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0. Introduction.

Dans Asymptotic Invariants of Infinite Groups, M. Gromov fait remarquer qu’il y a peu
de constructions (non arithmétiques) de groupes hyperboliques de grande dimension. En par-
ticulier on manquait jusqu’alors d’un critere combinatoire local assurant ’hyperbolicité du
revétement universel d’un complexe simplicial de dimension quelconque (cf. [G], 7.A.I11.(c)).

Dans cet article nous étudions les complexes simpliciaux de dimension finie localement
finis. En premiere partie nous proposons un critére combinatoire local (cf. Définitions 1.2 et
1.12) qui assure la contractilité du revétement universel et d’autres propriétés de convexité
combinatoire (cf. Théoreme 2.7.5). Un léger renforcement de ce critere donne I’hyperbolicité
au sens de Gromov du revétement universel (cf. Théoreme 3.5).

Le critere local d’hyperbolicité est le suivant. Dans les links des sommets du complexe
X, les voisinages de deux simplexes non voisins (i.e. & distance combinatoire > 1) doivent
étre disjoints ou d’intersection un simplexe. Ces voisinages de simplexes se comportent
comme s’ils étaient des “convexes” du link.

Pour étudier le revétement universel X d’un tel complexe (section 3, Théoreme 3.5),
nous écrivons X comme union croissante de boules combinatoires. Nous montrons que
ces boules sont contractiles, et que deux géodésiques joignant le centre de la boule a deux
sommets du bord de la boule liés par une aréte sont a distance de Hausdorff < 1. Cette
finesse des bigones entraine ’hyperbolicité (d’apres [P]). D’ailleurs il n’est pas clair que X
peut étre muni d’une structure de complexe simplicial métrique CAT'(0) (cf. 1.14).

Tout repose en fait sur la compréhension du passage de la boule de rayon n a la boule
de rayon n + 1. C’est pourquoi nous étudions en section 2 les extensions élémentaires de
complexes : nous montrons comment obtenir un complexe vérifiant le critere d’hyperbolicité
a partir de recollements (particulierement simples) de tels complexes (voir Théoremes 2.4 et

2.7.5).



Enfin pour mener & bien I’étude des extensions nous donnons en section 1 (apres les
rappels et premieres définitions) un lemme technique essentiel (le lemme du voisinage 1.11)

Dans un prochain article nous utiliserons les résultats obtenus ici pour voir que les
complexes finis de groupes finis dont les développements locaux satisfont notre critere sont
développables (de m; hyperboliques). On présentera une méthode pour fabriquer des es-
paces contractiles de dimension quelconque admettant un groupe d’automorphisme discret,
cocompact et résiduellement fini. A I’aide de ces résultats nous construirons des exemples de
groupes hyperboliques de dimension cohomologique virtuelle arbitrairement grande. Enfin,
nous donnons aussi des constructions de groupes de Coxeter a angles droits hyperboliques
au sens de Gromov, de dimension cohomologique virtuelle arbitrairement grande.

Ce dernier résultat - notre but initialement - a été obtenu indépendamment par T.
Januszkiewicz et J. Swiatkowski dans Hyperbolic Coxeter groups of large dimension ([JS]),
récemment publié. D’autre part, dans une communication privée T. Janusz-kiewicz m’a
prévenu qu’il a obtenu des résultats tres semblables a ceux qu’on lira ici.



1. Intersections convexes de voisinages.
1.1 Rappels et notations sur les complexes simpliciaux.

Complexe, simplexe, sous-complexe. Dans tout ce qui suit X désigne un complexe simplicial
(abstrait). On note Sx l’ensemble des sommets de X et plus généralement Sy l’ensemble
des sommets d’un sous-complexe Y. Ainsi X est un ensemble de simplexes o, c’est a dire
de parties finies (non vides) de Sx, stable par passage aux sous-parties (non vides) et par
intersections (non vides ; cf. [HW] section 1.9 et 1.10 p 41,45 pour les premieres définitions
sur les complexes simpliciaux abstraits). La dimension d’un simplexe o est |o| — 1. Pour
un simplexe o et un sous-complexe Y nous écrirons o € Y si ¢ est un simplexe de Y. Pour
tout simplexe o de X, nous noterons encore o le sous-complexe de X formé des parties non
vides de o. Un couple de Sx tel que la partie correspondante est une aréte a de X est une
aréte orientée (notée @). L’aréte opposée sera notée @. Nous dirons que deux simplexes o
et 7 sont joignables si o UT est un simplexe de X, auquel cas nous appellerons o U T le joint
de o et T.

Morphisme. Soient X,Y deux complexes simpliciaux. Un morphisme de X dans Y est une
application f : Sy — Sy telle que pour tout simplexe o de X l'image directe f(o) est un
simplexe de Y (alors f définit par les images directes une unique application X — Y, encore
notée f). Le morphisme est non dégénéré si f est injective sur tout simplexe. C’est un
1somorphisme si f est bijective et son inverse est aussi un morphisme.

Sous-complexes pleins. Rappelons qu’un sous-complexe Y de X est plein si pour tout sim-
plexe 0 de X ona: o C Sy = o € Y. Deux sous-complexes pleins Y, Z sont égaux
<= Sy = Sz. Une intersection de sous-complexes pleins est pleine. Si Z C Y C X avec
Z plein dans Y et Y plein dans X, alors Z est plein dans X. Si S C Sx,S # 0, nous
appelons complexe engendré par S 1'intersection des sous-complexes pleins dont ’ensemble
des sommets contient S (c’est le sous-complexe plein formé des simplexes o de X tels que
o C S). Par exemple si Y est un sous-complexe 1’ensemble des simplexes de X disjoints de
Y est vide ou le sous-complexe engendré par Sx \ Sy. Pour éviter des lourdeurs, nous nous
autoriserons a employer ’expression “complexe engendré par S” méme quand S est vide :
c’est par définition le vide (donc pas un sous-complexe au sens strict).

Voisinages. Pour tout sous-complexe Y de X soit V(Y, X) le sous-complexe formés des
simplexes de X contenus dans un simplexe touchant Y. C’est le voisinage de Y dans X.
Nous notons OV (Y, X) le sous-complexe (plein) formé des simplexes de V (Y, X) ne touchant
pas Y (c’est le bord de V (Y, X)). Lorsque Y = {s}, nous allégeons V ({s}, X) en V (s, X).

Plus généralement, pour tout sous-complexe ¥ C X et tout entier n > 1, on note
V™ (Y, X) l'union des simplexes o de X contenant un sommet v tel que d(v,Sy) < n — 1.
Par exemple, V1Y, X) = V(V,X),V3(Y,X) = V(V(Y,X), X), et en fait V" (Y, X) =
V(V™(Y,X),X). SiY = {s} on note plutét V"(s, X) On note V"™ (Y, X) le sous-complexe
de V(Y, X ) engendré par les sommets a distance n de Sx. On a bien dV1(Y, X) = 9V (Y, X)
et pour n > 1 également OV (Y, X) = oV (V" (Y, X), X).

D’autre part, pour tout simplexe o, nous notons St(o, X) le sous-complexe formés des
simplexes de X contenus dans un simplexe contenant o (c’est 1’étoile de o dans X). Nous
noterons Lk(o, X) le sous-complexe de St(o, X) formé des simplexes ne touchant pas o (le
link de o dans X). Lorsque o est un sommet s, on a St(s, X) = V (s, X), et Lk(s, X) =
oV (s, X).



Nous dirons qu’un morphisme f : X — Y est un isomorphisme local (ou un revétement)
si pour tout p € Sx, f induit un isomorphisme de V(p, X) sur V(f(p),Y).

1.1.1 Remarque sur les voisinages et les sous-complexes pleins.
Si K C X est plein et si s € Sk, alors V (s, K) =V (s,X) N K. Plus généralement si Y’
est un sous-complexe de K, alors V(Y, X)NK =V (Y, K)

Démonstration

Traitons d’abord le cas on Y = {s}. L’inclusion V(s,K) C V(s,X) N K est évidente.

Réciproquement, si un simplexe de K est joignable a s dans X, il I’est dans K par plénitude

de K dans X.

Pour Y un sous-complexe de K, on a V (Y, X) N K = (U,cy V(s, X)) N K = U,y V(s, X)

NK = U,ey V (s, K) (par ce qui précede). Par définition on a donc V(Y, X)NK =V (Y, K).
O

1.2 Plusieurs notions de convexité locale combinatoire.
(Py) Tout voisinage de sommet est plein dans X.

(P;) Tout voisinage de sommet et d’aréte est plein dans X.
(P) Tout voisinage de simplexe est plein dans X.

(D) X est de drapeaux, i.e. si 0 C Sx est telle que deux sommets distincts de o sont liés
par une arete de X, alors o est un simplexe de X.

(ICVp) Pour deux sommets s,t non liés par une aréte de X, l'intersection des voisinages de
sommets St(s, X) et St(t, X) est vide ou un simplexe o CLk(s, X)NLk(¢, X). Pour toute
aréte a d’extrémités s,t on a St(s, X)N St(¢, X) =St(a, X).

(ICV) On suppose que (ICV}) est vérifiée et que de plus pour toute aréte a et tout som-
met s non dans V(a, X), l'intersection de St(s, X) avec V(a, X) est vide ou un simplexe
o CLk(s,X)N oV (a, X).

(ICV_7) On suppose que (ICV) est vérifiée et que de plus pour deux arétes a et b, avec bN
V(a, X) = 0, intersection de V(a, X) avec V (b, X) est vide ou un simplexe o C 9V (a, X)N
oV (b, X).

Le sigle (IC'V') veut évoquer : intersection convexe de voisinages. Par exemple, un complexe
ayant (ICV}) a la combinatoire la plus simple possible pour les voisinages de sommets.

1.3 Définition (chemins, géodésiques, cycles).

1) Un chemin de longueur n de X est une suite (po, - - -, pn) de sommets de X, tels que
{pi,pi+1} est une aréte de X pour tout 0 <1i < n.

2) Si X est connexe alors Sx est muni de la distance combinatoire d, minimum de la
longueur des chemins joignant deux sommets. Une géodésique de X est un chemin de X dont
la longueur est la distance entre ses extrémités. Une partie de Sx est dite convexe (resp.
totalement géodésique) si toute (resp. une) géodésique entre deux sommets de la partie a
tous ses sommets dans la partie. Pour un sommet s et un entier n > 0, nous noterons
Bx(s,n) (resp. ¥x(s,n)) le sous-complexe de X engendré par ’ensemble des sommets t tel
que d(s,t) < n (resp. d(s,t) =mn) : c’est la boule (resp. la sphere) de centre s et de rayon n
dans X.



3) Un chemin (p1,---,pn) est un cycle de X de longueur n si ses sommets sont deux
a deux distincts et {p,,p1} est aussi une aréte. Une corde du cycle est une aréte {p;,p;}
avecl <i<j—1<mn (et {i,j} # {1,n}). Le complexe X est dit sans n-cycle si tous ses
cycles de longueur < n ont une corde. Pour n = 4,5,6 on dit sans carré, sans pentagone,
sans hexagone.

Attention ! En général, 'inclusion V" (s, X)) C Bx(s,n) est stricte, car OV (s, X) (et donc
V™ (s, X) lui-méme) n’est pas toujours un sous-complexe plein. Ce sera cependant le cas si
X est connexe, simplement connexe et satisfait la condition (/CV), cf. lemme 3.1.

1.4 Lemme. X vérifie (ICV}) si et seulement si X vérifie (D) et est sans carré. De plus
un tel X vérifie (Py) ; en fait X vérifie méme (P).

Démonstration

Montrons d’abord que si X a (ICV), alors X a (D).

On raisonne par récurrence sur le cardinal k£ de I'ensemble ¢ des sommets d’un sous-
graphe complet de X. Evident si £ < 2, donc on suppose k > 3, on considere une partition
o= {s,t} Uo’ avec |o’| = k —2. Alors par récurrence {s}Uoc’ et {t} Uc’ sont des simplexes
de X. Donc ¢’ est un simplexe de St(s, X )N St(¢, X), donc o est un simplexe de St({s,t}, X)
par (IC'V,) (deuxieme propriété).

Notons que la condition “de drapeaux” entraine immédiatement (Fy).

Montrons que X est sans carré. Pour cela on considere un carré, deux sommets s,t
diamétralement opposé sur ce carré. Ou bien s et t sont liés, ou bien la premiere partie de
(ICVp) dit que les deux autres sommets du carré sont liés, ce qui conclut.

Montrons maintenant que X vérifie (P). Soit o un simplexe de X et 7 un simplexe tel
que S; C V(o,X). On raisonne par récurrence sur dim7 ; il n’y a rien a faire si dim 7 = 0.

Si dim7 > 0 écrivons 7 = p % {p}. Par récurrence il existe s € o tel que p € V (s, X).
Soit t € o tel que p € V (¢, X).

Si p est lié & s alors S, C V(s, X). Par (P) nous avons 7 € V (s, X) C V (o, X).

Si p n’est pas lié a s, alors S, C V(t,X). En effet par (ICVp) intersection V (s, X) N
V(p, X) est un simplexe, qui d’ailleurs contient ¢ et p. Ici encore par plénitude nous avons
TeV(t,X)CVieX).

Réciproquement supposons que X soit un complexe de drapeaux sans carré.

Soit s,t deux sommets liés dans X par une aréte a. Soit o un simplexe de St(s, X)N
St(t, X). Alors tous les sommets de o sont joignables a la fois a s et a t : donc o U {s}U{t}
est 'ensemble des sommets d’un graphe complet de X. Par (D) il existe un simplexe 7 de
X engendré par cet ensemble de sommet. C’est dire que o €St(a, X).

Soit maintenant s, ¢ deux sommets non liés dans X tels que St(s, X)N St(¢, X) est non
vide. Soit S I’ensemble des sommets de St(s, X)N St(¢, X) : montrons que S engendre un
graphe complet. En effet si u,v sont distincts dans S, alors (s,u,t,v) est un carré de X.
Comme X est sans carré et que s et t ne sont pas liés, on voit que nécessairement u et v
sont liés. Donc S engendre un graphe complet. Et par (D) en fait S engendre un simplexe
de X. La condition (ICVp) est satisfaite.

OJ

1.5 Lemme. La condition (ICV') (resp. (ICV_y)) est équivalente a la condition étre de
drapeaux, sans pentagone (resp. sans hexagone).

Démonstration



Soit 7 un pentagone de X vérifiant (/C'V') : nous devons y trouver une corde. Soit a
une aréte de m et s le sommet de m non dans a. Ou bien s est lié a 'une des extrémités de a
(ce qui donne une corde), ou bien s n’est pas dans V(a, X) et donc d’apres (ICV) les deux
voisins de s dans 7 sont liés dans X.

Réciproquement supposons X de drapeaux, sans pentagone. Soit s un sommet et a une
aréte de X (d’extrémités u,v), avec s ¢ V(a, X), i.e. s non lié & u ou v. Soit S I'ensemble
des sommets de St(s, X) NV (a, X).

Soit ¢, w deux sommets distincts de S. Alors (s,t,u,w) ou (s,t,v,w) est un carré de X,
ou bien (s,t,u,v,w) ou (s,t,v,u, w) est un pentagone de X. Puisque s n’est pas joignable
dans X & u ou v, la condition sans pentagone donne {t, w}, {t,v} ou {u,w} est une aréte de
X. Les deux derniers cas (correspondant au pentagone) entrainent eux-aussi que {¢,w} est
une aréte de X, par la condition sans carré.

Ainsi S engendre un graphe complet de X et, par (D), S est un simplexe. Avec le
lemme précédent on a bien que X vérifie (ICV).

Soit maintenant h un hexagone de X vérifiant (ICV_1) : nous devons y trouver une corde.
Soit a une aréte de h et b 1’aréte de h ne touchant pas a. Ou bien b rencontre V(a, X) (ce
qui donne une corde), ou bien d’apres (ICV_;) les deux sommets de h non dans a U b sont
liés dans X.
Réciproquement supposons X de drapeaux, sans hexagone. Soit a,b deux arétes de
X (d’extrémités r,s et u,v), avec b N V(a,X) = 0. Soit S l'ensemble des sommets de
V(a,X)NV (b, X).
Soit t,w deux sommets distincts de S ; alors I'une des propriétés suivantes est vraie
(s,t,u,w), (s,t,v,w), (r,t,u,w) ou (r,t,v,w) est un carré, (s,t,u,v,w), (r,t,u,v,w),
(r,s,t,u,w) ou (r,s,t,v,w) est un pentagone ou enfin (r, s, ¢, u, v, w), (r,s,t,v,u,w), (r,s,v,
w,u,t)ou (r,s,w,u,v,t) est un hexagone de X. Puisque r, s ne sont pas joignables dans X a
u ou v, la condition sans hexagone ramene le cas de I’hexagone a I'un des cas de pentagone,
puis les cas de pentagones a un cas de carré, enfin on obtient dans tous les cas que {t,w}
est une aréte de X.
Ainsi S engendre un graphe complet de X et par (D) S est un simplexe. Avec le lemme
précédent on a bien que X vérifie (IC'V).
OJ

Les diverses propriétés d’intersection convexe de voisinage sont locales, au sens ou il
suffit qu’elles soient vraies dans toutes les boules de rayon 3 pour qu’elles soient vraies dans
le complexe simplicial. Le résultat suivant est une autre illustration de ce caractere local.

1.6 Lemme. Soit X un complexe simplicial connexe et I' un groupe d’automorphismes de
X. Soit 6 la distance de translation deT" sur X, i.e. le minimum des distances combinatoires
dans X entre un sommet s et son translaté vs (avec v # 1). Notons X le quotient T'\ X.

i) Sid > 2 alors X est un complexe simplicial.

ii) Si§ >3 alors X a (D) <= X a (D).

iii) Si § > 4 alors X est (ICVy) <= X est (ICVj).

iv) Sid > 5 alors X est (ICV) <= X est (ICV).

v) Si § > 6 alors X est (ICV_;) <= X est (ICV_1).

Démonstration
Montrons le point i). Si > 1 alors I' agit sans inversion, au sens ou (yo =0,y € ') =
Ve =id|s. Dans ce cas X est un “multicomplexe simplicial”, dont I’ensemble de sommets est

6



le quotient Sx = I'\ S+, avec comme simplexes les parties 0 = 7(7) (en notant 7 : S — Sx
la surjection canonique). Comme il n’y a pas d’inversion dimo = dim@. Il est clair que X
est stable par passage aux sous-parties non vides.

Pour 7,7 € X tels que cN7 # (), on peut quitte & translater & écrire & = {To, T1, - - -, Ty,
T et T={To,T1s o Tir Yo}, avee To =Yg et [Ty =T; <= j€{0,1,--+,i}. La
condition J > 2 entraine alors Z; = ¥, pour tout j € {0,1,---,i}. Donc o N7 est bien un

simplexe de X. Ainsi X est un complexe simplicial.

De plus 7 : S — Sx est un isomorphisme local (la surjectivité locale est automatique,
I'injectivité locale vient de § > 2).

Montrons le point ii). L’image par 7 d’un sous-graphe complet K est un sous-graphe
complet K. Donc si X est de drapeaux K est le 1-squelette d’un simplexe 0. Comme 7 est
un isomorphisme local, K engendre un simplexe (préimage de o). On a donc toujours : X
de drapeaux = X de drapeaux.

Supposons réciproquement X de drapeaux. Soit K un sous-graphe complet de X, p un
sommet de K et ay,---,ay les arétes de K contenant p. Soit alors p un sommet de 7 1(p)
et ay,---,ay les arétes de 7~ 1(K) issues de p. Supposons que les extrémités p,,p, de @y, as
différentes de P ne soient pas liées. Soit alors p, le voisin de p; tel que 7(p5) = p2. On a
Db # Dy €t (Ph, Py, D, Po) €st un chemin donc 0 < 6 < d(ph,Dy) < 3.

Donc lorsque § > 3 la réunion Ui=¥@; engendre un sous-graphe complet K de X. Comme
X est de drapeaux, K engendre un simplexe & et donc K engendre le simplexe 7(7). Ainsi
X est de drapeaux.

Supposons maintenant que (p1,---,Pm) soit un m-cycle de X. Soit ¢ = (p1, -+, Pm,p1) le
chemin correspondant. Soit ¢ = (py,--,D,,, ;) un relevé de ¢ & X. Si p} # p; alors § < m.
Donc si on suppose § > n , le relevé de tout m-cycle (avec m < n) est un m-cycle. On en
déduit que si 6 > n et si X est sans n-cycle alors X est sans n-cycle.

Réciproquement si § > n et si X est sans n-cycle alors X est sans n-cycle. Car un
n-cycle de X se projette sur un n-cycle de X, dans lequel on doit avoir une corde, cette
corde fait apparaitre un m-cycle avec m < n, et le relevé de ce m-cycle étant un m-cycle,
on obtient une corde dans le cycle de départ.

Finalement si 6 > n alors X est sans n-cycle <= X est sans n-cycle. On conclut la
preuve du lemme en utilisant les lemmes 1.4, 1.5 et le résultat préliminaire sur la propriété
(D).

O

1.7 Lemme. Supposons qu’'un complexe simplicial X ait la propriété (D) (resp. (ICVy),
resp. (ICV), resp. (ICV_y)). Alors tout sous-complexe plein K a aussi la propriété (D)
(resp. (ICVp), resp. (ICV), resp. (ICV_q)).

Démonstration

Soit Y un sous-complexe plein et K un sous-graphe complet de Y. si X est de drapeaux,
K engendre un simplexe o de X. Comme Y est plein, on a en fait 0 € Y. Donc si X a (D)
alors Y a (D).

Soit ¢ un n-cycle de Y. Si X est sans n-cycle, alors ¢ a une corde dans X. Comme Y
est plein cette corde est dans Y. Donc si X est sans n-cycle, alors Y est sans n-cycle. On
conclut avec les lemmes 1.4, 1.5 et le résultat préliminaire sur la propriété (D).

OJ



1.8 Lemme. Soit X un complexe simplicial ayant (ICV') (resp. (ICV_1)) et soit o un
simplexe de X. Si s (resp. T) est un sommet (resp. un simplexe) de X dont le voisinage ne
touche pas o, alors I'intersection V (o, X) NV (s, X) (resp. V(o,X) NV (1, X)) est vide ou
un simplexe.

Démonstration

Soit T' I'ensemble des sommets de l’'intersection des voisinages, supposé non vide.
Puisque X a (ICV) les voisinages de simplexes sont pleins et il suffit de montrer que 7'
engendre un simplexe de X. Comme X est de drapeaux, il suffit de montrer que T engendre
un graphe complet.

Soient donc deux sommets u, v distincts de T'. 1l existe alors un sommet ¢ ou une aréte
b de o tels que {u,v} C V(t,X) ou {u,v} C V(b, X).

Lorsque X est (ICV) et s est un sommet non dans V (o, X), on a donc {u,v} C
V(t,X)NV(s,X) ou{u,v} C V(b,X)NV(s,X), dans les deux cas des simplexes. Donc u
et v sont liés.

Lorsque X est (ICV_1) et 7 est un simplexe ne touchant pas V(eo, X), il existe un
sommet s ou une aréte a de 7 tels que {u,v} C V(s,X) ou {u,v} C V(a,X). Dans
tous les cas, les intersections V (¢, X) NV (s, X), V(t,X)NV(a,X), V(b,X)NV(s,X) ou
V(b, X)NV(a,X) sont des simplexes contenant {u, v}, qui sont donc liés.

O

Dans la suite de cette section nous allons donner des criteres locaux pour avoir la convexité
des intersections de voisinage.

1.9 Définition. Soit X un complexe simplicial. Soit 0,7 deux simplexes de dimensions
n,m. Nous dirons que X est (ICVy) en 0,7 sin =m =0 et : ou bien 0 = 7, ou bien o et
T sont liés par une aréte a et V (o, X) NV (1, X) =St(a, X), ou bien encore d(o,7) > 1 et
V(e, X)NV (1, X) est vide ou un simplexe. Nous dirons que X est (ICV') (resp. (ICV_1)) en
o,7sin=0,m=1 (resp. n=1,m =1) et ou bien c NV (7,Y) # () ou bien c NV (7,Y) =0
et alors V (o, X) NV (7, X) est vide ou un simplexe.

Avec cette définition, il est clair qu'un complexe est (ICV}) s’il lest en s,t pour s,t
deux sommets quelconques (idem avec (ICV) et (ICV_y)).

1.10 Lemme de recouvrement. Soit X un complexe simplicial. Soit o, T deux simplexes
de dimension n = 0,m = 0 (resp. n =0,m =1, n = 1,m = 1). Supposons qu’il existe un
sous-complexe plein K contenant o Ut U (V (0, X) NV (7, X), et que K ait (ICV}) (resp.
(ICV), (ICV_y)). Alors X est (ICVy) (resp. (ICV), (ICV_41)) en o,T.

Démonstration
D’abord V (o, X)NV (1, X) = V (o, K)NV (1, K). Eneffet V (o, X)NV (1, X) = V (0, X)N
V(irn,X)NK=(V(e,X)NK)N(V(r,X)NK). Or comme K est plein et contient o, 7 on a
V(ie, X)NK =V (0,K) et V(r,X)N K =V (7, K) (voir la remarque initiale 1.1.1).
Alors les intersections a étudier ont la forme voulue parce qu’on a mis sur K ’hypothese
correspondante.
0

1.11 Lemme du voisinage. Soit Y un complexe simplicial, X un sous-complexe plein tel
que Y = V(X,Y). On note 9Y le sous-complexe de Y engendré par les sommets non dans
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X. Si p est un simplexe de QY on suppose que I'’ensemble des sommets joignables a chaque
sommet de p engendre un simplexe o, de X joignable a p. Enfin on suppose que tous les
voisinages de sommet V (s,Y), avec s € X, sont pleins dans Y .

Si X et les V(s,X) sont (ICVy) (resp. (ICV), (ICV_y1)) alors Y l'est aussi.

Démonstration

Notons d’abord que sous les hypotheses un sommet de Y non dans X est dans 0Y.
D’autre part on voit que 0, = Nse,05 (intersection sur 'ensemble des sommets de p).

a) Supposons que X et les V (s, X) sont (ICV}), et montrons que Y est (IC'V}) en s,t pour
s,t deux sommets quelconques (tels que s £t et V(s,Y)NV(t,Y) £ 0).

- Supposons s lié a t, avec s (ou t) dans X. Alors le lemme de recouvrement 1.10 s’applique

aV(s,Y) (ouV(t,Y)) en s,t.

- Supposons s dans X et t € Y avec t non lié a s. Alors p=V(s,Y)NV(t,Y)N X est un
simplexe de X. En effet V(s,Y)NV(t,Y)NX =V (s,Y) Noy, vide ou un simplexe comme
intersection d’un sous-complexe plein et d’un simplexe. Or V(s,Y) NV (¢,Y) est non vide.
Et si 7 est un simplexe de V(s,Y) N V(¢,Y) N 9Y, alors tout sommet de oy 1 est dans p,
car lié a t et lié dans o, a s. Dans tous les cas de figure p # ().

Montrons que V (s, Y)NV(t,Y) C St(p,Y). Soit 7 un simplexe de V (s, Y )NV (¢, Y)NOY .
Comme nous l'avons vu ci-dessus il existe un sommet = € p lié a ¢ et 7. Comme V(z,Y)
a (ICVy), lintersection V(s,V(z,Y)) NV (¢t,V(z,Y)) est un simplexe, dans lequel 7 est
joignable a p.

Maintenant fixons un sommet x quelconque de p. Alors V(s,Y)NV (t,Y) C V(z,Y) et
le lemme de recouvrement s’applique a K = V(z,Y) en s, t.

- Si s et t sont dans QY et liés par une aréte a, alors V(s,Y) NV (t,Y) N X est le simplexe
04 Soit 7 un simplexe de V(s,Y) NV (¢,Y) N JY. Montrons d’abord que o, No, # 0.

Pour cela considérons des sommets u € oy, r},v € 0y 71,7 € 0q. Alors s,t,u,v
sont dans V(z,Y). Donc si t € V(u,Y), alors par (ICVp) dans V(z,Y) l'intersection
V(t,V(z,Y)) N V(u,V(z,Y)) est un simplexe contenant s et v, donc s € V(v,Y). Il en
résulte que oy -y Noy # 0 ou oy 3 Nog # 0 : finalement o, N o, # 0.

Soit alors p un simplexe de V(s,Y) NV (¢,Y), montrons que p est joignable a a. C’est
évident si p C X. Sinon soit 7 la face de p opposée a pN X, puis soit y un sommet du simplexe
orNog. On a {s,p},{t,p} € V(y,Y) (par plénitude), donc par (ICV) dans V(y,Y) nous
avons p joignable a a = {s,t} (dans V(y,Y)).

- Supposons pour finir que s et ¢t sont dans dY, non liés dans Y.

Supposons d’abord que l'intersection ¢ = o4 N o; est non vide. Montrons qu’alors
V(s,Y)NV(t,Y) CSt(o,Y).

Soit donc 7 un simplexe de V' (s,Y)NV (¢,Y)NIY. Soit  un sommet de oy, ;1. Siz est
lié a ¢, alors 7 et o sont deux simplexes de V (s, V(z,Y))NV(¢,V(x,Y)). Donc par (ICVp)
dans V(z,Y’) nous avons 7 joignable a o. Si z n’est pas lié a t, nous avons vu ci-dessus que
V(z,Y)NV(t,Y) est un simplexe, dans lequel on peut joindre 7 a o.

Soit maintenant x un quelconque sommet de o : alors le lemme de recouvrement
s’applique en s,t avec K =V (z,Y).

Finalement reste a traiter le cas ou o5 N o; est vide. Soit w un sommet lié a s et ¢
(nécessairement u € JY).



Supposons que pour un autre sommet v de V (s, Y)NV (¢,Y) il existe un sommet = de X
lié simultanément & s, u,v. Alors x n’est pas lié & t car o, Moy = (). Nous avons déja montré
que V(z,Y) NV (t,Y) est un simplexe. Or ce simplexe contient u,v, 0y +},0(v+}. On en
déduit que oy, 4y est joignable a v, donc est contenu dans oy, ;3. Par symétrie on a en fait
O{u,t} = Ofv,1}- Nous pouvons alors recommencer dans l'autre sens le raisonnement a partir
de n’importe quel sommet y de oy, 1y = 0y ¢} © NOUS VOYONS que Oy, s} = Ofy 51 Evidem-
ment on obtient aussi les égalités oy 1y = 04,4}, Tfu,s}) = Ofv,s} Sl on part de 'hypothese
0wty NOfu) # 0

Supposons alors par 'absurde que v est un autre sommet de V(s,Y) NV (¢,Y) tel que
Ofu,sy N Ofps) = (). D’aprés ce qui précede nous devons avoir aussi Ofuty N 0wy = 0.
Choisissons des sommets x,2,y,y dans oy s}, 0y s} Ofu,t}s O{v,e}- Comme X est (ICVp)
ou bien z est lié a 3/, ou bien 2’ est 1ié a4 y. Supposons pour fixer les idées que {x,y'} est
une aréte de X. Alors nous avons déja vu que V(z,Y)NV(¢,Y) est un simplexe, donc u est
lié¢ & g, qui est donc un sommet de oy, 4 N oy 4y, contradiction.

Ainsi le simplexe o joint de o, ,,) et de o4,y est indépendant du sommet v de V (s, Y)N
V(t,Y). Il est alors immédiat que tout simplexe de V(s,Y) NV (t,Y) est joignable a o.
D’autre part, pour = € 0.} €t Y € 044}, ou bien x (resp. y) est lié a ¢ (resp. s), et alors
le lemme de recouvrement s’applique en s,t & K = V(x,Y) (resp. K = V(y,Y)), ou bien
x n'est pas lié a ¢, y n'est pas lié a s, et alors V(s,Y)NV(t,Y) = (V(s,Y)NV(y,Y)) N
(V(z,Y)NV(t,Y)). Or on a déja montré que les deux facteurs sont des simplexes, ce qui
conclut.

b) Supposons maintenant que X et les V (s, X) sont (IC'V). D’apres ce qui précede nous
savons déja que Y est (ICVy). Montrons que Y est (ICV) en s,a pour s un sommet et a =
{z,y} une aréte quelconques (tels que s € V(a,Y) et V(s,Y)NV(a,Y) # (). Nous poserons
T(s,z) = V(s,Y)NV(z,Y) et 7(s,y) = V(s,Y)NV(y,Y). Au a) nous avons vu que ces
intersections sont le vide ou un simplexe. Par hypothese V(s,Y)NV (a,Y) = 7(s,z)UT(s,y)
est non vide, donc 'une des deux intersections au moins est non vide. Nous nous servirons
librement de ces faits.

- Si s et a sont dans X alors nécessairement V' (s,Y)NV(a,Y) C X. Sinon soit u un sommet
de V(s,Y)NV(a,Y)NOY : alors u est lié & s et & un sommet de a, donc s et ce sommet
sont liés dans o, absurde. Nous pouvons alors appliquer le lemme de recouvrement en s, a
avec K = X.

- Supposons s € 9Y,a € X. Alors 0 = V(s,Y)NV(a,Y)N X est un simplexe.

En effet V(s,Y) N X = o5, et comme X est plein on a V(a,Y)N X = V(a,X), qui
est plein dans X (puisque X est (ICV})) donc est aussi plein dans Y. Donc o est vide ou
un simplexe. Mais o = (7(s,2) N X) U (7(s,y) N X), et au a) nous avons vu que 7(s,x) N
X, 7(s,y) N X sont non vides des que 7(s,z) ou 7(s,y) sont non vides. Donc o est non vide
et c’est bien un simplexe.

En particulier 7(s, )N X et 7(s,y)NX sont comparables. Supposons les notations telles
que 7(s,z)NX est un simplexe et 7(s,y)NX C 7(s,z)NX. Alors le lemme de recouvrement
s’applique en s,a avec K = V(z,Y) pour z sommet de o (quelconque si 7(s,y) = (), pris
dans 7(s,y) sinon).

- Supposons s,x € X et y € Y.
Si 7(s,y) =0 il n’y a rien & démontrer.
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Sinon, d’apres a), 7(s,y) est un simplexe rencontrant X : soit z un sommet de 7(s,y)N
X. Notons que z est lié a a dans le simplexe o,. Alors le lemme de recouvrement s’applique
en s,a avec K = V(z,Y).

- Supposons z,y € JY.

Si7(s,z) =0 ou 7(s,y) =0 il n’y a rien & démontrer.

Sinon, d’apres a), 7(s,x) et 7(s,y) sont deux simplexes rencontrant X. Montrons que
7(s,2) N 7(s,y) N X est non vide.

Soit z un sommet de 7(s,z) N X. Si z est lié & y il n’y a rien a démontrer. Sinon soit
w un sommet de 7(s,y) N X.

Le sommet z € X n’est pas lié a y : ¢’il n’était pas lié a w, par le cas précédent,
I'intersection V(z,Y)NV ({w, y},Y) serait un simplexe, dans lequel s et z serait liés, absurde.
Donc z est lié & w. Alors par (ICV}) l'intersection V' (z,y) NV (y,Y) est un simplexe dans
lequel w est lié & . Ainsi on a w lié & s,y et x, donc dans ce cas aussi 7(s,x) N 7(s,y) N X
est non vide.

Soit alors u un sommet quelconque de 7(s,z) N7(s,y) N X. Le lemme de recouvrement
s’applique en s,a avec K =V (u,Y).

c¢) Supposons maintenant que X et les V (s, X) sont (ICV_1). D’apres ce qui précede nous
savons déja que Y est (/C'V'). Montrons que Y est (ICV_1) en a,b pour a = {z,y},b = {s,t}
des arétes quelconques (tels que bNV(a,Y) =0 et V(a,Y)NV(b,Y) # ). Nous poserons
7(s,a) = V(s,Y)NV(a,Y) et 7(t,a) = V(t,Y) N V(a,Y). Au b) nous avons vu que ces
intersections sont le vide ou un simplexe. Par hypothese V(a,Y)NV(b,Y) = 7(s,a)UT(t,a)
est non vide, donc I'une des deux intersections au moins est non vide.

- Supposons d’abord a,b C X. Nous avons vu au b) qu’alors 7(s,a),7(¢t,a) C X. Donc le
lemme de recouvrement s’applique en a,b avec K = X.

- Supposons s € X et t € dY. Nous avons vu au b) que 7(¢,a) est un simplexe rencontrant
X : soit u I'un de ses sommets. Alors u est lié a s dans oy, donc u € 7(s, a).

Comme nous 'avons vu au b), chacun des deux simplexes 7(s,a), 7(t,a) est joignable a
I'une des extrémités de a. Supposons les notations telles que 7(¢,a) =V (¢t,Y) NV (z,Y).

SiT(s,a) =V(s,Y)NV(x,Y), alors V(a,Y)NV(b,Y) =V (b,Y)NV(x,Y), un simplexe
par (ICV).

Sinon 7(s,a) = V(s,Y)NV(y,Y), donc u est joignable a y. Alors le lemme de recou-
vrement s’applique en a,b avec K = V' (u,Y).

- Si 7(s,a) ou 7(t,a) sont vides il n’y a rien & démontrer. Sinon nous avons vu au a) et au
b) que les simplexes 7(s, a) et 7(t,a) rencontrent X. Montrons que 7(s,a) N7(t,a) N X # 0.
Soit z un sommet de 7(s,a) N X. Si z est lié a t, alors z € 7(s,a) N 7(t,a) N X. Sinon
supposons les notations telles que x est lié & z. Soit w un sommet de 7(¢,a) N X.
Nécessairement w est 1ié & s, donc 7(s,a) N 7(t,a) N X # 0. Cela vient de (ICV}) si
w est lié & z (t et z sont supposés non liés, on considere le simplexe V(t,Y) NV (z,Y)), et
de (ICV) si wlié a x (t n’est lié ni & z ni a x, on considere le simplexe V(¢,Y) NV (z,Y)).
Noter que w doit étre lié & z ou x, sinon l'intersection V({z,z},Y) NV ({w,t},Y) est d'un
type déja étudié (si z,t € X on est dans le premier cas particulier, sinon on est dans le
second). Donc cette intersection est un simplexe, dans lequel s est lié & y, contradiction.

Soit w un sommet de 7(s,a) N 7(t,a) N X.
Supposons les notations telles que u et x sont liés. Si y n’est pas lié a u alors c’est a x
que les simplexes 7(s,a) et 7(t,a) sont joignables. Dans ce cas 7(s,a) = V(s,Y)NV(z,Y)
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et 7(t,a) =V (¢, Y)NV(z,Y) : donc V(b,Y)NV(a,Y) =V(b,Y)NV(z,Y), un simplexe
d’apres (ICV).
Si y est lié a u, alors le lemme de recouvrement s’applique en a,b avec K = V(u,Y).
O

Remarque. Nous verrons a la section suivante qu’on a la méme conclusion sans ’hypothese
de plénitude des voisinages de sommets V (s,Y) pour s € X.

1.12 Définition. Un complexe a localement (ICVp) (resp. localement (ICV), resp. lo-
calement (ICV_y)) si les étoiles de tous les sommets de X ont la propriété (ICVy) (resp.
(ICV), resp. (ICV_y)).

Si X est (ICVy) (resp. (ICV), resp. (ICV_q)), alors il I'est localement. En effet d’apres
le lemme 1.4 les voisinages de sommet de X sont pleins, et d’apres le lemme 1.7 les sous-
complexes pleins sont (ICVy) (resp. (ICV), resp. (IC'V_1)). Nous montrerons a la section
suivante que la réciproque est vraie si on suppose X simplement connexe (cf. théoréme

2.7.5).

1.13 Lemme. Un voisinage de sommet (V,s) a (D) (resp. (ICVp), (ICV), (ICV_y)) si et
seulement si OV a (D) (resp. (ICVy), (ICV), (ICV_y)).

Démonstration

Le sens = vient du lemme 1.7 et de ce que OV est un sous-complexe plein.

Réciproquement supposons 0V de drapeaux, alors V est de drapeaux. En effet soit K
un sous-graphe complet de V. Si s € Sk alors K C 9V, donc K engendre un simplexe
de OV. Sinon il existe un sous-graphe complet L de OV tel que Sk = {v} U Sr. Soit 7 le
simplexe de dV engendré par L. Comme (V,s) est un voisinage de sommet 7 est contenu
dans un simplexe o tel que s € 0. D’ou K engendre bien un simplexe de V.

D’autre part tout n-cycle de V passant par s admet une corde. Donc si OV est sans
n-cycle alors V' aussi est sans n-cycle. On conclut comme d’habitude avec 1.4 et 1.5 .

O

Ainsi le cone sur un complexe (ICV') est encore (ICV) : a l'aide de complexes de
groupes (ICV') ceci permet de construire par récurrence des complexes (ICV') de dimension
“homologique” arbitrairement grande, ce que nous ferons dans la deuxieme partie de ce
travail.

1.14 Exemples, questions.

1) La premiere subdivision barycentrique d’un complexe simplicial quelconque est tou-
jours de drapeaux. Mais elle n’est presque jamais (/C'Vj). En effet, si deux triangles sont
adjacents par une aréte dans le complexe de départ, alors I'intersection de 1’étoile des centres
des triangles n’est pas un simplexe dans la premiere subdivision barycentrique. Le but initial
de ce travail était de construire des complexes (ICV}) de toute dimension. En dimension
deux il y a abondance de complexes ayant des intersections de voisinages convexes, comme
le montre la suite.

2) Considérons un complexe polygonal dont tous les polygones ont au moins cing (resp
: six) cotés. Nous pouvons alors considérer le complexe triangulaire obtenu en rajoutant un
sommet au centre de chaque face polygonale, les triangles ayant pour sommet les centres
de faces et les extrémités d’'une aréte de la méme face. Il est immédiat que les links des
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anciens sommets subissent une subdivision barycentrique, donc deviennent des graphes de
maille > 6, i.e. des complexes de dimension 1 et (IC'V). D’autre part les links des centres
de faces sont des cercles de longueur & > 5 (resp. > 6). Donc le complexe triangulaire
obtenu est localement (IC'Vy) (resp. (ICV)). En imposant au moins sept cotés dans chaque
polygone et une maille > 4 au link de chaque sommet, la subdivision triangulaire est méme
localement (IC'V_;). Il y a de nombreuses variations sur ce théme, par exemple concernant
certains complexes carrés.

3) Une triangulation d’une sphere de dimension deux ne peut jamais étre (ICV). En
effet la caractéristique d’Euler d’'une surface triangulée dont les sommets sont de degré > 6
est toujours < 0. En revanche on peut fabriquer beaucoup de triangulations de S? qui sont
(ICVp) (la plus petite d’entre elle étant 'icosaedre).

On déduit de ce qui précede qu’une triangulation d’une variété de dimension n, avec
n > 3, n’est jamais (/C'V') (considérer le link d’un simplexe de codimension 3).

D’apres un argument de Vinberg [V], cité dans [J-S], dans toute sphére de dimension
> 4, il existe un simplexe de codimension 2 dont le link est un cycle de longueur 3 ou 4.
Donc aucune triangulation d’une telle sphere n’est (IC'V}), et aucune variété de dimension
> 5 n’admet de triangulation (ICVj).

Questions : quelles variétés de dimension 3 ou 4 admettent une triangulation (ICVp) 7
plus généralement quels complexes simpliciaux admettent des triangulations “équivalentes”
et (IC'Vy) 7 comment supprimer les carrés d’un complexe de drapeaux de dimension 2 ?

4) Les exemples (ICV) (resp. (ICV_1) de dimension 2 sont géométrisables : le complexe
simplicial Riemannien obtenu en rendant chaque triangle isométrique a un méme triangle

euclidien équilatéral (resp. hyperbolique régulier d’angle 2%) est & courbure < 0 (resp.

7
< -1).

Soit X un complexe simplicial compact, connexe, localement (ICV'). Considérons sur (la
réalisation géométrique de) X la distance de longueur naturelle, i.e. celle rendant chaque
simplexe euclidien, équilatéral et d’aréte 1. Pour chaque simplexe o de X, notons J, le sup
des entiers d tels que toute lacet combinatoire de Lk(o, X') de longueur < d est homotope a
0 dans Lk(o, X). Il est vraissemblable que si § = inf, J, est assez grand, alors la distance
de longueur naturelle est a courbure < 0.

Cependant nous allons voir que tous les complexes simpliciaux (ICV') de dimension > 2 ne
sont pas géométrisables.

Considérons le pavage du plan euclidien E? par triangles équilatéraux. Fixons un tri-
angle 7 de ce pavage. Considérons les vecteurs u, v, w liant un sommet de 7 au milieu du
coté opposé ; leur somme est nulle. Soit A le sous-groupe d’isométries de E? engendré par
les translations de vecteurs 6w, 6v, 6w. Alors A conserve le pavage équilatéral. De plus A
est distingué dans le groupe d’automorphismes de ce pavage. Le tore quotient T = E2/A
est alors muni d’une structure simpliciale dont le groupe d’automorphismes est simplement
transitif sur les triangles ordonnés.

La distance de translation combinatoire de A agissant sur le pavage est 6.

Donc T est (ICV).

Nous montrerons dans la deuxieme partie de ce travail qu’il existe un et un seul complexe
simplicial X de dimension 3 connexe, simplement connexe, dont le link en tout point est
isomorphe a T', et que ce complexe a un groupe d’automorphismes simplement transitif sur
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les 3-simplexes ordonnés. Le complexe X est localement (IC'V') et simplement connexe,
donc d’apres le théoreme 2.7.5 ci-dessous :

X est (ICV).

Pourtant :

X n’admet pas de structure métrique CAT(0) invariante par Aut(X) telle que tout
stmplexe est a courbure constante.

En effet une telle métrique sur X donnerait des links de sommets isométriques a une
copie de T dans laquelle chaque triangle est sphérique régulier d’aréte 7. Dans un tel
triangle sphérique la fonction distance d’un point sur un c6té au sommet opposé a ce coté
est convexe, en particulier la distance d d’un sommet au milieu du c6té opposé est < % (un
calcul élémentaire dans le tétraedre régulier donne la valeur exacte : 3 (m —arccos 5)). Alors
I'image dans T d'une droite de E? portée par une hauteur d’un triangle du pavage est une
géodésique locale de T" non homotope a 0 et de longueur 6d < 27. Donc les links de X ne

sont pas CAT'(1), contradiction.

Pour construire X, nous utiliserons un simplexe de groupes, dont nous montrerons qu’il
est développable - bien que d’aprés ce qui précede il ne soit pas a courbure négative ou
nulle. Nous aurons donc besoin de savoir développer des simplexes de groupes (ICV')
indépendamment du théoreme de Haefliger [B-H] : c’est le résultat principal de la deuxiéme
partie, dont nous tirerons toutes nos exemples de groupes hyperboliques de dimension co-
homologique virtuelle arbitrairement grande.
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2. Extensions convexes de complexes a bord.

Sous I’hypotheése qu’un complexe simplicial a (IC'V'), nous allons montrer qu’on peut décrire
simplement une boule du revétement universel, en fonction de la boule concentrique de rayon
un de moins, et des voisinages de sommets du bord. Nous étudions en fait une situation un
peu plus générale.

2.1 Définition (complexes a bord, complexes saillants).

Soit X un complexe simplicial.

Un bord de X est le vide ou un sous-complexe plein de X. Un complexe a bord est
une paire (X, D(X)), ou X est un complexe simplicial et D(X) est un bord de X. On note
alors Int(X) I'union des simplexes de X ne touchant pas D(X) ; Int(X) est le vide ou un
sous-complexe plein de X appelé 'intérieur de X.

Nous dirons que le complexe a bord est saillant si on suppose que pour tout s € D(X)
Iintersection V (s, X)NInt(X) est un simplexe oy, avec V (s, X) = V (o4, V (s, X)) (en parti-
culier Int(X) est non vide).

2.1.1 Exemples.
1) Pour tout sous-complexe Y de Z, la paire (V(Y,Z),0V (Y, Z)) est un complexe a bord,
d’intérieur le sous-complexe engendré par Sy.

Les complexes a bord (V (s, Z),0V (s, Z)) = (St(s, Z),Lk(s, Z)) sont toujours saillants

(si{s,t} est une aréte alors V (s, V(t,X)) = V(t,V (s, X)) =St({s, t}, X)).
2) Soit Z un complexe simplicial, X un sous-complexe de Z. Si X = Z posons Dz(X) =0,
sinon soit Dz (X) le sous-complexe plein de X engendré par les s € Sx tels que V (s, Z) ¢ X.
Dans ce cas Int(X) (noté Intz(X) si des confusions sont possibles) est le sous-complexe de
X engendré par les sommets de X topologiquement intérieurs.

Attention, Dz(X) coincide avec la frontiere topologique Frz(X) de X si et seulement
si Frz(X) est un sous-complexe plein de X (ce qui n’est pas toujours le cas : prendre pour
X un simplexe maximal de Z).

3) L'inclusion Dz(V (Y, Z)) C oV (Y, Z) est immédiate, mais on n’a pas toujours égalité :
par exemple, pour un sommet s, il peut y avoir dans Lk(s, Z) un sommet intérieur a V (s, Z).

2.1.2 Définition. Soit Z un complexe simplicial, X un sous-complexe et D(X) un bord
sur X. Nous dirons que (X, D(X)) est un sous-complexe & bord (resp. un sous-complexe
a bord saillant) lorsque Dz(X) C D(X) (resp. lorsque X est un sous-complexe a bord et
(X, D(X)) est saillant). Pour abréger, nous dirons que X est un sous-complexe a bord (resp.
un sous-complexe saillant) si (X, Dz(X)) lest.

Par exemple si Z est un pavage du plan hyperbolique par des triangles d’angles au sommet
> 7, les sous-complexes saillants de Z sont les unions X de triangles telles que tout sommet
du bord de X est contenu dans deux ou trois triangles consécutivement adjacents. Par
exemple les voisinages de sommets, d’arétes ou de triangles sont saillants.

2.1.3 Lemme. Soit Z un complexe simplicial et Y un sous-complexe de Z tel que Z est de
drapeaux au voisinage de Y, i.e. tout sous-graphe complet de Z rencontrant Y engendre un
simplexe de Z. Supposons que Y est un simplexe, ou plus généralement que Sy est convexe
dans Z. Alors (V(Y,Z),0V (Y, Z)) est saillant.

Démonstration
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Soit s un sommet de OV (Y, Z). Le lecteur vérifiera sans aucune hypothese sur Y ou
Z que Dintersection V(s,V(Y,Z)) NY est un sous-complexe ¥ tel que V(s,V(Y,Z)) =
V(Z,V(s,V(Y,Z))) (en notant Y le sous-complexe engendré par Sy ; attention, V (Y, Z)
n’est pas le sous-complexe engendré par l’ensemble des sommets a distance < 1 de Sy).
Alors (V(Y, Z),0V (Y, Z)) est saillant lorsque 3 est un simplexe quel que soit s.

Supposons donc Sy convexe et Z de drapeaux au voisinage de Y. Alors pour que X
soit un simplexe il suffit que deux sommets t,u de V (s, V (Y, Z)) NY soient toujours égaux
ou liés dans Z. Or pour deux tels sommets (¢, s,u) est un chemin entre deux sommets de
Y, dont le sommet intermédiaire s n’est pas dans Y. Par convexité de Sy ce chemin n’est
pas une géodésique, donc d(t,u) < 1, ce qui conclut.

O

Par exemple pour tout simplexe ¢ d’un complexe de drapeaux Z, le complexe a bord
(V(0,2),0V(0,Z)) est saillant (I’hypothese “Z de drapeaux” est indispensable : prendre
pour Z le bord d’un triangle).

2.2 Définition (données d’extension). Soit (X, D(X)) un complexe a bord.

Soit pour tout sommet s de D(X) un voisinage de sommet (Vy,s) (donc Vi est un
complexe contenant s tel que Vs = V(s,V;)) et un plongement simplicial fs de la paire
(St(s, X),s) dans (Vs,s). Dans la suite, nous noterons V; x le sous-complexe f5(St(s, X))
de V5.

Soit pour toute aréte orientée @ de D(X) d’origine s et d’extrémité t un isomorphisme
fa de St(fs(a),Vs) (noté Vi, dans la suite) sur St(fi(a), Vz).

D’une part on suppose que fz o fs = fi sur St(a, X).

D’autre part, on demande que fz o fz=id, et si T est un simplexe de dimension 2 de
D(X) de sommets s,t,u, et si on note a, b, ¢ les arétes orientées (s,t), (t,u), (u,s), alors
fzo fyo fa vaut I'identité sur St(f;(7),Vs) (condition de cocycle).

L’ensemble des voisinages de sommets (Vs,s) et des morphismes fs, fz forment des
données d’extension de (X, D(X)). Nous dirons que ces données d’extension sont saillantes
si (X,D(X)) est saillant et que pour tout s € D(X), on a Vi x = V(ol,Vs), o I'on a
posé o, = fs(os). Nous dirons que les données d’extension ont la propriété (ICV') (resp.
(ICV_4)) si X et les Vs ont tous la propriété (IC'V) (resp. (ICV_q)).

2.2.1 Exemple : données d’extension associées a un sous-complexe.

Soit Z un complexe simplicial, X un sous-complexe de Z. Soit D(X) un bord sur X.
Pour tout s € D(X) on pose V; = V(s,Z) et on note f, 'inclusion canonique de V (s, X)
dans V (s, Z). Enfin pour toute aréte orientée @ = (s,t) de D(X) on note fz l'identité de
St(a, Z) =St(a, V) dans St(a, Z) =St(a, V4).

Les axiomes des données d’extension sont clairement remplis.

On obtient ainsi des données d’extension saillantes lorsque le complexe a bord (X, D(X))
est saillant, et Dz (X) C D(X), autrement dit Int(X) est contenu dans l'intérieur topologi-
que de X. En effet la seconde condition assure que tout simplexe de Z touchant un simplexe
o5 (de Int(X)) est un simplexe de X, ce qui donne la condition Vy x = V (o?, V5).

2.2.2 Remarque (plénitudes).

Supposons les données d’extension (ICV). Alors d’apres le lemme 1.4 les sous-com-
plexes Vs x sont pleins dans Vy, puisque Vy est (IC'V) et que par hypothese V; x est le voisi-
nage d’un simplexe. Sia = {s,t} est une aréte de D(X), alors nous avons V; , =St(fs(a), V)
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= V(fs(t), Vs) (car tout simplexe de V; est joignable a s), donc V , est également plein dans
Vs. De méme, les sous-complexes St(s, X) sont pleins dans X.

On veut recoller des données d’extension de maniere a obtenir un complexe simplicial Y qui
contient X et les Vj, et en est la réunion. De plus on voudrait que Y reste (IC'V') lorsque
X est (IC'V). Enfin on aimerait pouvoir recommencer une extension sur la paire (Y, D(Y"))
telle que Int(Y') = X.

2.3 Le complexe Y associé & des données d’extension saillantes (ICV')

Dans tout le reste de section 2. nous supposons que (X, D(X)) est un complexe a bord
saillant muni de données d’extension saillantes et (ICV').

2.3.1 Sommets de Y.

Soit ~ la relation d’équivalence sur S = Sx U (Usesp x,Sv.) engendrée par les relations
réflexives, symétriques suivantes ~;,q (rad pour radiale) et ~ane (tang pour tangentielle) :

P ~rad ¢ <= p=gqou (Is € Spx)/p € V(sX),q € Vset qg= fi(p) ou (3s €
SD(X)/q S V(S,X),p S ‘/s et p= fs(Q)) ;

D ~tang ¢ <= p = g ou 3 une aréte a de D(X) d’extrémités s, ¢, telle que p € V5 4,q €

‘/t,a et ¢ = f(s,t) (p)
Pour z € S, nous noterons O(z) l'orbite de x sous ~.

2.3.2 Définition de Y. Posons Sy = S/ ~ ; soit m : S — Sy la surjection canonique.
Un ensemble de sommets T C Sy est un simplexe de Y si et seulement si il existe o un
simplexe de X ou de I'un des V, (s € Sp(x)) tel que T' = w(S,). Nous noterons encore 7 le
morphisme de I'union disjointe X U (Uses,x,Vs) sur Y qui se déduit de w: .S — Sy.

Lorsque D(X) = on aY = X, et tout ce qui suit jusqu’a la section 2.5 incluse est
trivial.

2.3.3 Lemme.

1) Soit p € Sx. Alors O(p) N X = {p} ; pour s € Sp(x) contenu dans St(p, X), on a
O(p) N Vs = {fs(p)}, et pour s € Sp(x) non dans St(p, X), on a O(p) NV, = 0.

2) Soit p € Vi,p & Vi x. Alors O(p) N X =0, O(p) N Vs = {p} et il existe un simplexe
op C D(X) contenant s, tel que :

i) p €St(fs(op), Vs)
ii) pour tout t € Sy, ,t # s on a O(p) N V; = { f5.+)(p)} et enfin :
iii) pour tout t € Sp(x) \ S, on a O(p) NV, = 0.
Pour q ~ p il existe un certain t € o, tel que g € V;,q € Vi, x ; de plus o4 = 0.

Démonstration

1) Soit p’ € S tel que p’ ~ p. Donc il existe une chaine de p a p’, i.e. une suite
(Po,p1,-++,pn) de S avec po = p, p, = p' et pour tout 0 < i < n —1, piy1 ~rad Pi OU
Di+1 ~tang Pi ; choisissons une telle suite avec n minimal. En particulier les p; sont deux a
deux distincts.

Montrons qu’il n’apparait aucune équivalence tangentielle. S’il y en a une soit ¢ le plus
petit indice tel que p;11 ~tang i ; soit alors s € D(X) tel que p; € V. Comme py € Sx, on
doit avoir ¢ > 0 et comme p; # p;—1 On a P; ~rad Pi—1, avec p;—1 €5t(s, X) et p; = fs(pi—1)-

On a piy1 = fs,0)(Ps) et p;i = fs(pi—1), donc piy1 = fi(ps—1). Alors la nouvelle chaine
depayp (po,p1, ", Pi,Pit1, ", Pn) est de longueur n — 1, contradiction.
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Nous pouvons maintenant voir que n = 0 ou 1. En effet si une chaine d’équivalences
élémentaires radiales est de longueur n > 2, alors ses trois premiers points pg, p1, p2 ne sont
pas distincts.

Nous obtenons donc la description de 1'orbite O(p) annoncée. Le cas n = 0 correspond
ap € X (pf =p), le cas n =1 correspond a p’ € Vy pour s un sommet de D(X) 1lié a p,
avec p' = f,(p).

2) Le fait que O(p) N X = () découle de 1) et de p € V,\ V5 x. En particulier pour toute
suite (po,p1,--+,pn) de S avec pg = p, telle que pour tout 0 < i < n — 1, p;y1 et p; sont
¢lémentairement équivalents, on a p;y1 ~tang Pi, avec p; € Vs, et p; € Vi, \ Vs ;. X pour tout
0<j<n.

Comme V; est (ICV) et p & Vi x = V(ol,V;), lintersection V(p, Vs) NV x est un
simplexe o), contenant s (cf. lemme 1.8).

Considérons donc le simplexe o, = f!(07},), qui contient s.

Montrons d’abord que o, est contenu dans D(X). Puisque D(X) est plein, il suffit de
voir que les sommets de o, sont dans D(X). Soit ¢ € V x lié a p : alors ¢ & o, sinon
p € V(ol,Vs) = Vs x. Or o, est I'image par fs de o, =Int(X)NSt(s, X). On a donc bien
foHa) € D(X).

Soit maintenant ¢ € V; un sommet tangentiellement équivalent a p (avec ¢ # p) :

donc (s,t) est une aréte orientée @ de D(X), et si on pose t' = fs(t),s’ = fi(s) on a
p € Vi =St({s,t'},Vs), ¢ € Viu =St({s',1}, Vi) et ¢ = fa(p). On a aussi {s,t'} C o), et
{s',t} C oy,

L’application fz réalise un isomorphisme de (V; 4, p) sur (Vi.q,q) envoyant Vs, NV x
dans V; o NV; x (par fzo fs = fi). Alors fz envoie o), sur un simplexe de V; x lié & q (o, est
joignable & p dans V; ,) : donc fz(0,,) C 0. On a de méme f=(o,) C 0, d’ou fz(0},) = oy,
et donc o), = 0y.

Soit (pg,p1,- - -, Pn) une suite de S avec pg = p, telle que pour tout 0 < i <n—1, p;y1 et p;
sont élémentairement équivalents. D’apres ce qui précede tous les simplexes o, sont égaux
a oy, et les s; tels que p; € Vi, sont des sommets de o,,.

Supposons n > 2. Alors pg et ps sont tangentiellement équivalents. Car si sg, s1, S2 sont
deux a deux distincts ils engendrent un 2-simplexe de o, donc de D(X). Alors la relation de
cocycle donne pg ~; pa. Et si (sg,51,52) est un aller-retour, la relation f(s, s,) © f(s;,s0) =id
donne py = pg.

En considérant une chaine minimale, on voit donc que pour tout q équivalent a p, ¢ # p,

on a g ~tang P €t ¢ = fa(p) avec a C 0y, p € a. Ceci acheve la description de l'orbite de p.
OJ

D’apres ce qui précede, la restriction de 7 : S — Sy a Sx et a Sy, est injective. Elle induit
un plongement de X et des Vs. A partir de maintenant nous identifierons X a son image
m(X) dans Y, ainsi que Vg a w(V5).
2.3.4 Lemme.

1) X et les Vi sont des sous-complexes pleins de Y .

2) (combinatoire des morceaux deY') Pour tout s € D(X) on a VsNX =St(s, X) = V; x.
Pour s,t € D(X) distincts, ou bien s et t ne sont pas liés dans X, alors VsNV; C X, ou bien
s et t sont les extrémités d’une aréte a de X, et alorsa € D(X) et VNV, =V, o = Vig.

Démonstration
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0) Nous commengons par établir 'affirmation 2) pour les ensembles de sommets des sous-

complexes concernés.

Soit v un sommet de Y dans VN X pour un certain s € D(X). D’apres le 1) du lemme 2.3.3,

nous avons v = {p, fs,(p), -, fs.(p)}, avec p € X et s1,- -, s les sommets de D(X) liés a p.

Puisque O(p) N V5 # 0, le sommet s est 'un des s;. Donc p est lié & s et v(= w(p))eSt(s, X).
L’inclusion réciproque Ssi(s,x) C Vs N X étant évidente, nous avons Ssi(s x) = Sv,nx-

D’autre part on a clairement 7(St(s, X)) = 7(Vs x).

Soit v un sommet de Y dans Vs NV, pour s,t € D(X),s # t.

Supposons d’abord s et ¢t non liés dans X. D’apres le lemme 2.3.3, un sommet p de V;
non dans V; x ne peut étre équivalent a aucun sommet de V;. Donc p € V;N X et finalement
v € X. On a bien dans ce cas Sy,ny, C Sx.

Supposons maintenant que s et ¢ sont les extrémités d’une aréte a de X. Comme D(X)
est plein, s et t sont liés dans D(X). Soit v un sommet de V; N V;. Soit p le représentant de
v dans Sy, g son représentant dans Sy, .

Siv € X il existe d’apres le lemme 2.3.3 un sommet u de X lié a s et ¢ tel que 7(u) = v,
fs(u) = p et fi(u) = q. Puisque X est de drapeaux, u €St(a, X). Donc p €St(fs(a),Vs) =
Via.

Si v ¢ X alors p et ¢ sont tangentiellement équivalents d’apres le lemme 2.3.3, donc
b ESt(fs(a)a Vs) = Vs,a-

L’égalité et 'inclusion suivantes de sous-complexes sont évidentes : V, , = Vi , C VsNV;.
On obtient donc 1’égalité pour les ensembles de sommets.

1) Comme X et les Vi sont de drapeaux, il suffit de montrer que pour toute aréte a de Y
d’extrémités dans X (resp. Vi), on a en fait a contenue dans X (resp. V).

Supposons d’abord a = {v,w} avec v,w dans Sx. Il existe une aréte b de X ou de I'un
des V; telle que 7(b) = a. Si b est une aréte de X il n’y a rien & montrer.

Sinon b est une aréte d’'un V;, dont les extrémités sont équivalentes & des sommets de
X, donc dans St(s,X) = V, x d’apres 0). Le sous-complexe V; x est plein (cf. Remarque
2.2.2), donc en fait b est une aréte de V; x. Alors w(f;1(b)) = n(b) = a et a est une aréte
de X.

Supposons maintenant que a = {v,w} avec v,w dans Sy, pour un certain s € D(X).
Soit b une aréte de X ou de 'un des V; telle que 7(b) = a.

Il n’y a rien a faire si b est dans V.

Supposons d’abord que les extrémités de a sont dans X. Alors puisque X est plein dans
Y, il existe une aréte b’ de X telle que w(b') = a. Les sommets de a sont dans X NV, donc
dans St(s, X). Mais St(s, X) est plein dans X (cf. Remarque 2.2.2) : donc dans ce cas b’
est une aréte de St(s, X). Alors fs(b') est une aréte de Vs d’image par 7 égale a a.

Supposons alors que b est une aréte de Vi, avec t € D(X),t # s, et v ¢ X. Puisque
b a une extrémité équivalente a un sommet de Vi non dans V, x, le lemme 2.3.3 assure
que ¢ = {s,t} est une aréte de D(X). Les sommets de 7(b) sont dans Vs N V;, donc dans
Vs,e = Vi d’apres 0). Comme V; . est plein dans V; (cf. Remarque 2.2.2), b est une aréte
de Vi . et laréte b’ = f(; 5)(b) de V; vérifie 7(b') = a.

2) Pour achever la preuve de cette affirmation, il suffit compte-tenu de 0) de montrer que
tous les membres des égalités ou inclusions sont pleins dans Y.

D’apres 1) Vs et X sont pleins : donc Vi N X lest aussi. D’autre part St(s, X) est plein
dans X, qui est plein dans Y : donc St(s, X) est plein dans Y.
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Puisque Vi et V; sont pleins, l'intersection Vs NV, I'est aussi. Lorsque s et ¢ ne sont pas
liés, tous les sommets de V; NV, sont dans X : mais X est plein, donc tous les simplexes de
Vs NV, sont aussi dans X.

Lorsque s et ¢ sont liés par une aréte a, on a Vy , plein dans Vj, qui est plein dans Y.
Donc V; , est plein dans Y. Ce qui conclut.

O

A partir de maintenant on note D(Y) le vide ou le sous-complexe plein de Y engendré
par les sommets de Sy \ Sx. Puisque X est plein dans Y, on a alors Int(Y) = X. Notons
qu'on a D(Y) = () lorsque pour tout s € D(X) 'inclusion V; x C V; est une égalité.

2.3.5 Lemme. Soit v un sommet de Y.

Siv €Int(X) alors V(v,Y) = V(v,X). Siv=s € D(X) alors V(v,Y) = Vs. Enfin
siv =p e DY), alors il existe un simplexe o, de D(X) tel que V(v,Y)NX = o, et
V(v,Y) = Usesap V(v,Vs). Sip est un simplexe de D(Y') alors I'ensemble des sommets s
joignables & chaque sommet de p engendre un simplexe o, de D(X) joignable a p.

Le complexe a bord (Y, D(Y')) est saillant.

Démonstration

Supposons d’abord v € Int(X). Alors V(v,Y) C X.

Montrons d’abord I'inclusion des ensembles de sommets. Soit v' un sommet de Y lié &
v : vérifions que v’ € X. Par définition des arétes de Y il existe une aréte a de X ou de
I'un des V telle que les extrémités de a sont {v,v'}. Si a est dans X il n’y a rien & montrer.
Sinon a est dans un Vi (s € D(X)) et par définition a touche le simplexe o). Donc a est
dans V(o.,Vs) = Vs x = X NV,

Comme X est plein dans Y, on a en fait V(v,Y) = V(v, X).

Soit maintenant s € D(X). Montrons d’abord Sy (sy) C Sy,. Soit a une aréte de Y’
contenant s : montrons que sa deuxieme extrémité est dans V.

Si a est dans X, alors les extrémités de a sont dans St(s,X) = Vs x C V,. Sia est
dans Vg, il n’y a rien a dire. Et si a est dans V;, avec t # s, on a donc s € V4, a est une
aréte de V (s, V) ; or V(s, Vi) =St({s,t}, V). Puisque s € V;, on a s et t liés dans X, donc
V(s, Vi) =St({s,t}, Vi) = Vi 5,54 = Vi N V,. Ainsi a est bien une aréte de V.

Puisque V est plein, on a en fait V(s,Y) C Vs. L’inclusion réciproque étant immédiate,
on a en fait I’égalité V(s,Y) = V5.

Soit enfin p un sommet de D(Y). Donc p est dans un V;, mais pas dans X. Montrons
qualors on a V(p,Y) = Ue, V(p, Vi) et V(p,Y) N X = 0, (avec gy le simplexe de D(X)
défini au lemme 2.3.3 comme l'intersection V(p, Vi) NV x).

Soit 7 un simplexe de Y contenant p. Comme p € X, on a 7 est contenu dans 'un
des V4, t € D(X). Montrons que t € 0p. Sit = s il n’y a rien a démontrer. Sinon on a
p € VsNV;, donc VNV, ¢ X, d'out s et ¢ sont liés. Alors, d’apres le lemme 2.3.3, 0, contient
laréte {s,t}, donc le sommet .

Ce qui précede montre 'inclusion V(p,Y) C Uteap V(p,V¢). Mais l'inclusion inverse
est évidente. Au passage on voit que V(p,Y) = V(op, V(p,Y)) (on vient de montrer C,
I'inclusion inverse est évidente).

Maintenant V(p,Y) N X = Use% Vip,Vs) N X = Use% V(p,Vs) N Vs x. Or pour
p € Vs,qg € Vyavecp ~qetp &V, x onadapres le lemme 2.3.3 0, = 0,. Donc toutes
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les intersections V' (p, Vs) N Vs x valent o, et V(p,Y)N X = 0,. Compte-tenu de la relation
V(p,Y)=V(o,,V(p,Y)), cela montre que (Y, D(Y)) est un complexe a bord saillant.
Enfin soit p un simplexe de D(Y). Posons o, = (¢ g, Op- Alors un sommet s de
X est joignable a tous les sommets de p si et seulement si ¢’est un sommet de o,. Or o,
est une intersection de simplexes, donc est vide ou un simplexe. Mais le premier cas est a
exclure, puisque p est contenu dans au moins un V. Si on fixe un sommet sy de o,, on a
Sp,US,, C Vs, et S, US,, engendrent un graphe complet de Vs, par plénitude, donc un
simplexe puisque Vy, est de drapeaux.
OJ

2.4 Théoréme. (Y,D(Y)) est un complexe a bord saillant tel que Y a (ICV). Si les
données d’extension sont (ICV_1) alors Y a (ICV_y).

Démonstration

Par hypothese X est (ICV). Par construction de Y, X est plein dans Y. D’apres le
lemme 2.3.5 pour tout simplexe p de D(Y') ’ensemble des sommets s joignables a chaque
sommet de p engendre un simplexe o, de D(X) joignable a p. Et par ce méme lemme
les sous-complexes V(s,Y) pour s € X sont tous (/CV). Nous pouvons donc appliquer le
lemme du voisinage 1.11. On raisonne de méme dans le cas (ICV_y).

OJ

Commentaire. Pour montrer que (Y, D(Y)) est saillant et que Y a (ICV}) nous avons
besoin que (X, D(X)) soit saillant et que les données d’extension soient (ICV') (et non
seulement (IC'Vy)). Par exemple soit X 'union des triangles de l'icosaedre I ne touchant
pas un triangle 7y fixé et soit D(X) la frontiere topologique de X dans I. Alors X est
(ICVy) (sous-complexe plein de I) et (X, D(X)) est saillant. Les données d’extension de X
associées a I'inclusion X C I sont saillantes. Dans ce cas Y =1\ 79 et D(Y') est le bord de
7o : donc (Y, D(Y)) n’est pas saillant et Y n’est pas de drapeaux (donc pas (ICVp)).

2.5 Lemme. X est un rétract par déformation de Y.

Démonstration

Commencons par subdiviser Y. Soit Z le complexe simplicial dont ’ensemble des
sommets est I'union de ’ensemble des sommets de X et de l’ensemble des simplexes de
D(Y), avec {v1,---,vp, 71, -, T, } engendre un simplexe de Z <= les sommets vy, -, v,
engendrent un simplexe ¢ de X, la famille {7y, ---,7,} de simplexes de D(Y") est totalement
ordonnée par inclusion et, si ¢ > 0, son plus grand élément est joignable & un simplexe ¢’ de
D(X) contenant o. Autrement dit, Z est la plus grossiere subdivision de Y induisant sur
D(Y) la premiere subdivision barycentrique.

Pour tout simplexe 7 de D(Y'), choisissons un sommet p(7) dans o, (le simplexe défini
au lemme 2.3.5).

Soit n la dimension de Y et, pour —1 < i < n, soit Z; le sous-complexe plein de Z
engendré par les sommets de X et les simplexes de D(Y) de dimension < 7. Ainsi nous
avons Z, = Z et Z_; = X. Pour 0 < ¢ < n, définissons p; : Sz, — Sz,_, par p; =id sur
Sz._, et pi(t) = p(7) pour 7 un simplexe de D(Y) de dimension i. Montrons que p; est
simpliciale de Z; dans Z;_1.

Si o est un simplexe non dans Z;_; de dimension > 0, c’est le joint d’un simplexe 0~ de
Z;—1 et d’un simplexe 7 de D(Y) de dimension i. Sioy =0~ NX et 02 =0~ ND(Y)’, alors
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og ={m < --- <7}, avec T, C T et T est joignable & un simplexe o] de D(X) contenant
o1. Nous avons o, C o, C -+ C 0. Comme d’autre part 7 est joignable a o}, a fortiori 7
est joignable a o1, donc o1 C o,. Alors p;(0) N Sx est un simplexe contenant o7 et contenu
dans 0. Tandis que p;(0) N Spy) = 02, et 74, le simplexe maximal de o9, est de dimension
< i, joignable a o, puisque o, C 0,,. Finalement p;(c) engendre bien un simplexe de Z; 1
- ce qui acheve de montrer que p; est simpliciale.

Posons p = pgo---0p,. Cest une rétraction simpliciale de Z sur X.

Remarquons enfin que, d’apres ce qui précede, pour tout simplexe o de Z;, on a cUp; (o)
contenu dans un simplexe de Z; (par exemple o si o est dans Z;_1, ou le joint du simplexe
T < - <715 <7de DY) avec le simplexe o, de D(X) dans le deuxieme cas). Donc
pour tout point y de la réalisation géométrique de Y et tout ¢ € [0, 1] le barycentre pk(y) =
tpi(y) + (1 —t)y est bien défini. On obtient ainsi une homotopie entre p; et I'identité de Z;,
stationnaire sur Z;_;. En composant ces homotopies, on voit que p et l'identité de X sont

homotopes par une homotopie stationnaire sur X.
O

2.6 Extensions et extensions universelles.

Dans cette section nous montrons la naturalité de la construction du complexe a bord
(Y, D(Y)).

2.6.1 Définition. Soit (X, D(X)) un complexe a bord.

Une extension de (X, D(X)) est un complexe a bord (Y, D(Y')) et un morphisme injectif
e: X =Y tels que e(X) =Int(Y) et Y = V(e(X),Y).

Une extension e : X — Y est dite universelle si pour tout s sommet de D(X) on a
Vie(s),Y)Nne(X) =e(V(s, X)), et pour deux sommets s,t de D(X) I'intersection V (e(s),Y)
NV (e(t),Y) est contenue dans e(X) si s et t ne sont pas joints et est St({s,t},Y’) sinon.

Soit D = (Vs, fs, fz) une donnée d’extension de X. Soit e : X — Y une extension de
X. Nous dirons que cette extension est modelée sur D s’il existe pour tous s € D(X) des
isomorphismes ¢4 : V(e(s),Y) — Vs tels que fs = @5 0e sur V(s, X) et, pour toute aréte
orientée d = (s,t) de D(X), on a ¢ = fz o ps sur St(e(a),Y).

Soit D = (Vs, fs, fa) une donnée d’extension de X. Soite: X — Y,e' : X — Y’ deux
extensions de X modelées sur D. Alors un morphisme (d’extensions modelées) dee : X — Y
sur ¢ : X — Y’ est un morphisme g : Y — Y’ tel que goe = ¢’ sur X et pour tout s sommet
de D(X) on a ¢, 0 g= ps sur V(e(s),Y).

2.6.2 Remarques.

1) Soit (X, D(X)) un complexe & bord saillant et D des données d’extension saillantes,
(ICV) de X. Alors le complexe a bord saillant (Y, D(Y')) construit en section 2.3 muni de
I’inclusion naturelle X — Y constitue une extension de X. D’apres le lemme 2.3.4 et la
propriété (ICV) dans Y, cette extension est universelle. Enfin les applications naturelles
des V; dans Y réalisent un isomorphisme sur V(s,Y), et on vérifie immédiatement que les
isomorphismes inverses ¢, modelent 1’extension sur D.

2) Notons qu'un morphisme d’extensions modelées est toujours surjectif et un isomor-
phisme local a l'intérieur.

2.6.3 Proposition. Une extension universelle modelée sur des données d’extension admet
un morphisme sur toute autre telle extension, d’ailleurs unique. En particulier une extension
universelle modelée sur des données d’extension est unique a isomorphisme pres.
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Démonstration

Le résultat d’unicité a isomorphisme pres est un corollaire classique de la propriété
universelle (la composée de deux morphismes est bien un morphisme). Montrons donc la
premiere partie du lemme.

Soit e : (X,D(X)) — (Y,D(Y)) une extension universelle modelée sur D. Soit €’ :
(X,D(X)) — (Y',D(Y')) une autre extension modelée sur D. Nous noterons (¢s), (¢%) les
isomorphismes modelant YY" sur D.

Montrons d’abord 'unicité d’un morphisme ¢ : Y — Y’. Par définition d’une extension,
Y est la réunion de e(X) et des V' (e(s),Y). Pour ¢ un simplexe de Y, on a donc o dans e(X)
ou o dans un V' (e(s),Y). Dans le premier cas on doit avoir g(c) = g(e(e™1(0))) = €'(e 1(0)).
Dans le second cas on doit avoir g(o) = (%) (pL(g(0))) = (¢%) Hps(a)).

Montrons I'existence. Posons gx = €’ o e~ !, isomorphisme de e(X) sur €/(X), et, pour
s sommet de D(X), posons gs : ¢, o g, isomorphisme de V(e(s),Y) sur V(e/(s),Y").
Vérifions que les applications gx, gs sont deux a deux compatibles.

Soit o un simplexe de e(X) NV (e(s),Y). Comme 'extension e : X — Y est universelle,
onao € e(V(s,X)),ie o=e(T)avec T simplexe de V (s, X). Alors gx(0) = gx(e(7)) =
¢/(7), tandis que g5(0) = ¢, (ps(e(7))) = ¢, (fs(7)) = €/(7) en utilisant les propriétés
des applications ;.

Soit o un simplexe de V(e(s),Y)NV (e(t),Y). Si s et t ne sont pas liés alors V' (e(s),Y )N
Ve(t),Y) = (V(e(s),Y)ne(X)) N (V(e(t),Y)Ne(X)) puisque e : X — Y est universelle.
Alors d’apres ce qui précede on a g5(0) = gx(0) = g:(0). Enfin si {s,t} est une aréte a de
D(X) on a o €St({e(s),e(t)},Y) (par universalité). Or ps(e(s)) = fs(s) et ps(e(t)) = fs(t)
Done 4(0) est un simplexe de St({£.(5), fs(£)}, Vs) = Vao. Alors g3(0) = () (94(0)) =
(02 (fe,) (fis,0 (0s(0)))) = (£1) " pe(0)) = ge(0).

Les morphismes gx, gs sont compatibles, donc définissent un morphisme g de la réunion
des domaines de définition vers Y. Par définition d’une extension, Y est la réunion de e(X)
et des V(e(s),Y) : donc g est une application simpliciale de Y dans Y’. 1l est clair que g
vérifie les propriétés d’un morphisme d’extensions modelées sur D.

|

2.6.4 Corollaire.

Soit (X, D(X)) un complexe a bord saillant (ICV'), et soit D une donnée d’extension
saillante (IC'V') de X.

Alors (X, D(X)) admet une extension universelle modelée sur D, unique & isomorphisme
pres, qui domine toute autre telle extension. Cette extension universelle est isomorphe au
complexe a bord (Y, D(Y)) de la section 2.3, muni de I'inclusion X C Y.

Démonstration
D’apres la remarque 2.6.2, le complexe a bord (Y, D(Y)) de la section 2.3, muni de I'inclusion
X C Y, est bien une extension universelle naturellement modelée sur D. D’autre part la
partie unicité de I’énoncé découle de la proposition 2.6.3

O

2.7 Revétement universel d’un complexe localement (IC'V) et espaces tangents.
Dans cette section nous identifions le revétement universel d'un complexe localement
(ICV) al’espace tangent, un complexe (IC'V) naturellement défini & partir d’un point base
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comme limite inductive d’une suite d’extensions universelles. Nous commencons par montrer
comment étendre un isomorphisme local en présence de la propriété (ICV).

2.7.1 Définition. Soit (X, D(X)) un complexe a bord et X’ un complexe simplicial. Un
isomorphisme local de (X, D(X)) dans X’ est un morphisme f : X — X' qui est un isomor-
phisme local sur Int(X) (i.e. tel que pour tout v €Int(X), la restriction de f a V (v, X) induit
un isomorphisme sur V(f(v), X)), tel que f est injective sur V (s, X) pour tout s € D(X).

2.7.2 Lemme (extensions d’isomorphismes locaux).

Soit (X, D(X)) un complexe a bord saillant tel que X a (IC'V'). Soit X' un complexe
localement (ICV) et f: X — X' un isomorphisme local de (X, D(X)) dans X' .

Alors il existe une extension universelle (Y, D(Y)) de (X, D(X)) et un isomorphisme
local g de (Y, D(Y)) dans X’ avec les propriétés suivantes :

1)Y a(ICV) et g étend f ;

2) pour toute extension (Y', D(Y")) de (X, D(X)) munie d’un isomorphisme local g’ de
(Y',D(Y")) dans X' avec les propriétés du 1), il existe un morphisme ¢ : Y — Y’ tel que
g’ = g (qui est un isomorphisme si I'extension (Y', D(Y")) est universelle).

D
D

Démonstration

Définissons des données d’extension de (X, D(X)) via f. Pour tout s € D(X), posons
Vs =V (f(s),X’), voisinage du sommet f(s). Comme X’ est localement (ICV'), le voisinage
Vs est lui-méme (ICV). Posons alors fs = fiv (s x) et o, = f(0s). Par hypothese f; est un
plongement.

Vérifions que V; x = fs(V (s, X)) = V(ol,Vs). Comme V (s, X) = V(os, X), I'inclusion
C est évidente. Soit 7/ un simplexe de V (o, V) : il existe donc un simplexe p’ de X’
contenant 7', f(s) et un sommet ¢’ de o’. Soit t € o, tel que f(t) =t. Comme ¢t €Int(X),
f réalise un isomorphisme de V (¢, X) sur V (¢, X’). Donc il existe un simplexe p de V (¢, X)
tel que f(p) = p’. Comme s € V(t,X) et f(s) € p/, on a donc s € p. Ainsi le simplexe 7 C p
tel que f(7) = 7’ est dans V (s, X), donc 7" est dans V; x.

Pour une aréte orientée @ de s € D(X) a t € D(X), nous avons f(St(a,X)) C
St(f(a), X')) = St(fs(a),Vs) = St(fi(a),V;). Nous poserons alors fz =id f(s¢(f(a),x7))-

On a tout de suite fs o fz = f;, et les conditions de cocycles sont immédiates a vérifier.

Ainsi, les données d’extensions D(f) précédentes sont saillantes et (ICV'), et nous
pouvons considérer le complexe a bord (Y, D(Y)) construit en section 2.3 : il est saillant,
et Y a (ICV) d’apres le théoreme 2.4. On a X C Y et cette extension est universelle,
modelée sur D(f) (voir remarque 2.6.2). D’autre part il y a un morphisme naturel g de
I'union disjointe X U (Usep(x)Vs) dans X', défini par g(z) = f(x) si z € X et par g(z) =
si z € Vs pour un certain s € D(X). Vu les recollements utilisés pour construire Y, le
morphisme g est compatible avec 7 : X U (Usep(x)Vs) — Y, donc définit un morphisme
g:Y — X' 1l est clair que g étend f. En particulier g est déja un isomorphisme local au
voisinage des sommets v €Int(X). D’autre part, si s € D(X), on a V(s,Y) =V, et gy, est
'identité de V(f(s), X’), donc g un isomorphisme local au voisinage de s.

Pour achever de montrer le 1), il suffit de vérifier que g est localement injective au bord
de Y. Soit donc p € D(Y) et ¢q,r deux sommets de V(p,Y") tels que g(q) = g(r).

Faisons tout d’abord la remarque suivante : si ¢ et r sont liés a un méme sommet s de
D(X) alors ¢ = r par injectivité locale de g a l'intérieur.
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Supposons en premier lieu que I'un des sommets ¢ ou r soit dans X (donc dans le
simplexe 0, = X NV (p,Y)). Alors I'autre sommet est un sommet s € o, ou du moins lié &
un s € g, car (y, D(Y')) est saillant. On a bien alors ¢, dans un méme V.

En second lieu supposons que ¢, sont sur D(Y') et qu'il existe une arete {s,t} de o,

telle que ¢ € Vi, r € V;. Notons m le sommet image g(q) = g(r) € X’. Nous voyons alors
que les trois arétes {f(s), f(t)}, {f(s),m},{f(t),m} sont dans V' (g(p), X'). Comme X’ est
localement (ICV'), le voisinage V(g(p), X’) est de drapeaux. Donc {g(p), g(s), g(t), m} est
un 3-simplexe 7/ de X’. Comme ¢ est un isomorphisme local au voisinage de s, nous pouvons
considérer le simplexe 7 de V tel que g(7) = 7/. Par injectivité locale dans V; ce simplexe
contient s, ¢, p, et son quatrieme sommet est ¢q. Mais par injectivité locale dans V; on a alors
q=r.
Montrons maintenant la propriété 2). Remarquons d’abord que l'extension (Y, D(Y”)) est
en fait modelée sur D(f) : il suffit, pour s € D(X), de considérer ¢, = ¢’ |v(e/(s),v7)- Par
la proposition 2.6.3 il existe ¢ : Y — Y’, un morphisme d’extensions modelées sur D(f).
Par définition des modeles respectifs on a alors g’¢ = g (car on I’a sur X et sur chaque
Vs, s € D(X)). Enfin, supposons 'extension (Y’, D(Y”)) universelle. Alors d’apres 'unicité
dans 2.6.3 nous voyons que ¢ est un isomorphisme.

O]

2.7.3 Construction-Définition.

Soit (X, D(X)) un complexe & bord saillant, X ayant (ICV). Soit X’ un complexe
localement (/C'V) et f un isomorphisme local de (X, D(X)) dans X’. D’apres le lemme 2.7.2,
nous pouvons alors considérer 'unique extension universelle (X7, D(X7)) de (Xo, D(Xo)) =
(X,D(X)), telle que X; est (ICV), et fo = f s’étend en un isomorphisme local f; de
(X1,D(X1)) dans X’. En itérant cette construction, on obtient une suite croissante de
complexes simpliciaux X,, et de morphismes f,, : X,, — X’. Nous noterons T'(f) la limite
inductive de la suite de complexes (X,,), et p: T'(f) — X’ la limite inductive de la suite de
morphismes (f, : X,, — X’).

Il se peut que la suite de complexes X,, et d’isomorphismes locaux f, de (X,, D(X,))
vers X soit stationnaire. Cela se produit lorsque pour n assez grand on a D(X,,) = (. Par
exemple si X’ = X, le cone sur un complexe ayant (IC'V) et D(X) la base de ce cone.

Lorsque X’ est un complexe simplicial localement (IC'V') et s est un sommet de X', soit
X le voisinage de s dans X’ et D(X) = 0V (s, X’). Alors (X, D(X)) est un complexe a bord
saillant (cf. Exemple 2.1.1) et X est (IC'V). Soit f : X — X’ I'inclusion canonique : c’est
un isomorphisme local au voisinage de v, I'unique sommet intérieur & X', et un plongement
local partout. Nous noterons dans ce cas T,(X’) le complexe T'(f), et nous 'appelerons
espace tangent a X' en v.

Plus généralement si X est un sous-complexe de X’ localement (ICV') et si D(X) est un
bord pour X tel que Dx/(X) C D(X), alors l'inclusion canonique de X dans X’ définit un
isomorphisme local de (X, D(X)) dans X’. Nous noterons dans ce cas Tx (X’) le complexe

T(f).
2.7.4 Lemme.

Soit (X, D(X)) un complexe a bord saillant, X ayant (ICV') (resp. (ICV_1)). Soit X'
un complexe localement (ICV') (resp. (ICV_y1)) et f un isomorphisme local de (X, D(X))
dans X'. Alors T(f) a (ICV) (resp. (ICV_y)), X est un rétract par déformation de T'(f)
et p:T(f) — X' est un isomorphisme local.

25



Démonstration

D’apres le théoreme 2.4, chaque X,, a (ICV) (resp. (ICV_;)). Chaque X,, est plein
dans X, 41, donc dans T'(f), union croissante des X,,. Pour chaque aréte a de X, on a
V(a,T(f)) C Xn41. Finalement T(f) a (ICV) (resp. (ICV_y)), d’apres le lemme du
recouvrement 1.10 appliqué aux X,,.

D’apres le lemme 2.5, chaque X,, est un rétract par déformation de X,, ;. Donc par
composition X est un rétract par déformation de T'(f).

Enfin tout sommet de 7'(f) finit par étre intérieur a un X,, : or px,, = fn, et f, est un
isomorphisme local au voisinage des sommets intérieurs de X,,.

O

2.7.5 Théoréme. Soit X un complexe simplicial connexe et localement (ICV') (resp.
(ICV_y)). Alors son revétement universel est (IC'V') (resp. (ICV_1)) et contractile.

Démonstration

Fixons un sommet vy de X. D’apres le début du lemme 2.7.5 , il suffit de montrer que
p: Ty (X) — X est un revétement universel contractile de X.

D’apres ce méme lemme 2.7.5 le morphisme p est un isomorphisme local, donc un
revétement puisque X est connexe. Et toujours d’apres ce lemme T, (X) a le méme type
d’homotopie que V (vg, X), bien str contractile.

OJ

2.7.6 Corollaire. Un complexe simplicial est (ICV) (resp. (ICV_y)) si et seulement si il
est localement (ICV') (resp. (ICV_y1)) et tout circuit de longueur n <5 (resp. n < 6) est
homotope a 0.

Démonstration
Le sens = est clair. Sous I’hypothese que X est localement (ICV) (resp. (ICV_1)) et que
tout cycle de longueur n < 5 (resp. n < 6) est homotope a 0, le complexe simplicial X est
le quotient de son revétement universel X par le groupe fondamental, avec une distance de
translation § vérifiant § > 5 (resp. J > 6). D’apres le théoréme précédent, X est (ICV)
(resp. (ICV_1)), donc d’apres le lemme 1.6 le complexe X est lui-méme (ICV) (resp.
(ICV_y).

]

Voici une autre application du lemme 2.7.4 :

2.7.7 Proposition. Soit X’ un complexe simplicial connexe, simplement connexe et (ICV').
Soit (X, D(X)) un complexe a bord saillant, X étant connexe et ayant (ICV'). Soit enfin f
un isomorphisme local de (X, D(X)) dans X'.

Alors X est contractile, f est un plongement d’image pleine. De plus, pour tout n > 1
le sous-complexe V" (f(X), X') est contractile, plein et (V" (f(X),X"),0V"(f(X),X")) est
un complexe a bord saillant dont l'intérieur est contenu dans [l'intérieur topologique de
VvV (f(X),X’). Enfin (V*(f(X),X"), 0V (f(X),X’)) est une extension universelle de
(V" (f(X),X"),0V™(f(X), X)) modelée sur les données d’extensions de (V"(f(X),X'),
OV™(f(X),X")) associées a l'inclusion V™ (f(X),X') C X'.

Démonstration
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D’apres le lemme 2.7.4 et ’hypothese de simple connexité de X', ’isomorphisme local
p:T(f) — X' est un isomorphisme (T'(f) est connexe puisque X l’est). Donc déja f est un
plongement.

D’apres le théoreme 2.7.5 le complexe X’ est contractile, donc T'(f) l'est aussi, ainsi
que chaque X, (tous ont le méme type d’homotopie via X, cf. lemme 2.7.4).

Ona X =X,C X; C---CT(f) et chaque X,, est plein dans X, 1 (cf. lemme 2.3.4),
donc dans T'(f).

Par construction on a X,,+1 = V(X,,T(f)), D(Xnt1) = OV(X,,T(f)) et (Xnt1,
D(X,+1)) est 'extension universelle de (X,,, D(X,,)) modelée sur les données d’extension
associée & I'isomorphisme local f, de (X,,D(X,)) dans X’ (un plongement puisque p est
un isomorphisme). On en déduit par récurrence sur n > 1 que X,, = V" (X,T(f)) (resp.
D(X,,) = OV (X, T(f)).

On sait que (X, D(X,,)) est saillant, on a vu que X,, est plein, donc on conclut en
appliquant I’isomorphisme p.

O

2.7.8 Remarque.

La proposition précédente s’applique en particulier lorsque X est un sous-complexe connexe
et (ICV) de X', f est 'inclusion canonique et D(X) est un bord sur X tel que Dx/(X) C
D(X) et (X,D(X)) est saillant. Car alors f est bien un isomorphisme local de (X, D(X))
dans X'.
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3. Etude de la métrique combinatoire.

Dans toute la section X est un complexe simplicial connexe, simplement connexe qui
vérifie (ICV).
Nous allons montrer que (Sx,dx) a un comportement analogue a celui d’un espace C AT'(0).
Si de plus X est (ICV_q) alors (Sx,dx) est hyperbolique au sens de Gromov.

3.1 Lemme.

Pour tout sommet s de X et tout entier n > 1, on a V"(s,X) = Bx(s,n), i.e. les
V™(s, X) sont pleins. Les boules sont contractiles. Le complexe a bord (Bx(s,n),Sx(s,n))
est saillant. Pour tout simplexe o € Sx(s,n+ 1) il existe un simplexe p de Sx(s,n) tel que
s € p <= s est lié a chaque sommet de o ; de plus o et p sont joignables dans X.

Démonstration

On applique la remarque 2.7.7 au complexe V (s, X)) muni de son bord usuel 9V (s, X) (on a
déja vérifié les hypotheses en 2.7.3). On obtient deja que V™ (s, X) est plein et contractile.
On a donc a la fois 'inclusion V™ (s, X) C Bx(s,n), égalité de I’ensemble des sommets, et
plénitude de V" (s, X ). Donc V" (s, X) = Bx(s,n) et Bx(s,n) est contractile.

La sphere Sx(s,n + 1) est le sous-complexe de Bx(s,n + 1) engendré par les sommets
non dans By (s,n). De méme 9V" "1 (s, X) est le sous-complexe de V"1 (s, X) engendré par
les sommets non dans V" (s, X). Comme V" (s, X) = Bx(s,n) pour tout n > 1, on a donc
Sx(s,n+1) = oVnti(s, X). L'égalité Sx(s,1) = OV!(s, X) est évidente. Finalement les
complexes a bord (V™(s,X),0V"(s, X)) et (Bx(s,n),Sx(s,n)) sont identiques, et toutes
les propriétés du premier (venant de 2.7.7) passent au second.

En particulier (Bx(s,n),Sx(s,n)) est saillant. Et (Bx(s,n + 1),Sx(s,n + 1)) est
'extension universelle de (Bx (s,n), Sx (s,n)) modelée sur les données d’extension associées
a l'inclusion Bx(s,n) C X. La boule (Bx(s,n) est pleine, donc (ICV).

On a vu que (Bx(s,n),Sx(s,n)) est saillant et donc les données d’extension le sont
aussi puisque Dx(Bx(s,n)) C Sx(s,n) (cf. 2.2.1). Enfin X étant (ICV') les données
d’extension sont (ICV'). Donc toute extension universelle de (Bx(s,n), Sx(s,n)) modelée
sur ces données est isomorphe a celle construite en section 2.3 (cf. corollaire 2.6.4). Le
lemme 2.3.5 s’applique donc.

O
3.2 Définition. Soit ¢ = (sg, s1,: -, Sn+1) un chemin de longueur n + 1. Un raccourcisse-
ment élémentaire de ¢ est un chemin (sg, s}, -, s,) de mémes extrémités que c, de longueur

n tel que, pour tout entier 0 < i < n le sommet s, est I'un des sommets s;, s;y+1, ou alors est
lié dans X aux deux sommets s;, s;y+1 (autrement dit s, €St({s;, si+1},X), puisque X est
de drapeaux).

Remarques.
Soit ¢’ un raccourcissement élémentaire d’un chemin c.

1) Le chemin opposé ¢’ est un raccourcissement élémentaire de €.

2) Il y a une homotopie simpliciale de ¢ a ¢ utilisant au plus 2n — 1 mouvements
élémentaires.

3.3 Proposition. Soit X un complexe simplicial (IC'V') simplement connexe. Alors un
chemin c¢ sans aller-retours est une géodésique si et seulement si ¢ n’admet pas de sous-
chemin qu’on peut raccourcir élémentairement.
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Démonstration

11 suffit de montrer par récurrence sur la longueur n de ¢ = (sg, s1,- -+, Sp,) que si ¢ n’est
pas géodésique, alors ¢ contient un sous-chemin qui admet un raccourcissement élémentaire.

C’est évident pour n < 2.

Supposons ¢ = (8o, -+, Sp+1) de longueur n 4+ 1,n > 2 et non géodésique. Si un sous-
chemin strict est non géodésique alors par récurrence on trouve un sous-chemin de ¢ qui
admet un raccourcissement élémentaire. A partir de maintenant nous supposons donc que
tous les sous-chemins stricts sont géodésiques (en particulier ¢ est sans aller-retour).

Avec notre hypotheése nous avons d(sg,s,) = n. Or d(sg,spt+1) < n+ 1. Donc
d(sg, Sn+1) =n—1 oun.

Dans le premier cas, nous avons {s,_1,S,41} C 0s,, le simplexe de Sx(so,n — 1)
engendré par les sommets liés a s,, (cf. lemme 3.1). Donc s,,—1 = Sp41 ou {Sp—1,Sn+1} est
une aréte de X. Le premier cas est impossible puisque c est sans aller-retours. Le deuxieme
correspond & un raccourcissement élémentaire du sous-chemin (s,_1, Sn, Snt1)-

Supposons donc d(sg, Sp41) = n. Alors o, No,, ., est un simplexe o, (cf. lemme 3.1).
Soit s/,_; un sommet de o,, . Si s),_; = s,_1 on obtient encore une fois un raccourcissement
élémentaire du sous-chemin (s,_1, $pn, Sp+1). Sinon s, _; est 1ié aux trois derniers sommets
de c¢. En particulier s/, _; €St({sn—1,sn}, X).

Le chemin ¢ = (sg, ", S$p—1,5),_1) est de longueur n, mais n’est pas géodésique. Donc
par récurrence ¢’ admet un raccourcissement élémentaire de I'un de ses sous-chemins ¢’. Si

¢’ ne contient pas s/, _;, alors ¢’ est un sous-chemins de ¢, ce qui conclut.

Sinon il existe un entier 0 < r < n—2 et un chemin (s,,---, s, _;) de mémes extrémités
que ¢" = (sp, -+, Sn—1,5,_1), tel que s, €St({sk, sk+1},X) pour tout r < k <n — 1. Alors
(80, -+, 80 _1,8n+1) est un raccourcissement élémentaire du sous-chemin (s, -, Sp41)-

OJ

Remarque. On déduit de la proposition ci-dessus et de la remarque qui la précede que la
fonction de Dehn du complexe simplicial X est au plus quadratique.

3.4 Lemme. Soit (X,D(X)) un complexe a bord saillant, avec X (ICV), et soit D des
données d’extension saillantes et (ICV_y). Soit (Y,D(Y')) une extension universelle de
(X, D(X)) modelée sur D. Alors pour p, q liés sur D(Y), les intersections o, = V(p,Y)NX
et o, =V (q,Y)N X sont des simplexes comparables pour I'inclusion.

Démonstration

D’apres le lemme 2.6.4 nous pouvons supposer que (Y, D(Y)) est 'extension construite
en 2.3, et nous allons utiliser les notations de cette section. Par 2.3.5 nous savons déja que
op et o4 sont des simplexes.

Les sommets p et ¢ sont liés par une aréte a d'un certain Vi. Donc en fait o, C
Vip,Vs) N X CcV(p,Y)NX =0p. Onao, =V(p,Vs) N X et de méme o, =V (g, Vs) N X.
Donc V(a,Vs) N X =0, Uay,.

Or V(a,Vi)NX =V(a,Vs) N V(0s,Vs). Eneffet V(a, V)N X = V(a,Vs) N (X NVy),
et XNV, =V, x (cf. lemme 2.3.4) et V; x = V(0,,X) par construction de Y.

Pour finir 0, Uo, = V(a,Vs) N V(os, Vs). Nous pouvons alors appliquer le lemme 1.8
dans V;, puisque celui-ci par hypothese est (ICV_1). Nous obtenons que o, U g, est un
simplexe, ce qui conclut.

O
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3.5 Théoréme. Soit X un complexe simplcicial connexe, simplement connexe et (ICV_y).
Alors (Sx,dx) est hyperbolique au sens de Gromov.

Démonstration

Considérons les complexes a bord (Bx(s,n + 1), Sx(s,n + 1)) comme des extensions uni-
verselles des (Bx (s,n), Sx(s,n)) (cf. le lemme 3.1 et sa preuve). Puisque X est (ICV_y) les
boules le sont aussi (elles sont pleines). Donc les données d’extension associée a 'inclusion
Bx(s,n) C X sont (ICV_1). Nous pouvons donc appliquer le lemme 3.4 : pour deux som-
mets p,q a distance n + 1 d’un sommet s et liés dans X, on a V(p,X) N Bx(s,n) = o,
et V(¢,X) N Bx(s,n) = o4, avec 0,,0, deux simplexes de Sx(s,n) comparables pour
I'inclusion.

Ceci entraine immédiatement par récurrence que si deux géodésiques ¢y, co de X d’origi-
ne s, de longueur n ont des extrémités p, ¢ qui sont égales ou a distance 1, alors d(cq (i), c2(i))
<1 (en notant ¢(j) le j-itme sommet d’un chemin ¢). Autrement dit “les bigones (combina-
toires) sont 1-fins”, de sorte que les bigones du graphe métrique correspondant au 1-squelette
de X sont 2-fins. D’apres [P] (theorem 1.4) I'espace métrique (Sx,dx) est donc Gromov-
hyperbolique.

Il

3.6 Lemme. 1) Soit (C,D(C)) un complexe a bord saillant avec C ayant (IC'V'). Soit
D des données d’extension saillantes et (IC'V) de (C,D(C)). Soit (Y,D(Y)) I'extension
universelle de (C, D(C')) modelée sur D (cf. 2.6.4). Alors Sc est convexe dans (Sy,dy ).

2) Soit C' un sous-complexe connexe de X ayant (ICV'). Soit D(C) un bord sur C' tel
que Dx(C) C D(C) et (C,D(C)) est saillant. Alors Sc est convexe dans (Sx,dx). En

particulier les boules sont convexes : Sp est convexe dans (Sx,dx) pour toute boule B de
X.

Démonstration
1) Montrons qu’un chemin ¢ = (sg,---,s,) de Y avec n > 2, sg, s, dans D(X) mais
S1, -, 8n—1 dans D(Y') ne peut étre géodésique.

Raisonnons par récurrence sur n. Pour n =2 on a sg,s2 € X NV (s1,Y), donc sg et sy
sont liés dans le simplexe o0,,, et ¢ n’est pas géodésique.

Si n > 2 soit s un sommet du simplexe oy, 5,3. Alors ¢’ = (sg, 5,52, --,5,) est de
longueur n. Par récurrence (s, s, -, S,) n’est pas géodésique, donc ¢ et finalement ¢ ne le
sont pas non plus.

2) Soit Cy = C,D(Cy) = D(C), puis Cpy1 = V(Cp,X),D(Cry1) = OV(Cp, X).
D’apres la proposition 2.7.7 et la remarque 2.7.8, nous savons que (Cp41,D(Cri1)) est
I’extension universelle du complexe a bord saillant (C,, D(C,)) modelée sur les données
d’extension saillantes et (ICV') associées a I'inclusion C,, C X. Nous pouvons donc appli-
quer le 1) : nous avons alors S¢, convexe dans Sc, ,,. Comme X = JC,, nous voyons que
Sc, est convexe dans (Sx,dx) pour tout n, en particulier pour n = 0.

Enfin nous avons vu au lemme 3.1 que le complexe a bord (Bx(s,n), Sx(s,n)) satisfait
bien les hypotheses du 2).

OJ

Ce qui précede (et le lemme 2.1.3) montre que lorsque X est (ICV), les notions de
convexe et de saillant sont quasi-équivalentes.
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Le résultat suivant, joint au précédent, montre une propriété remarquable des espaces
métriques (S, d) hyperboliques en question : les notions de totalement géodésique, convexe
et saillant y sont quasi-équivalentes.

3.7 Proposition. Soit X un complexe simplicial connexe, simplement connexe et (ICV_y).
Soit K une partie de X totalement géodésique. Alors V(K,X) est convexe dans X (en
particulier ’enveloppe convexe de Sk reste a distance de Hausdorff finie de Sk). Et
(V3(K, X),0V*(K, X)) est saillant.

Démonstration

La derniere affirmation découle de V (K, X) convexe et du lemme 2.1.3.

Pour montrer que V (K, X) est convexe raisonnons par I’absurde. Considérons donc une
géodésique v = (po = p, p1, -+, Pn = q) entre deux points p, g de V(K, X ) avecy ¢ V (K, X),
et de longueur minimale pour cette propriété. Donc n > 1 et py,---,p,—1 ne sont pas dans
V(K, X). En particulier ni p ni ¢ ne sont dans K.

Considérons alors deux sommets z,y de K tels que d(x,p) = d(y,q) = 1 et d(z,y) est
minimale pour cette propriété. Comme K est géodésique dans X il existe une géodésique
v = (zg = x,21, -, 2, = y) dont tous les sommets z; sont dans K. Par inégalité tri-
angulaire on a m — 2 < n < m + 2. Considérons aussi la distance d = d(z,q) qui vérifie
m—1<d<m+1 par inégalité triangulaire.

Supposons n = m + 2. Alors (p,x).7.(y, q) est une géodésique de mémes extrémités que ~.
Nous avons vu au théoreme 3.5 que les bigones combinatoires sont 1-fins : deux géodésiques
de méme origine et d’extrémités égales (ou a distance 1) se suivent a distance < 1. En
particulier d(p;,x) < 1, contradiction.

Supposons n = m + 1 ; doncd =moud=m+1. Sid=m+1 alors v et v.(y,q) sont
deux géodésiques de méme extrémité et d’origines a distance 1. Par 1-finesse des bigones,
nous avons d(p,—1,y) < 1, contradiction. Si d = m soit 7" une géodésique de ¢ a x : alors
v et (p,z).y" sont deux géodésiques de mémes extrémités : par 1-finesse des bigones, nous
avons d(p1,x) < 1, contradiction.

Donc n < m.

Si d = m 4+ 1 alors on doit avoir n > m toujours par inégalité triangulaire et finalement
n =m. Alors (z,p).v et v'.(y,q) sont deux géodésiques de mémes extrémités. Par 1-finesse
des bigones, nous avons d(p,—_1,y) < 1, contradiction.

Sid=m—1 alors m > 0. Pour 4" une géodésique de x & ¢, nous avons v".(¢q,y) et v/
deux géodésiques de méme extrémités, donc d(q,x,,—1) < 1, contradiction avec le choix
minimisant de d(z,y). Notons que pour la méme raison on doit avoir d(p,y) > m.

Sid=m,alorsn>m—1. Sin =m—1 alors m > 0 : nous avons (z,p).y et 7' deux
géodésiques de méme origine et d’extrémités a distance 1, d’ou d(p,z1) < 1, contradiction
avec le choix minimisant de d(z,y).

Supposons pour finir que n = m = d (> 1 comme n). Alors les chemins 7, =
(¢, Ty Tm—1,*+, Tm—k) Ne peuvent étre géodésiques pour tout k € {0,1,---,m} : soit
donc / le plus petit entier k,0 < k < m tel que v n’est pas géodésique. On a évidemment
¢ >1;et méme ¢ > 1 sinon ¢ serait lié a x,,_1, contradiction avec le choix minimisant de

d(x,y).

31



Soit ¢’ une géodésique de q & xy—y et ¥ = " (s, -+, 20) : nécessairement ¢’ est
de longueur /¢, car de longueur < ¢ puisque 7, n’est plus géodésique, mais I'inégalité stricte
est exclue sinon 7" est de longueur < m, donc d < m.

Supposons d’abord £ < m. Alors nous avons " et v deux géodésiques d’origine ¢ et
d’extrémités reliées, d’avant-derniers sommets py,x1, d’ott d(p1,x1) < 1, absurde.

Supposons maintenant ¢ = m et m > 2. Soit p” I'avant-dernier sommet de ~" (lié
a x). Par l-finesse des bigones, nous avons d(p1,p”’) < 1. En fait d(p;,p”) = 1 sinon
p1 =p" € V(K, X). Puisque X est sans carré et que x n’est pas lié & p1, nous avons p lié a
p”’. Par finesse des bigones appliquée a 7" et 4, on voit de méme que d(p”,x2) < 1. On ne
peut avoir p’/ = xo, sinon x = xq lié & 25 et 4’ n’est pas géodésique.

Le chemin (p,p”, x2).(x2, -, zy) est de longueur m, donc est géodésique. Comme on
suppose m > 2 la 1-finesse des bigones donne d(p,—1,Zm—1) < 1, contradiction.

Enfin lorsque n = m = d = 2 les sommets p et x sont a distance > 1 des sommets ¢ et

y, donc par (ICV_1) les sommets p; et 1 sont liés, contradiction.
O

Question. Soit K un sous-complexe quasi-convexe d’un complexe X comme ci-dessus.
L’enveloppe convexe de K reste t-elle a distance de Hausdorff finie de K ?
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