)) +H2(S ∩B(0, r))

= H2((X \ S) ∩B(0, r)) +H2(S ∩B(0, r))(23.9)

because X is a cone, F is constant, by (23.6), and by (23.8). This forces X to contain almost
all of S ∩B(0, r).

If X is a plane, this forces X to contain a bit of L, then the whole L; thus X is the
plane that contains H0 and the result follows from (23.8) (and the fact that E is closed and
reduced).

If X is a cone of type Y, L∩B(0, r) ⊂ X as above, and since this is true for all r ∈ (d0, R),
X contains L∩B(0, R). In fact, L∩B(0, R) is contained in a single face of X (if L∩B(0, R)
crossed the spine of X, one piece of it would not lie in X), so we can take Y = X in the
description above. Again the fact that E = Y1 ∩B(0, R) \ S follows from (23.8).

We shall also need the simpler version of Lemma 23.1 where 0 ∈ L. We start with a
description of sliding minimal cones with low density. Denote by P0 the set of planes through
the origin.

Lemma 23.2. There is a small constant τ(n) > 0 such that if X is a sliding minimal cone
of dimension 2 in Rn, with a sliding condition coming from a line L that contains the origin,
and if H2(X ∩ B(0, 1)) ≤ π + τ(n), then X ∈ H(L) ∪ P0 ∪ V(L), i.e., X is a half plane
bounded by L, a plane that contains the origin, but not necessarily L), or a set of type V
associated to L.
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See the beginning of Subsection 1.2 for the definitions. Notice that this is a simpler
special case of (18.23), wich at least we can prove. We start with the apparently even
weaker statement with τ(n) = 0. Let X be as in the statement, with a density d(X) =
H2(X ∩ B(0, 1)) ≤ π. Let us use the description of K = X ∩ ∂B(0, 1) that was given in
Proposition 2.1. We see that K is a union of great circles and arcs of great circles. If K
contains a great circle, this eats all the available density, K is a great circle, and X is a
plane. Otherwise, K is a union of arcs of geodesic.

Suppose two such arcs meet at some point y ∈ K \ L. Then there are three arcs of K
meeting at y (with 120◦ angles, but we don’t care), and the density of X at y is at least 3π/2.
This means that limr→0 Fy(r) = 3π/2, where Fy is the functional defined as in (23.6), but
with the set X and an origin at y. That is, Fy(r) = r−2

[
H2(X∩B(y, r))+H2(Sy∩B(y, r))

]
,

where Sy denotes the shade of L seen from y. It is easy to see that limr→+∞ r
−2H2(X ∩

B(y, r)) = limr→+∞ r
−2H2(X ∩ B(0, r)) = d(X) ≤ π, hence limr→+∞ Fy(r) ≤ 3π/2. But Fy

is nondecreasing, so Fy(r) = 3π/2 for 0 < r < +∞. By Lemma 23.1, X coincides in large
balls B(0, R) with truncated cones of type Y, but centered at y. This contradicts the fact
that X is a cone centered at 0.

Thus none of the arcs that composeK ends away from L, which means thatK is composed
of half circles with endpoints in L. There is no more than two arcs, because d(X) ≤ π. If
there is one arc, X ∈ H. Otherwise, X is composed of two half planes, and X ∈ V because
if these two half plane make an angle smaller than 2π

3
, it is easy to see (or well known) that

X is not minimal.
We still need to prove the result with a positive τ(n). Suppose the lemma fails, so that for

each large integer k we can find a sliding minimal cone Xk, such that d(Xk) ≤ π+2−k and yet
Xk /∈ H(L)∪P0∪V(L). Take a subsequence (and still call it {Xk}) such that Xk converges to
a limit cone X (or equivalently here, since we work with cones, Kk = Xk∩∂B(0, 1) converges
to K∞ = X ∩ ∂B(0, 1) for the Hausdorf distance on ∂B(0, 1)).

By the various convergence theorems in [D7] (Theorems 21.3, 10.97, and 22.1 there)
X is a minimal cone and d(X) = limk→+∞ d(Xk) ≤ π. By the case we already proved,
X ∈ H(L) ∪ P0 ∪V(L). Let yk be any endpoint of an arc of Kk that does not lie in L. Such
a point exists, because Xk /∈ H(L) ∪ P0 ∪ V(L) and by the argument above.

If we could find a subsequence for which yk converges to a limit y ∈ K \L, then K would
have a point of type Y at y, because {Kk} converges to K and all the arcs of Kk that do
not end on L have lengths at least η0 for some constant η0 = η0(n). Thus the endpoints yk
all tend to L. For each k large, Kk has at most two short arcs that leave from the points
`± of L ∩ ∂B(0, 1) (see (2.4)), and all the other ones are long, because they go from a small
neighborhood of `− to a small neighborhood of `+. Thus there are at most two long ones
(because H1(Kk) = 2d(Xk) ≤ 2π + 2−k+1). If there is a single yk, then Kk is composed of
two long arcs (from `−, say, to yk) and a short one (the geodesic from yk to `+). This is
impossible, because the long arcs are geodesics that both leave from `−; they can only meet
back at `+.

We are left with the case when there are two points yk and y′k, and Kk is composed of
two geodesics from yk to y′k, plus two short geodesics from these points to the closest `±. As
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before, the long geodesics can only meet at the antipode, i.e., y′k = −yk. It is easy to see
that the corresponding set is not minimal. For instance, if the three arcs make the correct
angles of 120◦ at yk, then the three arcs at y′k make acute angles of 60◦.

This completes our contradiction and compactness argument; Lemma 23.2 follows.

Let us continue our rapid description of the results of [D8]. We return to the more general
situation where E is a sliding almost minimal set, as in (23.1), that 0 ∈ E \ L, and that the
associated gauge function h is such that

(23.10) A(r) =

ˆ r

0

h(t)
dt

t
< +∞ for 0 < r < R,

and h(R) is small enough (depending on n). Then Theorem 1.5 in [D8] says that

(23.11) F (r)eαA(r) is a nondecreasing function on (0, R),

with a constant α that depends only on n.
It will be psychologically useful to know the general idea of the proof, which is essentially

the same as for the (near) monotonicity of θ when L is a cone centered at the origin. We
would like to compare E with the cone

(23.12) Γ(E, r) =
{
λz ; z ∈ E ∩ ∂B(0, r) and λ ∈ [0, 1]

}
over E ∩ ∂B(0, r), but since it may no longer be a limit of sliding competitors (moving a
point z ∈ E ∩ L ∩ ∂B(0, r) in the direction of 0 may detach it from L), we add to Γ(E, r)
the set

(23.13) T (r) =
{
λz ; z ∈ L ∩B(0, r) and λ ∈ [0, 1]

}
,

which is the convex hull of the triangle with vertices 0 and the two points of L ∩ ∂B(0, r).
It turns out that Γ(E, r) ∪ T (r) can be used as a competitor (maybe, after taking a limit),
just as Γ(E, r) before. Now Γ(E, r) ∪ T (r) is not as small as Γ(E, r), and when we do the
computation, we find out that we only get the (near) monotonicity of F (r), where we added
the (sometimes strictly) nondecreasing term r−2H2(S ∩B(x0, r)).

We will be more interested in the case when 0 lies very close to L. Then T (r) is quite
thin; nonetheless it has an effect on the functional F and on our estimates that we cannot
neglect.

In the work that we did so far, with balls centered on L, the main point was to try
to construct a competitor for E that was significantly better than the cone Γ(E, r), and
then we proved some decay for θ (i.e., a good differential inequality) rather than proving
that it is nearly monotone. Here we want to do the same thing, i.e., improve significantly
over Γ(E, r) ∪ T (r), and then we’ll get a good differential inequality involving F . As in the
previous sections, the main point is the construction of good competitors. This is what we
do in the next two sections, in the two special cases for which we know that the function F
can be constant on some truncated minimal cones.
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But before we come to this, let us also show how to use Lemmas 23.1 and 23.2, and a
little bit of compactness, to get similar results for almost minimal sets. We now assume that
d0 > 0 (as in (23.3)) and that h satisfies (23.2); this way there exists a density

(23.14) θ0 = lim
r→0

θ(r) = lim
r→0

F (r)

because d0 > 0, and by (23.11) or more simply its version in the plain case. We start with
an application of Lemma 23.1, where we show that E is some times close to a half plane.

Lemma 23.3. For each choice of small constants δ > 0 and τ > 0, we can find ε = ε(δ, τ) >
0, that depends only on δ, τ and n, with the following property. Let E satisfy (23.1)-(23.3),
and let r be such that

(23.15) r ≤ d0

δ
and

11d0

10
≤ r < R.

Suppose in addition that

(23.16) h(r) ≤ ε and

ˆ r

0

h(t)
dt

t
≤ ε,

and

(23.17) F (r) ≤ π + ε.

Let H0 denote the half plane plane bounded by L that contains the origin. Then

(23.18) d0, 20r
21

(E,H0) ≤ τ,

and also

(23.19) |H2(E ∩B(y, t))−H2(H0 ∩B(y, t))| ≤ τr2

for all y ∈ Rn and t > 0 such that B(y, t) ⊂ B(0, 20r
21

).

It is important here to have in mind that when r gets too large compared with d0, we
need to take δ large (because of (23.15)), so we may need to take ε very small. This is not
shocking, it is just a reminder of the fact that limiting arguments (that will be used to prove
the lemma) will only lead you so far. The case when r >> d0 will be discussed later.

We shall deduce this lemma from Theorem 1.6 in [D8], whose main point is that when
the function F is nearly constant on an interval, E is quite close to a minimal set for which
F is constant. We shall apply that theorem with a fixed line L0, which we choose so that
dist(0, L0) = 1 (otherwise, the constants would depend on the line, and we want to avoid
this). Let f : Rn → Rn be a composition of a rotation and a dilation, which we choose so
that f(0) = 0 and f(L) = L0. Thus the dilation factor is d−1

0 . We want to apply the theorem
to E ′ = f(E), so we check the assumptions, with τ ′ = τ/2 and the radius r1 = d−1

0 r.
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But let us first talk about our constant δ. By (23.16), 11
10
≤ r1 ≤ δ−1. On the other hand,

Theorem 1.6 in [D8] is stated with a single r1, i.e., the small constant ε > 0 in that statement
depends also r1, which does not make us happy a priori. It is even noted after the statement
that in the present case, ε depends on the ratio dist(L0)−1r1 (by dilation invariance). A
later statement Corollary 9.3 in [D8], solves this issue, and gives a constant ε that does not
depend on r1 as long as r1 ≤ C (or here, δ−1), but the statement is a little more unpleasant
because it also allows more complicated choices of L0 (that is, we are only interested in a
line L here, and the mapping ξ is an isometry), and also because the statement would rather

concern another dilation f̃(E), with a dilation factor r−1, so that now r becomes 1 and
d0 = dist(0, L) becomes r−1d0 ∈ [δ, 10

11
]. The reader should not pay attention to the fact that

the statement in [D8] requires dist(0, L) ≤ 9
10

; the proof works the same way. We decided to
simplify our lives, and use Theorem 1.6 in [D8] with the knowledge that ε does not depend
on r1 as long as r1 stays bounded.

So we check the assumptions. First, E ′ is sliding minimal in B(0, d−1
0 R), relative to L0

and with the gauge function h′(r) = h(d0r). We need to know that r1 ≤ d−1
0 R, or equivalently

r ≤ R, and this is given by (23.15). Also, h′(r1) = h(d0r1) = h(r) ≤ ε and (1.22) in [D8]
holds. For (1.23) there, denote by F ′ the functional associated to L0; then

F ′(r1) = F (r) ≤ π + ε ≤ θ0 + ε ≤ eαA(10−3r) inf
0<ρ<10−3r

F (ρ) + ε

≤ eαε inf
0<ρ<10−3r

F (ρ) + ε = eαε inf
0<ρ<10−3r1

F ′(ρ) + ε(23.20)

by the dilation invariance of densities, (23.17), the fact that θ0 = limρ→0 θ(ρ) = limρ→0 F (ρ)
is at least π, the near monotonicity estimate (23.11), the definition (23.10), and (23.16). This
gives the desired bound, if ε is small enough. We can apply the theorem, and we get a sliding
minimal set E0, with all sort of properties. We want to check that E0 coincides in B(0, r1)
with the half plane bounded by L0 that contains 0 (or equivalently that f−1(E0) = H0 in
B(0, r)), and this way (23.18) and (23.19) will follow from (1.25)-(1.27) in [D8].

Now (1.24) in [D8] says that the analogue of F ′ for E0 takes a constant value D on (0, r1).
Notice that r1 = d−1

0 r ≥ 11
10

by (23.15). By (1.27) for B(y, t) = B(0, 1), we get that D is as
close to π as we want. Now Theorem 1.3 in [D8] (about constant density) gives the following
extra information on E0.

Set A = B(0, r1) \ {0}, denote by X the cone over A∩E0, and by S the shade of L0. We
get that H2(A∩E0∩S) = 0, that A∩X \S ⊂ E0, that X is a minimal cone (no boundary),
and Hd(S ∩B(0, r1) \X) = 0.

Notice that B(0, 1) \ {0} ⊂ A (because r1 ≥ 11
10

), and that inside B(0, 1) \ {0}, E0 ⊂
X by definition of X, and X = X \ S ⊂ E0 because B(0, 1) does not meet S. Then
H2(X ∩ B(0, 1)) = H2(E0 ∩ B(0, 1)) = D, which is as close to π as we want. Since X is
a minimal cone, X is a plane. In addition, Hd(S ∩ B(0, r1) \ X) = 0 and r1 ≥ 11

10
, so X

contains a nontrivial bit of S, hence also the whole L. That is, X is the plane that contains
0 and L0.

Set H = f(H0) = X \ S; we want to show that E0 coincides with H in B(0, r1), or
equivalently in A = B(0, r1) \ {0} (because E0 is closed). We know that A ∩ X \ S ⊂ E0,
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hence A∩H ⊂ E0 (again, E0 is closed). Then E0∩A ⊂ X (by definition of X), which means
that E0 ∩ A \H ⊂ S. Since H2(A ∩ E0 ∩ S) = 0, and E0 is coral (or more brutally, locally
Ahlfors regular), we get that E0 ∩ A ⊂ H, as needed for Lemma 23.3.

Lemma 23.4. Lemma 23.3 stays valid when instead of (23.17), we require that the density
of E at 0 is θ0 = 3π

2
and that F (r) ≤ 3π

2
+ ε, and we get the same conclusion, except that H0

is replaced with the set E0 = Y \ S, where Y is a minimal cone of type Y, centered at 0 and
such that L ∩B(0, r) is contained in a face of Y .

Set B = B(0, r). We only care about E0 ∩B, because the outside part does not interfere
with our description of E in (23.18) and (23.19), since B(0, 20r

21
) lies well inside B. Inside B,

E0 = Y \ S is really a truncated set of type Y, where we removed from Y the part that lies
on the other side of L, of the face of Y that contains L ∩B.

For the proof we proceed as for Lemma 23.3. We can still apply Theorem 1.6 in [D8],
after applying the same composition f of a rotation and a dilation by d−1

0 . This theorem
gives a sliding minimal set, which we now call E ′0 ⊂ B(0, r1), where r1 = d−1

0 r ≥ 11
10

, with the
additional property that the analogue of F takes a constant value D on (0, 1), and which is
very close to f(E) in B(0, r1). In addition, D is still as close as we want to the values of F
(computed with E and for radii smaller than r), which are as close to θ0 = 3π

2
as we want.

Then we turn to Theorem 1.3 of [D8] to get a good description of E ′0 in A = B(0, r1)\{0}.
We get the same basic properties as above, in terms of some minimal cone X, but now the
density of X is D, which is as close to 3π

2
as we want. Proposition 14.1 of [D3] gives a

description of minimal cones of dimension 2 that implies that this cannot happen unless
D = 3π

2
, and hence X is a cone of type Y.

Let us now denote by S ′ the shade of L0. We still have that Hd(S ′ ∩ B(0, r1) \X) = 0,
so X contains S ′ ∩B(0, r1) because X is closed. Notice also that S ′ ∩B(0, r1) is a nontrivial
piece of plane, because r1 ≥ 11

10
.

Next we check that E ′0 ∩ A = X \ S ′ ∩ A. We know that H2(A ∩ E ′0 ∩ S ′) = 0, so each
x ∈ A∩E ′0 is the limit of a sequence {xj} in E ′0 \S ′ (recall that E ′0 is coral). Clearly xj ∈ A
for j large, hence xj ∈ X \S ′ (because E ′0 ∩A ⊂ X by definition of X); thus x ∈ X \ S ′ ∩A.

Conversely, we know that A∩X \S ′ ⊂ E ′0, hence A∩X \ S ′ ⊂ E ′0∩A, and our claim follows.
Both sets contain the origin, so E ′0 ∩B(0, r1) = X \ S ′ ∩B(0, r1).

Set Y = f−1(X) and E0 = f−1(E ′0). Then Y is also a cone of type Y, and E0 ∩B(0, r) =
f−1(E ′0 ∩ B(0, r1)) = f−1(X \ S ′ ∩ B(0, r1)) = Y \ S ∩ B(0, r). Thus, inside B(0, r), E0 has
the form that was announced in the lemma. We do not care about what it is outside, because
Rn \B(0, r) is far from B(0, 20r

21
) where we want to approximate E, as in (23.18) and (23.19).

Finally, the good approximation of E in B(0, 20r
21

) follows from the good approximation of
E ′ = f(E) in B(0, (1− τ)r1) that is given by (1.24)-(1.27) of [D8].

For radii r that are much larger than d0, it is easier to use compactness in another way,
and get a good approximation by a plane or a cone of type H or V centered on L. Here is a
statement, whose proof will rely on Lemma 23.2.
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Lemma 23.5. For each choice of small constant τ > 0, we can find constants ε = ε(τ) > 0
and δ = δ(τ), that depend only on τ and n, with the following property. Let E satisfy (23.1)
and (23.10), and let r be such that

(23.21) δ−1d0 ≤ r < R.

Suppose in addition that 0 ∈ E \ L,

(23.22) h(r) ≤ ε and

ˆ r

0

h(t)
dt

t
≤ ε,

and that there is θ0 ∈ {π, 3π
2
} such that

(23.23) lim
ρ→0

F (ρ) = θ0 and F (r) ≤ θ0 + ε.

Then there is a set X0 ∈ H(L) ∪ V(L) ∪ P0 such that

(23.24) d0, 20r
21

(E,X0) ≤ τ

and

(23.25) |H2(E ∩B(y, t))−H2(X0 ∩B(y, t))| ≤ τr2

for all y ∈ Rn and t > 0 such that B(y, t) ⊂ B(0, 20r
21

). If θ0 = π, then X0 ∈ H(L); if θ0 = 3π
2

,
then X0 ∈ V(L) ∪ P0.

In this statement the planes through the origin (the elements of P0) are some sort of a
stowaway (or party crasher); the proof allows them, but we expect to get rid of them later.
That is, if we get (23.24) and (23.25) for a plane X0 that does not nearly contain L (i.e.,
the two unit vectors of L are far from X0), then we shall be able to show that E is smooth
near 0, and θ0 = π 6= 3π

2
, a contradiction. See Theorem 30.3 and Remark 30.4 for another

instance of this reasoning, where we need to look at different scales to exclude apparently
acceptable behaviors.

The proof is a standard compactness argument, similar to what was done for the proof
of Theorem 1.6 in [D8]. Suppose we can find τ > 0 such that taking ε = δ = 2−k never
works. Let Ek, hk, Lk, rk, etc. provide a counterexample. By scale and rotation invariance,
we may assume that rk = 1 for all k, and that we can find orthogonal unit vectors e1 and e2

such that Lk =
{
dke1 + te2 ; t ∈ R

}
, and with positive numbers dk = dist(0, Lk) that tend

to 0 (by (23.21) and because δk tends to 0).
We replace {Ek} with a subsequence which has a limit E∞. Let L∞ denote the limit

of the Lk; this is a line through the origin. Also consider E ′k = Ek − dke1; this is a sliding
minimal set, with sliding boundary Lk − dke1 = L∞, and E ′k also tends to E∞. Notice that
the gauge functions hk satisfy (23.22) uniformly on (0, 1), and also tend to 0 uniformly on
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(0, 1). By Theorem 10.8 in [D7], E∞ is a sliding minimal set in B(0, 1), associated to L∞
(and the gauge function h = 0). Next we check that

(23.26) H2(E∞ ∩B(0, ρ)) = θ0ρ
2 for 0 < ρ < 1.

In fact, let B = B(y, t) be given, with |y| + t < 1; we first apply the lower semicontinuity
result in [D7] (namely, Theorem 10.97 there) to the same sets E ′k, with the same assumptions,
and get that

H2(E∞ ∩B) ≤ lim inf
k→+∞

H2(E ′k ∩B) = lim inf
k→+∞

H2(Ek ∩B(y + dke1, t))

≤ lim inf
k→+∞

H2(Ek ∩B(y, t+ dk)).(23.27)

For the upper semicontinuity, we call Lemma 22.3 in [D7], which we can apply with M as
close as we want to 1 and h as small as we want, and we get that for the compact set B,

H2(E∞ ∩B) ≥ lim sup
k→+∞

H2(E ′k ∩B) = lim sup
k→+∞

H2(Ek ∩B(y + dke1, t))

≥ lim sup
k→+∞

H2(Ek ∩B(y, t− dk)).(23.28)

Let us apply this with y = 0; notice that if Sk denotes the shade of Lk, then

(23.29) lim
k→+∞

H2(Sk ∩B(0, t+ dk)) =
πt2

2

because dk tends to 0 and Lk tends to L∞. Thus (23.27) implies that

(23.30) H2(E∞∩B(0, t)) ≤ lim inf
k→+∞

H2(Ek∩B(y, t+dk)) = −πt
2

2
+lim inf

k→+∞

[
(t+dk)

2Fk(t+dk)
]
.

For k large, t+ dk < 1, hence by (23.11)

(23.31) Fk(t+ dk) ≤ eαAk(1)Fk(1) ≤ eα2−k

Fk(1) ≤ eα2−k

[θ0 + 2−k]

because (23.22) holds with ε = 2−k, and then by (23.23). The right-hand side tends to θ0,
hence by (23.30)

(23.32) H2(E∞ ∩B(0, t)) ≤ t2
[
θ0 −

π

2

]
.

Conversely, (23.28) yields
(23.33)

H2(E∞ ∩B(0, t)) ≥ lim sup
k→+∞

H2(Ek ∩B(0, t− dk)) ≥ −
πt2

2
+ lim sup

k→+∞

[
(t+ dk)

2Fk(t− dk)
]

and, since by (23.11) and (23.23)

(23.34) Fk(t− dk) ≥ e−αAk(1) lim
ρ→0

Fk(ρ) ≥ e−α2−k

lim
ρ→0

Fk(ρ) = e−α2−k

θ0,
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which tends to θ0, we get that

(23.35) H2(E∞ ∩B(0, t)) ≥ t2
[
θ0 −

π

2

]
.

It follows that

(23.36) t−2H2(E∞ ∩B(0, t)) = θ0 −
π

2
for 0 < t < 1,

i.e., E∞ has constant density equal to θ0 − π
2

on (0, 1). By the constant density result
(Theorem 29.1) in [D7], E∞ coincides with a sliding minimal cone in B(0, 1). Call this cone
X0; by Lemma 23.2, X0 ∈ H(L) if θ0 = π and X0 ∈ V(L) ∪ P0 if θ0 = 3π

2
.

Let us now check that (23.24) and (23.25) hold for k large; this will give the desired
contradiction with the definition of Ek and complete the proof of Lemma 23.5. Now (23.24)
holds because X0 is the same as E∞ in B(0, 1), we normalized things so that rk = 1, and
E∞ is the limit of Ek locally in B(0, 1). For a given ball B = B(y, t), notice that for
0 < t1 < t < t2, with B(y, t2) ⊂ B(0, 1), (23.27) and (23.28) yield

H2(X0 ∩B(y, t)) = H2(E∞ ∩B(y, t)) ≤ lim inf
k→+∞

H2(Ek ∩B(y, t+ dk))

≤ lim inf
k→+∞

H2(Ek ∩B(y, t2))(23.37)

and similarly

H2(X0 ∩B(y, t)) = H2(E∞ ∩B(y, t)) ≥ lim sup
k→+∞

H2(Ek ∩B(y, t− dk))

≥ lim sup
k→+∞

H2(Ek ∩B(y, t1)).(23.38)

From this it is easy so deduce that for a fixed B(y, t), the estimates in (23.25) hold for k
large. But we do not want to let k depend on y and t, so a little bit of uniformity is needed
to conclude. This is rather easily done, because we control X0 well; we refer to Lemma 9.2
in [D8] for the proof. Thus we get the desired contradiction, and Lemma 23.5 follows.

24 Statements of decay for F ; differential inequalities

Recall that we want to generalize the work of Sections 3-22, with balls that are no longer
centered on L, and we decided to replace the usual density θ(r) with the functional F (r)
defined in (23.6). In this section we give the main decay statement for F . Recall that F
is almost nondecreasing; we intend to say that in some circumstances, it actually decays at
some speed, but we shall only be able to do this when E is close enough to some special
minimal sets.

The assumptions for this section and the next ones are the following. We still work in
Rn, with a line L and a sliding almost minimal set E that satisfies (23.1) and (23.2); we also
assume that

(24.1) 0 < d0 := dist(0, L) <
2R

3
,

191



and in the statements additional conditions on the size of Ch in (23.2) will arise.
Denote by H = H(L) the set of half planes bounded by L, and by V = V(L) the collection

of sets of type V bounded by L, i.e., unions of two half planes of H that make an angle at
least 2π

3
with each other along L. This includes planes that contain L. Still let P0 denote

the collection of all planes through the origin. We will often require E to be close to sets of
H ∪ V ∪ P0, and we measure this with the quantities

(24.2) βH(r) = inf
H∈H

d0,r(E,H) and βV P (r) = inf
V ∈V∪P0

d0,r(E, V ),

where we will naturally restrict to r ∈ (0, R].
Let us give two parallel statements, which will be proved afterwards. We start with the

case when there is a good approximation by a half plane.

Theorem 24.1. There exist constants a ∈ (0, 10−1), εH > 0, and CH ≥ 1, that depend only
on n and β, with the following properties. Let L, E, and h satisfy (24.1), (23.1), and (23.2),
with a constant Ch such that

(24.3) ChR
β ≤ εH .

Suppose also that 0 ∈ E, and that

(24.4) βH(R) ≤ εH or F (R)− π ≤ εH .

Then

(24.5) F (r1)− π ≤
(2r1

r2

)a
[F (r2)− π] + CHChr

a
1r
β−a
2

for 0 ≤ r1 ≤ r2 ≤ 9R/20.

See (23.6) for the definition of F . Within minor modifications, this is the same statement
as Theorem 1.10 in the introduction. Notice that because of (23.2), the limit density θ0 =
limr→0 r

−2H2(E ∩B(x, r)) exists (by (23.14)); we know that for 0 ∈ E, this limit cannot be
smaller than π, and in the present situation, we will see during the proof that θ0 = π. Or
just notice that you get this when you let r1 tend to 0 in (24.5). We will also check that the
two possible assumptions in (24.4) imply each other, modulo changing the small constant
and replacing R with a slightly smaller radius.

It happens that the good decay provided by (24.5) implies a polynomial control on βH(r)
for r small; see Section 30.

We have a similar statement for the case when E is well approximated by a set of V; this
time the relevant value of density is θ0 = 3π

2
.

Theorem 24.2. There exist constants a ∈ (0, 10−1), εV > 0, and CV ≥ 1, that depend only
on n and β, with the following properties. Let L, E, and h satisfy (24.1), (23.1), and (23.2),
with a constant Ch such that

(24.6) ChR
β ≤ εV .
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Suppose also that 0 ∈ E0,

(24.7) lim
r→0

r−2H2(E ∩B(x, r)) =
3π

2
,

and that

(24.8) βV P (R) ≤ εV .

Then

(24.9) F (r1)− 3π

2
≤
(CV r1

r2

)a
[F (r2)− 3π

2
] + CVChr

a
1r
β−a
2

for 0 ≤ r1 ≤ r2 ≤ R/2.

This time see Theorem 1.11 in the introduction. The same sort of remarks as above apply
to this case. Notice the additional constant Ca

V in (24.9), which is due to a gap in the set of
radii r for which the main differential inequality described below holds. This could probably
be improved, but the additional constant does not disturb much.

We did not include the option that F (R)− 3π
2
≤ εV instead of (24.8), because it does not

imply that E is close to a set of type V or a plane. The difference will not be enormous in the
end; we will see in Lemma 25.2 that if F (R)− 3π

2
≤ εV and d0 is much smaller than r, then

βV P (r) ≤ ε, and we can apply Theorem 24.2. When instead d0 is not so small compared to
r (and r ≤ R/2, say), Lemma 25.3 will say that we can find a truncated Y-set centered at 0
that approximates E well in B(x, r). As hinted above, this set is not close to a V-set because
it is centered at 0 (and d0 is not so small). We could try to show that F (r) decays also in
this intermediate region, but instead we will just use the fact that F is almost nondecreasing
there (by [D8]), and this will be fine because the concerned set of radii r is not so large
anyway.

See Section 30 for the control of the geometry of E that follows from (24.9).
In both statements, the interesting part of the conclusion is when r1 gets much smaller

than r2; otherwise a direct application of (23.11) gives at least as much. In both cases the
main ingredient in the proof is a differential inequality which we state now.

Proposition 24.3. There exist constants a ∈ (0, 10−1), ε1 > 0, and C1 ≥ 1, that depend
only on n and β, with the following properties. Let E and h satisfy (24.1), (23.1), and (23.2),
and suppose that 0 ∈ E. For almost every r such that

(24.10) 2d0 ≤ r ≤ R

2
,

(24.11) Chr
β ≤ ε1

and

(24.12) βH(2r) ≤ ε1,
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the function F of (23.6) is differentiable at r, and

(24.13) rF ′(r) ≥ a[F (r)− π]+ − C1

ˆ 2r

0

h(t)dt

t
.

This will be proved in Section 26. We do it on purpose to mention h explicitly in (24.13),
rather than the estimate that we could get from (23.2), because we may sometimes get an
estimate that is better than expected. Even though ε1 needs to be quite small, we think of
it as being roughly constant, while we hope that F (r) − π, for instance, will become really
small.

We took the positive part of F (r)−π not to get confused by the case when F (r)−π < 0,
in which case (24.13) is actually better when a is smaller. This way, at least, our estimate
is better when we can take a larger. However, we will pay a (moderate) price for this
simplification, when we prove (24.13). We could also have used the same sort of computations
as in [D4] and Proposition 17.2. This way the reader gets to choose their prefered method.

The next statement is similar, but concerns the approximation with sets of type V ∪ P0

and the larger reference density 2π/3. It is a little more complicated for the same reasons
as for Theorem 24.2; it will be proved in Sections 26-28.

Proposition 24.4. There exist constants a ∈ (0, 10−1), N ≥ 1, ε2 > 0, and C2 ≥ 1, that
depend only on n and β, with the following properties. Let E satisfy (24.1), (23.1), and
(23.2), and suppose that

(24.14) lim
ρ→0

ρ−2H2(E ∩B(0, ρ)) =
3π

2
.

For almost every r such that

(24.15) Nd0 ≤ r ≤ R

2
,

(24.16) Chr
β ≤ ε2,

and

(24.17) βV P (2r) ≤ ε2,

the function F of (23.6) is differentiable at r, and

(24.18) rF ′(r) ≥ a
[
F (r)− 3π

2

]
+
− C2

ˆ 2r

0

h(t)dt

t
.
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25 How to deduce decay from differential inequalities

In this section we see how to deduce the decay estimates, Theorems 24.1 and 24.2, from the
corresponding differential inequalities, Propositions 24.3 and 24.4. Most of it will consist in
checking that the main geometric assumption (24.12) or (24.17) is valid.

Throughout this section, we assume that the main assumptions of Section 24 are valid,
i.e., that L, E, and h satisfy (24.1), (23.1), and (23.2). By (23.2) and its consequence (23.14),
the density

(25.1) θ0 = lim
r→0

θ(r) = lim
r→0

F (r)

exists; we shall either assume or prove that θ0 ∈
{
π, 3π

2

}
. We first check that the conditions

of (24.4) essentially imply each other, and that (24.8) implies that F (r)− 3π
2

is small.

Lemma 25.1. For each small ε > 0, there exist εH > 0 and εV > 0, that depend only on n
and β, such that if the assumptions of Theorem 24.1 are satisfied, then

(25.2) βH(9R/10) ≤ ε

and

(25.3) F (r) ≤ π + ε for 0 < r ≤ 9R/10

and if the assumptions of Theorem 24.2 are satisfied, then

(25.4) F (r) ≤ 3π

2
+ ε for 0 < r ≤ 9R/10.

First assume that E is as in Theorem 24.1, with βH(R) ≤ εH . Then βH(9R/10) ≤
10εH/9, by the definition (24.2), so we just need to show that (25.3) holds if εH is small
enough. Let us first check that

(25.5) F (9R/10) ≤ π + ε/2.

Let us proceed by compactness. If this fails, then for each large integer k, we can find Lk,
Ek, hk, Rk, as in Theorem 24.1 with εH = 2−k, but for which Fk(9Rk/10) > π + ε/2, where

(25.6) Fk(r) = r−2[H2(Ek ∩B(0, r)) +H2(Sk ∩B(0, r))],

and Sk is the shade of Lk. We want to take a limit, but first we use the dilation invariance of
our problem to assume that Rk = 1 for all k. Also, choose two unit vectors e1 and e2 ⊥ e1;
we can use the rotation invariance to ensure that the following two properties hold for each
k. First let zk denote the point of Lk that lies closest to 0. Notice that zk 6= 0 (because
0 /∈ Lk by (24.1)); we require that zk/|zk| = e1. And also that e2 is parallel to Lk.
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Next set dk = dist(0, Ek); recall from (24.1) that dk < Rk = 1, so we we may assume (at
the price of replacing our sequence by a subsequence, to which we automatically give the
same name) that dk has a limit d∞ ∈ [0, 1]. Then Lk converges to the limit L∞ = d∞e1 +Re2.

Since βH(R) ≤ 2−k (for the set Ek), there is a half plane Hk bounded by Lk, such that

(25.7) d0,1(Ek, Hk) ≤ 2−k.

We extract a new subsequence, so that after extraction Hk converges (say, for the Haus-
dorff distance in B(0, 2)) to a half plane H∞ bounded by L∞. We allow the case when
d∞ = 0, but notice that dist(0, Hk) ≤ 2−k, by (25.7) and because 0 ∈ E. Thus H∞ contains
the origin.

Extract again a subsequence, so that {Ek} converges, locally in B(0, 1), to a closed set
E∞. In fact, in the present situation this is not even needed, because of (25.7), but for the
next lemma it will feel better, and anyway this is costless. We want to apply a theorem
about limits to the sequence {E ′k}, where E ′k = Ek + (d∞ − dk)e1. Since d∞ − dk tends
to 0, {E ′k} also converges to E∞, but the point of the translation is that E ′k is sliding
minimal, in a domain Bk = B((d∞ − dk)e1, 1) that tends to B(0, 1), with a same boundary
set Lk + (d∞ − dk)e1 = L∞. This way we can apply theorems of convergence with a fixed
boundary set.

We put ourselves in B = B(0, 99
100

), which is contained in Bk for k large. Thus E ′k is
almost minimal in B, relative to the boundary L∞, and with a gauge function h′k such that
h′k(1) = hk(Rk) ≤ 2−k, by (23.2) and (24.3) with εH = 2−k.

By (25.7), both Ek and E ′k converge to H∞, locally in B(0, 1), i.e., for any localized
Hausdorff distance function d0,r, 0 < r < 1.

Let us fix r ∈ ( 9
10
, 98

100
), and apply Theorem 22.1 in [D7] to the sequence {E ′k} and the

compact set B(0, r). Notice in particular that the minimizing sequence property (21.14) in
[D7] is satisfied, with δ = 1, and where k0 is simply chosen so that hk(1) < ε for k ≥ k0. We
find that

(25.8) H2(H∞ ∩B(0, r)) = H2(H∞ ∩B(0, r)) ≥ lim sup
k→+∞

H2(E ′k ∩B(0, r)).

But for k large,

(25.9)
H2(E ′k ∩B(0, r)) = H2(Ek ∩B((dk − d∞)e1, r))

≥ H2(Ek ∩B(0, r − |d∞ − dk|)) ≥ H2(Ek ∩B(0,
9

10
)),

because r > 9
10

. Hence

(25.10)

( 9

10

)2

lim sup
k→+∞

Fk(
9

10
) = lim sup

k→+∞

[
H2(Ek ∩B(0,

9

10
)) +H2(Sk ∩B(0,

9

10
))
]

≤ H2(H∞ ∩B(0, r)) + lim sup
k→+∞

H2(Sk ∩B(0,
9

10
)).
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If d∞ = 0, then H∞ is a half plane bounded by a line L∞ that contains the origin, and the

right-hand side of (25.10) is πr2

2
+ π(9/10)2

2
≤ πr2. Otherwise, we know that 0 ∈ H∞ \ L∞,

thus H∞ is the half plane bounded by L∞ and that contains the origin. At the same time,
Sk converges nicely to the closure of the complement of H∞ in the plane that contains it.
Thus the right-hand side of (25.10) is also smaller than ≤ πr2 in this case. We put things
together and get that

(25.11) lim sup
k→+∞

Fk

( 9

10

)
≤
(10r

9

)2

π.

We take r > 9
10

so close to 9
10

that the right-hand side is smaller than π + ε/2, and get a
contradiction with the fact that Ek was chosen so that Fk(9Rk/10) > π+ε/2. This concludes
our proof of (25.5).

We shall now easily deduce (25.3) from (25.5) and the near monotonicity formula (23.11).
Let us first recall that if A is as in (23.10), then

(25.12) A(R) =

ˆ R

0

h(t)
dt

t
≤ Ch

ˆ R

0

tβ−1dt = β−1ChR
β ≤ β−1εH

by (23.2) and because (24.3) holds. Then for 0 < r ≤ 9R/10, (23.11) yields

(25.13)
F (r) ≤ eαA(r)F (r) ≤ eαA(9R/10)F (9R/10)

≤ eαβ
−1εHF (9R/10) ≤ eαβ

−1εH (π + ε/2) < π + ε

by (25.12) and (25.5) and if εH is small enough. Thus (25.3) holds.

Next we assume that E is as in Theorem 24.1 and that F (R) ≤ π + εH , and we prove
(25.2) and (25.3). We start with (25.3). Observe that for 0 < r < R′ < R,

(25.14) F (r) ≤ eαA(r)F (r) ≤ eαA(R′)F (R′) ≤ eαβ
−1εHF (R′)

by (23.11) and (25.12). We let R′ tend to R in (25.14) and get that for 0 < r < R,

(25.15) F (r) ≤ eαβ
−1εHF (R) ≤ eαβ

−1εH (π + εH) ≤ π + ε

if εH is small enough. This proves (25.3), and we are left with (25.2) to prove.
Let us first try to apply Lemma 23.5, to the radius r = 21

20
9R
10

, with τ = ε and θ0 = π.
If we can do this, (23.24) says that d0, 20r

21
(E,X0) ≤ ε for some X0 ∈ H(L), and this yields

(25.2). So we just check the assumptions. First, (23.22) follows from (23.2) and (24.3) (if εH
is small enough). The second half of (23.23) (the upper bound for F ) follows from (25.15),
which also implies (when you let the radius in (25.15) tend to 0) that θ0 < π+ ε < 3π

2
. This

implies that θ0 = π (there is no other possible value, since 0 ∈ E), and so (23.23) holds.
The second half of (23.21) is satisfied too, so we can apply the lemma and get the desired
conclusion (25.2) as soon as d0 ≤ δr, where δ = δ(ε) is the small constant attached by the
lemma to our choice of τ = ε.
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Thus we may assume that d0 ≥ δr, and now we want to apply Lemma 23.3 to the same
radius r = 21

20
9R
10

as before, with the constant δ that we just found, and with τ = ε. As
before, the assumptions (23.16) and (23.17) are satisfied if εH is small enough, 0 ∈ E, and
the first part of the remaining assumption (23.15) is satisfied. So we can apply the lemma
if 11d0

10
≤ r = 21

20
9R
10

. This is the case, because we required in (24.1) that d0 ≤ 2R/3. So we
get (23.18) for some half plane H0 ∈ H (in fact the one that contains the origin), and this
implies (25.2) as before.

This completes our verification in the two cases that belong to Theorem 24.1. Now
assume that E is as in Theorem 24.2. In particular, (24.8) says that βV P (R) ≤ εV . If we
prove that

(25.16) F (9R/10) ≤ 3π

2
+
ε

2
,

then (25.4) will follow at once, by the proof of (25.13).
We prove (25.16) with the same compactness argument as for (25.5). This time (24.8)

yields the analogue of (25.7), but for a set Vk ∈ V(Lk) instead of Hk. We may still take a
subsequence so that Vk converges to a limit V∞, and V∞ ∈ V(L∞). As before, dist(0, Vk) ≤
2−k, hence 0 ∈ V∞.

We can keep the limiting argument (with the sequence {E ′k}) as it was, and we get that
for r ∈ ( 9

10
, 98

100
),

(25.17) H2(V∞ ∩B(0, r)) ≥ lim sup
k→+∞

H2(E ′k ∩B(0, r)) ≥ lim sup
k→+∞

H2(Ek ∩B(0,
9

10
))

as in (25.8) and (25.9), and

(25.18)

( 9

10

)2

lim sup
k→+∞

Fk(
9

10
) = lim sup

k→+∞

[
H2(Ek ∩B(0,

9

10
)) +H2(Sk ∩B(0,

9

10
))
]

≤ H2(V∞ ∩B(0, r)) + lim sup
k→+∞

H2(Sk ∩B(0,
9

10
))

as in (25.10). We start with the simpler case when L∞ goes through the origin. Then
H2(V∞ ∩ B(0, r)) = πr2, limk→+∞H2(Sk ∩ B(0, 9

10
)) = π

2
(9/10)2 ≤ πr2

2
, and the right-

hand side of (25.18) is less than 3πr2

2
. If we take r close enough to 9/10, we get that

lim supk→+∞ Fk(
9
10

) ≤ 3π
2

+ ε
3
, and for k large this contradicts the fact that Ek was chosen

to violate (25.16).
So we may assume that d∞ > 0. Write V∞ = H1 ∪H2, with Hi ∈ H(L∞). Since 0 ∈ V∞,

we may assume that 0 ∈ H1. At the same time, Sk tends nicely to the shade S∞ of L∞,
which is just opposite to H1. Thus, if A denotes the right-hand side of (25.18),

(25.19)

A = H2(V∞ ∩B(0, r)) +H2(S∞ ∩B(0,
9

10
))

≤ H2(V∞ ∩B(0, r)) +H2(S∞ ∩B(0, r))

= H2(H1 ∩B(0, r)) +H2(H2 ∩B(0, r)) +H2(S∞ ∩B(0, r))

= πr2 +H2(H2 ∩B(0, r)).
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Now H2 makes an angle at least 2π/3 with H1. One way to computeH2(H2∩B(0, r)) consists
in slicing it by planes. That is, write L∞ = d∞e1 +Re2, where e1 and e2 are orthogonal unit
vectors, and let e3 be a third unit vector, orthogonal to e1 and e2, such that H2 is contained
in the 3-space generated by e1, e2, and e3. Set Pt =

{
xe1 + te2 + ye3 ; (x, y) ∈ R2

}
for

t ∈ (−r, r). Then

(25.20) H2(H2 ∩B(0, r)) =

ˆ r

−r
H1(Pt ∩H2 ∩B(0, r))dt,

because e2 is parallel to H2. For each t, H1(Pt∩H2∩B(0, r)) is less that what it would be if
H was the half plane bounded by L∞ and that contains d∞e1 + e3, and even less than what
it would be (for H2 with the same direction and) for d∞ = 0. See Figure 21. Thus, after
integrating, H2(H2 ∩ B(0, r)) ≤ πr2

2
, A ≤ 3πr2

2
, and (25.18), with r close enough to 9R/10,

implies that (25.16) holds for k large. This completes our proof of (25.16) by compactness
and contradiction. As was said earlier, (25.4) follows from (25.16), and this last case ends
our proof of Lemma 25.1.

U
∂B(0,r)Pt

U
L Pt

UU
B(0,r)2Pt H

two longer sets

Figure 21: A picture in Pt

In the case of Theorem 24.1, we were able to replace our assumption that βH(R) is small
by a density assumption, but for Theorem 24.2, the corresponding assumption that

(25.21) θ0 =
3π

2
and F (R) ≤ 3π

2
+ εV ,

where θ0 = limr→0 r
−2H2(E ∩ B(x, r)) is still as in (25.1), is not enough to give a good

approximation by a set of type V ∪ P0. We can only do this when d0 is small enough, as in
the following lemma that we state for general r ∈ (0, R). The initial assumptions are as in
Theorem 24.2, but we replace (24.8) with (25.21).

Lemma 25.2. For each ε > 0, there exist εV > 0 and δ(ε) > 0, that depend only on n, β,
and ε, with the following property. Let L, E, and h satisfy (24.1), (23.1), and (23.2) with a
constant Ch such that (24.6) holds. Suppose in addition that (25.21) holds. Then

(25.22) βV P (r) ≤ ε

for every r such that

(25.23) δ(ε)−1d0 ≤ r ≤ 9R

10
.
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We shall proceed as in the previous lemma. Let L, E, and h be as in the statement. By
(25.21) and the proof of (25.15),

(25.24) F (r) ≤ eαA(R)F (R) ≤ eαβ
−1εHF (R) ≤ eαβ

−1εH (
3π

2
+ εV ) for 0 < r ≤ R.

Let r satisfy (25.23). We want to apply Lemma 23.5, this time with the density θ0 = 3π
2

,
τ = ε, and the radius r1 = 21r

20
. The statement gives a small constant δ that depends on ε,

and we take δ(ε) = 20δ
21

.
Let us check the assumptions. We start with (23.1), which is satisfied by assumption,

and (23.10), which follows from (23.2). Next (23.21) (the size of r1) follows from (25.23),
(23.22) follows from (23.2) and (24.6) (if εV is small enough, now depending also on ε), and
(23.23) follows from (25.21) and (25.24). We get a set X0 ∈ V(L) ∪ P0 (because θ0 = 3π

2
)

such that (23.24) holds. That is,

(25.25) d0,r(E,X0) = d
0,

20r1
21

(E,X0) ≤ ε,

where the first part holds because r1 = 21r
20

. Lemma 25.2 follows; we also get an extra
estimate (23.25) on the Hausdorff measure, which was not mentioned in the Lemma but
holds anyway.

The lemma is a little weird (and will be improved seriously later), because we should be
able to prove that the only sets X0 that can show up in the proof above are sets of type
V whose two faces make an angle close to 2π

3
. For instance, we expect that otherwise, the

good approximation of E by a flat object (say, a plane) at the large scale r implies that
0 is a smooth point of E. For the moment we have to wait for a more precise statement,
because we do not seem to have the tools yet to prove this, but in Theorem 30.3 (also see
Remark 30.4), we will get a better result, that also applies to some intermediate radii, of
approximation by truncated Y-sets. This is of course compatible, because in a ball of radius
r >> d0, a truncated Y-sets looks a lot like a V-set with an angle close to 2π

3
.

In the situation of Lemma 25.2, but for radii r < δ(ε)−1d0, we can still get some geometric
control on E, and show that it looks like a truncated cone of type Y.

Lemma 25.3. For each choice of ε > 0 and δ ∈ (0, 1), there exist εV > 0, that depends only
on n, β, ε, and δ, with the following property. Let L, E, and h satisfy (23.1) and (23.2)
with a constant Ch such that (24.6) holds. Suppose in addition that (25.21) holds. Then for
each r such that

(25.26)
22d0

21
≤ r < min

(20R

21
, δ−1d0

)
we can find a minimal cone Y of type Y, centered at 0, such that L ∩ B(0, 21r

20
) is contained

in a face of Y , and for which

(25.27) d0,r(E,E0) ≤ ε, with E0 = Y \ S.
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Here S still denotes the shade of L, and we may observe that in the ball B(0, 21r
20

) (the
only place that counts for (25.27)), E0 is a nice truncation of Y by L. The proof will also
show that E0 approximates E well in measure, in the sense that

(25.28) |H2(E ∩B(y, t))−H2(E0 ∩B(y, t))| ≤ 2εr2

for all y ∈ Rn and t > 0 such that B(y, t) ⊂ B(0, r).
The proof is easy. We want to apply Lemma 23.4 to the radius r1 = 21r

20
, and with

τ = ε. The assumptions (23.1), (23.10), and (23.16) follow, as in Lemma 25.2, from (23.1),
(23.2), and (24.6). The replacement for (23.17) follows from (25.21) and (25.24). Finally
the requirement (23.15) on the size of r1 was computed to be the same as (25.26). Thus we
get Y and E0, as in Lemma 23.4, and the properties announced in Lemma 25.3, as well as
(25.28), are the same as what we get from Lemma 23.4.

The proof of Theorem 24.1 modulo Proposition 24.3. Let E be as in the statement.
By Lemma 25.1, we get that if εH is small enough, (25.2) and (25.3) hold with any small
ε > 0 that we may have chosen in advance. Let us check that we can also get that

(25.29) βH(r) ≤ ε for
3d0

2
< r ≤ 9R/10.

For R/2 < r ≤ 9R/10, this follows directly from (25.2) (with ε/2). For r < R/2, let ε1 be the
value of εH needed to get ε in Lemma 25.1, and apply first Lemma 25.1 with ε = ε1 to define
εH . Then by Lemma 25.1, F (10r/9) − π ≤ ε1. Next apply Lemma 25.1 again, with ε, and
to the radius R′ = 10r/9; the initial assumptions of Theorem 24.1 are still valid for R′ with
the same constants, and (24.4) (with the constant ε1) is true because F (10r/9) − π ≤ ε1.
We get (25.2) for R′, which is just (25.29).

Next we apply Proposition 24.3. If ε above is chosen smaller than the ε1 from the
proposition, the main assumption (24.12) is satisfied as soon as r ≤ 9R/20. The assumptions
(24.1), (23.1), (23.2), and (24.11) are satisfied by assumption (if εH < ε1), and so we get the
differential inequality (24.13), i.e.,

(25.30) rF ′(r) ≥ a[F (r)− π]+ − C1

ˆ 2r

0

h(t)dt

t

for almost every r such that

(25.31) 2d0 ≤ r ≤ 9R

20
.

Recall from (23.6) that F (r) = θ(r) + r−2H2(S ∩ B(0, r)). The second term is a smooth
function of r > d0, so the differentiability properties of F are the same as those of θ.
Thus, even though we recalled that F is differentiable almost everywhere in the statement
of Proposition 24.3, we already knew this from Lemma 17.1. The same lemma, and in
particular (17.6), also says that we can integrate pointwise inequalities on θ′, and hence on
F ′ too, to get lower bounds on the increase of θ and F . Let us do this with (25.30).
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We proceed as for (17.23), but change some things because we slightly changed the error
term in (24.13) and (25.30). Set g(r) = r−a[F (r) − π] for r ∈ I = (2d0, 9R/20); then g is
also differentiable almost everywhere (by Lemma 17.1), with for r in the range of (25.31)

(25.32)

g′(r) = −ar−a−1[F (r)− π] + r−aF ′(r) ≥ −C1r
−a−1

ˆ 2r

0

h(t)
dt

t

≥ −C1Chr
−a−1

ˆ 2r

0

tβ−1dt ≥ −2C1β
−1Chr

β−a−1 =: −C3Chr
β−a−1

by (25.30) (and we don’t need the positive part), and then (23.2); the last identity is a
definition of C3.

We may as well assume that a ≤ β/2 (notice that our form of (24.13), with the positive
part inside, allows us to make a smaller), then β − a − 1 ∈ (−1, 0). Lemma 17.1 allows
us to integrate this (recall that F − θ is continuously differentiable), and we get that for
2d0 ≤ r1 ≤ r2 ≤ 9R/20,

(25.33)
g(r1) ≤ g(r2)−

ˆ r2

r1

g′(r)dr ≤ g(r2) + C3Ch

ˆ r2

r1

rβ−a−1dr

≤ g(r2) + C3Ch(β − a)−1rβ−a2 = g(r2) + C4Chr
β−a
2 ,

with C4 = (β − a)−1C3 ≤ 2C3/β, and now

(25.34) F (r1)− π = ra1g(r1) ≤
(r1

r2

)a
[F (r2)− π] + C4Chr

a
1r
β−a
2 .

This holds for 2d0 ≤ r1 ≤ r2 ≤ 9R/20, and in this region it is better than (24.5) because we
don’t use the extra 2a.

Now we need to consider radii r1 < 2d0. Let us first check what happens on the interval
I1 = [d0, 2d0]. In this range, we simply use the fact that by (23.11),

(25.35) F (r1) ≤ F (r1)eαA(r1) ≤ F (r2)eαA(r2)

for d0 ≤ r1 ≤ r2 ≤ 2d0 and, since

(25.36) A(r2) =

ˆ r2

0

h(t)
dt

t
≤ Chβ

−1rβ2 ≤ Chβ
−1 min(2d0, R)β ≤ Chβ

−1εH

by (23.2) and (24.3), we see that eαA(r2) ≤ 1 + 3αβ−1Chd
β
0 . Also, F (r2) ≤ 2π by (25.3), and

(25.35) yields

(25.37) F (r1) ≤ F (r2) + 20αβ−1Chd
β
0 = F (r2) + C5Chd

β
0 .

This is better than (24.5) because 2r1
r2
≥ 1. This is the place where we lost the extra 2a.
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If d0 ≤ r1 ≤ 2d0 < r2 ≤ 9R/10, we combine (25.36) with (25.34) and get that

(25.38)

F (r1)− π ≤
[
F (2d0)− π

]
+ C5Chd

β
0

≤
(2d0

r2

)a
[F (r2)− π] + C4Ch(2d0)arβ−a2 + C5Chd

β
0

≤
(2r1

r2

)a
[F (r2)− π] + C6Chr

a
1r
β−a
2 ,

which implies (24.5). When 0 < r1 ≤ r2 ≤ d0, there is no visible sliding boundary condition,
and we can use the decay estimates from [Ta], as one may find them in [D4], and which take
the same form as in the previous sections, or even just above with d0 = 0. That is, we get
that for some choice of a > 0 and C7 ≥ 1,

(25.39)

F (r1)− π = θ(r)− π ≤
(r1

r2

)a
[θ(r2)− π] + C7Chr

a
1r
β−a
2

=
(r1

r2

)a
[F (r2)− π] + C7Chr

a
1r
β−a
2 .

For the remaining case when r1 < d0 ≤ r2 ≤ 9R/20, we glue this estimate to (25.38) and get
that

(25.40)

F (r1)− π ≤
( r1

d0

)a
[F (d0)− π] + C7Chr

a
1d

β−a
0

≤
( r1

d0

)a{(2d0

r2

)a
[F (r2)− π] + C6Chd

a
0r
β−a
2

}
+ C7Chr

a
1d

β−a
0

≤
(2r1

r2

)a
+ C6Chr

a
1r
β−a
2 + C7Chr

a
1d

β−a
0 ,

which is also as good as (24.5). Theorem 24.1 follows, modulo Proposition 24.3 which will
be proved in the next section.

The proof of Theorem 24.2 modulo Proposition 24.4.
This will work essentially as for Theorem 24.1. Let E be as in the statement. Let ε

be small, to be chosen soon. By Lemma 25.1, (25.4) holds (for 0 < r ≤ 9R/10), while by
Lemma 25.2,

(25.41) βV P (r) ≤ ε for δ(ε)−1d0 ≤ r ≤ 9R

10
.

Next we apply Proposition 24.4. The assumptions (24.1) (if r ≥ 2d0), (23.1), (23.2),
(24.4), (24.14), and (24.16) come directly from the assumptions of Theorem 24.2, (24.17)
follows from (25.41) if ε is chosen smaller than ε2, and we are left with (24.15), which requires
that

(25.42) Nd0 ≤ r ≤ R

2
.
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Here N is a constant that depends only on n and β, and since we may now choose ε, δ(ε) also
becomes such a constant. Set N1 = max(N, δ(ε)−1). We get that for almost all r ∈ (N1d0,

R
2

),
F is differentiable at r and (24.18) holds. The same argument as for (25.34) shows that

(25.43) F (r1)− 3π

2
≤
(r1

r2

)a
[F (r2)− 3π

2
] + C ′4Chr

a
1r
β−a
2

for N1d0 ≤ r1 ≤ r2 ≤ 9R/20. For 0 < r1 ≤ r2 ≤ d0, the proof of (25.39) yields

(25.44) F (r1)− 3π

2
≤
(r1

r2

)a
[F (r2)− 3π

2
] + C ′7Chr

a
1r
β−a
2 .

In the intermediate regions where d0 ≤ r1 ≤ r2 ≤ N1d0, we simply use the near monotonicity
of F , as in (25.37). Finally, we glue all these estimates as above, and get that

(25.45) F (r1)− π ≤
(N1r1

r2

)a
+ C8Chr

a
1r
β−a
2

in the full range of 0, R/2. This proves (24.9) and Theorem 24.2, modulo Proposition 24.4
which will be proved in Sections 26-28.

26 Construction of competitors, with the triangle T (r)

In this section we adapt the main part of the construction of competitors that was done in
Sections 5-16, to the case of balls centered away from L. The goal is to get the differential
inequalities of Section 24, so we will restrict our attention to the case when E looks a lot
like a set X ∈ H ∪ V ∪ P0.

It would be logical to deal also with the case when E looks like a truncated set of type
Y, but this would only give a differential inequality that holds for a relatively small range
of radii, and we decided that in this range we will just use the near monotonicity of F , and
not lose so much.

We will concentrate our attention more on the case when E looks like a set of type
V∪P0, because it is a little more complicated, and also seems more useful. That is, we could
probably manage without the case of a half plane. But this case is easier anyway.

We start the construction with assumptions relative to a fixed radius r < R, where R is
as in (23.1) or (23.2), and we assume that the assumptions of Proposition 24.3 or 24.4 are
satisfied. In particular, we assume that 0 ∈ E,

(26.1) θ0 = lim
ρ→0

ρ−2H2(E ∩B(0, ρ)) ∈
{
π,

3π

2

}
and that there is a set X ∈ H ∪ V ∪ P0, such that

(26.2) d0,2r(E,X) ≤ ε.
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Here ε is a shortcut for εH or εV , X is a half plane if θ0 = π and a set of type V or P0 if
θ0 = 3π

2
, and (26.2) comes from (24.12) or (24.17). But we also have the extra information

that

(26.3) 2d0 ≤ r ≤ R

2
if θ0 = π

and

(26.4) Nd0 ≤ r ≤ R

2
if θ0 =

3π

2
,

where we can choose N as large as we want, and that

(26.5) F (ρ) ≤ θ0 + ε for 0 < ρ ≤ r

by (25.3) or (25.4).
Our proof of differential inequalities will follow the same route as for Proposition 17.2;

fortunately, we do not need to repeat everything, and the geometric situation will be simpler.
We explain how it goes here, but the truth is that no real difference with what was done be-
fore, except for some occasional simplification, happens before the description of Section 14,
where we build a competitor, and where the triangle T (r) will show up.

We start as in Section 5; our assumptions (23.2) and (24.3) replace (5.1) and (5.2),
and (26.2) replaces (5.3). We also assume that r satisfies the extra properties (5.4), (5.7),
and (5.8); this is all right, because we noticed in Section 5 that they hold almost every-
where. These extra assumptions were used to take some limits, for instance when we proved
Lemma 14.2, and we will apply the same arguments here.

So we fix r with all these properties. For the moment, let us not normalize r away (i.e.,
take r = 1) as we did earlier. We want to construct nice competitors for E in B(0, r), that
probably beat the natural one. Earlier, the natural one was just the cone Γ(E, r) over E∩Sr
(where Sr = ∂B(0, r)), but now it is

(26.6) Γ̃(E, r) = Γ(E, r) ∪ T (r),

where T (r) is the triangle with vertices 0 and the two points of L ∩ Sr, which we denote
by `± = `±(r). This is the same set that was used to prove the near monotonicity formula

(23.11), and hopefully if we do even better than Γ̃(E, r), we will get the desired differential
inequality. Set

(26.7) Kr = X ∩ Sr = X ∩ ∂B(0, r).

When X ∈ H, Kr is composed of one nice curve ρ1. It is the intersection of Sr with a
half plane bounded by L, which by (26.3) passes rather near 0; it is not a piece of geodesic
unless 0 is exactly in front of X, but it is still an arc of circle with a not too large curvature.
And it has two endpoints in L ∩ Sr.
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When X ∈ V, Kr is composed of two nice curves ρ1 and ρ2, both ending at the two points
of L ∩ Sr. They are not geodesics either in general, but since (26.4) says that L passes very
near 0 (as near as we want), they are very close to being two arcs of great circle with length
πr.

Finally, when X ∈ P0, Kr is a full great circle, that may or may not contain points of
L. This case is slightly different from the others, but we keep it along for some time. We
cut Kr in two roughly equal parts ρ1 and ρ2 of lengths nearly equal to πr; we may be more
specific later on where we cut, to make some estimates easier to prove.

For i = 1 and maybe 2, let wi denote the point of ρi that lies at equal distance from its
two endpoints. We cut ρi at wi, into two sub-arcs ρi,± that go from wi to `± in the first two
cases; in the last case, ρi,± goes from wi to an endpoint `′± of the two ρi, which we choose
close to `± if Kr gets close to L. Since we want uniform notation, let us also set `′± = `± in
the first two cases. At this point we have two or four nice arcs ρi,± from the wi to the `′±.

When X ∈ V ∪ P0, we have a constant N ≥ 1, as in (26.4), which we can make larger if
we want, so that some geometric estimates are satisfied; when X ∈ H, let us also introduce
a large constant N too, which this time is not related to the constraint (26.3). We will pick
N so large (in both cases), that some geometric properties are satisfied, and then ε will be
allowed to be small enough, depending on N . For instance, we claim that for N large, ρi,±
is close to the geodesic ρ(wi, `±) with the same endpoints, and more precisely

(26.8) d0,2r(ρi±, ρ(wi, `
′
±)) ≤ 10N−1.

When X ∈ P0, this is trivial because ρi± is actually an arc of geodesic; in our remaining
case, recall that `′± = `±.

When r ≥ Nd0 (which is automatically the case when X ∈ V), this is because Sr is
almost centered on L (and we put the large constant 10 to be sure that neither author nor
reader has to think about it). Otherwise, X is a half plane bounded by L, dist(0, X) ≤ 2rε
by (26.2), and we just assumed that d0 ≥ N−1r. Then X makes a very small angle with
the half plane H0 bounded by L and that contains 0, and Kr lies very close to an arc of H0

through the `±, which happens to be a geodesic. So (26.8) holds in this last case too, if ε is
small enough.

In the discussion below, we shall some times say things as if X were of type V or P0 and
we had two curves ρi, but the case of a half plane will be included, and easier.

We give ourselves a small constant τ > 0, that depends on the geometry; probably we
can take τ = 10−5. We set D± = D±(r) = Sr ∩B(`′±, τr). The discussion of Section 6, with
the local regularity of E far from L, gives a nice description of E∩Sr \ (D+∪D−), as a union
of one or two nice C1 curves Li, that are also small Lipschitz graphs over ρi \ (D+ ∪ D−).
We cut the curve Li into two pieces Li,±, at a point which we call mi and which we choose
very close to wi. The curve Li,± leaves from mi, and ends at a point ci,± ∈ E ∩ ∂D±, where
it actually reaches ∂D± transversally. In addition, near each ∂D±, the intersection E ∩ Sr is
just composed of two nice C1 curves, that are extensions of the Li,±, and which cross a thin
annulus near ∂D± transversally.
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The behavior of E∩Sr in each D± can be classified into what we shall call configurations.
Their description is essentially the same as in Section 17, except with only one or two points
in ∂D±, but we use the opportunity to change the vocabulary slightly.

We start with Configuration 1 (which we may also call Configuration 1± if we want to
specify near which `± we work), where both points ci,± lie in the same connected component
of E ∩ D± as `± (which therefore lies in E). This is the most likely situation, hence the
name.

We also have Configuration 2 (or 2±) where we have what we call a hanging curve, i.e.,
when at least one of the ci,± (and say that it is c1,±) does not lie in the component of c2,±
in E ∩D± (if X is a V-set), nor in the component of `± (if `± happens to lie in E). We will
like this case because it is easy to construct a better competitor.

When X ⊂ H, these are the only two options, since there is only one ci,±. Otherwise,
we still have one possibility, Configuration 3 (or 3±), where c1,± and c2,± lie in the same
component of E ∩ D±, but not `±. We call this a free attachement; we expect this thing
to happen, but only when X is very close to a plane, and then E may leave L. Recall that
every plane is a sliding minimal set, independently of its position relative to L, and that X
may also be a plane that does not contain L. We treat this case like the other ones for the
moment, except that maybe `′± 6= `±, and in the case when |`′± − `±| ≥ τ/10, say, and ε is
small, we are sure to be in configuration 3, and near `′± we may also have kept the curve
L1 ∪ L2, which is perfectly nice (and does not get close to L).

Next we construct a net of curves, as in Section 7.
When X is a half plane and we are in Configuration 1, we find a simple curve γ′1,± ⊂

E ∩D± that goes from c1,± to `±, and we add it to L1,± to get a curve γ1,± ⊂ E that goes
from m1 to `±. Also set γ± = γ1,± for unified notation.

When X is of type V or P0 and we are in Configuration 1, we find a point z± ∈ E ∩D±,
and two simple curves γ′i,± ⊂ E ∩ D± that go from ci,± to z±, i = 1, 2, and a last one,
γ`± ⊂ E ∩ D± that goes from z± to `±. We add to γ′i,± the corresponding Li,± to get a
curve γi,± ⊂ E that goes all the way to mi, and call γ± = γ1,± ∪ γ2,± ∪ γ`± . We allow the
degenerate case when z± = `±.

In configuration 2, when L1,± is a hanging curve (say), we decide to essentially remove
L1,± and the component of c1,± in D± from the game, and we set γ1,± = {m1}. If X is
a half plane, we are finished with D±. Otherwise, if L2,± is also a hanging curve, we set
γ2,± = {m2}. If not, we construct γ2,± as in Configuration 1, when X is a half plane. We
also set γ± = γ1,± ∪ γ2,±.

We are left with configuration 3. In this case we select a simple curve γ′± ⊂ E ∩D± that
goes from c1,± to c2,±, pick a point z± ∈ γ′± close to `′± (a point of γ′± closest to `± seems
to be the simplest), cut γ′± at the point z±, into two pieces γ′i,± that go from ci,± to z±, and
add Li,± to γ′i,± to get a longer curve γi,± that starts from mi and ends at z±. Finally set
γ± = γ1,± ∪ γ2,± as usual.

This gives a collection of simple curves. We may call γ∗ the union of these curves, and
we see it as a first net. The curves don’t intersect, because we kept D+ and D− essentially
disjoint from the rest.
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Next we proceed as in Section 8. Each of the simple curves (call it γ) that was constructed
above is replaced with a small Lipschitz graph Γ with the same endpoints. When we deal
with a hanging curve, of course, we don’t see the difference, because both curves γ and Γ
are reduced to a point. In Configuration 1 when X ∈ V ∪ P0, it could be that the three
Lipschitz graphs that we constructed do not make nice angles or, even worse, intersect; then
we will modify it later appropriately, but let us not worry for the moment and continue as if
this did not happen. We take the union of all these curves Γ and get a net that we call Γ∗.

Recall that in (8.1) we required the endpoints of the curve γ that we transform into Γ
not to be too far from each other. In the present case, if X is of type V, then d0/r is quite
small, the curves Li stay quite close to diameters of Sr, the wi are at distance about πr/2
from the `±, so do the mi, and we get (8.1) because we can choose τ small and hence the
point z± (when it exists) lies quite close to `±. If X ∈ P0 and the `′± lie close to the `±, we
can argue as when X ∈ V, while otherwise, when for instance `′+ lies at distance at least τr
from L, we may as well have taken it opposite to `′− and get what we want. Finally, assume
that X is a half plane; if d0 is small compared to r, we can still say the same thing. And
even when d0 is large, X is quite close to the half plane H0 that is bounded by L and goes
through the origin, w1 and m1 are quite close to the middle point of the long geodesic arc
Sr ∩H0. But we required in (26.3) that 2d0 ≤ r, and it can be checked that this forces the
length of Sr ∩H0 to be significantly smaller than 3πr

2
, so that H1(ρ(m1, `±)) ≤ 3πr

4
as needed

for (8.1). The reader is invited not to do the precise computation, since 3πr
4

could have been
any number smaller than πr, and πr corresponds to d0 = r. So we did not cheat with the
assumption (8.1) here.

We do not need to modify what we did in Section 9. That is, for each of the curves Γ that
compose Γ∗, we construct a graph ΣG(Γ), which is bounded by Γ and the two line segments
from 0 to the endpoints of Γ, and which in general has a smaller area than the cone ΣF (Γ)
over Γ. See for instance (9.19).

The reader may be worried about the fact that in the present situation, ΣG(Γ∗) =⋃
Γ ΣG(Γ) does not give a competitor for E (even after we do the small modification needed

to glue things near Sr), because probably ΣG(Γ∗) detaches itself from L when it leaves the
two points `±. We already had this problem in [D8], because in the proof of (23.11) we could
not use ΣF (Γ∗) =

⋃
Γ ΣF (Γ); this is why we added the triangle T (r) to ΣF (Γ∗), and here

again we will need to add T (r) to ΣG(Γ∗) when needed; we will take care of this later.
But let us first continue with the flow of the previous sections and discuss analogue of

Sections 10-12. We said above how to construct curves Γ by taking the same endpoints as
for our initial curves γ and applying Section 8. This is what we do in most cases, but there
is one case when we apply the construction of Section 8 to slightly different curves. This is
when we are in Configuration 1, with a set X ∈ V∪ P0, and in addition the three endpoints
`±, m1, and m2, seen from our vertex z±, make wrong angles. That is, if we are so lucky
that

(26.9) Anglez±(`,mi) ≥
π

2
+ 10−1 for i = 1, 2,

we proceed exactly as we said above, and construct three curves Γ with the same endpoint
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z±, and glue them together. This is all right, because then the curves Γ of our net Γ∗ still
make large angles at z±, and this will allow us to produce nice retractions on Γ∗. Notice
that we do not need to say that Anglez±(m1,m2) ≥ π

2
+ 10−1, because it is automatic, as

either X ∈ V and the two faces of X make an angle at least 2π
3

at the `± (and z± lies in the
small disk D± centered at `±), or X ∈ P0 and this is even more clear.

The worse picture we have when (26.9) holds is that Γ∗ is composed of six arcs (with two
short ones) that make Γ∗ look like like two long arcs of circle, plus two little branches that
connect the ends to the `±. But of course we could also have a free attachment on one side,
or simpler pictures.

In the bad case when (26.9) fails, it seems that we have no other choice than proceed as
in Configuration 2+ of the earlier discussion, which is treated in Section 12. More precisely,
as in Subcase B where (12.2) fails (just as (26.9) fails here). In this case we decide that z±
is not a nice enough center, and we use only two curves Γ̃1 and Γ̃2, that go directly from
`± to m1 and m2. The two curves Γ̃i are constructed as in (12.7), as unions of the geodesic
ρ(`±, zi) and the part of our old Lipschitz curve Γ±,i (from z± to mi) that lies between zi
and mi, where zi is a point of Γ±,i that lies reasonably far from z± (as defined below (12.6),
but beware that r there has a different, local, meaning).

Fortunately, the computations of Section 12 are still valid in this case, and we do not
repeat them. Their result is twofold. First, what we get when we add Γ̃1 and Γ̃2 to the other
curves that we construct is still a nice net, composed of at most five Lipschitz curves (four
long ones whose union look likes the union of two half circles with common endpoints, and
a short one that connects the other `∓ to its z∓) that are disjoint except for their endpoints,
and make large angles with each other at these points. And we have good estimates like
(12.33)-(12.38) that say that the measure of the symmetric difference between our initial γ±
and Γ̃1 ∪ Γ̃2 is controlled by what we will win in the estimates, as in (10.6) and (10.7).

We return to the general case. At this point, we have a nice net Γ∗ composed of at most
six Lipschitz graphs, which we now decide to call Γj (hence, 1 ≤ j ≤ 6, maybe less), which
are glued together at their endpoints and make reasonably large angles there. For each j
there is a cone ΣF (Γj) over Γj (and these cones are glued nicely along segments that go from 0
to the endpoints of the Γj), and a nicer graph ΣG(Γj) (and these graphs are also nicely glued
along the same line segments, with reasonably large angles). We set ΣF (Γ∗) = ∪jΣF (Γj)
and ΣG(Γ∗) = ∪jΣG(Γ∗).

Denote by aj and bj the endpoints of Γj; recall that ΣG(Γj) is a small Lipschitz graph over
its projection on the plane Pj that contains the geodesic ρ(aj, bj). Also, ΣG(Γj) is bounded
by Γj (on the sphere) and the two segments [0, aj] and 0, bj], where it is glued to the rest of
ΣG(Γ∗). That is, if Γj and Γk share an endpoint, which we call a = aj = ak, then ΣG(Γj)
and ΣG(Γk) also share the segment [0, a], and they make an angle at of least π/2 along that
segment.

Indeed, by the small Lipschitz graph description of ΣG(Γj) and ΣG(Γk), we just need to
control the angle of Γj and Γk. This is rather easy when a is one of the mi, because then
the other endpoints bj and bk essentially lie in opposite directions seen from a. This is also
easy when a = `′± and bj, bk are the two points mi, because either X ∈ V and its two faces
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make a large angle at `± = `′±, or X ∈ P0 and the wi lie in a geodesic X ∩ Sr, in different
directions.

We are left with the case when a = z±. When bj and bk are the two points mi, we can
apply the same reasoning as above, since z± lies in a small disk D± centered at `′±. So we
may assume that we are in Configuration 1±, and for instance bj = m1 and bk = `±. But in
this case we have (26.9) (because otherwise we decided to start the curves from `±), which
is exactly what we need.

So ΣG(Γj) and ΣG(Γk) make an angle at of least π/2 along [0, a], and the union Σ̃G(Γ∗)
is a nice object. Seen from far (and if X ∈ V), it still looks like a set of type V, but maybe

pinched twice along two thin triangular surfaces. Notice also that we do not say that Σ̃G(Γ∗)
lives in a 3-dimensional space, but it stays quite close to the 3-space that contains X (but
maybe not 0). We shall also use later the fact that inside B(0, κr), it coincides with the cone
over a net of geodesics ρ∗.

Our next task is to project on Σ̃G(Γ∗) = ΣG(Γ∗) ∪ T (r) or maybe, in the case of Config-

uration 2 or 3, on Σ̃G(Γ∗) alone. This will be useful because we want to find a deformation

that starts as the identity outside of B(0, r), and maps roughly on Σ̃G(Γ∗) inside.
Because of the hanging and free cases, it may be that `+ or `− does not lie in Γ∗, so we

add them, which means that now Γ∗ may also have one or two isolated components (which
we call Γ again) composed of just a point `±; in this case ΣG(Γ) is just the line segment
[0, `±]. This is the manipulation described at the beginning of Section 13.

In the computations that follow, and in order to simplify the notation, we shall return
momentarily to the convention of Section 14, where we had decided to normalize things so
that r = 1. So let us suppose that r = 1, and forget r from some of the notation. We will
return to the correct scaling afterwards.

The next stage, as in Section 13, is to construct a Lipschitz projection p that maps points
from a neighborhood of E ∩ S to the net of curves Γ∗. See Proposition 13.1 Let us recall
its main properties. Set Ê = E ∩ S ∪ {`−, `+} (again we add the `± if they are not there
already, because of the free case). Then there is a very small number τ3, such that p is

defined on a set R+ ⊂ S that contains a τ3-neighborhood of Ê. It is Lipschitz (but maybe
with a huge norm), and it is also locally 30-Lipschitz, in the sense that for each x ∈ R+, the
restriction of p to R+ ∩B(x, τ3) is 30-Lipschitz. Here τ3 is allowed to depend on r in a wild
way; nonetheless, the local 30-Lipschitz property is useful, because it is enough to give good
bounds on the measure of images of sets by p. The reason for this strange local Lipschitz
property is that it is rather easy to construct a Lipschitz mapping pc near each component
of Γ∗ (see Lemma 13.2 for a local version), but we need to split R+ into regions where we
use different maps pc (i.e., that belong to a given component), but are far from each other
(so that p is Lipschitz, but maybe with a bad constant). The main property of p is that

(26.10) p(R+) ⊂ Γ∗ and p(x) = x for x ∈ Γ∗.

Recall that `± ∈ Γ∗ now, so in particular p(`±) = `±. Also, the local construction component
by component is such that, as in (13.44)

(26.11) |p(z)− z| ≤ 10 dist(z,Γ∗) for z ∈ R+.
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Let us now extend p to E∩A, where A is a small annulus around S1; we do not take a radial
extension as before (see (14.3)), because we want to preserve L, so we prefer “radial with
respect to x0”, where x0 is the projection of 0 on L. That is, for z ∈ B(0, 2) \ B(0, 1/2),
denote ξ(z) the point of S such that ξ(z)− x0 = t(z − x0) for some t > 0; we take

(26.12) p(z) = p(ξ(x)) when ξ(z) ∈ R+.

We refer the reader to Section 13 for a more precise description of p, and now turn to
Section 14 where we start the description of a new competitor. We shall use the set

(26.13) Σ̃G(Γ∗) = ΣG(Γ∗) ∪ T (r), with as above ΣG(Γ∗) =
⋃
j

ΣG(Γj)

and where r = 1 here, a set which is a little larger than ΣG(Γ∗), as the basis for our first
competitor. Recall that the triangle T (r) is the convex hull of 0, `+, and `−; it is nicely glued
to the sets ΣG(Γj) for which `± is an endpoint of Γj. With the recent addition of `± to Γ∗,
these Γ exist, but they may be reduced to one point. But we do not say that T (r) makes a
large angle with the faces ΣG(Γ) in question; it could even be that Γ is almost opposite to
0 and ΣG(Γ) has a big intersection with T (r). We shall see later that this is not a problem.

We want to construct competitors for E, in B(0, 1) (recall that we often write estimates
with r = 1 now), and for this we construct two deformations ϕi. We start with a first one, ϕ0,
and we define it in rings, starting with the outside. We first set ϕ0(x) = x for x ∈ E\B(0, 1),
then take a very small number σ > 0, that will depend on r, and try to do the interesting
modifications on the very thin annulus A(2σ).

By the proof of Lemma 14.1, if we take σ small enough, then

(26.14) ξ(x) ∈ R+ for x ∈ E ∩ A(2σ),

which implies that p(x) is defined there. We first set

(26.15) ϕ0(x) =
|x|+ σ − 1

σ
x+

1− |x|
σ

p(x) for x ∈ E ∩ A(σ),

just as in (14.6).
Here A(σ) is a gluing region; on the exterior boundary S1, we just took ϕ0(x) = x, and

on the inside boundary, we now have

(26.16) ϕ0(x) = p(x) ∈ Γ∗ for x ∈ E ∩ S1−σ.

The same proof as before yields that if we set F (σ) = ϕ0(E ∩A(σ)) and M(ζ) = H2(F (σ)),
then M(σ) is small, as in Lemma 14.2.

Next we want all the variation of ϕ0 to occur on the next small ring A2 = A(2σ)\A(σ) =
B(0, 1− σ) \B(0, 1− 2σ), and we shall make sure that

(26.17) ϕ0(x) ∈ Σ̃G(Γ∗) for x ∈ E ∩ A2.
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We also want to make sure that ϕ0(x) = x0 on ∂B(0, 1 − 2σ), where x0 is the orthogonal
projection of 0 on L, because we will take

(26.18) ϕ0(x) = x0 for x ∈ E ∩B(0, 1− 2σ).

Then we will use ϕ0 to build our first competitor for E.
The construction of ϕ0 on A2 will take some time, because we prefer to be explicit. Yet it

will probably comfort the reader to know that the specific construction that we adopt does
not matter much. What counts is the measure of the set ϕ0(A2) ⊂ Σ̃G(Γ∗), and things like
the respect of our boundary conditions.

First we want to construct is a deformation of Γ∗ to the the point x0, through Σ̃G =
Σ̃G(Γ∗). We will define this mapping independently for each Γ = Γj, but so that the different
pieces will glue well.

So let Γ be one of our Lipschitz curves, and first assume that it is a nontrivial curve that
starts at ` ∈ L ∩ ∂B, and ends at a point that we call a. For each z ∈ Γ, we want to find a
path t→ w(z, t), t ∈ [0, 2], that goes from z to the final target x0. We cut the path in two,
and assign to z an intermediate target w(z, 1) that lies on the line [0, `]. We choose w(z, 1)
“linearly”, as follows. Parameterize Γ by v = [0, 1] → Γ at constant speed, in such a way
that v(0) = ` and v(1) = a. Then set w(z, 1) = (1− s)` when z = v(s).

The second part of the trip (going from w(z, 1) = (1 − s)` to x0) is easy to organize,
because T (r) is just a triangle and [0, `] one of its sides. We simply set w(z, t) = (t− 1)x0 +
(2− t)w(z, 1) = (t− 1)x0 + (2− t)(1− s)` for z ∈ Γ and 1 ≤ t ≤ 2.

For the first part of the trip, we recall that ΣG(Γ) is a small Lipschitz graph over some
vaguely triangular sector, which we call SΓ, in the plane PΓ that contains a, `, and 0. The
two segments [0, a] and [0, `] that bound the sector are contained in ΣG(Γ), and there is a
third curvy part of the boundary, such that Γ (the third part of the boundary of ΣG(Γ)) is a
small Lipschitz graph over that curve. The triangular sector has a third boundary, that goes
from ` to a, and which is the projection of Γ (and is a small Lipschitz curve too). We want
to make sure that w(a, t) = (1− t)a for t ∈ [0, 1] (we go linearly from a to its intermediate
target 0), and on the other hand w(`, t) = ` for t ∈ [0, 1]. For the intermediate points z, it
turns out that we can take

(26.19) w(z, t) = G̃[(1− t)π(z) + tw(z, 1)] for t ∈ [0, 1]

where π denotes the orthogonal projection on PΓ, G : SΓ → P⊥Γ is the function whose graph

is ΣG(Γ), and G̃(u) = u + G(u) is the parameterization of the graph by u ∈ SΓ. The point
is that although SΓ is not necessarily convex, the small Lipschitz property of Γ implies that
all the segments [π(z), w(z, 1)] = [π(z), (1 − s)`] are contained in SΓ (Figure 22 shows such
a segment). That is,

(26.20) w(z, t) ∈ ΣG(Γ) for z ∈ Γ and t ∈ [0, 1].

This completes the definition of our path function w(z, t) on Γ, when Γ ends at ` ∈ L.
In the other case when Γ goes from a to b, with a, b /∈ L, we first send points to 0, and then
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Figure 22: The projection π(w(z, t)) in SΓ ⊂ PΓ

move them to x0. That is, write ΣG(Γ) as above as the graph over the sector SΓ of the small
Lipschitz G : SΓ → P⊥Γ , and this time take the direct path to the origin defined by

(26.21) w(z, t) = G̃[(1− t)z] for t ∈ [0, 1];

as before, (26.20) holds (this time because the rays from the curved boundary of SΓ to the
origin are contained in SΓ), and we end with w(z, 1) = 0. We complete the path by taking
w(z, t) = (t− 1)x0 for t ∈ [1, 2], which just moves from 0 to x0. Notice that when two curves
Γ end at the same vertex a, the corresponding functions w(a, t), t ∈ [0, 2], coincide. This is
true both when a ∈ L and when a /∈ L.

There is a third, trivial case when Γ = {`} for some ` ∈ S ∩ L; then we take the same
definitions as before (when ` was an endpoint of Γ): we set w(`, t) = ` for 0 ≤ t ≤ 1, and
w(`, t) = (t− 1)x0 + (2− t)` for t ∈ [1, 2].

Now we are ready to define ϕ0 on E ∩ A2. Recall that ϕ0(x) = p(x) ∈ Γ∗ for x ∈ S1−σ.
For x ∈ A2, we still start from z = p(x) ∈ Γ∗ (which is defined, as before, by (26.12) and
(26.14)). We also set t(x) = 2σ−1(1− |x| − σ) ∈ [0, 2], and finally take

(26.22) ϕ0(x) = w(z, t(x)) = w(p(x), t(x)) for x ∈ E ∩ A2.

Thus on S1−2σ, we have ϕ0(x) = w(z, 2) = x0, as needed.

This completes our definition of ϕ0. Notice also that ϕ0(x) ∈ Σ̃G for x ∈ E ∩B(0, 1−σ),
as promised, and it is easy to check that ϕ0 is Lipschitz (although possibly with a huge
norm). We should also mention that it is easy to find a one-parameter family of Lipschitz
mappings that preserve L and go from the identity to ϕ0; we just need to make sure that
points of L stay in L, and we don’t need to control where the intermediate images lie, so
we can interpolate linearly and the convexity of L does the rest. With all these remarks
in mind, we we just need to check that ϕ0 ∈ L for x ∈ A(2σ) ∩ E ∩ L. We made sure to
project radially from x0 so that [x, p(x)] ⊂ L, and then p(x) = `±, and we made sure when
we retracted Γ∗ to x0 that w(p(x), t(x)) ∈ L too, as needed.

Now we need to control the measure of F 0 = ϕ0(E). We don’t need to worry about
E \ B(0, 1), because we did not change anything there; see above (26.14). Next consider
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the image of F (σ) = ϕ0(E ∩ A(σ)) (the exterior annulus). Fortunately, we took for ϕ0,
and in particular in the annulus A(σ), the same sort of formula as in Section 14 and we
can do the same estimates, which lead to (14.26) for M(σ) = H2(F (σ)); recall that the
idea is to choose correctly arbitrarily small values of σ, and define ϕ0 with such values (and

later take a limit to get a sharp estimate). We are left with ϕ0(B(0, 1 − σ) ⊂ Σ̃G. We can
keep the same estimates as before, on ΣG(Γ∗), and then we just need to add H2(T (1)), the
additional triangular piece that we decided to add to take care of the boundary constraint.
We essentially copy (15.46), and we get that

(26.23) H2(E ∩B(0, 1)) ≤ 1

2
H1(E ∩ S1)− 10−5[H1(E ∩ S1)−H1(ρ∗)] +H2(T (1)) + h(1),

where ρ∗ is defined as in (15.43); it is the union of geodesics that we get when we join the
endpoints of each Γ with a geodesic. Thus there is a maximum of six geodesics ρΓ (they
were called ρj in Section 15), four long ones and two short ones. Finally observe that we
systematically added H2(T (1)) in our estimate, as if it were disjoint from the other parts.
That is, if by luck T (1) intersects some other piece of F 0, we could perhaps have obtained a
better estimate on the total H2-measure of F 0, but we did not try to do this, and this way, if
we later modify F 0 by modifying ΣG(Γ∗) (including a piece that may have intersected T (1)),
when we do the further estimates, we will be able to compare the measure of the replaced
piece of ΣG(Γ∗) with what it becomes, without having T (1) interfere in the computation.
That is, we shall not actually compare the sets, but the estimates that we use for the sets.
Hopefully this comment will become clear when we do this.

This was our main estimate, modulo the full length story below. We now forget our
normalization r = 1, and rewrite (26.23) as

(26.24) H2(E∩B(0, r)) ≤ r

2
H1(E∩Sr)−10−5r [H1(E∩Sr)−H1(ρ∗r)] +H2(T (r)) + r2h(r),

where we now write ρ∗r instead of ρ∗, and which is valid almost everywhere under the as-
sumptions of this section.

In order to know whether we need the full length trick and the construction of an ad-
ditional competitor, we introduce the following set X0, which we will see as the reference
minimal set in the given situation. If θ0 = π, X0 is the half plane bounded by L that contains
0. If θ0 = 3π

2
, X0 is the truncated set of type Y, centered at 0, and with a spine parallel

to L. That is, we take the cone Y of type Y, centered at 0, and with a face that contains
L, and we take X0 = Y \ S, where S is still the shade of L. The reader should not get
confused (as the author has been a few times); our choice of X0 is just a way to encode some
numbers (such as H1(X0∩Sr) below), but we will not compare X0 with E directly. It is just
pleasant to compute things in terms of X0, because we know that for X0, the functional F
is constant, so we know in advance that some simplifications will occur. Also recall that we
know from [D8], and with a simpler competitor, that F is almost nondecreasing, so whatever
small improvement that we have should lead to a good differential inequality. When X ∈ P0,
X0 does not look like X, but this is all right.
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The computations will be simpler when

(26.25) H1(ρ∗r) ≤ H1(X0 ∩ Sr),

which will be our analogue of (16.1), because in this case we will not need the full length
trick.

So let us assume for the moment that (26.25) holds, and see how to deduce from (26.24)
the differential inequalities (24.13) and (24.18). In fact, let us check that if we have an
inequality like

(26.26) H2(E ∩B(0, r)) ≤ r

2
H1(E ∩ Sr) +H2(T (r))− qr

[
H1(E ∩ Sr)−H1(ρ∗r)

]
+ r2h(r),

for some number q ∈ (0, 10−1), then we have

(26.27) rF ′(r) ≥ a[F (r)− θ0]+ − C2

ˆ 2r

0

h(t)dt

t
.

where θ0 is as in (26.1), as long as such that

(26.28) a ≤ 3q and C2 ≥ max
(
α,

5

ln(2)

)
,

where α is the almost monotonicity constant from (23.11). Of course (26.24) is included; it
corresponds to q = 10−5.

The proof will be similar to what we did in Proposition 17.2, but we need to check the
algebra. Otherwise, for the differentiability of F , for instance, the justifications are the same
as before.

Set v(r) = H2(E ∩B(0, r)) and x(r) = (2r)−1H1(E ∩ Sr) as in Section 17; then

(26.29) v′(r) ≥ H1(E ∩ Sr) = 2rx(r)

as in (17.13). Next

r2θ(r) = v(r) ≤ r

2
H1(E ∩ Sr) +H2(T (r))− qr

[
H1(E ∩ Sr)−H1(ρ∗r)

]
+ r2h(r)

≤ r2x(r) +H2(T (r))− qr[H1(E ∩ Sr)−H1(X0 ∩ Sr)] + r2h(r)(26.30)

by (26.26), the definition of x(r), and (26.25).
We want to add H2(S ∩B(0, r)) to both terms. Let ρ denote the arc of great circle that

is contained in P0 (the plane that contains 0 and L, goes from `− to `+, and lies on the
opposite side of 0. Thus ρ is the geodesic ρ(`−, `+). Notice that the positive cone over ρ,
i.e., Ξ =

{
tξ ; t ∈ [0, 1] and x ∈ ρ

}
is the almost disjoint union of the triangle T (r) and

S ∩B(0, r) (a piece of the shade); thus

(26.31) H2(T (r)) +H2(S ∩B(0, r)) = H2(Ξ) =
r

2
H1(ρ).
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Also, the union X0 ∪ S is essentially disjoint, and is either the plane P0 (if θ0 = π) or a full
cone of type Y (if θ0 = 3π

2
); hence

(26.32) H2(X0 ∩B(0, r)) +H2(S ∩B(0, r)) = θ0r
2.

Next, by (26.30) and (26.31)

r2F (r) = H2(S ∩B(0, r)) + r2θ(r)

≤ H2(S ∩B(0, r)) + r2x(r) +H2(T (r))− qr[H1(E ∩ Sr)−H1(X0 ∩ Sr)] + r2h(r)

=
r

2
H1(ρ) + r2x(r)− qr[H1(E ∩ Sr)−H1(X0 ∩ Sr)] + r2h(r).(26.33)

Set K0 = X0 ∩ Sr; then K0 ∪ ρ is the intersection with Sr of the full cone P0 or Y , and since
the union is almost disjoint, we get that

(26.34) H1(K0) +H1(ρ) = 2rθ0.

Thus (26.33) becomes

(26.35) r2F (r) ≤ r2x(r) +
[
θ0r

2 − r

2
H1(K0)

]
− qr[H1(E ∩ Sr)−H1(K0)] + r2h(r).

We multiply this by 2r−2 and get that

(26.36) 2F (r) ≤ 2x(r) + 2θ0 − r−1H1(K0)− 2qr−1[H1(E ∩ Sr)−H1(K0)] + 2h(r).

Next we compute F ′(r). The derivative of H2(S ∩B(0, r)) is H1(ρ), so

(26.37)

rF ′(r) = −2F (r) + r−1v′(r) + r−1H1(ρ) ≥ −2F (r) + 2x(r) + r−1H1(ρ)

= −2F (r) + 2x(r) + 2θ0 − r−1H1(K0)

≥ 2qr−1[H1(E ∩ Sr)−H1(K0)]− 2h(r)

by (23.6), (26.29), (26.34) and (for the last line) (26.36). Next by (26.36) and the definition
of x(r),

(26.38)
F (r)− θ0 ≤ x(r)− 1

2
r−1H1(K0)− qr−1[H1(E ∩ Sr)−H1(K0)] + h(r)

=
(1

2
− q
)
r−1[H1(E ∩ Sr)−H1(K0)] + h(r),

hence

(26.39) r−1
[
H1(E ∩ Sr)−H1(K0)

]
≥
(1

2
− q
)−1

[F (r)− θ0]−
(1

2
− q
)−1

h(r).

We plug this back in (26.37) and get that

(26.40) rF ′(r) ≥ a0[F (r)− θ0]− b0h(r),
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with a0 = 2q
(

1
2
− q
)−1 ≥ 3q and b0 = 2 + 2q

(
1
2
− q
)−1 ≤ 5.

First assume that F (r) − θ0 ≥ 0, so as not to get in trouble with the positive part in

(26.27). Since h(r) ≤ 1
ln(2)

´ 2r

0
h(t)dt
t

, (26.40) is better than (26.27) for all the values of a ≤ a0

and C2 ≥ 5
ln(2)

, which is a little better than announced in (26.28).

Now suppose that F (r) < θ0. We may also assume that F ′(r) exists, since this is the case
almost everywhere. Then, when we differentiate the monotonicity formula (23.11), we get
that F ′(r) ≥ −αA(r). Since the positive part in (26.27) vanishes, this establishes (26.27) in
this case, with any value of a and as soon as C2 ≥ α.

So we finally proved that the desired differential inequality (26.27) holds, with a and C2

as in (26.28), as soon as (26.25) holds. We are thus left with the complementary case, when

(26.41) H1(ρ∗r) > H1(X0 ∩ Sr).

and we will need the help of a full length condition that we state soon. But for the moment
let us exclude a few cases to make our life simpler later.

We start with the case when θ0 = π, and in addition we have a hanging curve. In this
case what is left of ρ∗r is just a single geodesic ρ, from m1 (a point of E∩Sr near the middle of
X∩Sr), to one of the two points of L∩Sr, say, the point `+. Plus a degenerate curve reduced
to {`−}, that counts for nothing in the length computations. If we had taken m1 = w1, the
midpoint of the arc of X ∩ Sr, we would have exactly the length

(26.42) H1(ρ(`+, w1)) =
1

2
H1(X ∩ Sr) ≤

1

2
H1(X0 ∩ Sr),

where the second part comes from the fact that X0 is the half plane bounded by L for which
H1(X0 ∩ Sr) is the largest. Now we replace w1 by m1, this hardly changes the lengths, and
we still get a contradiction with (26.41). If there are two hanging curves, ρ∗r is reduced to
three points, and (26.41) is even more impossible.

Let us also exclude the case when θ0 = 3π
2

and we have a hanging curve. This time (26.4)
allows us to take d0/r as small as we want. Then H1(X0 ∩ Sr) is as close as we want to
2πr, while we are still missing at least one large curve in ρ∗r, out of the four, and we get that
H1(ρ∗r) is quite close to 3πr

2
, in contradiction with (26.41).

Next we use a trick to exclude the remaining case when θ0 = π and there is no hanging
curve, with only a small computation. In this case ρ∗r is just composed of two geodesics
ρ± = ρ(m1, `±), that connect the `± to the point m1 ∈ E ∩ Sr that we chose below (26.8).
Recall that m1 is a point of the curve L1, which is the part of E ∩ Sr that lies far from L,
that we need to choose near the point w1 in the middle of (the unique arc of) X ∩ Sr. In
that region, E ∩ Sr is a nice C1 curve that stays very near X ∩ Sr, and by the intermediate
value theorem, we can choose m1 at equal distance from `+ and `−. We claim that for such
an m1,

(26.43) H1(ρ∗r) = H1(ρ(`+,m1)) +H1(ρ(`−,m1)) ≤ H1(X0 ∩ Sr);

as soon as we prove this, we will get the desired contradiction with (26.41). So we consider
points m ∈ Sr, at equal distance from the `±, and show that f(m) = H1(ρ(`+,m)) is maximal
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when m is the point m0 of P0∩Sr that lies just opposite to L (seen from 0). For this we may
assume that r = 1, and work in the 3 space that contains m and P0. Equivalently, we work
in R3, and we study f on the great circle S1 ∩ P , where P is the vector plane perpendicular
to L. The derivative of f in the direction v is the scalar product of v with the direction
of the geodesic ρ(`+,m) when it arrives at m, and it is easy to see that this is nonnegative
when v points in the direction of m0. So f(m) is maximal when m = m0, and (26.43) follows
because f(m0) = H1(X0 ∩ Sr)/2.

Return to the proof of the differential inequality (26.23). We are left with only the case
when θ0 = 3π

2
, and on each side we have Configuration 1 or 3 (also called free attachment).

This is where we need a full length estimate. We have constructed a network ρ∗ = ρ∗r (we
shall often drop the index r again), and it is of the following type. In all cases, we have
selected two points m1 and m2 (near the middle points w1 and w2 of the two arcs of X ∩Sr),
and two points z±, close to the `′± (themselves often equal to the `±). By taking τ , and then
ε, very small, we can assume that these four distances are as small as we want compared to
r. In addition, by taking N large we may also assume that d0/r is as small as we want, by
(26.4).

When we have Configuration 1 on both sides, we take

(26.44) ρ∗ = ρ(z−,m1) ∪ ρ(z+,m1) ∪ ρ(z−,m2) ∪ ρ(z+,m2) ∪ ρ(`−, z−) ∪ ρ(`+, z+).

When we have Configuration 3 on both sides, we only take

(26.45) ρ∗ = ρ(z−,m1) ∪ ρ(z+,m1) ∪ ρ(z−,m2) ∪ ρ(z+,m2),

in fact plus the two additional single points `± that we added half a page above (26.10), and
when we have Configurations 1− and 3+, say, we take

(26.46) ρ∗ = ρ(z−,m1) ∪ ρ(z+,m1) ∪ ρ(z−,m2) ∪ ρ(z+,m2) ∪ ρ(`−, z−),

plus the single point `+.
To each ρ∗ = ρ∗r as above, we associate the truncated cones

(26.47) X ′(ρ∗) =
{
tξ ; ξ ∈ ρ∗ and t ∈ [0, 1]

}
and X(ρ∗) = T (r) ∪X ′(ρ∗).

Notice that even if we had not added the single points `± in the free case, we would add
the corresponding segment [0, `±] now, with T (r). There was an additional constraint in the
definition of the graphs ΣG(Γ) associated to our various Lipschitz curves Γ, which is that

(26.48) ΣG(Γ) ∩B(0, κr) = X ′(ρ) ∩B(0, κr),

where X ′(ρ) is the cone over the geodesic ρ with the same endpoints as Γ. See (9.14), which
forces the graph of G to be contained in the plane of ρ near the origin. When we take the
union, we get that for ΣG = ΣG(Γ∗) =

⋃
Γ ΣG(Γ),

(26.49) ΣG ∩B(0, κr) = X ′(ρ∗) ∩B(0, κr)
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and then, adding T (r),

(26.50) Σ̃G ∩B(0, κr) = X(ρ∗) ∩B(0, κr).

If we have a good competitor for X(ρ∗), we can glue it at the tip of Σ̃G, get a better
competitor than E0 = ϕ0(E), and improve our main estimate. We can even try to do this
for X ′(ρ∗) and ΣG, but let us explain what we mean by good competitors and how we operate
the substitution.

We start with the simpler substitution of a sliding competitor for X(ρ∗). Suppose Z is
a sliding competitor for X(ρ∗) in B = B(0, κr/2). This means that we have a deformation
(x, t)→ ft(x) = f(x, t), defined and continuous on X(ρ∗)× [0, 1], with the usual constrains
and in particular ft(x) ∈ L when x ∈ L and ft(x) = x when x ∈ X(ρ∗) \ B, and then we
set Z = f1(X(ρ∗)). We talk about the whole one-parameter family {ft} because it comes
with the definition, but (as in the next case), giving f1 alone would be enough as a linear
interpolation would complete well (since L is convex). Extend f1 by setting f1(x) = x for
x ∈ Rn \ 2B. It is easy to see that f1 is still Lipschitz.

We use this to construct a competitor E1 = f1 ◦ϕ0(E) = f1(E0). It is easy to check that
this is a sliding competitor for E, and the difference between E0 and E1 comes from the
replacement of Σ̃G∩2B = X(ρ∗)∩2B by Z ∩2B. We are only interested in the replacement
if

(26.51) ∆S = H2(X(ρ∗) ∩ 2B)−H2(Z ∩ 2B) = H2(X(ρ∗) ∩B)−H2(Z ∩B) > 0

(recall that X(ρ∗) = Z outside of B anyway), but when this is the case, we can replace ϕ0

with ϕ1 in the computations above, find out that we win ∆S in the intermediate estimate
(26.23), and proceed from there on.

Now let us try to see how we can try to modify a piece of X ′(ρ∗). We try to leave T (r)
alone and modify X ′(ρ∗), but there will be a constraint, because we do not want to move
the contact region between the two. Set

(26.52) L′± =
{
t`± ; t ∈ [0, 1]

}
and L′ = L′+ ∪ L′−.

A good competitor for X ′(ρ∗) in the same ball B = B(0, κ/2) as above is a set Z ′ =
f(X ′(ρ∗)), where f is a Lipschitz mapping defined on X ′(ρ∗) ∪ L′, such that

(26.53) f(x) = x when x ∈ L′ and when x ∈ X ′(ρ∗) \B,

and such that f(B ∩X ′(ρ∗)) ⊂ B. Notice that we are overkilling something here: since we
added the points `± in the free boundary case above, we already have that X ′(ρ∗) contains
L′. But let us keep things like this, because we sometimes tend to forget about the one or
two extra points.

With this definition we give ourselves a little bit more freedom, because even if X ′(ρ∗)
casually intersects T (r) in an unexpected place, we can pretend not to notice and proceed
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with our modification. But we need to be slightly careful when we define our next competitor
E1 = ϕ1(E).

So let us define ϕ1. As before, extend f by setting f(x) = x on Rn \ 2B. We keep
ϕ1(x) = ϕ0(x) unless all the following conditions are satisfied:

(26.54) x ∈ A2, t(x) ∈ [0, 1], p(x) ∈ Γ∗ \ {`+, `−}, and ϕ0(x) ∈ X ′(ρ∗) ∩B.

If these conditions are satisfied, we take ϕ1(x) = f(ϕ0(x)). Notice that when x ∈ A2 and
t(x) ∈ [0, 1], the construction gives ϕ0(x) = w(p(x), t(x)) ∈ ΣG(Γ∗), and if in addition
ϕ0(x) ∈ 2B, then ϕ0(x) ∈ X ′(ρ∗) ∩ 2B (by (26.49)). Then f(ϕ0(x)) is well defined, and we
still have that ϕ1(x) = f(ϕ0(x)) even if p(x) ∈ {`+, `−} (because then ϕ0(x) = w(`±, t(x)) =
`± ∈ L′ by the line above (26.19).

We first need to check that that ϕ1 is Lipschitz. Since ϕ0 and f are Lipschitz, we just
need to check that

(26.55) |ϕ1(x)− ϕ1(x′)| ≤ C|x− x′|

when x ∈ E satisfies (26.54) and x′ ∈ E does not. Given the fact that |ϕ0(x) − ϕ1(x′)| =
|ϕ0(x)− ϕ0(x′)| ≤ C|x′ − x| because ϕ0 is Lipschitz, it is enough to show that

(26.56) |ϕ1(x)− ϕ0(x)| = |f(ϕ0(x))− ϕ0(x)| ≤ C|x− x′|

under the same conditions, and since f(x) = x on L′, this will be proved as soon as

(26.57) dist(ϕ0(x), L′) ≤ C|x− x′|.

We first check this when x′ /∈ A2. Recall from the line above (26.22) that t(x) = 2σ−1(1 −
|x|−σ); since t(x) ≤ 1, x lies at distance at least σ/2 from B(0, 1− 2σ). On the other hand,
t(x) ≥ C−1 because w is Lipschitz, p(x) ∈ S, and yet ϕ0(x) = w(p(x), t(x)) ∈ B. Then x is
also far from ∂B(0, 1); so (26.57) holds when x′ /∈ A2.

If x′ ∈ A2 and t(x′) ≤ 1, then either ϕ0(x′) /∈ 2B, and (26.57) holds because ϕ0 is Lipschitz
and |ϕ0(x)− ϕ0(x′)| ≥ κ/2, or else ϕ1(x′) = f(ϕ0(x′)) by the remark below (26.54), and we
can prove (26.55) directly without (26.57).

We are left with the case when x′ ∈ A2 and t(x′) ≥ 1. Recall from the discussion below
(26.18) that w(p(x), 1) = (1− s)` ∈ L′ (for some s), so

|f(ϕ0(x))− ϕ0(x)| ≤ C dist(ϕ0(x), L′) ≤ C|ϕ0(x)− w(p(x), 1)|
= C|w(p(x), t(x))− w(p(x), 1)|
≤ C|t(x)− 1| ≤ C|t(x)− t(x′)| ≤ C|x′ − x|(26.58)

because f is Lipschitz, f(x) = x on L′, and w is Lipschitz; then (26.56) holds and ϕ1 is
Lipschitz.

Let us check that ϕ1 preserves L. Let x ∈ E∩L be given; we want to show that ϕ1(x) ∈ L,
and we already know this when ϕ1(x) = ϕ0(x), so we may assume that (26.54) holds. But
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the construction above yields p(x) = `± when x ∈ E ∩ A2 ∩ L, so (26.54) fails and we don’t
need to prove anything new.

Finally, we should construct a one parameter family {ϕ1
t} that ends with ϕ1, and this is

easy; the linear interpolation ϕ1
t (x) = (1− t)x+ tϕ1(x) does the trick, because L is convex.

We may now use ϕ1 instead of ϕ0 in the computations above. We compare what we get
for the intermediate estimate (26.23). Here we replaced a piece of Σ̃G, namely X ′(ρ∗) ∩ B,
with its image by f , namely Z ′ = f(X ′(ρ∗)) ∩ B = f(X ′(ρ∗) ∩ B). These two pieces are

disjoint from the rest of Σ̃G, maybe not from the triangular piece T (1), but this does not
matter, because on all our estimates for H2(E1), where E1 = ϕ1(E) is our competitor for

E, we sum H2(Σ̃G) and H2(T (1)). Thus in (26.23) we can save

(26.59) ∆S = H2(X ′(ρ∗) ∩B)−H2(Z ′ ∩B).

Of course we only use ϕ1 instead of ϕ0 when ∆S > 0 (for the radius r under consideration).

The next lemma says that in the present situation, when (26.41) holds, we can always
do one of the two replacements above, and save at least ∆S ≥ c

[
H1(ρ∗r)−H1(X0 ∩ S)

]
.

Lemma 26.1. There is a small constant c > 0 such that, for ρ∗ = ρ∗r as above, and keeping
the convention that r = 1 to simplify the statement, either there is a sliding competitor Z
for X(ρ∗) in B = B(0, κ/2), such that

(26.60) H2(Z ∩B) ≤ H2(X(ρ∗) ∩B)− c
[
H1(ρ∗)−H1(X0 ∩ S)

]
,

or there is a good competitor Z ′ for X ′(ρ∗) in B such that

(26.61) H2(Z ′ ∩B) ≤ H2(X ′(ρ∗) ∩B)− c
[
H1(ρ∗)−H1(X0 ∩ S)

]
.

We postpone the proof of this lemma to the next sections, and in the mean time see
why it is easy to deduce our differential inequality (24.18) from the lemma. We proceed as
explained above, and save ∆S ≥ c∆L in the intermediate estimate (26.23), where

(26.62) ∆L = H1(ρ∗r)−H1(X0 ∩ Sr) > 0

(the inequality comes from (26.41), and otherwise we don’t do the last step and don’t win
anything). Thus instead of (26.24) we now have

(26.63) H2(E ∩B(0, r)) ≤ r

2
H1(E ∩ Sr)− 10−5r∆E − cr∆L +H2(T (r)) + r2h(r),

where we decided to set

(26.64) ∆E = H1(E ∩ Sr)−H1(ρ∗r);

notice that even in Configuration 1 when (26.9) failed and we tampered a little with the
curves, we always made sure to take Γ∗, and a fortiori ρ∗, shorter than E ∩ Sr, so ∆E ≥ 0;
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see in particular (8.16), and recall that γ ⊂ E∩Sr. We may assume that c ≤ 10−5, so (26.63)
(and the fact that ∆E and ∆L are nonnegative) yield

H2(E ∩B(0, r)) ≤ r

2
H1(E ∩ Sr)− cr(∆E + ∆L) +H2(T (r)) + r2h(r)

≤ r

2
H1(E ∩ Sr)− cr

[
H1(E ∩ Sr)−H1(X0 ∩ Sr)

]
+H2(T (r)) + r2h(r).(26.65)

This gives directly the second line of (26.30), with q = c. Then the same computations as
below (26.30) lead to (26.40) (again with q = c). We still have the two cases, but as before
we obtain (26.28), hence also (24.18) (we no longer care about (24.13), because the case
when θ0 = π was settled before the lemma).

This completes our proof of differential inequalities; hence now Proposition 24.3 is es-
tablished, Theorem 24.1 follows because of the previous section, and Proposition 24.4 and
Theorem 24.2 will follow from Lemma 26.1.

27 Basic gain estimates and full length for flat V sets

In this section we prove Lemma 26.1 in most cases. The author’s initial plan was to use
the estimates of this section also for the full length verifications corresponding to Section 4
(with balls centered on L), but finally decided that this may be confusing; instead we’ll do
a special argument in Section 37, and only import some estimates from this section and the
next one.

We are given a net ρ∗r as near (26.44)-(26.46), we assume that (26.41) holds, and we
want to find a competitor Z for the truncated cone X(ρ∗r), or rather Z ′ for the truncated
cone X ′(ρ∗r), such that (26.60) (or rather (26.61)) holds. We shall fulfill this program in this
section for most cases, and will be left with a last, more complicated case, to study in the
next one.

We shall try to systematically use the Z ′ approach, and reserve the approach with the
sliding competitor Z for a more subtle estimate that may come up later. The Z ′ approach
required more work to start with, but is more pleasant now because we can forget about
T (r) and its intersections with the rest of the sets.

We may as well assume again that r = 1, and we set ρ∗ = ρ∗r again, and X ′ = X ′(ρ∗r),
the cone over ρ∗, for simplicity. The idea of the proof, as for the property of “full length
because of angles” in [D4], is to show that when ∆L = H1(ρ∗)−H1(X0 ∩S) is positive, then
something in the geometry of X ′, for instance an angle, allows us to find a better competitor.

We keep the same notation as before for X0 (a truncated cone of type Y with a spine
parallel to L) and K0 = X0 ∩ S. Notice incidentally that H1(X0 ∩ S) = H1(K0) = 3π −
H1(S∩S) would stay the same if X0 were replaced by another truncated cone X ′0 of type Y,
with a face that contains L ∩B(0, 1), but with a spine that is not parallel to L (but crosses
it outside of B(0, 1). This means in particular that if ρ∗ = X ′0∩S1, we have ∆L = 0 and this
is fortunate because we could not find a better competitor Z or Z ′, since in this case X(ρ∗r)
is probably minimal in B(0, 1).
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Let us give a name to the maximal amount of area that we can save with a competitor
for X ′, i.e.,

(27.1)
σ = sup

{
H2(X ′ ∩B(0, 1))−H2(Z ′ ∩B(0, 1));

Z ′ is a good competitor for X ′ in B(0, 1)
}
.

Normally, if we want to relate to what we may win in Lemma 26.1, we should consider
a competitor in B(0, κ/2), but here X ′ is a cone, our boundary condition (26.53) in the
definition of a good competitor also concerns a truncated line L′ through the origin, so it
is easy to see that the number σκ that would come from replacing B(0, 1) with B(0, κ/2) is
simply (κ/2)2σ. Thus Lemma 26.1 will follow if we can prove that

(27.2) σ ≥ C−1∆L = C−1[H1(ρ∗)−H1(X0 ∩ S)]

when (26.41) holds, i.e., when ∆L > 0.
We shall try various sets Z ′ and get some lower bounds for σ; later on we may proceed

by contradiction, assume σ is small, and contradict something in the geometry of X ′.
We first study the angle of the two branches of ρ∗ that leave from some mi, where i = 1, 2.

Denote by ei,± the unit vector tangent at mi to the branch ρ(mi, z±) (or ρ(mi, `±), depending
on the situation), pointing in the direction of the other endpoint of the branch. Then set
αi = |ei,+ + ei,−|. It is a good measure of the complement to π of the angle of ei,+ and ei,−.
We claim that

(27.3) σ ≥ C−1α2
i .

This is proved in Lemma 10.23 in [D4], but let us say how it goes because we shall use
similar proofs soon. On the ball B = B(mi/2, 1/10), the set X ′ is just composed of two half
planes, that make the same angle with each other as ei,+ and ei,−. Also, B is far from L′,
so we are not worried by the boundary condition (26.53). We find a competitor in B that
smoothes the angle, where near the middle of B we essentially move the common boundary
of the two half planes by a small fixed vector; on the rest of B there is a gluing piece, but
altogether we save some area. Computations are done with the help of the area formula.

When we have Configuration 3 near our point `′±, we claim that we can proceed the same
way with the two branches of ρ∗ that leave from z±. The point is that we do not need to
worry about the boundary condition in this case.

If none of the two branches of ρ∗ that leave from z± contain `±, we can simply use the
statement: any Lipschitz mapping defined on X ′ and that only moves points in B(z±/2, 1/4),
say, will satisfy condition (26.53) because in this ball X ′ stays far from L′.

But even otherwise, the definition of Configuration 3 makes that we do not need to
worry about sliding conditions for X(ρ∗) or X ′ near `±. That is, even though we may
detach X ′ from L′, this does not prevent the competitor E1 that we build with the present
construction from being a sliding competitor for E, because we had no sliding constraint
near `± by definition of Configuration 3. That is, we should modify the definition of “good
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competitor” to suit Configuration 3, but yet we don’t need to worry about the estimate.
Now the proof of (27.3) also yields that

(27.4) σ ≥ C−1α2
±,3 ,

where we put the index 3 to remind the reader of Configuration 3, and where α±,3 = |v±,1 +
v±,2|, where v±,i is the unit vector that points in the direction of ρ(z±,mi) at the point z±.

Next we want some control when we have Configuration 1 near `±. Still denote by v±,i
the unit direction of ρ(z±,mi) at z±, and also let v±,0 denote the unit direction of ρ(z±, `±)
at z±. For some time we will forget the subscript ± in our notation. Set

(27.5) s = v0 + v1 + v2 ;

typically, we want to build competitors for X ′ by moving the point z± in the general direction
of s, but at the same time we will need to be careful because of the boundary constraint
along L′.

Let us explain what is our basic competitor. We choose a small multiple v of v0 (positive
or negative), and we push the points of X ′ in the direction of v (using a cut-off function).
For this we repeat the construction of Lemma 10.23 in [D4].

Let us choose coordinates so that z = (1, 0) ∈ R×Rn−1, and decide to work in the region
A0 = [1/5, 3/4] × B(0, 2a), where a is a small geometric constant, for instance a = 10−2.
Nothing will happen outside of A0.

Notice that in A0, X ′ is a truncated set of rough type Y, in the sense that it is composed
of three faces F0, F1 and F2, which are the positive cone over the three geodesics from z to
` and to the mi. Only F0 is truncated in A0 (the geodesics ρ(z,mi) go too far), and we shall
consider the half plane F ′0 that contain F0, and X ′1 = F ′0 ∪ F1 ∪ F2, which in A0 coincides
with a cone. This cone is not exactly of type Y because the angles may be wrong. Notice
however that these angles are not too small either, by the construction of our nets of curves.
What we will do is construct a competitor Z ′1 for X ′1 in A0, and later on we will see that we
can use the construction to restrict to X ′ and get a competitor Z ′ for X ′.

Our competitor for X ′1 will be Z ′1 = f(X ′1), where

(27.6) f(x) = x+ ψ(x)v,

for some appropriate bump function ψ and a small vector v collinear with v0. There is an
interest in taking the vector v parallel to v0, which is that with this move, the restriction of
f to the face F ′0 is simpler: if v goes in the direction of −v0, the face only gets larger (that
is, we only add a piece to F ′0 in the plane that contains it), and if v goes in the direction of
v0, we just remove a piece of F ′0. For the other faces F1 and F2, they are moved sideways,
as in [D4].

Let us say a little more about ψ. We take ψ supported in A1 = [1/4, 1/2] × B(0, a) ⊂
R × Rn−1, with the same coordinates as above, and as in Lemma 10.23 of [D4]. We shall
mention the other (natural) properties of ψ as we need them. For the moment, let us not
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worry too much about the boundary condition, and compute the area of Z ′1 ∩ A0. If we
choose v small enough (depending on a and our choice of ψ, that we may consider fixed),
f is a smooth diffeomorphism (see [D4]), and we van use the area formula to compute the
area of the images f(F ′0), f(F1), and f(F2) that compose Z ′1 in the region A0.

We proceed as in [D4], to which we shall refer for some computations. Let a face, for
instance F2, be given. The plane P2 that contains F2 is spanned by e1 = (1, 0, 0) = z (where
now the third coordinate lies in Rn−2), and, by choice of a suitable basis of Rn, e2 = (0, 1, 0).
Also write v = (0, β, v′), with v′ ∈ Rn−2 (or, with a slight twist of notation, v′ is orthogonal
to e1 and e2).

We need to compute the differential of f on P2, which means Df(e1) = e1 + ∂1ψ v and
Df(e2) = e2 + ∂2ψ v. Here we did not yet write the variables (x1, x2) ∈ P , and the notation
∂1ψ is rather clear. But in fact we take ψ to be a function of the first variable x1 ∈ R and
r = (x2

2 + · · ·x2
n)1/2 (i.e., radial in all the other variables), and this way ∂2ψ will be the same

function (of x1 and the other variable) for all the planes P that contain the line through e1.
Thus

Df(e1) ∧Df(e2) = [e1 + ∂1ψ v] ∧ [e2 + ∂2ψ v]

= e1 ∧ e2 + [∂2ψ e1 − ∂1ψ e2] ∧ v
= [1 + β∂2ψ] e1 ∧ e2 + ∂2ψ e1 ∧ v′ − ∂1ψ e2 ∧ v′(27.7)

and the jacobian determinant of the restriction of f to F2 is

J2(x) = |Df(e1) ∧Df(e2)| =
{

[1 + β∂2ψ]2 + (∂2ψ)2|v′|2 + (∂1ψ)2|v′|2
}1/2

≤ 1 + β∂2ψ + C|v|2(27.8)

because |v|2 = β2 + |v′|2. Notice also that β = 〈v, e2〉 is the size of the projection of v on P2;
hence, when we apply the area formula to compare H2(f(P2 ∩ A0)) to H2(P2 ∩ A0), we get
that

H2(f(F2 ∩ A0))−H2(F2 ∩ A0) =

ˆ
F2∩A1

[J2(z)− 1] dH2(x)

≤
ˆ
F2∩A1

[
β∂2ψ(x) + C|v|2

]
dH2(x)

≤ 〈v, e2〉
ˆ
F2∩A1

∂2ψ + C|v|2H2(F2 ∩ A1) ≤ 〈v, e2〉
ˆ
F2∩A1

∂2ψ + C|v|2.(27.9)

where we use the fact that f(P2) ∩ A0 = f(P2 ∩ A0), and also that f(x) = x on Rn \ A1.
What we computed for F2 is also valid for F1 and F ′0, except that we need to replace the

unit vector e2 by a unit vector of P1 or P0 that is perpendicular to e1 = z. As was explained
before, the derivative ∂2ϕ in that direction is the same, because we took ψ radial in the
directions orthogonal to e1. Notice also that by rotation invariance, we can use the same
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coordinates (say, (x1, x2) ∈ F2) to write the three integral. We get that

H2(f(Z ′1 ∩ A0))−H2(X ′1 ∩ A0) =
2∑
i=0

H2(f(Fi ∩ A0))−H2(Fi ∩ A0)

≤ C|v|2H2(F2 ∩ A1) +
( 2∑
i=0

〈v, ei〉
) ˆ

F2∩A1

∂2ψ.(27.10)

The integral
´
F2∩A1

∂2ψ = 1 is a constant, which is even computed in (10.33) of [D4] to be

equal to −1/5 (what matters is that it is strictly negative). Since
∑2

i=0 ei = s by (27.5), we
see that

(27.11) H2(f(Z ′1 ∩ A0))−H2(X ′1 ∩ A0) ≤ −〈v, s〉
5

+ C|v|2.

We take

(27.12) v = (10C)−1〈v0, s〉v0

with the same constant C; then 〈v,s〉
5

= (50C)−1〈v0, s〉2, while C|v|2 = 10−2C−1〈v0, s〉2 is
twice smaller. Thus

(27.13) H2(f(Z ′1 ∩ A0))−H2(X ′1 ∩ A0) ≤ −10−2C−1〈v0, s〉2.

This was our version of Lemma 10.23 of [D4]. Notice that the estimate is not so good
when s is almost orthogonal to v0, but let us keep the option to use this open. Now we need
to worry about the set X ′ and the boundary condition.

Let us review how the mapping f works; see Figure 23 already. On the two faces F1 and
F2, the mapping pushes points in the direction of v, and the only case when the boundary
condition (26.53) may be violated is if F1 or F2 touches L′. Due to the fact that ρ0 makes a
large angle with ρ1 and ρ2, this can only happen if ρ0 is reduced to one point and ρ1 and ρ2

start from `±. Let us assume that this does not happen for the moment.
Then on F0, the mapping f slides points in the direction of v, which is parallel to the

plane P0 that contains F0. Let us start the discussion with the case when v is a negative
multiple of v0. The effect of f is to extend the faces F0 and F ′0, by adding to them a piece that
lies further than the boundary [0, z±] (where z± is the common point of the three ρi). With
the way we wrote f , we probably moved points of F ′0 that lie on [0, `±] ⊂ L′ and beyond, and
(26.53) forbids us to do this. But this is easy to fix: we replace f on F ′0 by a mapping that
coincides with f on [0, z±] (so that we can still glue with f|(F1∪F2), is the identity on F ′0 \ F0

(and in particular on [0, `±]), and just moves the points faster in A0 ∩ F0 if needed. This
shows that Z ′ = F ′1∪F ′2∪F ′3 is a good competitor for X ′, and since Z ′1\Z ′ = X ′1\X ′ = F ′0\F0,
we deduce from (27.13) that

σ ≥ H2(X ′ ∩ A0)−H2(f(Z ′ ∩ A0))

= H2(X ′1 ∩ A0)−H2(f(Z ′1 ∩ A0)) ≥ 10−2C−1〈v0, s〉2.(27.14)
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This was our estimate when v is a negative multiple of v0, which by (27.12) means that
〈v0, s〉 < 0.

When 〈v0, s〉 ≥ 0, the mapping f tends to move points of F ′0 in the direction of v0, i.e.,
make F ′0 smaller. We can still argue as before, but under the condition that the points of
the common boundary [0, z±] of F0 and F ′0 do not go all the way to [0, `±]. This means
that when we choose v, we are safe if |v| ≤ 10−3|z± − `±| = 10−3|z − `|, for instance.
We may as well assume that the constant C in (27.11) is larger than 100, and this way,
if 0 ≤ 〈v0, s〉 ≤ |z − `|, we can keep the same choice of v as in (27.12), and get the same
estimate as in (27.14). Altogether,

(27.15) σ ≥ C−1〈v0, s〉2 when 〈v0, s〉 ≤ |z − `|.

When 〈v0, s〉 ≥ |z− `|, we take the smaller v = (10C)−1|z− `| v0, and the same computation
as for (27.13) and (27.14) yields the less good result

(27.16) σ ≥ C−1|z − `|〈v0, s〉 when 〈v0, s〉 ≥ |z − `|.

These will be our main estimates, but there are some cases when 〈v0, s〉 is really too small
for us, or (almost equivalently) the author did not manage to prove easily that it is large,
and we want to try a different competitor. We shall try this when v1 and v2 make a small
angle, and more precisely |v1 + v2| > 1. We could of course try to control the scalar product
above when this happens, but the author did not manage to do this, and instead we shall
try a slightly different competitor, where we move the points of the faces F1 and F2 above
in the direction of v1 + v2 (instead of −v0 above). We need to be more specific, because
we want to use the same computations as above, but not the same mapping. Suppose we
keep F1 and F2 as they are, but complete them with a third face F3, starting from their
common boundary [0, z], and going in the opposite direction v′0 = −(v1 + v2)/|v1 + v2|.
Then use the same algorithm as before, where f is given by (27.6), with for v a positive
multiple of v1 + v2. We want to do the same computations as above, with v0 replaced by
v′0, and hence s replaced by s′ = v′0 + v1 + v2 = −v′0(|v1 + v2| − 1). In particular, we take
v = (10C)−1〈v′0, s′〉v′0 = −(10C)−1(|v1 + v2| − 1)v′0 as in (27.12).
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This gives a competitor Z̃ for F1 ∪ F2 ∪ F3, for which the estimate leading to (27.13) are

true. We remove the whole face F3, both from F1 ∪ F2 ∪ F3 and from Z̃, and we get a new
set Z ′′ such that

(27.17) H2(Z ′′∩A0))−H2((F1∪F2)∩A0) ≤ −10−2C−1〈v′0, s′〉2 = −10−2C−1(|v1 +v2|−1)2
+,

where we added the positive part to remember that we do this only when |v1 + v2| > 1. Now
in A0, Z ′′ is composed of slightly distorted faces F ′1 = f(F1) and F ′2 = f(F2), plus a vaguely
triangular piece of f(F3), which is bounded by a piece of the common boundary f([0, z]) of
F ′1 and F ′2 on one side, and the corresponding piece of [0, z] on the other side. We add to Z ′′

(and in A0 only; since we did not change anything outside of A0) the old face F0 (bounded
by [0, z], [0, `], and the arc ρ0) and get a set Z ′, which is a competitor for X ′ (which in A0

coincides with the cone over ρ0 ∪ ρ1 ∪ ρ2). It follows from (27.17) that

(27.18) H2(Z ′ ∩ A0))−H2(X ′ ∩ A0) ≤ −10−2C−1(|v1 + v2| − 1)2
+.

Now we claim that Z ′ is a good competitor for X ′. We do not want to use the same mapping
f as for proving the estimates, but instead observe that Z ′ = f̃(X ′), for some mapping f̃
that pinches partially the two faces F1 and F2 (in the direction orthogonal to the plane of

F3), is Lipschitz, but will not be written explicitly here. We need to make sure that f̃ can

be extended by setting f̃(x) = x on L′, because of our boundary constraint, and this follows
from the angle condition (10.2), which says that ρ1 and ρ2 make large angles with ρ0 at the
point z, so that in the present situation where ρ0 is a nontrivial arc, we only move points
that are far from L′. Thus Z ′ is a good competitor and (27.18) can be used to prove that

(27.19) σ ≥ C−1(|v1 + v2| − 1)2
+.

In fact, we claim that the present estimate also works when ρ0 is reduced to {`}. In this
case, the two vectors v1 and v2 (the direction of ρ1 and ρ2 when they leave z = `) are still
well defined, we can define Z ′ as above, and the fact that it is a good competitor for X ′

comes from the fact that the pinching mapping f can be taken to be the identity on [0, `].
The claim follows.

There is a last estimate on σ that we may use, essentially when all the other ones fail,
which says that

(27.20) σ ≥ C−1|z − `||s|2.

This estimate seems less good, because the right-hand side is of order 3. Its proof also
relies on (the proof of) Lemma 10.23 of [D4]. We use the fact that we can find a tube of
width roughly equal to |z − `|, centered on the segment [z/3, 2z/3], that does not meet L,
and where X ′ coincides with a cone which is roughly of type Y, except that at least one of
its angles is off by roughly |s|. We can apply the proof of Lemma 10.23 in [D4] to get an
estimate. With the same value of s, and in the unit ball, we would save C−1|s|2; in a ball of
size roughly |z − `|, and by homogeneity, it would be C−1|z − `|2|s|2. But here we are in a
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thin tube of roughly unit length, and the proof of [D4] allows us to save C−1|z− `||s|2. This
gives the quite general, but not so good estimate (27.20).

We shall now start distinguishing between cases. To make our life easier (at least, in the
cases that will be settled in this section), let us decide that the two points mi (that were
selected on the curves Ci, near the wi) are chosen at equal distance from `+ and `−. This
is easy to arrange, as in the case of a half plane, by the intermediate value theorem and
because each Ci is nicely transverse to the plane equidistant from the `±.

Case 1. We start with the case when we have Configuration 1 near each point of L ∩ S
(recall that S = ∂B(0, 1)), and in addition X is flat, by which we mean that either X ∈ P0

or else X ∈ V and for some δ > 0,

(27.21) the two half planes that compose X make an angle larger than
2π

3
+ δ.

Let us explain why this case is simpler. Assume first that X ∈ V and (27.21) holds; if ε
is small enough, then |z−`| also is as small as we want, then the two directions v1 and v2 are
very close to the directions of the two half planes of (27.21) (understand, the unit vectors
perpendicular to the direction of L that are tangent to these planes and go away from L).
Then |v1 + v2| ≤ 1− δ/3, say, by (27.21), and

(27.22) 〈s, v0〉 = 〈v0 + v1 + v2, v0〉 = 1 + 〈v1 + v2, v0〉 ≥ δ/3.

When X ∈ P0, the situation is even better: the two geodesics of X that start from `′± go
in opposite directions, and since z = z± lies close to `′± and wi lies close to mi, we get that
|v1 + v2| < 1/2 and (27.22) holds as well.

Most probably, |z − `| ≤ 〈s, v0〉, and then (27.16) says that

(27.23) σ ≥ C−1|z − `|〈v0, s〉 ≥ C(δ)−1|z − `|.

But even if |z − `| ≥ 〈s, v0〉, we may apply (27.15) instead and get that σ ≥ C−1δ2, which is
better than (27.23). This estimate holds near both points `±; we use this to majorize

(27.24)

H1(ρ∗) = distS(z+, `+) + distS(z−, `−) +
2∑
i=1

(distS(z+,mi) + distS(z−,mi))

≤ C(δ)σ +
2∑
i=1

(distS(`+,mi) + distS(`−,mi)),

where the first part is just the definition of ρ∗ as a concatenation of geodesics.

Lemma 27.1. Denote by H the set of points that lies at equal distance from `+ and `−. For
all choices of m1,m2 ∈ S ∩H,

(27.25)
2∑
i=1

(distS(`+,mi) + distS(`−,mi)) ≤ H1(X0 ∩ S).
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We shall prove the lemma soon, but let us see how it implies Lemma 26.1 in the present
case. We deduce from (27.24) and (27.25) that H1(ρ∗) ≤ C(δ)σ +H1(X0 ∩ S) and, if ∆L =
H1(ρ∗)−H1(X0∩S) (the same as in (26.62)) is positive, this just means that σ ≥ C(δ)−1∆L.
We use the definition (27.1) of σ and get the conclusion of Lemma 26.1.

So let us prove Lemma 27.1, and our Case 1 will follow. Set

(27.26) D± = distS(`±,m1) + distS(`±,m2);

then (27.25) will follow at once if we prove that for each sign,

(27.27) D± ≤
1

2
H1(X0 ∩ S).

Let us prove this. Fix a sign ±, and drop it from the notation. That is, we set ` = `± and
D = D±.

We need to compute a few things. We start with the relation between the geodesic and
Euclidean distances on the sphere. We claim that for x, y ∈ S,

(27.28) 2− 2 cos(distS(x, y)) = |x− y|2

For this computation we may assume that y, z ∈ R2, and even that x = (1, 0) and y =
(cos θ, sin θ) for some θ ∈ [0, π]; in this case distS(x, y) = θ and |x−y|2 = (1−cos θ)2+sin2 θ =
2(1 − cos θ); the claim follows. Notice also that distS(x, y) ∈ [0, π] and |x − y|2 ∈ [0, 4], so
1− 1

2
|x− y|2 ∈ [−1, 1], and (27.28) is the same as

(27.29) distS(x, y) = arccos
(
1− 1

2
|x− y|2

)
.

Next we compute numbers like distS(`,m), where ` ∈ L ∩ S and m lies in the median
hyperplane H. Without loss of generality, we may assume that there are three orthogonal
unit vectors e1, e2, e3 such that

(27.30) L =
{
− d0e2 + te1 ; t ∈ R

}
and m = sinα e3 − cosα e2 for some α ∈ [0, π].

Thus α > 0 small corresponds to a point m just above the shade of L (or if you prefer −e2),
α = π corresponds to an m just opposite to the shade; we decided that we did not need the
case when α ∈ (π, 2π) by symmetry. We may also assume that

(27.31) ` = −d0e2 +
√

1− d2
0e1

(the other choice ` = −d0e2 −
√

1− d2
0e1 would be equivalent), and then

(27.32) |m− `|2 = (1− d2
0) + (d0 − cosα)2 + sin2 α = 2− 2d0 cosα;

thus by (27.28) or (27.29),

(27.33) distS(`,m) = arccos
(
d0 cosα

)
.
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Since d0 is small, we see that distS(`,m) is close to π/2. Notice that distS(`,m) is a nonde-
creasing function of α ∈ [0, π].

Let us return to the two points mi ∈ S ∩ H, which we write mi = sinαie3,i − cosαie2

as in (27.30), with possibly different vectors e3 = e3,i if we work in Rn, n > 3. We want to
estimate

(27.34) D = distS(`,m1) + distS(`,m2) = arccos
(
d0 cosα1

)
+ arccos

(
d0 cosα2

)
.

This is again a nondecreasing function of α1 and α2. We also need to evaluate the angles
α1 and α2 in terms of the geometry of X. Start when X ∈ V, and denote by Angle(X) the
angle that the two half planes that compose X make along L; thus Angle(X) > 2π

3
+ δ by

(27.8). Call Anglex0(m1,m2) the angle of m1 and m2, seen from x0 = −d0e2 (the midpoint
of [`+, `−]). Since both mi lie within 2ε from X (by (26.2)), we get that |Anglex0(m1,m2)−
Angle(X)| ≤ 5ε hence (by (27.21) and if ε is small enough, depending on δ)

(27.35) Anglex0(m1,m2) >
2π

3
+
δ

2
.

When X ∈ P0, Anglex0(m1,m2) is almost π, because x0 is not so far from 0, and the two
points wi almost lie in opposite directions. In both cases, (27.35) holds, and so

(27.36)
〈m1 − x0,m2 − x0〉
|m1 − x0||m2 − x0|

= cos( Anglex0(m1,m2)) < −1

2
− δ

4
.

Notice that

〈m1 − x0,m2 − x0〉 = 〈sinα1e3,1 − cosα1e2 + d0e2, sinα2e3,2 − cosα2e2 + d0e2〉
= sinα1 sinα2〈e3,1, e3,2〉+ cosα1 cosα2 − d0(cosα1 + cosα2) + d2

0

≥ − sinα1 sinα2 + cosα1 cosα2 − 3d0 = cos(α1 + α2)− 3d0(27.37)

because sinαi ≥ 0. Let us take N ≥ 100/δ in (26.4), so that d0 ≤ N−1 ≤ δ/100. Notice that∣∣|mi − x0| − 1
∣∣ ≤ d0 ≤ δ/100 for i = 1, 2, so by (27.37) and (27.36)

(27.38)

cos(α1 +α2) ≤ 〈m1−x0,m2−x0〉+ 3d0 ≤
[
− 1

2
− δ

4

]
|m1−x0||m2−x0|+

3δ

100
≤ −1

2
− δ

100
,

hence (since 0 ≤ α1 + α2 ≤ 2π)

(27.39)
2π

3
+

δ

200
≤ α1 + α2 ≤

4π

3
− δ

200
.

Return to D in (27.26) and (27.34). A Taylor expansion of order 2 near 0 yields
arccos(d0 cosαi) = π

2
− d0 cosαi +Oi, with |Oi| ≤ d2

0/2, then

(27.40)
D = π − d0(cosα1 + cosα2) +O1 +O2 ≤ π − d0(cosα1 + cosα2) + d2

0

= π − 2d0(cos((α1 + α2)/2) cos((α1 − α2)/2) + d2
0.
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If both cosines have the same sign, this yields D ≤ π + d2
0 and we’ll be happier than in the

next case. Otherwise, since both 0 ≤ αi ≤ π and hence cos((α1 − α2)/2) ≥ 0, we get that
cos((α1 + α2)/2) < 0, hence (α1 + α2)/2 ≥ π/2 and by (27.39)

(27.41)
π

2
≤ α1 + α2

2
≤ 2π

3
− δ

400
,

(27.42) 0 ≥ cos((α1 + α2)/2) ≥ cos
(2π

3
− δ

400

)
≥ −1

2
+

δ

800
,

and

(27.43) D ≤ π + 2d0| cos((α1 + α2)/2)|+ d2
0 ≤ π + d0 −

d0δ

400
+ d2

0 ≤ π + d0 −
d0δ

800

if N is large enough. We also get this in the other case when the cosines have the same sign.
We need to compare this with the right-hand side of (27.27), so we compute H1(X0 ∩ S).
Recall that X0 is composed of two half great circles, that end at two antipodal points y±,
plus the two short arcs of geodesics ρ(`±, y±). The two half circles account for 2π, and with
the same choice of basis as for (27.30), y± = ±e1 (because the spine of X0 is parallel to L).
Recall from (27.31) that `± = −d0e2 ±

√
1− d2

0e1, hence distS(`±, y±) = arcsin d0 ≥ d0, and
H1(X0 ∩ S) ≥ 2π + 2d0. This completes our proof of (27.27), Lemma 27.1 follows, and we
get the desired estimate for Lemma 26.1 in our Case 1.

Case 2. Next we assume that we have Configuration 3 near the two points of L∩S, regardless
of whether (27.21) holds or not. In this case ρ∗ is merely composed of four curves from the
two mi to the two z±. The complement to π of the angles at the wi are less than C

√
σ, by

(27.3), and the the angles at the z± are also less than C
√
σ, by (27.4). Notice that we may

assume that σ is small, because otherwise the conclusion of Lemma 26.1 is obvious. Then
the four vertices of ρ∗ lie at distance at most C

√
σ from some great circle (we can follow

the curve ρ∗ from z− back to z−, without turning away from the geodesic more than C
√
σ),

and by standard computations (that can be found in [D4], for instance), H1(ρ∗) ≤ 2π+Cσ.
This is better than what we need for Lemma 26.1, because H1(X0 ∩ S) ≥ 2π.

Case 3. Suppose now that we have Configuration 1 near `− and Configuration 3 near `+. We
still have that α2

3,+ ≤ C
√
σ, by (27.4), and αi ≤ C

√
σ, by (27.3). With the same reasoning

as above, all the vertices mi and z± lie within C
√
σ of a great circle, and then

(27.44)
2∑
i=1

(distS(mi, z+) + distS(mi, z−)) ≤ 2π + Cσ.

But this time we also have to account for the additional small piece ρ(`−, z−). Since α2
3,+ ≤

C
√
σ and we can assume that σ is very small (because otherwise the thesis is trivial), the

two half planes that compose X when X ∈ V make an angle Angle(X) ≥ 9π/10; when
X ∈ P0, they are even in front of each other. The sum s = v0 + v1 + v2 of (27.5) (and for
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the point z−) is then quite close to v0 (because v1 + v2 is small), so 〈v0, s〉 ≥ 1/2, which
is better than (27.22). As for (27.23), we also get that σ ≥ C−1|z− − `−|, which gives a
good enough estimate for H1(ρ(`−, z−)) = distS(`−, z−). We add this to (27.44) and get that
H1ρ∗) ≤ 2π + Cσ ≤ H1(X0 ∩ S) + Cσ, as needed.

Recall that we excluded the case of Configuration 2 earlier. At this stage, we have only
one case left, which is when we have Configuration 1 near both `±, and in addition X /∈ P0

and (27.21) fails, i.e., X ∈ V(L) and

(27.45)
2π

3
≤ Angle(X) ≤ 2π

3
+ δ,

where the first part comes from our assumption that X ∈ V(L). Recall also that for this
remaining case we are allowed to take δ > 0 as small as we want.

28 Full length for sharp V sets

In this section we study the last left case for Lemma 26.1, when we have Configuration 1
near both `±, and in addition X satisfies (27.45). We talk about sharp V sets because we
could even argue that in this remaining situation, since we have good approximation by a
set X ∈ V such that (27.45) holds, and in addition we can take δ small, we are left with the
case where we have a reasonably good approximation by a set X ∈ V with dihedral angle
exactly 2π/3. We shall not try proceed like this, because it would not really help simplify
the proof, and also we would at least need to be quite careful with the quantifiers. Our last
case is somewhat more complicated than the other ones, which is why we left it for the end.

We shall keep some of the notation of the previous cases, concerning the two points z = z±
near the vertices ` = `±, and two intermediate points m1 and m2, except that we may not
choose the two mi exactly as we did in the previous section (that is, at equal distance from
`+ and `−). We shall first try to estimate the length

(28.1) L12 =
2∑
i=1

distS(z+,mi) + distS(z−,mi),

but for this some additional notation will be useful. We shall think of z = z− as the lowest
point of S, and will project various things along the unit vector

(28.2) e0 = (v1(z) + v2(z))/|v1(z) + v2(z)|,

where for i = 1, 2, vi(z) is the direction of ρ(z,mi) at the point z. Let us also write

(28.3) Anglez(v1(z), v2(z)) =
2π

3
+ 2α,

where we know that α is small because z = z− lies close to `−, the mi lie close to X, and we
have (27.45), but it will be useful later to have a more precise estimate.
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When we continue the two geodesics ρ(z,mi) past the points mi, they eventually meet
back at the point −z, with the same angle 2π

3
+α. But at the point mi, we turned a little and

used the geodesic ρ(mi, z+) instead. Notice however that we turned by at most αi ≤ C
√
σ,

by (27.3), and because of this the new meeting point z+ (we know it exists!) does not move
by more than C

√
σ. That is,

(28.4) |z+ + z| ≤ C
√
σ.

Set fi(w) = distS(w,mi); notice that fi(z) + fi(−z) = π because the union of the two
corresponding geodesics is a half great circle. We want to evaluate f(z+) by estimating the
derivative of fi near −z. It is easy to see that at a given point x ∈ S, x 6= wi, the derivative
of fi at x in the direction e is

(28.5) Dfi(x)(e) = ∂efi(x) = −〈e, vi(x)〉,

where again vi(x) is the direction of ρ(x,wi) at x. Moreover, if x is any point of ρ(−z, z+),
|vi(x) − vi(−z)| ≤ 10|z+ + z| ≤ C

√
σ. In addition, vi(−z) = vi(z) because these are the

endpoint directions of the half circle from z to −z through wi, so |vi(x) − vi(z)| ≤ C
√
σ.

Now write v(x, z+) the direction of ρ(−z, z+) at x; then

fi(z+)− fi(−z) =

ˆ
ρ(−z,z+)

Dfi(x)(v(x, z+)) = −
ˆ
ρ(−z,z+)

〈v(x, z+), vi(x)〉.

The length of the geodesic is at most C
√
σ, by (28.4). When we replace vi(x) by vi(z), we

make an error of at most C
√
σ. When we replace v(x, z+) by (z+ +z)/|z+ +z|, we also make

an error of at most C
√
σ (the geodesic does not turn much). We integrate the error and get

at most Cσ. Replacing the length of ρ(−z, z+) with |z+ + z| also generates an error of at
most Cσ; altogether

(28.6)
∣∣fi(z+)− fi(−z) + 〈z+ + z, vi(z)〉

∣∣ ≤ Cσ.

We sum over i, observe that if z+ were equal to −z we would have L12 = 2π, and get that∣∣L12 − 2π + 〈z+ + z, v1(z) + v2(z)〉
∣∣ =∣∣f1(z+) + f2(z+)− f1(−z)− f2(−z)− 2π + 〈z+ + z, v1(z) + v2(z)〉

∣∣ ≤ Cσ.(28.7)

Observe that by (28.2) and (28.3)

(28.8) v1(z) + v2(z)− e0 = e0|v1(z) + v2(z)| − e0 = 2e0 cos
(π

3
+ α

)
− e0 = −α̃e0,

where α̃ = 2
(
1 − cos

(
π
3

+ α
))

is of the order of
√

2α, but the precise value will not be so
important. Simply notice that by (28.7) and then (28.4),

L12 − 2π + 〈z+ + z, e0〉 = L12 − 2π + 〈z+ + z, v1(z) + v2(z)〉+ 〈z+ + z, e0 − v1(z)− v2(z)〉
≤ Cσ + α̃〈z+ + z, e0〉 ≤ Cσ + Cα

√
σ.(28.9)
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Call L± = distS(`±, z±) the lengths of our two remaining short arcs ρ± = ρ(`±, z±); then the
decomposition of ρ∗ yields

(28.10) H1(ρ∗) = L12 + L− + L+.

Observe also that

(28.11) H1(X0 ∩ S) = 3π − distS(`−, `+) = 2π + distS(`−,−`+),

because when we add ρ(`−, `+) = S ∩ S to X0 ∩ S, we get a union of three half great circles.
Recall that we want to show that ∆L ≤ Cσ, as in (27.2), where by (28.9)

∆L = H1(ρ∗)−H1(X0 ∩ S) = L12 + L− + L+ − 2π − distS(`−,−`+)

≤ L− + L+ − 〈z+ + z, e0〉 − distS(`−,−`+) + Cσ + α̃〈z+ + z, e0〉
≤ L− + L+ − 〈z+ + z, e0〉 − distS(`−,−`+) + Cσ + Cα

√
σ.(28.12)

The estimate that we want to do now looks like the following. Imagine that there is
no curvature in the sphere and that the three geodesics ρ− = ρ(`−, z−), ρ(z−,−z+) and
ρ(−z+,−`+) = −ρ+ are all contained in a line parallel to e0. Then distS(`−,−`+) = L− −
〈z + z+, e0〉 + L+, where the middle term may be positive or negative, but in all cases we
get that ∆L ≤ Cσ +Cα

√
σ. We would still need a good estimate on α, but would get close

to the desired goal. In the mean time we will try to deal with the curvature of S and the
alignment of our three geodesics.

Let ρ0 denote the geodesic that contains z and points in the direction ±e0 at z; we want
to project all sort of points on ρ0, and then try to follow the sketchy argument above. Denote
by `′− the point of ρ0 that lie closest to `−; we earlier used this notation for a point like `−
when X ∈ P0, but there is no relation. We want to locate `′− more precisely. Denote by β
the angle of v0(z) (the direction of ρ(z, `−)) with −e0. Simple estimates (that we do not do
because we will do more precise computations below) show that since L− is quite small,

(28.13) |`′− − `−| ≤ 2βL− and |distS(`
′
−, z)− L−| ≤ Cβ2L−.

In addition, β ≤ C|s(z)|, where s(z) = v0(z) + v1(z) + v2(z), since the projection of s(z) on
the line orthogonal to e0 is the same as for v0(z), so its length is | sin β|. Hence by (27.20)

(28.14) β2L− ≤ 2|z − `−|β2 ≤ C|s(z)|2|z − `−| ≤ Cσ.

We should also mention that by (10.2), the angle of v0(z) with v1(z) or v2(z) is at least π/2,
and these two vectors make an angle roughly equal to 2π/3 with each other; this forces v0

and e0 to make an angle larger than 5π/6− 10−2, say. At any rate, seen from z, both `− and
`′− lie in a direction almost opposite to e0. Let us restate this and the second part of (28.13)
in terms of the coordinates h(`′−) and h(z) of the points `′− and z, along ρ0, and which we
orient in the direction of e0; we find that

(28.15) h(z) = h(`′−) + L− + E1, with |E1| ≤ Cσ.
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Next consider the closest point projection z′ of−z+ on ρ0; its position on ρ0 is−〈z+z+, e0〉
from z in the direction of e0, modulo an error of at most Cσ (because |z + z+| ≤ C

√
σ, so

the geodesic does not have much time to turn). In terms of coordinates h(z′) and h(z) along
ρ0, still oriented in the direction of e0, we find that

(28.16) h(z′) = h(z)− 〈z + z+, e0〉+ E2, with |E2| ≤ Cσ.

Finally denote by β+ the angle of −v0(z+) with e+ = (v1(z+) + v2(z+))/|v1(z+) + v2(z+)|;
the proof of (28.14) also implies that

(28.17) β2
+L+ ≤ C|s(z+)|2|z+ − `+| ≤ Cσ.

Now |vi(z+) − v(−z, wi)| = |v(z+, wi) − v(−z, wi)| ≤ C|z+ + z| ≤ C
√
σ by (28.4), and

v(−z, wi) = v(z, wi) (we look at the other tip of the half circle), so |e+ − e0| ≤ C
√
σ and

(28.18) |v0(z+) + e0| ≤ Cβ+ + C
√
σ.

Now v0(z+) is the direction of −ρ+ when it leaves from −z+. Let us compute some more. A
parameterization of −ρ+ is given by

(28.19) z(t) = −z+ cos t+ v0(z+) sin t, t ∈ [0, L+]

(because a parameterization of a great circle can always be written as z(t) = v1 cos t+v2 sin t,
for two orthogonal unit vectors v1 and v2, and then we just need to identify).

Let P0 denote the 2-plane that contains ρ0 and let π be the orthogonal projection on
P0. Define w = −z+ − z′, where z′ is the projection of −z+ on ρ0; we know that |w| ≤
| − z+ − z| ≤ C

√
σ because z ∈ ρ0 and by (28.4). Also, w is orthogonal to e′0, the direction

of ρ0 at z′, and its orthogonal projection on the direction of z′ is of norm at most Cσ.
In fact, when a and b are two unit vectors (such as −z+ and z′), then the projection of
w = b − a on the line through a (or b, this is the same) has norm at most |w|2/2, because
1 = ||b||2 = ||a+ w||2 = 1 + 2〈a, w〉+ ||w||2. Altogether |π(w)| ≤ Cσ.

Similarly write v0(z+) = e′0 +ξ; then |ξ| ≤ Cβ+ +C
√
σ by (28.18) and because |e′0−e0| ≤

distS(z, z
′) ≤ C

√
σ. Next the projection of ξ on the direction of v0(z+) has a norm at most

Cβ2
+ + Cσ by the same argument as above (take a = v0(z+) and b = e′0). In addition,

|〈ξ, z+〉| = |〈e′0, z+〉| = |〈e′0, z+ + z′〉| = |〈e′0, w〉| ≤ C|w|2 ≤ Cσ

because v0(z+) is orthogonal to z+ and z′ is orthogonal to e′0, and then, as before, because z′

is the “orthogonal” projection of z on ρ0. If π′ denotes the orthogonal projection on the plane
that contains −z+ and v0(z+), we see that |π′(ξ)| ≤ Cβ2

+ + Cσ, but since ||π − π′|| ≤ C
√
σ

and |ξ| ≤ Cβ+ + C
√
σ, we get that

(28.20) |π(ξ)| ≤ Cβ2
+ + Cσ + Cβ+

√
σ ≤ Cβ2

+ + Cσ.

Set ˜̀= z′ cosL+ + e′0 sinL+; this is the point of ρ0 that lies at distance L+ from z′ (in the
direction of e′0); in terms of coordinates along ρ0, this means

(28.21) h(˜̀) = h(z′) + L+.

236



Notice that since −`+ = z(L+) (the final point of −ρ+), (28.19) yields˜̀+ `+ = z′ cosL+ + e′0 sinL+ − z(L+)

= (z′ + z+) cosL+ + (e′0 − v0(z+)) sinL+ = −w cosL+ − ξ sinL+(28.22)

which implies that

(28.23) |˜̀+ `+| ≤ |w|+ L+|ξ| ≤ C
√
σ + CL+β+ and |π(˜̀+ `+)| ≤ Cσ + CL+β

2
+

Let `′+ denote the projection of −`+ on ρ0; then by (28.23)

|˜̀− `′+| ≤ 2|π(˜̀+ `+)| ≤ Cσ + CL+β
2
+

and
|`′+ + `+| ≤ C

√
σ + CL+β+.

The first estimate yields

(28.24) |h(`′+)− h(˜̀)| ≤ 2|`′+ − ˜̀| ≤ Cσ + CL+β
2
+

and when we combine with (28.15), (28.16), and (28.21), we get that

(28.25) distS(`
′
−, `

′
+) = |h(`′+)− h(`′−)| = L− + L+ − 〈z + z+, e0〉+ C3,

with |C3| ≤ Cσ + CL+β
2
+ ≤ Cσ by (28.17).

We now add the orthogonal complement, which may remove some distance because `−
and −`+ may turn out to be on the same side of ρ0, and thus be closer to each other than
their projections are. But the estimates above yield

(28.26) d := |`− − `′−|+ | − `+ − `′+| ≤ C
√
σ + CβL− + Cβ+L+

and we claim that when a, b ∈ S lie within d of a geodesic ρ0, d is small enough, and a and b
denote their respective projections on ρ0, then distS(a, b) ≥ distS(a, b) − Cd2. Indeed, let π
be the projection on the plane that contains ρ0, observe that |π(a)− a| ≤ Cd2 and similarly
for b, and that |a − b| ≥ |π(a) − π(b)| ≥ |a − b| − Cd2, from which we deduce the result
because distS(a, b) = 2 arcsin(|a− b|/2).

From the claim, (28.26), (28.25), and the fact that d2 ≤ Cσ we deduce that

(28.27) distS(`−,−`+) ≥ L− + L+ − 〈z + z+, e0〉 − Cσ.

We combine this with (28.12) and get that

(28.28) ∆L ≤ α̃〈z+ + z, e0〉+ Cσ ≤ Cσ + Cα
√
σ.

Recall that Lemma 26.1, our goal for this section, will follow as soon as we prove that
∆L ≤ Cσ; see near (27.2). So we may assume that |α| ≥ C1

√
σ, with C1 quite large. Recall

from (28.8) that

(28.29) v1(z−) + v2(z−) = 2e0 cos
(π

3
+ α

)
=: (1− α̃)e0.
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When α < 0, α̃ is negative too, and |α̃| > C−1|α|. In this case |v1(z−) + v2(z−)| − 1 = |α̃|,
and (27.19) implies that σ ≥ C−1|α̃|2 ≥ C−1|α|2. We choose C1 above large enough and
exclude this case. So we assume that α > 0, and now (28.29) implies that |v1(z−)+v2(z−)| ≤
1− α̃ ≤ 1− C−1α. Recall that s(z−) = v0(z−) + v1(z−) + v2(z−); then

(28.30) 〈s(z−), v0(z−)〉 = 1 + 〈v1(z−) + v2(z−), v0(z−)〉 ≥ C−1α.

If we could apply (27.15), we would get that α2 ≤ C〈s(z−), v0(z−)〉2 ≤ Cσ, and we excluded
this case. Then we can apply (27.16) and we get that

(28.31) σ ≥ C−1|z− − `−|〈s(z−), v0(z−)〉 ≥ C−1αL−.

Let us also try the same estimate near `+. Define α+ by Angle(v1(z+), v2(z+)) = 2π
3

+ 2α+.
Recall that |vi(z+) − vi(z−)| = |vi(z+) − vi(−z−)| ≤ C|z+ + z| ≤ C

√
σ by (28.4), so α+ ≥

α− C
√
σ ≥ α/2 if C1 is large enough, and the proof of (28.31) also yields

(28.32) σ ≥ C−1α+L+.

We complete this with a lower bound on L− + L+. If H1(ρ∗) ≤ 2π, then ∆L ≤ 0 simply
because H1(X0∩S) ≥ 2π, so we may assume that L12 +L−+L+ = H1(ρ∗) ≥ 2π (by (28.10)).
We combine with (28.9) and get that

(28.33) L− + L+ ≥ 2π − L12 ≥ 〈z+ + z, e0〉 − Cσ − α̃〈z+ + z, e0〉,

hence, since |α̃| ≤ 1/2, 〈z+ + z, e0〉 ≤ 2(L− + L+) + 2Cσ. We may now return to (28.28),
which yields

(28.34) ∆L ≤ α̃〈z+ + z, e0〉+ Cσ ≤ 2α̃(L− + L+) + Cσ ≤ Cα(L− + L+) + Cσ ≤ Cσ

by (28.33), (28.31), and (28.32).
This finally completes our proof of (27.2) and Lemma 26.1 in our last case. As was

mentioned at the end of Section 26, this also completes our proof of Proposition 24.3, The-
orem 24.1 (which in fact were finished before), Proposition 24.4 and Theorem 24.2.

29 More cases where the free attachment is allowed

We interrupt the study of E in balls centered on E \ L with some comments on the free
attachment. In the construction of competitors, both in Sections 14-16 (with balls centered
on L) and Sections 26-28 (with balls centered on E \ L), there are situations where we can
use what we call the “free attachment”, near one or two of the points `± of Sr ∩ L. Recall
that the main part of the construction of curves in E ∩ Sr happens in two small disks D±
near the `±, and we used the free attachment in the following situations.

An extreme case of free attachment is what we called a hanging curve, when E ∩ ∂D±
has a point that is not in the same connected component E ∩ D± as any other point of

238



{`±} ∪ E ∩ ∂D±. We like this situation a lot, because we can contract the hanging curve,
use this to find a competitor which is much better than the curve, and at the end of the
estimate show that rθ′(r) ≥ C−1 or rF ′(r) ≥ C−1. In the phase where we try to deduce
geometric properties from the small size of f , as in Section 19 and the upcoming Section
30, we can forget about this case, because this never happens for the good radii r that we
select, by (19.30) and (19.27) in the centered case, and similar upcoming estimates in the
non centered case.

Next assume that E ∩ ∂D± has exactly two points; then we talk about free attachment
when these two points lie in the same connected component of E ∩ D± and in addition
`± does not lie in the same connected component of E ∩ D± as these two points (or just
`± ∈ L\E). Except for hanging curves, this is the only case of free attachment that we have
in the context of Sections 26-28 (and we called this Configuration 3).

Another case, that shows up in Sections 14-16, is when E ∩ ∂D± has three points, that
all lie in the same component of E ∩ D±, but this component does not contain ` (either
because `± /∈ E or because it lies in some other component); we called this Configuration
3−. And the last case is when two of the three points of E ∩ ∂D± lie in a same component
of E ∩ ∂D± but this component does not contain `±; we call this Configuration 2 + 1 (when
`± is connected to the third point of E ∩ ∂D±).

When we have a free attachment near `±, we are happier because when we construct
competitors, we don’t need to worry about the sliding condition near `±. Typically, we
select a point z± ∈ E ∩D±, the net γ of curves of E ∩Sr that we construct consists near D±
in two curves γj that start from z±, plus maybe (in Configuration 2 + 1) a curve that leaves
from `± and does not get near the γj. The same thing happens with the Lipschitz curves
Γj that we construct starting from γj. It is often very convenient to have a free attachment,
because for instance if the two curves Γj that end at z± make an angle at z± that is far
from π, we can modify our first main competitor (the set F 1 built in Section 15 or the set
F 0 = ϕ0(E) that shows up above (26.23)), using the same method as when we use the full
length property. That is, we use the fact that the tip of the current competitor coincides
with the cone over the union ρ∗ = ρ∗r of the geodesics with the same endpoints as the γj
and the Γj, to save some area near the tip if the angle α± of the two geodesics ρj that end
at z± if far from flat. With this manipulation, we save about C−1r2(π − α±)2 in area. If
π − α± ≥ 10−2, say, this leads to a very good estimate like the one that we get in (26.30)
or (26.33), which itself leads to a good lower bound on θ′(r) or F ′(r) and later on, when we
try to get a geometric control, excludes r of the list of good radii, again by (19.27). This is
typically what happens in the situation of Theorem 24.2 and Proposition 24.4. In principe
it means that when E is well approximated by a non-flat set of type V, the free attachment
situation will not occur.

In the non centered case of Sections 26-28, we also have to think about the triangular
face T (r). For the moment, when we have a free attachment near `+, we are simply allowed
to detach z+ from L (or T (r)), but we shall see soon that we may also consider that there
is a free attachment near `−, and even we’ll be able to drop T (r) because we can get away
with the sliding condition.
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The goal of this short section is to observe that when E does not contain L ∩ B(0, ρ),
then we can use the estimates that come with the free attachment for all the radii r near ρ,
even if for some of them, `±(r) lies in the same component as the other points of E∩∂D±(r).
We first give a statement for the case when 0 ∈ E∩L, prove the statement, and then discuss
a variant for the non centered case and how this could be applied.

Lemma 29.1. Suppose that 0 ∈ E ∩L and for some ρ > 0, E does not contain L∩B(0, ρ).
Then, for C−1ρ < r ≤ 2ρ, we can do the estimates that lead to differential inequalities of
Sections 17-22 as if we always had free configurations in the description of Section 10. Yet
we need to replace r2h(r) with 9ρ2h(3ρ) in the estimates.

The estimate that we have in mind are (15.46), (16.4), and their variants that were used
in Sections 19-21. These estimates in turn imply some differential inequalities, which we
don’t mention here.

As we will see in the proof, the reason for the replacement of r2h(r) is that we have to
use competitors of E where we modify E near B(0, ρ), hence the error terms get that large.
Here C is any given positive constant given in advance, and it should be noted that the only
price that we pay for taking C large is the fact that the error term 9ρ2h(3ρ) is not necessarily
that small compared to r2.

The main point of the proof will be that when L ∩ B(0, ρ) \ E 6= ∅, we can prepare the
work by finding a first (sliding) competitor F0 of E, in the ball B(0, 3ρ), which is almost as
good as E itself, but for which F0 ∩ L ∩B(0, 2ρ) = ∅. Then we replace E with F0 in all the
proofs above, and get almost the same results, except for the following details. First we lose
a small quantity η > 0 when we replace E with F0, but this does not matter because η will
be as small as we want. But also, and this is the reason for the replacement discussed above,
the competitors that we construct now are only competitors for E in the ball B(0, 3ρ), so
the error terms get a little larger. Oh course when we use the fact that h(r) ≤ Chr

β, this
amounts to multiplying Ch by 9C2+β, which is not too bad.

Let us now prove the main estimate for the lemma. Let ρ be as in the statement, and
also find coordinates of Rn so that Rn ' L× Rn−1 ' R× Rn−1. By assumption, one of the
points of L ∩ B(0, ρ) does not lie in E; let us write this point y = (tρ, 0), with t ∈ [−1, 1].
Let η > 0 be given, as small as we want, and let us construct our competitor F0 so that

(29.1) H2(F0 \ E) ≤ η.

We start with the choice of a very thin tube T , where most of the construction will happen.
For reasons that will be clear soon, we prefer T to be composed of cubes. Let τ > 0
be small, to be chosen later (depending on η), but certainly so small that B(y, 3τ) does
not meet E. Identify L with R and y with tρ ∈ R, and denote by K the set of integers
k ∈ Z such that Ik := [ρ + kτ, ρ + (k + 1)τ ] meets [−2ρ, 2ρ]. Then set I = ∪k∈KIk; thus
[−2ρ, 2ρ] ⊂ I ⊂ (−3ρ, 3ρ). Also write I = [a, b], denote by Q the cube in Rn−1 of side length
τ and centered at 0, set Qk = Ik×Q ⊂ L×Rn−1 ' Rn, and finally set T = I×Q = ∪k∈KQk.

We start with a Lipschitz mapping f0 such that f0(x) = x on Rn \ T , that maps T to
its boundary ∂T , the interval [tρ + τ, b] ⊂ L to the point b ∈ L, and similarly [a, tρ − τ ] to
a ∈ L. This is because we want to respect the sliding boundary condition.
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When n = 3, we can take F0 = f(E), notice that F0 is a (sliding) competitor for E in
B(0, 3ρ) (because the linear interpolation between the identity and f0 gives a one parameter
family of mappings with the desired properties, and that (29.1) holds. More precisely, if we
set W0 =

{
x ∈ E ; f0(x) 6= x

}
, then

(29.2) H2(F0 \ E) ≤ H2(f0(W0)) ≤ H2(∂T ) ≤ Cτρ < η

if τ is small enough. When n > 3, we cannot estimate like this because H2(∂T ) = +∞, and
even though H2(f(E ∩T )) is finite because f0 is Lipschitz, it may be much too large for our
taste. So we shall compose f0 with a Federer-Fleming projection. Write each Qk, k ∈ K, as
a union of 2n−1 cubes Q′j of side length τ/2, and thus write T as a union of smaller cubes Q′j,
j ∈ J . We do this because we want 0 to be a vertex and L to be contained in the 1-skeleton
of T (seen as the union of the Q′j). We add to the Q′j the cubes of the same “dyadic net”
(and the same side length τ/2) that touch the Q′j; we then get a new tube T ′ ⊃ T , twice
thicker and a tiny bit longer, which is a union of cubes Q′j, j ∈ J .

The Federer-Fleming projection will occur in T ′, which means that we shall use the
composition f1 = ϕ ◦ f , where ϕ is a new Lipschitz mapping such that ϕ(x) = x for
x ∈ Rn \ T ′, ϕ(T ′) ⊂ T ′, and even ϕ(Q′j) ⊂ Q′j for j ∈ J ′. This mapping is constructed with
the same standard scheme as in Chapter 3 of [DS3], so we only recall how the construction
goes and the properties of ϕ that will be helpful. We start with the observation that T ′∩f(T )
has a finite (although possibly large) H2 measure. Our mapping ϕ is itself a composition
of elementary Federer-Fleming projections that act on faces of various dimensions. Each
elementary Federer-Fleming projection consists in choosing “centers” xF inside the faces F
of cubes that compose T ′, so that they are not contained in the current image (we start with
f(E), but as the construction goes, we consider the images of that set by the previously
constructed mappings), and we compose with a Lipschitz mapping that coincides on the
current image with the radial projection on F , centered at xF , that maps F \ {xF} to ∂F
and is the identity on ∂F . We proceed independently on all the faces of the same dimension,
but thanks to the fact that we always take the identity on ∂F , we get a global Lipschitz
map. We first do this on the faces of dimension n, then n − 1, and so on, and end with a
projection of the 3-faces on their 2-dimensional boundaries. Each time, we use the fact that
the H2 measure of the image of f(E) by the previous mapping is finite to choose xF outside
of that image, and in fact sufficiently far from that image in average, so that the projection
will never multiply the measure by more than C.

In fact, we only do this on some of the faces of the Q′j. On the n-faces (i.e., the interiors)
of the cubes that compose T , we don’t really need to do this, because we have no piece of
f(E) left there anyway, but it does not hurt either. In the faces that are not contained in
∂T ′, we do the construction as described above, so as to get a 2-dimensional set. But on the
faces that are contained in ∂T ′, we do not do anything, i.e., we keep the identity. This is
important because we take ϕ(x) = x on Rn \ T ′.

Notice that ϕ preserves the cubes, but also the faces. Because of this, it preserves L and
so does f1; thus f1(E) is a sliding competitor for E. We need to estimate H2(f1(E) ∩ T ′) =
H2(f1(E ∩ T ′)). One piece is f1(E ∩ T ), and for this piece we know that we followed the
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construction down to 2-faces. That is, this set is contained in the 2-skeleton of T ′, which has
a H2-measure smaller than Cτ 2(]K) ≤ Cτρ. For f1(E ∩T ′ \T ) = ϕ(E ∩T ′ \T ), we observe
that if we choose the centers cF correctly, its measure is multiplied by at most C, so that

(29.3) H2(ϕ(E ∩ T ′ \ T )) ≤ C
∑
j∈J ′
H2(E ∩Q′j) ≤ C(]K)τ 2 ≤ Cτρ

by the local Ahlfors regularity of E. We may now choose τ so small that

(29.4) H2(F0 \ E) ≤ H2(f1(W0)) ≤ Cτρ ≤ η,

where W0 =
{
x ∈ E ; f0(x) 6= x

}
as above. This proves (29.1). Notice also that W0 ⊂ T ′,

and hence H2(W0) ≤ Cτ 2(]K) ≤ Cτρ by the same argument as above, using the the local
Ahlfors regularity of E.

The reader may be worried, because the set F0 that we just constructed is no longer almost
minimal. So we don’t want to use estimates that would rely on the almost minimality of
F0. The natural solution would be to adapt the construction to F0, but this is not what we
will do. Instead, we just compute brutally with our initial set E, construct “competitors”
F i = ϕi(E) with the free attachment if needed, and estimateH2(F i). Now the F i are perhaps
not competitors, because using the free attachment may violate the boundary condition that
ϕi(E∩L) ⊂ L, so we are not allowed to compare F i with E directly. There is no such problem
with F0, because F0 ∩ L = ∅ on B(0, 3ρ) where ϕi moves points, and so ϕi(F0) is really a
competitor for E (but in the larger ball B(0, 3ρ)). Now we use the fact that ϕi is Lipschitz,
and let τ and η tend to 0 in the estimate above. Observe that then H2(F0 ∩ B(0, 3ρ)) and
H2(ϕi(F0∩B(0, 3ρ))) tend to H2(E∩B(0, 3ρ)) and H2(ϕi(E∩B(0, 3ρ))), so that we get the
desired estimates on E by applying the almost minimality of E to the competitor ϕi(F0),
and then taking a limit. Lemma 29.1 follows.

Let us now state the variant of Lemma 29.1 for balls centered on E \ L.

Lemma 29.2. Suppose that 0 ∈ E \L and for some ρ > 0, E does not contain L∩B(0, ρ).
Then, for C−1ρ < r ≤ 2ρ, we can do the estimates that lead to differential inequalities of
Sections 26-28 as if we always had free configurations in the description of Section 10. In
particular, we don’t need T (r) and we may drop H2(T (r)) from the estimates. Yet we need
to replace r2h(r) with 9ρ2h(3ρ) in the estimates.

This sounds a little bit like winning the jackpot, but of course what this means is that
in most situations, E contains L ∩ B(0, ρ). The proof is the same. First we construct a
competitor F0 for E in B(0, 3ρ), such that (29.1) holds, and which no longer meets L ∩
B(0, 2ρ). The proof goes as before (we never used the fact that L contains 0), and then
we can end the argument as above. As was suggested earlier, not only we can use the free
attachment for the estimates, but since we no longer have to enforce the sliding condition
for our competitors, we don’t need to add the triangular piece T (r) either. The lemma
follows.
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Let us just give an example of how we may use the Lemmas. Suppose that 0 ∈ E, h(R)
is small enough, and that in addition E is quite close to a generic set X ∈ V, such that
the half planes that compose X make an angle smaller than π − 10−2, say. We may either
assume that 0 ∈ L as in the early sections, or that 0 ∈ E \ L and R−1 dist(0, L) is small
enough. Then L∩B(0, R/2)\B(0, 10−2R) is contained in E. Indeed otherwise we may apply
Lemma 29.1 or Lemma 29.1, find that we can apply the free attachment construction for all
the nearby radii r, get a very good estimate for such r that imples that θ′(r) ≥ C−1r−1 or
F ′(r) ≥ C−1r−1, and get a contradiction with the fact that, when E lies close enough to a V
set, θ or F is nearly constant in the range under consideration. In fact, we can also iterate
this argument (apply it to R/2, R/4, and so on) and get that L ∩ B(0, R/2) ⊂ E. We will
detail the argument during the proof of Lemma 32.4, mostly as an example of how it may
go and to give a flavor of why we get estimates like θ′(r) ≥ C−1r−1.

We may even apply the same argument to the case when E is very close to a half plane
in B(0, R), and get the same conclusion that L∩B(0, R/2) ⊂ E. This time, when we apply
Lemma 29.1 or 29.2, instead of a standard free attachment, we immediately get a hanging
curve near `±, which also gives a bound on θ′(r) or F ′(r) that is incompatible with the
fact that θ or F is nearly constant. We shall also sketch a more direct argument, when we
discuss the proof of (31.9), and we will find the proofs of Lemmas 29.1 and 29.2 convenient
in Section 37, when we check the full length property in some special cases.

30 Geometric estimates follow from the decay of F

The decay of F that we got in Sections 27 and 28 is not so much good in itself, but it will
allow us to control the geometry of E. In this section we prove two main statements to this
effect, corresponding to the densities θ0 = π and θ0 = 3π

2
of Theorems 24.1 and 24.2.

We start with a statement in the simpler case of Theorem 24.1, with an approximation
by half planes, where we will see that under the assumptions of Theorem 24.1, we also have
a good control (with decay) on the approximation numbers βH(r), in the interesting region
where r ≥ d0. We give the statement first, and then comment.

Theorem 30.1. There exist constants ε3 > 0 and C6 ≥ 1, that depend only on n and
β ∈ (0, 1], such that the following holds. Let E be a reduced sliding almost minimal set in
B(0, 400R), with a boundary condition coming from the line L, and a gauge function h such
that

(30.1) h(r) ≤ Chr
β for 0 < r ≤ 400R,

for some Ch such that ChR
β ≤ ε3. Suppose that 0 ∈ E and 0 < d0 = dist(0, L) ≤ R/2.

Then

(30.2) d0,R(E,H0) ≤ C6

[
[F (200R)− π] + ChR

β
]1/4

where F is defined by (23.6) and H0 denotes the half plane bounded by L that contains the
origin.
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Notice the analogy with Theorem 19.1, but here the center is off L. Of course this is only
useful when the right-hand side of (30.2) is small, so that in particular the density excess
F (200R) − π is small. Here π is the smallest value that limt→0 F (t) could possibly take
(because 0 ∈ E \ L); this is also why we do not need to put in the assumption that 0 is a
point of density π.

We required that d0 ≤ R/2, but we do not feel bad about this; for R < d0, there is no
sliding condition in B(0, R), so we may still show E is very well approximated by planes in
B(0, R), using the regularity theorems for plain almost minimizers. This is just a different
story. Notice however that if 200R < d0, the other assumptions of the theorem allow E to
coincide with any plane in B(0, R), not just the ones that nearly contain L.

The point of this estimate is not to give some rough control on d0,R(E,H0) (we will see
something like this as soon as (30.13)), but to use this rough control to get much better
estimates that depend only on the density excess and h. Since we proved earlier that this
excess tends to decay like a power, this will give a good decay for geometric quantities as
well.

Remark 30.2. We can prove an even better control when the gauge function is even smaller
than Chr

β. Set

(30.3) J(R) =

ˆ 2R

0

h(t)dt

t
and J+(R) =

∑
k≥0 ; 10−kR≥d0

J(10−kR)1/2.

We shall also prove that, under the assumptions of Theorem 30.1, we have the estimate

(30.4) d0,R(E,H0) ≤ C6[F (200R)− π]1/4 + C6J(200R)1/4 + C6J+(200R)1/2.

Notice that this is better than (30.2), because J(R) ≤ CChR
β and J+(R) ≤ CC

1/2
h Rβ/2

when (30.1) holds. The strange definition of J+(R) reflects some of the trouble we will have
with the proof, where we will need to fetch information at the scale d0 (to get the relative
position of H0, L, and 0) and return to the possibly much larger scale R.

We can use Theorem 30.1 to prove the regularity of E when it satisfies the assumptions of
Theorem 24.1. Indeed, that theorem gives us good estimates on the density excess F (200R)−
π, even with some decay, and Theorem 30.1 then says that E is close to H0 in all the balls
B(0, R), R ≥ 2d0. We can even get a good control in smaller balls B(0, R), R < d0, by first
applying the result to R = 2d0 to show that E is close to a plane (the plane that contains
H0) in B(0, d0/2), and then applying the regularity results for plain almost minimal sets
(with no sliding boundary) in smaller balls; we get additional decay there. The consequence
is that we get a very good C1 description of E near 0. See Section 31 for more details.

Yet Theorem 30.1 and the proof of regularity sketched above are not really needed to
control of E in balls that are not centered on E (first via the decay the functional F , and
then through the geometric control that follows), because we may get the desired regularity
result otherwise. When E satisfies the assumptions of Theorem 24.1 in the large ball B(0, R),
R > 103d0, say, it turns out that every point of L∩B(0, d0) lies in E (and has density π/2).
This is proved in [D8]. Then we may also apply the simpler decay results for balls B(x, r)
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centered on E ∩L (see for instance Corollary 22.1), and get the same geometric information
in these balls B(x, r), r ≥ 2d0, as given by Theorem 30.1. This is fortunate, because this
proof of regularity will help us simplify our proof of Theorem 30.1 itself. We will return to
this in due time.

Yet the fact that we can find enough points in E∩L with the right density is quite lucky,
it seems, and if we could not find these points in E ∩L∩B(0, 2d0), we would not be able to
apply Corollary 22.1 to them!

We will have a second statement (Theorem 30.3) similar to Theorem 30.1, but with points
of density 3π

2
and where we approximate E by truncated Y-sets. There the story will be

different: it seems that we cannot easily get the regularity results of Sections 32-34 without
actually applying Theorem 30.3 to some points of type Y in E \ L.

The proof of Theorem 30.1 will be rather long and complicated, and to save some energy
we will group it with the proof of the upcoming Theorem 30.3.

We shall use the following notation concerning truncated sets of type Y. First denote by
Y(L, r) the set of cones Y of type Y that are centered at the origin, and for which L∩B(0, r)
is contained in a face of Y . For Y ∈ Y(L, r), we set Y t = Y \ S, where S still denotes the
shade of L seen from 0, but in fact we are only interested in Y t ∩ B(0, r), where Y t truly
looks like a truncated cone of type Y, but not necessarily with a straight truncation parallel
to the spine of Y . Notice that Y t ∩ Sr is a net of geodesics like the ones that we studied in
Section 28, with two large arcs of great circles (in fact, half circles) and two small tips that
connect to the points of L ∩ Sr (and may be reduced to one point `±).

Theorem 30.3. There exist constants ε3 > 0 and C6 ≥ 1, that depend only on n and
β ∈ (0, 1], such that the following holds. Let E be a reduced sliding almost minimal set in
B(0, 400R), with a boundary condition coming from L, and a gauge function h such that

(30.5) h(r) ≤ Chr
β for 0 < r ≤ 400R,

for some Ch such that ChR
β ≤ ε3. Suppose that 0 ∈ E, with F (0) = 3π

2
, and 0 < d0 :=

dist(0, L) ≤ R/2. Then we can find a cone Y ∈ Y(L,R) such that

(30.6) d0,R(E, Y t) ≤ C6

[
[F (200R)− 3π

2
] + ChR

β
]1/4

,

where F is defined by (23.6) and Y t is as above the statement.

In fact, under the assumptions of the theorem, we also get that

(30.7) d0,R(E, Y t) ≤ C6[F (200R)− 3π

2
]1/4 + C6J(200R)1/4 + C6J+(200R)1/2,

with J and J+ as in (30.3).
As before, we restrict to R ≥ 2d0 because for r << d0 we would get a set of type Y,

but unless we can apply Theorem 30.3 to a radius R > 2d0, we cannot really say how it is
oriented. Notice however that the approximation in (30.6) or (30.7) is valid on the whole
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ball B(0, R). The proof will even give some uniform approximation in all the smaller balls,
even leading to the existence to a tangent Y -set that lies close to Y t. See Remark 30.8 and
Sections 32-34.

Remark 30.4. There is more in this statement that one may have expected. The most
important assumption is that the modified density excess F (200R)− 3π

2
is very small, which

implies that F ′(r) is often small for r < 200R. Yet, for instance, it could a priori happen
that F ′(r) is very small for some r >> d0, but E looks a lot like a plane, or a flat set of
type V, in B(0, r). So we will need to exclude these cases from the discussion, by comparing
all the different scales between d0 and r, and then using the fact that the density at 0 is
F (0) = 3π

2
.

We intend to prove Theorems 30.1 and 30.3 together, because there are many common
points. The proof will be quite long, even though we shall rely on some of the computations
and estimates that we did for Theorem 19.1, so we’ll try to cut the proof into steps, often
coming with their own tiny introduction.

One of the features of the proof is that we’ll have to go up and down between scales,
and most of our estimates will be obtained by constructing a competitor for E at some
intermediate scale d0 ≤ r ≤ R, typically as in the proof of the decay estimate for F . This
time the point of the computation is that if the geometry is not almost perfect, then we can
find a better competitor, which implies that the derivative of F for the corresponding radii
is not too small, and in principle this does not happen much when F almost has the minimal
value.

Step 1. We make sure that we can apply the construction of Sections 26-28.
We start the proof with a small reduction, that will allow us to apply the construction

and estimates of Sections 26-28, to all radii roughly between 2d0 and 180R. For this we apply
the near monotonicity of F and our implicit assumption that F essentially keeps its minimal
value, to get a rough control of the geometry. Since we want to unify some estimates, it will
be convenient to set

(30.8)

 θ0 = π when E and R are as in Theorem 30.1,

θ0 =
3π

2
when they are as in Theorem 30.3,

and then

(30.9) f(r) = F (r)− θ0 for 0 < r < 400R.

Let ε4 > 0 be very small, to be chosen later. We may assume that

(30.10) f(200R) +

ˆ 400R

0

h(t)dt

t
= f(200R) + J(200R) ≤ ε4,

because otherwise (30.4) or (30.7) holds trivially. This is the same justification as for (19.8).
Then by (23.11), we also get that for 0 < r ≤ 200R,

(30.11) F (r) ≤ exp
(
α

ˆ 400R

0

h(t)dt

t

)
F (200R) ≤ eαε4F (200R) ≤ eαε4(θ0 + ε4) ≤ θ0 + Cε4
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by (23.10) and (30.10). We claim that

(30.12) θ0 = lim
r→0

F (r) = lim
r→0

θ(r).

In the case of Theorem 30.3, this is our assumption that F (0) = 3π
2

, plus the fact that
F (r) = θ(r) for r < d0. In the case of Theorem 30.1, we know that limr→0 θ(r) exists
because θ is almost monotone, and is the density of any blow-up limit of E at 0. Recall
also that E is reduced and contains 0, so these blow-up limits are nontrivial minimal cones.
But the only minimal cones of density smaller than 3π/2 are the planes; now (30.12) follows
from (30.11) if ε4 is small enough.

Next we show that E is as close as we want to a set of constant density. Let τ > 0 be
small. We start with the case of Theorem 30.1, and show that

(30.13) d0,r(E,H0) ≤ τ for 2d0 ≤ r ≤ 180R.

For this we apply Lemma 23.3 to E, the radius r1 = 21r
20

, and the large radius 200R > r1 (to
play the role of R in the lemma). The initial assumptions (23.7) and (23.10) are satisfied
(by (30.1) in particular), the constraint (23.15) too, because r ≥ 2d0, we just checked that
θ0 = π, and (23.17) holds by (30.11), because r1 < 200R, and if ε4 is small enough. Here we
are only interested in the first conclusion, which is that d

0,
20r1
21

(E,H0) ≤ τ . This is precisely

(30.13). Let us set X(r) = H0 in the present case, so as to unify the notation with the next
one.

In the case of Theorem 30.3, we claim that there is a constant δ > 0, that depends on τ ,
such that if ε4 is small enough, then for

(30.14) δ−1d0 ≤ r ≤ 180R,

we can find a cone X(r) ∈ V ∪ P0 such that

(30.15) d0,r(E,X(r)) ≤ τ.

This is the same argument, but we replace Lemma 23.3 with Lemma 25.2. This forces us to
restrict to radii r such that (30.14) holds (as in (25.23)), and we need to take δ ≤ δ(τ); the
rest is the same.

These approximation properties will be useful (see below), but they are not what we
want eventually. First, they come from compactness arguments and are far from being
precise enough. That is, τ is fixed and we are interested in the cases when the right-hand
sides of (30.2) and (30.6) (or their even smaller variants) tend to 0. Also, in the case of
(30.15), we want to prove that X(r) is a nearly sharp set of type V, or a truncated cone
of type Y, which is more precise than our description of X(r). Of course, when r is much
larger than d0, a truncated cone of type Y (centered at 0) looks a lot like a sharp set of type
V at the scale r.
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When r is not much larger than d0, we can deduce the existence of an approximating
truncated set from Lemma 25.3. That is, for any δ1 ∈ (0, 1), we claim that if ε4 is small
enough (depending in particular on δ1 and τ), then for

(30.16) 2d0 ≤ r ≤ min
(d0

δ1

, 180R
)

we can find a minimal cone Y ∈ Y(0, 21r
20

) such that

(30.17) d0,r(E, Y
t) ≤ τ,

where Y t = Y \ S is the corresponding truncated cone. Just apply Lemma 25.3, with the
same r, the large radius 180R, and ε = τ .

Again this will be useful. It is closer in spirit to our goal, but we’ll have to extend it to
larger radii, and also get much smaller bounds than τ .

Return to the cone X(r) of (30.13) or (30.15). We now claim that we can perform
all the construction of Sections 26-28, which is good enough to prove the two differential
inequalities (24.13) and (24.18), and then Theorems 24.1 and 24.2. For all these estimates
to hold for (almost every) given r, we need to be able to find R′ such that (24.1), (23.1),
(23.2) hold (as usual, but for that R′, which we could for instance take equal to 240R), but
also 2d0 ≤ r ≤ R′/2 when θ0 = π and Nd0 ≤ r ≤ R′/2 otherwise, as in (24.10) and (24.15)
or (26.3) or (26.4). The main assumptions, though, are that Chr

β and f(r) be small enough,
which follow from our assumption that ChR

β ≤ ε3 and (30.11), and that E be close enough
to a minimal cone of type H,P0, or V (see (24.4), (24.8), (24.12), (24.17), or (26.2)). This
last follows from (30.15), and the reader should not worry about the constants depending
on X(r), as we can always choose it from a fixed finite family. So we’ll remember that the
construction of Sections 26-28 works well, provided that

(30.18) 2d0 ≤ r ≤ 180R when θ0 = π, and Nd0 ≤ r ≤ 180R otherwise.

Also recall, if you are worried about δ, that we can take N somewhat larger than δ. This
completes this first step of preparation. Next we follow for some time the argument given in
Sections 19-21.

Step 2. We approximate E in spheres Sr, by some nets of geodesics. We try to
estimate E on the annulus

(30.19) A0 = B(0, 90R) \B(0, 10−1R),

and we first proceed independently on most spheres Sr. We assume that

(30.20) 90R ≥ Nd0 ;

otherwise, some parts of the construction will be slightly different but simpler, but we shall
discuss this in Steps 8 and 9.
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We use our first step and (30.20) to select, as in (19.21)-(19.23), a set R of full measure
in (10−1R, 90R) such that we can apply the construction of competitors of Sections 26-28 to
any r ∈ R, based on the approximation by the set X(R) ∈ H∪V∪P0 that we got in (30.13)
or (30.15). This yields different nets of curves on the sphere, and in particular the initial net
γ∗ = γ∗r ⊂ E ∩ Sr, and a net of geodesics ρ∗ = ρ∗r.

We also introduce a function j, defined as in (19.24) by

j(r) = rf ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)

ˆ r

0

h(2t)dt

t

= rF ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)

ˆ r

0

h(2t)dt

t
,(30.21)

where the density excess f is defined by (30.8) and (30.9). As before, the cosmetic addition
of the terms with αn is done so that

(30.22) j(r) ≥ (rθ′(r))+ + f(r)+ + h(2r) +

ˆ r

0

h(2t)dt

t
for r ∈ R,

as in (19.27). We will prefer to work with the radii r ∈ R such that j(r) is rather small, and
j(r) will control various geometric quantities.

We start with the estimate (19.28) in Lemma 19.4, which says that

(30.23) H1(E ∩ Sr \ γ∗r ) ≤ Cj(r),

where γ∗r ⊂ E ∩ Sr is our first net of curves; see below (19.35). The proof can be repeated
here; it consists in checking that the various differences of lengths ∆j(r) that show up in
the estimates are dominated by j(r) (or else we are in one of the exceptional cases and then
j(r) ≥ f ′(r) was large in the first place).

Next we check that ρ∗r approximates γ∗r well, in the sense that

(30.24) d0,2r(ρ
∗
r, γ
∗
r ) ≤ Cj(r).

The proof is the same as for Lemma 19.4 in Section 19; we prefer not to define a cone Z(r)
yet, because the fact that 0 /∈ L complicates the geometry, but Lemma 19.4 concerns only
Z(r) ∩ Sr = ρ∗r anyway. In fact, there is a small lie here: in the special case where we have
a free attachment near `±, ρ∗r has an additional, isolated point `±, which we remove from
ρ∗r before we check (30.24). That is, ρ∗ = ρ∗r should be replaced in (30.24) with ρ′, obtained
from ρ∗ by removing the points `± with a free attachment. See the discussion that leads to
(19.50). Also, it will turn out (later in the argument below, and independently) that there
is no free attachment when j(r) is small, so the issue does not arise after all.

During the proof of Lemma 19.4, one also shows that j(r) controls various geometric
quantities that show up in the construction of competitors, such as ∆0(r),∆1(r),∆2(r) in
(19.35)-(19.37). In particular, (19.42) (still valid here with the same proof) says that

(30.25) ∆0(r) + ∆1(r) + ∆2(r) ≤ 106rj(r) for r ∈ R.
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It is also proved that some configurations, such as hanging curves of free attachments when
E is close to a half plane or a non-flat set of type V, are impossible when j(r) is small; we
will return to this issue, but see the discussion below (19.46).

Step 3. We control the variations of the main part of ρ∗r. Recall that our nets
of curves, and in particular the ρ∗r, are initially constructed with the model X(R). When
θ0 = π, X(R) ∈ H(L) and ρ∗r is composed of two main geodesics, which we shall call ρ1,+

and ρ1,−, and which go from a midpoint w1 near X(R) to `+ and `−. We can exclude free
attachments here, at least if we restrict to r such that j(r) is small, because they correspond
to hanging curves.

When θ0 = 3π
2

, X(R) ∈ V∪ P0 and ρ = ρ∗r is composed of four main geodesics, which we
shall call ρj,±, plus maybe some additional short geodesics ρ±, depending on which type of
attachment. For the moment, let us not discuss attachment, and concentrate on the large
ρj,± = ρj,±,r.

We want to show that the ρj,±,r vary slowly with r (both when θ0 = π and when θ0 = 3π
2

).
We proceed as in Section 20, isolate any of the two or four ρj,±,r, construct vertical curves
on E, near the middle of the corresponding interval I = Ij,± of X(R) (where E is actually
a nice C1 graph), and use the co-area formula to control the variation of angles along these
curves. This starts with Lemmas 20.1 and 20.2, which we can keep as they are. In the mean
time, we prove the inequality (20.22), which says that (since we no longer normalize R away
any more)

(30.26) R−1

ˆ
r∈(10−1R,90R)

j(r) ≤ CE , with E = f(90R) +

ˆ 180R

0

h(r)
dr

r
;

this will be useful, because then there are lots of r ∈ R such that j(r) is small. We use the
Lemmas to prove an easier version of Lemma 20.3, i.e., the fact that for r, s ∈ R,

(30.27) dH(r−1ρ̂j,±,r, s
−1ρ̂j,±,s) ≤ Cj(r)1/2 + Cj(s)1/2 + CE1/2,

where dH denotes the standard Hausdorff distance on the unit sphere (we could also have
used d0,2), ρ̂j,±,r denotes the full great circle that contains ρj,±,r, and similarly for ρ̂j,±,s.
That is, for the moment we do not want to control the place where these geodesics stop,
but just their position near I; this way we can use (20.41), and skip the slightly unpleasant
discussion below (20.41), about guessing where the geodesics meet, and what happens near
`±.

Let us also observe, as in (19.46), that j(r) also controls some geometric information on
ρ∗r relative to its near minimality. We claim that if vj,±,r denotes the unit tangent vector at
mi of ρj,±,r (going in the direction of z± or `±), then

(30.28) |vj,+,r + vj,−,r| ≤ Cj(r)1/2.

In other words, the two main geodesics that leave from mj are almost aligned. The reason is
the same as for (19.46): if not, we can modify our construction of competitors a little near
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its tip (where the competitor is a cone near the direction of mj), to make the angle flatter
and the measure a tiny bit smaller. Because of this, (20.37) is really an information on the
the pairs of geodesics ending at a same point mi, or the sets ρ̂j,+,r ∪ ρ̂j,−,r. Anyway, we shall
some times find it more convenient to forget some information and just remember that by
(30.27)

(30.29) dH(r−1ρ̂r, s
−1ρ̂s) ≤ Cj(r)1/2 + Cj(s)1/2 + CE1/2,

where ρ̂r is the union of the (two or four) pieces ρ̂j,±,r, and similarly for ρ̂s.

Step 4. We fetch information from the scale d0. In Section 20, we used a sharper
version of (30.27) directly to control E near the Sr; let us not try to do this yet, and consider
the variations of the ρj,±,r across smaller annuli

(30.30) Ak = B(0, 90Rk) \B(0, 10−1Rk), with Rk = 10−kR.

Recall from (30.11) that f(r) ≤ Cε4 for 0 < r ≤ 200R. So f(Rk) is as small as we want,
but we shall restrict to k such that 90Rk ≥ Nd0 (or just to 90Rk ≥ 2d0 when θ0 = π), as in
(30.20), because this way we can find a nice approximating set Xk = X(Rk) as in (30.13) or
(30.15) and do the same construction as above for R = R0. So let e denote the largest value
of k for which 90Rk > Nd0 (think, e like “end”, but the truth is that not so many letters
were left); thus

(30.31) Nd0 ≤ 90Re ≤ 10Nd0.

When 90R < 10Nd0, let us still take e = 0 and not worry if some of our statements below
are slightly wrong. We shall return to this case in the last steps and only small adaptations
will be needed, because E includes a control on radii r ∈ [10R, 100R] which is more than
enough.

For 0 ≤ k ≤ e, we define a set Rk of full measure in (10−1Rk, 90Rk) with the same
properties as before (namely, we can do the construction of competitors as in Sections 26-
28) and, for r ∈ Rk, define the number j(r) as in (30.21). Then construct the nets γ∗r and
ρ∗r. We also get the same estimates as above, but the small quantity E needs to be replaced
by

(30.32) Ek = f(90Rk) +

ˆ 180Rk

0

h(r)
dr

r
.

Then we select for each k a radius rk ∈ Rk ∩ [Rk, 2Rk], so that

(30.33) j(rk) ≤ 10R−1
k

ˆ
Rk

j(r)dr ≤ CEk,

where the second inequality comes from (20.22).
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When we choose rk+1, the reference cone Xk+1 = X(Rk+1) may be a little different than
Xk; yet we claim that the proof of (30.29) also yields

(30.34) dH(r−1
k ρ̂rk , r

−1
k+1ρ̂rk+1

) ≤ Cj(rk)
1/2 + Cj(rk+1)1/2 + CE1/2

k ≤ C(Ek + Ek+1)1/2,

where ρ̂rk+1
is defined in terms of Xk+1, or else

(30.35) θ0 =
3π

2
and γ∗rk+1

has a free attachment

(that is, for at least one of the points `± and one of the choices of Xk or Xk+1). Indeed,
when our curves are attached to the points `± in the usual (non free) way, the algorithm
for choosing our nets of curves is the same, i.e., does not depend on our choice of Xk or
Xk+1, and the variation of ρ̂rk+1

is just the same as when we pick a different net γ∗ to start
with; this matters no more than it did above. And we have seen earlier that there is no
free attachment when θ0 = π and j(r) is small enough, because this would mean a hanging
curve. Hence the claim.

Notice that when (30.35) happens, say, with a free attachment at the point z+, the proof
of (30.28) also shows that (θ0 = 3π

2
and)

(30.36) |v1 + v2| ≤ Cj(rk+1)1/2,

where vj is the direction at z+ of the geodesic ρ(z+,mj). Since we also have (30.28) at the
two vertices mj, we see that

(30.37) the whole r−1
k+1ρ̂rk+1

is Cj(rk+1)1/2-close to a great circle.

Anyway, let us return to (30.34); observe that if 0 ≤ k1 < k2 ≤ e, and if (30.35) fails for
k1 ≤ k ≤ k2, then we may sum (30.34) and get that

(30.38) dH(r−1
k1
ρ̂rk1 , r

−1
k2
ρ̂rk2 ) ≤ C

∑
k1≤k≤k2

E1/2
k ≤ CFk1 ,

where we set

(30.39) Fk1 =
∑

k1≤k≤e

E1/2
k .

We will estimate the Fk more precisely in the next step, but let us start with some basic
decay. Recall that we chose our constants (such as ε4) so that we can apply the differential
inequality (24.13) and (24.18), and then even Theorem 24.1 or 24.2 (depending on θ0). When
θ0 = 3π

2
, we get that

f(90Rk) = F (90Rk)−
2π

3
≤ (CV 10−k)af(90R) + CVCh10−kaRβ

≤ C10−kaε4 + CCh10−kaRβ ≤ C10−kaε4 + C10−kaε3,(30.40)
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by Theorem 24.2, (30.11), and our fortunate assumption in Theorems 30.1 and 30.3 that
ChR

β ≤ ε3. When θ0 = π, we get an even better result. Since

(30.41)

ˆ 180Rk

0

h(r)
dr

r
≤ CCh10−βRβ ≤ C10−kβε3

by the same assumption, we see that Ek ≤ C10−ka(ε4 + ε3) and, summing over l ≥ k,

(30.42) Fk ≤ C10−ka/2(ε3 + ε4)1/2.

Thus, under the assumptions of (30.38),

(30.43) dH(r−1
k1
ρ̂rk1 , r

−1
k2
ρ̂rk2 ) ≤ C10−k1a/2(ε3 + ε4)1/2.

This is as small as we want, even for k1 small.
We are finally ready to use the small scale and prove that, in the case when θ0 = 3π

2
,

our approximating cone Xk = X(rk) is never flat. For this, we shall first use Lemma 25.3 to
show that E is also close to a truncated cone of type Y in B(0, Re).

Let τ3 > 0 be small, and apply Lemma 25.3, with r = Re, R = 2Re, and ε = τ3. If ε3

and ε4 are small enough, the assumptions (23.1) and (23.2) with (24.6) hold by (30.10), and
(25.21) follows from (30.11) and our assumption that ChR

β ≤ ε3. Then we need to check
(25.26), but since we have (30.31), this is true as soon as we take N large enough, depending
on δ, so that δ(τ3)Re ≤ 20d0/21. So Lemma 25.3 applies, and gives E0, a truncated cone of
type Y centered at 0, such that

(30.44) d0,Re(E,E0) ≤ τ3.

Recall that the approximating cone Xe = X(re) was also such that d0,Re(E,Re) ≤ τ , by
(30.15). Since E0 has its two big faces that make a 2π

3
angle, and τ + τ3 is as small as we

want, we deduce from (30.44) that Xe is of type V (not P0), and that its two faces make an
angle α(Xe) which is at most 2π

3
+ 10−3.

By (30.31) and if N is large enough, Re is quite large compared to d0, and then r−1
e ρ̂re is

very close to the union of two great circles (we knew this already, because of (30.28)), and
that make an angle αe ∈ [2π

3
− 2 · 10−3, 2π

3
+ 2 · 10−3]. Now we prove by backwards induction

that for k ≤ e, r−1
k ρ̂rk is very close to a union of two great circles (as usual), and that make

an angle

(30.45) αk ∈ [
2π

3
− 10−2,

2π

3
+ 10−2].

Indeed, as long as the free attachment event (30.35) does not happen for k + 1, we have
(30.43) with k1 = k and k2 = e, and then αk is in the right range. But (30.35) never happens
unless r−1

k+1ρ̂rk+1
gets flat as in (30.37); this completes our induction. Hence (30.45) holds for

all k, (30.43) holds for 0 ≤ k1 < k2 ≤ e, (30.37) never happens, and (by the proof of (30.37)),
there is no free attachment associated to any of the Rk. This will simplify the discussion a
little.
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Step 5. We estimate the Ek. We use two auxiliary sequences {aj} and {bj} to estimate
the Ek. Let T be a large integer, to be chosen soon, and set

(30.46) aj = f(90RjT ) and bj =

ˆ 180RjT

0

h(r)
dr

r
= J(90RjT ),

where we use the notation of (30.3), and which we define only when 0 ≤ jT ≤ e. We want

to estimate
∑

j a
1/2
j in terms of a

1/2
0 and

∑
j b

1/2
j . So we apply the proof of Theorem 24.2 or

24.1 (depending on the value of θ0), where we integrate the differential inequality (24.13) or
(24.18), between the radii r1 = 90RjT and r2 = 90R(j−1)T . We get that

aj = f(90RjT ) ≤ C110−aTf(90R(j−1)T ) + C2

ˆ 180R(j−1)T

0

h(r)
dr

r

= C110−aTaj−1 + C2bj−1.(30.47)

where we don’t care if C2 depends on T . We choose T , depending on C1, so large that
C110−aT ≤ 1/4; then (30.47) yields aj ≤ aj−1/4 + C2bj−1. Then we take square roots,
iterate, and get that

a
1/2
j ≤ 1

2
a

1/2
j−1 + Cb

1/2
j−1

≤ 1

4
a

1/2
j−2 + Cb

1/2
j−1 +

C

2
b

1/2
j−2(30.48)

≤ 1

8
a

1/2
j−3 +

2C

2
b

1/2
j−1 +

2C

4
b

1/2
j−2 +

2C

8
b

1/2
j−3 ,

and so on. Eventually

(30.49) a
1/2
j ≤ 2−ja

1/2
0 + 2C

∑
0≤l≤j

2j−lb
1/2
l .

Then for k ≤ e, we let j be the integer such that jT ≤ k < (j + 1)T , and

E1/2
k ≤

(
f(90Rk) +

ˆ 180Rk

0

h(r)
dr

r

)1/2

≤ (2aj + bj)
1/2 ≤ 2a

1/2
j + b

1/2
j

≤ 21−ja
1/2
0 + b

1/2
j + 4C

∑
0≤l≤j

2l−jb
1/2
l(30.50)

by the near monotonicity of f and (30.49). Now we sum over k ≥ m to get an estimate

for Fm =
∑

k≤m E
1/2
k . Each estimate (30.50) is used less than T times, and becomes a

sum over indices j ≥ m/T − 1. The first term yields C2−m/Ta
1/2
0 . The second term yields

C
∑

j≥m/T−1 b
1/2
j . For the last term, b

1/2
l is multiplied by C

∑
2l−j, where we sum over

j ≥ l such that j ≥ m/T − 1. When l ≤ m/T , we get a geometric series that starts near
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j ≥ m/T − 1, with a sum less than C2l−m/T . For l ≥ m/T , we get a full sum bounded by
C, but anyway the contribution is similar to that of the second term. That is,

(30.51) Fm ≤ C2−m/Ta
1/2
0 + C

∑
0≤l≤m/T

2l−m/T b
1/2
l + C

∑
l>m/T

b
1/2
l ≤ Ca

1/2
0 + C

∑
l≥0

b
1/2
l .

We translate back into integrals, and get that

Fm ≤ F0 ≤ Cf(90R)1/2 + C
∑
k≥0

( ˆ 2−k·180R

0

h(r)
dr

r

)1/2

= Cf(90R)1/2 + C
∑
k≥0

J(2−k · 90R)1/2 ≤ Cf(90R)1/2 + CJ+(90R)(30.52)

by (30.3), and where for the last inequality we observe that we only (defined and) used the
bj when jT ≤ e, hence when 90RjT ≥ 90Re ≥ Nd0, by (30.31); so the restriction in the
definition of J+ in (30.3) is respected.

Step 6. We show that most ρ∗r lie close to a single truncated cone. We are now
ready to check that when θ0 = π, most of our nets ρ∗r lie close to the half plane H0 that
contains 0 and L, and when θ0 = 3π

2
they lie close to some truncated set of type Y that we

will choose. We start with the easier first case.

Lemma 30.5. When θ0 = π,

(30.53) dist(z,H0) ≤ CreE1/2
e for z ∈ ρ∗re ,

and then, for 0 ≤ k ≤ e,

(30.54) dist(z,H0) ≤ CrkF0 for z ∈ ρ∗rk .

First consider r = re, and recall that there is no free attachment. Thus the two arcs of
geodesics that compose ρ∗r are the ρ± = ρ(`±,m1), where the `± are the points of L∩Sr. We
are going to use the flatness property (30.28) to estimate how far ρ± goes from the plane P0

that contains 0 and L. Let us compute in the 3-space that contains P0 and m1 (and hence
also the `±), assume for the sake of the computation that r = 1, and choose coordinates
where P0 =

{
z = 0

}
, L =

{
(t,−d0, 0) ; t ∈ R

}
, `± = (±

√
1− d2

0,−d0, 0), and m1 = (0, a, b),
with b ≥ 0, and where we used the possibility to take w at equal distance from `− and `+

to simplify the computation. The advantage of working with re is that with the present
normalization, (30.31) says that d0 ≥ (10N)−1 is bounded from below; then it is also easy
to see (because E is close to a half plane that contains 0) that b is small and a > 0.

We are interested in the unit tangent vector v± to ρ± at m1, that points away from m1.
It must lie in the vector plane that contains m1 and `±, and be orthogonal to m1, hence be
proportional to

(30.55)
ξ± = `± − 〈`±,m1〉m1 = `± + d0am1

= (±
√

1− d2
0,−d0 + d0a

2, d0ab) = (±
√

1− d2
0,−d0b

2, d0ab).
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The square of the norm is n2 = 1− d2
0 + d2

0b
2(b2 + a2) = 1− d2

0(1− b2) = 1− d2
0a

2, which is
the same for both signs, and close to 1 (because d0 ≤ N−1). Then

(30.56) v+ + v− = n−1(ξ+ + ξ−) = 2n−1d0b(0, b, a),

whose norm is 2n−1d0b ≥ d0b. Whence, by (30.28) and forgetting about our last normaliza-
tion re = 1,

(30.57) dist(z, P0) ≤ bre ≤ Crej(re)
1/2 ≤ CreE1/2

e for z ∈ ρ∗re ,

by (30.33). And then, by (30.38),

(30.58) dist(z, P0) ≤ brk ≤ CrkF0 for 0 ≤ k ≤ e and z ∈ ρ∗rk .

We announced distances to H0 instead of P0, but this is the same because m1 lies near H0,
not on the other side of L.

Let us now consider θ0 = 3π
2

, and try to define a cone Y that will work for (30.6). In
fact, we’ll try to find it at the scale re, and then use it a larger scales too, but let us discuss
general radii rk for the moment.

Recall from the discussion that leads to (30.38) that there is no free attachment for the rk
(because the j(rk) are small). Then ρ∗ = ρ∗rk is composed of four main arcs ρj,± = ρ(mj, z±),
plus two short ones ρ± = ρ(z±, `±), where the last two may be reduced to a single point
z± = `±.

We already observed for (30.28) that j(r) controls the near minimality of the ρ∗r, and in
particular the angle that the two main arcs that compose ρ∗r make at their common endpoint
m1, but we also want to show that it control the angles at the points z±. Suppose that
z± 6= `± (otherwise, let us not worry). Denote by v±,j the direction at z± of ρj,±, and by v±
the direction at z± of ρ±. We claim that

(30.59) (r−1
k dist(z±, L))1/2

∣∣v±,1 + v±,2 + v±
∣∣ ≤ Cj(rk)

1/2.

That is, we have the same estimates as for the central angles (in (30.28)), but less precise
because the proof only allows us to modify the tip of our competitors by moving the point
z± in a ball of size C−1 dist(z±, L). The proof is as before, except that we replace (27.3) by
the less performant (27.20). Here j(r) plays the role of σ,

∣∣v±,1 +v±,2 +v±
∣∣ is like s in (27.5),

and r−1
k dist(z±, L) (correctly normalized) plays the role of |z − `|. The power 1/2 on the

left-hand side is unexpected (it comes from the fact that we can do a replacement in a tube
rather than a ball), but plays for us. And for the worried reader, let us observe that we’ll
only use this estimate when r−1

k dist(z±, L) is reasonably large, where the subtle difference
does not exist and the proof of (30.28) works too.

To complete the geometric information that we have, recall that by construction,

(30.60) the angles at z± of v±,1, v±,2, v± are all at least π/2;

see the description below (26.9).
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Now let us check that when k = e, the unpleasant factor r−1
k dist(z±, L) is bounded from

below, i.e., z± 6= `± and

(30.61) dist(z±(re), L) ≥ C−1N−1re,

where we now mention explicitly the fact that z± comes from re. Recall that re ≤ 90Re (see
below (30.31)), so we can apply the proof of (30.17) to the radius r = 2re; we find a minimal
cone Yr ∈ Y(0, 21r

20
) such that d0,r(E, Y

t
r ) ≤ τ , with τ as small as we want. Now (30.24) says

that the points of ρ∗re lie within Cj(re)re ≤ CEere of γ∗re , which itself lies in E, hence close
to Yr. Because of this (and because they are geodesics), the four arcs ρj,± lie very close to
the two main arcs of Y t

r ∩Sre . Which means that the two points z± are very close to the two
points of Spine(Yr) ∩ Sre , where Spine(Yr) is the intersection of the three faces of Yr. But
in turn, the two points of Spine(Yr) ∩ Sre cannot be too close to L, because Yr ∈ Y(0, 21r

20
),

with r = 2re; our claim (30.61) follows.
So (30.59) says that for re, all the angles at the z±(re) are Cj(rk)

1/2-close to 2π
3

; we also
control the angles at the mj; altogether, there is a cone Y0 ∈ Y(0, re) such that

(30.62) distH(r−1
e ρ∗re , r

−1
e (Y t

0 ∩ Sre)) ≤ Cj(rk)
1/2,

where as usual Y t
0 denotes the truncated cone associated to Y0. We would like to use Y = Y0,

but maybe Y0 does not lie in Y(L,R), because L ∩ B(0, R) is not contained in a face of Y0.
So we need to discuss a little more. Call F1 and F2 the two faces of Y0 that pass near
m1(re) and m2(re) respectively, and Y0 the remaining face, which contains L ∩ B(0, 21re

20
)

since Y0 ∈ Y(0, 21re
20

). Thus F0 is contained in the 2-plane P0 that contains 0 and L, and one
of our concern is the angle of its boundary with Spine(Y0).

But let us first assume that Y0 ∈ Y(L,R), take Y = Y0, and check that for 0 ≤ k ≤ e,

(30.63) d0,2rk(ρ∗rk , Y
t ∩ Srk) ≤ CF0.

When k = e, this is just (30.62); and since all the angles are rather large, the approximation
is valid separately for the two long arcs and the two short ones. Then for a general k,
(30.62) shows that the the two long arcs of ρ∗rk are CF0rk-close to the two arcs Fj ∩ Srk ,
j = 1, 2. We are left with the two short geodesic arcs ρ±, from z± = z±(rk) to `±, which
we want to approximate by the corresponding arcs of F0 ∩ Srk . Call these two arcs ρ′±; thus
ρ′± = ρ(`±, z

′
±), where z′± is the point of Spine(Y0)∩Srk that lies close to `±. Since z′± lies at

the intersection of the two long arcs F1 ∩ Srk and F2 ∩ Srk and these arcs make a large angle
at z′±, our estimate on the long arcs shows that |z± − z′±| ≤ CF0rk. Hence ρ± = ρ(`±, z±)
and ρ′± = ρ(`±, z

′
±) are close to each other, and (30.63) follows.

We are left with the case when Y0 /∈ Y(L,R), and in this case we want to replace Y0 with
Y = R(Y0), for some rotation R with a small angle. Consider the largest radius r0; when we
chose r0 (just below (30.32)), we made sure that r0 ≥ R, so that if Y0 /∈ Y(L,R) as here, then
Y0 /∈ Y(L, r0) either. Consider r0, and still denote by z′± the point of Spine(Y0)∩Sr0 that lies
close to `±. Recall that both points z′± lie in the plane P0 that contains 0, L, and F0, but in
the present case at least one of the points z′± lies on the other side of Spine(Y0) (compared
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to the projection on P0 of most of F1 and F2, or the points m1(r0) and m2(r0), for instance).
Notice that this happens only at one of the two points, say, z′+, because Y0 ∈ Y(L, re) and
hence 0 lies on the same side of P0 \Spine(Y0) as the projections above. The other point z′−
even lies further from L as 0.

Another way to say that z′+ lies on the other side of Spine(Y0) is to say that seen from `+,
it lies in the direction almost opposite to v±,1 + v±,2. On the other hand, (30.60) says that
z+ (still seen from `+), lies roughly in the direction of v±,1 + v±,2. But |z+ − z′+| ≤ CF0r0

for the same reason as before, and we deduce from this that |z′+ − `+| ≤ CF0r0. Now let
R be the rotation that preserves P0, is the identity on P⊥0 , and maps z′+ to `+. Notice that
it moves the points very little, i.e., |R(ξ) − ξ| ≤ CF|ξ| for all ξ, and Y = R(Y0) lies in
Y(L, r0) ⊂ Y(L,R) by construction.

Return to a general k ∈ [0, e], and set z′′±(rk) = R(z′±(rk)) = (rk/r0)R(z′±); we see that
|z′′±(rk)− z′±(rk)| ≤ CF0rk, and also Y ∩Srk is CF0rk-close to Y0 in Srk , so (30.63) now holds
for the same reason as in our first case when we did not need to move Y0.

This concludes our proof of (30.63), which we see as the correct analogue of Lemma 30.5.

Step 7. Our truncated cone approximates E well in the exterior annulus. When
θ0 = 3π

2
, we just constructed a truncated cone Y t, and in order to unify the notation, let

us also denote by Y t the half plane H0 when θ0 = π. This way, we also have (30.63) when
θ0 = π. Indeed, by (30.54) every point of ρ∗k lies close to Y t ∩ Srk , but then conversely every
point of Y t ∩ Srk = H0 ∩ Srk lies close to ρ∗k, because ρ∗k is just the concatenation of two
geodesics that end on L and Srk = H0 ∩ Srk is simple too. We are ready to see that E stays
quite close to Y t in the region B(0, R) \B(0, Nd0).

Lemma 30.6. Let Y t be as above (thus Y t = H0 when θ0 = π). Set A00 = B(0, 2R) \
B(0, 2Nd0); then

(30.64) dist(z, E) ≤ C(F0 + E1/4
0 )|z| for z ∈ Y t ∩ A00

and

(30.65) dist(z, Y t) ≤ C(F0 + E1/4
0 )|z| for z ∈ E ∩ A00.

We will follow the argument of Section 21. First we claim that when r ∈ Rk for some
k ∈ [0, e],

(30.66) dist0,2r(γ
∗
r , Y

t ∩ Sr) ≤ CF0 + Cj(r),

where γ∗r is our initial curve in E ∩ Sr. Indeed, (30.24) says that d0,2r(ρ
∗
r, γ
∗
r ) ≤ Cj(r), then

(30.27) says that ρ̂∗r is quite close to r
rk
ρ∗rk . We now know that for j(r) small there is no free

attachment and we control the angle between the various pieces of ρ∗rk , so in fact the proof
of (30.63) also yields

(30.67) d0,2r(ρ
∗
r, Y

t ∩ Sr) ≤ CF0 + Cj(r)1/2
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(see (30.62) in particular), and (30.66) follows. As we did for Lemma 21.1, we first restrict

our attention to the set R]
k of radii r ∈ Rk such that j(r) ≤ CE1/3

k . Thus by Chebyshev

(30.68) |(10−1Rk, 90Rk) \ R]
k| = |Rk \ R]

k| ≤ CE−1/3
k

ˆ
Rk

j(r)dr ≤ CE2/3
k Rk

by (30.33) (or by the proof of (20.22)). Thus every radius ρ ∈ (10−1Rk, 90Rk) lies within

CE2/3
k Rk of a radius r ∈ R]

k. For each point z ∈ Y t ∩B(0, 90R) \B(0, 10−1Re), we can find

k ∈ [0, e] such that ρ = |z| lies in (10−1Rk, 90Rk), then r ∈ R]
k such that |r− ρ| ≤ CE2/3

k Rk,

then z1 ∈ Y t ∩ Sr such that |z1 − z| ≤ CE2/3
k Rk, and finally by (30.66) a point z2 ∈ γ∗r ⊂ E

such that |z2 − z1| ≤ C(CF0 + Cj(r))r ≤ C(F0 + E1/3
k )r. Thus

(30.69) dist(z, E) ≤ C(F0 + E1/3
k )|z|

for z ∈ Y t ∩ B(0, 90R) \ B(0, 10−1Re). We also need to evaluate dist(z, Y t) when z ∈
E ∩ B(0, 90R) \ B(0, 10−1Re). We proceed as in Lemma 21.2. We start with the points z

that lie in some r ∈ R]
k, (so that j(r) ≤ CE1/3

k ), and in addition lie in corresponding set γ∗r .

For those we can use (30.66) and get that dist(z, Y t) ≤ C(F0 +E1/3
k )r. Then we evaluate the

measure of the piece of E∩B(0, 3Rk)\10−1Rk) for which (30.69) fails (because z ∈ E∩Sr\γ∗r ,
or because j(r) is too large, or because the co-area formula does not cooperate), and get a

set of measure at most CR2
kE

1/4
k (see below (21.18)). Finally, we use the Ahlfors regularity

of E and get that

(30.70) dist(z, Y t) ≤ C(F0 + E1/4
k )|z|

for z ∈ E ∩B(0, 2R) \B(0, 10−1Re). See Lemma 21.1.
The lemma follows because 10−1Re ≥ 2Nd0 by (30.31), and Ek ≤ CE0 by its definition

(30.32).

Step 8. Decay in the intermediate and small ranges, in the flat case.
So far we assumed that 90R ≥ Nd0 (for some large N), as in (30.20), and we proved in

Lemma 30.6 that E is close enough to a truncated Y-set Y t in the annulus A00 = B(0, 2R) \
B(0, 2Nd0).

We need to complete this description, both to allow the radii R ∈ [2d0, Nd0] and to get
the same control (with the same set Y t) in the interior ball B(0, 3R), say.

We shall first do this in the flat case (when θ0 = π). If E were minimal, we could deduce a
control on B(0, 3R) from what happens in A00, or even ∂B(0, 3R), by some form of maximum
principle (compare E ∩ B(0, 3R) with its projection on a small convex neighborhood of
H0 ∩ B(0, 3R)). Probably there is a way to do a similar argument for almost minimal sets,
but it does not seem so pleasant, and the author fears that we would need the co-area
formula, in much the same way as above, to control angles of tangents and integrate; the
case when θ0 = 3π

2
would probably be even worse. Instead we shall return to our main decay

estimate for f(r), extend it to the present situation where (26.3) or (26.4) fails, and prove
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a similar decay anyway. And then we shall proceed as in the first step, say that a slightly
bad geometric configuration, even for these intermediate radii, implies a corresponding lower
bound for f ′(r), which cannot happen too often under the present assumptions.

Why didn’t we do this earlier? A first (bad) excuse is that the author did not think
that this would be needed, and to be fair, what we are going to do now does not change
the main C1 results of the present paper, but only gives more precise estimates (including a
quantitative C1+β estimate). The second excuse is that this slightly simplifies the apparent
structure of the proof. In general, the geometric situation for the intermediate radii looks a
little bad for our earlier construction of competitors to run smoothly; here we shall use some
extra information on E to make things easier.

Let us now assume that θ0 = π, and merely assume that R ≥ 2d0 (instead of (30.20)).
We shall use the following fact to control the intersection E ∩ Sr for intermediate radii.

Lemma 30.7. The set E coincides, in B(0, 10R), with the graph over H0 of some C1 and
10−1-Lipschitz function ϕ : H0 → H⊥0 such that ϕ(x) = 0 for x ∈ L.

Here H⊥0 is the (n− 2)-plane orthogonal to P0, the 2-plane that contains H0. The graph
of ϕ is Gϕ =

{
x + ϕ(x) ; x ∈ H0

}
. The proof of the lemma will use the C1 and Lipschitz

part of Theorem 31.1, which will be proved later but independently. In fact, the proof of
Theorem 31.1 will never involve decay estimates for balls that are not centered on L. Let
us explain how we deduce Lemma 30.7 from Theorem 31.1, and rapidly sketch the part of
Theorem 31.1 that we need.

We start from (30.13) in the preparation Step 1, which says that d0,r(E,H0) ≤ τ for
2d0 ≤ r ≤ 180R. Here τ is as small as we want, and with our usual assumption that
the gauge function h is small enough, this is enough to apply Theorem 31.1 and get the
conclusion of the lemma. The arguments for Theorem 31.1 are not that complicated. Since
τ is as small as we want, a compactness argument shows that in B(0, 160R), E is also close to
H0 in measure; this means in particular that for ξ ∈ L∩B(0, 60R), (60R)−2H2(E∩B(ξ, 60R))
is as close to π as we want.

There is an additional argument to show that L∩E ∩B(0, 10R) is not empty (otherwise
we could easily cut out a big part of E), and a variation of the same argument shows that
L ∩ B(0, 60R) ⊂ E. All this allows us to to apply the results of Part III (or Theorems 1.8
and 1.9) and get a good flatness control on E in balls centered on L ∩ B(0, 60R). This
also mechanically gives a good control on balls B(x, r) centered on E such that 10−2r ≤
dist(x, L) ≤ 100r, and for the other ones, we start from B(x, dist(x, L)) and then use the
usual regularity theorem with no boundary L.

Let us now consider radii r such that

(30.71) d0 < r ≤ min(10R, 10Nd0)

(we could use N = 2 here, because we are in the flat case, but let us not bother). By
Lemma 30.7 and the implicit function theorem, and since Sr is perpendicular to H0 where it
meets it, E ∩ Sr is a nice C1 curve that starts from one point `−(r) ∈ L, runs very close to
H0 ∩ Sr, and ends at the other point `+(r) of L ∩ Sr. It is also a small Lipschitz graph over
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H0 ∩ Sr (its tangent lies close to the direction of H0, and belongs to the tangent hyperplane
to Sr). That is, even when r is barely larger than d0 and Sr is nearly tangent to L, it stays
nicely transverse to E and nothing bad happens.

Set γ∗r = E ∩ Sr; this is consistant with the notation of Section 26, but the situation is
simpler now. When r is barely more than d0, say, when

(30.72) d0 < r <
5d0

4
,

let us modify our construction and now cut γ∗r in roughly three equal parts (instead of two),
with two intermediate points m1 and m2; we do this because in this case the length of γ∗r
may be close to 2πr, and we want arcs of lengths significantly less than πr to apply the
construction and estimates of Section 8. When r ≥ 5d0

4
, let us just proceed as above and cut

γ∗r only once, near the middle.
Then we do the construction of Section 26, i.e., build a competitor where, instead of

taking the union of the cone over γ∗r and the triangle T (r) (as we would do in order to prove
the near monotonicity of f), we replace the cones over the two or three pieces γi,r of γ∗r with
harmonic graphs that end with a small flat plate.

Denote by ρi,r the geodesic with the same endpoints as γi,r, and set ρ∗r = ∪3
i=1ρi,r (when

(30.72) holds; otherwise we stop at i = 2). We get the same control as before on the distance
between γi,r and ρi,r, in terms of f ′(r). That is, we still get that (30.24) holds, with j(r)
as in (30.21) or (19.24). And in addition the same argument as usual, where we modify the
tips of our competitor to get an even better one when the geodesics are not aligned at some
mi, also gives the same control as in (30.28). That is, if we still denote by vj,±,r the two unit
tangent vectors of ρ∗r at the point mi, we still have that |vj,+,r + vj,−,r| ≤ Cj(r)1/2.

Let us first use this information to control the geometry when

(30.73)
5d0

4
≤ r ≤ min(10R, 10Nd0).

Then the proof of Lemma 30.5 yields

(30.74) dist0,2r(E ∩ Sr, H0 ∩ Sr) ≤ Cj(r)1/2.

When instead d0 < r < 5d0
4

, the proof does not work (because we cannot get a good control
on the angle with P0 of a great circle that almost contains ρ∗r when r is too close to d0),
but fortunately we can use the same trick as before, i.e., use transverse curves in E and the
co-area formula to control the variations of the great circles ρ̂i,r that contain the ρi,r. That
is, the analogue of (30.38) holds in the present case too, and allows us to deduce from (30.74)
(for r close to 5d0

4
) that for our r

(30.75) dist0,2r(E ∩ Sr, H0 ∩ Sr) ≤ Cj(r)1/2 + CE1/2,

where E is still as in (30.26), and could even be replaced by f(90d0) +
´ 180d0

0
h(r)dr

r
.
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We can also do like this for radii r ∈ (d0
10
, d0). For these we proceed as usual, but since

L does not meet B(0, r), we just do as for the interior regularity result, cut E ∩ ∂B(0, r)
into three roughly equal parts, construct the ρi,r, and get good estimates on their angles. As
when (30.72) holds, we only know a priori that the three ρi,r lie Cj(r)1/2r-close to some great
circle, and in order to show that this circle lies close to the plane P0, we use the transverse
curve and the co-area estimate that relates their variations to the decay of f , to get that
(30.75) holds also for these r.

At this point we obtained a stronger analogue of Lemma 30.5, where (30.53) still holds
for d0

10
< r < min(10R, 10Nd0). This time we managed to include unpleasant case when

(30.20) fails, which we had left alone before. Now we also have the analogue of Lemma 30.6
for the same radii, again with the same proof as above.

We still need to control E ∩B(0, d0/2), say. For this, the analogue of Theorems 19.1 and
30.1 is valid, with a simpler proof (see [D4]), and we get a plane P through the origin such
that

(30.76) dist0,d0/2(E,P ) ≤ C
[
f(100d0) +

ˆ 200d0

0

h(t)dt

t

]1/4

.

In addition, we know that on the outside rim B(0, d0) \ B(0, d0/2), E is quite close to H0,
by the analogue of Lemma 30.6; this provides the desired extension of Lemma 30.6 to the
ball, and concludes the proof of Theorem 30.1 and Remark 30.2.

Step 9. Decay in the remaining ranges, when θ0 = 3π
2

.
We shall now complete the proof in the remaining case when θ0 = 3π

2
. We start with the

fact that for 0 < r ≤ 200R,

(30.77) f(r) +

ˆ 2r

0

h(t)dt

t
= f(r) + J(r) ≤ f(r) + J(200R) ≤ Cε4

by (30.3) (the definition of J(r)), (30.10), and (30.11), and where ε4 is as small as we want.
We shall first restrict to r such that

(30.78)
5d0

4
≤ r ≤ 190 min(R, 10Nd0),

and then (30.77) allows us to apply Lemma 25.3, with δ small enough (depending on N),
and then ε4 small (depending on δ); we get that there is a set Y ∈ Y(L, r) such that

(30.79) d0,r(E, Y
t) ≤ ε5

for the corresponding truncated cone Y t, where ε5 is also as small as we want. In the
definition of Y(L, r), there is the fact that the L ∩ B(0, r) is contained in a single face of
Y , and in particular does not meet the spine LY of Y (the singular set of Y ). Since Y is
centered at 0 and d0 = dist(0, L) ≥ (1900N)−1r by (30.78), we see (for instance by drawing
the two lines L and LY in the plane that contains them) that

(30.80) dist(L ∩B(0, r/2), LY ) ≥ cr,
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where c > 0 depends on N but this does not matter. If ε5 is small enough, we can apply the
usual regularity results to prove that in B(0, r/3) and when we stay at distance at least cr/3
from L, E is a C1 version of the Y-set Y t. And at distance less than 2cr/3, we can apply
Theorem 31.1, as we did for Lemma30.7, but on smaller balls, to show that E coincides with
the graph over H0 of some C1 and 10−1-Lipschitz function ϕ : H0 → H⊥0 , with as above
ϕ(x) = 0 for x ∈ L.

This is good, because this shows that for d0 < s < r/3, E ∩ Ss is also a C1 version of
Y t ∩ Sr. That is, E ∩ Ss is composed of two long arcs that leave from nearly opposite points
m± ∈ E ∩ Sr (near the points of LY ∩ Sr) with angles close to 2π

3
, plus two short ones that

go from those points to the two points `± of L∩ Ss. We stop at d0, because when s < d0 the
sphere no longer meets L, but when s approaches d0 from above, nothing bad happens, the
two short arcs simply get longer and go to points `± that lie very close to each other, as we
already saw in the flat case.

This allows us to implement the construction that we did the previous sections, to con-
struct competitors for E in B(0, s). We thus get for each such s a net γ∗s , composed of two
“short” curves γ0,±,s and four “long” ones (we cut the two initial long arcs in two parts, near
the middle, as usual) γi,±,s, i = 1, 2; then we construct 6 Lipschitz graphs with flat tips, add
the triangle T (s) as usual, and also try to improve it near the tips, depending on the angles
that the six geodesics with the same ends as the six curves γ (we call these geodesics the
ρi,±,s, 0 ≤ i ≤ 2) make with each other. The initial Lipschitz graphs are enough to get the
near monotonicity of f , so lower bounds on the defect of angles yield lower bounds on f ′(s).

More precisely, denote by α = α(s) the largest angle defect, i.e., the largest of the
differences between between the angle between two curves ρ of ρ∗s and the expected value
at that point (i.e., π or 2π

3
). Then, due to the fact that in spite of their code names, the

“short” geodesics are never too short, by (30.80), we get that α ≤ Cj(s)1/2, as in (30.28) for
instance.

Now we can recover some of the geometry of ρ∗s in terms of α. Start from the three
geodesics of ρ∗s that leave from z− (we called them ρi,−,s), and denote by vi the tangent
vector to ρi,−,s at z−; the three vi make angles that are α-close to 2π

3
. If we followed the two

geodesics ρi,−,s, i = 1, 2, they would meet again, with the same angles, at −z−. But we allow
them to turn near their middle (when they become the ρi,+,s), but by less than α. They still
meet at z+ (this was a property of E ∩ Ss), transversally, and in addition |z+ + z−| ≤ Cαs,
and they make an angle that is still Cα-close to 2π

3
at z+. Here we skip some of the details,

but we made similar computations in Sections 27 and 28, in situation that were a little more
complicated because we did not have (30.78). Said differently, there is a Y-set Yρ centered
at 0, whose spine contains z−, and such that the four ρi,±,s, with i = 1, 2, stay Cαs-close to
two of the three arcs that compose Yρ ∩ Ss.

Let us now look at the two remaining geodesics ρ0,±,s as they leave from z± (with angles
nearly 2π

3
with the other ones); recall that they meet L at the points `±. By rotating Yρ by

less than α along its spine, we may assume that it contains the arc ρ0,−,s in one of its faces
F . Then on the opposite side, since ρ0,−,s also lies close to Yρ, we see that F also passes
within Cαs of `+.
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Let us assume that s ≥ 5d0
4

, so that |`+ − `−| ≥ C−1s. This way, the distance from `−
to F also controls the angle between P0 (the plane that contains 0 and L) and the plane Pρ
that contains F (recall that Pρ contains 0 and `−). Thus this angle is small, and we can
find a rotation, which is Cα-close to the identity, and that fixes 0 and `− and sends F to P0.
The image Ys of Yρ by this rotation has the extra advantage that it lies in Y(L, r) (because
F is mapped into the plane P0, and the spine of Yρ was far from L in B(0, r/2), by (30.80)).
Notice that we do not say that Ys is the cone Y0 of type Y that contains L, because the
image of Y0 by a small rotation that fixes P0 is also allowed. Since we only moved Yρ a little,
it is still true that every point of ρ∗s lies within Cαs from Ys. In fact, given the structure of
the two sets, we even get that

(30.81) d0,2s(ρ
∗
s, Y

t
s ∩ Ss) ≤ Cα,

where Y t
s is the truncated cone associated to Ys.

By the same argument a for (30.75) (and simplified from the same one in earlier proofs,
because here we know that E ∩ Ss is equal to γs), we also deduce from (30.81) and the fact
that α ≤ Cj(s)1/2 that

(30.82) d0,2s(E ∩ Ss, Y t
s ∩ Ss) ≤ Cj(s)1/2.

This takes care of most s such that s ≥ 5d0
4

. For d0 < s < 5d0
4

, we still have a good description
of ρ∗s in terms of Yρ, and we can use transverse curves and the co-area theorem to control
the variations of Yρ, and show that it lies within Cj(s)1/2 +CE1/2 of some fixed Ys0 (chosen
with s0 ∈ (5d0

4
, 2d0), by a Chebyshev argument), as in (30.75). Thus (30.81) even holds for

d0 < s < 60 min(R, 10Nd0) (we divide the bound of (30.78) by 3 because s ≤ r/3), and even
with a fixed set Ys0 ∈ Y(L, r0), with r0 = 60 min(R, 10Nd0) if we choose s0 large enough or
use (30.79) and the fact that all Ys have a face contained in P0 and lie close to Y .

As before, this controls most of E ∩B(0, r0) \B(0, d0) (because j(s) may be too large for
some s), but then we can use the local Ahlfors regularity of E to control the rest. Finally,
for E ∩ B(0, d0), we use the same argument, but without the boundary L, to control the
variations of an approximating set of type Y that approximates E ∩ Ss for s < d0. The
argument is the same as in the flat case; we just use the standard regularity result near a
cone of type Y, far from the boundary. At the end of the game, we find that

(30.83) d0,r0(E, Y
t
s0

) ≤ C
[
f(3r0) +

ˆ 6r0

0

h(t)dt

t

]1/4

,

as in (30.76); this is enough because f(3r0) and
´ 6r0

0
h(t)dt
t

are controlled by the same quantity
for R, by (30.77).

Recall that we had also established a similar control on the exterior annulus A00; with
this last estimate, we end the proof of Theorem 30.1, Remark 30.2, and Theorem 30.3.

Remark 30.8. We proved a little more than what we said: we proved that E can be
approximated well by truncated Y-sets in every ball B(0, R′), R′ ≤ R, with uniform, and
even improving estimates, leading to the existence of a tangent Y-cone at 0 (which we already
knew), but which is also quite close to the the Y-cone that contains Y t.

264



At this point we have almost all the information needed to have a good description of E
near a point of type V. We shall summarize this and similar local descriptions in the next
part.
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Part V

Geometric descriptions of E near
some cones

In this part we start the local description of sliding almost minimal sets of dimension 2 near
a one-dimensional, smooth sliding boundary L. We will concentrate on the case when L is
a line, and only explain in Section 38 how to extend our results to the case when L is a C2

curve, say.
In the next few sections, we give ourselves a (reduced) sliding almost minimal set E of

dimension 2, associated to boundary L which is a straight line through the origin, assume
that in the ball B(0, R), E is close enough to a given sliding minimal cone X, that the gauge
function h is small enough, and we want a good description of E in, say B(0, R/2). In a
few good cases, we will see that E is just C1-equivalent to X in the smaller ball, but in
more interesting cases (in particular when X is a sharp set of type V), we will get a good
description, but where E may have a different topology.

What we can get depends on the cone X; for simple cones we get a good result, and
unfortunately for some cones, such as Y-sets with the spine L, we have reasonable conjectures
but no proof.

In Sections 31-36 we take the possible cones one after the other, and say what local
regularity result we have (or not) near these cones. Then in Section 37 we will complete the
verification of the full length properties that were announced throughout this paper, and in
Section 38 we say why L can be replaced with a smooth curve in all our regularity results.
We also decided to add a Section 39 where we check that sets of type H or V are sliding
minimal (the verification was not done yet).

31 Local regularity of E near a half plane

We start our list of local regularity results with the description of E when it lies close to a
half plane. We state our main assumptions so that we can use them in later sections, with
different cones X. Let L be a line in Rn, that contains the origin, and suppose that

(31.1)
E is a reduced almost minimal set in B(0, R), with sliding boundary L

and with the gauge function h,

where we shall also assume that

(31.2) h(r) ≤ Chr
β for 0 < r < R

for some choice of power β ∈ (0, 1] and Ch ≥ 0, and that

(31.3) ChR
β ≤ ε0
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for some ε0 > 0 that we can chose very small, depending on n and β. The main geometric
assumption that complements this is that there is a sliding minimal cone X, centered at 0,
such that

(31.4) d0,R(E,X) ≤ ε0,

where d0,R is the local Hausdorff distance of (1.14). In this section we are interested in the
special case when X ∈ H is a half plane bounded by L; this case was partially treated in
[D8], but we add the C1 nature of the estimate here.

Theorem 31.1. There is a constant a > 0 that depends only on n and β and, for each
small τ > 0, a constant ε0 > 0, that depends only on n, β, and τ , with the following
properties. Let E, h, R, satisfy (31.1)-(31.3), and assume that (31.4) holds for some half
plane X ∈ H bounded by L. Then E coincides in B(0, R/10) with the graph of some C1

function ϕ : X → X⊥. In addition, ϕ(x) = x for x ∈ L, ϕ is τ -Lipschitz, and

(31.5) Angle(TxE, TyE) ≤ τ |x− y|aR−a for x, y ∈ E ∩B(0, R/10),

where Tx denotes the tangent plane to E at x ∈ E ∩B(0, R/10).

Here X⊥ is the (n− 2)-space perpendicular to the plane that contains X. When x ∈ L,
Tx is only a half-tangent plane. And the simplest definition of Angle(TxE, TyE) is probably
||πx − πy||, where πx is the orthogonal projection on TxE, and similarly for πy.

There is nothing special with the constant 1/10; any constant smaller than 1 would work,
at the price of taking ε0 smaller and complicating the argument.

We may also replace the assumption (31.4) in Theorem 31.1 with the density assumption

(31.6) dist(0, E) ≤ ε0R and R−2H2(E ∩B(0, R)) ≤ π

2
+ ε0;

as we shall see, under the other assumptions, (31.4) with X ∈ H and (31.6) are essentially
equivalent to each other (modulo taking a different ε0 and a slightly smaller R).

Most of the proof of the theorem goes as in the previous papers [D8] and [D4]; we shall
not repeat the arguments when they are the same.

Let E be as in the theorem. First observe that E ∩ B(0, 10−2R) ∩ L 6= ∅, because
otherwise, E is a plain minimal set in B(0, 10−2R) (with no sliding boundary) that looks a
lot like a half plane. If ε0 is small enough, this is impossible: either take a limit and find
that X is plain minimal in (0, 10−2), or (alas, by another limiting argument) say that the
density of E at some point near 0 is < π.

So choose x0 ∈ E∩L∩B(0, 10−2R). It follows from our assumption (31.4), and the usual
upper semicontinuity lemma for limits (see Lemma 22.3 in [D7], which we may apply with
M arbitrarily close to 1 and h arbitrarily small, or if you prefer Theorem 22.1 in [D7]) that
if ε0 is small enough and if R1 = 9R/10,

(31.7) R−2
1 H2(E ∩B(x0, R1)) ≤ π

2
+ ε1,
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with ε1 as small as we want (provided that ε0 is small enough). Notice even that ε0 does
not depend on X or our choice of x0; the point is that if this failed, we could find a sequence
of almost minimizers, with ε0 tending to 0, with R = 1, and so that the points x0 are all
translated back to 0; even that way the corresponding sets E converge to a set like X and
the upper semicontinuity lemma gives the desired contradiction.

By the almost monotonicity of density (and again if ε0 is small enough), we deduce from
(31.7) that

(31.8) r−2H2(E ∩B(x0, r)) ≤
π

2
+ 2ε1 for 0 < r ≤ R1.

So we also control the density. Next we claim that

(31.9) L ∩B(x0,
8R

10
) ⊂ E.

This is also proved in [D8], but let us sketch an argument that should convince the reader.
Suppose that for some r < 8R

10
, E does not contain the two points of L∩ ∂B(0, r). Then the

construction of Section 29 gives a competitor F0 of E, in B(0, 9R
10

), that looks a lot like E
on B(0, 9R

10
) but does not meet L ∩ B(0, r). Rather than using the whole story about free

attachments, let us just observe that it is now rather easy to contract most of E∩B(0, r) onto
a piece of ∂B(0, r) that is very close to X. When n = 3, this is enough to save substantial
H2-measure (because ∂B(0, r) has a finite measure); in higher co-dimensions, we also need
to do an additional Federer-Fleming projection, as we did in the proof of Lemma 29.1. Even
in this case, we get a competitor with substantially less area, and the ensuing contradiction
proves (31.9).

Next the proof of (31.7) also gives that for x ∈ L ∩B(0, 8R
10

),

(31.10) (10−1R)−2H2(E ∩B(x, 10−1R)) ≤ π

2
+ ε1,

and by near monotonicity as above

(31.11) r−2H2(E ∩B(x, r)) ≤ π

2
+ 2ε1 for 0 < r ≤ 10−1R.

But x ∈ E by (31.9), and there is no possible density smaller than π
2

+ 2ε1 other than π
2
, so

this means that

(31.12) lim
r→0

r−2H2(E ∩B(x, r)) =
π

2
.

Now we apply Theorem 22.2, with for X the half plane provided by (31.4); the excess
density assumption comes from (31.11) and (31.12); we get that (if ε1 is small enough) E
has a tangent half plane T (x) at x,

(31.13) dx,r(E, T (x)) ≤ c1(ε1)(10r/R)a/4 for 0 < r <
R

10

268



(as in (22.9) and with c(ε1) as small as we want), and (as in (22.10)

(31.14) f(r) ≤ c1(ε1)(r/R)a/4 for 0 < r ≤ R

10
.

This is where there is a difference with [D8], because we get some decay. Observe also that
when we apply (31.13) with r = R/10 and compare with (31.4), we get that T (x) is close to
X, i.e.,

(31.15) d0,1(T (x), X) ≤ 10c1(ε1).

Then we also have (31.13) for R/10 ≤ r ≤ R/2, even though with a larger constant 20c1(ε1)
(compare with (31.4) again).

The estimate (31.13) is good enough to control the approximation of E by half planes in
small balls B(x, r) centered on L ∩ B(0, 8R

10
), but we also want to consider balls B(y, t) for

which y ∈ E ∩B(0, R/5) \ L and, say, t < R/10.
So let y ∈ E ∩ B(0, R/5) \ L and t < R/10 be given. Set d = dist(y, L) and pick x ∈ L

such that |x−y| = d. We start when d ≤ 4t. Then T (x) is still close to E in B(y, t), because

(31.16) dy,t(E, T (x)) ≤ d+ t

t
dx,d+t(E, T (x)) ≤ 20c1(ε1)(10(d+t)/R)a/4 ≤ 60c1(ε1)(t/R)a/4

because B(y, t) ⊂ B(x, d+ t), then by our extension of (31.13), applied to d+ t ≤ 5t ≤ R/2,
and because we may take a ≤ 1. Notice that T (x) coincides with a plane P (x) in B(x, d(x)),
so (31.16) says that dy,t(E,P (x)) ≤ 60c1(ε1)(t/R)a/4.

When t ≥ d/3, the simplest is to first use (31.16) with t = d/2, to show that E is
very close to a plane in B(y, d/2). Then we can apply the regularity result for plain almost
minimal sets, i.e., the analogue of Theorem 22.2 near planes and with no sliding boundary.
We find that E has a tangent plane T (y) at y, and even

(31.17) dy,t(E, T (y)) ≤ c(t/d)a/4,

with c as small as we want. This would be enough to prove the more precise estimate

(31.18) dy,t(E, T (y)) ≤ c(t/R)b/4

for some other b > 0, by distinguishing the cases in terms of the relative position of t < d < R;
we shall do this with Theorem 32.1 below, for instance, but in the present we can obtain
(31.18) in a slightly more direct way, which we present here.

Instead of applying Theorem 22.2 to get (31.14) for balls centered on E ∩ L, we can use
decay estimates for the functional F defined as in (23.6), but associated to the center y ∈ E \
L. The density F (0) is π because E has a tangent at y; we could also use the approximation
of E by a plane in B(y, d/2) to show that it cannot be larger than this. On the other hand,
the proof of (31.7) also shows that H2(E ∩B(y, 2R/3)) ≤ H2(X ∩B(y, 2R/3)) + ε1R

2, with
ε1 as small as we want. Then, denoting by S the shade of L lit by y,

F (2R/3) = (2R/3)−2[H2(E ∩B(y, 2R/3)) +H2(S ∩B(y, 2R/3))]

≤ (2R/3)−2[H2(X ∩B(y, 2R/3)) +H2(S ∩B(y, 2R/3))] + 3ε1 = π + 3ε1,(31.19)
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because X is a half plane bounded by L, thus H2(X ∩ B(y, 2R/3)) is largest when y ∈ X
and then X ∪ S is a plane through y, whose density is precisely π.

Then Theorem 24.1 (applied with the second assumption in (24.4), and for instance with
r2 = R/2, gives a good decay estimate (24.5) for F (t). Then for 0 < t < d,

(31.20) θ(t) = t−2H2(E∩B(y, t)) = F (t) ≤ π+(4t/R)a+CCht
aRβ−a ≤ π+(4t/R)a(1+Cε0)

by (31.2) and (31.3), and now Theorem 30.1 gives (31.18).
Once we have (31.13), it is easy to obtain the C1 description of Theorem 31.1, and we

don’t even need to use a form of Reifenberg topological theorem. For instance, we need
to define a function ϕ whose graph contains E ∩ B(0, R/10). Let π denote the orthogonal
projection on the plane that contains X and set π⊥ = I − π; we need to know that

(31.21) |π⊥(x)− π⊥(y)| ≤ τ |π(x)− π(y)| for x, y ∈ E ∩B(0, R/10).

By symmetry, we just need to check this when dist(y, L) ≤ dist(x, L). If |x − y| ≥
dist(x, L)/10, we select x′ ∈ L such that |x−x′| = dist(x, L), notice that x′ ∈ E∩B(0, R/2)
by (31.9), use (31.13) with r = 3|x − y| to find out that x and y are both much closer to
T (x′) than they are to each other. In addition, (31.15) says that T (x′) is almost parallel to
X, and (31.21) in this case follows.

When |x− y| ≤ dist(x, L)/10, we first observe that by (31.18) (applied to t = 2|x− y|)
says that x and y are much closer to T (x) as they are to each other; in addition, T (x) is as
close to T (x′) as we want because on B(x, |x′ − x|/4), (31.18) says that E is quite close to
T (x), while (31.13) or (31.16) says that E is close to T (x′). So by (31.15) T (x) is also as
close to X as we want, and (31.21) follows.

So E ∩ B(0, R/10) is the graph of a Lipschitz function (defined on π(E ∩ B(0, R/10))).
The estimate (31.1), which can also be seen as an estimate on the Hölder norm of Dϕ, follows
easily from (31.13) and (31.18), as in the proof of (31.15). Then ϕ = 0 on L ∩ B(0, R/10)
because this set is contained in E. The fact that π((E ∩ B(0, R/10)) lies on one side of L
also follows from (31.13) (recall that T (x) is a half plane that lies close to X when x ∈ L).

Finally, we did not mention in the statement that π(E ∩ B(0, R/10)) contains X ∩
B(0, R/11), for instance. This would follow from the information that we have from the
local regularity of E \ L and a fairly simple degree argument. Theorem 31.1 follows.

We also promised a version of Theorem 31.1 with (31.4) replaced by (31.6). We claim
that with (31.6) (and the other assumptions of the theorem), it is easy to find a half plane
X such that

(31.22) d0,98R/100(E,X) ≤ ε1,

with ε1 as small as we want. We consider the functional F associated to a center x0 ∈ E \L
chosen such that |x0 − 0| ≤ 2ε0R, but otherwise computed as in (1.27) or (23.6). We know
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that F (0) ≥ π because there is no smaller density at a point of E. And

F ((1− 2ε0)R) ≤ (1− 2ε0)−2R−2H2(E ∩B(x0, (1− 2ε0)R)) +
π

2

≤ (1− 2ε0)−2R−2H2(E ∩B(0, R)) +
π

2

≤ (1− 2ε0)−2
[π

2
+ ε0

]
+
π

2
≤ π + 10ε0(31.23)

by (23.6) and (31.6). So F stays approximately constant on (0, (1 − 2ε0)R) (because F is
almost monotone), and Theorem 1.6 in [D8] says that in B(x0, 99R/100), E is as close as
we want to a minimal sliding set E0 for which F is constant and very close to π. Then
by Theorem 1.3 in [D8], and the discussion of Lemma 23.1, E0 coincides with a half plane
in B(x0, 99R/100), and we get (31.22). Once we have (31.22), we can end the proof of
Theorem 31.1 exactly as if we had (31.4).

A last comment is in order before we go to other cases: if 0 ∈ E ∩L is a point of density
π/2, then the assumptions of Theorem 31.1 are satisfied for R small (let us say, with the
alternate assumption (31.6) to save some time); hence we get a good description of E near 0.
If all the cases (depending on the blow-up limits of E at 0) were as friendly as this one, we
would get a nearly perfect description of the singularities of E near L. We want to continue
in this direction, but some cases will not be as friendly.

32 When E is close to a generic V set

The second case when we have no surprise is when the cone X in (31.4) is a generic set of
type V. That is, X is the union of two half planes H1 and H2 bounded by L, and the angle
of H1 and H2 along L is such that

(32.1)
2π

3
< Angle(H1, H2) < π.

Let us add some notation to simplify our description. Denote by v0 a unit vector parallel to
L, and for i = 1, 2, let vi be the unit vector of Hi that is orthogonal to v0. That is, vi points
directly in the direction of Hi. We may also need to use the plane Pi that contains Hi, the
(n−2)-dimensional vector space H⊥i orthogonal to Pi, and the orthogonal projection π from
Rn to Pi. Another way to state (32.1) is to say that

(32.2) − 1 < 〈v1, v2〉 < −
1

2
.

Theorem 32.1. There is a constant a > 0 that depends only on n and β and, for each
value of Angle(H1, H2) ∈ (2π

3
, π) and τ > 0, a constant ε0 > 0, that depends only on n,

β, Angle(H1, H2), and τ , with the following properties. Let E, h, R, satisfy (31.1)-(31.3),
and assume that (31.4) holds for some set X ∈ V such that (32.1) holds. Then E coincides
in B(0, R/10) with the union of two graphs of C1 functions ϕi : Hi → H⊥i . In addition,
ϕi(x) = x for x ∈ L, ϕi is τ -Lipschitz, and for i = 1, 2,

(32.3) |Dϕi(x)−Dϕi(y)| ≤ τ |x− y|aR−a for x, y ∈ Hi ∩B(0, R/10).
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That is, E coincide with the union of two C1+a faces that meet along the common edge
L, which is thus locally contained in E; the proof will show that, since the the tangent cone
at x ∈ L is in fact very close to X, these faces make an angle at x which is still generic. But
this angle is expected to depend (slowly) on x.

We decided to write the Hölder-continuity of the tangent direction of E at z ∈ E, on
each of the two faces of E near the origin, in terms of the derivative of ϕi; but this is the
same sort of estimate as (31.5).

When the angle of H1 and H2 tends to 2π
3

or π, we make ε0 tend to 0, because we don’t
want to allow the angle of the two half tangents to E along L to take the limit values. This
is because when this happens the topology of E and E ∩ L may change, as we will see in
later sections.

Finally observe that if 0 ∈ E∩L and one of the blow-up limits of E at 0 is a generic V-set
X, then we can apply Theorem 32.1 for some small radii r, and we get a local description of
E near 0. And in particular X is the only blow-up limit of E at X.

The proof of Theorem 32.1 will follow a similar route as when X was a half plane. Some
parts of the argument will stay valid in the next cases when X is not generic, and we shall
mention that along the way. For instance, the following lemma is still valid when X is a
plane that contains L (but not a sharp V set).

Lemma 32.2. The density of E at every point of E ∩B(0, 2R/3) \ L is π.

Suppose not, and let x0 ∈ E ∩ B(0, 2R/3) \ L have a density larger than π. Set d0 =
dist(x0, L), and first assume that d0 ≥ 10Cε0R, where C is a large constant that will be
chosen soon. Set B0 = B(x0, d0/10); observe that B0 ⊂ B(0, R), so dx0,d0/10(E,X) ≤
10R
d0
d0,R(E,X) ≤ 10Rε0

d0
≤ C−1. This means that X meets B(x0, d0/100) (because x0 ∈ E),

and also, since X coincides with a plane P in 2B0 (the two faces of X make a large angle
along L, and 10B0 does not meet L), we get that dx0,d0/10(E,P ) ≤ C−1. Now if C is large
enough (maybe depending on n), and since we have (31.2) and (31.3), the standard regularity
theorem of [Ta] for plain almost minimal sets implies that x0 is a point of density π.

In fact, we don’t even need the result of [Ta] to prove this; it is enough to observe
that by the usual use of Theorem 22.1 in [D7] and a comparison with a plane, the density
(d0/20)−2H2(E ∩ B(x0, d0/20)) is smaller than π + η, with η as small as we want, hence
by the near monotonicity of density, the density of E at x0 is at most π + 2η, and now we
observe that there is no possible density between π and π + 2η. So x0 is a point of density
π, and this contradiction with its definition implies that

(32.4) d0 ≤ 10Cε0R.

We are now ready to apply Theorem 30.3, to the set E − x0 so that x0 becomes the origin,
and the radius R′ = 10−4R so that B(x0, 400R′) ⊂ B(0, R). We obtain a cone Y ∈ Y(L,R′)
centered at x0, such that if Y t is the same cone truncated by L, then

(32.5) dx0,R′(E, Y
t) ≤ C6

[
[F (200R′)− 3π

2
] + ε2,
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as in (30.6), and with ε2 as small as we want. We also need to estimate

(32.6) F (200R′) = (200R′)−2H2(E ∩B(x0, 200R′)) + (200R′)−2H2(S ∩B(x0, 200R′)),

where S is the shade of L seen from x0. Set ρ = 200R′ + d0, and call y0 the point of L that
lies closest to x0; then

H2(E ∩B(x0, 200R′)) +H2(S ∩B(x0, 200R′)) ≤ H2(E ∩B(y0, ρ)) +H2(S ∩B(y0, ρ))

≤ H2(E ∩B(y0, ρ)) +
πρ2

2
.(32.7)

We apply the upper semicontinuity estimate again, as for (31.7) and find that if ε0 is small
enough,

(32.8) H2(E ∩B(y0, ρ)) ≤ H2(X ∩B(y0, ρ)) + ε2ρ
2 ≤ πρ2 + ε2ρ

2;

again ε0 does not depend on y0 or X (provided that is is a minimal cone of density π). When
we combine everything we find out that F (200R)− 3π

2
is as small as we want, and so we get

that dx0,R′(E, Y
t) ≤ ε3 with ε3 as small as we want. But R′ = 10−4R, and in the larger ball

B(0, R) our set E is very close to X, which is a plane or a generic set of type V; this yields
the desired contradiction if ε3 and ε0 are small enough. Not surprisingly, we need to take ε0

even smaller when X is close to being sharp.

Lemma 32.3. The density of E at every point of E ∩ L ∩B(0, R/2) is π.

This lemma is still true when X is a plane but we expect it to fail when X is a sharp V
set (and also its proof uses Lemma 32.2).

Let z ∈ E ∩ L ∩B(0, R/2) be given. By the same upper semicontinuity argument as for
(31.7) and (32.8), we find that if ε0 is small enough,

(32.9) H2(E ∩B(z,R/3)) ≤ H2(X ∩B(z, R/3)) + ε4R
2 ≤ (R/3)2(π + 9ε4),

with an ε4 which is as small as we want. Then by the near monotonicity of the density,

(32.10) r−2H2(E ∩B(z, r)) ≤ π + 10ε2 for 0 < r < R/2.

So the density of E at z is at most π + 10ε2. Recall from Lemma 23.2 that (if ε2 is small
enough) all the cones with such a density are half planes, planes, and sets of type V. Hence,
the density of E at z is either π/2 or π, and we just need to exclude the case when it is π/2.

So we assume that the density is π/2; then some blow-up limit of E at z is a half plane
H, and Theorem 31.1 says that there is a small ball centered at z where E is C1-equivalent
to H.

The topological argument that follows is almost the same as in Section 17 of [D3], starting
at (17.9), so we will only give an outline, and send to [D3] for details. Notice however that
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our life is a little simpler here, because we are willing to use a C1 description of E near every
point of E ∩B(0, R/2) \ L, whereas in [D3] we wanted to merely use a Hölder description.

Let us first assume that n = 3, because the topology is simpler then, and consider a small
circle C0 of radius ρ centered on z and contained in the plane orthogonal to L at z. If ρ is
small enough, C0 meets E exactly once, and transversally. On the other hand, let C1 be the
circle centered at 0, contained in the plane orthonormal to L and with radius R/3. Recall
that (31.4) says that E is very close to X in B(0, R); denote by x1 and x2 the two points of
C1 ∩X, and observe that X coincides with a plane in both B(xi, R/10). Then we can apply
the local regularity theorem in B(xi, R/20) and find that in each of these balls, E meets C1

transversally exactly once. Of course E does not meet the rest of C1 (too far!), so C1 has
just two transverse intersections with E.

Now there is a homotopy {ht}, 0 ≤ t ≤ 1, that goes from C0 to C1, and whose image
lies in B(0, 2R/3) \ L. But E is locally C1 there, because Lemma 32.2 says that each point
of E ∩ B(0, 2R/3) \ L is a point of density π, and we know that E is a C1 surface near
such points. We claim that along the homotopy, the number of intersections of E with
Ct = ht(C0) stays the same modulo 2, which leads to the desired contradiction. The proof
of the claim would consist in transforming the homotopy slightly, so that for each t the loop
ht(C0) meets E a finite number of times, and each time transversally. But let us describe
the general case first, and anyway refer to [D3] for details.

When n ≥ 3, we want to proceed as above, but replace the circles Cj with (n − 2)-
spheres. That is, C0 is now a small (n − 2)-sphere centered at z and contained in the
hyperplane orthogonal to L at z, and C1 is the (n− 2)-sphere in the hyperplane orthogonal
to L at 0, with radius R/3. As before, we can find a homotopy from C0 to C1, among spheres
that are contained in B(0, 2R/3) \ L, and prove that (after a suitable modification to put
things in general position) the number of intersections with E stays the same modulo 2.

Now we follow a suggestion of Christopher Collins: rather than trying to use degree theory
too soon, we simply write the two equations of Ct, and thus get a one parameter family of
functions ht, defined on Rn and with values in R2. Thus Ct =

{
x ∈ Rn ; ht(x) = 0

}
, and we

want to compute the number of solutions in E of the system of two equations ht(x) = 0.
Then we discretize, and at the same time modify the functions ht to put Ct in the general

position with respect to E, so that it intersects E transversally. Also, we cut the elementary
move from hti to hti+1

into smaller modifications, where each time the function ht is only
modified in a small ball where we have a good description of E as a C1 surface. This gives
a new collection of mappings, that we shall call h̃j, such that h̃−1

j (0) is always transverse to

E and meets it a finite number of times, and h̃j+1 − h̃j is small (in supremum norm) and
supported in a small ball.

Then we have to show that E ∩ h̃−1
j+1(0) and E ∩ h̃−1

j (0) have the same number of points

modulo 2, and for this we finally use some degree theory. We replace the equation h̃j(y) = 0

(in E) with the equivalent equation ĥj(y) = 0, where ĥj is just a version of h̃j which takes
values in the 2-sphere. Because of our transversality condition and modulo 2, the number of
solutions is the degree of ĥj, and this degree is the same for ĥj+1 and ĥj, because h̃j+1 − h̃j
is small.
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This completes our rapid proof of the fact that θ(x) = π/2 never occurs, and Lemma 32.3
follows.

Lemma 32.4. The set E contains L ∩B(0, 2R/3).

This lemma stays valid when X is a sharp V-set. That is, we just need to exclude flat
V-sets here, i.e, planes that contain L.

First we check that E meets L∩B(0, 10−2R). Otherwise, E is also a plain almost minimal
set in B(0, 10−2R), with the same gauge function h, but no sliding boundary. Yet (31.4)
says that X is ε0R-close in E ∩ B(0, R) to the non-flat set X of type V. If this can happen
for arbitrarily small ε0, a small limiting argument shows that X (or another non-flat V set)
is minimal in B(0, 10−2R). This is false, so E meets L ∩B(0, 10−2R).

Pick x0 ∈ E ∩ L ∩ B(0, 10−2R); if (32.11) fails, then there is a radius t ∈ (0, 3R/4) such
that at least one of the two points of L ∩ ∂B(x0, t) lies outside of E. So we suppose so and
get a contradiction.

Let us first describe a rather brutal argument that uses Lemma 29.1. This will also be
an opportunity to describe what we meant there; after this we will sketch a more direct
argument with the same ideas.

Let us run the argument of Sections 17-22, with the set E − x0 (because we want to use
x0 as an origin), the same approximating cone X that we have, and radii r ∈ ( R

10
, R

2
). The

various smallness assumptions that we need to do are satisfied. In addition, because of our
assumption on the existence of t, Lemma 29.1 allows us to use the estimates of Sections 17-22
with the free attachment.

Recall that in this case we build four Lipschitz curves Γ±,i, where the notation makes
sense because Γ±,i goes from a point mi ∈ E that lies close to the midpoint wi of Hi ∩ Sr,
to a point z± that lies close to a point `± ∈ L ∩ Sr. We also construct a net ρ∗ = ρ∗r of
geodesics, composed of the four geodesics ρ±,i = ρ(wi, z±). Now these endpoints lie on E,
very close to points of X = H1 ∪H2, and if ε0 is small enough we get that the angle at z±
of ρ±,1 and ρ±,2 is at most π − α/2, where we set α = π − Angle(H1, H2) > 0.

The simplest for us now is to catch the argument during the construction of our third
competitor, where we modify the tip of the second one, which coincides near the origin with
the cone X∗ over ρ∗. We know that we can modify this tip, and we do so by softening the
angles near the z±. Recall that we don’t need to worry about what happens along L; this
is the advantage of having the free attachment at both points of Sr ∩ L. It turns out that
we did this sort of modification and the associated computation in Section 27, for (27.3).
It does not matter that there the point where we soften the angle was mi rather than z±,
the computation is the same and we can save an area comparable to C−1α2r2. The estimate
that we get, instead of (16.4) is now

H2(E ∩B(0, r)) ≤ r

2
H1(E ∩ Sr)− 10−5[H1(E ∩ Sr)−H1(ρ∗r)]− C−1α2r2 +R2h(R)

≤ r

2
H1(E ∩ Sr)− C−1α2r2 +R2h(R),(32.11)
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where R2h(R) comes from the almost monotonicity property (and the fact that we use a
competitor in B(0, R)), and we can drop the middle term with 10−5, which is nonnegative
by (15.45), (15.33), and the comment below (15.30).

Now Lemma 17.1 says that v(r) = H2(E ∩ B(0, r)) is differentiable almost-everywhere,
that its distribution derivative is at least as large as its almost everywhere derivative v′(r),
and that the same thing holds for θ(r) = r−2H2(E ∩B(0, r)) = r−2v(r), with

(32.12) θ′(r) = −2r−3v(r) + r−2v′(r) ≥ −2r−3v(r) + r−2H1(E ∩ Sr),

where the second inequality comes from (17.13) and is valid for almost every r ∈ (0, 1).
Notice that H2(E ∩ Sr) = 0 for almost every r too, so (32.11) and (32.12) yield

θ′(r) ≥ −2r−3v(r) + r−2H1(E ∩ Sr) = −2r−3H2(E ∩B(0, r)) + r−2H1(E ∩ Sr)
≥ −r−2H1(E ∩ Sr) + 2C−1r−1α2 − 2r−3R2h(R) + r−2H1(E ∩ Sr)
= 2C−1r−1α2 − 2r−3R2h(R) ≥ (3C)−1r−1α2 ≥ (30C)−1R−1α2(32.13)

when R
10
< r < R

2
and if ε0 (and hence h(R)) is small enough. As we said above, Lemma 17.1

allows us to integrate this, and we get that θ(R/2) ≥ θ(R/10) + (100C)−1α2.
This contradicts either the fact that θ(0) = π by Lemma 32.3, or that θ(R/2) ≤ π+ 10ε4

by the proof of (32.10), or the near monotonicity of θ. This completes the first proof of
Lemma 32.4.

For a more natural and direct proof, start by observing that

(32.14) H2(E ∩B(x0, 2R/3)) ≥ (2R/3)2(π − ε5),

with ε5 as small as we want; this time, the simplest is to use the lower semicontinuity
of measure along minimizing sequences (Theorem 10.97 in [D7]), plus the usual limiting
argument with a sequence of counterexamples with ε0 tending to 0, and that tend to a V-set
with density π.

Then, since we still assume that L∩∂B(x0, r) is not contained in L, we can use the proof
of Lemma 29.1 to construct a sliding competitor F0 for E in B(0, R), which does not meet
L ∩ B(x0, 3R/4), and which is as close to E in measure as we want. That is, in particular,
H2(F0 \ E) ≤ η, with η as small as we want, as in (29.4). And now, since the shape of
E in B(x0, 2R/3) is well known (E is close to the V-set X), we can construct by hand a
competitor for F0 and E in B(0, R), essentially without changing anything in B(x0, 2R/3)
(except for the part of F0 \ E that is already there, in the thin tube near L), and that does
better than the quantity that we get from (32.14). As usual, the construction is rather easy
when n = 3 because we can do the gluing in a very small portion of ∂B(x0, 2R/3) near X,
and when n > 3 we would need to do a piece of Federer-Fleming projection as in the proof
of Lemma 29.1. We leave the details to the reader, as a punishment for not trusting the
brutal but complicated proof above. But either way Lemma 32.4 is proved.

We are now ready to use decay estimates for the density and the distance to a V-set. Let
x0 ∈ L∩B(0, R/2) be given. We know that x0 ∈ E (by Lemma 32.4) and its density is π (by
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Lemma 32.3). We may thus apply Theorem 22.2 to E− x0. The cone X has full length (see
Section 37), we just checked the density condition (22.7), and (22.8) with r1 = R/2 follows
from (31.2)-(31.4). We get the existence of a tangent cone X(x0) to E at 0, with

(32.15) dx0,r(E,X(x0)) ≤ c1(ε0)
(2r

R

)a/4
for 0 < r < R/2,

where c1(ε0) is as small as we want.
This cone has density π (just like x0), and by (32.15) and (31.4) X(x0) is as close to X

as we want. We go to the list of Lemma 23.2 and find that X(x0) is a generic set of type V.
In addition to (32.15), Theorem 22.2 also says that

(32.16) f(r) := r−2H2(E ∩B(x0, r))− π ≤ c2(ε0)(2r/R)a for 0 < r < R/4,

with c2(ε0) as small as we want.
With this we get a good control of E on all balls centered on L ∩ B(0, R/2) and radii

r < R/2. Then we proceed as for the end of Theorem 31.1. That is, we also need to control
E in other small balls B(x, t); the main case is when t < dist(x, L)/10, and for those we
start from (32.15) (applied to r = 2 dist(x, L) and the point x0 ∈ L that lies closest to x),
which that E is very close to a plane in B(x, dist(x, L)/2. Then we can apply the usual
regularity result for plain almost minimizers to prove that E is C1 in B(x, t).

As for the precise control (32.3), which we of course prove with a smaller constant a, the
same argument with the different functional F no longer works, because x has density π and
F (R) is more like 3π

2
. So let us cheat instead. Set d = dist(x, L) and call x0 the point of L

that lies closest to x. If d
t
≤
(
R
d

)a/8
, then (32.15) yields

dx,t(E,X(x0)) ≤ d

t
dx,d(E,X(x0)) ≤ 2

(R
d

)a/8
dx0,2d(E,X(x0)) ≤ 2

(R
d

)a/8
c1(ε0)

(4d

R

)a/4
≤ 4c1(ε0)

( d
R

)a/8
= 4c1(ε0)

( d
R

)a/16( d
R

)a/16

≤ 4c1(ε0)
( t
R

)a/16

,(32.17)

where for the last line we used the fact that d
R
≤ t

d
because d

t
≤
(
R
d

)a/8 ≤ R
d

(since a < 1).
If P is the plane that coincides with X(x0) near B(x, t), we also get that

(32.18) dx,t(E,P ) ≤ 4c1(ε0)
( t
R

)a/16

.

If instead d
t
≥
(
R
d

)a/8
, we just use the fact that dx0,2d(E,X) is as small as we want to start

anew from a good flat approximation in B(x, d/2). The analogue of Theorem 22.2 for plain
almost minimal sets gives a plane P such that

(32.19) dx,t(E,P ) ≤ c(t/d)b

for some b > 0, and a constant c > 0 that we can take as small as we want. But (t/d)b ≤
(t/d)b/2(d/R)ab/16 ≤ (t/R)ab/16, so we have an analogue of (32.18) with a different power.
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Once we have (32.18) and its analogue, we get a good control on the tangent planes and
their variations. We still need to write E ∩ B(0, R/10) as a union of two Lipschitz graphs
on (pieces of) the two half planes Hi that compose X. Set

(32.20) Fi =
{
x ∈ E ∩B(0, R/10); dist(x,Hi) ≤ 10−2 dist(x, L)

}
for i = 1, 2. It is clear that F1 ∩ F2 ⊂ L. Also, we observed below (32.15) that the V-sets
T (x0) are as close to X as we want; then if x ∈ E ∩ B(0, R/10), (32.15) (applied to the
projection x0 of x on L and r = 2 dist(x, L)) shows that x ∈ F1 or F2, depending on which
piece of T (x0) lies closer to x. Now we want to show that Fi is a nice Lipschitz graph on Hi.
For this we can follow quietly the final argument given for Theorem 31.1, applied to each Fi
separately. Theorem 32.1 follows.

33 When E is close to a plane that contains L

We now want a variant of Theorems 31.1 and 32.1 for the case when the approximating cone
X is a plane that contains L. We waited this long because this is the first time where we
may have a slightly complicated singular set.

Let us assume that E satisfies (31.1)-(31.4), and that X is a plane that contains L. We
intend to prove that in B(0, R/10), E looks like a nice C1+a surface which is also a small
Lipschitz graph over X, except that along some part of E ∩ L, E may have a crease where
all the points admit a tangent cone which is a generic (and in fact almost flat) set of type
V. See Figure 24.

0

E L

U

L
E L

U

E lies above L here

This is also the section of E by a vertical plane

Figure 24: Behavior of E near a plane through L; creases may exist along pieces of E ∩ L

Let us give a little more notation to prepare the statement. If ϕ : X → X⊥ is a function,
the graph of ϕ is the set

(33.1) Graph(ϕ) =
{
x+ ϕ(x) ; x ∈ X

}
.

Our crease set will be (the intersection of B(0, R/10) with)

(33.2) Lg =
{
y ∈ E ∩ L ; E has a blow-up limit at y which is a generic V cone

}
.

We know from Theorem 32.1 that Lg is an open subset of L, and we even have a nice
description of E near each point of Lg.
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Theorem 33.1. There is a constant a > 0 that depends only on n and β and, for each τ > 0,
a constant ε0 > 0, that depends only on n, β, and τ , with the following properties. Let E,
h, R, satisfy (31.1)-(31.3), and assume that (31.4) holds for some plane X that contains L.
Then there is a τ -Lipschitz function ϕ : X → X⊥ such that

(33.3) E ∩B(0, R/10) = Graph(ϕ) ∩B(0, R/10).

In addition, ϕ(x) = x for x ∈ Lg, ϕ is C1 on X \ Lg ∩B(0, R/10), and

(33.4) |Dϕ(x)−Dϕ(y)| ≤ τ |x− y|aR−a for x, y ∈ B(0, R/10) such that [x, y] ⊂ X \ Lg.

We tried to make the statement short, but there are a few implicit things there that we
prefer to explain now. We said that ϕ is defined on the whole X, but of course only the
values on X ∩B(0, R/10) matter. This is not too costly, because we can always extend. At
points of Lg, we know that E has a tangent cone T (x) ∈ V, which is nearly flat, and we can
compute the two half tangents as the limits, when y ∈ X \Lg, of (half of) the tangent plane
T (y) given by the derivative Dϕ(y). We get two different directions, because we have two
ways to approach x. Yet T (x) varies in a Hölder-continuous way along Lg, because (33.4)
controls the variations of the two half planes. That is,

(33.5) d0,1(T (x), T (y)) ≤ 2τ |x− y|aR−a for x, y ∈ Lg ∩B(0, R/10).

When x ∈ B(0, R/10) lies in the boundary in L of Lg, then E has a tangent plane at x; this
comes from (33.4) as well (and so it made sense to include x in the domain X \ Lg).

The author expects that near 0, E ∩L can be almost any closed set that contains 0. It is
less clear to him whether Lg can be very complicated or not, and whether such pathologies
are also possible for locally minimal sets. See Remark 33.2 below for a short discussion about
this.

As usual, Theorem 33.1 can be applied to give a nice description of E near any point
x ∈ E where some a bow-up limit of E at x is a plane that contains L.

Let us now prove Theorem 33.1. Let y ∈ E∩L∩B(0, R/2) be given. Lemma 32.3, which
is still valid here when X is a plane, says that y is a point of density π. This allows us to
apply Theorem 22.2 with the cone X (certainly a full length cone), after a translation by
−y, and to the radius r1 = R/2. We find that E has a tangent cone T (y) at y, and

(33.6) dy,r(E, T (y)) ≤ c1(ε0)
(2r

R

)a/4
for 0 < r < R/2,

with c1(ε0) as small as we want, as in (22.9). We know that T (y) has density π as well, and
(by (33.6) and (31.4)) that it is fairly close to X. That is,

(33.7) d0,1(T (y), X) ≤ 2c1(ε0).

But T (y) could be a plane (that contains L or not) or a flat generic V set. Moreover, a
comparison between the various estimates (33.6), with y, z ∈ E ∩ L ∩B(0, R/2), yields

(33.8) d0,1(T (y), T (z)) ≤ 100c1(ε0)
( |y − z|

R

)a/4
for y, z ∈ E ∩ L ∩B(0, R/2).
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This, and in particular (33.6), gives a good description of E in all the balls B(y, r), with
y ∈ E ∩ L ∩B(0, R/2) and 0 < r < R/2.

Notice that all the points y ∈ E ∩B(0, R) are points of density π, either by Lemma 32.3
when y ∈ L, or by Lemma 32.2, which is also valid when X is a plane, when x ∈ E \ L. So,
except for the points of Lg where E has a tangent V-set, E has a tangent plane T (x) at x
(recall that a sharp V-set would not satisfy (33.7)).

At this point we know that E is C1 everywhere on B(0, R/2) \ Lg, and Theorem 32.1
gives a nice description of E near the points of E∩B(0, R/2)∩Lg. Yet we want more precise
and uniform estimates on the variations of the direction of T (x), x ∈ E ∩ B(0, R/2), or
(essentially equivalently) of the numbers dx,r(E, T (x)) that control the good approximation
of E.

For x ∈ E∩L∩B(0, R/2) and r < R/2, dx,r(E, T (x)) is directly controlled by (33.6). For
x ∈ E ∩ B(0, R/2) \ L and 10−1R ≤ r ≤ R/2, we can use (31.4) to show that dx,r(E,X) ≤
10ε0. Let us now assume that x ∈ E∩B(0, R/3)\L and r < 10−1R. Set d = dist(x,E∩L) =
dist(x,E ∩L∩B(0, R/2)) and pick y ∈ E ∩B(0, R/2) \L such that |y− x| = d. If r ≥ d/5,
we get a good approximation by the nearly flat V-set T (y), since by (33.6)

(33.9) dx,r(E, T (y)) ≤ r + d

d
dy,r+d(E, T (y)) ≤ 6c1(ε0)

(12r

R

)a/4
.

Finally for r < d/4, we first observe that T (y) coincides with a plane P (y, x) near B(x, 2d/3)
(because T (y) is a rather flat V-set), then dx,d/2(E,P (y, x)) is as small as we want (by (33.6)
or (33.9)), then we can apply the analogue of Theorem 22.2 for approximations by a plane
X in the plain case (no sliding boundaries); we get that for 0 < r < d/4,

(33.10) dx,r(E,P (x)) ≤ c
(r
d

)a/4
,

where P (x) denotes the tangent plane to E at x (we already knew its existence) and c > 0
is as small as we want (provided, as usual, that we take ε0 small enough). The constant
a > 0 may be different (it depends on the full length constants for a plane). And also, we
may replace (33.10) by the apparently better

(33.11) dx,r(E,P (x)) ≤ c′
( r
R

)b/4
by the same small trick where we distinguish between cases depending on r/d and use (33.6)
or (33.9) when d

r
<< R

d
as for the end of the proof of Theorem 32.1 (near (32.17)).

We may now compare (33.10) and (33.9) (use r = d/2); we get that P (x) is indeed
quite close to P (y, x). Because of this, and also (33.7), all the directions of the planes P (x),
x ∈ E ∩ B(0, R/3) \ L and the half planes that compose the T (y), y ∈ E ∩ L ∩ B(0, R/2),
are as close to the direction of X as we want. Then E ∩ B(0, R/3) is the graph of a τ -
Lipschitz function ϕ defined on a subset of the plane X, by (33.6), (33.9), (33.10), and
the proof of (31.21). Then, the estimate (33.4) on the derivative of ϕ (or equivalently the
direction of P (x) or T (y)) follow from these same estimate (compare the P (x) or T (y) to E
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on intersecting balls). The fact that ϕ(y) = y for y ∈ L∩E ∩B(0, R/10) (and in particular
on Lg∩B(0, R/10)) comes from the graph description. As usual, we would deduce additional
information, such as the fact that π(E ∩B(0, R/10)) contains X ∩B(0, R/11), with a little
bit of topology. This completes our proof of Theorem 33.1.

Remark 33.2. In the description above, L∩E∩B(0, R/10) can probably be just any closed
subset of L ∩ B(0, R/10) that contains the origin, and we could even take Lg = ∅ to see
this. That is, we can probably make E leave L and return to L as we wish, provided that
we keep it extremely close to L. We will not prove this here, but the following argument
may convince the reader. It is easy to see that a plane P0 is minimal, no matter which
choice of boundary constraint we take (because it is already minimal without constraint);
in particular we could take a boundary L that is a smooth curve, that comes and leaves P0

in a very tangential way, but along any given closed subset of L. The part of the argument
that we will not do is to show that we can go from this situation to the situation where L is
a straight line, with a change of variable in Rn that maps L to a line, and which is so close
to the identity that the image of P0 is still almost minimal. See Section 38 for a discussion
of changes of variables though.

Similarly, the author tends to expect that the set Lg can be, locally, just about any open
subset of L that does not contain 0, but constructing examples may be much more delicate
than for the assertion above, because there will be a balance between pulling E enough in
one direction (so as to create a crease), but not too much (to control the almost minimality
and also not make the creases too long).

Of course the situation of actual minimal sets could be very different, because minimality
probably forces some rigidity conditions that the author does not understand but that may
prevent many pathologies, in the same way as analytic functions do not always do what we
want.

34 When E is close to a sharp V-set

In this section we give a local description of E near 0, under the usual assumptions of
Theorems 31.1, 32.1, and 33.1, except that this time the approximating cone X is a sharp
V-set, i.e., such the two half planes H1 and H2 that compose X make 2π

3
angles along L.

This case looks more interesting than the previous one, in particular because the topology
of E near 0 will possibly be different from the topology of X.

Another new thing in this case is the possible presence near 0 of a curve, contained in
the set

(34.1) EY =
{
x ∈ E \ L ; θx(0) =

3π

2

}
,

where θx(0) = limr→0 r
−2H2(E∩B(x, r)) is the density of E at x, and along which the V-part

of E detaches itself from L, leaving a thin triangular extra face of E between the curve and
a corresponding piece of L. We try to give a more precise description below; in the mean
time see Figure 25 for a good idea of what E may look like.
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E

L 0
EY

generic V here Sharp V-sets tangent here Thin triangular face

Figure 25: The set E near a sharp V set; γ is composed of EY and a bit of L

But first recall that since the Y-cones are the only plain minimal cones in Rn with a
density 3π

2
, EY is also the set of points of E \ L where all the blow-up limits of E are Y-

cones. We also know, by the regularity theorem of [Ta] or [D4], that near these points E is
C1-equivalent to a Y-cone.

Let us put the description of E near 0 before the statement of Theorem 34.1 because it
is a little longer than the previous ones. Set B0 = B(0, R/10), call H1 and H2 the two half
planes that compose X, then let ei denote the unit vector of Hi that is perpendicular to L,
and let H0 be the half plane bounded by L and that contains e0 = e1 + e2; we may call it
the vertical half plane. First of all (we will show that)

(34.2) L ∩B0 ⊂ E.

Next, there is a curve γ, which is the graph over L of some τ -Lipschitz function ψ : L→ L⊥,
with τ as small as we want, and which is also of class C1+a, (for some small constant a > 0
which may depend on n and β), with

(34.3) |Dψ(x)−Dψ(y)| ≤ τ |x− y|a for x, y ∈ L ∩B0.

The curve γ is contained in E, meets B(0, 10−10R), and lies in a small sector near H0. That
is,

(34.4) γ ⊂ H]
0 :=

{
x ∈ Rn ; dist(x,H0) ≤ τ dist(x, L)

}
.

Also

(34.5) γ ∩B0 \ L ⊂ EY .

Then E has a tangent cone at every point of E ∩B0, as follows.

(34.6) For x ∈ γ ∩ L ∩B0, E has a unique tangent cone V (x) at x

such that

(34.7) V (x) ∈ V(L) and d0,1(V (x), X) ≤ τ.
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In addition, if x ∈ γ ∩ L ∩B0 is a boundary point (in L) of γ ∩ L, then V (x) is sharp.

(34.8) For x ∈ E ∩ L ∩B0 \ γ, E has a unique tangent cone H(x) at x, H(x) ∈ H(L)

(that is, H(x) is a half plane bounded by L), and

(34.9) for x ∈ E ∩B0 \ (L ∪ γ), E has a unique tangent cone P (x) at x, which is a plane.

In fact, when x ∈ E ∩ B0 \ (L ∪ γ), there is a small neighborhood of x where E is a C1+a

submanifold of dimension 2 of Rn.
Next E ∩B0 is composed of three main (closed) pieces that meet along γ. The first two,

which will be called the faces F1 and F2, are bounded by γ and correspond to the two half
planes Hi that compose X. More precisely, inside B0, Fi is the Lipschitz graph of some
τ -Lipschitz function ϕi : Di → H⊥i , where Di is (inside B0) the subdomain of Hi bounded
by the orthogonal projection πi(γ) and that contains the largest part of Hi near 0 (See the
left part of Figure 26 and notice that πi(γ) ⊂ Hi because γ ⊂ H]

0). In addition,

(34.10) |Dϕi(x)−Dϕi(y)| ≤ τ |x− y|a for x, y ∈ Di ∩B0.

These are the two largest pieces. The last one, which will be called F0, is bounded by γ \ L
on one side and L \ γ on the other side; it may be empty (if γ ⊂ L), or on the opposite
composed of infinitely many pieces (if γ \ L has infinitely many connected component), and
looks like a succession of thin nearly vertical surfaces that connects L \ γ to F1 and F2 along
γ \L. Inside of B0, this piece is the graph of a τ -Lipschitz function ϕ0, defined on a domain
D0 ⊂ H0 bounded by L and the orthogonal projection π0(γ) on H0, and with values in H⊥0 .
See the right part of Figure 26. And as usual

(34.11) |Dϕ0(x)−Dϕ0(y)| ≤ τ |x− y|a for x, y ∈ D0 ∩B0.

This completes our description of E; hopefully we did not forget anything important. Now
we give the corresponding statement.

L

i �� (   )

Di Hicontained in 

L

D0

�� (   )0
�(   )0

D0
D0

Figure 26: On the left, Di and the projection of γ on Hi. On the right, the projection D0

of F0 on the vertical half plane H0

Theorem 34.1. There is a constant a > 0 that depends only on n and β and, for each small
τ > 0, a constant ε0 > 0, that depends only on n, β, and τ , with the following properties.
Let E, h, R, satisfy (31.1)-(31.3), and assume that (31.4) holds for some sharp V-set X
bounded by L. Then E has the description in B0 = B(0, R/10) that was given just before
this statement.
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The theorem looks complicated but hopefully the pictures give a good idea of what we
claim is going on. Thus E does not leave L entirely, but two of its branches may (hesitate
and then) go away, keeping their 2π/3 angles, and a thin triangular piece stays and connects
this main piece F1 ∪ F2 to L. We really expect this sort of behavior to happen, typically
when the film is pulled up by some force that lifts the two wings F1 and F2. But for minimal
sets it is not clear to the author that we can produce curves γ that leave from L and return
to it as many times as we want. Also, we proved in the previous two sections that this sort
of leaving behavior only happens for sharp tangent V-sets, not when they are flatter. The
creases of Section 33 that are produced when E looks like a plane and hesitates to go away
are different, a plane may even cross L transversally without even noticing (see the next
section for confirmation).

We start the proof as in the previous case, and first observe that all the bad points are
close to L. That is, if we call

(34.12) EP =
{
x ∈ E \ L ; θx(0) = π

}
,

the set of points x ∈ E \ L where all the blow-up limits of E at x are planes (and hence E
is a smooth surface near x and has a unique blow-up limit at x), then there is a constant
C ≥ 0, that depends only on n and β, such that

(34.13) dist(x, L) ≤ Cε0R for E ∩B(0, R/2) \ EP .

The point is that if x ∈ E ∩ B(0, R/2) and if d := dist(x, L) ≥ Cε0R, then (31.4) implies
that dx,d/2(E,P ) ≤ 2C−1 for the plane P that coincides with X near B(x, d/2); if C is large
enough and ε0 is small enough (to control the gauge function h), the standard regularity
theorem implies that E is of class C1 near x. The details are the same as for the first lines
of Lemma 32.2.

Next we control some densities. By the upper semicontinuity lemma (see for instance
Lemma 22.3 in [D7]), and as for (31.7), we find that (if ε0 is small enough) for x ∈ E ∩
B(0, R/2) and R/10 ≤ r ≤ R/3,

(34.14) H2(E ∩B(x, r)) ≤ H2(X ∩B(x, r))) + ε1R
2,

where ε1 > 0 is as small as we want. This will be useful to control our density functionals.
We start our study with the points x ∈ EV ∩B(0, R/2), where

(34.15) EV =
{
x ∈ E ∩ L ; θx(0) = π

}
.

We do not assume a priori that their blow-up limits are V sets, but this will come soon. Pick
x ∈ EV ∩B(0, R/2). Notice that for r = R/3, (34.14) says that

(34.16) θx(r) := r−2H2(E ∩B(x, r)) ≤ r−2H2(X ∩B(x, r))) + 9ε1 = π + 9ε1.

Then, by the almost monotonicity of density and if ε0 is small enough,

(34.17) θx(r) ≤ π + 10ε1 for 0 < r ≤ R/3.
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In particular, the blow-up limits of E at x are planes or V-sets (we excluded half planes
because x ∈ EV ). But what matters to us at this point is that we can apply Theorem 22.2;
we find that E has a tangent cone V (x) at x, and that

(34.18) dx,r(E, V (x)) ≤ c1(ε0)(r/R)a/4 for 0 < r ≤ R/3.

In addition, since both V (x) and X are close to E in B(x,R/3), we also get that

(34.19) d0,1(V (x), X) ≤ 2c1(ε0).

Thus V (x) is a set of type V, and even sharp or almost sharp, and (34.18) will give us enough
control on balls centered on EV ∩B(0, R/2). Notice that (34.18) also holds (with a slightly
worse constant) when R/3 < r < R/2, by (31.4) and (34.19).

Next we consider points of E ∩ B(0, R/2) \ (L ∪ EP ), and for these points we prefer to
use the functional Fx(r) defined by (23.6), but for the set E − x because of our choice of
origin. We claim that for r = R/3 and as for (34.16),

Fx(r) = r−2H2(E ∩B(x, r)) + r−2H2(Sx ∩B(x, r))(34.20)

≤ r−2H2(X ∩B(x, r)) + 9ε1 +
π

2
≤ 3π

2
+ 10ε1,

where Sx is the shade of L seen from x, r−2H2(Sx ∩ B(x, r)) ≤ π
2

is always true because Sx
is at most a half plane, and the last line comes from the fact that since dist(x, L) ≤ Cε0R
by (34.13), r−2H2(X ∩B(x, r)) is as close as we want to π. As before, the near monotonicity
of Fx then yields

(34.21) Fx(r) ≤
3π

2
+ 11ε1 for 0 < r ≤ R/3,

and since θx(0) := limr→0 θx(r) = limr→0 Fx(r) cannot take values strictly between 3π
2

and
3π
2

+ 11ε1, we see that θx(0) ≤ 3π
2

. In fact, θx(0) = 3π
2

because we assumed that x ∈
E \ (L ∪ EP ), so x ∈ EY . In other words, we checked along the way that

(34.22) E ∩B(0, R/2) \ L ⊂ EP ∪ EY .

We continue as when x ∈ EV , but with the decay statement associated to Fx. We first apply
Theorem 24.2 to E − x in B(0, R/2); the constraint (24.6) on h is satisfied if ε0 is small
enough, the density of E at x is 3π

2
as required in (24.7), and dx,R/2(E,X) is as small as

we want, by (31.4). Recall that the numbers βV P allow approximation by V sets or planes
(see (24.2)), but we don’t need planes here. We get that (24.9) holds, we take r1 = r and
r2 = R/3, and obtain that

(34.23) Fx(r)−
3π

2
≤
(CV 3r

R

)a
[Fx(R/3)− 3π

2
] + CVChr

aRβ−a ≤ C
( r
R

)a
(ε1 + ε0)
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for 0 ≤ r ≤ R/4, by (34.20), (31.2), and (31.3). Now we use Theorem 30.3, with a radius
r ≤ R/1200 (so that 400r ≤ R/3). Because of our assumption that dist(x, L) ≤ r/2, we
restrict to r such that

(34.24) 2 dist(x, L) ≤ r ≤ R/1200.

Notice that there are still lots of radii r available, since (34.13) says that dist(x, L) ≤ Cε0R.
The theorem provides a set Y = Y (x, r) ∈ Y(L, r) such that

(34.25) dx,r(E, Y
t(x, r)) ≤ C6

[
[Fx(200r)− 3π

2
] + ChR

β
]1/4

≤ C
( r
R

)a/4
ε

1/4
1

as in (30.6), where Y t(x, r) is corresponding truncated cone, and by (34.24). It may be
a little awkward to compare the sets Y t(x, r), because it may be that the truncation of
Y t(x, r) is no longer clean in larger balls, but at least we can control their directions. Denote
by Y ′(x, r) = Y (x, r)− x the translation of Y (x, r) that is centered at 0; we claim that

(34.26) d0,1(Y ′(x, r), Y ′(x, s)) ≤ C
( r
R

)a/4
ε

1/4
1 for 2 dist(x, L) ≤ s ≤ r ≤ R/1200.

When r ≤ 2s, this is because we can easily evaluate the position of the two half planes (among
the three that compose Y (x, r)) that do not contain L∩B(x, r), by knowing (34.25); of course
the third half plane comes for free when we have the two main ones. The general case follows
as usual: we just compare successive cones and sum a geometric series.

When we use (34.25) with r = R/1200 and compare with (31.4), we see that the two half
planes of Y (x,R/1200) that compose Y (x,R/1200) and do not meet L ∩ B(x,R/1200) are
very close to the two pieces H1 and H2 of X. This is not shocking, because the third part
of Y t(x,R/1200) is extremely thin, because dist(x, L) ≤ Cε0R. Because of this closeness,
and then by (34.26), we can identify in Y (x, r) two half planes H1(x, t) and H2(x, t), whose
directions H ′1(x, t) = H1(x, t) − x and H ′2(x, t) = H2(x, t) − x are very close to H1 and H2

respectively. That is,

(34.27) d0,1(H ′i(x, t), Hi) ≤ 10ε1 for i = 1, 2.

And when we use (34.26) and check the labelling, we find out that for i = 1, 2,

(34.28) d0,1(H ′i(x, s), H
′
i(x, t)) ≤ C

( r
R

)a/4
ε

1/4
1 for 2 dist(x, L) ≤ s ≤ r ≤ R/1200.

Now we keep our point x ∈ EY ∩ B(0, R/2) and worry about smaller balls. Set d(x) =
dist(x, L) and Yd(x) = Y (x, 2d(x)), and observe that by (34.25)

(34.29) dx,d(x)/2(E, Yd(x)) = dx,d(x)/2(E, Y t
d (x)) ≤ 4dx,2d(x)(E, Y

t
d (x)) ≤ C

(d(x)

R

)a/4
ε

1/4
1 ,

so E lies pretty close to a Y-set in B(x, d(x)/2). In fact, if ε0 and ε1 are small enough, this
information is sufficient to use the analogue of Theorem 22.2 for plain almost minimal sets
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near a Y-set. This result dates from [Ta], we can also refer to [D4], but since the exact same
statement does not seem to be explicitly written there, let us also observe that the proof of
Theorem 22.2 also goes through (with simplifications). Anyway, we get that E has a tangent
cone Y (x) (a Y-set centered at x), and the analogue of (22.9) is that

(34.30) dx,r(E, Y (x)) ≤ c
( r

d(x)

)a/4
for 0 < r ≤ d(x)/2,

maybe with a different constant a > 0, and with a constant c > 0 that can be taken as small
as we want (by making ε0 and ε1 smaller). In fact, when we combine this and (34.29) (to
take care of the radii that are too close to d), the same trick as for (32.18) shows that

(34.31) dx,r(E, Y (x)) ≤ c
( r
R

)b/4
for 0 < r ≤ d(x)/2,

for some (other) b < a. When we compare this to (34.29), we find that

(34.32) d0,1(Y ′(x), Y ′(x, 2d(x))) ≤ c′
(d(x)

R

)b/4
,

where Y ′(x) = Y (x) − x is the parallel cone through the origin, and c′ is another positive
constant that we can make as small as we want. And for even larger radii, we combine this
with (34.26) and get that

(34.33) dx,1(Y (x), Y (x, r)) = d0,1(Y ′(x), Y ′(x, r)) ≤ c′
( r
R

)b/4
for 2d(x) < r ≤ R/1200.

With this, (34.31), and (34.25), we get good enough estimates on the approximations of E
in the small balls B(x, r) centered on EY ∩B(0, R/2).

We want to know a bit more about the set EY (the set of (34.1)) itself. Observe that

(34.34) EY ∩B(0, R/2) ⊂ H]
0,

the small sector H]
0 of (34.4). Indeed, (34.27) says that the two main branches of Yd(x) =

Y (x, δ−1d(x)) go in directions very close to H1 and H2, hence the third one goes in a direction
almost opposite to H0. And it is precisely in this direction that we can find the point y ∈ L
that lies closest to x. So the direction of x − y lies very close to H0 (compared to d(x)),
which proves (34.34).

Next, the regularity theorem for plain almost minimal sets that EY is a C1 curve (locally
in B(0, R/2) \ L), and its tangent line at x ∈ EY is the spine `(x) of Y (x). Also denote by
`′(x) the direction of `(x); that is, `′(x) = `(x) − x. It follows from (34.32) that Y (x) and
Yd(x) = Y (x, δ−1d(x)) are as close to each other as we want, and hence also their spines are
as close to each other as we want. Then by (34.27), the spine of Yd(x) is also as close to the
direction of the spine of X as we want. The spine of X is L, and its direction is L′ = L− x;
then `′(x) is as close to L′ as we want. That is, in B(0, R) \ L, EY is locally the graph of a
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τ -Lipschitz function over its projection on L. But we can say a bit more on the variations
of `. We claim that

(34.35) d0,1(`′(x), `′(y)) ≤ c
( |x− y|

R

)b/4
for x, y ∈ EY ∩B(0, R/2),

where as usual c can be made as small as we want. Set r = 3|x−y|. For r ≥ R/1200, we use
(34.27), which as we saw recently implies that `′(x) and `′(y) are as close to L′ as we want.
Otherwise, we compare the two approximation estimates that we have for E in B(x, r) and
B(y, r), which both contain B(x, 2|x− y|). For x, we use Y (x) and (34.31) if r < d(x), and
Y t(x, r) and (34.25) otherwise. For y we proceed similarly, and when we compare we get
that Y t(x, r), for instance, is close to Y (y) in B(x, 2|x − y|). We use (34.33) if needed to
return to Y (x) and Y (y), observe that for (34.35) it is enough to control the two main faces,
and conclude. Let us also check that

(34.36) d0,1(`′(x), L′) ≤ c
( dist(x,EV ∩B(0, R/2))

R

)b/4
for x ∈ EY ∩B(0, R/2).

If dist(x,EV ) ≥ R/2500 (which also happens if EY ∩ B(0, R/2) is empty), we use (34.27)
again and get that d0,1(`′(x), L′) ≤ c. Otherwise, pick y ∈ EY ∩B(0, R/2) whose distance to
x is almost minimal, and apply the same argument as above with r = 2|x − y|, but where
we use V (y) and (34.18) to approximate E in B(y, r). This time the analogue of `(y) (the
spine of V (y)) is L, and (34.36) follows as for (34.35).

Before we continue with EY , let us observe that

(34.37) L ∩B(0, 2R/3) ⊂ E,

by Lemma 32.4, which is still valid for sharp V-sets X. In addition, we claim that

(34.38) L ∩B(0, 2R/3) \ EV ⊂ EH ,

where

(34.39) EH =
{
x ∈ E ∩ L ; the density of E at x is θx(0) =

π

2

}
.

By Theorem 31.1, if x ∈ EH , E has a tangent half plane H(x) at x, and E is even C1-
equivalent to H(x) near x; whence the name EH .

Let us check (34.38). Let x ∈ L ∩ B(0, R/2) \ EV be given. By (34.14) and the proof
of (34.17) (still valid), we get that θx(0) ≤ π + 10ε1. Since θx(0) is also the density of the
blow-up limits of E at x, Lemma 23.2 says that θx(0) ∈ {π

2
, π}; in addition, since x /∈ EV

and by the definition (34.15), we are left with θx(0) = π
2
; (34.38) follows.

We return to EY and EV . Set γ = EY ∪EV . Notice that γ is closed in B(0, R/2), because
(34.22) and (34.38) say that

(34.40) E ∩B(0, R/2)) = B(0, R/2) ∩ [EV ∪ EH ∪ EY ∪ EP ],
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and Theorem 31.1 implies that EH is open in L, while EP is closed in E by the regularity
theorem. Let us check that

(34.41) π(γ ∩B(0, R/2)) ⊃ L ∩B(0, R/3),

where π still denotes the orthogonal projection on L. Suppose this fails, and pick y ∈
L ∩ B(0, R/3) \ π(γ ∩ B(0, R/2)). We start with the case when dist(y, γ) ≤ R/20. Choose
x ∈ γ such that |π(x)− π(y)|+ |π⊥(x)− π⊥(y)| is minimal, where π⊥ = I − π; the existence
and the reason for this strange choice of distance will appear very soon. The infimum is at
most R/10 because dist(y, γ) ≤ R/20, so the good competitors lie well inside of B(0, R/2),
and x exists because γ is closed there. Of course x ∈ B(0, R/2). Suppose for a minute that
x ∈ EY . Recall from the discussion above that there is a small neighborhood of x where
EY is a C1 curve that runs nearly parallel to L. This is because `′(x) is so close to L′. But
when we follow that curve so that the projection gets closer to y, we see that our strange
distance to y gets strictly smaller (the variations of π⊥(x) are too small to compensate).
This contradicts the definition of x, and so x ∈ EV .

We now run the same topological argument as for Lemma 32.3. In the ball B(x, 2|x−y|),
(34.18) says that E looks a lot like V (x). Yet in small balls centered at y, E is C1-equivalent
to H(y) ∈ H. We can find a small (n − d) sphere C0 centered at y and contained in the
hyperplane orthogonal to L, that meets E exactly once, transversally. We can also find
another (n− d)-sphere centered C1, in the same plane, of larger radius r/100, and this one
meets E twice transversally (once near each wing of V (x)). But the obvious homotopy
from C0 to C1 stays far from EY , because |π(z) − π(y)| + |π⊥(z) − π⊥(y)| ≥ |x − y| by
minimality of x. Then we can proceed as in Lemma 32.3 (and in fact [D3]) to find a nicer
homotopy, show that the number of intersections stays constant modulo 1, and obtain the
desired contradiction.

We are left with the case when dist(y, γ) ≥ R/20; let us check that this never happens,
and in fact that

(34.42) dist(y, γ) ≤ Cε0R for y ∈ L ∩B(0, R/3).

Indeed suppose that y ∈ L∩B(0, R/3) and dist(y, γ) > Cε0R Obviously x /∈ EV , so x ∈ EH ,
and as before we can find a small (n−d)-sphere C0 centered at y, contained in the hyperplane
orthogonal to L, and that meets E exactly once and transversally. Also consider the (n−d)-
sphere C1 of radius Cε0R/2 centered at y and contained in the same hyperplane. Recall from
(31.4) that in B(0, R), E stays ε0R-close to the V-set X. If C is large enough, we can apply
the standard regularity theorem, as we did for (34.13) and the first lines of Lemma 32.2, to
find that E is a C1 surface near the two points of C1∩X. Moreover (because E is also a small
Lipschitz graph over the plane that contains the corresponding Hi), C1 cuts E transversally,
once near each point of C1 ∩ X. The same topological argument as above, using the fact
that by definition B(y, Cε0R) does not meet EY , gives the contradiction that proves (34.42).
This also concludes our proof of (34.41), and of the fact that γ meets B(0, 10−10R). We

are now able to prove that γ ∩ B(0, R/3) satisfies all the requirements mentioned before
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Theorem 34.1. First observe that when x ∈ EV and r < R/3, it follows from (34.18) and
the proof of (34.13) that

(34.43) dist(y, L) ≤ Cc1(ε0)(r/R)a/4r for y ∈ EY ∩B(x, r/2).

Since Cc1(ε0)(r/R)a/4 tends to 0 with r, it follows that γ has a tangent at x, equal to L.
Next we check that γ coincides with a Lipschitz graph in B(0, R/3). Let x, y ∈ γ ∩

B(0, R/3) be given; we want to show that

(34.44) |π⊥(x)− π⊥(y)| ≤ τ |π(x)− π(y)|,
with τ > 0 as small as we want. When x, y ∈ EV , this is trivial. When x ∈ EV and y ∈ EY ,
this follows from (34.43) with r = 3|x − y| (or directly from (34.13) if r is large). When
x, y ∈ EY , either there is a curve in EY that goes from x to y, and then we use the fact that
the direction `′(x) of the tangent stays close to L′, or else we can find z ∈ L, between π(x)
and π(y), which does not lie in π(EY ∩B(0, R/2)); this point lies in EV by (34.41), and now
we can apply (34.43) to the pairs (z, x) and (z, y) to get (34.44).

So γ ∩ B(0, R/3) is the graph of a τ -Lipschitz function ψ; the estimate (34.3) on Dψ
comes from (34.35), (34.36), and (34.43) (because EV ⊂ L anyway). We already checked
(34.2) (see (34.38)), (34.4) (see (34.34) and notice that EY ⊂ L ≤ H]

0), (34.5) is part of the
definition of γ, the tangent cone properties (34.6)-(34.9) were also checked before, and the
fact that V (x) is sharp when x is a boundary point of EV in L follows from Theorem 32.1.

We are left with the task of establishing the description of E in terms of faces. As usual,
this mostly mean proving estimates on the approximation of E in balls B(x, r). After x ∈ EV
(see (34.18)) and x ∈ EY (see (34.25) and (34.31)), the next piece of E in the hierarchy is EH .
So we take x ∈ EH ∩ B(0, R/4) and try to approximate E in B(x, r). Set d(x) = dist(x, γ)
and pick y ∈ γ such that |y−x| = dist(x, γ). Recall from (34.42) that d(x) ≤ Cε0R, so y lies
well inside B(0, R/3). Also, we easily deduce from the small Lipschitz description of γ that
y ∈ EY . Notice also that dist(y, L) ≤ d(x) ≤ 2 dist(y, L), again by the Lipschitz description
of γ.

For r > d(x)/2, set D = max(2 dist(y, L), d(x)+ r) (so that B(y,D) contains B(x, r) and
(34.24) holds for D); notice that D ≤ 4r and apply (34.25) in B(y,D); we get that

(34.45) dx,r(E, Y
t(y,D)) ≤ D

r
dy,D(E, Y t(y,D)) ≤ C

D

r

(D
R

)a/4
ε

1/4
1 ≤ C

( r
R

)a/4
ε

1/4
1 ,

which is as good as usual. For r < d(x)/2, we first apply (34.24) with the radius D =
2 dist(y, L), and notice that near B(x, d(x)/2), the truncated set Y t(y,D) coincides with a
half plane H0(x) ∈ H (compare with the definition of Y(y,D) above Theorem 30.3); hence
(34.46)

dx,d(x)/2(E,H0(x)) = dx,d(x)/2(E, Y t(y,D)) ≤ 2D

d(x)
dy,D(E, Y t(y,D)) ≤ C

(d(x)

R

)a/4
ε

1/4
1 .

The right-hand side is still as small as we want, which allows us to apply Theorem 22.2. We
get that E has a tangent half plane H(x) at x (which we knew already), and that

(34.47) dx,r(E,H(x)) ≤ c
( r

d(x)

)a/4
for 0 < r ≤ d(x)/2.
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With the usual manipulation (use (34.46) instead of (34.47) when r is rather close to d(x),
and proceeding as for (32.18)), we also have

(34.48) dx,r(E,H(x)) ≤ c
( r
R

)b/4
for 0 < r ≤ d(x)/2,

with c as small as we want and an even smaller b > 0. In the proof we first get it with
H0(x), but we can compare H0(x) and H(x) using an intermediate radius (the radius where
we switch from (34.46) to (34.47)).

We now go to the last level of the hierarchy, and take x ∈ EP ∩ B(0, R/9). As usual,
set d(x) = dist(x, L ∪ EY ) ≤ R/8 (because E contains points near the origin), and pick
y ∈ L ∪ EY such that |y − x| = dist(x, L ∪ EY ). For r ≥ d(x)/2, we can use the good
description of E that we already got in B(y, d(x)+r), and get a good approximation of E by
a set Z(x, r), of the form V (y) (if y ∈ EV ), Y t(y, d(x) + r) or Y (y) (if y ∈ EY and depending
on whether y lies far from L or not), or Y t(z, d(x) + r) or H(y) (if y ∈ EH and depending
on its distance to EY ).

When r ≤ d(x)/2, we first use the estimate for d(x), notice that Z(x, d(x)) coincides with
a plane in B(x, 2d(x)/3) and so E is well approximated by a plane in B(x, d(x)/2), apply the
regularity theorem, get an analogue of (34.47), and then by the now usual trick an analogue
of (34.48). We skip the details because they are quite similar to what we did before.

At this point we have good Hölder estimates on the variations of the direction of the
tangent to E at x ∈ EP , which are thus valid as long as we stay in a face, i.e., when we do
not cross L or γ. We still need to check that the organization of the faces is as in our initial
description of E near 0. In particular we need to be able to recognize faces.

Let x ∈ EP be given, and let y ∈ L ∪ EY such that |y − x| ≤ 10d(x) := dist(x, L ∪ EY )
(we will use the factor 10 to choose points preferably in EV or EY ). The simplest case is
when we can take y ∈ EV ; then by (34.18) (applied with r = 20d(x)) x lies close to one
of the two branches Hi(y) that compose V (y), and more precisely dist(x,Hi(y)) ≤ τd(x),
with τ as small as we want. In this case, x ∈ Fi, and it is even easy to find a nice path
from x to y, in EP , by applying (34.18) and the regularity theorem in the successive balls
B(y, 2−k+1d(x)). We also get the Lipschitz description with ϕi and (34.10) near x, because
we control both the position of points (directly by (34.18)), and because variations of the
direction of the tangent planes are controlled by our approximation estimates.

The second simplest case is when x is closer to EY than to EV , and we can pick y ∈ EY ;
then we apply (34.25) with r = 20d(x). Again x lies close to one of the three faces of
Y t(y, 20d(x)) or Y (y), depending on whether 20d(x) ≤ dist(y, L) or not. If in addition this
face is H ′1(y, 20d(x)), then we can proceed as before and prove that x ∈ F1, there is nice path
in EP that connects x to y, and we even have the desired Lipschitz description of E = EP
near this path. The same thing happens, with F2, if this face is H ′2(y, 20d(x)).

Otherwise, dist(x,H0(y), 20d(x)) ≤ τd(x) for the third face H0(y) of Y t(y, 20d(x)) or
Y (x). In this case, x lies in the third piece of E ∩ B0, and we can connect x to y as above.
Notice that if we see the vector e0 = e1 + e2 of H0 as pointing upwards; then x lies almost
right below y, or in other words y − x ∈ H]

0.
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The third and last case is when we have to take y ∈ EH . That is, we may now assume
that |y − x| = d(x) but dist(x,EV ∪ EY ) ≥ 10d(x). Again we have a nice approximation of
E in B(y, 5d(x)), which is given given by a half plane H(y) (as in the discussion above, for
balls centered on EH). In this case, we get a good description of E between x and y, coming
from a mixture of the standard regularity result for plain almost minimizers that look look
a plane (near x and not too close to y), and Theorem 31.1 (close to y). By looking at radii
larger than d(x), up to d1(x) = 10 dist(x,EV ∪EY ), we find out that EY lies much closer to
x and y than EV , and x lies in the vertical piece F0, essentially below EY . Hence we can
recognize the faces and their regularity comes from the slow variations of the tangent planes.

Here and for the Lipschitz description of the faces F1 and F2, we are skipping a small
part of the argument, where we check that the orthogonal projection, for instance from F1 to
H1, is surjective on the domain D1 bounded by π1(γ) and away from L. Due to the fact that
we have a small bound on the the angle between the tangent plane and, here, the direction
of H1, we don’t need a complicated degree argument, and instead we can proceed as for
(34.41), and say that if z ∈ D1 ∩ B0 does not lie in the projection of the face F1, we can
consider the point x ∈ F1 that minimizes |π(x)− π(z)|+ |π⊥(x)− π⊥(z)|, and then observe
that x does not lie on the boundary of the face (here γ) and, since near z, E is a C1 surface
with a tangent plane almost parallel to H1, we can find points near x that do strictly better.
The same argument works for F2, and even the third piece F0, even though the boundary
may be more complicated.

This completes our description of E ∩B0 and our proof of Theorem 34.1.

35 The missing case of parallel Y-sets

The next interesting case in our study should be when, in the same setting as for Theo-
rems 31.1-34.1, E is approximated by a minimal cone X ∈ Y(L), thus composed of three
half plane bounded by L and that make 2π

3
angles along L.

Unfortunately, the methods of this paper do not seem to be enough to treat this case
directly. Yet we try to explain why and what could be expected in this situation.

The main problem that we have is that, when E is a Y-set centered at 0 and that contains
L in one of its face, the monotonicity formula that we have (for the function F of (23.6)) is
not adapted. For sure F is monotone, but in this case F (r) = 3π

2
for r small, F starts to

increase when B(0, r) meets L, and it tends to 2π at ∞. By contrast, for a truncated set
of type Y, F is constant equal to 3π

2
, while for the full Y-set the measure of the shade is

computed twice. This is not good, because our typical proof is based on the observation that
in many situations F is nearly constant and then we can control the geometric situation. In
the case of our Y-set, we would be very happy with a different monotonicity formula which is
adapted to it (either because it counts the shade in a different way, or for some other reason),
but the author is not sure that such a formula exists. Less ambitiously one could hope that,
in the specific situation where X ∈ Y(L) and E is close enough to X, there is a quantity
that can be controlled and proved to be nearly monotone. That is, the near monotonicity
would specifically use the description of E ∩ Sr that we have, and possibly also the net of
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geodesics that was constructed in Section 26, even though different competitors may have to
be constructed. That is, it does not seem optimal to add the triangle T (r) as we did. This
last scheme looks more plausible but at this time the author was not able to make it work.

Notice that X ∈ Y(L) satisfies the full length condition; this is not the point. So if
we assume that 0 is a Y-point of L, i.e., a point of E ∩ L where the density of E is 3π

2
,

Theorem 22.2 applies, shows that E has a tangent cone Y ∈ Y(L) at 0, and says that E
is very close to Y in small balls B(0, r). But in the situation of Theorems 31.1-34.1 with
X ∈ Y(L), it could be that E ∩ L contains no point of density 3π

2
. And even if we assume

that 0 is such a point, it could be that E ∩ L contains no other point of density 3π
2

; see the
expected description below. Then we do not know how to control directly E in other small
balls centered on L. We could try to control E in small balls centered on EY , as we have
done when X is a V-set, but for this we used the monotonicity formula, which no longer
works here.

We try now to describe what E should look like in the situation of Theorems 31.1-34.1
but with X ∈ Y(L). Let us even assume that 0 is a Y-point of L, with a blow-up limit
Y ∈ Y(L) that contains L, so that the description is interesting starting from 0.

Just as when X is a plane, one option is that E leaves L right away. After all, Y-sets are
minimal even without a sliding condition, so E could have been any such set, even transverse
to L, and in the present case it may start parallel to L and just leave it. It is also possible
that two of the foils of Y leave from E, and the last one becomes composed of a large
face bounded by L and a triangular face, bounded by L on one side, and on the other side
by the set EY where it connects to the two foils above. Finally, we expect a complicated
combination of these behaviors to be possible, at least for almost minimal sets. As usual,
minimal sets may behave differently because have more rigidity.

Before we try to describe this with more detail, let us say how apparently complicated
examples may arise (but we will never actually check the almost minimality of the suggested
example below). Start from a Y-set Y0 in R3, say through the origin, but consider a boundary
set L0 which is not a straight line, but is smooth and is (very!) tangent to the spine L of Y0 at
0; see the left part of the somewhat exaggerated Figure 27 (the same as Figure 7). Obviously
Y0 is also sliding minimal with respect to the boundary L0, and if L0 is nice enough, we can
quite probably (but will not check here) find a C1 diffeomorphism G : R3 → R3 that maps
L0 to L and Y0 to an almost minimal set E = G(Y0) with sliding boundary L. The nice
property of G for this to work is that its derivative should be close to conformal in many
places, and in particular along L0, but nothing so special that it would be impossible to get.
Yet E can have a slightly complicated behavior, in particular concerning its position with
respect to L. This is what is suggested by the right part of Figure 27, which will inspire the
tentative description below. But first let us remark that Y0 itself is already an interesting
example, because we try in these notes to give descriptions of almost minimal sets that stay
valid also when the boundary L is a smooth curve, as will be mentioned in Section 38, and
the left part of Figure 27 is a perfectly valid example in this context.

Return to our tentative description of almost minimal sets E that look like Y ∈ Y(L).
First there should be a curve γ, which is the graph of a τ -Lipschitz function ψ : L → L⊥
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Figure 27: Left: A minimal set Y0 and a boundary curve. Right: The probably almost
minimal set E = G(Y0).

and is also C1+a-continuous near 0, as in (34.3). This curve may leave and return to L many
times, but for x ∈ γ, E has a unique tangent cone which is a Y-set. In the example above,
γ = G(L). Part of it lies on L (for instance, the origin), and part of it may be away from L,
creating a set EY as in the previous section.

There may also be a set EV ⊂ L of points of E ∩ L where E has a tangent V-set, flat or
almost flat. In the example above, this corresponds to parts of L = G(L0) where L0 has left
the spine, but still lies in Y0. At such points, E may have a crease (and on one side we have
a face that leads to EY , while the other side looks like an infinite face of E = G(Y0)). At
the boundary of EV in L, we may find points of γ where γ leaves L, or points where E has a
tangent plane (and E may in fact leave L), but otherwise, if x ∈ EV is a point where E has
a real crease (i.e., the tangent cone of E at x is a V set which is not a plane), we know from
Section 32 that there is a small neighborhood of x where E has a crease and L is composed
of points where E has a tangent cone which is a generic V-set, almost flat.

Finally, in our attempted description, it is important to say that all the other points of
E are points of type P, near which E is a C1 surface. These include points x ∈ E ∩L where
E casually crosses L (see the discussion of fully transverse cones in the next section). Also
notice that E is allowed to leave L (at a point of L∩γ, or at a point of EV where the tangent
is a plane). But there is no point of type H in this discussion, where E would have a tangent
half plane. And there is no point of EY \ γ.

The description should involve a C1+a-behavior, where the direction of the tangent plane
(or cone) to x varies in a Hölder-continuous way along the faces (and with natural limits on
L and γ), as in the previous section, but we do not write this down.

In order to establish the description above, we could also try to use the information that
we have so far (essentially from the previous sections) and prove things with topological
arguments. Obviously the author did not succeed so far. One of the difficulties seems to
be that in addition to the expected nice curves that compose γ \ L, the set EY of Y-points
of E \ L may also, a priori, contain some other curves. We know that away from L, EY is
locally a simple C1 curve with no endpoints, and we may hope to control entrance and exit
points in some planes perpendicular to L, but there seems to be no topological reason why
EY cannot also contain some small loops near 0. Even worse, the monotonicity of F only
allows us to exclude points of E \ L with a density at least 2π, which means that we could
also imagine that different curves EY let at some points of type T, and then topological
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counting arguments immediately become more complicated. The point of excluding extra
curves in EY is that then we could start arguments as in Lemma 32.3, where we move curves
(or (n− 2)-spheres) and say that since they never cross EY , they keep the same number of
intersections with E modulo 2.

But anyway the author expects a mixture of topological and metric information to be
needed, to avoid various strange cases. A topological possibility is evoked in the second
part of Figure 8, which we repeat here as Figure 28. The top part is a warm-up picture of
four sections of the example of G(Y0) above, and the strange case is depicted in the lower
two sections. On the left, the section that contains the origin does not show any strange
behavior, just a set that looks like a Y . And on the right, we see two nodes, that correspond
to two curves of EY that both leave from L at the origin and stay close together, allowing
a thin triangular face (seen as a curve on the picture) that connects one of the curves to
L, as it happens near sharp V-sets, another triangular face that connects the two curves of
EY (also seen as a small curve on the picture), and as expected three large faces that make
the usual 2π

3
angles at the large scale. Some of the faces would have to turn fast, because of

the various 2π
3

angles constraints, and again the author does not trust that this is a viable
model.

LEY& EY

L EY

L EY

L

Four vertical sections of E, seen from the right

LEY& EY

L

EY

Two vertical sections of E (unlikely)

Figure 28: Four sections of G(Y0) and then two less probable sections of a set E

Another natural argument does not seem to work easily here. In some configurations,
when we have a curve EY that leaves L and is attached to it by a thin triangular piece, it
seems tempting to remove the third piece of E (the face in front of the thin face, directly
across from L), and then say that what remains is still an almost minimal set, to which we
can apply the results of the previous sections. Of course it is not certain that the truncated
set is still minimal, but more importantly the truncation only works as long as EY does not
do something crazy, like returning to L so that we may need a different combination of faces.
That is, in strange situations like the one depicted in Figure 28, we may have a hard time
defining the face that needs to be removed. Or it could be that what looks like two different
faces near L is actually two pieces of a same face, with a connection somewhere near L, and
then the truncation is impossible as well.

As we shall see when we deal with other cones X, the same issue as for x ∈ Y(L) arises

295



when X is a minimal cone whose spine contains a half line of L. For instance, when X is a
cone of type T centered at 0 and that comes from a tetrahedron with a vertex in L. Then
the description of E near the corresponding side of L is essentially as hard to get as when
X ∈ Y(L).

36 Approximation by other minimal cones

There are many other possible cones X in the setting of Theorems 31.1-34.1, and the purpose
of this section is to say that the local study of E when it is close to one of these cones is not
very different from what we did (or unfortunately did not manage) in the previous sections.
The general theme is that we can often study E in annuli centered at the origin, and then
glue the pieces together.

The situation will be simpler if we assume also that

(36.1) 0 ∈ E and X is a blow-up limit of E at 0.

We did not always assume this, because in the special cases where we were able to prove
something, we were able to find points x ∈ E near the origin, with an acceptable density.
For instance, in the situation of Theorem 34.1 (sharp V-sets), in the simplest case 0 would
be a V-point of L, but even if this were not the case, we could still find points of γ very near
0, and these points have the maximal F -density.

Notice also that “X is a blow-up limit of E at 0” has always been the main case where
we intended to apply Theorems 31.1-34.1, and we observed earlier that the assumptions for
these theorems are satisfied as soon as (36.1) holds, for arbitrarily small radii R.

It is often quite convenient to know that

(36.2) X satisfies the full length condition,

because in this case if ε0 is small enough and if (36.1) holds, or even only

(36.3) θ(0) := lim
r→0

r−2H2(E ∩B(0, r)) = H2(X ∩B(0, 1)),

Theorem 22.2 says that E has a unique tangent cone X0 at 0 (if (36.1) holds, X = X0) and

(36.4) d0,r(E,X0) ≤ c1(ε0)
( r
R

)a/4
for 0 < r ≤ R

as in (22.9). This is the typical tool which will allow us to cut B(0, R/10) into annuli where
hopefully we can control E.

Recall that we do not know whether all the minimal cones satisfy the full length property.
At least the planes, the cones of type Y, T, or V do. For the products of two orthogonal
Y -sets of dimension 1, V. Feuvrier showed that they do not satisfy the “full length property
because of angles”, but it is not known whether they satisfy the full length property itself.
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Even if 0 ∈ E and we do not know that X satisfies the full length condition for one (or
equivalently all) of its blow-up limits at 0, we may still be able to do a decomposition of
B(0, R/10) into annuli where E is well approximated by sliding minimal cones. Indeed, if
X (0) denotes the set of blow-up limits of E at 0, then every element X of X (0) is a sliding
minimal cone, and (since X (0) is actually a compact set) for each ε0 > 0 we can find R0 > 0
such that for 0 < R ≤ R0, we can find X ∈ X (0) such that d0,R(E,X) ≤ ε0. Thus we are
in the situation of Theorems 31.1-34.1 for R small, even though in this case we do not know
whether X depends on R, and at which speed d0,R(E,X) tends to 0.

36.1 Cones X which are fully transverse to L

We shall say that X is fully transverse to L when K = X ∩ S does not meet L. That is,
L ∩X = {0}. In this case, X is a plain minimal cone (no sliding condition), and it has full
length as a sliding minimal cone (as in Definition 4.1 and (36.2)) if and only if it has full
length as a plain minimal cone (as in [D4]). Set

(36.5) A = B(0, R) \B(0, 10−2R) and A1 = B(0, R/2) \B(0, 2 · 10−2R).

Notice that X ∩A is composed of a finite collection of planar faces, bounded by (radial line
segments and) arcs of great circles, that may meet by sets of three and with 2π

3
angles, and

it does not get close to L. Under the assumptions of Theorems 31.1-34.1, and as usual if ε0

is small enough, E ∩ A1 can be described as a nice C1 version of X ∩ A, i.e., composed of
C1 faces that may meet by sets of 3 with 2π

3
angles along C1 curves. This merely uses the

regularity results in the plain case, from [Ta] or [D4].
Once we have the same assumption in the annuli 2−kA, and hence the same description

in the annuli 2−kA1, we can glue them. When we do not know whether X satisfies the full
length property, we still get a reasonably nice description of E near 0, as a sort of spiral, not
exactly C1, but not far.

If in addition X has full length as in (36.2), we can use the extra decay in (36.4) to apply
the regularity results from [Ta] and [D4] with constants εk in geometric decay, get regularity
estimates for E∩2−kA1 with some geometric decay too, and when we glue we get C1+a faces
(including near 0) and thus a good C1+a description of E ∩ B(0, R/2), i.e., that near the
origin E is the image of X0 by a C1+a diffeomorphism, with uniform estimates.

This is enough for us; the main challenge is to get a full list of minimal cones and establish
the full length. But there is nothing special in this subsection concerning the sliding boundary
L. We like to say that E crosses L casually, without even noticing that it exists.

36.2 Cones X that contain half of L in the interior of a face

The simplest example of the situation that we describe now is obviously when X is a plane
that contains L. But X could also be a Y-set or a T set, for which X ∩ S meets L, but
not at a a vertex. Or, in higher dimensions, the union of a plane that contains L and some
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additional transverse stuff (the simplest being another, nearly orthogonal plane, as in [Li1]
or [Li3]).

We shall first try to describe E under some additional properties; we shall discuss the
other cases later, and in the mean time we will get a simpler discussion. First assume that
X has the full length property (as in (36.2)); this way we can use (36.4), get a description in
concentric annuli, and deduce from this a global description. In fact, if the tangent cone X0

at the origin were different from X, what we should really study is the behavior of E near
X0, so let us just assume that X0 = X, i.e., X happens to be the unique tangent cone to E
at x. This way we get the following simpler form of (36.4), i.e.,

(36.6) d0,2r(E,X) ≤ c1

( r
R

)a/4
for 0 < r ≤ R/2,

for some c1 > 0 which is as small as we want.
So assume that ` ∈ L ∩ S lies in K = X ∩ S, but not as a vertex of K. By the standard

description of K near ` (See Section 3), there is a small η > 0, which depends only on the
dimension, such that in B(`, 40η), K coincides with a geodesic through `. Call this geodesic
C, and denote by P the plane that contains C. Thus L ⊂ P , and (36.6) also says that

(36.7) dr`,20ηr(E,P ) ≤ (10η)−1c1

( r
R

)a/4
.

This is good, because if ε0 and hence also c1 are small enough, E satisfies the assumptions of
Theorem 33.1 in B(r`, 20ηr). Hence E coincides in B(r`, 2ηr) with a small Lipschitz graph
over P , with maybe a crease along part of L.

We have a description like this for every r ∈ (0, R/2), and now we glue the various
descriptions, and see that in the cone

(36.8) T+(`) =
{
x ∈ Rn ; dist(x, L+(`)) ≤ η|x|

}
,

where L+(`) =
{
t` ; t ≥ 0

}
is the half line that contains `, E still coincides with the graph

over P of a Lipschitz function ϕ with small Lipschitz constant. Again we may have a crease
along part of L, i.e., a discontinuity of the derivative Dϕ along a part Lg of L, and we also
have the analogue of (33.4) on P ∩ T+(`), namely that

(36.9) |Dϕ(x)−Dϕ(y)| ≤ τ |x− y|bR−b for x, y ∈ B(0, R/2) ∩ T+(`) ∩ P \ Lg

with a constant τ which is as small as we want. Here we observe that because we have a
power decay in (36.7), and if we follow the proof of of (33.4), we also get (36.9) with an
estimate that is also valid when x or y approaches 0 (while staying in T+(`)∩P \Lg). Since
X is tangent to E at 0, observe that Dϕ(x) tends to 0 (like a power, by (36.9)) when x tends
to 0.

This was the main point of our description. Let us first assume in addition that X ∩ S
meets L only once (not at a vertex), as in the examples of a Y-set or a T set above. We
also get a nice description of E in B(0, R/2), obtained by gluing what we have in T+(`) and
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what we can easily deduce from the regularity theorem for plain almost minimal sets. Let
us say a little more about this. Recall the standard description of K; in the present case,
it is composed of a finite collection arcs of circles Cj, all with length at least η, and which
connect vertices ξ ∈ V . Here because of our assumption, we only have the special vertex `,
plus some natural vertices ξ ∈ V1 where K has a Y -shape. The points of V1 are at distance
at least 10η from ` and from each other, and also (maybe, at the price of redefining η and
requiring ε0 to be smaller if X passes near −`), the whole K stays at distance at least 10η
from −`. For ξ ∈ V1 and 0 < r ≤ R/2, the regularity theorem for plain almost minimal sets
gives us a description of E ∩ B(rξ, ηr) as a C1 version of a Y-set centered at ξr and with a
nearly radial spine. We can glue all these results and get a nice description of E in the cone
T+(ξ), again as three faces of class C1+a (including all the way to 0).

Finally, we can deal with ξ ∈ K such that dist(ξ, {`}∪V1) ≥ η/10. For each such point ξ
and 0 < r < R/2, X coincides with a plane near B(rξ, ηr/20), so we may apply the flat case
of the regularity theorem to show that in B(rξ, ηr/100), E is a C1+a-version of an almost
radial plane, with good Hölder estimates on the direction of the tangent plane. We can glue
together the local descriptions in the B(rξ, ηr/100), taking into account that near 0 we have
an extra decay coming from (36.6), complete the information with what we already have in
T+(`) and the T+(ξ), ξ ∈ V1, and get a description of E ∩B(0, R/2) as a finite union of nice
C1+b faces, with the 2π

3
angle condition along C1+b curves γξ, ξ ∈ V1 (the set EY , where the

various faces meet), and the creases that were described in T+(`).
We consider ourselves happy with the description above. In the similar case when −` also

lies in K, and is not a vertex either, we have the same description of E in the opposite cone
T+(−`) (as a flat surface with creases), and we can glue it to the same other local descriptions
as above, to get a full description of E in B(0, R/2). For the moment the only examples
that we have are when X is a plane (already treated in Section 33) and transverse unions of
planes, where we just get transverse unions of flat surfaces with maybe some creases near L.

For the description above, we left out the case when E is close to X in B(0, R), but
maybe not in smaller balls. If we know that all the blow-up limits of E at 0 are cones X
such that no point of L ∩ K is a vertex of K, we can still proceed as above, except that
instead of (3.6) we only get thad d0,r(E,X(r)) tends to 0 (but we don’t know the speed)
and X(r) is a minimal cone as above, but that may depend on r. In this case, we get nice
descriptions of E in annuli B(0, r) \ B(0, r/10) that we can glue, but we don’t know that
the faces and EY become better at 0, and for instance the faces of E may spiral near the
origin. That is, we get a reasonable description of E∩B(0, R/2), but in the small bilipschitz
category rather than C1+b. Notice that this hybrid case can only happen when X does not
satisfy the full length condition. Such cones may exist, but we have no known example.

In the worse case when we do not know about the blow-up limits of E at 0, we still get
a description of E in the annulus A1, for instance. Again without something like the full
length, and especially before we have a concrete list of minimal cones, it seems a little too
abstract to ask for a concrete description. Notice that when −` /∈ K, the full length should
be easier to prove because Section 29 allows us to use the free attachment in the proofs. At
any rate, the global conclusion of this section is that we do not really fear the case when X
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meets L, but not at a vertex.

36.3 Other behaviors of X near L, exotic sliding minimal sets

We continue with the description of E in B(0, R), depending on the behavior of K = X ∩ S
near L. We will proceed as before, assume that X satisfies the full length property, so that
(36.4) holds, and in addition the blow-up limit of E at 0 is X0 = X, so that the approximation
at smaller scales still comes from X, as in (36.6). Then we take ` ∈ K ∩ L and try to get
a description of E in the cone T+(`), depending on the type of ` in K. When ` /∈ K, there
is nothing to study, because for ε0 small enough T+(`) does not meet E ∩ B(0, R/2). We
studied the case when ` ∈ K is not a true vertex, and got the description of the previous
subsection. And there are three more cases that we can treat essentially as before. This
is when only one geodesic of K leaves from `, or when exactly two geodesics leave from `,
either with a generic angle or with a sharp 2π

3
angle.

Again we use the fact that thanks to Section 3, the length of the geodesics that leave
from ` is at least 40η, and there is no other geodesic that meets B(`, 40η). Because of this,
and for every radius r ∈ (0, R/2), (36.6) implies an analogue of (36.7), but where P is now
a half plane bounded by L, a generic V cone, or a sharp V cone. So, if ε0 is small enough,
c1 is very small too, and we can apply Theorem 31.1, 32.1, or 34.1 in B(r`, 20ηr). This
gives a good description of E ∩ B(r`, 2ηr). Then we glue the various pieces and get a good
description of E in T+(`), which actually becomes better when we approach 0, because of
the extra decay in (36.6) and (36.7).

In the slightly more interesting case when K makes a sharp 2π
3

angle at `, we get that
there is a small Lipschitz graph γ over L+(`), with a part in L+(`) and a part in EY , and
then E ∩ B(0, R/2) ∩ T+(`) consists in two main folds with roughly the same direction as
the two branches of X near `, plus maybe a thin vertical piece that attaches EY and the
two folds to γ ∩ L+(`). As before, E has a tangent cone X at the origin, so the description
becomes flat there. The precise description is the same as at the beginning of Section 34,
except that we restrict to T+(`). The half plane and generic cases are the same, except that
there is no curve γ and the foils are directly attached to L+(`).

If −` also lies in K, either as an edge point or a vertex with valence at most two, we
have a similar description of E in B(0, R/2)∩T+(−`). On the complement of a thinner cone
around L, we also have a good description of E, as a union of C1+b faces that (maybe) meet
along C1+b curves of EY . We glue all this and get a beautiful description of E ∩ B(0, R),
with C1+b faces bounded by C1+b curves of EY , and maybe thin “vertical” faces and creases
along parts of L. This was the pleasant part of the subsection.

So we are left with two issues. The first one is that we do not have an explicit list
of sliding minimal cones. That is, in addition to the planes, unions of strongly transverse
planes, and sets of type Y, H, andV, there are probably other sliding minimal cones, that
we’ll call exotic. The first candidate for an exotic minimal cone is the cone over the union
of the faces of a cube centered at 0 and such that L contains a great diagonal of the cube,
but there may be many other ones, in particular in higher dimensions. Another one (in
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dimensions 4 and above) is the product Y × Y of [Li2]. At least we know that it is minimal.
We don’t know whether all these cubes satisfy the full length property, and if not we may
have situations where we don’t know whether E has a unique blow-up limit at 0 (in which
case we can still try to give a biLipschitz description of E near 0, as suggested at the end of
the previous subsection), or not even (and then we have to distinguish cases depending on
the list of blow-up limits, but even so we can glue good descriptions in concentric annuli if
we can get them). This does not seem so bad to the author.

But our main problem arises again, full length property or not, when ` ∈ K ∩ L is a
point of type Y(L), where three geodesics of K leave from ` with 2π

3
angles. In this case we

don’t have an analogue of Theorems 31.1-34.1, so E may have an erratic behavior in any of
the balls B(r`, ηr`). This seems to be the only important missing piece in our puzzle. See
Section 35 concerning our difficulties in this case.

37 Verification of full length for the basic minimal cones

In this section, we check the full length property for the usual minimal cones. There would
be other cones to study, but we will not do this in the present paper.

Theorem 37.1. Let X be a cone centered at the origin, and also assume that the line L
contains the origin. The full length property of Section 3 is satisfied by X when X is a plane,
a half plane bounded by L, a cone of type V (two half planes bounded by L and making an
angle of at most 2π/3 along L), a cone of type Y (regardless of its position with respect to
L), or a cone of type T (the cone over the edges of a regular tetrahedron centered at 0, again
regardless of its position with respect to L).

There seems to be lots of cases here, but fortunately the computations were often done
earlier. Recall from Definition 4.1 that what we need to do is the following. We start from
a standard decomposition of K = X ∩ S (and we can even choose it if we want), and we
consider various deformations ϕ∗(K) of K associated, through some simple rules that may
vary a little, to a mapping ϕ defined on the set of edges of K. When the total length of
ϕ∗(K) is larger than H1(K), we need to find a sliding competitor for the cone over ϕ∗(K)
that does significantly better than that cone. We will be more specific soon.

Case 0. There is a first case that was already treated in Section 14 of [D4], which is when
K does not meet L (and X is a plane or a cone of type Y or T). In this case (we shall call it
Case 0), the deformation of K simply consists, when K is the union of the geodesics ρ(ai, bi),
in taking

(37.1) ϕ∗(K) =
⋃
i

ρ(ϕ(ai), ϕ(bi)).

When we do this, we do not need to check anything related to the sliding condition along L,
and we can simply import the computations from [D4]. So we will not need to worry about
this case, even though we shall partially redo the case of a cone of type Y.
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When K contains at least one point ` ∈ L, we cannot do this, because we have to do the
computation alluded to above also for other constructions of ϕ∗(K), which we call attached,
where typically we add the short geodesic ρ(`, ϕ(`)) and connect the rest of the geodesics in
a way that depends on the number of geodesics of K that end at `. Again, we shall be more
specific soon.

Case 1. Nonetheless, there is a second case where we can still rely on the computations of
[D4]. This is when one point of L ∩ S (call it `) lies in K, but not the other one. We shall
call this Case 1. Due to the short list of cones X under scrutiny, this happens only when X
is a Y-set and ` is in the interior of one of the faces of X (Case 1a), X is a T-set and ` is in
the interior of one of the faces of X (Case 1b), and X is a T-set and ` is one of the vertices
of K (Case 1c).

The simplest way to get rid of the computation entirely would be to observe that, thanks
to Lemma 29.1, we never need to use the attached option near ` when −` /∈ K; then we
may as well change the definition of full length in this case, remove the attached option, and
in the other case rely on the computations of [D4] because L no longer plays a role in the
computations.

But we announced full length, so let us take a slightly less lazy attitude and yet try to
avoid complicated computations. We only need to do the full length verification with the
attached deformations ϕ∗(K) (which are the new ones), but we observe that, by the proof of
Lemma 29.1, it is enough to find competitors for ϕ∗(X), not necessarily satisfying the sliding
condition, that satisfy (4.16). Recall that we can do this because, given such a competitor,
we can always modify it as in Section 29 (i.e., by projecting along thin tubes, starting from
the hole near −`) so that it satisfies the sliding condition and is nearly as good.

Subcases 1a and 1b. Let us start with Cases 1a and b, where ` is connected to two ver-
tices a1 and a2 of K, and near ` the attached deformation ϕ∗(K) coincides with ρ∗ =
ρ(ϕ(a1), ϕ(`)) ∪ ρ(ϕ(a2), ϕ(`)) ∪ ρ(`, ϕ(`)); see (4.9). With the free attachement, we would
have used the simpler set ρ] = ρ(ϕ(a1), ϕ(`)) ∪ ρ(ϕ(a2), ϕ(`)) instead. Call ϕ](K) the cor-
responding deformation of K, and ϕ](X) the corresponding cone. One possibility is that
ϕ(`) = `. Then, as sets, ϕ∗(K) = ϕ](K) and ϕ∗(X) = ϕ](X). In this case, due to the
fact that we are allowed to forget the attachment condition, (4.16) for ϕ∗(X) is the same as
(4.16) for ϕ](X), which was checked in [D4]. So we may assume that ϕ(`) 6= `. But then,
and again because we no longer need to worry about the sliding condition, it is very easy to
deform ϕ∗(X) in B(0, 1) into a subset of ϕ∗(X) which coincides with ϕ](X) in B(0, 1/2); just
contract the additional geodesic ρ(`, ϕ(`)) along itself, and follow the contraction partially
on the cone over ρ(`, ϕ(`)). When we do this, we cut off a substantial part of the cone over
ρ(`, ϕ(`)), and we save at least ∆1 = 1

8
H1(ρ(`, ϕ(`))) = 1

8
distS(`, ϕ(`)) in measure.

But since this may not be enough (for instance if the geodesic is very short), can even
compose this deformation with a deformation of ϕ](X), done in the smaller ball B(0, 1/2),

into a competitor X̃. We take X̃ from our verification of (4.16) for ϕ](X), except that
we divide the scale by 2 to allow an easy composition. Of course we only do this when
∆](ϕ) := H1(ϕ](K)) − H1(K) > 0 (as in (4.15)), and then we save an additional measure

of ∆2 = H2(ϕ](X) ∩B(0, 1/2))−H2(X̃ ∩B(0, 1/2)) ≥ c
4

∆](ϕ), by (4.16) for ϕ](X) (which
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was checked in [D4]). Altogether, since we may assume that c < 1/2,

H2(ϕ∗(X) ∩B(0, 1))−H2(X̃ ∩B(0, 1)) ≥ ∆1 + ∆2

≥ 1

8
distS(`, ϕ(`)) +

c

4

[
H1(ϕ](K))−H1(K)

]
+

≥ c

4

[
distS(`, ϕ(`)) +H1(ϕ](K))−H1(K)

]
+

(37.2)

≥ c

4

[
H1(ϕ∗(K))−H1(K)

]
+

because H1(ϕ∗(K)) ≤ H1(ϕ](K)) + distS(`, ϕ(`)). This proves (4.16) in our first two cases.

Subcase 1c. In Case 1c, ` is connected in K to three vertices ai, 1 ≤ i ≤ 3, the free
deformation ϕ](K) of K coincides near ` with ρ] =

⋃
i ρ(ϕ(`), ϕ(ai)), while we are interested

in the attached deformation where we select an index, say, i = 1, and replace ρ(ϕ(`), ϕ(a1))
with ρ(ϕ(`), `) ∪ ρ(`, ϕ(ai)). That is, we force one of the branches ρ(ϕ(`), ϕ(a1)) to make
a detour through `. See (4.11) and (4.12). When ` ∈ ρ(ϕ(`), ϕ(a1)), we did not change
anything to the final sets, ϕ∗(K) = ϕ](K) and ϕ∗(X) = ϕ](X), and (4.16) for ϕ∗(X) is the
same as (4.16) for ϕ](X), which was checked in [D4]. Otherwise, and since Definition 4.1
allows us to restrict to so-called injective mappings ϕ, ρ(ϕ(`), `)∪ ρ(`, ϕ(ai)) is disjoint from
ρ], and

(37.3) H1(ϕ∗(K))−H1(ϕ](K)) = distS(`, ϕ(`)) + distS(`, ϕ(a1))− distS(ϕ(`), ϕ(a1)).

As before, we take ϕ∗(X) and deform it first, in B(0, 1), into a set X̃1 that coincides with
ϕ](X) in B(0, κ), where κ will be chosen soon. Recall that we do not need to worry about
the sliding condition; we claim that the same sort of computations as in Lemma 10.23 in
[D4] (see below (27.3) for a description of the proof) yield that

∆1 := H2(ϕ∗(X) ∩B(0, 1))−H2(X̃1 ∩B(0, 1))

≥ C−1α2|ϕ(`)− `| ≥ C−1
[
H1(ϕ∗(K))−H1(ϕ](K))

]
,(37.4)

where π−α denotes the angle at ` of the two geodesics ρ(ϕ(`), `) and ρ(`, ϕ(a1)). If we take
κ = 0, the first inequality is a direct consequence of Lemma 10.23 in [D4]. Recall that there
we use the angle at ` to push the two faces bounded by ρ(ϕ(`), `) and ρ(`, ϕ(a1)) a little bit in
the direction of the cone H over ρ(ϕ(`), ϕ(a1)). With a slightly more complicated discussion,
we could even make sure that in B(0, κ), for some small enough κ, we push X all the way to
that cone H. Let us proceed another way. First let the first competitor (with κ = 0, coming
from [D4]) be as it is (i.e., lying between H and the cone over ρ(ϕ(`), `) ∪ ρ(`, ϕ(a1)), and
push it again inside the smaller ball B(0, Cκ), so that it coincides with H in B(0, κ). We
then need to show that we do not increase the measure by more than Cκ2α2|ϕ(`)− `| when
we do this, because then we take κ small and get the first half of (37.4). We proceed as
in Lemma 10.23 of [D4], and in particular follow the error terms, use the fact that at some
point the Jacobian of our soft transformation has an α2 in it (by Pythagorus), and get the
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desired estimate. We skip the details because we believe they would just make the reader
feel sick uselessly.

For the second part of (37.4), the strong reader will use elementary geometry in the
sphere, while the author would rely on the size of the derivative of f(z) = distS(z, ϕ(a0)) +
distS(z, ϕ(`)) along a path from ` to ρ(ϕ(`), ϕ(a1)), and use the computations below (28.5).
Again we skip the (now easy) details.

Once this first modification is done, we use (4.16) for ϕ](X), which was checked in [D4],

to construct a second competitor X̃, where we modify X̃1 = ϕ](X) in B(0, κ). This time we

save only ∆2 = H2(ϕ](X) ∩ B(0, 1/2)) − H2(X̃ ∩ B(0, 1/2)) ≥ cκ2∆](ϕ). We add the two
gains as in (37.2) and get that

H2(ϕ∗(X) ∩B(0, 1))−H2(X̃ ∩B(0, 1)) ≥ ∆1 + ∆2

≥ C−1
[
H1(ϕ∗(K))−H1(ϕ](K))

]
+ cκ2

[
H1(ϕ](K))−H1(K)

]
+

≥ τ
[
H1(ϕ∗(K))−H1(K)

]
+
,(37.5)

with τ = min(C−1, cκ2) and because H1(ϕ∗(K)) ≥ H1(ϕ](K)). Again this is (4.16) for
ϕ∗(X).

Case 2. We may now turn to Case 2, when both points `± of L ∩ S lie in K. With the
present list of minimal cones X, this happens only when X is a V set, including a plane
through L, when X ∈ Y(L) (a Y-set for which `+ lies on the interior of a face would not do,
because then −` /∈ K), and also when x ∈ T and `± lie in the middle of two opposite edges
of K.

Subcase 2a. We start with the apparently most interesting case when X ∈ Y(L). First we
recall how we decompose K = X ∩ S and define the possible deformations ϕ∗(K). The set
K is composed of three half circles Ci, 1 ≤ i ≤ 3, we choose a point wi ∈ Ci, in the middle
of of Ci (because this is allowed and may simplify some computations), denote by `+ and
`− the two points of L ∩ S, and also denote by Ci,± the geodesic arc ρ(wi, `±). Thus we
use a set V of five vertices, and K is the union of the six arcs Ci,± of length π/2. Recall
that for each verification that we have to do, we are given a mapping ϕ : V → S, such that
supv∈V |ϕ(v) − v| is as small as we want, then we define a set ϕ∗(K) by some set of rules
that will be explained soon, denote by ϕ∗(X) the cone over ϕ∗(K), and, if

(37.6) ∆L = H1(ϕ∗(K))−H1(K) > 0

(as in (4.15) but with a different name), we need to prove that

(37.7) σ ≥ C−1∆L

where σ is, a little bit as in (27.1), the supremum of what we can save in terms ofH2-measure
when we replace ϕ∗(X) with one of its sliding competitors in the unit ball. As earlier, we
shall use lower bounds on σ that come from simple geometric information, like the angles
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between the geodesic arcs that compose ϕ∗(K). And the constant C in (37.7) is not allowed
to depend on ϕ.

We start with the most interesting subcase when ϕ∗(K) is attached at both points `±,
and ϕ∗(K) is described near (4.11). We select for each choice of sign ± an index i± ∈ {1, 2, 3}
and set

(37.8) ϕ∗(K) = K
i+
+ ∪K

i−
− ,

where for each sign

(37.9) K
i±
± = ρ(ϕ(wi±), `±) ∪ ρ(`±, ϕ(`±))

⋃
∪j 6=i±ρ(ϕ(wj), ϕ(`±)).

Thus ϕ∗(K) is composed of six long geodesics starting from the three wi and that end at or
near the `±, plus two short arcs ρ(`±, ϕ(`±)) to connect them. We allow the degenerate case
when ϕ(`±) = `±.

The way we choose the three points mi = ϕ(wi) in the arguments, that is, when we choose
the competitors, allows us to take them in the hyperplane H at equal distance from `+ and
`−. That is, even though in principle the definition would force us to study the case when
mi /∈ H, we know that we do not need this case and so we will not study it. Even though
this would be possible, at the price of an additional comparison between such a choice of
mi and the closest choice where mi ∈ H. Now set fi(z) = distS(z,mi) = distS(z, ϕ(wi)) for
z ∈ S, and notice that

(37.10) H1(K
i±
± )− 3π

2
= distS(ϕ(`±), `±)− π +

∑
i 6=i±

fi(ϕ(`±))

because H1(ρ(mi± , `±)) = π
2

and, since we may assume that ϕ is “injective” as in Defini-

tion 4.1, the arcs that compose K
i±
± are disjoint. We add up these two identities and get

that

(37.11) ∆L = f+(ϕ(`+)) + f−(ϕ(`−))− 2π, where f±(z) := distS(z, `±) +
∑
i 6=i±

fi(z).

What we want next is an estimate for ∆L in terms of various angles and distances, that we
shall then estimate in terms of σ. For the computation that follows, we fix a sign ±, drop it
from the notation, set m0 = `±, and assume, without loss of generality, that i± = 3, so that

(37.12) f±(z) = f(z) =
2∑
i=0

fi(z),

with f0(z) = distS(z, `±) = distS(z, `) = distS(z,m0). Denote by vi(z) the unit vector
pointing in the direction of ρ(z,mi) (as it leaves from z, and assuming that z 6= m0,m1,m2).
Then set s(z) =

∑2
i=0 vi(z), and for z = ϕ(`), set vi = vi(ϕ(`)) and s = s(ϕ(`)). Finally
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define δ = distS(`, ϕ(`)) = H1(ρ0). We want to estimate f(ϕ(`)) in terms of all these
numbers.

Let ξ lie on the geodesic ρ` = ρ(`, ϕ(`)) and let w = w(ξ) denote the tangent vector to
ρ` at ξ pointing in the direction of ϕ(`); thus w(ϕ(`)) = −v0. The derivative of fi in the
direction w is −〈vi(ξ), w〉 and so the derivative of f is −〈s(ξ), w〉. Thus

(37.13) f(ϕ(`))− π = f(ϕ(`))− f(`) = −
ˆ
ρ`

〈s(z), w(ξ)〉 dl(ξ) ≤ δ〈s, v0〉+ 10δ2

because f(`) = π, and with an easy estimate on the variations of w(ξ) and the vi(ξ) along
the short geodesic. Thus this tends to be larger when v1 and v2 make an angle which is
larger than 2π

3
. Our next goal is to prove that

(37.14) 〈s, v0〉δ + 10δ2 ≤ Cσ

(precisely the large angle situation alluded to above) and for this we shall use some lower
bounds that were obtained in Sections 27 and 28. The point z = ϕ(`), and the vectors vi
and s play the same role as there; see near (27.6). Here we are thinking about estimates like
(27.3), (27.4), (27.16), and (27.20). The reader may be worried that for these estimates we
used a notion of “good competitors” (see near (26.52)) which is different from our definition
of sliding competitor. But here the origin lies in L, the triangle T (r) reduces to the interval
[`−, `+], and in this context the new condition (26.53) is actually stronger than the usual
sliding condition, which means that the good competitors that we build are also sliding
competitors and so we can use the estimates (27.3)-(27.20). Thus, with the same proof as
above, (27.16) yields

(37.15) σ ≥ C−1δ〈s, v0〉 when 〈s, v0〉 ≥ |z − `|,

and by (27.20)

(37.16) σ ≥ C−1δ|s|2.

We start with the case when |s| ≥ 10−10, say. Then σ ≥ C−1δ by (37.16), which is better
than (37.14). So we may assume that |s| ≤ 10−10.

Next suppose that σ ≤ C−1
1 δ2, where C1 will be computed soon. For i = 1, 2, let αi

denote as near (27.3) the norm of the sum of the unit directions at mi = ϕ(wi) of the two
geodesics of ϕ∗(K) that leave from mi, and recall from (27.3) that α2

i ≤ Cσ ≤ CC−1
1 δ2. Now

follow ϕ∗(K) when it leaves z = ϕ(`), starting in the direction of mi. When it reaches mi,

it turns by a small angle, of size at most 2αi ≤ 2
√
CC−1

1 δ << δ. After nearly half a turn,
it has deviated by at most Cαi << δ from the continuation of ρ(z,mi). This last arc (call
it ρi) goes through −z, where it arrives with the direction −vi. Because |s| ≤ 10−10, the
three vectors vi make angles with each other that are roughly equal to 2π/3, which means
that ρi, when it leaves from z, meets ρ(z, `) transversally, and does not get close to `. Or
equivalently that ρi, when it arrives at −z, meets ρ(−z,−`) transversally, and does not get
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close to −`. Hence, if C1 is large enough, the continuation of ϕ∗(K), which stays so close to
ρi, does not end at −`. That is, the two arcs of ϕ∗(K) that continue the geodesics ρ(z,mi)
meet back at some point z′, the next vertex of ϕ∗(K), and which is also the other vertex
z∓, because we made sure that we avoid −`. Another way to say this is that the index i∓,
associated to `∓ = −`, is also equal to 3. Now the directions of the three geodesics of ϕ∗(K)
that leave from z′ are C(α1 + α2)-close to v1 and v2, and for the third one the direction of
ρ(z′,−`), which is close to −v0 (and it is important that this is just the wrong sign!). Thus,
near the point z′, the situation is the following: s′ = s(z′) is large, δ′ = distS(z

′,−`) ≥ δ/2,
and then σ ≥ C−1δ by our first case above. Again this is better than (37.14).

Hence we may assume that σ ≥ C−1
1 δ2. Thus, in order to prove (37.14), we may assume

that 〈s, v0〉 ≥ δ, and now (37.14) follows from (37.15).
We also have the analogue of (37.14) neat the other point `∓, we sum, we use (37.13)

and (37.11), and we get that ∆L ≤ Cσ, as needed for (37.7). This completes our proof of
full length in the case when ϕ∗(K) is attached at both points `±.

Now consider the case when ϕ∗(K) is free near both points `±. The set ϕ∗(K) is now
composed of the six geodesics ρi,± = ρ(mi, z±), where mi = ϕ(wi) and z± = ϕ(`±). For
the same reason as before, we may assume that the mi all lie in the hyperplane H ′ at equal
distance between z− and −z−, and this will simplify the computation below a little bit. In
addition to the three numbers αi ≥ 0, that measure how flat ϕ∗(K) is near each mi (as
above), we also define s±, the sum of the three unit directions of the geodesics of ϕ∗(K) that
leave from z±, and the proof of (37.16) (or (27.20)) and (27.4) now yield

(37.17) α2
i + |s±|2 ≤ Cσ.

Consider the geodesic ρi,− that leaves from z−; at the point mi, it turns by at most 2αi, and
then it becomes ρi,+ and ends at z+. We may assume that σ is as small as we want, so all
the αi are as small as we want, the three geodesics ρi,+ meet with large angles, and with a
little bit of geometry we get that |z+ + z−| ≤ C

∑
i αi ≤ C

√
σ. We now observe that since

we assumed that distS(mi, z−) = π/2 = distS(mi,−z−),

(37.18) ∆L = H1(ϕ∗(K))− 3π =
3∑
i=1

distS(mi, z+)− 3π

2
= f(z+)− f(−z−),

where we set f(z) =
∑3

i=1 distS(mi, z). Then we estimate the derivative of f along the
geodesic ρ from z+ to −z−, which is bounded by |

∑
i vi(z)| ≤ |s±|+10|z+ +z−| ≤ C

√
σ. We

integrate along this geodesic and find that |f(z+)− f(−z−)| ≤ Cσ, which yields ∆L ≤ Cσ,
as needed.

The case when ϕ∗(K) is free near `− and attached near `+ is not needed (see the discussion
above where we use Section 29), but would not really be harder than the two previous ones;
we would start near `+ with the hyperplane H perpendicular to L, compute the position
of the opposite free vertex z′ as in the attached case, and end with the two computations
of f from the two arguments above. This completes our verification of full length when
X ∈ Y(L).
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Subcase 2b. Our next case is when X ∈ V(L) or X is a plane that contains L. One
possibility to prove the full length in this case would have been to follow the proof of Sec-
tions 27 and 28 and notice that we can let d0 tend to 0, but we can instead follow the proof
that was given when X ∈ Y(L), and simply remove some branches from the computation.
That is, suppose first that ϕ∗(K) is attached at both `±. Set mi = ϕ(wi) for i = 1, 2
and z± = ϕ(`±), and recall that in the present case ϕ∗(K) is composed of the four arcs
ρi,± = ρ(mi, z±), plus two short connections ρ± = ρ(z±, `±). Then ϕ∗(K) = K+ ∪K−, with
K± = ρ1,±∪ρ2,±∪ρ± (as in (37.8) and (37.9), with one less piece each time),H1(K±) = f±(z±)
with f±(z) = distS(z, `±) + distS(z,m1) + distS(z,m2), and then

(37.19) ∆L = H1(ϕ∗(K))−H1(K) = f+(z+) + f−(z−)− π

by (37.6) and as in (37.11) and (37.12), but where we don’t even have to worry about the
two additional arcs leaving directly from `+ and `−.

As before, we may assume that the two points mi = ϕ(wi) lie on the hyperplane H that
lies at equal distance from `+ and `−, prove that f+(z+)− π ≤ δ〈s+, v0〉+ 10δ2 as in (37.13)
and 〈s+, v0〉δ+ 10δ2 ≤ Cσ as in (37.14) (and similarly for f−(z−)), and conclude from there.

We now stay with the same X ∈ V(L)∪P(L), and assume that we have a free attachment
at both `±. We still have that α2

1 +α2
2 ≤ Cσ as in (37.17) or (27.4), but we also have numbers

α± = |v1(z±)+v2(z±) (coming from the angles of the two geodesics ρi,± at z±), and the same
proof also yields α2

± ≤ Cσ. Notice that even if by bad luck some ρi,± contains `±, we still
do not need to check the sliding condition at that point, by definition of a free attachment.
Here we are in the situation when ϕ∗(K) is very close to a great circle, and we may appeal
to computations that were done in [D4], which yield

(37.20) ∆L = −2π +
2∑
i=1

∑
±

distS(mi, z±) ≤ C(α2
1 + α2

2 + α2
−) ≤ Cσ,

where we do not even need the last angle α2
+ because it is controlled by the other ones. We

refer to [D4] for the computation.
If we have a free attachment at `− but not at `+, we still have that α2

1 + α2
2 + α2

− ≤ Cσ
as before. In our estimate for ∆L, we also have to add the length of ρ+ = ρ(z+, `+), so the
proof of (37.20) yields

(37.21) ∆L ≤ C(α2
1 + α2

2 + α2
−) + distS(z+, `+) ≤ Cσ + distS(z+, `+).

We may assume that the three angles αi and α− are small, because otherwise ∆L ≤ 1 ≤
C(α2

1 + α2
2 + α2

−) ≤ Cσ directly. Then the two main geodesics ρ1,+ and ρ2,+ make an
angle close to π at z+, hence s+ = v0 + v1 + v2 (the sum of the three directions of the
geodesics that leave from z+) is large because v1 + v2 is small. That is, |s+| ≥ 1/2. Then
σ ≥ C−1δ = C−1distS(z+, `+) by the analogue of (37.16) or (27.20), and ∆L ≤ Cσ as needed.

Subcase 2c. We are left with only one possibility in Case 2, when X ∈ T and L goes through
opposite points at the middle of two opposite edges of X. See the right part of Figure 29.
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The general plan is, as we did in [D4], to use the angles of the deformed tetrahedron to
control the lengths and then ∆L.

Some general notation will be useful. Denote by w1, w2, w3, w4 ∈ S the four edges of
the unit tetrahedron T that defines X. Set mi = ϕ(wi) ∈ S. We are also interested in the
tetrahedron Tϕ with vertices mi. We may label the points so that the two points of L ∩ S
are `12 = (w1 + w2)/2 and `34 = (w3 + w4)/2. Then set z12 = ϕ(`12) and z34 = ϕ(`34). See
the left part of Figure 29. Some times it will not matter where they are relative to L; the
relative position of these points with respect to Tϕ will be more important.
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Figure 29: The situation of Subcase 2c (T on the left, Tϕ on the right)

What will be controlled best is angles at the vertices mi. First consider the angles of
the tetrahedron Tϕ; denote by αij the angle at mi of the face of Tϕ that does not contain
mj. With the notation of (10.12), α12 = Anglem1

(m3,m4), and similarly for the other ones.
That is,

(37.22) αij = Anglemi
(mk,ml), where i, j, k, l are different.

Again see Figure 29, on the right. All these angles are close to 2π
3

.
We are also interested in the angle βij, which is close to αij and obtained from αij as

follows. if the geodesic ρ(mi,mk) is one of the two special geodesics ρ(m1,m2) and ρ(m3,m4),
we replace mk with the vertex zik = ϕ(`ik) that is about half way; for this notation to
work fine we also set zkj = zjk when j < k. Thus for instance β13 = Anglem1

(z12,m4),
β23 = Anglem2

(z12,m4), and β43 = α43 = Anglem4
(m1,m2), to name the three angles

relative to the front face of Figure 29.
Finally, for 1 ≤ i ≤ 4 we define the sum si of the three unit vectors that are used to

define the three βij. That is, s1 = v(m1, z12) + v(m1,m3) + v(m1,m4), s2 = v(m2, z12) +
v(m2,m3) + v(m2,m4), s3 = v(m3, z34) + v(m3,m1) + v(m3,m2), and s4 = v(m4, z34) +
v(m4,m1) + v(m4,m2).

Next we explain about ϕ∗(K) and how we control the angles. Except for the two excep-
tional geodesics ρ(w1, w2) and ρ(w3, w4), we just replace ρ(wi, wj) in K with ρ(mi,mj) and

309



get the corresponding piece of ϕ∗(K). Then let us explain for ρ(w1, w2); the case of ρ(w3, w4)
is similar. If we have a free attachment, we just replace ρ(w1, w2) with ρ(m1, z12)∪ρ(z12,m2).
If instead we have an attached configuration, we also add the short geodesic ρ(z12, `12). We
do this for both points `, take the union, and get ϕ∗(K).

Notice that near the half line through mi, ϕ∗(X) (the cone over ϕ∗(K)) is a Y-set with
angles βij, and |si| is the same number as αϕ(wi) in (10.20) of [D4]; thus σ ≥ C−1|si|2 by
Lemma 10.23 there. See the discussion below (27.5), too. Let us record this, i.e.,

(37.23)
4∑
i=1

|si|2 ≤ Cσ,

and now try to control the geometry with this information. Later on, we will take care of
the short geodesics of attached configuration.

Subcase 2c1. We start with a case that is easier to understand, when z12 and z34 both
lie in the 3-space that contains the four mi. Then we can rely a little more safely on
Figure 29, which we rather see as a picture on the unit sphere, with straight lines replaced
with geodesics. Let δ1 denote the angle Anglem1

(m2, z12), counted positive if z12 lies outside
of the face (m1,m2,m4) as in the picture. Define δ2 = Anglem2

(m1, z12), with the same sign
convention, and then δ3 = Anglem3

(m4, z34) and δ4 = Anglem4
(m3, z34), counted positively

when z34 lies out of the face (m2,m3,m4), as in the picture. Since ϕ moves the points very
little, δ1/δ2 and δ3/δ4 are as close to 1 as we want.

A second advantage of the fact that z12 lies in the 3-space that contains the mi is that
the three unit vectors whose sum is s1 lie in a same plane (the tangent plane to S at m1 in
that 3-space). Then the fact that |s1|2 ≤ Cσ implies that |β1,j − 2π

3
|2 ≤ Cσ for j = 2, 3, 4.

In fact, the same argument works at every vertex, and we get that for all i, j,

(37.24)
∣∣βi,j − 2π

3

∣∣2 ≤ Cσ.

But we prefer to have a similar control the simpler angles αi,j, and for this we want to show
that

(37.25) δj ≤ C
√
σ for 1 ≤ j ≤ 4.

We need a bit of spherical geometry. Set Lij = sin distS(mi,mj) and concentrate on the
spherical triangle (m1,m2,m4) in front of the picture. By 18.6.13.4 in [Be],

(37.26)
L14

sinα23

=
L12

sinα43

=
L42

sinα13

.

In terms of βi,j,

(37.27)
L14

sin(β23 − δ2)
=

L12

sin β43

=
L42

sin(β13 − δ1)
.
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Then we do the same thing with the bottom face (m1,m2,m3), and we get that

(37.28)
L13

sin(β24 + δ2)
=

L12

sin β34

=
L32

sin(β14 + δ1)
,

where we exchanged 3 and 4, and changed signs because now z12 lies in the face. The same
computation in the face (m3,m2,m4) yields

(37.29)
L24

sin(β31 − δ3)
=

L34

sin β21

=
L23

sin(β41 − δ4)

and in the face (m3,m1,m4) (back there; exchange m1 and m2)

(37.30)
L14

sin(β32 + δ3)
=

L34

sin β12

=
L13

sin(β42 + δ4)
.

Let us assume that δ1 and δ2 are positive (otherwise, we could just exchange the names of
two faces), and also that δ3 and δ24 are positive (we’ll do the other case later).

We use (37.24) to estimate the sin(βij). A very simple computation that gives a hint of
what will happen next would be to assume that all the βij are equal to 2π

3
, and use (37.27)-

(37.30) to find that if both δi are positive, L14 < L12 by (37.27), L12 < L32 by (37.28),
L32 = L23 < L34 by (37.29), and L34 < L14 by (37.30), a contradiction.

Here we take into account small errors that come from (37.24). We deduce from the first
part of (37.27) that

(37.31) L14 =
sin(β23 − δ2)

sin β43

L12 ≤ (1− δ2/10)(1 + C
√
σ)L12.

Then by the second part of (37.28)

(37.32) L32 =
sin(β14 + δ1))

sin β34

L12 ≥ (1 + δ1/10)(1− C
√
σ)L12.

We compare, use the fact that δ1/δ2 is close to 1, and get that

(37.33) L14 ≤ (1− δ1/10)(1 + C
√
σ)L32.

Now (37.29) yields

(37.34) L32 = L23 =
sin(β41 − δ4)

sin β21

L34 ≤ (1− δ4/10)(1 + C
√
σ)L34

while by (37.30)

(37.35) L34 =
sin β12

sin(β32 + δ3)
L14 ≤ (1− δ3/10)(1 + C

√
σ)L14
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and, when we compare and use the fact that δ3/δ4 is close to 1,

(37.36) L32 ≤ (1− δ3/10)(1 + C
√
σ)L14.

This is only compatible with (37.33) when δ1 + δ3 ≤ C
√
σ; (37.25) follows.

We still need to check (37.25) when δ3 and δ4 are negative. The simple sketchy compu-
tation modulo errors from (37.24) is now that L42 ≤ L12 by (37.27), L12 ≤ L13 by (37.28),
L13 ≤ L34 by (37.30), and L34 ≤ L42 = L24 by (37.29). The details with the errors are the
same as for (37.33) and (37.36).

At this point we know that (37.25) holds and all the angles αij and βij are C
√
σ-close

to 2π
3

. We now try to reconstruct Tϕ from this information. By (37.26)-(37.30), there is a
number L such that |Lij − L| ≤ C

√
σ for i 6= j. Recall that Lij = sin distS(mi,mj); let us

set lij = distS(mi,mj) (so Lij = sin lij) and xij = cos lij. Since ϕ does not move the points
too much) the Lij, and hence also L, are close to sin l0, where l0 is the common value of the
distances distS(wi, wj) in T . Then, inverting the sine function locally near l0, |lij− l| ≤ C

√
σ,

for the number l such that sin l = L which lies close to l0, and also |xij − x| ≤ C
√
σ, where

x = cos l.
We want to evaluate L, l, and x more precisely. We use 18.6.13.7 in [Be], which says that

in a spherical triangle with angles α1, α2, α3 and opposite lengths l1, l3, l3,

(37.37) cosα1 =
cos l1 − cos l2 cos l3

sin l2 sin l3
.

We can use this to compute l0, because for the equilateral triangles that compose T , cosα1 =
cos 2π

3
= −1/2, and the right-hand side is cos l0−cos2 l0

sin2 l0
, so that x0 = cos l0 is a solution of

x− x2 = −1
2
(1− x2), or 3x2 − 2x− 1 = 0. The solutions are x = −1

3
and x = 1 (which we

exclude), and so x0 = cos l0 = −1/3. A confirmation is that if w1 = (1, 0, 0), the common
first coordinate of the other vertices wi is −1/3, because

∑
wi = 0.

Return to (37.37), which we now apply to one of the triangles that compose Tϕ. Set xi =
cos li; then the right-hand side is (x1−x2x3)(1−x2

2)−1/2(1−x2
3)−1/2. Since |xi−x| ≤ C

√
σ for

i = 1, 2, 3, the partial derivatives of the expression are less than 100 in the region of interest
near x0 = −1/3, and the left-hand side of (37.37) is C

√
σ-close to cos 2π

3
= −1/2, we see that∣∣(x− x2)(1− x2)−1 + 1

2

∣∣ ≤ C
√
σ. Or (multiplying by 1− x2), we can find τ ∈ [−C

√
σ,C
√
σ]

such that x−x2 + 1+τ
2

(1−x2) = 0. We expand, solve by radicals, keep the root that lies close
to x0, and get that |x− x0| ≤ C

√
σ. Then we take the cosine and get that |l − l0| ≤ C

√
σ.

Returning to the triangles of Tϕ, we see that |distS(mi,mj) − l0| = |lij − l0| ≤ C
√
σ for all

the distances.
We may conclude our initial length computation as we did in the last pages of [D4]. We

may reconstruct Tϕ (modulo an isometry), from the length lij and the angles αij, with errors
less than C

√
σ. Then we use the fact that T is a critical point of the sum of lengths to prove

that

(37.38)
∑
i<j

distS(mi,mj) ≤
∑
i<j

distS(wi, wj) + Cσ = 6l0 + Cσ.
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For the total length of the geodesics of ϕ∗(K), we also need to add the extra length

[distS(m1, z12) + distS(z12,m2)− distS(m1,m2)] + [distS(m3, z34) + distS(z34,m4)− distS(m3,m4)]

≤ Cδ2
1 + Cδ2

3 ≤ Cσ.(37.39)

In the simpler case where we have the free attachment at both points `12 and `34, there is
no other term and we get that

(37.40) ∆L = H1(ϕ∗(K))− 6l0 ≤ Cσ,

as needed for the full length property.
We are left with the case where ϕ∗(K) is attached, and we have to add the length

distS(`12, z12) or distS(`34, z34) (or both) to get H1(ϕ∗(K)). Suppose for instance that ϕ∗(K)
is attached near `12 and we have to add distS(`12, z12) > 0. Near the segment [0, z12], ϕ∗(X)
is composed of two large faces that leave from [0, z12] in almost opposite directions, plus a
thin face (the cone over ρ(z12, `12)) which is disjoint from the rest because we assumed that
ϕ is “injective,” so ρ(z12, `12) does not meet the other geodesics ρ(z12,m1) and ρ(z12,m2).
But then, by a minor variant of (27.16) (notice that in this case, since v1 + v2 in (27.5) is
small, s is close to v0), we get that σ ≥ C−1|z12− `12|, so the additional term distS(`12, z12) is
controlled. The same estimate would hold near `34, and we still get the conclusion of (37.40).
This completes our proof of full length in our Subcase 2c1 where z12 and z34 both lie in the
3-space that contains the four mi.

Subcase 2c2. Suppose this is not the case; we want to use the previous computation, so we
denote by V the 3-space that contains the mi, set SV = S ∩ V , and denote by z̃12 and z̃34

the closest point projection of z12 and z34 on SV . We start with the case when

(37.41) |z̃12 − z12|+ |z̃34 − z34| ≤ C0

√
σ,

where C0 will be chosen later. Even though C0 may be large, the estimates that follow hold
because ϕ does not move the points much (hence |z̃12−z12| is very small, for instance). Since
|z̃12−z12| is minimal, the direction v(z̃12, z12) is orthogonal to v(z̃12,m1) and v(z̃12,m1) (that
lie in the tangent space of SV ), so the derivative of distS(z,mi) in the direction of v(z̃12, z12)
vanishes at z̃12 (for i = 1, 2), and integrating this derivative on ρ(z̃12, z12) yields

(37.42) distS(z12,m1) + distS(z12,m2) ≤ distS(z̃12,m1) + distS(z̃12,m2) + Cσ.

Of course we have the same estimate for z34 and the index 34. Our estimates (37.24) for the
angles remains valid when we replace z12 and z34 by z̃12 and z̃34, by (37.41). Then we can
follow the computations that we did above, applied with z̃12 and z̃34, and we get that (37.38)
holds, and also (37.39) with z12 and z34 replaced by z̃12 and z̃34. We add this with (37.42)
and its analogue for 34, and get (37.40) for the case when we do not have additional pieces
distS(`12, z12) or distS(`34, z34) to worry about. Finally the estimate for adding these pieces
is the same as in Subcase 2c1.
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So we may now assume that (37.41) fails, and for instance |z̃12 − z12| ≥ C0

2

√
σ. Notice

that if z denotes the projection of z12 on V , then |z̃12 − z12| ≤ |z − z12| + dist(z,SV ) ≤
|z − z12|+ ||z| − 1| ≤ 2|z − z12|, so |z − z12| ≥ C0

4

√
σ. Now let s denote the sum of the unit

vectors v(m1,m3), v(m1,m4) and v(m1, z12) that describe the three faces of ϕ∗(X) near m1.
We just keep the coordinate s⊥ of s along V ⊥; we get that

(37.43) |s| ≥ |s⊥| = v(m1, z12)⊥ ≥ 1

2
dist(z12, V ) =

1

2
|z − z12| ≥

C0

8

√
σ.

This is good, because Lemma 10.23 in [D4] (or if you prefer the discussion near (27.5)) yields
|s|2 ≤ Cσ, a contradiction if C0 is chosen large enough. So (37.41) was our only case, this
completes the verification of full length in our last Subcase 2c2, and Theorem 37.1 follow.

38 Extension to curvy boundaries

The main theorems of this paper are still valid when the boundary L is a curve of class C1+b,
for some b > 0, rather than a line as in the previous sections. The proof consists in checking
that all our arguments still work, with rather minor modifications, but let us be a little more
specific here.

One of the main engines of our proofs is the use of near monotonicity formulae, provided
by [D7] and [D8]. In the first cases, for balls centered on L, the relevant extension is
presented in Remark 28.11 and Theorem 28.15 of [D7]. Our present assumption that L is
of class C1+b is stronger than the sufficient condition given there; it would be enough to
assume that L is a Lipschitz curve, say, and that, if we want to prove the near monotonicity
of θ(r) = r−2B(0, r)) for 0 < r ≤ r0, we can find a bilipschitz mapping ξ : B(0, 2r0) → Rn,
that maps 0 to itself and L∩B(0, 2r0) to a line, and such that the restriction of ξ to B(0, r)
is (1 + ρ(r))-bilipschitz, with for instance ρ(r) ≤ crb for some b > 0 and c > 0 small enough.

We also need the near monotonicity of (a minor variant of) the function F of (23.6), for
balls that are centered slightly outside of L. Here again, there is a statement when L is a
curve of class C1+b, which is given in Theorem 7.1 on page 380 of [D8]; notice also that for
r small enough (so that L is flat enough in the given balls), Remark 7.3 on page 383 of [D8]
says that the added term in the functional is still the normalized measure of the shade of L.

Associated to the near monotonicity of θ or F is the fact that we control the geometry
of E in balls where it is almost constant. See Proposition 30.19 in [D7] and Theorem 9.1 in
[D8].

Another fact that is used a lot in our constructions is the local regularity theory of E far
from the boundary, that we import from [D4], and that we use to control E far from L and
in particular construct the curves in E ∩ Sr that lead to competitors. For this, the precise
shape of L does not matter.

And finally, there is the main construction of competitors, where one starts with a fixed
origin, almost any small radius r, and one constructs curves, and finally competitors that
we compare with E to get differential inequalities that eventually lead to a decay of θ or
F , and also the geometric control on the approximation of E (as in Sections 19-21 and 30).
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For this, the simplest way seems to proceed as in the proof of Theorem 28.15 of [D7], which
consists in using a bilipschitz change of variable ξ as above to transform the pair (E,L) into

another pair (Ẽ, L̃) for which L̃ is a line. We may then construct the same competitor for Ẽ

as above, using in particular the local regularity of E (or equivalently Ẽ) far from L (or L̃).

The estimate on the competitors F̃ for Ẽ that we construct then yield the desired estimates
for corresponding competitors F for E; the main point is that in B(0, r), if the mapping ξ
is (1 + ρ(r))-bilipschitz, the errors on the H2-measure of competitors are less than Cρ(r)r2,
which is of the same order as the other error terms that we had already. We skip the details
of the computations, which are very similar to what was done in [D7].

For this part of the argument, we could formalize what we are doing, by defining the
notion, for a set E which is already known to be quasiminimal with sliding boundary L, of
being almost-minimal, at the point 0 (say, and 0 does not need to be in L), with the same
boundary L and a given function h. This just means that when F = ϕ1(E) is a sliding
competitor for E in B(0, r), as in Definition 1.1, then we have (1.8). Thus the difference is
that we only consider balls centered at the origin.

Then we may observe that if E is almost minimal at the point 0 (with gauge function h),

and ξ is a bilipschitz, and asymptotically optimally bilipschitz as above, then Ẽ = ξ(E) is also

an almost minimal set at the origin, with a gauge function h̃ such that h̃(r) ≤ 2h(2r)+Cρ(2r),
where C also depends on the local Ahlfors regularity constant for E near 0 (which exists
because we assumed E to be quasiminimal), and it is enough to take 2r in the argument
because we assume ξ to be bilipschitz with a constant that is close to 1.

This part is easy to check, just using the definitions and the local Ahlfors regularity
of E and Ẽ. Then the main point of the proof that follows is that the main decay and
approximation results of this paper are still true if we only assume that E is almost minimal
at the point 0, with h(r) ≤ Crb as in the previous sections, and in addition E is quasiminimal
near 0 (so that it is locally Ahlfors-regular), and satisfies the regularity estimates of [D4]
far from L. For this part, we would just need to read our proof again, checking where each
estimate comes from.

The author would have preferred to say that it is enough to use the pointwise almost
minimality of E and its quasiminimality (but not the regularity results far from L), but this
does not seem to be the case, or at least the proof above does not say this (because we often
use C1+a-regularity, possibly often for convenience). This is why we decided not to insist so
much on the notion of almost minimality at a point, even though it would be very convenient
during the proof.

So the conclusion of this section is that the generalization of our theorems to smooth
boundaries L is rather straightforward, but tedious and boring enough for us to skip the
proof.
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39 Sets of H(L) ∪ V(L) are sliding minimal cones

In this section we prove two sliding minimality results that were apparently not written down
yet. They are not needed for this paper, but of course the results above make more sense
because they are true. In both cases the simplest version is when L is a line through the
origin, but we also included some larger boundaries because it is not much harder, and the
dimension of the ambient space Rn does not matter.

Lemma 39.1. Let H ∈ H, denote by ∂H its boundary (a line), suppose that 0 ∈ ∂H, and
choose an orthonormal basis (e1, . . . , en) of Rn so that ∂H = Re1 and e2 ∈ H. Let a boundary
set L be given, such that ∂H ⊂ L ⊂ e⊥2 . Then H is a sliding minimal set in Rn, associated
to the sliding boundary L.

Let E = ϕ1(H) be a sliding competitor forH in some ballB, coming from a one parameter
family {ϕt} as in Definition 1.1; we want to show that

(39.1) H2(H ∩B) ≤ H2(E ∩B).

In fact, we shall not need to know that ϕ1 is Lipschitz, as in (1.5), so the lemma also gives
the slightly stronger minimality property where (1.5) is not required. Also, we may assume
that B is centered on 0 (otherwise we replace it with a larger ball).

We use the orthonormal basis above to write coordinates; vectors of Rn will be denoted
by w = (x, y, z), with x, y ∈ R and z ∈ Rn−2. Denote by π the closest distance projection
on H, defined by π(x, y, z) = (x, y+, 0), where y+ = max(y, 0). We define a new deformation
{ϕ∗t} by ϕ∗t (w) = π(ϕt(w)). The main constraints that we need to check are (1.2) and (1.4);
(1.2), which demands in particular that ϕ∗t (x) = x for x ∈ H \ B, holds because π(x) = x
on H. As for (1.4), let x ∈ H ∩ L = ∂H be given; we know that ϕt(x) ∈ L, which means
that its second coordinate vanishes (because L ⊂ e⊥2 ). Then ϕ∗t (x) = π(ϕt(x)) ∈ ∂H ⊂ L, as
needed. The other constraints hold easily, and in particular ϕ∗1 is Lipschitz if ϕ1 is Lipschitz;
hence E∗ = ϕ∗1(H) = π(E) is another sliding competitor for H in B. Since π is 1-Lipschitz,
we see that H2(E∗ ∩ B) ≤ H2(E ∩ B) (the points from Rn \ B do not contribute because
ϕ1(w) = ϕ∗1(w) = w for w ∈ Rn\B). Thus it is enough to show thatH2(H∩B) ≤ H2(E∗∩B),
or that E∗ contains H ∩B, or also (since ϕ∗1(w) = w on Rn \B) that ϕ∗1(H) ⊃ H.

For the topological argument that follows, it is easier to work with the plane P that
contains H. Let σ denote the symmetry with respect to L. Then extend ϕ∗ to P by setting
ϕ∗t (w) = σ(ϕt(σ(w))) for w ∈ σ(H). When x ∈ H tends to a point x0 of ∂H, ϕt(x) tends
to ϕt(x0) ∈ L, and ϕ∗t (x) tends to ϕ∗t (x0) = π(ϕt(x0)) ∈ ∂H. Then σ(ϕ∗t (x0)) = ϕ∗t (x0).
Because of this, our extension ϕ∗t is continuous across ∂H. In addition, it takes values in P ,
and it is the identity on P \B. So it is surjective, and for ξ ∈ H \L, we can find w ∈ P such
that ϕ∗t (w) = ξ. But ϕ∗t (w) ∈ σ(H) when w ∈ σ(H), so w ∈ P \σ(H) ⊂ H. We are left with
H ∩ L = ∂H, which is also contained in ϕ∗t (H) because H is closed and ϕ∗t is continuous.
This completes our proof of (39.1); Lemma 39.1 follows.

The next lemma is a similar result that concerns V-sets. Since we also want to include
larger boundary sets L, we give some of the notation before the statement.
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Let V be a V set, thus composed of two half spaces H1 and H2 bounded by a same line
`, and that make make an angle at least 2π

3
along `. Let us choose an orthonormal basis of

Rn such that if vi denotes the unit vector in Hi that is orthogonal to `, then

(39.2) ` = e1R, v1 = (0, cosα, sinα, 0) ∈ H1, and v2 = (0,− cosα, sinα, 0) ∈ H2,

with 0 ≤ α ≤ π
6
. We will also accept boundaries L larger than `, but require that ` ⊂ L

and, when α > 0, that

(39.3) L ⊂ (v1 + v2)⊥ = e⊥3 .

Lemma 39.2. Let V be a V-set and L ⊃ ` be as above, and in particular satisfy (39.3).
Then V is a sliding minimal set, associated to the sliding boundary L.

We first prove this lemma with the official Definition 1.1, because this makes our life
much simpler. Yet, we claim that, as for Lemma 39.1, Lemma 39.2 stays true when we
even allow mappings ϕ1 that are not Lipschitz in the definition of competitors for V , which
makes the notion of minimal set and the lemma a little stronger. We’ll prove this, and the
minimality of V for slightly different problems (related to separation conditions, and where
L is a plane) in the next lemma, but the proof will be less pleasant.

Let us also mention that E. Cavallotto [Ca] already has a shorter proof of this with a
slicing argument (where this time slices are defined as for currents, the proof is done with
polyhedral chains with coefficients in Z2, and boundary computations for chains replace the
topological separation argument). This proof also seems to require the official Definition 1.1
where ϕ1 is required to be Lipschitz.

We start the proof with some reductions. We know that the planes are minimal regardless
of the sliding boundary L; for this we may proceed as in Lemma 39.1, but directly with the
orthogonal projection π on the plane V . So we may assume that α > 0.

Let E = ϕ1(V ) be a sliding competitor for V in some ball B, coming from {ϕt} as in
Definition 1.1; we can assume that B is centered at 0 and want to show the analogue of
(39.1) for V . We can further assume that B = B(0, 1), by scale invariance; this will just
simplify the notation a little.

Notice that E = ϕ1(V ) is also a sliding competitor for H in B, associated to the largest
possible boundary L′ = e⊥3 , because L ∩ V = L′ ∩ V , and so {ϕt} also satisfies (1.4) with
respect to L′. That is, it is enough to prove the lemma when L = L′ = e⊥3 , which we assume
now.

Denote by W the 3-dimensional space that contains V , and by W+ the upper half space
in W defined by

(39.4) W+ =
{

(x, y, z, 0) ; (x, y, z) ∈ R3 and z ≥ 0
}
⊂ W.

Denote by π the closest distance projection on W+, defined by π(x, y, z, t) = (x, y, z+, 0).
Notice that π is 1-Lipschitz, is the identity on W+ ⊃ V , and maps L to L ∩W .
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Set ϕ∗t = π ◦ ϕt and E∗ = π(E) = ϕ∗1(V ). Since ϕ∗t (x) ∈ L when x ∈ V ∩ L = `, E∗ is a
sliding competitor for V in B. As before, H2(E∗ ∩ B) = H2(ϕ∗1(V ∩ B)) ≤ H2(ϕ1(V ∩ B)),
so is enough to prove that

(39.5) H2(V ∩B) ≤ H2(E∗ ∩B).

We will do this with a slicing and separation argument. Observe that all the values taken
by the ϕ∗t lie in W+ (we composed by π). We will forget the last coordinates and denote by
(x, y, z) the coordinates of points of W . Set, for x ∈ R,

(39.6) E∗x =
{

(y, z) ∈ R2 ; (x, y, z) ∈ E∗ ∩B
}
⊂ R2

and

(39.7) Vx =
{

(y, z) ∈ R2 ; (x, y, z) ∈ V ∩B
}
⊂ R2;

we want to show that

(39.8) H1(Vx) ≤ H1(E∗x) for x ∈ R,

but let us first explain why (39.5) follows from this, when we use the full Definition 1.1 and
therefore assume that ϕ1 is Lipschitz.

Indeed, on the one hand, it follows from Fubini that H2(V ∩ B) =
´
x
H1(Vx)dx, where

here and below all the integrals are in fact taken on compact sets (projections of B). On the
other hand, we claim that

(39.9)

ˆ
x

H1(E∗x)dx ≤ H2(E∗ ∩B).

As soon as we check this, we can integrate on x, use (39.7), and get that H2(V ∩ B) =´
x
H1(Vx)dx ≤

´
x
H1(E∗x)dx ≤ H2(E∗ ∩ B), as needed for (39.5). Now (39.9) holds because

E∗ is rectifiable, which is true because V is rectifiable and E∗ = ϕ∗1(V ) = π(ϕ1(V )), with
mappings ϕ1 and hence ϕ∗1 that are Lipschitz.

To prove that (39.9) holds when E∗ is rectifiable, the simplest is to apply the co-area
formula (Theorem 3.2.22 in [F]), to the restriction to E∗ ∩ B of the orthogonal projection
on `, after noticing that the appropriate Jacobian is at most 1 and the corresponding level
sets are the E∗x. But in fact, we are only using the easy part of the co-area formula, and it
would not be too difficult to check (39.9) directly. We would first prove it for measurable
subsets of C1 surfaces (essentially by Fubini), and then take countable disjoint unions to go
to the general case. The author wrote a little more about this and the next lines near (4),
in Section 76.b of [D1], in a slightly similar context (but for Mumford-Shah minimizers).

When E∗ is not rectifiable, the author does not know whether (39.9) necessarily holds.
It would hold for some other variants of the Hausdorff measure, essentially as good as Hd,
but this is not an excuse. Since we do not necessarily want to assume that our competitor
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E comes from a Lipschitz deformation ϕ1, we will give a different proof of minimality in a
next lemma.

But here we assumed that ϕ1 is Lipschitz, and then E∗ = ϕ∗1(V ) is rectifiable and (39.9)
holds. Now we just need to show (39.8) (for x in the projection of B) because (39.5) will
ensue, and for this we want to show that Vx is minimal for some problem. We will use
separation properties of V and ϕ∗1(V ), and again it is easier to work on W rather than Rn,
which is why we composed with π in the first place. We have mappings ϕ∗t : V → W+, that
we would like to extend to W .

Let σ denote the reflection across P =
{

(x, y, 0) ; (x, y) ∈ R2
}

= L∩W ; thus σ(x, y, z) =
(x, y,−z) for (x, y, z) ∈ W . We define ϕ∗t on σ(V ) by ϕ∗t (w) = σ(ϕt(σ(w))) for w ∈ σ(V ).
Notice that σ(ϕ∗t (w)) = ϕ∗t (w) for w ∈ V ∩ σ(V ) = `, because ϕt(w) ∈ L and hence ϕ∗t (w) ∈
L∩W = P . Because of this, we now have a continuous mapping from [V ∪ σ(V )]× [0, 1] to
W .

Consider the three points A1 = (0, 2, 0), A2 = (0,−2, 0), and A3 = (0, 0, 2) (above V ).
We want to show that

(39.10) ϕ∗t (V ∪ σ(V )) separates the three points Ai from each other in W

and for this we apply 4.3 in Chapter XVII of [Du], on page 360. The point is that for
t = 0, ϕ∗t (V ∪ σ(V )) = V ∪ σ(V ), which separates these three points in W , and then
when we deform this set continuously, it never crosses (or get close to) our three points
Ai. To be fair, Dugundji only gives the result when the initial set is compact, so we should
modify things a little bit. That is, assume to the contrary that A1 and A2 are connected in
W \ϕ∗t (V ∪ σ(V )) by a path γ, and choose R > 2 such that γ ⊂ B(0, R). Then consider the
sets Zt = [ϕ∗t (V ∪σ(V ))]∩B(0, R)∪∂B(0, R). They are compact, still represent a continuous
deformation of Z0, and never get close to the Ai, hence Zt separates A1 from A2 because Z0

does, and this contradicts the existence of γ. So (39.10) holds.
The same deformation argument, without the reflection, also shows that

(39.11) ϕ∗t (V ) separates A3 from A1 and A2 in W,

because this is true for t = 0. We return to (39.10) and claim that

(39.12) ϕ∗t (V ) separates the three points Ai in W+,

where W+ as in (39.4). Otherwise, there is a path γ ⊂ W+ \ ϕ∗t (V ) that goes from some Ai
to some other Aj. Since ϕ∗t (V ∪ σ(V )) separates, γ meets ϕ∗t (σ(V )). Most of this last set
lies in the complement of W+, with the exception of P ∩ ϕ∗t (σ(V )) = P ∩ ϕ∗t (V ). But we
assumed that γ does not meet ϕ∗t (V ); this contradiction proves (39.12).

Now let x ∈ R be given, and consider slices by the corresponding vertical plane. Call
W ′

+ =
{

(y, z) ∈ R2 ; z ≥ 0
}

the (constant) slice of W+, and denote by A′i the “projection”
of Ai, where we just forget the first coordinate. Finally let

(39.13) Fx =
{

(y, z) ∈ R2 ; (x, y, z) ∈ ϕ∗1(V )
}
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be the slice of ϕ∗1(V ). Notice that Ai,x = Ai + (x, 0, 0) lies in the same component of
W+ \ ϕ∗t (V ) as Ai, so (39.12) (with t = 1) implies that

(39.14) Fx separates the three points A′i inside of W ′
+.

Similarly, by (39.11),

(39.15) Fx separates A′3 from A′1 and A′2 in R2.

At this point we would probably have enough information for a calibration argument,
but we decided to use connectedness, so we need some plane topology. We first use (39.15)
in B′ = B(0, 2) ⊂ R2. Since ϕ∗1(V ) only differs from V in B(0, 1), the set Fx meets ∂B′ only
twice, at the points B± = (± cosα, sinα). By Theorem 14.3 on p. 123 of [Ne], there is a
connected component of H0 of Fx ∩B′ that separates A′1 from A′3; this component contains
both points B±, because otherwise one of the two arcs of ∂B′ that go from A′1 to A′3 does
not meet Fx.

We now use (39.14), in B′ ∩ W ′
+ (a closed half disk). This time we get a connected

component H1 of Fx ∩ B′ ∩W ′
+ that separates A′1 from A′2. This set meets ∂B′ ∩W ′

+ =
{B+, B−}, because otherwise we could use an arc of ∂B′ to go from A′1 to A′2 without meeting
Fx. So H1 meets H0. But we can also try to connect A′1 to A′2 directly with [A′1, A

′
2] ⊂ ∂W ′

+,
so H1 meets this segment too.

The set H0 ∪H1 is connected, contained in Fx, and it contains B+, B−, and some point
of [A′1, A

′
2] ⊂ ∂W ′

+. Said in other words, Fx ∩B′ connects B+, B−, and [A′1, A
′
2].

We claim that among all connected sets (like H0 ∪ H1) that do this, the slice V ′x of
V is the shortest. For the standard proof, we would first replace any connected set that
contains the two B± and a point B0 ∈ [A′1, A

′
2] with a shorter one composed of at most 3 line

segments emanating from a point of connection between two arcs from B0 to the B±, and
then optimize the position of that point. Our assumption that α ≤ π

6
is of course used there.

So H1(Fx ∩W0) ≥ H1(H0 ∪H1) ≥ H1(V ′x), and when we remove the identical contribution
from B(0, 2) \B(0, 1), we get (39.8).

This completes our proof of Lemma 39.2 when we use the official Definition 1.1 to define
competitors and minimal sets.

We shall now discuss the minimality of V ∈ V(L) when we insist on removing (1.5)
from the definition of competitors. The author did not find any other way than going to the
separation properties suggested by the proof above, finding a set that satisfies these properties
and minimizes the Hausdorff measure, and finally proving that this set is rectifiable, hence
has a larger measure than V by the proof of Lemma 39.2. Since this set is a minimizer, we
will also get a control on the other competitors, even the ones that are not rectifiable.

It is a little strange that we should need to do this, but the point is that given a competitor
E to the separation problem below, it is not so easy to find directly, by modifying E, a
rectifiable competitor E ′ that does better than E, even though it is much easier to show that
minimizers are rectifiable. The difficulty will then be to find an equivalent weak problem,
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with the same solutions, but for which we can prove that minimizers exist. The compactness
properties of BV and Caccioppoli sets will be useful for this.

We shall now state the generalization of Lemma 39.2, set the strong and weak separation
problems, solve the weak one, show that it is equivalent to the strong one, and then conclude.

Lemma 39.3. Lemma 39.2 (about the minimality of V sets) is still valid when we forget the
Lipschitz property (1.5) in Definition 1.1.

Before we start the proof, let us add some last comments. So far the prevailing definition
of minimality is with the Lipschitz condition (1.5), both because Almgren asked for it, it
accommodates currents and varifolds better, and at the same time adding it makes the
regularity theorems a little better and essentially costs nothing. But the author feels that
there may be situations soon where we can only prove existence theorems for our sliding
Plateau problem or variants, where the minimizer that we find is a competitor of our initial
data E0, but perhaps not with the Lipschitz condition (1.5); then we will need to make tough
decisions, and possibly leave (1.5) behind. In this context Lemma 39.3 makes more sense.

Another related situation that arises some times is that we initially set a problem con-
cerning all closed sets that satisfy some topological condition, and only have a proof of
existence in the category of rectifiable sets. A simple solution is to pretend that only the
rectifiable sets are interesting (which makes some sense because if there is a minimizer, it
is rectifiable), and replace our initial problem with its variant for rectifiable sets only. The
author does not think that it is entirely satisfactory, but yet does not have a general solution
to this issue. In the present case, it turns out that thanks to the existence of an equivalent
weak problem, we can prove an existence theorem first, and then prove after the fact that
rectifiable sets are enough. Since the author does not know, apart from [DS2] which is in
a slightly different context, of cases where this was done, he decided to put the argument
here, for possible later reference. It also turned out that setting the weak problem right was
more complicated than he had expected, partially due to the sliding condition, and this is
one more reason for not addressing the issue upfront.

Our proof will rely on ideas and results from [DS2]. We will state separation problems
that are specific to the problem at hand, but one of the reason why the author thought it
would be a good idea to prove the present lemma is that the techniques should probably
be useful for similar problems. He also found out during the writing process that although
separation problems should always end up with a BV statement, the precise statement is
not always easy to find.

Let us first state a strong separation problem. Consider the balls B = B(0, 1) ⊂ R3 and
2B = B(0, 2), the upper half ball 2B+ =

{
(x, y, z) ∈ 2B ; z ≥ 0

}
, and let V denote the same

V-set as above (39.2), with α > 0. We consider the class Fs of compact sets E ⊂ 2B+ such
that H2(E) < +∞, E coincides with V in 2B \B, E separates the two points A1 = (0, 2, 0)
and A2 = (0,−2, 0) from A3 = (0, 0, 2) inside of 2B, and also separates A1 from A2 in 2B+.
Thus the sets E∗ ∩B = ϕ∗1(V )∩B of Lemma 39.2 lie in Fs, by (39.11) and (39.12), as soon
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as they have a finite measure (and otherwise (39.5) is clear). A minimizer for the strong
separation problem (SSP) will just be a set E0 ∈ Fs such that

(39.16) H2(E0) = ms, with ms = inf
E∈Fs

H2(F ).

As soon as we know that there exists a minimizer for the SSP and prove that it is rectifiable,
the proof of Lemma 39.2, and in particular of (39.5), will say that H2(E0) ≥ H2(V ∩ B),
so in fact H2(V ∩ B) = ms (because V ∩ B ∈ Fs) and then (39.5) also holds for sets E∗

that are not rectifiable. This is what we want, even though in the present case the notion
of minimizer for the SSP is not so interesting because we’ll find out a posteriori that E0

was in fact equivalent to V . We could of course imagine other situations where it is more
interesting.

Unfortunately, getting minimizers for the SSP directly seems unpleasant, so we introduce
a weak separation problem. Since the author is always a bit afraid of trace conditions in the
set BV of functions of bounded variation, we use a security ring and set our problem in
D = B(0, 2) ⊂ R3. Set D+ =

{
(x, y, z) ∈ 2B ; z ≥ 0

}
and P =

{
(x, y, z) ∈ D ; z = 0

}
, and

denote by σ the reflection across P .
Denote by C(D) the set of Caccioppoli subsets of D, i.e. measurable subsets of D such

that 1F ∈ BV . For such a set, we will denote by |D1F | the total variation of D1F (in R3,
not just in D); it is a finite positive Borel measure, and its total mass is called the perimeter
of F .

Our set of competitor will be the set F of quadruples F = (F1, F2, F3, F4) ∈ C(D)4 with
the following properties. First, D is the essentially disjoint union of the Fi, i.e.,

(39.17)
3∑
i=1

1Fi
= 1D.

Incidentally, we work modulo a set of vanishing Lebesgue measure, as always with Cacciop-
poli sets. Next denote by Gi, 1 ≤ i ≤ 3, the connected component of D \ (V ∪ σ(V )) that
contains Ai. We require that

(39.18) σ(Fi) = Fi and Fi ⊃ Gi for i = 1, 2,

and that

(39.19) G3 ⊂ F3 ⊂ D+ and F4 = σ(F3).

See the left part of Figure 30 for a picture of the Ai and Gj, the right part for the most
obvious quadruple F, and Figure 31 for two slightly different examples of quadruples F; we’ll
explain soon why we decided to double everything.

We also need to define a functional on F . For F = (F1, F2, F3, F4) ∈ F , set

(39.20) fi = 1Fi
∈ BV (R3) and call µi = |Dfi| = |D1Fi

|
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the total variation of D1Fi
. So µi(A) is the perimeter of Fi in A when A is an open set. Here

and below, we will refer to [Gi] for the various properties of BV functions and Caccioppoli
sets that will be used. We set

(39.21) J(F) = µ3(P ) + µ4(P ) +
4∑
i=1

µi(D).
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Figure 30: The central section of D and the sets Gi, and on the right the competitor
associated with V
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Figure 31: The same section of D, with two examples of slightly different competitors

Let us explain why we do this. We treat F3 and F4 differently because in simple sit-
uations like the one suggested by Figure 30 (right), where F1 ∩ D+, F2 ∩ D+, and F3 are
the components of D+ \ E for a nice competitor E ∈ Fs with the same topology as for V ,
we want to obtain J(F) = 4H2(E); the additional term µ3(P ) + µ4(P ) is designed for this.
The author’s first attempt was to work on the interior of D+ and add 2µ3(P ); this should
give the same result in the nice cases, but defining J as in (39.21) is a way to prevent ugly
mixtures of F1 and F2 on P , that would not have been counted in µ1 + µ2 of the interior of
D+, but would be counted here. The reader is invited to check that (39.21) does what we
want in the simple examples suggested by Figure 31.

The reader may be shocked because we integrate µ3 and µ4 against a function which is
not lower semicontinuous (its value on P is larger than its limit), which is usually not a
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good idea when we want to prove existence for the minimizers, and indeed we will need to
be careful when we show that

(39.22) we can find F ∈ F such that J(F) = m, where m = inf
F′∈F

J(F′).

So let us look for F. Let {Fk} be a minimizing sequence in F , i.e., such that limk→+∞ J(Fk) =
m. Write Fk = (F1,k, F2,k, F3,k, F4,k), and set as above

(39.23) fi,k = 1Fi,k
∈ BV (R3) and µi,k = |Dfi,k| = |D1Fi,k

|.

Notice that for 1 ≤ i ≤ 4, the total perimeter of Fi,k stays bounded, because it is less than
m+H2(∂D). So {fi,k} is a bounded sequence in BV (R3), and since fi,k is supported in B2,
{fi,k} is a relatively compact subset of L1(B2). We extract a subsequence (still denoted the
same way) that converges in L1 to a limit fi. Let us even extract a subsequence which works
for the four indices at the same time, and so that we have pointwise convergence almost
everywhere as well. The fact that fi is the characteristic function of a set Fi (defined modulo
a set of vanishing measure), and the properties (39.17), (39.18), and (39.19), follow from the
almost everywhere convergence. Also, fi ∈ BV (R3) by the lower semicontinuity of the BV
norm; so F = (F1, F2, F3, F4) lies in F . The lower semicontinuity of the BV norm also says
that for 1 ≤ i ≤ 4,

(39.24) µi(U) ≤ lim inf
k→+∞

mi,k(U) for every open set U ⊂ D.

If we did not have the terms µ3(P ) and µ4(P ) in the definition of J , we would apply this with
U = D, get that J(F) ≤ m, and deduce at once that F is the desired minimizer. We now
have to show that the additional terms µ3(P ) and µ4(P ) can be estimated by contributions
of the measures mi,k = µi,k = |D1Fi,k

| to sets that lie close to P (and may disappear in the
limit of measures).

We will need a little more information on the µi, which the reader may find in [Gi]. For
Fi ∈ C(D), there is a measurable and rectifiable set ∂∗Fi ⊂ ∂Fi, called the reduced boundary
of Fi, such that

(39.25) µi = H2
|∂∗Fi

(so that in particular µi(P ) = H2(P ∩ ∂∗Fi)) and with some additional geometric properties
that we recall now.

For x ∈ ∂∗Fi, there is an approximate tangent plane P (x) = Pi(x) to ∂∗Fi at x and a
unit normal n(x) = ni(x) to P (x), with the following properties. For each ε > 0, there exists
r(x) > 0 such that for 0 < r < r(x),

(39.26)
∣∣{y ∈ B(x, 2r) ∩ Fi ; 〈y − x, n(x)〉 ≤ 0

}∣∣ ≤ εr3

(39.27)
∣∣{y ∈ B(x, 2r) \ Fi ; 〈y − x, n(x)〉 ≥ 0

}∣∣ ≤ εr3,
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and the density of ∂∗Fi is close to π, i.e.,

(39.28)
∣∣H2(∂∗Fi ∩B(x, r))− πr2

∣∣ ≤ εr2.

Notice that when i = 3 and x ∈ ∂∗F3 ∩ P , (39.27) leave us no choice because F3 is
contained in the upper half of B(x, r) : P (x) must be the plane that contains P , and
n(x) = (0, 0, 1). Notice that x is then an interior point of D, again by (39.27).

Let ε > 0 be small, and let τ > 0 be small too, to be chosen later (depending on ε). Since
for x ∈ P ∩ ∂∗F3 we can choose arbitrarily small radii r < τ such that (39.26)-(39.28) hold
and B(x, 2r) ⊂ D, Vitali’s covering lemma (see for instance [M]) allows us to pick disjoint
balls Bj = B(xj, rj) centered on P ∩ ∂∗F3, with the properties above, and such that

(39.29) µ3

(
P \ ∪jBj

)
= H2

(
P ∩ ∂∗F3 \ ∪jBj

)
≤ ε

by (39.25). Then we can even find a finite subcollection {Bj}, j ∈ J , with the same property
(but with 2ε in the right-hand side). By (39.25) and (39.28), we get that

(39.30) µ3(P ) = H2
(
P ∩ ∂∗F3) ≤ (π + ε)

∑
j∈J

r2
j + 2ε ≤ π

∑
j∈J

r2
j + Cε

because
∑

j∈J r
2
j ≤ 2

π

∑
j∈J H2(∂∗F3∩Bj) ≤ 2

π
H2(∂∗F3) = 2

π
µ3(R3) ≤ m by (39.28), because

the Bj are disjoint, and by (39.21).
We want to compare this with what we get for Fk, k large. Define small cylinders Tj and

T+
j by

(39.31)
Tj =

{
(x, y, z) ; (x, y, 0) ∈ Bi and − rj < z < rj

}
,

T+
j =

{
(x, y, z) ; (x, y, 0) ∈ Bi and 0 < z < rj

}
.

Since the fi,k converge in L1 to fi, we deduce from (39.27) that for k large,

(39.32)
∣∣T+
j \ F3,k

∣∣ ≤ 2εr3
j .

For the computation that follows, we may fix k and j. We see Tj as the product B′×(−rj, rj),
where B′ =

{
(x, y, z) ; (x, y, 0) ∈ Bj

}
' Bj ∩ P . By (39.32), Fubini and Chebyshev, we can

choose ρ ∈ (rj/2, rj) such that if we define a good set A ⊂ B′ by

(39.33) A =
{

(x, y) ∈ B′ ; (x, y, ρ) ∈ F3,k

}
,

then

(39.34) H2(B′ \ A) ≤ Cεr2
j .

We are now going to use the fact that fi,k ∈ BV (Tj), seen as a function of the last variable
z, lies in BV (−rj, rj), with the logical estimate for the norm. That is, Theorem 3.103 on
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page 195 of [AFP] says that for almost every (x, y) ∈ B′, the function z → fi,k(x, y, z) lies
in BV (−rj, rj), and its derivative is a measure νx,y,i. In addition,ˆ

B′
|νx,y,i|(−rj, rj)dxdy =

ˆ
B′
||fi,k(x, y, ·)||BV (−rj ,rj)dxdy

=

ˆ
(x,y,z)∈Tj

∣∣∣∂fi,k
∂z

∣∣∣ ≤ ˆ
(x,y,z)∈Tj

∣∣Dfi,k∣∣ = µi,k(Tj),(39.35)

where we use a homogeneous norm on BV , systematically denote the total variations of
measures like absolute values, and the only step which is not a definition is the second
identity, which holds by a combination of the weak definition of BV , Fubini, and a correct
choice of product test functions.

The result above also says that νx,y,i is a finite measure for almost every (x, y) ∈ B′.
Since fi,k only takes the values 0 and 1, this means that (maybe after changing it on a set of
measure 0) it has a finite number Ni,k(x, y) of jumps, and a simpler way to write (39.35) is

(39.36)

ˆ
B′
Ni,k(x, y)dxdy ≤ µi,k(Tj).

Consider points (x, y) ∈ A. Thus (x, y, ρ) ∈ F3,k, and by symmetry (x, y,−ρ) ∈ F4,k.
Start with the set A0 of points of A such that N1,k(x, y) = N2,k(x, y) = 0. For such a

point, (x, y, z) stays in F3,k ∪ F4,k, and in fact (by (39.19)) in F3,k for z > 0 and in F4,k for
z < 0. We claim that for almost every point (x, y) ∈ A0, the point (x, y, 0) lies in both sets
∂∗F3,k and ∂∗F4,k. Indeed, if (x, y) is a Lebesgue density point of A0, then the density of
F3,k at (x, y) is 1/2 (because all the vertical half lines that are contained in F3,k locally), and
similarly for F4,k (this time, we look down). Then (by Poincaré) (x, y) is a point of positive
lower density for µ3,k and µ4,k, and almost all such points lie in ∂∗F3,k and ∂∗F4,k. Said
otherwise, (x, y) lies on what is called the geometric measure boundaries of F3,k and F4,k,
with the same conclusion. So we like A0 because

(39.37) 2H2(A0) ≤ µ3,k(P ∩Bj) + µ4,k(P ∩Bj).

Now let A1 be the set of points of A such that N1,k(x, y) > 0. This means that f1,k(x, y, z),
which starts at 0 for z = ρ, becomes 1 for some z < ρ. By symmetry of F1,k, this happens
first for z ≥ 0. Since for almost every (x, y), the total variation of f1,k(x, y, ·) on (−rj, rj) is
finite, and also we only count jumps when there is a positive measure of each set near the
jump point z, this means that we can take z > 0. Then, by symmetry, f1,k(x, y, ·) also has a
jump at −z, so N1,k(x, y) ≥ 2. These jumps also count for N3,k(x, y) when z > 0 (because z
was chosen to be the first point below ρ) and hence N4,k(x, y) when z < 0, so N3,k(x, y) ≥ 1
and N4,k(x, y) ≥ 1.

Similarly if A2 is the set of points of A such that N2,k(x, y) > 0, then for almost every
(x, y), N2,k(x, y) ≥ 2, N3,k(x, y) ≥ 1, and N4,k(x, y) ≥ 1. Thus

(39.38) 4H2(A1 ∪ A2) ≤
ˆ
A1∪A2

4∑
i=1

Ni,k(x, y)dxdy ≤
4∑
i=1

µi,k(Tj \ P ).
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by the proof of (39.35). We add this to (twice) (39.37), use (39.34), notice that A ⊂
A0 ∪ A1 ∪ A2, and get that

4πr2
j = 4H2(B′) ≤ 2µ3,k(P ∩Bj) + 2µ4,k(P ∩Bj) +

4∑
i=1

µi,k(Tj \ P ) + Cεr2
j

≤ µ3,k(P ∩Bj) + µ4,k(P ∩Bj) +
4∑
i=1

µi,k(Tj) + Cεr2
j ,(39.39)

which is the contribution of Tj to J(Fk) in (39.21). We return to the full collection of balls
Bj = B(xj, rj), sum (39.39) over j, compare to (39.30), and get that

(39.40) 4µ3(P ) ≤ 4π
∑
j∈J

r2
j + Cε ≤ Cε+

∑
j∈J

[
µ3,k(P ∩Bj) + µ4,k(P ∩Bj) +

4∑
i=1

µi,k(Tj)
]
,

where we also used the line below (39.30) to sum the r2
j . Recall that all the ri were chosen

smaller than the small τ > 0, to be chosen small soon. Thus, if we set

(39.41) H(τ) =
{

(x, y, z) ∈ D ; |z| ≤ τ
}

and H ′(τ) = H(τ) \ P,

then (39.40) says that

(39.42) 4µ3(P ) ≤ Cε+ µ3,k(P ) + µ4,k(P ) +
4∑
i=1

µi,k(H(τ))

because the Bj and the Tj are disjoint. We will return to (39.42), but we also need to control
µi(P ) for i = 1, 2. We claim that

(39.43) µi(P ) = H2(P ∩ ∂∗Fi) = 0 for i = 1, 2,

because P ∩ ∂∗Fi cannot have a Lebesgue density point in P . Indeed, for such a point, the
approximate tangent plane would need to be the plane that contains P , and then (39.26)
or (39.27) would contradict the symmetry of Ai. Finally, for D \ H(τ), (39.24) says that
µi(D \H(τ)) ≤ µi,k(D \H(τ)) + ε for k large. We add everything and get that

J(F) = µ3(P ) + µ4(P ) +
4∑
i=1

µi(D) = 4µ3(P ) +
4∑
i=1

µi(D \ P )

≤ Cε+ µ3,k(P ) + µ4,k(P ) +
4∑
i=1

µi,k(H(τ)) +
4∑
i=1

µi(D \ P )

≤ Cε+ 2µ3,k(P ) + 2µ4,k(P ) +
4∑
i=1

µi,k(H
′(τ)) +

4∑
i=1

µi(D \ P )(39.44)
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by (39.21), (39.19) (for the symmetry), (39.43), (39.42), and the definition (39.41). Next

(39.45)
4∑
i=1

µi(D \ P ) ≤ ε+
4∑
i=1

µi(D \H(τ)) ≤ 2ε+
4∑
i=1

µi,k(D \H(τ))

by (39.46) and (39.24). We now chose τ so small that

(39.46)
4∑
i=1

µi(H
′(τ)) < ε

(recall that the intersection of the sets H ′(τ) is empty). We sum and get that

(39.47) J(F) ≤ Cε+ 2µ3,k(P ) + 2µ4,k(P ) + µi,k(D \ P ) ≤ Cε+ J(Fk)

by (39.21) for Fk. For each ε > 0 we found that this holds for k large. Since {Fk} was
chosen to be a minimizing sequence, we get that J(F) ≤ m; (39.22) follows, because we
knew already that F ∈ F .

Next we take the minimizer F given by (39.22), and study its regularity to show that it
also gives a minimizer for the strong problem. For this part we will follow the first steps of
[DS2], and often refer to it for details. Denote by Z the closed support of µ =

∑3
i=1 µi; our

next task is to show that µ is locally Ahlfors regular in B = B(0, 1), which means that

(39.48) C−1r2 ≤ µ(B(x, r)) ≤ Cr2 for x ∈ Z ∩B and 0 < r < 10−1.

Compared to [DS2], there is a small difference, because we have four sets Fi rather than two
(a set and its complement), but this will not matter for what we have to do.

Let B(x, r) be as in (39.48), and set B∗ = B(x, r)∪ σ(B(x, r)). We start with the upper
bound, and even the special case when

(39.49) B(x, 2r) ⊂ B.

If µ(B(x, r)) is too large, we replace F = (F1, F2, F3, F4) with F′ = (F ′1, F
′
2, F

′
3, F

′
4), obtained

by taking F ′1 = F1 ∪ B∗, and F ′i = Fi \ B∗ for i ≥ 2. This way we replace the total
contribution µ(B(x, r)) with at most H2(∂B∗) ≤ Cr2. This gives a quadruple F′ ∈ F ,
because B(x, 2r) ⊂ B does not see the constraints about the Gi. Since F is a minimizer,
we get the second part of (39.48) in this case. When (39.49) fails, we just proceed with
more caution, and only modify things inside of B; that is, we take F ′1 = F1 ∪ (B∗ ∩B), and
F ′i = Fi \ (B∗ ∩B) for i ≥ 2; the added measure is still at most Cr2, and we did not need to
worry about D \B anyway, because µ(B(x, r) \B) ≤ Cr2 by (39.18) and (39.19) anyway.

So let us now worry about the lower bound. This will be a little more complicated, and
will rely on the isoperimetric inequality. Again we start with the simplest case when (39.49)
holds, and in addition

(39.50) B(x, 2r) ⊂ W+
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(the upper half space). Of course the case when B(x, 2r) ⊂ B \W+ would be similar, and
then we will need to worry about balls centered on (or near) P .

Suppose that µ(B(x, r)) ≤ cr2, with c very small. First observe that, by the isoperimetric
inequality in B(x, r), three of the sets Fj have very small measures in B(x, r), and the last
one is most of B(x, r); more precisely, since we know that F4 does not contribute, either

(39.51) |F1 ∪ F2 ∩B(x, r)| ≤ Cµ(B(x, r))3/2 ≤ Cc3/2r3,

or we have the same estimate for some other combination of indices (1 and 3 or 2 and 3).
Let us assume that we have (39.51) (the two other cases will be similar), or even more

generally that

(39.52) r−3|F1 ∪ F2 ∩B(x, r)| ≤ c′,

with some very small c′. We want to construct a competitor F′ for F in B(x, r)∪σ(B(x, r)),
and we first select, by a Fubini and Chebyshev argument, a radius r1 ∈ (9r/10, r) such that

(39.53) H2((F1 ∪ F2) ∩ ∂B(x, r1)) ≤ 10r−1|F1 ∪ F2 ∩B(x, r)| ≤ 10c′r2.

Then we set B1 = B(x, r1), B∗1 = B1∪σ(B1), and define F′ = (F ′1, F
′
2, F

′
3, F

′
4) by F ′1 = F1\B∗1 ,

F ′2 = F2 \ B∗1 , F ′3 = F3 ∪ B1, and F ′4 = F4 ∪ σ(B1). Again F′ ∈ F because we are far from
D \ B and we respected the symmetry constraints. We save µ(B1) for the total perimeter
in B1 because we no longer have boundaries inside of B1, and similarly on σ(B1), but we
may need to spend an extra 2H2((F1 ∪ F2) ∩ ∂B1)) because of the new discontinuity along
∂B1 ∪ σ(∂B1). Since F is minimal, we get that

(39.54) µ(B1) ≤ 2H2((F1 ∪ F2) ∩ ∂B1).

In turn the proof of (39.51) yields for this smaller ball

(39.55)
|F1 ∪ F2 ∩B1| ≤ Cµ(B1)3/2 ≤ CH2((F1 ∪ F2) ∩ ∂B1)3/2

≤ C2r−3/2|F1 ∪ F2 ∩B(x, r)|3/2,

by (39.53). We keep a power 1/2 for decay, and record that

(39.56) r−3
1 |F1 ∪ F2 ∩B1| ≤ ar−3|F1 ∪ F2 ∩B(x, r)|,

with a = 2C2r−3/2|F1 ∪ F2 ∩B(x, r)|1/2 ≤ 2C2

√
c′ because r−3|F1 ∪ F2 ∩B(x, r)| ≤ c′. That

is, the density of F1 ∪ F2 really decreased, and we can apply the same argument again and
again, on a sequence of balls B(x, rk). Even more: as the density decreases, a gets smaller
and this leaves some room to take the kth ratio rk/rk−1 closer and closer to 1, to the extent
that actually rk ≥ r/2 for all k. Yet r−3

k |F1 ∪ F2 ∩B(x, rk)| tends to 0 and at the end

(39.57) |F1 ∪ F2 ∩B(x, r/2)| = 0.
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We refer to [DS2] for the organization of the sequence {rk}, the computations and also details
on the argument that follows.

When we have F1∪F3 in (39.51), we proceed as above, except that we take F ′1 = F1 \B∗1 ,
F ′2 = F2 ∪ B∗, F ′3 = F3 \ B(x, r), and F ′4 = F4 \ σ(B(x, r)). And the last case of F2 ∪ F3 is
similar.

Let us rephrase what we proved: if r−2µ(B(x, r)) is small enough, and for instance F1

and F2 are the two small sets in B(x, r), we get that |F1∪F2∩B(x, r/2)| = 0, which implies
that µ(B(x, r/2)) = 0 and the closed support Z does not meet B(x, r/2). We would get the
same conclusion for other choices of small sets, and of course this excludes the possibility
that x ∈ Z; the first part of (39.48) follows, in the special case when B(x, 2r) ⊂ B ∩W+ (as
in (39.49) and (39.50)).

We are left with the case when B(x, 2r) crosses P or ∂B. First consider the case when
x ∈ P and B(x, 2r) ⊂ B. Again suppose that µ(B(x, r)) ≤ cr2, with c very small. This
means that all the Fi, except one, have a small measure in B(x, r). The unique large one
cannot be F3 or F4, because by symmetry they would both be large, so it is F1 or F2. Let
us assume that it is F1; the other case would be similar. Instead of (39.51), we now have

(39.58) |F2 ∪ F3 ∪ F4 ∩B(x, r)| ≤ Cµ(B(x, r))3/2 ≤ Cc3/2r3,

where we write the information about F4, but it is the same as for F3. Notice that here
σ(B(x, r)) = B(x, r); we now use the competitor F′ defined by F ′1 = F1 ∪ B(x, r) and
F ′j = Fi \B(x, r) for i ≥ 2. Then we follow the same proof as above when F2 ∪F3 is small in
B(x, r), just replacing F3 by F3 ∪ F4, and working with balls centered at x ∈ P . This takes
care of the case when x ∈ P and B(x, 2r) ⊂ B.

WhenB(x, 2r) ⊂ B butB(x, 2r) meets P , we distinguish between two cases. IfB(x, 2r/3)
meets Z ∩P at some point y (recall that Z is the closed support of µ), we can apply the case
when x ∈ P to the ball B(y, r/4), and get the desired lower bound. Otherwise, P∩B(x, 2r/3)
is contained in a single component Fi, and clearly i 6= 3, 4 because the corresponding compo-
nents lie in half spaces. So we may assume that P ∩ B(x, 2r/3) ⊂ F1 (the other case would
be similar). In this case, we still take F ′1 = F1 ∪ B∗, with B∗ := B(x, r) ∪ σ(B(x, r)), and
F ′j = Fi \ B∗ for i ≥ 2; this does not introduce new discontinuities along P , and we can
continue with the same estimates as in the general case.

We may now assume that B(x, 2r) meets ∂B. Again the case when x ∈ ∂B is a little
easier. Suppose first that x ∈ F1 ∩ ∂B; then since at least one third of B(x, r) lies in F1,
the large component has to be F1. In particular, B(x, r/2) does not meet V ∪ σ(V ) (or,
this amounts to the same thing, G3 or G4). We can then proceed (almost) as in the general
case, i.e., systematically replace F1 with F1 ∪ B(x, r/2) ∪ σ(B(x, r/2)) and the other Fi by
Fi \ [B(x, r/2) ∪ σ(B(x, r/2))]; the estimates stay the same. In the situation when x ∈ F3

(F4 would be similar), we first observe that B(x, r/2) does not meet V ∪ σ(V ) (otherwise
there would be too much of F1 ∪ F2 in B(x, r)), so we can proceed as in the general case,
with F ′3 = F3 ∪B(x, r), F ′4 = F4 ∪ σ(B(x, r)), and F ′i = Fi \ [B(x, r/2) ∪ σ(B(x, r/2))].

In the slightly more general case where B(x, 2r) meets ∂B, either ∂B meets Z∩B(x, 2r/3)
at some point y, and we can use the previous case on B(y, r/4), or else the whole ∂B ∩

330



B(x, 2r/3) is contained in a single Fi. In this last case, Fi is the large component, and we
can proceed as in the general case, pouring all the other components inside Fi (or F3 ∪ F4)
if i = 3, 4). The computations are the same as usual, and with this this last case we end the
long proof of our local Ahlfors-regularity estimate (39.48).

Incidentally, we claim that the proof of (39.48) also shows that in the same circumstances,
the largest of the |Fi ∩B(x, r)| cannot be too large. That is, there is a small constant c > 0
such that

(39.59) |B(x, r) \ Fi| ≥ cr3 for i = 1, 2, 3, 4, x ∈ Z ∩B, and 0 < r < 10−1.

Indeed, if this fails, then |B(x, r) ∩ Fj| ≤ cr3 for all j 6= i, and we can follow the proof of
(39.48), except that we start from the analogue of (39.53) and (39.58) (now with three small
components) to find a first ball B(x, r1) for which r−2

1 µ(B(x, r1)) is small, proceed as above,
and eventually get that |Fj ∩ B(x, r/2)| = 0 for these j. As before, if this happens, Z does
not meet B(x, r/2), and this contradiction proves (39.59).

By (39.48) and a small covering argument, µ is locally equivalent to Hd
|Z on B. See for

instance Lemma 18.11 and Exercise 18.25 in [D1]. Hence Z is a locally Ahlfors regular of
dimension 2, and of course |Z| = 0 (we control things well on B2 \B).

Notice that on the open set D \ Z, the four functions 1Fi
are locally constant (almost

everywhere), because µ = 0 there (and by Poincaré). This means that we can assume that
the Fi are, after modification on a set of vanishing measure that we’ll assume done, open
subsets of D, with boundaries that are contained in Z. In particular,

(39.60) H2(∂Fi) ≤ H2(Z) ≤ Cµ(D) < +∞

where C comes from (39.48) and the comparison between H2
|Z and µ.

Here we could quietly continue as in [DS2] and prove a form of “Condition B”, and then
the local uniform rectifiability of Z, but for the present purposes we don’t need as much.
We still need to investigate the relations between H2(Z) and our functional J .

Return to the reduced boundaries ∂∗Fi that were used before. Recall from (39.25) that
µi = H2

|∂∗Fi
. We claim that, due to the local Ahlfors regularity of µ,

(39.61) Hd(Z \
⋃
i

∂∗Fi) = 0.

Indeed, otherwise (since H2(Z) < +∞) we can find a point x ∈ Z, which is a Lebesgue
density point for Z, but where ∪i∂∗Fi has vanishing density (see for instance the density
properties of sets in [M]). This contradicts (39.48) or the definition of Z as the closed support
of µ =

∑
µi.

We are ready to compare J(F) to Hausdorff measures that comes from the strong sepa-
ration problem. Recall from (39.21) that

(39.62) J(F) = µ3(P )+µ4(P )+
4∑
i=1

µi(D) = H2(P∩∂∗F3)+H2(P∩∂∗F4)+
4∑
i=1

H2(D∩∂∗Fi);
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we need to know how the different reduced boundaries ∂∗Fi match up. For instance, if
x ∈ P ∩ ∂∗F3, then it also lies in ∂∗F4, by symmetry. In general, a point of some ∂∗Fi lies
in at most one other ∂∗Fj, because (39.27) say that each Fi takes at least about half of the
measure in small balls. We claim that conversely, H2-almost every point of Z lies in at least
two sets ∂∗Fj.

So let x ∈ Z be given; (39.61) says that (almost surely) x ∈ ∂∗Fi for some i. For each
small enough r, (39.26) says that nearly half of B(x, r) lies outside of Fi, so we can find j 6= i
such that |Fj∩B(x, r)| ≥ 10−1|B(x, r)|. By Poincaré’s inequality inside of B(x, r) (and since
Fi also is large in that ball), µj(B(x, r)) ≥ C−1r2. Taking a sequence of radii r that tends
to 0 and for which this happens for the same j, we see that x is a point of positive density
for µj. But, since µj = H2

|∂∗Fj
and H2(∂∗Fj) < +∞, this H2-almost never happens when

x /∈ ∂∗Fj (see [M] again). Our claim follows. That is, almost every point of Z lies in exactly
two sets ∂∗Fi, and (39.62) yields

(39.63) J(F) = H2(P ∩ ∂∗F3) +H2(P ∩ ∂∗F4) + 2H2(D ∩ Z).

We have seen that P∩∂∗F3 is the same as P∩∂∗F4. In addition, H2(P∩∂∗Fi) = 0 for i = 1, 2,
becauseH2-almost everywhere on P , the approximate tangent plane to ∂∗Fi is P itself (by the
uniqueness almost everywhere of the approximate tangent, or because almost everywhere on
P∩∂∗Fi, the density of the difference of these two sets vanishes), and then (39.26) and (39.27)
are incompatible with the symmetry of Fi. Thus H2(P ∩Z) = H2(P ∩∂∗F3) = H2(P ∩∂∗F4),
and (39.63) now says that

(39.64) J(F) = 2H2(D ∩ Z) + 2H2(P ∩ Z) = 4H2(D+ ∩ Z),

with D+ = D ∩W+ as above.
Recall that we want to show that F also yields a minimizer E0 for the strong separation

problem. We take E0 = Z ∩2B+ = Z ∩2B∩W+; it lies in the class Fs of strong competitors
defined above (39.16), because Z separates the various Fi also in the smaller B+, and

(39.65) J(F) = 4H2(E0)

by (39.64) and because H2(E0 \ [D+ ∩ Z]) = H2(E0 ∩ ∂D) = 0.
The last step of our long proof consists in taking any other competitor E ∈ Fs and

showing that H2(E) ≥ H2(E0), and for this we first associate to E a competitor F′ =
(F ′1, F

′
2, F

′
3, F

′
4).

First double the set E, i.e. set E∗ = E ∪ σ(E) ⊂ 2B, and denote by F ′i , 1 ≤ i ≤ 3, the
connected component of Gi of in 2B \E∗. Also let F ′4 denote the component of G4 = σ(G3),
or equivalently (by symmetry) set F4 = σ(F3). We want to show that all these sets are
disjoint, i.e., that E∗ separates the four Gi in 2B.

Our assumption that E separates A1 and A2 from A3 in 2B implies that F1 and F2 do
not meet F3. They do not meet F4 either, by symmetry. Also, we know that E separates A1

from A2 in 2B+, and then E∗ still separates them in 2B: suppose instead that there exists
a path γ ⊂ 2B \ E∗ that joins them, replace γ with a path γ+ ⊂ 2B+ by replacing the last
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coordinate z with |z| along γ, and notice that γ+ does not meet E, a contradiction. So F2

is disjoint from F1.
We still need to see that F3 does not meet F4, and for this we simply use the fact that

E separates A1 and A2, hence also A4 = σ(A3), from A3 in 2B. So all these connected
components are different. It could be that there are other components in D \E∗, and if this
is the case just add them to F ′1, say. If we do this, the symmetry is preserved, because we
know that our initial sets F ′i have the required symmetries. Since H2(E) < +∞, we know
that all the F ′i are Caccioppoli sets, so F′ = (F ′1, F

′
2, F

′
3, F

′
4) ∈ F . Consequently,

(39.66) J(F′) ≥ J(F) = 4H2(E0)

by (39.65). We still need prove that

(39.67) J(F′) ≤ 4H2(E),

and for this we just follow the argument between (39.62) and (39.64), which we apply to F′,
but simply replace Z with the union Z ′ of reduced boundaries ∂∗F ′i . This yields J(F′) =
4H2(D+ ∩Z ′), and (39.67) holds because Z ′ ⊂ E and E ⊂ D+. So we proved that H2(E) ≥
H2(E0), E0 is a strong minimizer, and it was enough to consider rectifiable competitors in
the proof of Lemma 39.2. This completes our proof of Lemma 39.3.
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