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F-91405 ORSAY CEDEX

e-mail: frederic.haglund@math.u-psud.fr

14/11/2003
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0. Introduction.

Dans Asymptotic Invariants of Infinite Groups, M. Gromov fait remarquer qu’il y a peu
de constructions (non arithmétiques) de groupes hyperboliques de grande dimension. En par-
ticulier on manquait jusqu’alors d’un critère combinatoire local assurant l’hyperbolicité du
revêtement universel d’un complexe simplicial de dimension quelconque (cf. [G], 7.A.III.(c)).

Dans cet article nous étudions les complexes simpliciaux de dimension finie localement
finis. En première partie nous proposons un critère combinatoire local (cf. Définitions 1.2 et
1.12) qui assure la contractilité du revêtement universel et d’autres propriétés de convexité
combinatoire (cf. Théorème 2.7.5). Un léger renforcement de ce critère donne l’hyperbolicité
au sens de Gromov du revêtement universel (cf. Théorème 3.5).

Le critère local d’hyperbolicité est le suivant. Dans les links des sommets du complexe
X, les voisinages de deux simplexes non voisins (i.e. à distance combinatoire > 1) doivent
être disjoints ou d’intersection un simplexe. Ces voisinages de simplexes se comportent
comme s’ils étaient des “convexes” du link.

Pour étudier le revêtement universel X̃ d’un tel complexe (section 3, Théorème 3.5),
nous écrivons X̃ comme union croissante de boules combinatoires. Nous montrons que
ces boules sont contractiles, et que deux géodésiques joignant le centre de la boule à deux
sommets du bord de la boule liés par une arête sont à distance de Hausdorff ≤ 1. Cette
finesse des bigones entrâıne l’hyperbolicité (d’après [P]). D’ailleurs il n’est pas clair que X̃
peut être muni d’une structure de complexe simplicial métrique CAT (0) (cf. 1.14).

Tout repose en fait sur la compréhension du passage de la boule de rayon n à la boule
de rayon n + 1. C’est pourquoi nous étudions en section 2 les extensions élémentaires de
complexes : nous montrons comment obtenir un complexe vérifiant le critère d’hyperbolicité
à partir de recollements (particulièrement simples) de tels complexes (voir Théorèmes 2.4 et
2.7.5).
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Enfin pour mener à bien l’étude des extensions nous donnons en section 1 (après les
rappels et premières définitions) un lemme technique essentiel (le lemme du voisinage 1.11)

Dans un prochain article nous utiliserons les résultats obtenus ici pour voir que les
complexes finis de groupes finis dont les développements locaux satisfont notre critère sont
développables (de π1 hyperboliques). On présentera une méthode pour fabriquer des es-
paces contractiles de dimension quelconque admettant un groupe d’automorphisme discret,
cocompact et résiduellement fini. A l’aide de ces résultats nous construirons des exemples de
groupes hyperboliques de dimension cohomologique virtuelle arbitrairement grande. Enfin,
nous donnons aussi des constructions de groupes de Coxeter à angles droits hyperboliques
au sens de Gromov, de dimension cohomologique virtuelle arbitrairement grande.

Ce dernier résultat - notre but initialement - a été obtenu indépendamment par T.
Januszkiewicz et J. Swiatkowski dans Hyperbolic Coxeter groups of large dimension ([JS]),
récemment publié. D’autre part, dans une communication privée T. Janusz-kiewicz m’a
prévenu qu’il a obtenu des résultats très semblables à ceux qu’on lira ici.
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1. Intersections convexes de voisinages.

1.1 Rappels et notations sur les complexes simpliciaux.

Complexe, simplexe, sous-complexe. Dans tout ce qui suit X désigne un complexe simplicial
(abstrait). On note SX l’ensemble des sommets de X et plus généralement SY l’ensemble
des sommets d’un sous-complexe Y . Ainsi X est un ensemble de simplexes σ, c’est à dire
de parties finies (non vides) de SX , stable par passage aux sous-parties (non vides) et par
intersections (non vides ; cf. [HW] section 1.9 et 1.10 p 41,45 pour les premières définitions
sur les complexes simpliciaux abstraits). La dimension d’un simplexe σ est |σ| − 1. Pour
un simplexe σ et un sous-complexe Y nous écrirons σ ∈ Y si σ est un simplexe de Y . Pour
tout simplexe σ de X, nous noterons encore σ le sous-complexe de X formé des parties non
vides de σ. Un couple de SX tel que la partie correspondante est une arête a de X est une
arête orientée (notée ~a). L’arête opposée sera notée ~a. Nous dirons que deux simplexes σ
et τ sont joignables si σ ∪ τ est un simplexe de X, auquel cas nous appellerons σ ∪ τ le joint
de σ et τ .

Morphisme. Soient X, Y deux complexes simpliciaux. Un morphisme de X dans Y est une
application f : SX → SY telle que pour tout simplexe σ de X l’image directe f(σ) est un
simplexe de Y (alors f définit par les images directes une unique application X → Y , encore
notée f). Le morphisme est non dégénéré si f est injective sur tout simplexe. C’est un
isomorphisme si f est bijective et son inverse est aussi un morphisme.

Sous-complexes pleins. Rappelons qu’un sous-complexe Y de X est plein si pour tout sim-
plexe σ de X on a : σ ⊂ SY ⇒ σ ∈ Y . Deux sous-complexes pleins Y,Z sont égaux
⇐⇒ SY = SZ . Une intersection de sous-complexes pleins est pleine. Si Z ⊂ Y ⊂ X avec
Z plein dans Y et Y plein dans X, alors Z est plein dans X. Si S ⊂ SX , S 6= ∅, nous
appelons complexe engendré par S l’intersection des sous-complexes pleins dont l’ensemble
des sommets contient S (c’est le sous-complexe plein formé des simplexes σ de X tels que
σ ⊂ S). Par exemple si Y est un sous-complexe l’ensemble des simplexes de X disjoints de
Y est vide ou le sous-complexe engendré par SX \ SY . Pour éviter des lourdeurs, nous nous
autoriserons à employer l’expression “complexe engendré par S” même quand S est vide :
c’est par définition le vide (donc pas un sous-complexe au sens strict).

Voisinages. Pour tout sous-complexe Y de X soit V (Y, X) le sous-complexe formés des
simplexes de X contenus dans un simplexe touchant Y . C’est le voisinage de Y dans X.
Nous notons ∂V (Y,X) le sous-complexe (plein) formé des simplexes de V (Y,X) ne touchant
pas Y (c’est le bord de V (Y, X)). Lorsque Y = {s}, nous allégeons V ({s}, X) en V (s,X).

Plus généralement, pour tout sous-complexe Y ⊂ X et tout entier n ≥ 1, on note
V n(Y,X) l’union des simplexes σ de X contenant un sommet v tel que d(v, SY ) ≤ n − 1.
Par exemple, V 1(Y, X) = V (Y,X), V 2(Y,X) = V (V (Y,X), X), et en fait V n+1(Y, X) =
V (V n(Y,X), X). Si Y = {s} on note plutôt V n(s,X) On note ∂V n(Y,X) le sous-complexe
de V n(Y,X) engendré par les sommets à distance n de SX . On a bien ∂V 1(Y, X) = ∂V (Y, X)
et pour n ≥ 1 également ∂V n+1(Y, X) = ∂V (V n(Y, X), X).

D’autre part, pour tout simplexe σ, nous notons St(σ,X) le sous-complexe formés des
simplexes de X contenus dans un simplexe contenant σ (c’est l’étoile de σ dans X). Nous
noterons Lk(σ,X) le sous-complexe de St(σ,X) formé des simplexes ne touchant pas σ (le
link de σ dans X). Lorsque σ est un sommet s, on a St(s,X) = V (s,X), et Lk(s,X) =
∂V (s,X).
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Nous dirons qu’un morphisme f : X → Y est un isomorphisme local (ou un revêtement)
si pour tout p ∈ SX , f induit un isomorphisme de V (p, X) sur V (f(p), Y ).

1.1.1 Remarque sur les voisinages et les sous-complexes pleins.
Si K ⊂ X est plein et si s ∈ SK , alors V (s,K) = V (s,X) ∩K. Plus généralement si Y

est un sous-complexe de K, alors V (Y,X) ∩K = V (Y,K)

Démonstration
Traitons d’abord le cas où Y = {s}. L’inclusion V (s,K) ⊂ V (s,X) ∩ K est évidente.
Réciproquement, si un simplexe de K est joignable à s dans X, il l’est dans K par plénitude
de K dans X.
Pour Y un sous-complexe de K, on a V (Y,X) ∩K = (

⋃
s∈Y V (s,X)) ∩K =

⋃
s∈Y V (s,X)

∩K =
⋃

s∈Y V (s,K) (par ce qui précède). Par définition on a donc V (Y, X)∩K = V (Y, K).
�

1.2 Plusieurs notions de convexité locale combinatoire.

(P0) Tout voisinage de sommet est plein dans X.

(P1) Tout voisinage de sommet et d’arête est plein dans X.

(P ) Tout voisinage de simplexe est plein dans X.

(D) X est de drapeaux, i.e. si σ ⊂ SX est telle que deux sommets distincts de σ sont liés
par une arête de X, alors σ est un simplexe de X.

(ICV0) Pour deux sommets s, t non liés par une arête de X, l’intersection des voisinages de
sommets St(s,X) et St(t, X) est vide ou un simplexe σ ⊂Lk(s,X)∩Lk(t,X). Pour toute
arête a d’extrémités s, t on a St(s,X)∩ St(t, X) =St(a,X).

(ICV ) On suppose que (ICV0) est vérifiée et que de plus pour toute arête a et tout som-
met s non dans V (a,X), l’intersection de St(s,X) avec V (a,X) est vide ou un simplexe
σ ⊂Lk(s,X) ∩ ∂V (a,X).

(ICV−1) On suppose que (ICV ) est vérifiée et que de plus pour deux arêtes a et b, avec b∩
V (a,X) = ∅, l’intersection de V (a,X) avec V (b, X) est vide ou un simplexe σ ⊂ ∂V (a,X)∩
∂V (b, X).
Le sigle (ICV ) veut évoquer : intersection convexe de voisinages. Par exemple, un complexe
ayant (ICV0) a la combinatoire la plus simple possible pour les voisinages de sommets.

1.3 Définition (chemins, géodésiques, cycles).
1) Un chemin de longueur n de X est une suite (p0, · · · , pn) de sommets de X, tels que

{pi, pi+1} est une arête de X pour tout 0 ≤ i < n.
2) Si X est connexe alors SX est muni de la distance combinatoire d, minimum de la

longueur des chemins joignant deux sommets. Une géodésique de X est un chemin de X dont
la longueur est la distance entre ses extrémités. Une partie de SX est dite convexe (resp.
totalement géodésique) si toute (resp. une) géodésique entre deux sommets de la partie a
tous ses sommets dans la partie. Pour un sommet s et un entier n ≥ 0, nous noterons
BX(s, n) (resp. ΣX(s, n)) le sous-complexe de X engendré par l’ensemble des sommets t tel
que d(s, t) ≤ n (resp. d(s, t) = n) : c’est la boule (resp. la sphère) de centre s et de rayon n
dans X.
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3) Un chemin (p1, · · · , pn) est un cycle de X de longueur n si ses sommets sont deux
à deux distincts et {pn, p1} est aussi une arête. Une corde du cycle est une arête {pi, pj}
avec 1 ≤ i < j − 1 ≤ n (et {i, j} 6= {1, n}). Le complexe X est dit sans n-cycle si tous ses
cycles de longueur ≤ n ont une corde. Pour n = 4, 5, 6 on dit sans carré, sans pentagone,
sans hexagone.

Attention ! En général, l’inclusion V n(s,X) ⊂ BX(s, n) est stricte, car ∂V n(s,X) (et donc
V n(s,X) lui-même) n’est pas toujours un sous-complexe plein. Ce sera cependant le cas si
X est connexe, simplement connexe et satisfait la condition (ICV ), cf. lemme 3.1.

1.4 Lemme. X vérifie (ICV0) si et seulement si X vérifie (D) et est sans carré. De plus
un tel X vérifie (P0) ; en fait X vérifie même (P ).

Démonstration
Montrons d’abord que si X a (ICV ), alors X a (D).
On raisonne par récurrence sur le cardinal k de l’ensemble σ des sommets d’un sous-

graphe complet de X. Evident si k ≤ 2, donc on suppose k ≥ 3, on considère une partition
σ = {s, t}∪ σ′ avec |σ′| = k− 2. Alors par récurrence {s}∪ σ′ et {t}∪ σ′ sont des simplexes
de X. Donc σ′ est un simplexe de St(s,X)∩ St(t, X), donc σ est un simplexe de St({s, t}, X)
par (ICV0) (deuxième propriété).

Notons que la condition “de drapeaux” entrâıne immédiatement (P0).
Montrons que X est sans carré. Pour cela on considère un carré, deux sommets s, t

diamétralement opposé sur ce carré. Ou bien s et t sont liés, ou bien la première partie de
(ICV0) dit que les deux autres sommets du carré sont liés, ce qui conclut.

Montrons maintenant que X vérifie (P ). Soit σ un simplexe de X et τ un simplexe tel
que Sτ ⊂ V (σ,X). On raisonne par récurrence sur dim τ ; il n’y a rien à faire si dim τ = 0.

Si dim τ > 0 écrivons τ = ρ ∗ {p}. Par récurrence il existe s ∈ σ tel que ρ ∈ V (s,X).
Soit t ∈ σ tel que p ∈ V (t, X).

Si p est lié à s alors Sτ ⊂ V (s,X). Par (P0) nous avons τ ∈ V (s,X) ⊂ V (σ,X).
Si p n’est pas lié à s, alors Sτ ⊂ V (t, X). En effet par (ICV0) l’intersection V (s,X) ∩

V (p, X) est un simplexe, qui d’ailleurs contient t et ρ. Ici encore par plénitude nous avons
τ ∈ V (t,X) ⊂ V (σ,X).
Réciproquement supposons que X soit un complexe de drapeaux sans carré.

Soit s, t deux sommets liés dans X par une arête a. Soit σ un simplexe de St(s,X)∩
St(t, X). Alors tous les sommets de σ sont joignables à la fois à s et à t : donc σ ∪{s}∪ {t}
est l’ensemble des sommets d’un graphe complet de X. Par (D) il existe un simplexe τ de
X engendré par cet ensemble de sommet. C’est dire que σ ∈St(a,X).

Soit maintenant s, t deux sommets non liés dans X tels que St(s,X)∩ St(t, X) est non
vide. Soit S l’ensemble des sommets de St(s,X)∩ St(t,X) : montrons que S engendre un
graphe complet. En effet si u, v sont distincts dans S, alors (s, u, t, v) est un carré de X.
Comme X est sans carré et que s et t ne sont pas liés, on voit que nécessairement u et v
sont liés. Donc S engendre un graphe complet. Et par (D) en fait S engendre un simplexe
de X. La condition (ICV0) est satisfaite.

�

1.5 Lemme. La condition (ICV ) (resp. (ICV−1)) est équivalente à la condition être de
drapeaux, sans pentagone (resp. sans hexagone).

Démonstration
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Soit π un pentagone de X vérifiant (ICV ) : nous devons y trouver une corde. Soit a
une arête de π et s le sommet de π non dans a. Ou bien s est lié à l’une des extrémités de a
(ce qui donne une corde), ou bien s n’est pas dans V (a,X) et donc d’après (ICV ) les deux
voisins de s dans π sont liés dans X.

Réciproquement supposons X de drapeaux, sans pentagone. Soit s un sommet et a une
arête de X (d’extrémités u, v), avec s 6∈ V (a,X), i.e. s non lié à u ou v. Soit S l’ensemble
des sommets de St(s,X) ∩ V (a,X).

Soit t, w deux sommets distincts de S. Alors (s, t, u, w) ou (s, t, v, w) est un carré de X,
ou bien (s, t, u, v, w) ou (s, t, v, u, w) est un pentagone de X. Puisque s n’est pas joignable
dans X à u ou v, la condition sans pentagone donne {t, w}, {t, v} ou {u, w} est une arête de
X. Les deux derniers cas (correspondant au pentagone) entrâınent eux-aussi que {t, w} est
une arête de X, par la condition sans carré.

Ainsi S engendre un graphe complet de X et, par (D), S est un simplexe. Avec le
lemme précédent on a bien que X vérifie (ICV ).
Soit maintenant h un hexagone de X vérifiant (ICV−1) : nous devons y trouver une corde.
Soit a une arête de h et b l’arête de h ne touchant pas a. Ou bien b rencontre V (a,X) (ce
qui donne une corde), ou bien d’après (ICV−1) les deux sommets de h non dans a ∪ b sont
liés dans X.

Réciproquement supposons X de drapeaux, sans hexagone. Soit a, b deux arêtes de
X (d’extrémités r, s et u, v), avec b ∩ V (a,X) = ∅. Soit S l’ensemble des sommets de
V (a,X) ∩ V (b, X).

Soit t, w deux sommets distincts de S ; alors l’une des propriétés suivantes est vraie
: (s, t, u, w), (s, t, v, w), (r, t, u, w) ou (r, t, v, w) est un carré, (s, t, u, v, w), (r, t, u, v, w),
(r, s, t, u, w) ou (r, s, t, v, w) est un pentagone ou enfin (r, s, t, u, v, w), (r, s, t, v, u, w), (r, s, v,
w, u, t) ou (r, s, w, u, v, t) est un hexagone de X. Puisque r, s ne sont pas joignables dans X à
u ou v, la condition sans hexagone ramène le cas de l’hexagone à l’un des cas de pentagone,
puis les cas de pentagones à un cas de carré, enfin on obtient dans tous les cas que {t, w}
est une arête de X.

Ainsi S engendre un graphe complet de X et par (D) S est un simplexe. Avec le lemme
précédent on a bien que X vérifie (ICV ).

�

Les diverses propriétés d’intersection convexe de voisinage sont locales, au sens où il
suffit qu’elles soient vraies dans toutes les boules de rayon 3 pour qu’elles soient vraies dans
le complexe simplicial. Le résultat suivant est une autre illustration de ce caractère local.

1.6 Lemme. Soit X un complexe simplicial connexe et Γ un groupe d’automorphismes de
X. Soit δ la distance de translation de Γ sur X, i.e. le minimum des distances combinatoires
dans X entre un sommet s et son translaté γs (avec γ 6= 1). Notons X le quotient Γ\X.

i) Si δ > 2 alors X est un complexe simplicial.
ii) Si δ > 3 alors X a (D) ⇐⇒ X a (D).
iii) Si δ > 4 alors X est (ICV0) ⇐⇒ X est (ICV0).
iv) Si δ > 5 alors X est (ICV ) ⇐⇒ X est (ICV ).
v) Si δ > 6 alors X est (ICV−1) ⇐⇒ X est (ICV−1).

Démonstration
Montrons le point i). Si δ > 1 alors Γ agit sans inversion, au sens où (γσ = σ, γ ∈ Γ) ⇒

γ|σ =id|σ. Dans ce cas X est un “multicomplexe simplicial”, dont l’ensemble de sommets est
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le quotient SX = Γ\SX , avec comme simplexes les parties σ = π(σ) (en notant π : SX → SX

la surjection canonique). Comme il n’y a pas d’inversion dim σ = dim σ. Il est clair que X
est stable par passage aux sous-parties non vides.

Pour σ, τ ∈ X tels que σ∩τ 6= ∅, on peut quitte à translater σ écrire σ = {x0, x1, · · · , xi,
· · · , xk} et τ = {y0, y1, · · · , yi, · · · , y`}, avec x0 = y0 et Γxj = Γyj ⇐⇒ j ∈ {0, 1, · · · , i}. La
condition δ > 2 entrâıne alors xj = yj pour tout j ∈ {0, 1, · · · , i}. Donc σ ∩ τ est bien un
simplexe de X. Ainsi X est un complexe simplicial.

De plus π : SX → SX est un isomorphisme local (la surjectivité locale est automatique,
l’injectivité locale vient de δ > 2).

Montrons le point ii). L’image par π d’un sous-graphe complet K est un sous-graphe
complet K. Donc si X est de drapeaux K est le 1-squelette d’un simplexe σ. Comme π est
un isomorphisme local, K engendre un simplexe (préimage de σ). On a donc toujours : X
de drapeaux ⇒ X de drapeaux.

Supposons réciproquement X de drapeaux. Soit K un sous-graphe complet de X, p un
sommet de K et a1, · · · , ak les arêtes de K contenant p. Soit alors p un sommet de π−1(p)
et a1, · · · , ak les arêtes de π−1(K) issues de p. Supposons que les extrémités p1, p2 de a1, a2

différentes de p ne soient pas liées. Soit alors p′2 le voisin de p1 tel que π(p′2) = p2. On a
p′2 6= p2 et (p′2, p1, p, p2) est un chemin donc 0 ≤ δ ≤ d(p′2, p2) ≤ 3.

Donc lorsque δ > 3 la réunion ∪i=k
i=1ai engendre un sous-graphe complet K de X. Comme

X est de drapeaux, K engendre un simplexe σ et donc K engendre le simplexe π(σ). Ainsi
X est de drapeaux.

Supposons maintenant que (p1, · · · , pm) soit un m-cycle de X. Soit c = (p1, · · · , pm, p1) le
chemin correspondant. Soit c = (p1, · · · , pm, p′1) un relevé de c à X. Si p′1 6= p1 alors δ ≤ m.
Donc si on suppose δ > n , le relevé de tout m-cycle (avec m ≤ n) est un m-cycle. On en
déduit que si δ > n et si X est sans n-cycle alors X est sans n-cycle.

Réciproquement si δ ≥ n et si X est sans n-cycle alors X est sans n-cycle. Car un
n-cycle de X se projette sur un n-cycle de X, dans lequel on doit avoir une corde, cette
corde fait apparâıtre un m-cycle avec m < n, et le relevé de ce m-cycle étant un m-cycle,
on obtient une corde dans le cycle de départ.

Finalement si δ > n alors X est sans n-cycle ⇐⇒ X est sans n-cycle. On conclut la
preuve du lemme en utilisant les lemmes 1.4, 1.5 et le résultat préliminaire sur la propriété
(D).

�

1.7 Lemme. Supposons qu’un complexe simplicial X ait la propriété (D) (resp. (ICV0),
resp. (ICV ), resp. (ICV−1)). Alors tout sous-complexe plein K a aussi la propriété (D)
(resp. (ICV0), resp. (ICV ), resp. (ICV−1)).

Démonstration
Soit Y un sous-complexe plein et K un sous-graphe complet de Y . si X est de drapeaux,

K engendre un simplexe σ de X. Comme Y est plein, on a en fait σ ∈ Y . Donc si X a (D)
alors Y a (D).

Soit c un n-cycle de Y . Si X est sans n-cycle, alors c a une corde dans X. Comme Y
est plein cette corde est dans Y . Donc si X est sans n-cycle, alors Y est sans n-cycle. On
conclut avec les lemmes 1.4, 1.5 et le résultat préliminaire sur la propriété (D).

�
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1.8 Lemme. Soit X un complexe simplicial ayant (ICV ) (resp. (ICV−1)) et soit σ un
simplexe de X. Si s (resp. τ) est un sommet (resp. un simplexe) de X dont le voisinage ne
touche pas σ, alors l’intersection V (σ,X) ∩ V (s,X) (resp. V (σ,X) ∩ V (τ,X)) est vide ou
un simplexe.

Démonstration
Soit T l’ensemble des sommets de l’intersection des voisinages, supposé non vide.

Puisque X a (ICV ) les voisinages de simplexes sont pleins et il suffit de montrer que T
engendre un simplexe de X. Comme X est de drapeaux, il suffit de montrer que T engendre
un graphe complet.

Soient donc deux sommets u, v distincts de T . Il existe alors un sommet t ou une arête
b de σ tels que {u, v} ⊂ V (t,X) ou {u, v} ⊂ V (b, X).

Lorsque X est (ICV ) et s est un sommet non dans V (σ,X), on a donc {u, v} ⊂
V (t, X) ∩ V (s,X) ou {u, v} ⊂ V (b, X) ∩ V (s,X), dans les deux cas des simplexes. Donc u
et v sont liés.

Lorsque X est (ICV−1) et τ est un simplexe ne touchant pas V (σ,X), il existe un
sommet s ou une arête a de τ tels que {u, v} ⊂ V (s,X) ou {u, v} ⊂ V (a,X). Dans
tous les cas, les intersections V (t, X) ∩ V (s,X), V (t, X) ∩ V (a,X), V (b, X) ∩ V (s,X) ou
V (b, X) ∩ V (a,X) sont des simplexes contenant {u, v}, qui sont donc liés.

�

Dans la suite de cette section nous allons donner des critères locaux pour avoir la convexité
des intersections de voisinage.

1.9 Définition. Soit X un complexe simplicial. Soit σ, τ deux simplexes de dimensions
n, m. Nous dirons que X est (ICV0) en σ, τ si n = m = 0 et : ou bien σ = τ , ou bien σ et
τ sont liés par une arête a et V (σ,X) ∩ V (τ,X) =St(a,X), ou bien encore d(σ, τ) > 1 et
V (σ,X)∩V (τ,X) est vide ou un simplexe. Nous dirons que X est (ICV ) (resp. (ICV−1)) en
σ, τ si n = 0,m = 1 (resp. n = 1,m = 1) et ou bien σ∩V (τ, Y ) 6= ∅ ou bien σ∩V (τ, Y ) = ∅
et alors V (σ,X) ∩ V (τ,X) est vide ou un simplexe.

Avec cette définition, il est clair qu’un complexe est (ICV0) s’il l’est en s, t pour s, t
deux sommets quelconques (idem avec (ICV ) et (ICV−1)).

1.10 Lemme de recouvrement. Soit X un complexe simplicial. Soit σ, τ deux simplexes
de dimension n = 0,m = 0 (resp. n = 0,m = 1, n = 1,m = 1). Supposons qu’il existe un
sous-complexe plein K contenant σ ∪ τ ∪ (V (σ,X) ∩ V (τ,X), et que K ait (ICV0) (resp.
(ICV ), (ICV−1)). Alors X est (ICV0) (resp. (ICV ), (ICV−1)) en σ, τ .

Démonstration
D’abord V (σ,X)∩V (τ,X) = V (σ,K)∩V (τ,K). En effet V (σ,X)∩V (τ,X) = V (σ,X)∩

V (τ,X) ∩K = (V (σ,X) ∩K) ∩ (V (τ,X) ∩K). Or comme K est plein et contient σ, τ on a
V (σ,X) ∩K = V (σ,K) et V (τ,X) ∩K = V (τ,K) (voir la remarque initiale 1.1.1).

Alors les intersections à étudier ont la forme voulue parce qu’on a mis sur K l’hypothèse
correspondante.

�

1.11 Lemme du voisinage. Soit Y un complexe simplicial, X un sous-complexe plein tel
que Y = V (X, Y ). On note ∂Y le sous-complexe de Y engendré par les sommets non dans

8



X. Si ρ est un simplexe de ∂Y on suppose que l’ensemble des sommets joignables à chaque
sommet de ρ engendre un simplexe σρ de X joignable à ρ. Enfin on suppose que tous les
voisinages de sommet V (s, Y ), avec s ∈ X, sont pleins dans Y .

Si X et les V (s,X) sont (ICV0) (resp. (ICV ), (ICV−1)) alors Y l’est aussi.

Démonstration
Notons d’abord que sous les hypothèses un sommet de Y non dans X est dans ∂Y .

D’autre part on voit que σρ = ∩s∈ρσs (intersection sur l’ensemble des sommets de ρ).

a) Supposons que X et les V (s,X) sont (ICV0), et montrons que Y est (ICV0) en s, t pour
s, t deux sommets quelconques (tels que s 6= t et V (s, Y ) ∩ V (t, Y ) 6= ∅).
- Supposons s lié à t, avec s (ou t) dans X. Alors le lemme de recouvrement 1.10 s’applique
à V (s, Y ) (ou V (t, Y )) en s, t.

- Supposons s dans X et t ∈ ∂Y avec t non lié à s. Alors ρ = V (s, Y ) ∩ V (t, Y ) ∩X est un
simplexe de X. En effet V (s, Y ) ∩ V (t, Y ) ∩X = V (s, Y ) ∩ σt, vide ou un simplexe comme
intersection d’un sous-complexe plein et d’un simplexe. Or V (s, Y ) ∩ V (t, Y ) est non vide.
Et si τ est un simplexe de V (s, Y ) ∩ V (t, Y ) ∩ ∂Y , alors tout sommet de σ{t,τ} est dans ρ,
car lié à t et lié dans στ à s. Dans tous les cas de figure ρ 6= ∅.

Montrons que V (s, Y )∩V (t, Y ) ⊂ St(ρ, Y ). Soit τ un simplexe de V (s, Y )∩V (t, Y )∩∂Y .
Comme nous l’avons vu ci-dessus il existe un sommet x ∈ ρ lié à t et τ . Comme V (x, Y )
a (ICV0), l’intersection V (s, V (x, Y )) ∩ V (t, V (x, Y )) est un simplexe, dans lequel τ est
joignable à ρ.

Maintenant fixons un sommet x quelconque de ρ. Alors V (s, Y )∩V (t, Y ) ⊂ V (x, Y ) et
le lemme de recouvrement s’applique à K = V (x, Y ) en s, t.

- Si s et t sont dans ∂Y et liés par une arête a, alors V (s, Y ) ∩ V (t, Y ) ∩X est le simplexe
σa. Soit τ un simplexe de V (s, Y ) ∩ V (t, Y ) ∩ ∂Y . Montrons d’abord que στ ∩ σa 6= ∅.

Pour cela considérons des sommets u ∈ σ{s,τ}, v ∈ σ{t,τ}, x ∈ σa. Alors s, t, u, v
sont dans V (x, Y ). Donc si t 6∈ V (u, Y ), alors par (ICV0) dans V (x, Y ) l’intersection
V (t, V (x, Y )) ∩ V (u, V (x, Y )) est un simplexe contenant s et v, donc s ∈ V (v, Y ). Il en
résulte que σ{s,τ} ∩ σt 6= ∅ ou σ{t,τ} ∩ σs 6= ∅ : finalement στ ∩ σa 6= ∅.

Soit alors ρ un simplexe de V (s, Y ) ∩ V (t, Y ), montrons que ρ est joignable à a. C’est
évident si ρ ⊂ X. Sinon soit τ la face de ρ opposée à ρ∩X, puis soit y un sommet du simplexe
στ ∩ σa. On a {s, ρ}, {t, ρ} ∈ V (y, Y ) (par plénitude), donc par (ICV0) dans V (y, Y ) nous
avons ρ joignable à a = {s, t} (dans V (y, Y )).

- Supposons pour finir que s et t sont dans ∂Y , non liés dans Y .
Supposons d’abord que l’intersection σ = σs ∩ σt est non vide. Montrons qu’alors

V (s, Y ) ∩ V (t, Y ) ⊂St(σ, Y ).
Soit donc τ un simplexe de V (s, Y )∩V (t, Y )∩∂Y . Soit x un sommet de σ{s,τ}. Si x est

lié à t, alors τ et σ sont deux simplexes de V (s, V (x, Y )) ∩ V (t, V (x, Y )). Donc par (ICV0)
dans V (x, Y ) nous avons τ joignable à σ. Si x n’est pas lié à t, nous avons vu ci-dessus que
V (x, Y ) ∩ V (t, Y ) est un simplexe, dans lequel on peut joindre τ à σ.

Soit maintenant x un quelconque sommet de σ : alors le lemme de recouvrement
s’applique en s, t avec K = V (x, Y ).

Finalement reste à traiter le cas où σs ∩ σt est vide. Soit u un sommet lié à s et t
(nécessairement u ∈ ∂Y ).
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Supposons que pour un autre sommet v de V (s, Y )∩V (t, Y ) il existe un sommet x de X
lié simultanément à s, u, v. Alors x n’est pas lié à t car σs ∩σt = ∅. Nous avons déjà montré
que V (x, Y ) ∩ V (t, Y ) est un simplexe. Or ce simplexe contient u, v, σ{u,t}, σ{v,t}. On en
déduit que σ{u,t} est joignable à v, donc est contenu dans σ{v,t}. Par symétrie on a en fait
σ{u,t} = σ{v,t}. Nous pouvons alors recommencer dans l’autre sens le raisonnement à partir
de n’importe quel sommet y de σ{u,t} = σ{v,t} : nous voyons que σ{u,s} = σ{v,s}. Evidem-
ment on obtient aussi les égalités σ{u,t} = σ{v,t}, σ{u,s} = σ{v,s} si on part de l’hypothèse
σ{u,t} ∩ σ{v,t} 6= ∅.

Supposons alors par l’absurde que v est un autre sommet de V (s, Y ) ∩ V (t, Y ) tel que
σ{u,s} ∩ σ{v,s} = ∅. D’après ce qui précède nous devons avoir aussi σ{u,t} ∩ σ{v,t} = ∅.
Choisissons des sommets x, x′, y, y′ dans σ{u,s}, σ{v,s}, σ{u,t}, σ{v,t}. Comme X est (ICV0)
ou bien x est lié à y′, ou bien x′ est lié à y. Supposons pour fixer les idées que {x, y′} est
une arête de X. Alors nous avons déjà vu que V (x, Y )∩V (t, Y ) est un simplexe, donc u est
lié à y′, qui est donc un sommet de σ{u,t} ∩ σ{v,t}, contradiction.

Ainsi le simplexe σ joint de σ{s,u} et de σ{t,u} est indépendant du sommet u de V (s, Y )∩
V (t, Y ). Il est alors immédiat que tout simplexe de V (s, Y ) ∩ V (t, Y ) est joignable à σ.
D’autre part, pour x ∈ σ{s,u} et y ∈ σ{t,u}, ou bien x (resp. y) est lié à t (resp. s), et alors
le lemme de recouvrement s’applique en s, t à K = V (x, Y ) (resp. K = V (y, Y )), ou bien
x n’est pas lié à t, y n’est pas lié à s, et alors V (s, Y ) ∩ V (t, Y ) = (V (s, Y ) ∩ V (y, Y )) ∩
(V (x, Y ) ∩ V (t, Y )). Or on a déjà montré que les deux facteurs sont des simplexes, ce qui
conclut.

b) Supposons maintenant que X et les V (s,X) sont (ICV ). D’après ce qui précède nous
savons déjà que Y est (ICV0). Montrons que Y est (ICV ) en s, a pour s un sommet et a =
{x, y} une arête quelconques (tels que s 6∈ V (a, Y ) et V (s, Y )∩V (a, Y ) 6= ∅). Nous poserons
τ(s, x) = V (s, Y ) ∩ V (x, Y ) et τ(s, y) = V (s, Y ) ∩ V (y, Y ). Au a) nous avons vu que ces
intersections sont le vide ou un simplexe. Par hypothèse V (s, Y )∩V (a, Y ) = τ(s, x)∪τ(s, y)
est non vide, donc l’une des deux intersections au moins est non vide. Nous nous servirons
librement de ces faits.

- Si s et a sont dans X alors nécessairement V (s, Y )∩V (a, Y ) ⊂ X. Sinon soit u un sommet
de V (s, Y ) ∩ V (a, Y ) ∩ ∂Y : alors u est lié à s et à un sommet de a, donc s et ce sommet
sont liés dans σu, absurde. Nous pouvons alors appliquer le lemme de recouvrement en s, a
avec K = X.

- Supposons s ∈ ∂Y, a ∈ X. Alors σ = V (s, Y ) ∩ V (a, Y ) ∩X est un simplexe.
En effet V (s, Y ) ∩ X = σs, et comme X est plein on a V (a, Y ) ∩ X = V (a,X), qui

est plein dans X (puisque X est (ICV0)) donc est aussi plein dans Y . Donc σ est vide ou
un simplexe. Mais σ = (τ(s, x) ∩X) ∪ (τ(s, y) ∩X), et au a) nous avons vu que τ(s, x) ∩
X, τ(s, y)∩X sont non vides dès que τ(s, x) ou τ(s, y) sont non vides. Donc σ est non vide
et c’est bien un simplexe.

En particulier τ(s, x)∩X et τ(s, y)∩X sont comparables. Supposons les notations telles
que τ(s, x)∩X est un simplexe et τ(s, y)∩X ⊂ τ(s, x)∩X. Alors le lemme de recouvrement
s’applique en s, a avec K = V (z, Y ) pour z sommet de σ (quelconque si τ(s, y) = ∅, pris
dans τ(s, y) sinon).

- Supposons s, x ∈ X et y ∈ ∂Y .
Si τ(s, y) = ∅ il n’y a rien à démontrer.
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Sinon, d’après a), τ(s, y) est un simplexe rencontrant X : soit z un sommet de τ(s, y)∩
X. Notons que z est lié à a dans le simplexe σy. Alors le lemme de recouvrement s’applique
en s, a avec K = V (z, Y ).
- Supposons x, y ∈ ∂Y .

Si τ(s, x) = ∅ ou τ(s, y) = ∅ il n’y a rien à démontrer.
Sinon, d’après a), τ(s, x) et τ(s, y) sont deux simplexes rencontrant X. Montrons que

τ(s, x) ∩ τ(s, y) ∩X est non vide.
Soit z un sommet de τ(s, x) ∩X. Si z est lié à y il n’y a rien à démontrer. Sinon soit

w un sommet de τ(s, y) ∩X.
Le sommet z ∈ X n’est pas lié à y : s’il n’était pas lié à w, par le cas précédent,

l’intersection V (z, Y )∩V ({w, y}, Y ) serait un simplexe, dans lequel s et x serait liés, absurde.
Donc z est lié à w. Alors par (ICV0) l’intersection V (z, y) ∩ V (y, Y ) est un simplexe dans
lequel w est lié à x. Ainsi on a w lié à s, y et x, donc dans ce cas aussi τ(s, x) ∩ τ(s, y) ∩X
est non vide.

Soit alors u un sommet quelconque de τ(s, x)∩ τ(s, y)∩X. Le lemme de recouvrement
s’applique en s, a avec K = V (u, Y ).

c) Supposons maintenant que X et les V (s,X) sont (ICV−1). D’après ce qui précède nous
savons déjà que Y est (ICV ). Montrons que Y est (ICV−1) en a, b pour a = {x, y}, b = {s, t}
des arêtes quelconques (tels que b ∩ V (a, Y ) = ∅ et V (a, Y ) ∩ V (b, Y ) 6= ∅). Nous poserons
τ(s, a) = V (s, Y ) ∩ V (a, Y ) et τ(t, a) = V (t, Y ) ∩ V (a, Y ). Au b) nous avons vu que ces
intersections sont le vide ou un simplexe. Par hypothèse V (a, Y )∩V (b, Y ) = τ(s, a)∪τ(t, a)
est non vide, donc l’une des deux intersections au moins est non vide.
- Supposons d’abord a, b ⊂ X. Nous avons vu au b) qu’alors τ(s, a), τ(t, a) ⊂ X. Donc le
lemme de recouvrement s’applique en a, b avec K = X.
- Supposons s ∈ X et t ∈ ∂Y . Nous avons vu au b) que τ(t, a) est un simplexe rencontrant
X : soit u l’un de ses sommets. Alors u est lié à s dans σt, donc u ∈ τ(s, a).

Comme nous l’avons vu au b), chacun des deux simplexes τ(s, a), τ(t, a) est joignable à
l’une des extrémités de a. Supposons les notations telles que τ(t, a) = V (t, Y ) ∩ V (x, Y ).

Si τ(s, a) = V (s, Y )∩V (x, Y ), alors V (a, Y )∩V (b, Y ) = V (b, Y )∩V (x, Y ), un simplexe
par (ICV ).

Sinon τ(s, a) = V (s, Y ) ∩ V (y, Y ), donc u est joignable à y. Alors le lemme de recou-
vrement s’applique en a, b avec K = V (u, Y ).
- Si τ(s, a) ou τ(t, a) sont vides il n’y a rien à démontrer. Sinon nous avons vu au a) et au
b) que les simplexes τ(s, a) et τ(t, a) rencontrent X. Montrons que τ(s, a)∩ τ(t, a)∩X 6= ∅.

Soit z un sommet de τ(s, a) ∩X. Si z est lié à t, alors z ∈ τ(s, a) ∩ τ(t, a) ∩X. Sinon
supposons les notations telles que x est lié à z. Soit w un sommet de τ(t, a) ∩X.

Nécessairement w est lié à s, donc τ(s, a) ∩ τ(t, a) ∩ X 6= ∅. Cela vient de (ICV0) si
w est lié à z (t et z sont supposés non liés, on considère le simplexe V (t, Y ) ∩ V (z, Y )), et
de (ICV ) si w lié à x (t n’est lié ni à z ni à x, on considère le simplexe V (t, Y ) ∩ V (z, Y )).
Noter que w doit être lié à z ou x, sinon l’intersection V ({z, x}, Y ) ∩ V ({w, t}, Y ) est d’un
type déjà étudié (si x, t ∈ X on est dans le premier cas particulier, sinon on est dans le
second). Donc cette intersection est un simplexe, dans lequel s est lié à y, contradiction.
Soit u un sommet de τ(s, a) ∩ τ(t, a) ∩X.

Supposons les notations telles que u et x sont liés. Si y n’est pas lié à u alors c’est à x
que les simplexes τ(s, a) et τ(t, a) sont joignables. Dans ce cas τ(s, a) = V (s, Y ) ∩ V (x, Y )
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et τ(t, a) = V (t, Y ) ∩ V (x, Y ) : donc V (b, Y ) ∩ V (a, Y ) = V (b, Y ) ∩ V (x, Y ), un simplexe
d’après (ICV ).

Si y est lié à u, alors le lemme de recouvrement s’applique en a, b avec K = V (u, Y ).
�

Remarque. Nous verrons à la section suivante qu’on a la même conclusion sans l’hypothèse
de plénitude des voisinages de sommets V (s, Y ) pour s ∈ X.

1.12 Définition. Un complexe a localement (ICV0) (resp. localement (ICV ), resp. lo-
calement (ICV−1)) si les étoiles de tous les sommets de X ont la propriété (ICV0) (resp.
(ICV ), resp. (ICV−1)).

Si X est (ICV0) (resp. (ICV ), resp. (ICV−1)), alors il l’est localement. En effet d’après
le lemme 1.4 les voisinages de sommet de X sont pleins, et d’après le lemme 1.7 les sous-
complexes pleins sont (ICV0) (resp. (ICV ), resp. (ICV−1)). Nous montrerons à la section
suivante que la réciproque est vraie si on suppose X simplement connexe (cf. théorème
2.7.5).

1.13 Lemme. Un voisinage de sommet (V, s) a (D) (resp. (ICV0), (ICV ), (ICV−1)) si et
seulement si ∂V a (D) (resp. (ICV0), (ICV ), (ICV−1)).

Démonstration
Le sens ⇒ vient du lemme 1.7 et de ce que ∂V est un sous-complexe plein.
Réciproquement supposons ∂V de drapeaux, alors V est de drapeaux. En effet soit K

un sous-graphe complet de V . Si s 6∈ SK alors K ⊂ ∂V , donc K engendre un simplexe
de ∂V . Sinon il existe un sous-graphe complet L de ∂V tel que SK = {v} t SL. Soit τ le
simplexe de ∂V engendré par L. Comme (V, s) est un voisinage de sommet τ est contenu
dans un simplexe σ tel que s ∈ σ. D’où K engendre bien un simplexe de V .

D’autre part tout n-cycle de V passant par s admet une corde. Donc si ∂V est sans
n-cycle alors V aussi est sans n-cycle. On conclut comme d’habitude avec 1.4 et 1.5 .

�

Ainsi le cône sur un complexe (ICV ) est encore (ICV ) : à l’aide de complexes de
groupes (ICV ) ceci permet de construire par récurrence des complexes (ICV ) de dimension
“homologique” arbitrairement grande, ce que nous ferons dans la deuxième partie de ce
travail.

1.14 Exemples, questions.
1) La première subdivision barycentrique d’un complexe simplicial quelconque est tou-

jours de drapeaux. Mais elle n’est presque jamais (ICV0). En effet, si deux triangles sont
adjacents par une arête dans le complexe de départ, alors l’intersection de l’étoile des centres
des triangles n’est pas un simplexe dans la première subdivision barycentrique. Le but initial
de ce travail était de construire des complexes (ICV0) de toute dimension. En dimension
deux il y a abondance de complexes ayant des intersections de voisinages convexes, comme
le montre la suite.

2) Considérons un complexe polygonal dont tous les polygones ont au moins cinq (resp
: six) côtés. Nous pouvons alors considérer le complexe triangulaire obtenu en rajoutant un
sommet au centre de chaque face polygonale, les triangles ayant pour sommet les centres
de faces et les extrémités d’une arête de la même face. Il est immédiat que les links des
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anciens sommets subissent une subdivision barycentrique, donc deviennent des graphes de
maille ≥ 6, i.e. des complexes de dimension 1 et (ICV ). D’autre part les links des centres
de faces sont des cercles de longueur k ≥ 5 (resp. ≥ 6). Donc le complexe triangulaire
obtenu est localement (ICV0) (resp. (ICV )). En imposant au moins sept côtés dans chaque
polygone et une maille ≥ 4 au link de chaque sommet, la subdivision triangulaire est même
localement (ICV−1). Il y a de nombreuses variations sur ce thème, par exemple concernant
certains complexes carrés.

3) Une triangulation d’une sphère de dimension deux ne peut jamais être (ICV ). En
effet la caractéristique d’Euler d’une surface triangulée dont les sommets sont de degré ≥ 6
est toujours ≤ 0. En revanche on peut fabriquer beaucoup de triangulations de S2 qui sont
(ICV0) (la plus petite d’entre elle étant l’icosaèdre).

On déduit de ce qui précède qu’une triangulation d’une variété de dimension n, avec
n ≥ 3, n’est jamais (ICV ) (considérer le link d’un simplexe de codimension 3).

D’après un argument de Vinberg [V], cité dans [J-S], dans toute sphère de dimension
≥ 4, il existe un simplexe de codimension 2 dont le link est un cycle de longueur 3 ou 4.
Donc aucune triangulation d’une telle sphère n’est (ICV0), et aucune variété de dimension
≥ 5 n’admet de triangulation (ICV0).

Questions : quelles variétés de dimension 3 ou 4 admettent une triangulation (ICV0) ?
plus généralement quels complexes simpliciaux admettent des triangulations “équivalentes”
et (ICV0) ? comment supprimer les carrés d’un complexe de drapeaux de dimension 2 ?

4) Les exemples (ICV ) (resp. (ICV−1) de dimension 2 sont géométrisables : le complexe
simplicial Riemannien obtenu en rendant chaque triangle isométrique à un même triangle
euclidien équilatéral (resp. hyperbolique régulier d’angle 2π

7 ) est à courbure ≤ 0 (resp.
≤ −1).

Soit X un complexe simplicial compact, connexe, localement (ICV ). Considérons sur (la
réalisation géométrique de) X la distance de longueur naturelle, i.e. celle rendant chaque
simplexe euclidien, équilatéral et d’arête 1. Pour chaque simplexe σ de X, notons δσ le sup
des entiers d tels que toute lacet combinatoire de Lk(σ,X) de longueur ≤ d est homotope à
0 dans Lk(σ,X). Il est vraissemblable que si δ = infσ δσ est assez grand, alors la distance
de longueur naturelle est à courbure ≤ 0.

Cependant nous allons voir que tous les complexes simpliciaux (ICV ) de dimension > 2 ne
sont pas géométrisables.

Considérons le pavage du plan euclidien E2 par triangles équilatéraux. Fixons un tri-
angle τ de ce pavage. Considérons les vecteurs ~u,~v, ~w liant un sommet de τ au milieu du
côté opposé ; leur somme est nulle. Soit Λ le sous-groupe d’isométries de E2 engendré par
les translations de vecteurs 6~u, 6~v, 6~w. Alors Λ conserve le pavage équilatéral. De plus Λ
est distingué dans le groupe d’automorphismes de ce pavage. Le tore quotient T = E2/Λ
est alors muni d’une structure simpliciale dont le groupe d’automorphismes est simplement
transitif sur les triangles ordonnés.

La distance de translation combinatoire de Λ agissant sur le pavage est 6.
Donc T est (ICV ).
Nous montrerons dans la deuxième partie de ce travail qu’il existe un et un seul complexe

simplicial X de dimension 3 connexe, simplement connexe, dont le link en tout point est
isomorphe à T , et que ce complexe a un groupe d’automorphismes simplement transitif sur
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les 3-simplexes ordonnés. Le complexe X est localement (ICV ) et simplement connexe,
donc d’après le théorème 2.7.5 ci-dessous :

X est (ICV ).
Pourtant :
X n’admet pas de structure métrique CAT (0) invariante par Aut(X) telle que tout

simplexe est à courbure constante.
En effet une telle métrique sur X donnerait des links de sommets isométriques à une

copie de T dans laquelle chaque triangle est sphérique régulier d’arête π
3 . Dans un tel

triangle sphérique la fonction distance d’un point sur un côté au sommet opposé à ce côté
est convexe, en particulier la distance d d’un sommet au milieu du côté opposé est < π

3 (un
calcul élémentaire dans le tétraèdre régulier donne la valeur exacte : 1

2 (π−arccos 1
3 )). Alors

l’image dans T d’une droite de E2 portée par une hauteur d’un triangle du pavage est une
géodésique locale de T non homotope à 0 et de longueur 6d < 2π. Donc les links de X ne
sont pas CAT (1), contradiction.
Pour construire X, nous utiliserons un simplexe de groupes, dont nous montrerons qu’il
est développable - bien que d’après ce qui précède il ne soit pas à courbure négative ou
nulle. Nous aurons donc besoin de savoir développer des simplexes de groupes (ICV )
indépendamment du théorème de Haefliger [B-H] : c’est le résultat principal de la deuxième
partie, dont nous tirerons toutes nos exemples de groupes hyperboliques de dimension co-
homologique virtuelle arbitrairement grande.
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2. Extensions convexes de complexes à bord.

Sous l’hypothèse qu’un complexe simplicial a (ICV ), nous allons montrer qu’on peut décrire
simplement une boule du revêtement universel, en fonction de la boule concentrique de rayon
un de moins, et des voisinages de sommets du bord. Nous étudions en fait une situation un
peu plus générale.

2.1 Définition (complexes à bord, complexes saillants).
Soit X un complexe simplicial.

Un bord de X est le vide ou un sous-complexe plein de X. Un complexe à bord est
une paire (X, D(X)), où X est un complexe simplicial et D(X) est un bord de X. On note
alors Int(X) l’union des simplexes de X ne touchant pas D(X) ; Int(X) est le vide ou un
sous-complexe plein de X appelé l’intérieur de X.

Nous dirons que le complexe à bord est saillant si on suppose que pour tout s ∈ D(X)
l’intersection V (s,X)∩Int(X) est un simplexe σs, avec V (s,X) = V (σs, V (s,X)) (en parti-
culier Int(X) est non vide).

2.1.1 Exemples.
1) Pour tout sous-complexe Y de Z, la paire (V (Y, Z), ∂V (Y, Z)) est un complexe à bord,
d’intérieur le sous-complexe engendré par SY .

Les complexes à bord (V (s, Z), ∂V (s, Z)) = (St(s, Z),Lk(s, Z)) sont toujours saillants
(si {s, t} est une arête alors V (s, V (t,X)) = V (t, V (s,X)) =St({s, t}, X)).
2) Soit Z un complexe simplicial, X un sous-complexe de Z. Si X = Z posons DZ(X) = ∅,
sinon soit DZ(X) le sous-complexe plein de X engendré par les s ∈ SX tels que V (s, Z) 6⊂ X.
Dans ce cas Int(X) (noté IntZ(X) si des confusions sont possibles) est le sous-complexe de
X engendré par les sommets de X topologiquement intérieurs.

Attention, DZ(X) cöıncide avec la frontière topologique FrZ(X) de X si et seulement
si FrZ(X) est un sous-complexe plein de X (ce qui n’est pas toujours le cas : prendre pour
X un simplexe maximal de Z).
3) L’inclusion DZ(V (Y, Z)) ⊂ ∂V (Y,Z) est immédiate, mais on n’a pas toujours égalité :
par exemple, pour un sommet s, il peut y avoir dans Lk(s, Z) un sommet intérieur à V (s, Z).

2.1.2 Définition. Soit Z un complexe simplicial, X un sous-complexe et D(X) un bord
sur X. Nous dirons que (X, D(X)) est un sous-complexe à bord (resp. un sous-complexe
à bord saillant) lorsque DZ(X) ⊂ D(X) (resp. lorsque X est un sous-complexe à bord et
(X, D(X)) est saillant). Pour abréger, nous dirons que X est un sous-complexe à bord (resp.
un sous-complexe saillant) si (X, DZ(X)) l’est.

Par exemple si Z est un pavage du plan hyperbolique par des triangles d’angles au sommet
≥ π

7 , les sous-complexes saillants de Z sont les unions X de triangles telles que tout sommet
du bord de X est contenu dans deux ou trois triangles consécutivement adjacents. Par
exemple les voisinages de sommets, d’arêtes ou de triangles sont saillants.

2.1.3 Lemme. Soit Z un complexe simplicial et Y un sous-complexe de Z tel que Z est de
drapeaux au voisinage de Y , i.e. tout sous-graphe complet de Z rencontrant Y engendre un
simplexe de Z. Supposons que Y est un simplexe, ou plus généralement que SY est convexe
dans Z. Alors (V (Y, Z), ∂V (Y,Z)) est saillant.

Démonstration
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Soit s un sommet de ∂V (Y, Z). Le lecteur vérifiera sans aucune hypothèse sur Y ou
Z que l’intersection V (s, V (Y, Z)) ∩ Y est un sous-complexe Σ tel que V (s, V (Y,Z)) =
V (Σ, V (s, V (Y,Z))) (en notant Y le sous-complexe engendré par SY ; attention, V (Y,Z)
n’est pas le sous-complexe engendré par l’ensemble des sommets à distance ≤ 1 de SY ).
Alors (V (Y, Z), ∂V (Y, Z)) est saillant lorsque Σ est un simplexe quel que soit s.

Supposons donc SY convexe et Z de drapeaux au voisinage de Y . Alors pour que Σ
soit un simplexe il suffit que deux sommets t, u de V (s, V (Y,Z)) ∩ Y soient toujours égaux
ou liés dans Z. Or pour deux tels sommets (t, s, u) est un chemin entre deux sommets de
Y , dont le sommet intermédiaire s n’est pas dans Y . Par convexité de SY ce chemin n’est
pas une géodésique, donc d(t, u) ≤ 1, ce qui conclut.

�

Par exemple pour tout simplexe σ d’un complexe de drapeaux Z, le complexe à bord
(V (σ,Z), ∂V (σ,Z)) est saillant (l’hypothèse “Z de drapeaux” est indispensable : prendre
pour Z le bord d’un triangle).

2.2 Définition (données d’extension). Soit (X, D(X)) un complexe à bord.

Soit pour tout sommet s de D(X) un voisinage de sommet (Vs, s) (donc Vs est un
complexe contenant s tel que Vs = V (s, Vs)) et un plongement simplicial fs de la paire
(St(s,X), s) dans (Vs, s). Dans la suite, nous noterons Vs,X le sous-complexe fs(St(s,X))
de Vs.

Soit pour toute arête orientée ~a de D(X) d’origine s et d’extrémité t un isomorphisme
f~a de St(fs(a), Vs) (noté Vs,a dans la suite) sur St(ft(a), Vt).

D’une part on suppose que f~a ◦ fs = ft sur St(a,X).
D’autre part, on demande que f~a ◦ f

~a
=id, et si τ est un simplexe de dimension 2 de

D(X) de sommets s, t, u, et si on note ~a,~b,~c les arêtes orientées (s, t), (t, u), (u, s), alors
f~c ◦ f~b ◦ f~a vaut l’identité sur St(fs(τ), Vs) (condition de cocycle).

L’ensemble des voisinages de sommets (Vs, s) et des morphismes fs, f~a forment des
données d’extension de (X, D(X)). Nous dirons que ces données d’extension sont saillantes
si (X, D(X)) est saillant et que pour tout s ∈ D(X), on a Vs,X = V (σ′s, Vs), où l’on a
posé σ′s = fs(σs). Nous dirons que les données d’extension ont la propriété (ICV ) (resp.
(ICV−1)) si X et les Vs ont tous la propriété (ICV ) (resp. (ICV−1)).

2.2.1 Exemple : données d’extension associées à un sous-complexe.
Soit Z un complexe simplicial, X un sous-complexe de Z. Soit D(X) un bord sur X.

Pour tout s ∈ D(X) on pose Vs = V (s, Z) et on note fs l’inclusion canonique de V (s,X)
dans V (s, Z). Enfin pour toute arête orientée ~a = (s, t) de D(X) on note f~a l’identité de
St(a, Z) =St(a, Vs) dans St(a, Z) =St(a, Vt).

Les axiomes des données d’extension sont clairement remplis.
On obtient ainsi des données d’extension saillantes lorsque le complexe à bord (X, D(X))

est saillant, et DZ(X) ⊂ D(X), autrement dit Int(X) est contenu dans l’intérieur topologi-
que de X. En effet la seconde condition assure que tout simplexe de Z touchant un simplexe
σs (de Int(X)) est un simplexe de X, ce qui donne la condition Vs,X = V (σ′s, Vs).
2.2.2 Remarque (plénitudes).

Supposons les données d’extension (ICV ). Alors d’après le lemme 1.4 les sous-com-
plexes Vs,X sont pleins dans Vs, puisque Vs est (ICV ) et que par hypothèse Vs,X est le voisi-
nage d’un simplexe. Si a = {s, t} est une arête de D(X), alors nous avons Vs,a =St(fs(a), Vs)
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= V (fs(t), Vs) (car tout simplexe de Vs est joignable à s), donc Vs,a est également plein dans
Vs. De même, les sous-complexes St(s,X) sont pleins dans X.

On veut recoller des données d’extension de manière à obtenir un complexe simplicial Y qui
contient X et les Vs, et en est la réunion. De plus on voudrait que Y reste (ICV ) lorsque
X est (ICV ). Enfin on aimerait pouvoir recommencer une extension sur la paire (Y,D(Y ))
telle que Int(Y ) = X.

2.3 Le complexe Y associé à des données d’extension saillantes (ICV )
Dans tout le reste de section 2. nous supposons que (X, D(X)) est un complexe à bord
saillant muni de données d’extension saillantes et (ICV ).
2.3.1 Sommets de Y .

Soit ∼ la relation d’équivalence sur S = SX t (ts∈SD(X)SVs) engendrée par les relations
réflexives, symétriques suivantes ∼rad (rad pour radiale) et ∼tang (tang pour tangentielle) :

p ∼rad q ⇐⇒ p = q ou (∃s ∈ SD(X)/p ∈ V (s,X), q ∈ Vs et q = fs(p)) ou (∃s ∈
SD(X)/q ∈ V (s,X), p ∈ Vs et p = fs(q)) ;

p ∼tang q ⇐⇒ p = q ou ∃ une arête a de D(X) d’extrémités s, t, telle que p ∈ Vs,a, q ∈
Vt,a et q = f(s,t)(p).

Pour x ∈ S, nous noterons O(x) l’orbite de x sous ∼.

2.3.2 Définition de Y . Posons SY = S/ ∼ ; soit π : S → SY la surjection canonique.
Un ensemble de sommets T ⊂ SY est un simplexe de Y si et seulement si il existe σ un
simplexe de X ou de l’un des Vs (s ∈ SD(X)) tel que T = π(Sσ). Nous noterons encore π le
morphisme de l’union disjointe X t (ts∈SD(X)Vs) sur Y qui se déduit de π : S → SY .

Lorsque D(X) = ∅ on a Y = X, et tout ce qui suit jusqu’à la section 2.5 incluse est
trivial.

2.3.3 Lemme.
1) Soit p ∈ SX . Alors O(p) ∩X = {p} ; pour s ∈ SD(X) contenu dans St(p, X), on a

O(p) ∩ Vs = {fs(p)}, et pour s ∈ SD(X) non dans St(p,X), on a O(p) ∩ Vs = ∅.
2) Soit p ∈ Vs, p 6∈ Vs,X . Alors O(p) ∩X = ∅, O(p) ∩ Vs = {p} et il existe un simplexe

σp ⊂ D(X) contenant s, tel que :

i) p ∈St(fs(σp), Vs) ,

ii) pour tout t ∈ Sσp
, t 6= s on a O(p) ∩ Vt = {f(s,t)(p)} et enfin :

iii) pour tout t ∈ SD(X) \ Sσp on a O(p) ∩ Vt = ∅.
Pour q ∼ p il existe un certain t ∈ σp tel que q ∈ Vt, q 6∈ Vt,X ; de plus σq = σp.

Démonstration
1) Soit p′ ∈ S tel que p′ ∼ p. Donc il existe une châıne de p à p′, i.e. une suite

(p0, p1, · · · , pn) de S avec p0 = p, pn = p′ et pour tout 0 ≤ i ≤ n − 1, pi+1 ∼rad pi ou
pi+1 ∼tang pi ; choisissons une telle suite avec n minimal. En particulier les pi sont deux à
deux distincts.

Montrons qu’il n’apparâıt aucune équivalence tangentielle. S’il y en a une soit i le plus
petit indice tel que pi+1 ∼tang pi ; soit alors s ∈ D(X) tel que pi ∈ Vs. Comme p0 ∈ SX , on
doit avoir i > 0 et comme pi 6= pi−1 on a pi ∼rad pi−1, avec pi−1 ∈St(s,X) et pi = fs(pi−1).

On a pi+1 = f(s,t)(pi) et pi = fs(pi−1), donc pi+1 = ft(pi−1). Alors la nouvelle châıne
de p à p′ (p0, p1, · · · , pi, pi+1, · · · , pn) est de longueur n− 1, contradiction.

17



Nous pouvons maintenant voir que n = 0 ou 1. En effet si une châıne d’équivalences
élémentaires radiales est de longueur n ≥ 2, alors ses trois premiers points p0, p1, p2 ne sont
pas distincts.

Nous obtenons donc la description de l’orbite O(p) annoncée. Le cas n = 0 correspond
à p′ ∈ X (p′ = p), le cas n = 1 correspond à p′ ∈ Vs pour s un sommet de D(X) lié à p,
avec p′ = fs(p).

2) Le fait que O(p)∩X = ∅ découle de 1) et de p ∈ Vs \Vs,X . En particulier pour toute
suite (p0, p1, · · · , pn) de S avec p0 = p, telle que pour tout 0 ≤ i ≤ n − 1, pi+1 et pi sont
élémentairement équivalents, on a pi+1 ∼tang pi, avec pj ∈ Vsj

et pj ∈ Vsj
\ Vsj ,X pour tout

0 ≤ j ≤ n.
Comme Vs est (ICV ) et p 6∈ Vs,X = V (σ′s, Vs), l’intersection V (p, Vs) ∩ Vs,X est un

simplexe σ′p contenant s (cf. lemme 1.8).
Considérons donc le simplexe σp = f−1

s (σ′p), qui contient s.
Montrons d’abord que σp est contenu dans D(X). Puisque D(X) est plein, il suffit de

voir que les sommets de σp sont dans D(X). Soit q ∈ Vs,X lié à p : alors q 6∈ σ′s, sinon
p ∈ V (σ′s, Vs) = Vs,X . Or σ′s est l’image par fs de σs =Int(X)∩St(s,X). On a donc bien
f−1

s (q) ∈ D(X).
Soit maintenant q ∈ Vt un sommet tangentiellement équivalent à p (avec q 6= p) :

donc (s, t) est une arête orientée ~a de D(X), et si on pose t′ = fs(t), s′ = ft(s) on a
p ∈ Vs,a =St({s, t′}, Vs), q ∈ Vt,a =St({s′, t}, Vt) et q = f~a(p). On a aussi {s, t′} ⊂ σ′p et
{s′, t} ⊂ σ′q.

L’application f~a réalise un isomorphisme de (Vs,a, p) sur (Vt,a, q) envoyant Vs,a ∩ Vs,X

dans Vt,a ∩Vt,X (par f~a ◦ fs = ft). Alors f~a envoie σ′p sur un simplexe de Vt,X lié à q (σ′p est
joignable à p dans Vs,a) : donc f~a(σ′p) ⊂ σ′q. On a de même f

~a
(σ′q) ⊂ σ′p, d’où f~a(σ′p) = σ′q

et donc σp = σq.
Soit (p0, p1, · · · , pn) une suite de S avec p0 = p, telle que pour tout 0 ≤ i ≤ n− 1, pi+1 et pi

sont élémentairement équivalents. D’après ce qui précède tous les simplexes σpi
sont égaux

à σp, et les si tels que pi ∈ Vsi
sont des sommets de σp.

Supposons n ≥ 2. Alors p0 et p2 sont tangentiellement équivalents. Car si s0, s1, s2 sont
deux à deux distincts ils engendrent un 2-simplexe de σp, donc de D(X). Alors la relation de
cocycle donne p0 ∼t p2. Et si (s0, s1, s2) est un aller-retour, la relation f(s0,s1) ◦ f(s1,s0) =id
donne p2 = p0.

En considérant une châıne minimale, on voit donc que pour tout q équivalent à p, q 6= p,
on a q ∼tang p et q = f~a(p) avec a ⊂ σp, p ∈ a. Ceci achève la description de l’orbite de p.

�

D’après ce qui précède, la restriction de π : S → SY à SX et à SVs
est injective. Elle induit

un plongement de X et des Vs. A partir de maintenant nous identifierons X à son image
π(X) dans Y , ainsi que Vs à π(Vs).

2.3.4 Lemme.
1) X et les Vs sont des sous-complexes pleins de Y .

2) (combinatoire des morceaux de Y ) Pour tout s ∈ D(X) on a Vs∩X =St(s,X) = Vs,X .
Pour s, t ∈ D(X) distincts, ou bien s et t ne sont pas liés dans X, alors Vs∩Vt ⊂ X, ou bien
s et t sont les extrémités d’une arête a de X, et alors a ∈ D(X) et Vs ∩ Vt = Vs,a = Vt,a.

Démonstration
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0) Nous commençons par établir l’affirmation 2) pour les ensembles de sommets des sous-
complexes concernés.
Soit v un sommet de Y dans Vs∩X pour un certain s ∈ D(X). D’après le 1) du lemme 2.3.3,
nous avons v = {p, fs1(p), · · · , fsk

(p)}, avec p ∈ X et s1, · · · , sk les sommets de D(X) liés à p.
Puisque O(p)∩Vs 6= ∅, le sommet s est l’un des si. Donc p est lié à s et v(= π(p))∈St(s,X).

L’inclusion réciproque SSt(s,X) ⊂ Vs ∩X étant évidente, nous avons SSt(s,X) = SVs∩X .
D’autre part on a clairement π(St(s,X)) = π(Vs,X).

Soit v un sommet de Y dans Vs ∩ Vt pour s, t ∈ D(X), s 6= t.
Supposons d’abord s et t non liés dans X. D’après le lemme 2.3.3, un sommet p de Vs

non dans Vs,X ne peut être équivalent à aucun sommet de Vt. Donc p ∈ Vs∩X et finalement
v ∈ X. On a bien dans ce cas SVs∩Vt

⊂ SX .
Supposons maintenant que s et t sont les extrémités d’une arête a de X. Comme D(X)

est plein, s et t sont liés dans D(X). Soit v un sommet de Vs ∩ Vt. Soit p le représentant de
v dans SVs , q son représentant dans SVt .

Si v ∈ X il existe d’après le lemme 2.3.3 un sommet u de X lié à s et t tel que π(u) = v,
fs(u) = p et ft(u) = q. Puisque X est de drapeaux, u ∈St(a,X). Donc p ∈St(fs(a), Vs) =
Vs,a.

Si v 6∈ X alors p et q sont tangentiellement équivalents d’après le lemme 2.3.3, donc
p ∈St(fs(a), Vs) = Vs,a.

L’égalité et l’inclusion suivantes de sous-complexes sont évidentes : Vs,a = Vt,a ⊂ Vs∩Vt.
On obtient donc l’égalité pour les ensembles de sommets.

1) Comme X et les Vs sont de drapeaux, il suffit de montrer que pour toute arête a de Y
d’extrémités dans X (resp. Vs), on a en fait a contenue dans X (resp. Vs).

Supposons d’abord a = {v, w} avec v, w dans SX . Il existe une arête b de X ou de l’un
des Vs telle que π(b) = a. Si b est une arête de X il n’y a rien à montrer.

Sinon b est une arête d’un Vs, dont les extrémités sont équivalentes à des sommets de
X, donc dans St(s,X) = Vs,X d’après 0). Le sous-complexe Vs,X est plein (cf. Remarque
2.2.2), donc en fait b est une arête de Vs,X . Alors π(f−1

s (b)) = π(b) = a et a est une arête
de X.

Supposons maintenant que a = {v, w} avec v, w dans SVs
pour un certain s ∈ D(X).

Soit b une arête de X ou de l’un des Vt telle que π(b) = a.
Il n’y a rien à faire si b est dans Vs.
Supposons d’abord que les extrémités de a sont dans X. Alors puisque X est plein dans

Y , il existe une arête b′ de X telle que π(b′) = a. Les sommets de a sont dans X ∩ Vs, donc
dans St(s,X). Mais St(s,X) est plein dans X (cf. Remarque 2.2.2) : donc dans ce cas b′

est une arête de St(s,X). Alors fs(b′) est une arête de Vs d’image par π égale à a.
Supposons alors que b est une arête de Vt, avec t ∈ D(X), t 6= s, et v 6∈ X. Puisque

b a une extrémité équivalente à un sommet de Vs non dans Vs,X , le lemme 2.3.3 assure
que c = {s, t} est une arête de D(X). Les sommets de π(b) sont dans Vs ∩ Vt, donc dans
Vs,c = Vt,c d’après 0). Comme Vt,c est plein dans Vt (cf. Remarque 2.2.2), b est une arête
de Vt,c et l’arête b′ = f(t,s)(b) de Vs vérifie π(b′) = a.

2) Pour achever la preuve de cette affirmation, il suffit compte-tenu de 0) de montrer que
tous les membres des égalités ou inclusions sont pleins dans Y .

D’après 1) Vs et X sont pleins : donc Vs ∩X l’est aussi. D’autre part St(s,X) est plein
dans X, qui est plein dans Y : donc St(s,X) est plein dans Y .
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Puisque Vs et Vt sont pleins, l’intersection Vs ∩Vt l’est aussi. Lorsque s et t ne sont pas
liés, tous les sommets de Vs ∩ Vt sont dans X : mais X est plein, donc tous les simplexes de
Vs ∩ Vt sont aussi dans X.

Lorsque s et t sont liés par une arête a, on a Vs,a plein dans Vs, qui est plein dans Y .
Donc Vs,a est plein dans Y . Ce qui conclut.

�

A partir de maintenant on note D(Y ) le vide ou le sous-complexe plein de Y engendré
par les sommets de SY \ SX . Puisque X est plein dans Y , on a alors Int(Y ) = X. Notons
qu’on a D(Y ) = ∅ lorsque pour tout s ∈ D(X) l’inclusion Vs,X ⊂ Vs est une égalité.

2.3.5 Lemme. Soit v un sommet de Y .

Si v ∈Int(X) alors V (v, Y ) = V (v,X). Si v = s ∈ D(X) alors V (v, Y ) = Vs. Enfin
si v = p ∈ D(Y ), alors il existe un simplexe σp de D(X) tel que V (v, Y ) ∩ X = σp et
V (v, Y ) =

⋃
s∈Sσp

V (v, Vs). Si ρ est un simplexe de D(Y ) alors l’ensemble des sommets s

joignables à chaque sommet de ρ engendre un simplexe σρ de D(X) joignable à ρ.

Le complexe à bord (Y,D(Y )) est saillant.

Démonstration
Supposons d’abord v ∈ Int(X). Alors V (v, Y ) ⊂ X.
Montrons d’abord l’inclusion des ensembles de sommets. Soit v′ un sommet de Y lié à

v : vérifions que v′ ∈ X. Par définition des arêtes de Y il existe une arête a de X ou de
l’un des Vs telle que les extrémités de a sont {v, v′}. Si a est dans X il n’y a rien à montrer.
Sinon a est dans un Vs (s ∈ D(X)) et par définition a touche le simplexe σ′s. Donc a est
dans V (σ′s, Vs) = Vs,X = X ∩ Vs.

Comme X est plein dans Y , on a en fait V (v, Y ) = V (v,X).
Soit maintenant s ∈ D(X). Montrons d’abord SV (s,Y ) ⊂ SVs

. Soit a une arête de Y
contenant s : montrons que sa deuxième extrémité est dans Vs.

Si a est dans X, alors les extrémités de a sont dans St(s,X) = Vs,X ⊂ Vs. Si a est
dans Vs, il n’y a rien à dire. Et si a est dans Vt, avec t 6= s, on a donc s ∈ Vt, a est une
arête de V (s, Vt) ; or V (s, Vt) =St({s, t}, Vt). Puisque s ∈ Vt, on a s et t liés dans X, donc
V (s, Vt) =St({s, t}, Vt) = Vt,{s,t} = Vt ∩ Vs. Ainsi a est bien une arête de Vs.

Puisque Vs est plein, on a en fait V (s, Y ) ⊂ Vs. L’inclusion réciproque étant immédiate,
on a en fait l’égalité V (s, Y ) = Vs.

Soit enfin p un sommet de D(Y ). Donc p est dans un Vs, mais pas dans X. Montrons
qu’alors on a V (p, Y ) =

⋃
t∈σp

V (p, Vt) et V (p, Y ) ∩X = σp (avec σp le simplexe de D(X)
défini au lemme 2.3.3 comme l’intersection V (p, Vs) ∩ Vs,X).

Soit τ un simplexe de Y contenant p. Comme p 6∈ X, on a τ est contenu dans l’un
des Vt, t ∈ D(X). Montrons que t ∈ σp. Si t = s il n’y a rien à démontrer. Sinon on a
p ∈ Vs∩Vt, donc Vs∩Vt 6⊂ X, d’où s et t sont liés. Alors, d’après le lemme 2.3.3, σp contient
l’arête {s, t}, donc le sommet t.

Ce qui précède montre l’inclusion V (p, Y ) ⊂
⋃

t∈σp
V (p, Vt). Mais l’inclusion inverse

est évidente. Au passage on voit que V (p, Y ) = V (σp, V (p, Y )) (on vient de montrer ⊂,
l’inclusion inverse est évidente).

Maintenant V (p, Y ) ∩ X =
⋃

s∈σp
V (p, Vs) ∩ X =

⋃
s∈σp

V (p, Vs) ∩ Vs,X . Or pour
p ∈ Vs, q ∈ Vt avec p ∼ q et p 6∈ Vs,X on a d’après le lemme 2.3.3 σp = σq. Donc toutes
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les intersections V (p, Vs)∩ Vs,X valent σp, et V (p, Y )∩X = σp. Compte-tenu de la relation
V (p, Y ) = V (σp, V (p, Y )), cela montre que (Y, D(Y )) est un complexe à bord saillant.

Enfin soit ρ un simplexe de D(Y ). Posons σρ =
⋂

p∈Sρ
σp. Alors un sommet s de

X est joignable à tous les sommets de ρ si et seulement si c’est un sommet de σρ. Or σρ

est une intersection de simplexes, donc est vide ou un simplexe. Mais le premier cas est à
exclure, puisque ρ est contenu dans au moins un Vs. Si on fixe un sommet s0 de σρ, on a
Sρ ∪ Sσρ ⊂ Vs0 et Sρ ∪ Sσρ engendrent un graphe complet de Vs0 par plénitude, donc un
simplexe puisque Vs0 est de drapeaux.

�

2.4 Théorème. (Y, D(Y )) est un complexe à bord saillant tel que Y a (ICV ). Si les
données d’extension sont (ICV−1) alors Y a (ICV−1).

Démonstration
Par hypothèse X est (ICV ). Par construction de Y , X est plein dans Y . D’après le

lemme 2.3.5 pour tout simplexe ρ de D(Y ) l’ensemble des sommets s joignables à chaque
sommet de ρ engendre un simplexe σρ de D(X) joignable à ρ. Et par ce même lemme
les sous-complexes V (s, Y ) pour s ∈ X sont tous (ICV ). Nous pouvons donc appliquer le
lemme du voisinage 1.11. On raisonne de même dans le cas (ICV−1).

�

Commentaire. Pour montrer que (Y, D(Y )) est saillant et que Y a (ICV0) nous avons
besoin que (X, D(X)) soit saillant et que les données d’extension soient (ICV ) (et non
seulement (ICV0)). Par exemple soit X l’union des triangles de l’icosaèdre I ne touchant
pas un triangle τ0 fixé et soit D(X) la frontière topologique de X dans I. Alors X est
(ICV0) (sous-complexe plein de I) et (X, D(X)) est saillant. Les données d’extension de X
associées à l’inclusion X ⊂ I sont saillantes. Dans ce cas Y = I \ τ0 et D(Y ) est le bord de
τ0 : donc (Y, D(Y )) n’est pas saillant et Y n’est pas de drapeaux (donc pas (ICV0)).

2.5 Lemme. X est un rétract par déformation de Y .

Démonstration
Commençons par subdiviser Y . Soit Z le complexe simplicial dont l’ensemble des

sommets est l’union de l’ensemble des sommets de X et de l’ensemble des simplexes de
D(Y ), avec {v1, · · · , vp, τ1, · · · , τq} engendre un simplexe de Z ⇐⇒ les sommets v1, · · · , vp

engendrent un simplexe σ de X, la famille {τ1, · · · , τq} de simplexes de D(Y ) est totalement
ordonnée par inclusion et, si q > 0, son plus grand élément est joignable à un simplexe σ′ de
D(X) contenant σ. Autrement dit, Z est la plus grossière subdivision de Y induisant sur
D(Y ) la première subdivision barycentrique.

Pour tout simplexe τ de D(Y ), choisissons un sommet ρ(τ) dans στ (le simplexe défini
au lemme 2.3.5).

Soit n la dimension de Y et, pour −1 ≤ i ≤ n, soit Zi le sous-complexe plein de Z
engendré par les sommets de X et les simplexes de D(Y ) de dimension ≤ i. Ainsi nous
avons Zn = Z et Z−1 = X. Pour 0 ≤ i ≤ n, définissons ρi : SZi → SZi−1 par ρi =id sur
SZi−1 et ρi(τ) = ρ(τ) pour τ un simplexe de D(Y ) de dimension i. Montrons que ρi est
simpliciale de Zi dans Zi−1.

Si σ est un simplexe non dans Zi−1 de dimension > 0, c’est le joint d’un simplexe σ− de
Zi−1 et d’un simplexe τ de D(Y ) de dimension i. Si σ1 = σ− ∩X et σ2 = σ− ∩D(Y )′, alors
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σ2 = {τ1 < · · · < τq}, avec τq ⊂ τ et τ est joignable à un simplexe σ′1 de D(X) contenant
σ1. Nous avons στ ⊂ στq

⊂ · · · ⊂ στ1 . Comme d’autre part τ est joignable à σ′1, a fortiori τ
est joignable à σ1, donc σ1 ⊂ στ . Alors ρi(σ)∩ SX est un simplexe contenant σ1 et contenu
dans στ . Tandis que ρi(σ)∩SD(Y )′ = σ2, et τq, le simplexe maximal de σ2, est de dimension
< i, joignable à στ puisque στ ⊂ στq . Finalement ρi(σ) engendre bien un simplexe de Zi−1

- ce qui achève de montrer que ρi est simpliciale.
Posons ρ = ρ0 ◦ · · · ◦ ρn. C’est une rétraction simpliciale de Z sur X.
Remarquons enfin que, d’après ce qui précède, pour tout simplexe σ de Zi, on a σ∪ρi(σ)

contenu dans un simplexe de Zi (par exemple σ si σ est dans Zi−1, ou le joint du simplexe
τ1 < · · · < τq < τ de D(Y )′ avec le simplexe στ de D(X) dans le deuxième cas). Donc
pour tout point y de la réalisation géométrique de Y et tout t ∈ [0, 1] le barycentre ρt

i(y) =
tρi(y) + (1− t)y est bien défini. On obtient ainsi une homotopie entre ρi et l’identité de Zi,
stationnaire sur Zi−1. En composant ces homotopies, on voit que ρ et l’identité de X sont
homotopes par une homotopie stationnaire sur X.

�

2.6 Extensions et extensions universelles.
Dans cette section nous montrons la naturalité de la construction du complexe à bord

(Y,D(Y )).

2.6.1 Définition. Soit (X, D(X)) un complexe à bord.
Une extension de (X, D(X)) est un complexe à bord (Y,D(Y )) et un morphisme injectif

e : X → Y tels que e(X) =Int(Y ) et Y = V (e(X), Y ).
Une extension e : X → Y est dite universelle si pour tout s sommet de D(X) on a

V (e(s), Y )∩e(X) = e(V (s,X)), et pour deux sommets s, t de D(X) l’intersection V (e(s), Y )
∩V (e(t), Y ) est contenue dans e(X) si s et t ne sont pas joints et est St({s, t}, Y ) sinon.

Soit D = (Vs, fs, f~a) une donnée d’extension de X. Soit e : X → Y une extension de
X. Nous dirons que cette extension est modelée sur D s’il existe pour tous s ∈ D(X) des
isomorphismes ϕs : V (e(s), Y ) → Vs tels que fs = ϕs ◦ e sur V (s,X) et, pour toute arête
orientée ~a = (s, t) de D(X), on a ϕt = f~a ◦ ϕs sur St(e(a), Y ).

Soit D = (Vs, fs, f~a) une donnée d’extension de X. Soit e : X → Y, e′ : X → Y ′ deux
extensions de X modelées sur D. Alors un morphisme (d’extensions modelées) de e : X → Y
sur e′ : X → Y ′ est un morphisme g : Y → Y ′ tel que g ◦e = e′ sur X et pour tout s sommet
de D(X) on a ϕ′

s ◦ g = ϕs sur V (e(s), Y ).

2.6.2 Remarques.
1) Soit (X, D(X)) un complexe à bord saillant et D des données d’extension saillantes,

(ICV ) de X. Alors le complexe à bord saillant (Y, D(Y )) construit en section 2.3 muni de
l’inclusion naturelle X → Y constitue une extension de X. D’après le lemme 2.3.4 et la
propriété (ICV ) dans Y , cette extension est universelle. Enfin les applications naturelles
des Vs dans Y réalisent un isomorphisme sur V (s, Y ), et on vérifie immédiatement que les
isomorphismes inverses ϕs modèlent l’extension sur D.

2) Notons qu’un morphisme d’extensions modelées est toujours surjectif et un isomor-
phisme local à l’intérieur.

2.6.3 Proposition. Une extension universelle modelée sur des données d’extension admet
un morphisme sur toute autre telle extension, d’ailleurs unique. En particulier une extension
universelle modelée sur des données d’extension est unique à isomorphisme près.
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Démonstration
Le résultat d’unicité à isomorphisme près est un corollaire classique de la propriété

universelle (la composée de deux morphismes est bien un morphisme). Montrons donc la
première partie du lemme.

Soit e : (X, D(X)) → (Y, D(Y )) une extension universelle modelée sur D. Soit e′ :
(X, D(X)) → (Y ′, D(Y ′)) une autre extension modelée sur D. Nous noterons (ϕs), (ϕ′

s) les
isomorphismes modelant Y, Y ′ sur D.

Montrons d’abord l’unicité d’un morphisme g : Y → Y ′. Par définition d’une extension,
Y est la réunion de e(X) et des V (e(s), Y ). Pour σ un simplexe de Y , on a donc σ dans e(X)
ou σ dans un V (e(s), Y ). Dans le premier cas on doit avoir g(σ) = g(e(e−1(σ))) = e′(e−1(σ)).
Dans le second cas on doit avoir g(σ) = (ϕ′

s)
−1(ϕ′

s(g(σ))) = (ϕ′
s)
−1(ϕs(σ)).

Montrons l’existence. Posons gX = e′ ◦ e−1, isomorphisme de e(X) sur e′(X), et, pour
s sommet de D(X), posons gs : ϕ′

s
−1 ◦ ϕs, isomorphisme de V (e(s), Y ) sur V (e′(s), Y ′).

Vérifions que les applications gX , gs sont deux à deux compatibles.
Soit σ un simplexe de e(X)∩V (e(s), Y ). Comme l’extension e : X → Y est universelle,

on a σ ∈ e(V (s,X)), i.e. σ = e(τ) avec τ simplexe de V (s,X). Alors gX(σ) = gX(e(τ)) =
e′(τ), tandis que gs(σ) = ϕ′

s
−1(ϕs(e(τ))) = ϕ′

s
−1(fs(τ)) = e′(τ) en utilisant les propriétés

des applications ϕs.
Soit σ un simplexe de V (e(s), Y )∩V (e(t), Y ). Si s et t ne sont pas liés alors V (e(s), Y )∩

V (e(t), Y ) = (V (e(s), Y ) ∩ e(X)) ∩ (V (e(t), Y ) ∩ e(X)) puisque e : X → Y est universelle.
Alors d’après ce qui précède on a gs(σ) = gX(σ) = gt(σ). Enfin si {s, t} est une arête a de
D(X) on a σ ∈St({e(s), e(t)}, Y ) (par universalité). Or ϕs(e(s)) = fs(s) et ϕs(e(t)) = fs(t)
Donc ϕs(σ) est un simplexe de St({fs(s), fs(t)}, Vs) = Vs,a. Alors gs(σ) = (ϕ′

s)
−1(ϕs(σ)) =

(ϕ′
s)
−1(f(t,s)(f(s,t)(ϕs(σ)))) = (ϕ′

t)
−1(ϕt(σ)) = gt(σ).

Les morphismes gX , gs sont compatibles, donc définissent un morphisme g de la réunion
des domaines de définition vers Y ′. Par définition d’une extension, Y est la réunion de e(X)
et des V (e(s), Y ) : donc g est une application simpliciale de Y dans Y ′. Il est clair que g
vérifie les propriétés d’un morphisme d’extensions modelées sur D.

�

2.6.4 Corollaire.
Soit (X, D(X)) un complexe à bord saillant (ICV ), et soit D une donnée d’extension

saillante (ICV ) de X.

Alors (X, D(X)) admet une extension universelle modelée sur D, unique à isomorphisme
près, qui domine toute autre telle extension. Cette extension universelle est isomorphe au
complexe à bord (Y,D(Y )) de la section 2.3, muni de l’inclusion X ⊂ Y .

Démonstration
D’après la remarque 2.6.2, le complexe à bord (Y, D(Y )) de la section 2.3, muni de l’inclusion
X ⊂ Y , est bien une extension universelle naturellement modelée sur D. D’autre part la
partie unicité de l’énoncé découle de la proposition 2.6.3

�

2.7 Revêtement universel d’un complexe localement (ICV ) et espaces tangents.
Dans cette section nous identifions le revêtement universel d’un complexe localement

(ICV ) à l’espace tangent, un complexe (ICV ) naturellement défini à partir d’un point base
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comme limite inductive d’une suite d’extensions universelles. Nous commençons par montrer
comment étendre un isomorphisme local en présence de la propriété (ICV ).

2.7.1 Définition. Soit (X, D(X)) un complexe à bord et X ′ un complexe simplicial. Un
isomorphisme local de (X, D(X)) dans X ′ est un morphisme f : X → X ′ qui est un isomor-
phisme local sur Int(X) (i.e. tel que pour tout v ∈Int(X), la restriction de f à V (v,X) induit
un isomorphisme sur V (f(v), X ′)), tel que f est injective sur V (s,X) pour tout s ∈ D(X).

2.7.2 Lemme (extensions d’isomorphismes locaux).
Soit (X, D(X)) un complexe à bord saillant tel que X a (ICV ). Soit X ′ un complexe

localement (ICV ) et f : X → X ′ un isomorphisme local de (X, D(X)) dans X ′ .

Alors il existe une extension universelle (Y, D(Y )) de (X, D(X)) et un isomorphisme
local g de (Y, D(Y )) dans X ′ avec les propriétés suivantes :

1) Y a (ICV ) et g étend f ;

2) pour toute extension (Y ′, D(Y ′)) de (X, D(X)) munie d’un isomorphisme local g′ de
(Y ′, D(Y ′)) dans X ′ avec les propriétés du 1), il existe un morphisme ϕ : Y → Y ′ tel que
g′ϕ = g (qui est un isomorphisme si l’extension (Y ′, D(Y ′)) est universelle).

Démonstration
Définissons des données d’extension de (X, D(X)) via f . Pour tout s ∈ D(X), posons

Vs = V (f(s), X ′), voisinage du sommet f(s). Comme X ′ est localement (ICV ), le voisinage
Vs est lui-même (ICV ). Posons alors fs = f|V (s,X) et σ′s = f(σs). Par hypothèse fs est un
plongement.

Vérifions que Vs,X = fs(V (s,X)) = V (σ′s, Vs). Comme V (s,X) = V (σs, X), l’inclusion
⊂ est évidente. Soit τ ′ un simplexe de V (σ′s, Vs) : il existe donc un simplexe ρ′ de X ′

contenant τ ′, f(s) et un sommet t′ de σ′s. Soit t ∈ σs tel que f(t) = t′. Comme t ∈Int(X),
f réalise un isomorphisme de V (t, X) sur V (t′, X ′). Donc il existe un simplexe ρ de V (t, X)
tel que f(ρ) = ρ′. Comme s ∈ V (t, X) et f(s) ∈ ρ′, on a donc s ∈ ρ. Ainsi le simplexe τ ⊂ ρ
tel que f(τ) = τ ′ est dans V (s,X), donc τ ′ est dans Vs,X .

Pour une arête orientée ~a de s ∈ D(X) à t ∈ D(X), nous avons f(St(a,X)) ⊂
St(f(a), X ′)) = St(fs(a), Vs) = St(ft(a), Vt). Nous poserons alors f~a =idf(St(f(a),X′)).

On a tout de suite fs ◦ f~a = ft, et les conditions de cocycles sont immédiates à vérifier.
Ainsi, les données d’extensions D(f) précédentes sont saillantes et (ICV ), et nous

pouvons considérer le complexe à bord (Y, D(Y )) construit en section 2.3 : il est saillant,
et Y a (ICV ) d’après le théorème 2.4. On a X ⊂ Y et cette extension est universelle,
modelée sur D(f) (voir remarque 2.6.2). D’autre part il y a un morphisme naturel ḡ de
l’union disjointe X t (ts∈D(X)Vs) dans X ′, défini par ḡ(x) = f(x) si x ∈ X et par ḡ(x) = x
si x ∈ Vs pour un certain s ∈ D(X). Vu les recollements utilisés pour construire Y , le
morphisme ḡ est compatible avec π : X t (ts∈D(X)Vs) → Y , donc définit un morphisme
g : Y → X ′. Il est clair que g étend f . En particulier g est déjà un isomorphisme local au
voisinage des sommets v ∈Int(X). D’autre part, si s ∈ D(X), on a V (s, Y ) = Vs et ḡ|Vs

est
l’identité de V (f(s), X ′), donc g un isomorphisme local au voisinage de s.

Pour achever de montrer le 1), il suffit de vérifier que g est localement injective au bord
de Y . Soit donc p ∈ D(Y ) et q, r deux sommets de V (p, Y ) tels que g(q) = g(r).

Faisons tout d’abord la remarque suivante : si q et r sont liés à un même sommet s de
D(X) alors q = r par injectivité locale de g à l’intérieur.
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Supposons en premier lieu que l’un des sommets q ou r soit dans X (donc dans le
simplexe σp = X ∩ V (p, Y )). Alors l’autre sommet est un sommet s ∈ σp ou du moins lié à
un s ∈ σp car (y, D(Y )) est saillant. On a bien alors q, r dans un même Vs.

En second lieu supposons que q, r sont sur D(Y ) et qu’il existe une arète {s, t} de σp

telle que q ∈ Vs, r ∈ Vt. Notons m le sommet image g(q) = g(r) ∈ X ′. Nous voyons alors
que les trois arêtes {f(s), f(t)}, {f(s),m}, {f(t),m} sont dans V (g(p), X ′). Comme X ′ est
localement (ICV ), le voisinage V (g(p), X ′) est de drapeaux. Donc {g(p), g(s), g(t),m} est
un 3-simplexe τ ′ de X ′. Comme g est un isomorphisme local au voisinage de s, nous pouvons
considérer le simplexe τ de Vs tel que g(τ) = τ ′. Par injectivité locale dans Vs ce simplexe
contient s, t, p, et son quatrième sommet est q. Mais par injectivité locale dans Vt on a alors
q = r.
Montrons maintenant la propriété 2). Remarquons d’abord que l’extension (Y ′, D(Y ′)) est
en fait modelée sur D(f) : il suffit, pour s ∈ D(X), de considérer ϕs = g′ |V (e′(s),Y ′). Par
la proposition 2.6.3 il existe ϕ : Y → Y ′, un morphisme d’extensions modelées sur D(f).
Par définition des modèles respectifs on a alors g′ϕ = g (car on l’a sur X et sur chaque
Vs, s ∈ D(X)). Enfin, supposons l’extension (Y ′, D(Y ′)) universelle. Alors d’après l’unicité
dans 2.6.3 nous voyons que ϕ est un isomorphisme.

�

2.7.3 Construction-Définition.
Soit (X, D(X)) un complexe à bord saillant, X ayant (ICV ). Soit X ′ un complexe

localement (ICV ) et f un isomorphisme local de (X, D(X)) dans X ′. D’après le lemme 2.7.2,
nous pouvons alors considérer l’unique extension universelle (X1, D(X1)) de (X0, D(X0)) =
(X, D(X)), telle que X1 est (ICV ), et f0 = f s’étend en un isomorphisme local f1 de
(X1, D(X1)) dans X ′. En itérant cette construction, on obtient une suite croissante de
complexes simpliciaux Xn et de morphismes fn : Xn → X ′. Nous noterons T (f) la limite
inductive de la suite de complexes (Xn), et p : T (f) → X ′ la limite inductive de la suite de
morphismes (fn : Xn → X ′).

Il se peut que la suite de complexes Xn et d’isomorphismes locaux fn de (Xn, D(Xn))
vers X soit stationnaire. Cela se produit lorsque pour n assez grand on a D(Xn) = ∅. Par
exemple si X ′ = X, le cône sur un complexe ayant (ICV ) et D(X) la base de ce cône.

Lorsque X ′ est un complexe simplicial localement (ICV ) et s est un sommet de X ′, soit
X le voisinage de s dans X ′ et D(X) = ∂V (s,X ′). Alors (X, D(X)) est un complexe à bord
saillant (cf. Exemple 2.1.1) et X est (ICV ). Soit f : X → X ′ l’inclusion canonique : c’est
un isomorphisme local au voisinage de v, l’unique sommet intérieur à X ′, et un plongement
local partout. Nous noterons dans ce cas Tv(X ′) le complexe T (f), et nous l’appelerons
espace tangent à X ′ en v.

Plus généralement si X est un sous-complexe de X ′ localement (ICV ) et si D(X) est un
bord pour X tel que DX′(X) ⊂ D(X), alors l’inclusion canonique de X dans X ′ définit un
isomorphisme local de (X, D(X)) dans X ′. Nous noterons dans ce cas TX(X ′) le complexe
T (f).

2.7.4 Lemme.
Soit (X, D(X)) un complexe à bord saillant, X ayant (ICV ) (resp. (ICV−1)). Soit X ′

un complexe localement (ICV ) (resp. (ICV−1)) et f un isomorphisme local de (X, D(X))
dans X ′. Alors T (f) a (ICV ) (resp. (ICV−1)), X est un rétract par déformation de T (f)
et p : T (f) → X ′ est un isomorphisme local.
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Démonstration
D’après le théorème 2.4, chaque Xn a (ICV ) (resp. (ICV−1)). Chaque Xn est plein

dans Xn+1, donc dans T (f), union croissante des Xn. Pour chaque arête a de Xn on a
V (a, T (f)) ⊂ Xn+1. Finalement T (f) a (ICV ) (resp. (ICV−1)), d’après le lemme du
recouvrement 1.10 appliqué aux Xn.

D’après le lemme 2.5, chaque Xn est un rétract par déformation de Xn+1. Donc par
composition X est un rétract par déformation de T (f).

Enfin tout sommet de T (f) finit par être intérieur à un Xn : or p|Xn
= fn, et fn est un

isomorphisme local au voisinage des sommets intérieurs de Xn.
�

2.7.5 Théorème. Soit X un complexe simplicial connexe et localement (ICV ) (resp.
(ICV−1)). Alors son revêtement universel est (ICV ) (resp. (ICV−1)) et contractile.

Démonstration
Fixons un sommet v0 de X. D’après le début du lemme 2.7.5 , il suffit de montrer que

p : Tv0(X) → X est un revêtement universel contractile de X.
D’après ce même lemme 2.7.5 le morphisme p est un isomorphisme local, donc un

revêtement puisque X est connexe. Et toujours d’après ce lemme Tv0(X) a le même type
d’homotopie que V (v0, X), bien sûr contractile.

�

2.7.6 Corollaire. Un complexe simplicial est (ICV ) (resp. (ICV−1)) si et seulement si il
est localement (ICV ) (resp. (ICV−1)) et tout circuit de longueur n ≤ 5 (resp. n ≤ 6) est
homotope à 0.

Démonstration
Le sens ⇒ est clair. Sous l’hypothèse que X est localement (ICV ) (resp. (ICV−1)) et que
tout cycle de longueur n ≤ 5 (resp. n ≤ 6) est homotope à 0, le complexe simplicial X est
le quotient de son revêtement universel X par le groupe fondamental, avec une distance de
translation δ vérifiant δ > 5 (resp. δ > 6). D’après le théorème précédent, X est (ICV )
(resp. (ICV−1)), donc d’après le lemme 1.6 le complexe X est lui-même (ICV ) (resp.
(ICV−1).

�

Voici une autre application du lemme 2.7.4 :

2.7.7 Proposition. Soit X ′ un complexe simplicial connexe, simplement connexe et (ICV ).
Soit (X, D(X)) un complexe à bord saillant, X étant connexe et ayant (ICV ). Soit enfin f
un isomorphisme local de (X, D(X)) dans X ′.

Alors X est contractile, f est un plongement d’image pleine. De plus, pour tout n ≥ 1
le sous-complexe V n(f(X), X ′) est contractile, plein et (V n(f(X), X ′), ∂V n(f(X), X ′)) est
un complexe à bord saillant dont l’intérieur est contenu dans l’intérieur topologique de
V n(f(X), X ′). Enfin (V n+1(f(X), X ′), ∂V n+1(f(X), X ′)) est une extension universelle de
(V n(f(X), X ′), ∂V n(f(X), X ′)) modelée sur les données d’extensions de (V n(f(X), X ′),
∂V n(f(X), X ′)) associées à l’inclusion V n(f(X), X ′) ⊂ X ′.

Démonstration
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D’après le lemme 2.7.4 et l’hypothèse de simple connexité de X ′, l’isomorphisme local
p : T (f) → X ′ est un isomorphisme (T (f) est connexe puisque X l’est). Donc déjà f est un
plongement.

D’après le théorème 2.7.5 le complexe X ′ est contractile, donc T (f) l’est aussi, ainsi
que chaque Xn (tous ont le même type d’homotopie via X, cf. lemme 2.7.4).

On a X = X0 ⊂ X1 ⊂ · · · ⊂ T (f) et chaque Xn est plein dans Xn+1 (cf. lemme 2.3.4),
donc dans T (f).

Par construction on a Xn+1 = V (Xn, T (f)), D(Xn+1) = ∂V (Xn, T (f)) et (Xn+1,
D(Xn+1)) est l’extension universelle de (Xn, D(Xn)) modelée sur les données d’extension
associée à l’isomorphisme local fn de (Xn, D(Xn)) dans X ′ (un plongement puisque p est
un isomorphisme). On en déduit par récurrence sur n ≥ 1 que Xn = V n(X, T (f)) (resp.
D(Xn) = ∂V n(X, T (f))).

On sait que (Xn, D(Xn)) est saillant, on a vu que Xn est plein, donc on conclut en
appliquant l’isomorphisme p.

�

2.7.8 Remarque.
La proposition précédente s’applique en particulier lorsque X est un sous-complexe connexe
et (ICV ) de X ′, f est l’inclusion canonique et D(X) est un bord sur X tel que DX′(X) ⊂
D(X) et (X, D(X)) est saillant. Car alors f est bien un isomorphisme local de (X, D(X))
dans X ′.
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3. Etude de la métrique combinatoire.
Dans toute la section X est un complexe simplicial connexe, simplement connexe qui

vérifie (ICV ).
Nous allons montrer que (SX , dX) a un comportement analogue à celui d’un espace CAT (0).
Si de plus X est (ICV−1) alors (SX , dX) est hyperbolique au sens de Gromov.

3.1 Lemme.
Pour tout sommet s de X et tout entier n ≥ 1, on a V n(s,X) = BX(s, n), i.e. les

V n(s,X) sont pleins. Les boules sont contractiles. Le complexe à bord (BX(s, n), SX(s, n))
est saillant. Pour tout simplexe σ ∈ SX(s, n + 1) il existe un simplexe ρ de SX(s, n) tel que
s ∈ ρ ⇐⇒ s est lié à chaque sommet de σ ; de plus σ et ρ sont joignables dans X.

Démonstration
On applique la remarque 2.7.7 au complexe V (s,X) muni de son bord usuel ∂V (s,X) (on a
déjà vérifié les hypothèses en 2.7.3). On obtient dèjà que V n(s,X) est plein et contractile.
On a donc à la fois l’inclusion V n(s,X) ⊂ BX(s, n), égalité de l’ensemble des sommets, et
plénitude de V n(s,X). Donc V n(s,X) = BX(s, n) et BX(s, n) est contractile.

La sphère SX(s, n + 1) est le sous-complexe de BX(s, n + 1) engendré par les sommets
non dans BX(s, n). De même ∂V n+1(s,X) est le sous-complexe de V n+1(s,X) engendré par
les sommets non dans V n(s,X). Comme V n(s,X) = BX(s, n) pour tout n ≥ 1, on a donc
SX(s, n + 1) = ∂V n+1(s,X). L’égalité SX(s, 1) = ∂V 1(s,X) est évidente. Finalement les
complexes à bord (V n(s,X), ∂V n(s,X)) et (BX(s, n), SX(s, n)) sont identiques, et toutes
les propriétés du premier (venant de 2.7.7) passent au second.

En particulier (BX(s, n), SX(s, n)) est saillant. Et (BX(s, n + 1), SX(s, n + 1)) est
l’extension universelle de (BX(s, n), SX(s, n)) modelée sur les données d’extension associées
à l’inclusion BX(s, n) ⊂ X. La boule (BX(s, n) est pleine, donc (ICV ).

On a vu que (BX(s, n), SX(s, n)) est saillant et donc les données d’extension le sont
aussi puisque DX(BX(s, n)) ⊂ SX(s, n) (cf. 2.2.1). Enfin X étant (ICV ) les données
d’extension sont (ICV ). Donc toute extension universelle de (BX(s, n), SX(s, n)) modelée
sur ces données est isomorphe à celle construite en section 2.3 (cf. corollaire 2.6.4). Le
lemme 2.3.5 s’applique donc.

�

3.2 Définition. Soit c = (s0, s1, · · · , sn+1) un chemin de longueur n + 1. Un raccourcisse-
ment élémentaire de c est un chemin (s′0, s

′
1, · · · , s′n) de mêmes extrémités que c, de longueur

n tel que, pour tout entier 0 < i < n le sommet s′i est l’un des sommets si, si+1, ou alors est
lié dans X aux deux sommets si, si+1 (autrement dit s′i ∈St({si, si+1}, X), puisque X est
de drapeaux).

Remarques.
Soit c′ un raccourcissement élémentaire d’un chemin c.

1) Le chemin opposé c′ est un raccourcissement élémentaire de c.
2) Il y a une homotopie simpliciale de c à c′ utilisant au plus 2n − 1 mouvements

élémentaires.

3.3 Proposition. Soit X un complexe simplicial (ICV ) simplement connexe. Alors un
chemin c sans aller-retours est une géodésique si et seulement si c n’admet pas de sous-
chemin qu’on peut raccourcir élémentairement.
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Démonstration
Il suffit de montrer par récurrence sur la longueur n de c = (s0, s1, · · · , sn) que si c n’est

pas géodésique, alors c contient un sous-chemin qui admet un raccourcissement élémentaire.
C’est évident pour n ≤ 2.
Supposons c = (s0, · · · , sn+1) de longueur n + 1, n ≥ 2 et non géodésique. Si un sous-

chemin strict est non géodésique alors par récurrence on trouve un sous-chemin de c qui
admet un raccourcissement élémentaire. A partir de maintenant nous supposons donc que
tous les sous-chemins stricts sont géodésiques (en particulier c est sans aller-retour).

Avec notre hypothèse nous avons d(s0, sn) = n. Or d(s0, sn+1) < n + 1. Donc
d(s0, sn+1) = n− 1 ou n.

Dans le premier cas, nous avons {sn−1, sn+1} ⊂ σsn
, le simplexe de SX(s0, n − 1)

engendré par les sommets liés à sn (cf. lemme 3.1). Donc sn−1 = sn+1 ou {sn−1, sn+1} est
une arête de X. Le premier cas est impossible puisque c est sans aller-retours. Le deuxième
correspond à un raccourcissement élémentaire du sous-chemin (sn−1, sn, sn+1).

Supposons donc d(s0, sn+1) = n. Alors σsn
∩σsn+1 est un simplexe σan

(cf. lemme 3.1).
Soit s′n−1 un sommet de σan

. Si s′n−1 = sn−1 on obtient encore une fois un raccourcissement
élémentaire du sous-chemin (sn−1, sn, sn+1). Sinon s′n−1 est lié aux trois derniers sommets
de c. En particulier s′n−1 ∈St({sn−1, sn}, X).

Le chemin c′ = (s0, · · · , sn−1, s
′
n−1) est de longueur n, mais n’est pas géodésique. Donc

par récurrence c′ admet un raccourcissement élémentaire de l’un de ses sous-chemins c′′. Si
c′′ ne contient pas s′n−1, alors c′′ est un sous-chemins de c, ce qui conclut.

Sinon il existe un entier 0 ≤ r ≤ n−2 et un chemin (s′r, · · · , s′n−1) de mêmes extrémités
que c′′ = (sr, · · · , sn−1, s

′
n−1), tel que s′k ∈St({sk, sk+1}, X) pour tout r < k < n− 1. Alors

(s′r, · · · , s′n−1, sn+1) est un raccourcissement élémentaire du sous-chemin (sr, · · · , sn+1).
�

Remarque. On déduit de la proposition ci-dessus et de la remarque qui la précède que la
fonction de Dehn du complexe simplicial X est au plus quadratique.

3.4 Lemme. Soit (X, D(X)) un complexe à bord saillant, avec X (ICV ), et soit D des
données d’extension saillantes et (ICV−1). Soit (Y, D(Y )) une extension universelle de
(X, D(X)) modelée sur D. Alors pour p, q liés sur D(Y ), les intersections σp = V (p, Y )∩X
et σq = V (q, Y ) ∩X sont des simplexes comparables pour l’inclusion.

Démonstration
D’après le lemme 2.6.4 nous pouvons supposer que (Y,D(Y )) est l’extension construite

en 2.3, et nous allons utiliser les notations de cette section. Par 2.3.5 nous savons déjà que
σp et σq sont des simplexes.

Les sommets p et q sont liés par une arête a d’un certain Vs. Donc en fait σp ⊂
V (p, Vs) ∩X ⊂ V (p, Y ) ∩X = σp. On a σp = V (p, Vs) ∩X et de même σq = V (q, Vs) ∩X.
Donc V (a, Vs) ∩X = σp ∪ σq.

Or V (a, Vs) ∩X = V (a, Vs) ∩ V (σs, Vs). En effet V (a, Vs) ∩X = V (a, Vs) ∩ (X ∩ Vs),
et X ∩ Vs = Vs,X (cf. lemme 2.3.4) et Vs,X = V (σs, X) par construction de Y .

Pour finir σp ∪ σq = V (a, Vs) ∩ V (σs, Vs). Nous pouvons alors appliquer le lemme 1.8
dans Vs, puisque celui-ci par hypothèse est (ICV−1). Nous obtenons que σp ∪ σq est un
simplexe, ce qui conclut.

�
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3.5 Théorème. Soit X un complexe simplcicial connexe, simplement connexe et (ICV−1).
Alors (SX , dX) est hyperbolique au sens de Gromov.

Démonstration
Considérons les complexes à bord (BX(s, n + 1), SX(s, n + 1)) comme des extensions uni-
verselles des (BX(s, n), SX(s, n)) (cf. le lemme 3.1 et sa preuve). Puisque X est (ICV−1) les
boules le sont aussi (elles sont pleines). Donc les données d’extension associée à l’inclusion
BX(s, n) ⊂ X sont (ICV−1). Nous pouvons donc appliquer le lemme 3.4 : pour deux som-
mets p, q à distance n + 1 d’un sommet s et liés dans X, on a V (p, X) ∩ BX(s, n) = σp

et V (q, X) ∩ BX(s, n) = σq, avec σp, σq deux simplexes de SX(s, n) comparables pour
l’inclusion.

Ceci entrâıne immédiatement par récurrence que si deux géodésiques c1, c2 de X d’origi-
ne s, de longueur n ont des extrémités p, q qui sont égales ou à distance 1, alors d(c1(i), c2(i))
≤ 1 (en notant c(j) le j-ième sommet d’un chemin c). Autrement dit “les bigones (combina-
toires) sont 1-fins”, de sorte que les bigones du graphe métrique correspondant au 1-squelette
de X sont 2-fins. D’après [P] (theorem 1.4) l’espace métrique (SX , dX) est donc Gromov-
hyperbolique.

�

3.6 Lemme. 1) Soit (C,D(C)) un complexe à bord saillant avec C ayant (ICV ). Soit
D des données d’extension saillantes et (ICV ) de (C,D(C)). Soit (Y,D(Y )) l’extension
universelle de (C,D(C)) modelée sur D (cf. 2.6.4). Alors SC est convexe dans (SY , dY ).

2) Soit C un sous-complexe connexe de X ayant (ICV ). Soit D(C) un bord sur C tel
que DX(C) ⊂ D(C) et (C,D(C)) est saillant. Alors SC est convexe dans (SX , dX). En
particulier les boules sont convexes : SB est convexe dans (SX , dX) pour toute boule B de
X.

Démonstration
1) Montrons qu’un chemin c = (s0, · · · , sn) de Y avec n ≥ 2, s0, sn dans D(X) mais

s1, · · · , sn−1 dans D(Y ) ne peut être géodésique.
Raisonnons par récurrence sur n. Pour n = 2 on a s0, s2 ∈ X ∩ V (s1, Y ), donc s0 et s2

sont liés dans le simplexe σs1 , et c n’est pas géodésique.
Si n > 2 soit s un sommet du simplexe σ{s1,s2}. Alors c′ = (s0, s, s2, · · · , sn) est de

longueur n. Par récurrence (s, s2, · · · , sn) n’est pas géodésique, donc c′ et finalement c ne le
sont pas non plus.

2) Soit C0 = C,D(C0) = D(C), puis Cn+1 = V (Cn, X), D(Cn+1) = ∂V (Cn, X).
D’après la proposition 2.7.7 et la remarque 2.7.8, nous savons que (Cn+1, D(Cn+1)) est
l’extension universelle du complexe à bord saillant (Cn, D(Cn)) modelée sur les données
d’extension saillantes et (ICV ) associées à l’inclusion Cn ⊂ X. Nous pouvons donc appli-
quer le 1) : nous avons alors SCn

convexe dans SCn+1 . Comme X =
⋃

Cn, nous voyons que
SCn est convexe dans (SX , dX) pour tout n, en particulier pour n = 0.

Enfin nous avons vu au lemme 3.1 que le complexe à bord (BX(s, n), SX(s, n)) satisfait
bien les hypothèses du 2).

�

Ce qui précède (et le lemme 2.1.3) montre que lorsque X est (ICV ), les notions de
convexe et de saillant sont quasi-équivalentes.

30



Le résultat suivant, joint au précédent, montre une propriété remarquable des espaces
métriques (SX , d) hyperboliques en question : les notions de totalement géodésique, convexe
et saillant y sont quasi-équivalentes.

3.7 Proposition. Soit X un complexe simplicial connexe, simplement connexe et (ICV−1).
Soit K une partie de X totalement géodésique. Alors V (K, X) est convexe dans X (en
particulier l’enveloppe convexe de SK reste à distance de Hausdorff finie de SK). Et
(V 2(K, X), ∂V 2(K, X)) est saillant.

Démonstration
La dernière affirmation découle de V (K, X) convexe et du lemme 2.1.3.
Pour montrer que V (K, X) est convexe raisonnons par l’absurde. Considérons donc une

géodésique γ = (p0 = p, p1, · · · , pn = q) entre deux points p, q de V (K, X) avec γ 6⊂ V (K, X),
et de longueur minimale pour cette propriété. Donc n > 1 et p1, · · · , pn−1 ne sont pas dans
V (K, X). En particulier ni p ni q ne sont dans K.

Considérons alors deux sommets x, y de K tels que d(x, p) = d(y, q) = 1 et d(x, y) est
minimale pour cette propriété. Comme K est géodésique dans X il existe une géodésique
γ′ = (x0 = x, x1, · · · , xm = y) dont tous les sommets xi sont dans K. Par inégalité tri-
angulaire on a m − 2 ≤ n ≤ m + 2. Considérons aussi la distance d = d(x, q) qui vérifie
m− 1 ≤ d ≤ m + 1 par inégalité triangulaire.

Supposons n = m + 2. Alors (p, x).γ′.(y, q) est une géodésique de mêmes extrémités que γ.
Nous avons vu au théorème 3.5 que les bigones combinatoires sont 1-fins : deux géodésiques
de même origine et d’extrémités égales (ou à distance 1) se suivent à distance ≤ 1. En
particulier d(p1, x) ≤ 1, contradiction.

Supposons n = m + 1 ; donc d = m ou d = m + 1. Si d = m + 1 alors γ et γ′.(y, q) sont
deux géodésiques de même extrémité et d’origines à distance 1. Par 1-finesse des bigones,
nous avons d(pn−1, y) ≤ 1, contradiction. Si d = m soit γ′′ une géodésique de q à x : alors
γ et (p, x).γ′′ sont deux géodésiques de mêmes extrémités : par 1-finesse des bigones, nous
avons d(p1, x) ≤ 1, contradiction.

Donc n ≤ m.

Si d = m + 1 alors on doit avoir n ≥ m toujours par inégalité triangulaire et finalement
n = m. Alors (x, p).γ et γ′.(y, q) sont deux géodésiques de mêmes extrémités. Par 1-finesse
des bigones, nous avons d(pn−1, y) ≤ 1, contradiction.

Si d = m − 1 alors m > 0. Pour γ′′ une géodésique de x à q, nous avons γ′′.(q, y) et γ′

deux géodésiques de même extrémités, donc d(q, xm−1) ≤ 1, contradiction avec le choix
minimisant de d(x, y). Notons que pour la même raison on doit avoir d(p, y) ≥ m.

Si d = m, alors n ≥ m − 1. Si n = m − 1 alors m > 0 : nous avons (x, p).γ et γ′ deux
géodésiques de même origine et d’extrémités à distance 1, d’où d(p, x1) ≤ 1, contradiction
avec le choix minimisant de d(x, y).

Supposons pour finir que n = m = d (> 1 comme n). Alors les chemins γk =
(q, xm, xm−1, · · · , xm−k) ne peuvent être géodésiques pour tout k ∈ {0, 1, · · · ,m} : soit
donc ` le plus petit entier k, 0 ≤ k ≤ m tel que γk n’est pas géodésique. On a évidemment
` ≥ 1 ; et même ` > 1 sinon q serait lié à xm−1, contradiction avec le choix minimisant de
d(x, y).
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Soit c′′ une géodésique de q à xm−` et γ′′ = c′′.(xm−`, · · · , x0) : nécessairement c′′ est
de longueur `, car de longueur ≤ ` puisque γ` n’est plus géodésique, mais l’inégalité stricte
est exclue sinon γ′′ est de longueur < m, donc d < m.

Supposons d’abord ` < m. Alors nous avons γ′′ et γ deux géodésiques d’origine q et
d’extrémités reliées, d’avant-derniers sommets p1, x1, d’où d(p1, x1) ≤ 1, absurde.

Supposons maintenant ` = m et m > 2. Soit p′′ l’avant-dernier sommet de γ′′ (lié
à x). Par 1-finesse des bigones, nous avons d(p1, p

′′) ≤ 1. En fait d(p1, p
′′) = 1 sinon

p1 = p′′ ∈ V (K, X). Puisque X est sans carré et que x n’est pas lié à p1, nous avons p lié à
p′′. Par finesse des bigones appliquée à γ′′ et γ` on voit de même que d(p′′, x2) ≤ 1. On ne
peut avoir p′′ = x2, sinon x = x0 lié à x2 et γ′ n’est pas géodésique.

Le chemin (p, p′′, x2).(x2, · · · , xm) est de longueur m, donc est géodésique. Comme on
suppose m > 2 la 1-finesse des bigones donne d(pn−1, xm−1) ≤ 1, contradiction.

Enfin lorsque n = m = d = 2 les sommets p et x sont à distance > 1 des sommets q et
y, donc par (ICV−1) les sommets p1 et x1 sont liés, contradiction.

�

Question. Soit K un sous-complexe quasi-convexe d’un complexe X comme ci-dessus.
L’enveloppe convexe de K reste t-elle à distance de Hausdorff finie de K ?
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